
900 Series HP 3000 Computer Systems

ALLBASE/SQL COBOL

Application Programming Guide

ABCDE

HP Part No. 36216-90006

Printed in U.S.A. 1992

Fourth Edition

E0692

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1987, 1988, 1989, 1990, 1991, 1992 by Hewlett-Packard

Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition December 1987 36216-02A.01.00
Second Edition October 1988 36216-02A.12.00
Third Edition October 1989 36216-02A.20.00
Fourth Edition June 1992 36216-02A.E1.00

iii

iv

Preface

ALLBASE/SQL is a relational database management system for use on HP 3000 Series
900 computers. ALLBASE/SQL (Structured Query Language) is the language you use to
de�ne and maintain data in an ALLBASE/SQL DBEnvironment. This manual presents the
techniques of embedding ALLBASE/SQL within COBOL language source code.

This manual is intended as a learning tool and a reference guide for COBOL programmers. It
presumes the reader has a working knowledge of COBOL, the MPE/iX operating system, and
ALLBASE/SQL relational database concepts.

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series
of forward-compatible operating systems for the HP 3000 line of computers. In HP
documentation and in talking with HP 3000 users, you will encounter references to MPE XL,
the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs written
for MPE XL will run without change under MPE/iX. You can continue to use MPE XL
system documentation, although it may not refer to features added to the operating system to
support POSIX (for example, hierarchical directories).

This manual contains both basic and in-depth information about embedding ALLBASE/SQL.
Code examples are based, for the most part, on the sample database, PartsDBE, which
accompanies ALLBASE/SQL. Refer to Appendix C in the ALLBASE/SQL Reference Manual
for information about the structure of PartsDBE and for listings of the sample database.

Chapter 1, \Getting Started with ALLBASE/SQL Programming in COBOL," is an
introduction to ALLBASE/SQL programming which includes information on developing,
using, and maintaining programs on the MPE XL operating system.

The remaining chapters focus primarily on embedding SQL commands in COBOL application
programs.

Chapter 2, \Using the ALLBASE/SQL COBOL Preprocessor," explains the
ALLBASE/SQL preprocessor and how to invoke it.
Chapter 3, \Embedding SQL Commands," gives rules on where and how to embed SQL
commands.
Chapter 4, \Host Variables," describes how to de�ne and use variables to transfer data
between your COBOL program and an ALLBASE/SQL DBEnvironment.
Chapter 5, \Runtime Status Checking and the SQLCA," de�nes ways to monitor and
handle successful and unsuccessful SQL command execution.

Chapters 6 through 13 address the various ways to manipulate data in an ALLBASE/SQL
COBOL program.

Chapter 6, \Overview of Data Manipulation," is an overview of data manipulation and the
techniques for executing data manipulation commands.
Chapter 7, \Simple Data Manipulation," explains how to operate on one row at a time.
Chapter 8, \Processing with Cursors," explains the use of a cursor to process a multiple row
query result one row at a time.
Chapter 9, \BULK Table Processing," examines the processing of multiple rows at a time.
Chapter 10, \Using Dynamic Operations," covers the use of ALLBASE/SQL commands
that are preprocessed at runtime.
Chapter 11, \Programming with Constraints," discusses ways to ensure the integrity of your
data.

v

Chapter 12, \Programming with LONG Columns," shows how to use columns much longer
than regular columns.
Chapter 13, \Programming with ALLBASE/SQL Functions," describes ALLBASE/SQL
functions, including date/time functions and Tuple Identi�cation (TID) functions.

Chapters 2, 3, 5, 7 through 10, and chapter 13 contain sample programs for use with the
sample database.

vi

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following
example, you must replace �lename with the name of the �le:

COMMAND(�lename)

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

vii

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

viii

Contents

1. Getting Started with ALLBASE/SQL Programming in COBOL
ALLBASE/SQL COBOL Programs 1-2
Program Structure . 1-3
DBEnvironment Access . 1-5
Authorization . 1-6
File Referencing . 1-7

Native Language Support . 1-8
The ALLBASE/SQL COBOL Preprocessor 1-9
E�ect of Preprocessing on Source Code 1-10
E�ect of Preprocessing on DBEnvironments 1-12

The Stored Section . 1-13
Purpose of Sections . 1-14
Section Validity . 1-14

The Compiler and the Linker . 1-15
ALLBASE/SQL Program Execution 1-16
Installing the Program Module . 1-17
Granting Required Owner Authorization 1-17
Granting Program User Authorization 1-18
Running the Program . 1-18

Maintaining ALLBASE/SQL Programs 1-20
Updating Application Programs 1-20
Changing Program-Related Authorization 1-21
Obsoleting Programs . 1-21

2. Using the ALLBASE/SQL COBOL Preprocessor
The Preprocessor and Application Development 2-1
Preprocessor Modes . 2-3
Preprocessor Input and Output . 2-4
Source File . 2-7
Output File Attributes . 2-15
Modi�ed Source File . 2-15
Preprocessor Generated Include Files 2-26
COBOL COPY Statement Support 2-27
Using the COPY Statement with ALLBASE/SQL 2-28
COPY Statement Code Example 2-28

$SET and $IF Statement Support 2-29
Code Example . 2-30
Considerations When Using $SET and $IF 2-30

ALLBASE/SQL Message File . 2-31
Installable Module File . 2-34
Stored Sections . 2-35

Invoking the COBOL Preprocessor 2-39

Contents-1

Syntax Checking Mode . 2-39
Description . 2-39
Authorization . 2-39
Example . 2-40

Full Preprocessing Mode . 2-41
Parameters . 2-41
Description . 2-42
Authorization . 2-42
Example . 2-43
Using the Preprocessor UDC's 2-44

Running the Preprocessor in Job Mode 2-49
Preprocessing Errors . 2-49
Preprocessor or DBEnvironment Termination 2-49
Preprocessor Invocation Errors . 2-49
SQLIN Errors . 2-50
DBEnvironment Errors . 2-50

3. Embedding SQL Commands
General Rules for Embedding SQL 3-8
Location of SQL Commands . 3-8
Pre�x and Su�x . 3-8
Punctuation . 3-9
COBOL Comments . 3-9
ALLBASE/SQL Comments . 3-10
Continuation Lines . 3-10

Declaring the SQLCA . 3-11
Declaring Host Variables . 3-11
Starting a DBE Session . 3-12
De�ning Transactions . 3-12
Implicit Status Checking . 3-13
Terminating a DBE Session . 3-13
De�ning and Manipulating Data . 3-14
Data De�nition . 3-14
Data Manipulation . 3-14

Explicit Status Checking . 3-15
Obtaining ALLBASE/SQL Messages 3-16

4. Host Variables
Using Host Variables . 4-1
Host Variable Names . 4-2
Input and Output Host Variables 4-3
Indicator Variables . 4-3
Bulk Processing Variables . 4-5

Declaring Host Variables . 4-6
Creating Declaration Sections . 4-6
Declaring Variables for Data Types 4-8
CHAR Data . 4-8
VARCHAR Data . 4-8
SMALLINT Data . 4-9
INTEGER Data . 4-9
FLOAT Data . 4-9

Contents-2

ALLBASE/SQL FLOAT Data 4-9
Floating Point Data Compatibility 4-9
COBOL DECIMAL Data . 4-10

BINARY Data . 4-11
Binary Data Compatibility . 4-11
Using the LONG Phrase with Binary Data Types 4-11

DATE, TIME, DATETIME, and INTERVAL Data 4-14
Odd-Byte Columns . 4-14

Using Default Data Values . 4-16
Coding Considerations . 4-17
When the DEFAULT Clause Cannot be Used 4-17

Declaring Variables for Compatibility 4-17
String Data Conversion . 4-22
String Data Truncation . 4-22
Numeric Data Conversion . 4-23

Declaring Variables for Program Elements 4-24
SQLCA Array . 4-24
Bulk Processing Arrays . 4-24
Indicator Variables . 4-24
Dynamic Commands . 4-24
Savepoint Numbers . 4-26

Messages from the Message Catalog 4-27
DBEnvironment Name . 4-28

Declaring Host Variables Passed Between Subprograms 4-28

5. Runtime Status Checking and the SQLCA
Purposes of Status Checking . 5-2
Handling Runtime Errors and Warnings 5-2
Maintaining Data Consistency . 5-2
Checking the Most Recently Executed Command 5-3

Using the SQLCA . 5-4
SQLCODE . 5-6
SQLERRD(3) . 5-8
SQLWARN0 . 5-9
SQLWARN1 . 5-10
SQLWARN2 . 5-10
SQLWARN6 . 5-11

Approaches to Status Checking . 5-12
Implicit Status Checking Techniques 5-12
Implicitly Invoking Status-Checking Procedures 5-15
Code the Preprocessor Generates 5-15

Explicit Status Checking Techniques 5-23
Handling Deadlock and Shared Memory Problems 5-27
Determining Number of Rows Processed 5-27
INSERT, UPDATE, and DELETE Operations 5-28
BULK Operations . 5-28

Detecting End of Scan . 5-32
Determining When More Than One Row Quali�es 5-33
Detecting Log Full Condition . 5-33
Handling Out of Space Conditions 5-34
Checking for Authorizations . 5-34

Contents-3

6. Overview Of Data Manipulation
The Query . 6-2
The SELECT Command . 6-2
Selecting from Multiple Tables . 6-5
Selecting Using Views . 6-8

Simple Data Manipulation . 6-10
Introducing The Cursor . 6-12
Sequential Table Processing . 6-17
BULK Table Processing . 6-20
Dynamic Operations . 6-22

7. Simple Data Manipulation
SQL Commands . 7-1
SELECT . 7-1
INSERT . 7-4
UPDATE . 7-5
DELETE . 7-7

Transaction Management . 7-7
Sample Program COBEX7 Using Simple DML Commands 7-11

8. Processing with Cursors
SQL Cursor Commands . 8-1
DECLARE CURSOR . 8-2
OPEN . 8-3
FETCH . 8-3
UPDATE WHERE CURRENT . 8-4
DELETE WHERE CURRENT . 8-7
CLOSE . 8-8

Transaction Management for Cursor Operations 8-8
Using KEEP CURSOR . 8-9
KEEP CURSOR and Isolation Levels 8-10
KEEP CURSOR and Declaring for Update 8-10
OPEN Command Without KEEP CURSOR 8-10
OPEN Command Using KEEP CURSOR WITH LOCKS and CS Isolation

Level . 8-11
OPEN Command Using KEEP CURSOR WITH NOLOCKS 8-12
KEEP CURSOR and BEGIN WORK 8-14
KEEP CURSOR and COMMIT WORK 8-14
KEEP CURSOR and ROLLBACK WORK 8-14
KEEP CURSOR and Aborted Transactions 8-14
Writing Keep Cursor Applications 8-15

Examples . 8-16
Common StatusCheck Procedure 8-16
Single Cursor WITH LOCKS . 8-19
Multiple Cursors and Cursor Stability 8-21
Avoiding Locks on Terminal Reads 8-25

Program Using UPDATE WHERE CURRENT 8-28

Contents-4

9. Bulk Table Processing
Variables Used in BULK Processing 9-1
SQL Bulk Commands . 9-3
BULK SELECT . 9-3
BULK FETCH . 9-8
BULK INSERT . 9-10

Transaction Management for BULK Operations 9-12
Sample Program Using BULK Processing 9-13

10. Using Dynamic Operations
Review of Preprocessing Events . 10-1
Di�erences between Dynamic and Non-Dynamic Preprocessing 10-2
Permanently Stored vs. Temporary Sections 10-2
Examples of Non-Dynamic and Dynamic SQL Statements 10-4
Why Use Dynamic Preprocessing? 10-5

Passing Dynamic Commands to ALLBASE/SQL 10-5
Understanding the Types of Dynamic Operations 10-6
Preprocessing of Dynamic Queries with C or Pascal Routines 10-6
COBOL Call Example . 10-6
C Subprogram Example . 10-7
Pascal Subprogram Example . 10-9
How To Preprocess, Compile, Link and Run the Example Programs 10-11
COBOL Calling a C Subprogram 10-11
COBOL Calling a Pascal Subprogram 10-11

Preprocessing of Dynamic Non-Queries 10-12
Using PREPARE and EXECUTE 10-12
De�ning SQL Commands at Run Time 10-12
Sample Program Using EXECUTE IMMEDIATE 10-15
Sample Program Using PREPARE and EXECUTE 10-21

11. Programming With Constraints
Comparing Statement Level and Row Level Integrity 11-1
Using Unique and Referential Integrity Constraints 11-2
Designing an Application Using Statement Level Integrity Checks 11-3
Insert a Member in the Recreation Database 11-5
Update an Event in the Recreation Database 11-6
Delete a Club in the Recreation Database 11-7
Delete an Event in the Recreation Database 11-7

12. Programming with LONG Columns
General Concepts . 12-2
Restrictions . 12-4
De�ning LONG Columns with a CREATE TABLE or ALTER TABLE

Command . 12-4
De�ning Input and Output with the LONG Column I/O String 12-5
Putting Data into a LONG Column with a INSERT Command 12-6
Insert Using Host Variables for LONG Column I/O Strings 12-6

Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH
Command . 12-7
Using the LONG Column Descriptor 12-7
Example LONG Column Descriptor Declaration 12-8

Contents-5

Using LONG Columns with a BULK SELECT Command 12-10
Example . 12-10

Using LONG Columns with a Dynamic FETCH Command 12-10
Changing a LONG Column with an UPDATE [WHERE CURRENT] Command 12-11
Removing LONG Column Data with a DELETE [WHERE CURRENT]

Command . 12-11
Coding Considerations . 12-11
File versus Random Heap Space 12-11
File Naming Conventions . 12-12
Considering Multiple Users . 12-12
Deciding How Much Space to Allocate and Where 12-12

13. Programming with ALLBASE/SQL Functions
Programming with Date/Time Functions 13-1
Where Date/Time Functions Can Be Used 13-2
De�ning and Using Host Variables with Date/Time Functions 13-2
Using Date/Time Input Functions 13-3
Examples of TO DATETIME, TO DATE, TO TIME, and

TO INTERVAL Functions 13-4
Example Using the INSERT Command 13-5
Example Using the UPDATE Command 13-6
Example Using the SELECT Command 13-7
Example Using the DELETE Command 13-7

Using Date/Time Output Functions 13-8
Example TO CHAR Function 13-8
Example TO INTEGER Function 13-9

Using the Date/Time ADD MONTHS Function 13-11
Example ADD MONTHS Function 13-11
Coding Considerations . 13-11

Program Examples for Date/Time Data 13-12
Example Program Using Date/Time Functions 13-12
Example Program Converting a Column from CHAR to DATE Data Type . 13-28
Example Program to Convert from CHAR to Default Data Type 13-29

Programming with TID Data Access 13-38
Understanding TID Function Input and Output 13-38
Using the TID Function in a Select List 13-38
Using the TID Function in a WHERE Clause 13-39
Declaring TID Host Variables 13-39
Understanding the SQLTID Data Format 13-39

Transaction Management with TID Access 13-40
Comparing TID Access to Other Types of Data Access 13-40
Verifying Data that is Accessed by TID 13-41
Considering Interactive User Applications 13-41
Coding Strategies . 13-42
Reducing Commit Overhead for Multiple Updates with TID Access 13-43

Index

Contents-6

Figures

1-1. Creating an ALLBASE/SQL COBOL Application Program 1-1
1-2. Preprocess Time Events . 1-10
1-3. Compile-Time and Link-Time Events 1-15
1-4. Runtime Events . 1-19
2-1. Developing a COBOL ALLBASE/SQL Program with Subprograms 2-2
2-2. COBOL Preprocessor Input and Output 2-6
2-3. Compiling Preprocessor Output . 2-6
2-4. Runtime Dialog of Program COBEX2 2-8
2-5. Program COBEX2 . 2-9
2-6. Modi�ed Source File for Program COBEX2 2-17
2-7. Sample Constant Include File . 2-26
2-8. Sample Variable Include File . 2-27
2-9. Sample SQLMSG Showing Error 2-32
2-10. Sample SQLMSG Showing Warning 2-33
2-11. Information in SYSTEM.SECTION on Stored Sections 2-37
2-12. UDC for Preprocessing SQLIN . 2-45
2-13. UDC for Preprocessing, Compiling, and Preparing SQLIN 2-46
2-14. Sample UDC Invocation . 2-47
2-15. Sample Preprocessing Job �le . 2-49
3-1. Sample Program COBEX2 . 3-2
4-1. Host Variable Declarations in the DATA DIVISION 4-7
4-2. Data Declarations Generated for Boundary Alignment 4-15
4-3. Declaring Host Variables for Single-Row Query Results 4-20
4-4. Declaring Host Variables for Multiple-Row Query Results 4-21
4-5. Declaring Host Variables for Dynamic Commands 4-25
4-6. Declaring Host Variables for Savepoint Numbers 4-26
4-7. Declaring Host Variables for Message Catalog Messages 4-27
4-8. Declaring Host Variables for DBEnvironment Names 4-28
4-9. Declaring Host Variables Passed Between Subprograms 4-29
5-1. Implicitly Invoking Status-Checking Paragraphs 5-16
5-2. Explicitly Invoking Status-Checking Paragraphs 5-24
5-3. Determining Number of Rows Processed After a BULK SELECT 5-30
6-1. Sample Query Joining Multiple Tables 6-6
6-2. E�ect of SQL Commands on Cursor and Active Sets 6-16
7-1. Flow Chart of Program COBEX7 7-14
7-2. Runtime Dialog of Program COBEX7 7-16
7-3. Using INSERT, UPDATE, SELECT and DELETE 7-19
8-1. Cursor Operation without the KEEP CURSOR Feature 8-11
8-2. Cursor Operation Using KEEP CURSOR WITH LOCKS 8-12
8-3. Cursor Operation Using KEEP CURSOR WITH NOLOCKS 8-13
8-4. Flow Chart of Program COBEX8 8-30
8-5. Execution of Program COBEX8 8-31

Contents-7

8-6. Program COBEX8: Using UPDATE WHERE CURRENT 8-33
9-1. Flow Chart of Program COBEX9 9-16
9-2. Execution of Program COBEX9 9-17
9-3. Program COBEX9: Using BULK INSERT 9-19
10-1. Creation and Use of a Program that has a Stored Module 10-3
10-2. Creation and Use of a Program that has No Stored Module 10-4
10-3. Execution of Program COBEX10A 10-16
10-4. Program COBEX10A: Using EXECUTE IMMEDIATE 10-17
10-5. Execution of Program COBEX10B 10-22
10-6. Program COBEX10B: Using PREPARE and EXECUTE 10-23
11-1. Constraints Enforced on the Recreation Database 11-4
12-1. Flow of LONG Column Data and Related Information to the Database . . 12-3
12-2. Flow of LONG Column Data and Related Information from the Database . 12-3
13-1. Using Date/Time Functions . 13-13
13-2. Converting Date from CHAR to Default Type 13-29
13-3. Using RC and RR Transactions with BULK SELECT, SELECT, and

UPDATE . 13-42
13-4. Using TID Access to Reduce Commit Overhead 13-45

Contents-8

Tables

2-1. Compiler Directives for Implementing the COBOL COPY Statement . . . 2-27
4-1. ALLBASE/SQL Floating Point Column Speci�cations 4-10
4-2. Host Variable Data Types . 4-12
4-3. Program Element Data Description Entries 4-13
4-4. COBOL Data Type Equivalency and Compatibility 4-18
5-1. SQLCA Status Checking Fields . 5-5
6-1. How Data Manipulation Commands May Be Used 6-2
11-1. Commands Used with Integrity Constraints 11-2
11-2. Constraint Test Matrix . 11-3
12-1. Commands You Can Use with LONG Columns 12-1
12-2. LONG Column Descriptor . 12-8
13-1. Where to Use Date/Time Functions 13-2
13-2. Host Variable Data Type Compatibility for Date/Time Functions 13-3
13-3. Sample of User Requested Formats for Date/Time Data 13-4
13-4. SQLTID Data Internal Format . 13-40

Contents-9

1
Getting Started with ALLBASE/SQL Programming in
COBOL

The steps in creating a COBOL application program that accesses an ALLBASE/SQL
relational database environment (DBEnvironment) are summarized in Figure 1-1.

Figure 1-1. Creating an ALLBASE/SQL COBOL Application Program

Getting Started with ALLBASE/SQL Programming in COBOL 1-1

Using your favorite editor, you create COBOL source code. The source code is a compilable
COBOL program or subprogram that contains SQL commands. The SQL commands
contained within the COBOL program are said to be embedded. Refer to the ALLBASE/SQL
Reference Manual for SQL terminology and usage rules. Material in this manual presumes a
basic understanding of information in that manual.

Before compiling the source code, you must preprocess it with the ALLBASE/SQL COBOL
preprocessor. The preprocessor:

Checks the syntax of the SQL commands.

Stores a module in the system catalog of the DBEnvironment to be accessed at run time.
A module consists of ALLBASE/SQL instructions for executing SQL commands in your
program.

Creates an installable module �le. This �le contains a copy of the module stored in
the DBEnvironment at preprocessing time. You can use this �le to install the module
into another DBEnvironment so that the application program can be run in that
DBEnvironment.

Generates COBOL statements for executing the SQL commands and comments out the
SQL commands. Non-SQL statements are ignored. This modi�ed version of your source
code is placed in a �le created by the preprocessor, referred to as a modi�ed source code
�le.

Creates two include �les, which contain declarations of variables and constants used by the
preprocessor generated COBOL statements.

You use the COBOL compiler and system linker to create the executable program from
the modi�ed source code �le and the two include �les. The executable program makes the
appropriate database accesses at run time in the DBEnvironment where the stored module
resides.

ALLBASE/SQL COBOL Programs

To write a COBOL application that uses an ALLBASE/SQL database, you embed SQL
commands in the COBOL source wherever you want the program to:

Start or terminate a DBEnvironment session, either in single-user mode or multiuser mode.

Start or terminate a transaction.

Retrieve rows from or change data in tables in a database.

Create or drop objects, such as indexes or views.

You also embed special SQL commands known as preprocessor directives. The COBOL
preprocessor uses these directives to:

Identify COBOL variables referenced in SQL commands, known as host variables.

set up a special variable known as the SQL Communications Area (SQLCA) in the main
program, for communicating the status of executed SQL commands to your program.

Generate error-handling code for SQL commands.

Identify cursor declarations.

1-2 Getting Started with ALLBASE/SQL Programming in COBOL

Program Structure

The following skeleton program illustrates the relationship between COBOL statements and
embedded SQL commands in an application program. SQL commands may appear in a
program at locations highlighted.

IDENTIFICATION DIVISION.

PROGRAM-ID. ProgramName.

COBOL Statements

.

.

.

DATA DIVISION.

FILE SECTION.NN
Host Variable Declarations

COBOL Statements

.

.

.

WORKING-STORAGE SECTION.NNN
SQLCA DeclarationNN
Host Variable Declarations

COBOL Statements

.

.

.

LINKAGE SECTION.NNN
SQLCA DeclarationNN
Host Variable Declarations

COBOL Statements

.

.

.

LINKAGE SECTION.NNN
SQLCA DeclarationNN
Host Variable Declarations

COBOL Statements

.

.

.

PROCEDURE DIVISION.

.

.

.

COBOL Paragraphs, some containing
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SQL Commands

.

.

Getting Started with ALLBASE/SQL Programming in COBOL 1-3

.

STOP RUN.

1-4 Getting Started with ALLBASE/SQL Programming in COBOL

To delimit SQL commands for the preprocessor, you put the pre�x EXEC SQL and the su�x
END-EXEC around each SQL command:

EXEC SQL BEGIN WORK END-EXEC.

Most SQL commands appear within the Procedure Division where you establish
DBEnvironment access and manipulate data in a database.

DBEnvironment Access

You must always specify a DBEnvironment at preprocessing time. The preprocessor needs
to access the DBEnvironment you specify in the INFO string. It does so in order to store
a module containing permanent sections used by your application program at run time.
In this example, the DBEnvironment is PartsDBE which is in the group and account
GROUPDB.ACCTDB.

:RUN PSQLCOB.PUB.SYS; INFO = 'PartsDBE.GroupDB.AcctDB'

Your application program needs to access the DBEnvironment to perform its work. The
CONNECT command starts a DBEnvironment session for a speci�c environment. The
RELEASE statement terminates that session.

PROCEDURE DIVISION.

.

.

.

EXEC SQL CONNECT TO 'PARTSDBE.GROUPDB.ACCTDB' END-EXEC.

.

.

.

EXEC SQL RELEASE END-EXEC.

STOP RUN.

At run time, the program starts a DBE session in PARTSDBE.GROUPDB.ACCTDB , where
a module for the program has been stored.

A program can accept a DBEnvironment name from the program user and dynamically
preprocess the SQL command that starts a DBEnvironment session. Refer to Chapter 10 for
more information on dynamically connecting to a database and refer to Chapter 4 for more
information on using a host variable to connect to a database.

No matter how you access a DBEnvironment (dynamic or stored sections), you must always
specify a DBEnvironment name when you preprocess.

In some cases an ALLBASE/SQL program is used with one or more DBEnvironments in
addition to the DBEnvironment accessed at preprocessing time. In these cases, you use
ISQL to install the installable module created by the preprocessor into each additional
DBEnvironment accessed by your program. You can also preprocess the same application
repeatedly with di�erent DBEnvironments. See Chapter 2 for information on the installable
module.

An alternative method of accessing more than one DBEnvironment from the same program
would be to separate the program into separate compilable �les. Each source �le would access
a DBEnvironment. In each �le you start and terminate a DBE session for the DBEnvironment
accessed. You then preprocess and compile each �le separately. When you invoke the
preprocessor, you identify the DBEnvironment accessed by the source �le being preprocessed.

Getting Started with ALLBASE/SQL Programming in COBOL 1-5

After a �le is preprocessed, it must be compiled so that no linking is performed before the
next source �le is preprocessed. When all source �les have been preprocessed and compiled,
you link them to create the executable program.

Note that a program which accesses more than one DBEnvironment must do so in sequence.
Such program design may adversely a�ect performance and requires special consideration.

To preprocess or to use an already preprocessed ALLBASE/SQL application program, you
must satisfy the authorization requirements for each DBEnvironment accessed.

Authorization

ALLBASE/SQL authorization governs who can preprocess, execute, and maintain a program
that accesses an ALLBASE/SQL DBEnvironment.

To preprocess a program for the �rst time, you need CONNECT or DBA authority in the
DBEnvironment your program accesses. When you preprocess a program, ALLBASE/SQL
stores a module for that program in the DBEnvironment's system catalog and identi�es your
User@Account as the owner of that module. Subsequently, if you have OWNER or DBA
authority, you can re-preprocess the program.

To run a program accessing an ALLBASE/SQL DBEnvironment, you need the authority to
start the DBE session in the program:

If the program uses a CONNECT command to start a DBE session, you need CONNECT
authority and RUN or module OWNER authority to run the program.

If the program uses a START DBE command to start the DBE session, you need DBA
authority to run the program.

Any SQL command in the program is executed only if the OWNER of the module has the
authorization to execute the command at run time, and the individual running the program
has RUN authority for it. However, any dynamic command is executed only if the individual
running the program has the authority to execute the command at run time. (Chapter 10
contains information about dynamic commands.)

Maintaining an ALLBASE/SQL program includes such activities as modifying a program in
production use and keeping runtime authorization current as program users change. For these
activities, you need OWNER authority for the module or DBA authority. More on this topic
appears later in this chapter under \Maintaining ALLBASE/SQL Programs."

1-6 Getting Started with ALLBASE/SQL Programming in COBOL

File Referencing

When you create a DBEnvironment, a Database Environment Con�guration (DBECon) �le is
created. The �le name of this DBECon �le is stored in the DBECon �le itself. The group and
account name at creation time are part of the DBECon �le name. In all subsequent references
to �les, you may use either a fully quali�ed �le name or a �le name relative to that of the
DBECon �le. For example, if a DBEnvironment was created with the following command:

START DBE 'PARTSDBE' NEW

and the user was currently in the SQL group of the DBSUPPORT account, the �le name
PARTSDBE.SQL.DBSUPPORT would be stored in the DBECon �le. If the user were
subsequently to create a DBEFile with the command:

CREATE DBEFILE ORDERS WITH PAGES=50, NAME='ORDERSFS'

the ORDERSFS �le is created in the same group and account as the DBECon �le and would
be ORDERSFS.SQL.DBSUPPORT. If however, the user were to create a DBEFile with the
command:

CREATE DBEFILE ORDERS WITH PAGES=50, NAME='ORDERSFS.SHIPPING.DBSUPPORT'

the name stored in the DBECon �le would be ignored while creating this �le. The user would
need to fully qualify this �le name each time the �le is referenced. Fully quali�ed �le names,
enclosed in quotes, are restricted to a maximum length of 36 bytes. The maximum length of
unquoted �le names is 8 bytes.

In addition, if the DBEnvironment you want the preprocessor to access resides in a group and
account other than your current group and account, you will have to qualify the name of the
DBEnvironment.

For example, if the DBEnvironment you want the preprocessor to access resides in the SQL
group of account DBSUPPORT, you would invoke the preprocessor as follows:

:RUN PSQLCOB.PUB.SYS;INFO = 'SOMEDBE.SQL.DBSUPPORT'

Getting Started with ALLBASE/SQL Programming in COBOL 1-7

Native Language Support

ALLBASE/SQL lets you manipulate databases in a number of native languages in addition
to the default language, known as NATIVE-3000. You can use either 8-bit or 16-bit character
data, as appropriate for the language you select. In addition, you can always include ASCII
data in any database, since ASCII is a subset of each supported character set. The collating
sequence for sorting and comparisons is that of the native language selected.

You can use native language characters in the following places, including:

Character literals
Host variables for CHAR or VARCHAR data (but not variable names)
ALLBASE/SQL object names
WHERE and VALUES clauses

If your system has the proper message �les installed, ALLBASE/SQL displays prompts,
messages and banners in the language you select, and it displays dates and time according
to local customs. In addition, ISQL accepts responses to its prompts in the native language
selected. However, regardless of the native language used, the syntax of ISQL and SQL
commands|including punctuation|remains in ASCII.

Note that MPE XL does not support native language �le names nor DBEnvironment names.

In order to use a native language other than the default, you must do the following:

1. Make sure your I/O devices support the character set you wish to use.

2. Set the MPE job control word NLUSERLANG to the number (LangNum) of the native
language you wish to use. Use the following MPE XL command:

SETJCW NLUSERLANG = LangNum

This language then becomes the current language. (If NLUSERLANG is not set, the
current language is NATIVE-3000.)

3. Use the LANG = LanguageName option of the START DBE NEW to specify the language
when you create a DBEnvironment.

Run the MPE XL utility program NLUTIL.PUB.SYS to determine which native languages
are supported on your system. Here is a list of some supported languages, preceded by the
LangNum for each:

1-8 Getting Started with ALLBASE/SQL Programming in COBOL

0 NATIVE-3000 9 ITALIAN 52 ARABICW

1 AMERICAN 10 NORWEGIAN 61 GREEK

2 C-FRENCH 11 PORTUGUESE 71 HEBREW
3 DANISH 12 SPANISH 81 TURKISH

4 DUTCH 13 SWEDISH 201 CHINESE-S

5 ENGLISH 14 ICELANDIC 211 CHINESE-T

6 FINNISH 41 KATAKANAC 221 JAPANESE

7 FRENCH 51 ARABIC 231 KOREAN

8 GERMAN

Resetting NLUSERLANG while you are connected to a DBEnvironment has no e�ect on the
current DBE session.

The ALLBASE/SQL COBOL Preprocessor

The ALLBASE/SQL COBOL preprocessor is speci�cally for COBOL II/XL programs.

Figure 1-2 summarizes the four main preprocess-time events:

Syntax checking of SQL commands and host variable declarations.

Creation of compilable �les: one modi�ed source code �le and two include �les.

Creation of an installable module.

Storage of a module in the system catalog.

Getting Started with ALLBASE/SQL Programming in COBOL 1-9

Figure 1-2. Preprocess Time Events

Effect of Preprocessing on Source Code

The COBOL preprocessor scans the source code for SQL commands. If the syntax of an
SQL command is correct, the preprocessor converts the command into compilable COBOL
statements that call ALLBASE/SQL external procedures at run time. During preprocessing,
for example, the following SQL command is converted to modi�ed source code.

EXEC SQL SELECT PARTNUMBER, PARTNAME, SALESPRICE

INTO :PARTNUMBER,

:PARTNAME,

:SALESPRICE :SALESPRICEIND

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER;

END-EXEC.

1-10 Getting Started with ALLBASE/SQL Programming in COBOL

The modi�ed source code is as follows:

**** Start SQL Preprocessor ****

* EXEC SQL
* SELECT PARTNUMBER, PARTNAME, SALESPRICE

* INTO :PARTNUMBER,

* :PARTNAME,

* :SALESPRICE :SALESPRICEIND

* FROM PURCHDB.PARTS

* WHERE PARTNUMBER = :PARTNUMBER

* END-EXEC

**** Start Inserted Statements ****

MOVE PARTNUMBER

TO SQLREC1-FIELD1

MOVE 1 TO SQLSECNUM

MOVE 16 TO SQLINLEN

MOVE 54 TO SQLOUTLEN

CALL "SQLXFETO" USING SQLCA, SQLOWNER, SQLMODNAME,

SQLSECNUM, SQLTEMPV, SQLINLEN, SQLOUTLEN, SQLTRUE

IF SQLCODE IS ZERO

MOVE SQLREC2-FIELD1

TO PARTNUMBER

MOVE SQLREC2-FIELD2

TO PARTNAME

MOVE SQLREC2-FIELD3-IND

TO SALESPRICEIND

IF SQLREC2-FIELD3-IND IS NOT NEGATIVE

MOVE SQLREC2-FIELD3

TO SALESPRICE

END-IF

IF SQLWARN0 IS EQUAL TO "W"

GO TO S500-SQL-WARNING
END-IF

ELSE

IF SQLCODE IS EQUAL TO 100

GO TO S600-NOT-FOUND

END-IF

IF SQLCODE IS NEGATIVE

GO TO S400-SQL-ERROR

END-IF

CONTINUE

END-IF

**** End SQL Preprocessor ****

The embedded SELECT command has been converted into a COBOL comment, and COBOL
statements that enable ALLBASE/SQL to execute the SELECT command at run time
have been inserted. Note that the period following the END-EXEC now follows the last
preprocessor-generated line shown. Note also that the paragraph named SQLMVS2 is not
shown, but appears later in the modi�ed source code �le.

Getting Started with ALLBASE/SQL Programming in COBOL 1-11

The names that appear in the inserted COBOL code (italicized in the above example) identify
variables used by the ALLBASE/SQL external procedures; in this example, the names identify
variables used by the SQLXFETO external procedure. Some of these variables are derived
from host variables. As shown in the embedded SELECT command above, you precede a host
variable with a colon when you use it in SQL commands:

:SALESPRICE

Declarations used by preprocessor generated code are de�ned in the two copy �les which the
preprocessor creates:

SQLCONST, a �le that de�nes variables requiring VALUE clauses

SQLVAR, a �le that de�nes the remaining variables

The preprocessor inserts $INCLUDE directives that reference these �les in the
WORKING-STORAGE SECTION of the modi�ed source code:

$INCLUDE SQLCONST

$INCLUDE SQLVAR

Caution Never modify either the statements inserted by the preprocessor or the include
�les the preprocessor creates. Changes to preprocessor-generated information
could damage your DBEnvironment or your system.

Effect of Preprocessing on DBEnvironments

When you invoke the preprocessor, you name an ALLBASE/SQL DBEnvironment. When
preprocessing begins, the preprocessor starts a DBE session for that DBEnvironment. When
preprocessing is completed, the preprocessor terminates the session.

When the preprocessor encounters a syntactically correct SQL command, it usually creates
an ALLBASE/SQL section and stores it in the system catalog of the DBEnvironment being
accessed. An ALLBASE/SQL section is a group of stored ALLBASE/SQL instructions for
executing one SQL command.

All sections created during a preprocessing session constitute a module. The preprocessor
derives the name of the module from the PROGRAM-ID unless you supply a di�erent name
when you invoke the preprocessor:

:RUN PSQLCOB.PUB.SYS; INFO = 'DBEnvironmentName

(MODULE(ModuleName))'

When the preprocessor terminates the DBEnvironment session, it issues a COMMIT WORK
command if no errors were encountered. Created sections are stored in the system catalog and
associated with the module name.

1-12 Getting Started with ALLBASE/SQL Programming in COBOL

The Stored Section

A section consists of ALLBASE/SQL instructions for executing an SQL command. The SQL
commands that do not generate stored sections are listed in the \Stored Sections" paragraph
of the \Using the ALLBASE/SQL COBOL Preprocessor." Not every SQL command requires
a section. For each SQL command that does require a section, the preprocessor creates the
section and assigns to it a unique reference number. In the following preprocessor generated
code SQLSECNUM contains the number of the stored section.

Getting Started with ALLBASE/SQL Programming in COBOL 1-13

MOVE 1 TO SQLSECNUM

.

.

.

CALL SQLXCBL USING SQLXFET, SQLCA, SQLOWNER, SQLMODNAME,

SQLSECNUM, SQLTEMPV, SQLINLEN, SQLOUTLEN, SQLTRUE

Purpose of Sections

A section serves two purposes:

Access validation: Before executing a stored section at run time, ALLBASE/SQL ensures
that any objects referenced exist and that runtime authorization criteria are satis�ed.

Access optimization: If ALLBASE/SQL has more than one way to access data, it
determines the most e�cient method and creates the section based on that method.
Indexes, for example, can expedite the performance of some queries.

Runtime performance is improved by creating and storing sections at preprocessing time
rather than at run time.

Section Validity

A section is assigned one of two states at preprocessing time: valid or invalid. A section is
valid when access validation criteria are satis�ed. If the SQL command references objects
that exist at preprocessing time and the individual doing the preprocessing is authorized to
issue the command, the stored section is marked as valid. A section is invalid when access
validation criteria are not satis�ed. If the SQL command references an object that does not
exist at preprocessing time or if the individual doing the preprocessing is not authorized
to issue the command, the stored section is marked as invalid. After being stored by the
preprocessor, a valid section is marked as invalid when such activities as the following occur:

Change in authorities of the module's owner.

Alteration to tables accessed by the program.

Deletion or creation of indexes.

Update of a table's statistics.

At run time, ALLBASE/SQL executes valid sections and attempts to validate any section
marked as invalid. If an invalid section can be validated, as when an altered table does not
a�ect the results of a query, ALLBASE/SQL marks the section as valid and executes it. If
an invalid section cannot be validated, as when a table reference is invalid because the table
owner name has changed, ALLBASE/SQL returns an error indication to the application
program.

When a section is validated at run time, it remains in the valid state until an event that
invalidates it occurs. The program execution during which validation occurs is slightly slower
than program executions following validation.

1-14 Getting Started with ALLBASE/SQL Programming in COBOL

The Compiler and the Linker

Figure 1-3 summarizes the steps in creating an executable ALLBASE/SQL COBOL program
from the �les created by the COBOL preprocessor.

Figure 1-3. Compile-Time and Link-Time Events

You must use native mode to compile and link your program. You submit to the COBOL
compiler a modi�ed source code �le and related include �les created by the preprocessor. The
compiler generates an object code module. To convert one or more object code modules into
an executable program, you link them by invoking the linker. This step, known as program
preparation, creates an executable program �le. Refer to Chapter 2 for more information on
compiling and linking.

In the next example, an executable program named SomeProg is created after a
module named Pgmr1@ACCTDB.SomeMod is stored by the COBOL preprocessor in a
DBEnvironment named SomeDBE.GROUPDB.ACCTDB . The program is in the GROUPC
group.

Getting Started with ALLBASE/SQL Programming in COBOL 1-15

:HELLO PGMR1.ACCTDB,GROUPC

.

.

:RUN PSQLCOB.PUB.SYS; INFO = 'SomeDBE.GROUPDB(MODULE(SOMEMOD))'

.

.

:COB85XL Modi�edSourceCodeFile,,$NULL

:LINK ; TO=SOMEPROG

ALLBASE/SQL Program Execution

When an ALLBASE/SQL program is �rst created, it can only be executed by the module
OWNER or a DBA. In addition, it can only operate on the DBEnvironment used at
preprocessing time if a module was generated. If no module was generated because the SQL
commands embedded in the program are only commands for which no sections are created,
the program can be run against any DBEnvironment.

The program created in the previous example can be executed as follows by Pgmr1.ACCTDB :

:RUN SOMEPROG.GROUPC.ACCTDB

To make the program executable by other users in other DBEnvironments, you do the
following:

Load the executable program �le onto the machine where the DBEnvironment resides.

Install any related module in the DBEnvironment.

Ensure necessary module owner authorities exist.

Grant required authorities to program users.

1-16 Getting Started with ALLBASE/SQL Programming in COBOL

Installing the Program Module

When the preprocessor stores a module in a DBEnvironment, it also creates a �le containing
a copy of the module, which can be installed into another DBEnvironment. You use the
INSTALL command in ISQL to install the module in another DBEnvironment. In this
example, the module is installed in the SomeDBE environment which is in the same group
and account as the PartsDBE environment:

isql=> CONNECT TO 'SomeDBE.GROUPDB.ACCTDB';

isql=> INSTALL SOMEMOD.GROUPC.ACCTDB;

Name of module in this file: Pgmr1@ACCTDB.SOMEMOD

Number of sections installed: 6

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

ISQL copies the module from the installable module �le named
SOMEMOD.GROUPC.ACCTDB into a DBEnvironment named
SomeDBE.GROUPDB.ACCTDB . During installation, ALLBASE/SQL marks each
section in the module valid or invalid, depending on the current objects and authorities in
SomeDBE.GROUPDB.ACCTDB . To use the INSTALL command, you need to be able to
start a DBE session in the DBEnvironment that is to contain the new module.

Granting Required Owner Authorization

At run time, embedded SQL commands are executed only if the original module owner has
the authority to execute them. Therefore, you need to grant required authorities to the
module owner in the production DBEnvironment.

If module Pgmr1@ACCTDB.SomeMod contains a SELECT command for table
PURCHDB.PARTS , the following grant would ensure valid owner authorization:

isql=> GRANT SELECT on PURCHDB.PARTS to Pgmr1@ACCTDB;

If Pgmr1@ACCTDB had DBA authority, he could have assigned ownership of the module to
another owner by using the OWNER parameter:

:RUN PSQLCOB.PUB.SYS;INFO='SomeDBE.GROUPDB.ACCTDB &

(MODULE(SOMEMOD) OWNER (PURCHDB))'

In this case, ownership belongs to a class, PurchDB . Only an individual with DBA authority
can maintain this program, and runtime authorization would be established as follows:

isql=> GRANT SELECT ON PURCHDB.PARTS TO PURCHDB;

Getting Started with ALLBASE/SQL Programming in COBOL 1-17

Granting Program User Authorization

In order to execute an ALLBASE/SQL program you must be able to start any DBE
session initiated in the program. You must also have one of the following authorities in the
DBEnvironment accessed by the program:

RUN

module OWNER

DBA

A DBA must grant the authority to start a DBE session. In most cases, application programs
start a DBE session with the CONNECT command, so CONNECT authorization is su�cient:

isql=> CONNECT TO 'SomeDBE.GROUPDB.ACCTDB';

isql=> GRANT CONNECT TO SomeUser@SomeAcct;

isql=> COMMIT WORK;

If you have module OWNER or DBA authority, you can grant RUN authority:

isql=> CONNECT TO 'SomeDBE.GROUPDB.ACCTDB';

isql=> GRANT RUN ON Pgmr1@ACCTDB.SomeMod TO SomeUser@SomeAcct;

isql=> COMMIT WORK;

Now SomeUser@SomeAcct can run program SomeProg.GROUPC.ACCTDB :

:HELLO SomeUser.SomeAcct

.

.

.

:RUN SomeProg.GROUPC.ACCTDB

Running the Program

At run time, two �le equations may be required|one for the ALLBASE/SQL message catalog
and one for the DBEnvironment to be accessed by the program.

If the program contains the SQLEXPLAIN command, the ALLBASE/SQL message catalog
must be available at run time. SQLEXPLAIN obtains warning and error messages from
SQLCTxxx .PUB.SYS. If SQLCTxxx is installed in a di�erent group or account on your
system, you must use a �le equation to specify its location. Chapter 2 contains further
information on the ALLBASE/SQL message catalog.

If the program contains a CONNECT or START DBE command that uses a back referenced
DBEnvironmentName, submit a FILE command to identify the DBEnvironment to be
accessed by the program at run time:

EXEC SQL CONNECT TO '*DBE' END-EXEC.

This command initiates a DBE session in the DBEnvironment

identi�ed at run time as follows:

:FILE DBE=SomeDBE.SomeGrp.SomeAcct

1-18 Getting Started with ALLBASE/SQL Programming in COBOL

Once you identify the ALLBASE/SQL message catalog and appropriate DBEnvironment, you
can run the program:

:RUN SomeProg.GROUPC.ACCTDB

You must specify the name of an executable program �le as SomeProg . Do not specify a
module name in the RUN command.

At run time, an ALLBASE/SQL program interacts with the DBEnvironment as illustrated in
Figure 1-4.

Figure 1-4. Runtime Events

Getting Started with ALLBASE/SQL Programming in COBOL 1-19

All the COBOL statements inserted by the preprocessor and the stored sections automatically
handle database operations, including providing the application program with status
information after SQL commands are executed. SQL commands that have a stored section
are executed if the section is valid at run time or can be validated by ALLBASE/SQL at run
time.

Dynamic commands are those not de�ned until run time. Such commands can be entered
by the user at run time. ALLBASE/SQL converts these commands into executable
ALLBASE/SQL instructions at run time rather than at preprocessing time. Sections and
other instructions created for dynamic data manipulation commands are deleted at the end of
the transaction.

Maintaining ALLBASE/SQL Programs

After ALLBASE/SQL COBOL programs are in production use, changes in applications,
personnel, or databases may necessitate:

Updating application programs.

Changing program-related authorization.

Obsoleting application programs.

Updating Application Programs

Minor modi�cations to programs in use can often be made right on the production machine
and production DBEnvironment during hours the production DBEnvironment use is minimal.
Major program modi�cations, because they are more time consuming, are usually made on a
development machine and development DBEnvironment.

In either case, the OWNER of the program's module or a DBA preprocesses the revised
program and replaces the old module with a new one. Existing RUN authorities can be either
preserved or revoked. Dropping old modules and preserving or revoking RUN authorities can
be done either by using the DROP MODULE command in ISQL or when you invoke the
preprocessor.

The PRESERVE option of the DROP MODULE command retains any existing RUN
authorities for the module when it is deleted from the system catalog:

isql=> DROP MODULE MyMod PRESERVE;

To delete a module and any existing RUN authorities in ISQL, simply omit the PRESERVE
option.

You can also drop a module and any existing run authorities for it at preprocessing time:

:RUN PSQLCOB.PUB.SYS;INFO='SomeDBE (MODULE(MyMod) DROP)'

This invocation line drops the module named MyMod , but retains any related RUN
authorities. To revoke the RUN authorities, you would specify the REVOKE option in the
INFO string.

1-20 Getting Started with ALLBASE/SQL Programming in COBOL

The DROP MODULE command is also useful in conjunction with revised programs whose
modules must be installed in a DBEnvironment di�erent from that on which preprocessing
occurred. Before using the INSTALL command to store the new module, you drop the
existing module using the DROP MODULE command, preserving or dropping related RUN
authorization as required.

Changing Program-Related Authorization

Once a program is in production use, the following authorization changes may be necessary:

Granting and revoking RUN and CONNECT authority as program users change.

Transferring ownership of the stored module when the current owner's job changes or when
a program needs to be modi�ed by someone other than the individual who created it.

Revoking CONNECT authority requires DBA authorization:

isql=> REVOKE CONNECT FROM Old@User;

Revoking RUN authority requires either module OWNER or DBA authority:

isql=> REVOKE RUN ON Pgmr1@GROUPC.SomeMod FROM Old@User;

Obsoleting Programs

When an application program becomes obsolete, you use the DROP MODULE command to
both remove the module from any DBEnvironment where it is stored and revoke any related
RUN authorities:

isql=> DROP MODULE MyMod;

Related RUN authorities are automatically revoked when you do not use the PRESERVE
option of this command.

Getting Started with ALLBASE/SQL Programming in COBOL 1-21

2

Using the ALLBASE/SQL COBOL Preprocessor

You use the ALLBASE/SQL COBOL preprocessor to develop COBOL application programs
that access an ALLBASE/SQL DBEnvironment.

The Preprocessor and Application Development

COBOL ALLBASE/SQL application development involves the following steps:

Preprocess those programs in the application that contain SQL commands.

Compile the preprocessed (modi�ed) source code as well as any source code not requiring
preprocessing.

Run the resulting code (either intermediate or executable), as discussed in the preceding
chapter.

In the simplest case, the ALLBASE/SQL COBOL application is derived from one source �le.
In other cases, the ALLBASE/SQL COBOL application might consist of a source �le main
program and one or more source �le subprograms. These source �les may or may not contain
SQL code. Only source �les containing SQL code need to be preprocessed, as illustrated in
Figure 2-1.

Using the ALLBASE/SQL COBOL Preprocessor 2-1

Figure 2-1. Developing a COBOL ALLBASE/SQL Program with Subprograms

During preprocessing, the COBOL preprocessor actually accesses the same DBEnvironment
to be used by your program at run time. The preprocessor stores a module in the
DBEnvironment which is executed at run time. The module is used at run time to optimize
and validate DBEnvironment operations.

During any invocation, the COBOL preprocessor can access only one DBEnvironment. You
can create separate subprograms that all access the same DBEnvironment. Each subprogram
is separately preprocessed and compiled. In this case, the preprocessor stores multiple
modules in one DBEnvironment.

The criteria governing the division of an application program into subprograms is very
application-dependent. As in the development of any application program, factors such
as program size, program complexity, expected recompilation frequency, and number of
programmers a�ect how a program is subdivided. In the case of ALLBASE/SQL COBOL
application programs, the following factors should also be noted:

All code containing embedded SQL commands must be preprocessed.

The preprocessor can access only one DBEnvironment at a time.

Each program or subprogram (preprocessed unit) that accesses the same DBEnvironment
must have a unique OwnerName.ModuleName.

The preprocessor can process only one program or subprogram per invocation.

2-2 Using the ALLBASE/SQL COBOL Preprocessor

Preprocessor Modes

You can use the preprocessor in two modes:

1. To check your SQL syntax.

2. To perform full preprocessing which includes SQL syntax checking, creating compilable
output, storing a module in a DBEnvironment, and creating a �le that contains an
installable copy of the stored module.

As you develop the SQL portions of your COBOL programs, syntax checking mode is quite
useful. Preprocessing is quicker in this mode than in full preprocessing mode. In addition, you
can start debugging your SQL commands before the DBEnvironment itself is in place.

Running the preprocessor in each of these modes is described later in the chapter under
\Invoking the COBOL Preprocessor."

Using the ALLBASE/SQL COBOL Preprocessor 2-3

Preprocessor Input and Output

Regardless of the mode you use, the following �les must be available when you invoke the
COBOL preprocessor, as shown in Figure 2-2:

source �le: a �le containing the source code for the COBOL ALLBASE/SQL program
or subprogram with embedded SQL commands for a DBEnvironment. The formal �le
designator for this input �le is:

SQLIN

ALLBASE/SQL message catalog: a �le containing preprocessor messages and
ALLBASE/SQL error and warning messages. The formal �le designator for the message
catalog is as follows, with xxx being the numeric representation of the current native
language:

SQLCTxxx.PUB.SYS

When you run the preprocessor in full preprocessing mode, also ensure that the
DBEnvironment accessed by the program or subprogram is available.

As Figure 2-2 points out, the COBOL preprocessor creates the following temporary output
�les:

modi�ed source �le: a �le containing a modi�ed version of the source code in SQLIN. The
formal �le designator for this �le is:

SQLOUT

After you use the preprocessor in full preprocessing mode, you use SQLOUT and the
following two include �les as input �les for the COBOL compiler, as shown in Figure 2-4.

include �les: �les containing de�nitions of variables and constants used by COBOL
statements the preprocessor inserts into SQLOUT. The formal �le designators for these �les
are:

SQLVAR

SQLCONST

ALLBASE/SQL message �le: a �le containing the preprocessor banner, error and warning
messages, and other messages. The formal �le designator for this �le is:

SQLMSG

2-4 Using the ALLBASE/SQL COBOL Preprocessor

installable module �le: a �le containing a copy of the module created by the preprocessor.
The formal �le designator for this �le is:

SQLMOD

When you run the preprocessor in full preprocessing mode, the preprocessor also stores a
module in the DBEnvironment accessed by your program. The module is used at run time to
execute DBEnvironment operations.

If you want to preprocess several ALLBASE/SQL application programs in the same group
and account and compile and link the programs later, or you plan to compile a preprocessed
program during a future session, you should do the following for each program:

Before running the preprocessor, equate SQLIN to the name of the �le containing the
application you want to preprocess:

:FILE SQLIN = InFile

After running the preprocessor, save and rename the output �les if you do not want them
overwritten. For example:

:SAVE SQLOUT

:RENAME SQLOUT, OutFile

:SAVE SQLMOD

:RENAME SQLMOD, ModFile

:SAVE SQLVAR

:RENAME SQLVAR, VarFile

:SAVE SQLCONST

:RENAME SQLCONST, ConstFile

When you are ready to compile the program, you must equate the include �le names to their
standard ALLBASE/SQL names. See \Preprocessor Generated Include Files" in this chapter
for more information.

Using the ALLBASE/SQL COBOL Preprocessor 2-5

Figure 2-2. COBOL Preprocessor Input and Output

Figure 2-3. Compiling Preprocessor Output

2-6 Using the ALLBASE/SQL COBOL Preprocessor

Source File

The source �le (SQLIN) must be an ASCII �le (numbered or unnumbered) that contains at a
minimum the following statements:

IDENTIFICATION DIVISION.

PROGRAM-ID ProgramName.

AnyStatement.

When parsing SQLIN, the COBOL preprocessor ignores COBOL statements and COBOL
compiler directives in SQLIN except $SET, $IF, and $INCLUDE. Only the following
information is parsed by the COBOL preprocessor:

The PROGRAM-ID. Unless you specify a module name in the preprocessor invocation line,
the preprocessor uses the PROGRAM-ID to name the module it stores. A module name can
contain as many as 20 characters and must follow the rules governing ALLBASE/SQL basic
names (given in the ALLBASE/SQL Reference Manual).

Statements found between the pre�x EXEC SQL and the su�x END-EXEC. These
statements follow the rules given in Chapter 3 for how and where to embed SQL statements.

Statements found between the BEGIN DECLARE SECTION and END DECLARE
SECTION commands. These commands delimit a declare section which contains COBOL
data description entries for the host variables used in the program. Host variables are
described in Chapter 4.

Figure 2-5 illustrates an SQLIN �le containing a sample program using the following SQL
commands highlighted by shading in the �gure:

INCLUDE SQLCA

BEGIN DECLARE SECTION

END DECLARE SECTION

WHENEVER

CONNECT

BEGIN WORK

COMMIT WORK

SELECT

SQLEXPLAIN

As the runtime dialog in Figure 2-4 illustrates, the program begins a DBE session for
PartsDBE, the sample DBEnvironment. It prompts the user for a part number, then displays
information about the part from the table PURCHDB.PARTS. Warning and error conditions
are handled with WHENEVER and SQLEXPLAIN commands with the exception of explicit
error checking after the SELECT command. The program continues to prompt for a part
number until a serious error is encountered or until the user enters a slash (/).

Using the ALLBASE/SQL COBOL Preprocessor 2-7

:RUN COBEX2P

Program to SELECT specified rows from the Parts Table - COBEX2

Event List:

Connect to PartsDBE

Begin Work

SELECT specified Part Number from Parts Table until user enters "/"

Commit Work

Disconnect from PartsDBE

Connect to PartsDBE

Enter Part Number within Parts Table or "/" to STOP> 1243-P-01

SELECT PartNumber, PartName, SalesPrice

Begin Work

Part Number not found!
Commit Work

Enter Part Number within Parts Table or "/" to STOP> 1323-D-01

SELECT PartNumber, PartName, SalesPrice

Begin Work

Commit Work

Part Number: 1323-D-01

Part Name: Floppy Diskette Drive

Sales Price: $200.00

Enter Part Number within Parts Table or "/" to STOP> 1823-PT-01

SELECT PartNumber, PartName, SalesPrice

Begin Work

Commit Work

Part Number: 1823-PT-01

Part Name: Graphics Printer

Sales Price: $450.00

Enter Part Number within Parts Table or "/" to STOP> /

END OF PROGRAM

Figure 2-4. Runtime Dialog of Program COBEX2

2-8 Using the ALLBASE/SQL COBOL Preprocessor

* *

* Program COBEX2: *

* This program illustrates the use of SQL's SELECT command to *

* retrieve one row at a time. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX2.

AUTHOR. HP TRAINING

INSTALLATION. HP.

DATE-WRITTEN. 17 JULY 1987.

DATE-COMPILED. 17 JULY 1987.

REMARKS. SQL'S SELECT WITH WHENEVER COMMAND.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

SPECIAL-NAMES. CONSOLE IS TERMINAL-INPUT.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(34).

$PAGE

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTNUMBER PIC X(16).

01 PARTNAME PIC X(30).

01 SALESPRICE PIC S9(8)V99 COMP-3.

01 SALESPRICEIND SQLIND.

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.
* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

Figure 2-5. Program COBEX2

Using the ALLBASE/SQL COBOL Preprocessor 2-9

77 DONE-FLAG PIC X(01) VALUE 'N'.

88 NOT-DONE VALUE 'N'.

88 DONE VALUE 'Y'.

77 ABORT-FLAG PIC X(01) VALUE 'N'.

88 NOT-STOP VALUE 'N'.

88 ABORT VALUE 'Y'.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(01) VALUE SPACE.

05 FILLER PIC X(15) VALUE SPACES.

01 DOLLARS PIC $$$,$$$,$$$.99.

$PAGE

PROCEDURE DIVISION.

A100-MAIN.

DISPLAY "Program to SELECT specified rows from "

"the Parts Table - COBEX2".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Connect to PartsDBE".

DISPLAY " Begin Work".

DISPLAY " SELECT specified Part Number from the "

"Parts Table until user enters '/' ".

DISPLAY " Commit Work".

DISPLAY " Disconnect from PartsDBE".

DISPLAY " ".

OPEN OUTPUT CRT.

PERFORM A200-CONNECT-DBENVIRONMENT THRU A200-EXIT.

PERFORM B100-SELECT-DATA THRU B100-EXIT

UNTIL DONE.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A100-EXIT.

EXIT.

Figure 2-5. Program COBEX2 (page 2 of 6)

2-10 Using the ALLBASE/SQL COBOL Preprocessor

A200-CONNECT-DBENVIRONMENT.

EXEC SQL

WHENEVER SQLERROR

GO TO S300-SERIOUS-ERROR

END-EXEC.

DISPLAY "Connect to PartsDBE".

EXEC SQL CONNECT TO 'PartsDBE' END-EXEC.

A200-EXIT.

EXIT.

A300-BEGIN-TRANSACTION.

DISPLAY "Begin Work".

EXEC SQL

BEGIN WORK
END-EXEC.

A300-EXIT.

EXIT.

A400-END-TRANSACTION.

DISPLAY "Commit Work".

EXEC SQL

COMMIT WORK

END-EXEC.

A400-EXIT.

EXIT.

A500-TERMINATE-PROGRAM.

EXEC SQL

RELEASE

END-EXEC.

STOP RUN.

A500-EXIT.

EXIT.

$PAGE

Figure 2-5. Program COBEX2 (page 3 of 6)

Using the ALLBASE/SQL COBOL Preprocessor 2-11

B100-SELECT-DATA.

MOVE SPACES TO RESPONSE.

MOVE "Enter Part Number or '/' to STOP> "

TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE.

IF RESPONSE-PREFIX = "/"

MOVE "Y" TO DONE-FLAG

GO TO B100-EXIT

ELSE

MOVE RESPONSE TO PARTNUMBER.

EXEC SQL

WHENEVER SQLERROR

GO TO S400-SQL-ERROR

END-EXEC.

EXEC SQL

WHENEVER SQLWARNING

GO TO S500-SQL-WARNING

END-EXEC.

EXEC SQL

WHENEVER NOT FOUND

GO TO S600-NOT-FOUND

END-EXEC.

DISPLAY "SELECT PartNumber, PartName and SalesPrice".

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

EXEC SQL

SELECT PARTNUMBER, PARTNAME, SALESPRICE

INTO :PARTNUMBER,

:PARTNAME,

:SALESPRICE :SALESPRICEIND

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

PERFORM B200-DISPLAY-ROW THRU B200-EXIT.

B100-EXIT.
EXIT.

Figure 2-5. Program COBEX2 (page 4 of 6)

2-12 Using the ALLBASE/SQL COBOL Preprocessor

B200-DISPLAY-ROW.

DISPLAY " ".

DISPLAY " Part Number: " PARTNUMBER.

DISPLAY " Part Name: " PARTNAME.

IF SALESPRICEIND < 0

DISPLAY " Sales Price is NULL"

ELSE

MOVE SALESPRICE TO DOLLARS

DISPLAY " Sales Price: " DOLLARS.

B200-EXIT.

EXIT.

$PAGE

S100-STATUS-CHECK.

IF SQLCODE < DEADLOCK

MOVE 'Y' TO ABORT-FLAG.

PERFORM S200-SQL-EXPLAIN THRU S200-EXIT

UNTIL SQLCODE = 0.

S100-EXIT.

EXIT.

S200-SQL-EXPLAIN.

EXEC SQL

SQLEXPLAIN :SQLMESSAGE

END-EXEC.

DISPLAY SQLMESSAGE.

S200-EXIT.

EXIT.

S300-SERIOUS-ERROR.

PERFORM S100-STATUS-CHECK THRU S100-EXIT.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

S300-EXIT.

EXIT.

Figure 2-5. Program COBEX2 (page 5 of 6)

Using the ALLBASE/SQL COBOL Preprocessor 2-13

S400-SQL-ERROR.

PERFORM S100-STATUS-CHECK THRU S100-EXIT.

IF ABORT-FLAG = 'Y'

PERFORM A500-TERMINATE-PROGRAM

ELSE

PERFORM A400-END-TRANSACTION THRU A400-EXIT

GO TO B100-EXIT.

S400-EXIT.

EXIT.

S500-SQL-WARNING.

DISPLAY "SQL WARNING has occurred. The following row "

"of data may not be valid:".

PERFORM B200-DISPLAY-ROW THRU B200-EXIT.

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

GO TO B100-EXIT.

S500-EXIT.

EXIT.

S600-NOT-FOUND.

DISPLAY " ".

DISPLAY "Part Number not found!".

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

GO TO B100-EXIT.

S600-EXIT.

EXIT.

Figure 2-5. Program COBEX2 (page 6 of 6)

2-14 Using the ALLBASE/SQL COBOL Preprocessor

Output File Attributes

The COBOL preprocessor output �les are temporary �les. When the SQLIN illustrated in
Figure 2-5 is preprocessed, the attributes of the output �les created are as follows:

:listftemp,2

TEMPORARY FILES FOR SOMEUSER.SOMEACCT,SOMEGRP

ACCOUNT= SOMEACCT GROUP= SOMEGRP

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX
SQLCONST 80B FA 39 2048 1 128 8 10 (TEMP)

SQLMOD 250W FB 3 1023 1 208 2 10 (TEMP)

SQLMSG 80B FA 14 1023 1 96 6 8 (TEMP)

SQLOUT 80B FA 417 10000 1 320 11 10 (TEMP)

SQLVAR 80B FA 11 2048 1 128 7 10 (TEMP)

Modified Source File

As the COBOL preprocessor parses SQLIN, it copies lines from SQLIN and any �le(s)
included from SQLIN into SQLOUT, comments out embedded SQL commands, and inserts
information around each embedded SQL command. Figure 2-6 illustrates the SQLOUT
generated for the SQLIN pictured in Figure 2-5. In both preprocessing modes, the COBOL
preprocessor:

Inserts an * in column 7 on each line containing an embedded SQL command to comment
out the SQL command for the COBOL compiler.

Places any punctuation you place after an embedded command on the line following the last
line generated for the embedded command. Note, that the period following the INCLUDE
SQLCA command in SQLIN is in the same column, but on a di�erent line in SQLOUT. In
SQLOUT the period is on the line following the last line generated by the preprocessor for
the INCLUDE SQLCA command.

Inserts two $INCLUDE COBOL compiler directives after the WORKING-STORAGE
SECTION label. During compilation, the directives reference the include �les: SQLCONST
and SQLVAR.

Inserts a \Start SQL Preprocessor" comment before and an End SQL Preprocessor
comment after code it modi�es.

Using the ALLBASE/SQL COBOL Preprocessor 2-15

In full preprocessing mode, the preprocessor also:

Generates a COBOL declaration of the SQLCA following the INCLUDE SQLCA command.

Generates COBOL sentences providing conditional instructions following SQL commands
encountered after one of the following SQL commands: WHENEVER SQLERROR,
WHENEVER SQLWARNING, and WHENEVER NOT FOUND.

Generates COBOL sentences that call ALLBASE/SQL external procedures at run time.
These calls reference the module stored by the preprocessor in the DBEnvironment for
execution at run time. Parameters used by these external calls are de�ned in SQLVAR and
SQLCONST.

Inserts a \Start Inserted Statements" comment before generated information.

Caution Although you can access SQLOUT, SQLVAR, and SQLCONST with an
editor, you should never change the information generated by the COBOL
preprocessor. Your DBEnvironment could be damaged at run time if
preprocessor generated statements are altered.

If you need to change statements in SQLOUT, make the changes to SQLIN, re-preprocess
SQLIN, and re-compile the output �les before putting the application program into
production.

2-16 Using the ALLBASE/SQL COBOL Preprocessor

* *

* Program COBEX2: *

* This program illustrates the use of SQL's SELECT command to *

* retrieve one row at a time. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX2.

AUTHOR. HP TRAINING

INSTALLATION. HP.

DATE-WRITTEN. 17 JULY 1987.

DATE-COMPILED. 17 JULY 1987.

REMARKS. SQL'S SELECT WITH WHENEVER COMMAND.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.
SPECIAL-NAMES. CONSOLE IS TERMINAL-INPUT.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(34).

$PAGE

WORKING-STORAGE SECTION.

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

**** Start SQL Preprocessor ****

$INCLUDE SQLCONST

$INCLUDE SQLVAR

**** End SQL Preprocessor ****

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

x
x
x
x
x
W

**** Start SQL Preprocessor ****

*EXEC SQL INCLUDE SQLCA END-EXEC.

**** Start Inserted Statements ****

01 SQLCA.

05 SQLCAID PIC X(8).

05 SQLCABC PIC S9(9) COMP SYNC.

05 SQLCODE PIC S9(9) COMP SYNC.

05 SQLERRM.

49 SQLERRML PIC S9(9) COMP SYNC.

49 SQLERRMC PIC X(256).

Figure 2-6. Modified Source File for Program COBEX2

Using the ALLBASE/SQL COBOL Preprocessor 2-17

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

x
x
x
x
x
x
x
x
F

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMP SYNC.

05 SQLWARN.

10 SQLWARN0 PIC X(1).

10 SQLWARN1 PIC X(1).

10 SQLWARN2 PIC X(1).

10 SQLWARN3 PIC X(1).

10 SQLWARN4 PIC X(1).

10 SQLWARN5 PIC X(1).

10 SQLWARN6 PIC X(1).

10 SQLWARN7 PIC X(1).

05 SQLEXT1 PIC X(4).

05 SQLEXT2 PIC X(4).

**** End SQL Preprocessor ****

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a

**** Start SQL Preprocessor ****

*EXEC SQL BEGIN DECLARE SECTION END-EXEC.

**** End SQL Preprocessor ****

01 PARTNUMBER PIC X(16).

01 PARTNAME PIC X(30).

01 SALESPRICE PIC S9(8)V99 COMP-3.

01 SALESPRICEIND PIC S9(4) COMP.

01 SQLMESSAGE PIC X(132).

x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a

**** Start SQL Preprocessor ****

*EXEC SQL END DECLARE SECTION END-EXEC.

**** End SQL Preprocessor ****

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

77 DONE-FLAG PIC X(01) VALUE 'N'.

88 NOT-DONE VALUE 'N'.

88 DONE VALUE 'Y'.

77 ABORT-FLAG PIC X(01) VALUE 'N'.

88 NOT-STOP VALUE 'N'.

88 ABORT VALUE 'Y'.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(01) VALUE SPACE.

05 FILLER PIC X(15) VALUE SPACES.

Figure 2-6. Modified Sorce File for Program COBEX2 (page 2 of 9)

2-18 Using the ALLBASE/SQL COBOL Preprocessor

01 DOLLARS PIC $$$,$$$,$$$.99.

$PAGE

PROCEDURE DIVISION.

A100-MAIN.

DISPLAY "Program to SELECT specified rows from "

"the Parts Table - COBEX2".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Connect to PartsDBE".

DISPLAY " Begin Work".

DISPLAY " SELECT specified Part Number from the "

"Parts Table until user enters '/' ".

DISPLAY " Commit Work".

DISPLAY " Disconnect from PartsDBE".

DISPLAY " ".

OPEN OUTPUT CRT.

PERFORM A200-CONNECT-DBENVIRONMENT THRU A200-EXIT.

PERFORM B100-SELECT-DATA THRU B100-EXIT

UNTIL DONE.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A100-EXIT.

EXIT.

A200-CONNECT-DBENVIRONMENT.

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

**** Start SQL Preprocessor ****

* EXEC SQL

* WHENEVER SQLERROR

* GO TO S300-SERIOUS-ERROR

* END-EXEC

**** Start Inserted Statements ****

CONTINUE

**** End SQL Preprocessor ****

.

DISPLAY "Connect to PartsDBE".

x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a

**** Start SQL Preprocessor ****

* EXEC SQL CONNECT TO 'PartsDBE' END-EXEC

**** Start Inserted Statements ****

Figure 2-6. Modified Source File for Program COBEX2 (page 3 of 9)

Using the ALLBASE/SQL COBOL Preprocessor 2-19

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

MOVE 264 TO SQLCONLEN

CALL "SQLXCONO" USING SQLCA, SQLCONLEN, SQLCONST1

IF SQLCODE IS NEGATIVE

GO TO S300-SERIOUS-ERROR

END-IF

**** End SQL Preprocessor ****

.

A200-EXIT.

EXIT.

A300-BEGIN-TRANSACTION.

DISPLAY "Begin Work".

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

**** Start SQL Preprocessor ****

* EXEC SQL

* BEGIN WORK

* END-EXEC

**** Start Inserted Statements ****

MOVE 16 TO SQLCONLEN

CALL "SQLXCONO" USING SQLCA, SQLCONLEN, SQLCONST2

IF SQLCODE IS NEGATIVE

GO TO S300-SERIOUS-ERROR

END-IF

**** End SQL Preprocessor ****

.

A300-EXIT.

EXIT.

A400-END-TRANSACTION.

DISPLAY "Commit Work".

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

**** Start SQL Preprocessor ****

* EXEC SQL

* COMMIT WORK

* END-EXEC

**** Start Inserted Statements ****

MOVE 8 TO SQLCONLEN
CALL "SQLXCONO" USING SQLCA, SQLCONLEN, SQLCONST3

IF SQLCODE IS NEGATIVE

GO TO S300-SERIOUS-ERROR

END-IF

**** End SQL Preprocessor ****

Figure 2-6. Modified Source File for Program COBEX2 (page 4 of 9)

2-20 Using the ALLBASE/SQL COBOL Preprocessor

A400-EXIT.

EXIT.

A500-TERMINATE-PROGRAM.

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

**** Start SQL Preprocessor ****

* EXEC SQL

* RELEASE

* END-EXEC

**** Start Inserted Statements ****

MOVE 56 TO SQLCONLEN

CALL "SQLXCONO" USING SQLCA, SQLCONLEN, SQLCONST4

IF SQLCODE IS NEGATIVE

GO TO S300-SERIOUS-ERROR

END-IF

**** End SQL Preprocessor ****

.

STOP RUN.

A500-EXIT.

EXIT.

$PAGE
B100-SELECT-DATA.

MOVE SPACES TO RESPONSE.

MOVE "Enter Part Number or '/' to STOP> "

TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE.

IF RESPONSE-PREFIX = "/"

MOVE "Y" TO DONE-FLAG

GO TO B100-EXIT

ELSE

MOVE RESPONSE TO PARTNUMBER.

Figure 2-6. Modified Source File for Program COBEX2 (page 5 of 9)

Using the ALLBASE/SQL COBOL Preprocessor 2-21

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

**** Start SQL Preprocessor ****

* EXEC SQL

* WHENEVER SQLERROR

* GO TO S400-SQL-ERROR

* END-EXEC

**** Start Inserted Statements ****

CONTINUE

**** End SQL Preprocessor ****

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

**** Start SQL Preprocessor ****

* EXEC SQL

* WHENEVER SQLWARNING

* GO TO S500-SQL-WARNING

* END-EXEC

**** Start Inserted Statements ****

CONTINUE

**** End SQL Preprocessor ****

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

**** Start SQL Preprocessor ****

* EXEC SQL

* WHENEVER NOT FOUND

* GO TO S600-NOT-FOUND

* END-EXEC

**** Start Inserted Statements ****

CONTINUE

**** End SQL Preprocessor ****

DISPLAY "SELECT PartNumber, PartName and SalesPrice".

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

**** Start SQL Preprocessor ****

* EXEC SQL

* SELECT PARTNUMBER, PARTNAME, SALESPRICE

* INTO :PARTNUMBER,

* :PARTNAME,

* :SALESPRICE :SALESPRICEIND

* FROM PURCHDB.PARTS

* WHERE PARTNUMBER = :PARTNUMBER

* END-EXEC

**** Start Inserted Statements ****

MOVE PARTNUMBER

TO SQLREC1-FIELD1

Figure 2-6. Modified Source File for Program COBEX2 (page 6 of 9)

2-22 Using the ALLBASE/SQL COBOL Preprocessor

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

MOVE 1 TO SQLSECNUM

MOVE 16 TO SQLINLEN

MOVE 54 TO SQLOUTLEN

CALL "SQLXFETO" USING SQLCA, SQLOWNER, SQLMODNAME,

SQLSECNUM, SQLTEMPV, SQLINLEN, SQLOUTLEN, SQLTRUE

IF SQLCODE IS ZERO

MOVE SQLREC2-FIELD1

TO PARTNUMBER

MOVE SQLREC2-FIELD2

TO PARTNAME

MOVE SQLREC2-FIELD3-IND

TO SALESPRICEIND

IF SQLREC2-FIELD3-IND IS NOT NEGATIVE

MOVE SQLREC2-FIELD3
TO SALESPRICE

END-IF

IF SQLWARN0 IS EQUAL TO "W"

GO TO S500-SQL-WARNING

END-IF

ELSE

IF SQLCODE IS EQUAL TO 100

GO TO S600-NOT-FOUND

END-IF

IF SQLCODE IS NEGATIVE

GO TO S400-SQL-ERROR

END-IF

CONTINUE

END-IF

**** End SQL Preprocessor ****

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

PERFORM B200-DISPLAY-ROW THRU B200-EXIT.

B100-EXIT.

EXIT.

B200-DISPLAY-ROW.

DISPLAY " ".

DISPLAY " Part Number: " PARTNUMBER.

DISPLAY " Part Name: " PARTNAME.

IF SALESPRICEIND < 0

DISPLAY " Sales Price is NULL"

ELSE

MOVE SALESPRICE TO DOLLARS
DISPLAY " Sales Price: " DOLLARS.

Figure 2-6. Modified Source File for Program (page 7 of 9)

Using the ALLBASE/SQL COBOL Preprocessor 2-23

B200-EXIT.

EXIT.

$PAGE

S100-STATUS-CHECK.

IF SQLCODE < DEADLOCK

MOVE 'Y' TO ABORT-FLAG.

PERFORM S200-SQL-EXPLAIN THRU S200-EXIT

UNTIL SQLCODE = 0.

S100-EXIT.

EXIT.

S200-SQL-EXPLAIN.

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

**** Start SQL Preprocessor ****

* EXEC SQL

* SQLEXPLAIN :SQLMESSAGE

* END-EXEC

**** Start Inserted Statements ****

MOVE SPACES TO SQLREC4

MOVE 132 TO SQLINLEN

CALL "SQLXPLNO" USING SQLCA, SQLTEMPV, SQLINLEN,

SQLFALSE
MOVE SQLREC4-FIELD1

TO SQLMESSAGE

**** End SQL Preprocessor ****

.

DISPLAY SQLMESSAGE.

S200-EXIT.

EXIT.

S300-SERIOUS-ERROR.

PERFORM S100-STATUS-CHECK THRU S100-EXIT.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

S300-EXIT.

EXIT.

Figure 2-6. Modified Source File for Program COBEX2 (page 8 of 9)

2-24 Using the ALLBASE/SQL COBOL Preprocessor

S400-SQL-ERROR.

PERFORM S100-STATUS-CHECK THRU S100-EXIT.

IF ABORT-FLAG = 'Y'

PERFORM A500-TERMINATE-PROGRAM

ELSE

PERFORM A400-END-TRANSACTION THRU A400-EXIT

GO TO B100-EXIT.

S400-EXIT.

EXIT.

S500-SQL-WARNING.

DISPLAY "SQL WARNING has occurred. The following row "

"of data may not be valid:".

PERFORM B200-DISPLAY-ROW THRU B200-EXIT.

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

GO TO B100-EXIT.

S500-EXIT.

EXIT.

S600-NOT-FOUND.

DISPLAY " ".

DISPLAY "Part Number not found!".

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

GO TO B100-EXIT.

S600-EXIT.

EXIT.

Figure 2-6. Modified Source File for Program COBEX2 (page 9 of 9)

Using the ALLBASE/SQL COBOL Preprocessor 2-25

Preprocessor Generated Include Files

SQLCONST and SQLVAR are preprocessor generated include �les which contain declarations
for variables and constants referenced in preprocessor generated sentences in SQLOUT. Figure
2-7 and Figure 2-8 illustrate, respectively, the SQLCONST and SQLVAR �les that correspond
to the SQLOUT �le in Figure 2-6. Note that the preprocessor inserts the following two
COBOL compiler directives to reference SQLCONST and SQLVAR:

$INCLUDE SQLCONST

$INCLUDE SQLVAR

These two directives are always inserted into the WORKING-STORAGE SECTION.

Even if you use �le equations to redirect the include �les, the preprocessor still inserts the
same $INCLUDE directives. Therefore when you compile preprocessor output, ensure that the
preprocess-time �le equations are in e�ect so the correct include �les are compiled:

:FILE SQLCONST=MYCONST

:FILE SQLVAR=MYVAR

:FILE SQLIN=MYPROG

:FILE SQLOUT=MYSQLPRG

. Then the COBOL preprocessor is invoked in full preprocessing mode.

. Later, when then COBOL compiler is invoked, the following

. �le equations must be in e�ect:

:FILE SQLCONST=MYCONST

:FILE SQLVAR=MYVAR

:COB85XL MYSQLPRG, $NEWPASS, $NULL

01 SQLCONST PIC X.
01 SQLCONST1.

05 SQL0 PIC X(36) VALUE "(4)5061727473444245202020202020".

05 SQL1 PIC X(36) VALUE "202020202020202020202020202020202020".

05 SQL2 PIC X(36) VALUE "202020202020202020202020202020202020".

05 SQL3 PIC X(36) VALUE "202020202020202020202020202020202020".

05 SQL4 PIC X(36) VALUE "202020202020202020202020202020202020".

05 SQL5 PIC X(36) VALUE "202020202020202020202020202020202020".

05 SQL6 PIC X(36) VALUE "202020202020202020202020202020202020".

05 SQL7 PIC X(12) VALUE "202020202020".

01 SQLCONST2.

05 SQL0 PIC X(16) VALUE "00A6007F00110061".

e SQLCONST3.

05 SQL0 PIC X(8) VALUE "00A10000".

01 SQLCONST4.

05 SQL0 PIC X(36) VALUE 00AF00002020202020202020202020202020".

05 SQL1 PIC X(12) VALUE "202020202020".

01 SQLTEMPV PIC X(132) VALUE " ".

Figure 2-7. Sample Constant Include File

2-26 Using the ALLBASE/SQL COBOL Preprocessor

01 SQLREC1 REDEFINES SQLTEMPV.

05 SQLREC1-FIELD1 PIC X(16).

01 SQLREC2 REDEFINES SQLTEMPV.

05 SQLREC2-FIELD1 PIC X(16).

05 SQLREC2-FIELD2 PIC X(30).

05 SQLREC2-FIELD3 PIC S9(8)V9(2) COMP-3.

05 SQLREC2-FIELD3-IND PIC S9(4) COMP.

01 SQLREC3 REDEFINES SQLTEMPV.

05 FILLER PIC X(108).

01 SQLREC4 REDEFINES SQLTEMPV.

05 SQLREC4-FIELD1 PIC X(132).

Figure 2-8. Sample Variable Include File

COBOL COPY Statement Support

ALLBASE/SQL now supports the COBOL COPY statement. The preprocessor scans your
source code and inserts the indicated copylib modules into the preprocessed code. The
REPLACING clause, if speci�ed, is expanded during compilation (not during preprocessing).

Two new compiler directives are used in your source code to set and unset the COPY
statement feature. These are shown in the table below.

Table 2-1. Compiler Directives for Implementing the COBOL COPY Statement

Directive How Used

$SQL COPY Turns on ALLBASE/SQL COPY statement processing.

$SQL NOCOPY Turns o� ALLBASE/SQL COPY statement processing.

You can use the directives at any point in your source code. Perhaps your application has
many COPY statements, some of which reference modules containing ALLBASE/SQL
commands. If you want only ALLBASE/SQL copy code expanded in your preprocessor
listing, delimit the appropriate COPY statements with the $SQL COPY and $SQL NOCOPY
directives. If you want all copy code expanded at preprocessing time, put the $SQL COPY
statement at the beginning of your �le. When you do not use these compiler directives, COPY
statements are processed at compile time. This is appropriate when your copy code modules
do not contain ALLBASE/SQL commands.

Note Insertion of copy text into the preprocessor output �le may cause the current
�le limit for SQLOUT to be exceeded.

The following sections are presented in this section:

Using the COPY Statement with ALLBASE/SQL.
COPY Statement Code Example.

Using the ALLBASE/SQL COBOL Preprocessor 2-27

Using the COPY Statement with ALLBASE/SQL

COPY statement syntax and a complete explanation of its use in COBOL is found in chapter
13 of the HP COBOL II/XL Reference Manual .

No syntactical di�erences exist between COBOL and ALLBASE/SQL implementation of the
COPY statement. However, you should be aware of the following speci�cs:

The reserved word NOLIST can be used to suppress printing the contents of the copylib
module in the compiler listing.

Any ALLBASE/SQL commands within a copy �le will be preprocessed, but the
REPLACING phrase will have no e�ect on them.

The COPY statement cannot be used within an ALLBASE/SQL command.

COPY Statement Code Example

Suppose you want to copy a generic error checking routine into your application. The routine
is located in a module named ERRORCPY in the errorlib library. You embed the following
COBOL COPY statement in your source code:

$SQL COPY

COPY ERRORCPY OF ERRORLIB

$SQL NOCOPY

The preprocessed output �le will be as follows. (Note that ALLBASE/SQL commands within
the copy �le have been expanded just as they would have been if the code had been a part of
the main source �le.)

**** Start SQL Preprocessor ****

*SQL COPY

**** End SQL Preprocessor ****

**** Start SQL Preprocessor ****

*copy ERRORCPY.

**** Start insertion of text from: ERRORCPY

S100-STATUS-CHECK. ERRORCPY

ERRORCPY

IF SQLCODE < DEADLOCK ERRORCPY

MOVE 'Y' TO ABORT-FLAG. ERRORCPY

ERRORCPY

PERFORM S200-SQL-EXPLAIN THRU S200-EXIT ERRORCPY

UNTIL SQLCODE = 0. ERRORCPY

ERRORCPY

S100-EXIT. ERRORCPY

EXIT. ERRORCPY
ERRORCPY

S200-SQL-EXPLAIN. ERRORCPY

ERRORCPY

ERRORCPY

2-28 Using the ALLBASE/SQL COBOL Preprocessor

**** Start SQL Preprocessor ****

* EXEC SQL

* SQLEXPLAIN :SQLMESSAGE
* END-EXEC

**** Start Inserted Statements ****

MOVE SPACES TO SQLREC2

MOVE 2 TO SQLINLEN

CALL SQLXCBL USING SQLXPLN, SQLCA, SQLTEMPV, SQLINLEN,

SQLFALSE

MOVE SQLREC2-FIELD1

TO SQLMESSAGE

**** End SQL Preprocessor ****

. ERRORCPY

ERRORCPY

DISPLAY SQLMESSAGE. ERRORCPY

ERRORCPY

S200-EXIT. ERRORCPY

EXIT. ERRORCPY

**** End insertion of text from: ERRORCPY

**** End SQL Preprocessor ****

**** Start SQL Preprocessor ****

*SQL NOCOPY

**** End SQL Preprocessor ****

$SET and $IF Statement Support

ALLBASE/SQL supports the COBOL SET and IF compiler directives. If you want to
preprocess only certain parts of your source code to send to the COBOL compiler, you can set
up to ten switches to either ON or OFF. You can then test a ag for ON by testing whether
it evaluates to a boolean value of true. If the switch evaluates to true, source records are sent
to the compiler, beginning with the �rst one following the IF statement, and continuing until
another IF statement evaluates to false.

The SET statement is used to turn a switch o� and on. Up to ten named software switches
of the form Xn are available, where n is an integer in the range of 0 through 9. The SET
statement has the following syntax:

$SET

�
Xn=

�
ON

OFF

��
,Xr=

�
ON

OFF

��
. . .

�

$IF

�
Xn=

�
ON

OFF

��

Initially, all compilation switches are set to OFF.

A SET statement can appear anywhere in the source text. IF the SET statement is used
without parameters in the form of SET, all switches are set to OFF.

The IF statement interrogates any of the ten compilations switches. If the condition speci�ed
in the IF statement evaluates to true, source records are sent to the compiler. An appearance
of an IF statement always terminates the inuence of any previous IF statement.

Using the ALLBASE/SQL COBOL Preprocessor 2-29

An IF statement that appears without parameters has the same e�ect as an IF satement that
evaluates to true.

When an IF statement evaluates to false, no source records are sent to the compiler until an
IF statement evaluates to true is encountered.

Code Example

Suppose you want to conditionally preprocess some parts of your source code and send it to
the compiler, and not preprocess other parts of your source code, you could use SET and IF
statements in your source code, as follows:

$SET X1=ON,X3=ON

.

.

.

$IF X1=ON

$COMMENT Since X1 is ON, continue sending records to the compiler.

.

.

.

$IF X3=OFF

$COMMENT This $IF statement cancels the preceding one. Since X3 is &

$ set to ON, do not send the following records to the compiler.

$SET X2=ON

$CONTROL NOLIST.

$COMMENT Note that the SET and $CONTROL statements are ignored, &

$ since the previous IF statement was false.

.

.

.

$IF

$COMMENT Previous IF statement conditions are terminated, and &
$ preprocessing and compilation resume.

Considerations When Using $SET and $IF

SET and IF statement syntax and a complete explanation of their use in COBOL is found in
chapter 13 of the HP COBOL II/XL Reference Manual .

No syntactical di�erences exist between COBOL and ALLBASE/SQL implementation of the
SET and IF statements. However, you should be aware of the following speci�cs:

If any other SET or CONTROL statements are encountered in the source records that are
being passed over as a result of the IF, they are ignored by the preprocessor and are not
sent to the compiler.

EDIT, PAGE, and TITLE statements within a range of source statements being ignored by
the preprocessor are executed.

The operations of merging of a text and master source �le, and copying of a merged �le to a
new �le are una�ected by IF statements.

Use the CONTROL preprocessor statement specifying the NOMIXED parameter when you
do not want to list source records not sent to the compiler.

2-30 Using the ALLBASE/SQL COBOL Preprocessor

ALLBASE/SQL Message File

Messages placed in the ALLBASE/SQL message �le (SQLMSG) come from the
ALLBASE/SQL message catalog. The formal �le designator for the message catalog is:

SQLCTxxx.PUB.SYS

where xxx is the numerical value for the current language. If this catalog cannot be opened,
ALLBASE/SQL looks for the default NATIVE-3000 message catalog:

SQLCT000.PUB.SYS

If the default catalog cannot be opened, ALLBASE/SQL returns an error message saying
that the catalog �le is not available. If the NATIVE-3000 catalog is available, the user sees a
warning message indicating that the default catalog is being used. SQLMSG messages contain
four parts:

1. A banner:

WED, OCT 25, 1991, 1:38 PM

HP36216-E1.02 COBOL Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

2. A summary of the preprocessor invocation conditions:

SQLIN = COBEX2.SOMEGRP.SOMEACCT

DBEnvironment = partsdbe

Module Name = COBEX2

3. Warnings and errors encountered during preprocessing:

39 01 PARTNUMBER PIC X(16) COMP.

|

****** Syntax error in host variable declaration. (DBERR 10932)

.

.

.

There are errors. No sections stored.

4. A summary of the results of preprocessing:

2 ERRORS 0 WARNINGS

END OF PREPROCESSING.

When you equate SQLMSG to $STDLIST, all these messages appear at the terminal during
your session or in the job stream listing. When SQLMSG is not equated to $STDLIST, parts
1 and 4 are still sent to $STDLIST, and all parts appear in the �le equated to SQLMSG:

Using the ALLBASE/SQL COBOL Preprocessor 2-31

:FILE SQLMSG=MyMsg;Rec=-80,16,f,Ascii

:FILE SQLIN=COBEX2
:RUN PSQLCOB.PUB.SYS;INFO="PartsDBE (DROP)"

WED, OCT 25, 1991, 1:38 PM

HP36216-02A.E1.02 COBOL Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

If you want to keep the message �le, you should save the �le you equate to SQLMSG. It is
created as a temporary �le.

As illustrated in Figure 2-9, a line number is often provided in SQLMSG. This line number
references the line in SQLIN containing the command in question. A message accompanied
by a number may also appear. You can refer to the ALLBASE/SQL Message Manual for
additional information on the exception condition when these numbered messages appear.

:EDITOR

HP32501A.07.20 EDIT/3000 FRI, OCT 27, 1991, 10:20 AM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

.

.

SQLIN = COBEX2.SOMEGRP.SOMEACCT

DBEnvironment = partsdbe

Module Name = COBEX2

SELCT PARTNUMBER, PARTNAME, SALESPRICE INTO :PARTNUMBER, :PARTNAME,

:SALESPRICE :SALESPRICEIND FROM PURCHDB.PARTS WHERE PARTNUMBER =

:PARTNUMBER ;

****** ALLBASE/SQL errors (DBERR 10977)

****** in SQL statement ending in line 176

*** <1001> Syntax error. (DBERR 1001)

There are errors. No sections stored.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

Figure 2-9. Sample SQLMSG Showing Error

2-32 Using the ALLBASE/SQL COBOL Preprocessor

As Figure 2-11 illustrates, the preprocessor can terminate with a warning message. Although
a section is stored for the semantically incorrect command, the section is marked as invalid
and will not execute at run time if it cannot be validated.

:EDITOR

HP32501A.07.20 EDIT/3000 FRI, OCT 27 1991, 10:20 AM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

.

.

.

SQLIN = COBEX2.SOMEGRP.SOMEACCT

DBEnvironment = partsdbe

Module Name = COBEX2

SELECT PARNUMBER, PARTNAME, SALESPRICE INTO :PARTNUMBER, :PARTNAME,

:SALESPRICE :SALESPRICEIND FROM PURCHDB.PARTS WHERE PARTNUMBER =

:PARTNUMBER ;

****** ALLBASE/SQL warnings (DBWARN 10602)

****** in SQL statement ending in line 176

*** Column PARNUMBER not found. (DBERR 2211)

1 Sections stored in DBEnvironment.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING

Figure 2-10. Sample SQLMSG Showing Warning

Using the ALLBASE/SQL COBOL Preprocessor 2-33

Installable Module File

When the COBOL preprocessor stores a module in the system catalog of a DBEnvironment
at preprocessing time, it places a copy of the module in an installable module �le. By default
the installable module �le is named SQLMOD. The module in this �le can be installed into a
DBEnvironment di�erent from the DBEnvironment accessed at preprocessing time by using
the INSTALL command in ISQL. For example:

:RUN PSQLCBL.PUB.SYS;INFO="DBEnvironmentName&

(MODULE(InstalledModuleName)DROP)"

If you want to preserve SQLMOD after preprocessing,

you must keep it as a permanent �le. Rename SQLMOD

after making it permanent:

:SAVE SQLMOD

:RENAME SQLMOD,MYMOD

Before invoking ISQL to install this module �le,

you may have to transport it and its related

program �le to the machine containing the target

DBEnvironment. After all the �les are restored on the

target machine, you invoke ISQL on the machine containing

the target DBEnvironment:

:ISQL

In order to install the module, you need CONNECT

or DBA authority in the target DBEnvironment:

isql=> CONNECT TO 'PARTSDBE.SomeGrp.SomeAcct';

isql=> INSTALL;

File name> MYMOD.SOMEGRP.SOMEACCT;

Name of module in this file: JOANN@SOMEACCT.COBEX2

Number of sections installed: 1

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

isql=>

2-34 Using the ALLBASE/SQL COBOL Preprocessor

Stored Sections

In full preprocessing mode, the preprocessor stores a section for each embedded command
except:

BEGIN DECLARE SECTION INCLUDE

BEGIN WORK OPEN

CLOSE PREPARE

COMMIT WORK RELEASE

CONNECT ROLLBACK WORK

DECLARE CURSOR SAVEPOINT

DELETE WHERE CURRENT START DBE

DESCRIBE STOP DBE

END DECLARE SECTION SQLEXPLAIN
EXECUTE TERMINATE USER

EXECUTE IMMEDIATE UPDATE WHERE CURRENT

FETCH WHENEVER

The commands listed above either require no authorization to execute or are executed based
on information contained in the compilable preprocessor output �les.

When the preprocessor stores a section, it actually stores what is known as an input tree and
a run tree. The input tree consists of an uncompiled command. The run tree is the compiled,
executable form of the command.

If a section is valid at run time, ALLBASE/SQL executes the appropriate run tree when
the SQL command is encountered in the application program. If a section is invalid,
ALLBASE/SQL determines whether the objects referenced in the sections exist and whether
current authorization criteria are satis�ed. When an invalid section can be validated,
ALLBASE/SQL dynamically recompiles the input tree to create an executable run tree and
executes the command. When a section cannot be validated, the command is not executed,
and an error condition is returned to the program.

There are three types of sections:

Sections for executing the SELECT command associated with a DECLARE CURSOR
command.

Sections for executing the SELECT command associated with a CREATE VIEW command.

Sections for all other commands for which the preprocessor stores a section.

Figure 2-11 illustrates the kinds of information in the system catalog that describe each type
of stored section. The query result illustrated was extracted from the system view named
SYSTEM.SECTION by using ISQL. The columns in Figure 2-11 have the following meanings:

NAME: This column contains the name of the module to which a section belongs. You
specify a module name when you invoke the preprocessor; the module name is by default
the PROGRAM-ID.

OWNER: This column identi�es the owner of the module. You specify an owner
name when you invoke the preprocessor; the owner name is by default the log-on
UserName@AccountName associated with the preprocessing session.

DBEFILESET: This column indicates the DBEFileSet with which DBEFiles housing the
section are associated.

Using the ALLBASE/SQL COBOL Preprocessor 2-35

SECTION: This column gives the section number. Each section associated with a module
is assigned a number by the preprocessor as it parses the related SQL command at
preprocessing time.

TYPE: This column identi�es the type of section:

1 = SELECT associated with a cursor
2 = SELECT defining a view

0 = All other sections

VALID: This column identi�es whether a section is valid or invalid:

0 = invalid

1 = valid

2-36 Using the ALLBASE/SQL COBOL Preprocessor

isql=>SELECT NAME,OWNER,DBEFILESET,SECTION,TYPE,VALID FROM SYSTEM.SECTION;

SELECT NAME,OWNER,DBEFILESET,SECTION,TYPE,VALID FROM SYSTEM.SECTION;

--

NAME |OWNER |DBEFILESET |SECTION |TYPE |VALID

--

TABLE |SYSTEM |SYSTEM | 0| 2| 0

COLUMN |SYSTEM |SYSTEM | 0| 2| 0

INDEX |SYSTEM |SYSTEM | 0| 2| 0

SECTION |SYSTEM |SYSTEM | 0| 2| 0

DBEFILESET |SYSTEM |SYSTEM | 0| 2| 0

DBEFILE |SYSTEM |SYSTEM | 0| 2| 0

SPECAUTH |SYSTEM |SYSTEM | 0| 2| 0

TABAUTH |SYSTEM |SYSTEM | 0| 2| 0

COLAUTH |SYSTEM |SYSTEM | 0| 2| 0

MODAUTH |SYSTEM |SYSTEM | 0| 2| 0

GROUP |SYSTEM |SYSTEM | 0| 2| 0

VIEWDEF |SYSTEM |SYSTEM | 0| 2| 0
HASH |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINT |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINTCOL |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINTINDEX |SYSTEM |SYSTEM | 0| 2| 0

COLDEFAULT |SYSTEM |SYSTEM | 0| 2| 0

TEMPSPACE |SYSTEM |SYSTEM | 0| 2| 0

PARTINFO |PURCHDB |SYSTEM | 0| 2| 0

VENDORSTATISTICS |PURCHDB |SYSTEM | 0| 2| 0

COBEX2 |KAREN@THOMAS |SYSTEM | 1| 0| 1

EXP11 |KAREN@THOMAS |SYSTEM | 1| 1| 1

EXP11 |KAREN@THOMAS |SYSTEM | 2| 0| 1

--

Number of rows selected is 16.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

Figure 2-11. Information in SYSTEM.SECTION on Stored Sections

Using the ALLBASE/SQL COBOL Preprocessor 2-37

The �rst eleven rows in this query result describe the sections stored for the system views.
The next two rows describe the two views in the sample database: PURCHDB.PARTINFO
and PURCHDB.VENDORSTATISTICS. Views are always stored as invalid sections, because
the run tree is always generated at run time.

The remaining rows describe sections associated with two preprocessed programs. COBEX2
contains only one section, for executing the SELECT command in the program illustrated in
Figure 2-6. EXP11 contains two sections, one for executing the SELECT command associated
with a DECLARE CURSOR command and one for executing a FETCH command.

Stored sections remain in the system catalog until they are deleted with the DROP MODULE
command or by invoking the preprocessor with the DROP option:

isql=> DROP MODULE COBEX2;

or

:RUN PSQLCOB.PUB.SYS;INFO="PartsDBE (MODULE(COBEX2) DROP)"

Stored sections are marked invalid when:

The UPDATE STATISTICS command is executed.

Tables accessed in the program are dropped, altered, or assigned new owners.

Indexes or DBEFileSets related to tables accessed in the program are changed.

Module owner authorization changes occur that a�ect the execution of embedded
commands.

When an invalid section is validated at run time, the validated section is committed when
the program issues a COMMIT WORK command. If a COMMIT WORK command is not
executed, ALLBASE/SQL must revalidate the section again the next time the program is
executed. For this reason, you should embed COMMIT WORK commands even following
SELECT commands, since the COMMIT WORK command may be needed even when data is
not changed by a program.

2-38 Using the ALLBASE/SQL COBOL Preprocessor

Invoking the COBOL Preprocessor

The COBOL preprocessor can be invoked to either

Only check the syntax of embedded SQL commands, or

Check the syntax of embedded SQL commands, create compilable output, store a module in
a DBEnvironment, and create an installable module �le.

Syntax Checking Mode

You use the following RUN command to only check the syntax of the SQL commands
embedded in a �le equated to SQLIN.

:RUN PSQLCOB.PUB.SYS;INFO="(SYNTAX)"

Description

The preprocessor does not access a DBEnvironment when it is run in this mode.

When performing only syntax checking, the preprocessor does not convert the SQL
commands into COBOL statements. Therefore SQLOUT does not contain any preprocessor
generated calls to ALLBASE/SQL external procedures.

SQLCONST, SQLVAR, and SQLMOD are created, but are incomplete.

Authorization

You do not need ALLBASE/SQL authorization when you use the preprocessor to only check
SQL syntax. In other words, the tables that store who has DBA, RESOURCE, and OWNER
privileges on tables are not checked.

Using the ALLBASE/SQL COBOL Preprocessor 2-39

Example

:FILE SQLIN=COBEX2

:RUN PSQLCOB.PUB.SYS;INFO="(SYNTAX)"

WED, OCT 25, 1991, 1:38 PM

HP36216-E1.02 COBOL Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

:EDITOR

HP32501A.07.20 EDIT/3000 FRI, OCT 27, 1991, 9:35 AM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

.

.

.

SQLIN = COBEX2.SOMEGRP.SOMEACCT

SELECT PARTNUMBER, PARTNAME, SALESPRICE INTO :PARTNUMBER, :PARTNAME,

:SALESPRICE :SALESPRICEIND, FROM PURCHDB.PARTS WHERE PARTNUMBER =

:PARTNUMBER ;

****** ALLBASE/SQL errors (DBERR 10977)

****** in SQL statement ending in line 176

*** Unexpected keyword. (DBERR 1006)

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

/

The line 176 referenced in SQLMSG is the line in

SQLIN where the erroneous SQL command ends.

2-40 Using the ALLBASE/SQL COBOL Preprocessor

Full Preprocessing Mode

You use the following RUN command to both check SQL syntax and create output �les from
SQLIN that can be processed by the COBOL compiler. This RUN command also stores a
module in the DBEnvironment named and creates a �le containing an installable version of
the module.

:RUN PSQLCOB.PUB.SYS;INFO= "DBEnvironmentName [(

8>>>><
>>>>:

MODULE(ModuleName)

OWNER (OwnerName)8<
:

DROP

�
PRESERVE

REVOKE

�

NODROP

9=
;

9>>>>=
>>>>;

|...|]"

Parameters

DBEnvironmentName identi�es the DBEnvironment in which a module is to be stored.
You may use a backreference to a �le de�ned in a �le equation for
this parameter.

ModuleName assigns a name to the stored module. Module names must follow
the rules governing ALLBASE/SQL basic names as described in
the ALLBASE/SQL Reference Manual . If a module name is not
speci�ed, the preprocessor uses the PROGRAM-ID as the module
name.

OwnerName associates the stored module with a User @Account, a
ClassName, or a GroupName . You can specify an owner
name for the module only if you have DBA authority in the
DBEnvironment where the module is to be stored. If not
speci�ed, the owner name is your log-on User @Account. Any
object names in SQLIN not quali�ed with an owner name are
quali�ed with the OwnerName speci�ed by the preprocessor.

DROP deletes any module currently stored in the DBEnvironment by the
ModuleName and OwnerName speci�ed in the INFO string.

NODROP terminates preprocessing if any module currently exists in the
DBEnvironment by the ModuleName and OwnerName speci�ed
in the INFO string. If not speci�ed, NODROP is assumed.

PRESERVE is speci�ed when the program being preprocessed already has a
stored module and you want to preserve existing RUN authorities
for that module. If not speci�ed, PRESERVE is assumed.
PRESERVE cannot be speci�ed unless DROP is also speci�ed.

REVOKE is speci�ed when the program being preprocessed already has a
stored module and you want to revoke existing RUN authorities
for that module. REVOKE cannot be speci�ed unless DROP is
also speci�ed.

Using the ALLBASE/SQL COBOL Preprocessor 2-41

Description

Before invoking the preprocessor in this mode when the program being preprocessed already
has a stored module, ensure that the earlier version of the program is not being executed.

The preprocessor starts a DBE session in the DBEnvironment named in the RUN command
by issuing a CONNECT TO 'DBEnvironmentName' command. If the autostart ag is OFF,
the DBE session can be initiated only after a START DBE command has been processed.

If the DBEnvironment to be accessed is operating in single-user mode, preprocessing can
occur only when another DBE session for the DBEnvironment does not exist.

When the preprocessor's DBE session begins, ALLBASE/SQL processes a BEGIN
WORK command. When preprocessing is completed, the preprocessor submits a
COMMIT WORK command, and any sections created are committed to the system
catalog. If the preprocessor detects an error in the source �le, it processes a ROLLBACK
WORK command before terminating, and no sections are stored in the DBEnvironment.
Preprocessor warnings do not prevent sections from being stored.

Since all preprocessor DBE sessions initiate only one transaction, any log �le space used by
the session is not available for re-use until after the session terminates. If rollforward logging
is not in e�ect, you can issue the CHECKPOINT command in ISQL before preprocessing
to increase the amount of available log space. Refer to the ALLBASE/SQL Database
Administration Guide for additional information on log space management, such as using
the START DBE NEWLOG command to increase the size of the log and recovering log
space when rollforward logging is in e�ect.

During preprocessing, system catalog pages accessed for embedded commands are locked. In
multiuser mode, other DBE sessions accessing the same objects must wait, and the potential
for a deadlock exists. Refer to the ALLBASE/SQL Database Administration Guide for
information on operations that lock system catalog pages.

For improved runtime performance, use ISQL to submit the UPDATE STATISTICS
command before preprocessing for each table accessed in a data manipulation command
when an index on that table has been added or dropped and when data in the table is often
changed.

Authorization

To preprocess a program for the �rst time in this mode, you need CONNECT or DBA
authority in the DBEnvironment the program accesses. After a stored module exists, you need
module OWNER or DBA authority in the DBEnvironment.

2-42 Using the ALLBASE/SQL COBOL Preprocessor

Example

:FILE SQLIN=COBEX2

:RUN PSQLCOB.PUB.SYS;INFO=&

"PartsDBE (MODULE(COBEX2) OWNER(OwnerP@SomeAcct) REVOKE DROP)"

WED, OCT 25, 1991, 1:38 PM

HP36216-E1.02 COBOL Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING.

END OF PROGRAM

:EDITOR

HP32501A.07.20 EDIT/3000 FRI, OCT 27, 1991, 10:17 AM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

.

.

.

SQLIN = COBEX2.SOMEGRP.SOMEACCT

DBEnvironment = partsdbe

Module Name = COBEX2

SELECT PARTNUMBER, PARTNAME, SALESPRICE INTO :PARTNUMBER, :PARTNAME,

:SALESPRICE :SALESPRICEIND FROM PURCHDB.PARTS WHERE PARTNUMBER =
:PARTNUMBER ;

****** ALLBASE/SQL warnings (DBWARN 10602)

****** in SQL statement ending in line 133

*** User SomeUser@SomeAcct does not have SELECT authority on PURCHDB.PARTS.

(DBERR 2301)

1 Sections stored in DBEnvironment.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING

/

Using the ALLBASE/SQL COBOL Preprocessor 2-43

Using the Preprocessor UDC's

Two UDC's for invoking the COBOL preprocessor are provided with ALLBASE/SQL in the
HPSQLUDC.PUB.SYS �le:

PCOB, illustrated in Figure 2-12, invokes the preprocessor in full preprocessing mode. You
specify the source �le name, a DBEnvironment name, and a name for SQLMSG (if you do
not want preprocessor messages to go to $STDLIST).

:PCOB SourceFileName,DBEnvironment

The PCOB UDC uses the following preprocessor INFO string parameters:

ModuleName is the name of the source �le.

OwnerName is the log-on User@Account.

PRESERVE and DROP are in e�ect.

PPCOB, illustrated in Figure 2-13, invokes the preprocessor in full preprocessing mode,
then invokes the COBOL compiler if preprocessing is successful and the linker if compilation
is successful.

To use this UDC, you specify the source �le name, a DBEnvironment name, and an
executable �le name. You can specify a name for SQLMSG if you do not want preprocessor
messages to go to $STDLIST:

:PPCOB SourceFileName,DBEnvironment,ExecutableFileName

This UDC uses the following preprocessor INFO string parameters:

ModuleName is the source �le name.

OwnerName is the log-on User@Account.

PRESERVE and DROP are in e�ect.

If you make your own version of the UDC's, do not modify the record attributes for any of the
preprocessor output �les. Only modify the �le limit (disc=FileLimit) if required.

Note Because the UDC's purge the preprocessor message �le, if messages are
sent to $STDLIST an error message appears when you use the UDC's, but
preprocessing continues.

2-44 Using the ALLBASE/SQL COBOL Preprocessor

Using the Preprocessor UDC's

PCOB srcfile,dbefile,msgfile=$stdlist

continue

setvar _savefence hpmsgfence

setvar hpmsgfence 2

continue

purge !msgfile

purge sqlout

purge sqlmod

purge sqlvar

purge sqlconst

setvar hpmsgfence _savefence

deletevar _savefence

file sqlin = !srcfile

file sqlmsg = !msgfile; rec=-80,16,f,ascii

file sqlout; disc=10000,32; rec=-80,16,f,ascii

file sqlmod; disc=1023,10,1; rec=250,,f,binary

file sqlvar; disc=2048,32; rec=-80,16,f,ascii

file sqlconst; disc=2048,32; rec=-80,16,f,ascii
continue

run psqlcob.pub.sys;info="!dbefile (drop)"

reset sqlin

reset sqlmsg

reset sqlout

reset sqlmod

reset sqlvar

reset sqlconst

Figure 2-12. UDC for Preprocessing SQLIN

Using the ALLBASE/SQL COBOL Preprocessor 2-45

Using the Preprocessor UDC's

PPCOB srcfile,dbefile,pgmfile,msgfile=$stdlist

continue

setvar _savefence hpmsgfence

setvar hpmsgfence 2

continue

purge !msgfile

purge sqlout

purge sqlmod

purge sqlvar

purge sqlconst

setvar hpmsgfence _savefence

deletevar _savefence

file sqlin = !srcfile

file sqlmsg = !msgfile; rec=-80,16,f,ascii

file sqlout; disc=10000,32; rec=-80,16,f,ascii

file sqlmod; disc=1023,10,1; rec=250,,f,binary

file sqlvar; disc=2048,32; rec=-80,16,f,ascii

file sqlconst; disc=2048,32; rec=-80,16,f,ascii
continue

run psqlcob.pub.sys;info="!dbefile (drop)"

if jcw <= warn then

continue

cob85xlk sqlout,!pgmfile,$null

endif

reset sqlin

reset sqlmsg

reset sqlout

reset sqlmod

reset sqlvar

reset sqlconst

Figure 2-13. UDC for Preprocessing, Compiling, and Preparing SQLIN

The example in Figure 2-14 illustrates the use of PPCOB on an SQLIN that could be
successfully preprocessed, but failed to compile because a COBOL error exists in the �le. In
addition to generating an error message for the COBOL error, the COBOL compiler generates
several warning messages. The warning messages are normal and will not cause runtime
problems; they are due to the way the COBOL preprocessor declares some of the variables in
SQLVAR.

2-46 Using the ALLBASE/SQL COBOL Preprocessor

Using the Preprocessor UDC's

:PPCOB COBEX2,PARTSDBE,COBEX2P

WED, OCT 25, 1991, 1:38 PM

HP36216-E1.02 COBOL Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

SQLIN = COBEX2.SOMEGRP.SOMEACCT

DBEnvironment = partsdbe

Module Name = COBEX2

1 Sections stored in DBEnvironment.

0 ERRORS 0 WARNINGS

END OF PREPROCESSING.

END OF PROGRAM

PAGE 0001 COBOL II/XL HP31500A.03.00 [85] Copyright Hewlett-Pa . . . 1987

LINE # SEQ # COL ERROR SEV TEXT

00048 08 051 W REDEFINING ITEM SQLREC1 IS SMALLER THAN

REDEFINED ITEM.

00053 08 051 W REDEFINING ITEM SQLREC2 IS SMALLER THAN

REDEFINED ITEM.

00055 08 051 W REDEFINING ITEM SQLREC3 IS SMALLER THAN

REDFINED ITEM.

0 ERROR(s), 0 QUESTIONABLE, 3 WARNING(s)

DATA AREA IS 580 BYTES.

CPU TIME = 0.00:02. WALL TIME = 0:00:08.

END OF PROGRAM

END OF COMPILE

HP Link Editor/XL (HP30315A.04.04) Copyright Hewlett-Packard Co 1986

LinkEd> link ;to=cobex2p

END OF LINK

Figure 2-14. Sample UDC Invocation

Using the ALLBASE/SQL COBOL Preprocessor 2-47

Using the Preprocessor UDC's

The line number referenced in the compiler output messages is the COBOL statement number
in the compiler output listing . Because PPCOB sends the compiler output listing to $null, you
must reinvoke the compiler, sending the compiler listing to an output �le, to identify the line
in error:

:BUILD COBLIST;DISC=10000,32;REC=-80,16,F,ASCII

:COB85XL SQLOUT,$OLDPASS,COBLIST

The COBOL syntax error agged in the example in Figure 2-14 appears as follows in
COBLIST:

00261 DISPAY "SELECT PartNumber, PartName and SalesPrice".

If you use TDP's COBOL mode to create SQLIN, the actual line number containing any
COBOL error in SQLOUT appears in the SEQ column of the COBOL compiler message.
Therefore you can use this approach to eliminate recompiling in order to identify the location
of COBOL errors. In this case, the error is at line 15.7 in SQLOUT.

LINE SEQ COL ERROR SEV TEXT

.

.

.

00261 015700 19 410 S SYNTAX ERROR. FOUND: SELECT PartNumber,

PartName and SalesPrice; EXPECTING ONE OF

THE FOLLOWING: . SECTION

.

.

.

2-48 Using the ALLBASE/SQL COBOL Preprocessor

Running the Preprocessor in Job Mode

You can preprocess COBOL ALLBASE/SQL programs in job mode. Figure 2-15 illustrates a
job �le that uses the PPCOB UDC to preprocess several sample programs.

!JOB JIM,MGR.HPDB,COBOL;OUTCLASS=,1
:ppcob cobp01,PartsDBE,cobp01p

:ppcob cobp01a,PartsDBE,cobp01ap

:ppcob cobp02,PartsDBE,cobp02p

.

.

:ppcob cobp50,PartsDBE,cobp50p

!TELL JIM,MGR.HPDB; COBOL Preprocessing is complete!

!EOJ''

Figure 2-15. Sample Preprocessing Job file

Preprocessing Errors

Several types of errors can occur while you are using the COBOL preprocessor:

Unexpected preprocessor or DBEnvironment termination

Preprocessor invocation errors

SQLIN errors

DBEnvironment errors

Preprocessor or DBEnvironment Termination

Whenever the COBOL preprocessor stops running unexpectedly while you are using it in full
preprocessing mode, sections stored during the preprocessor's DBE session are automatically
dropped when the DBEnvironment is next started up. Unexpected preprocessor session
termination occurs, for example, when a DBA processes a STOP DBE command during a
preprocessor DBE session.

Preprocessor Invocation Errors

If a �le named SQLIN cannot be found, preprocessing terminates with the following message:

Input source file not found. (DBERR 10921)

In addition, the invocation line may name a DBEnvironment that does not exist or contain
erroneous syntax:

Cannot connect to DBEnvironment. (DBERR 10953)

DBECON Error - Privileged file violation. (DBERR 3067)

Error in preprocessor command line. (DBERR 10908)

Expected right parenthesis after MODULE/OWNER name. (DBERR 10919)

Using the ALLBASE/SQL COBOL Preprocessor 2-49

SQLIN Errors

When the COBOL preprocessor encounters errors when parsing SQLIN, messages are placed
in SQLMSG. Refer to the discussion earlier in this chapter under SQLMSG for additional
information on this category of errors.

DBEnvironment Errors

Some errors can be caused because:

A DBEnvironment is not started yet.

Resources are insu�cient.

A deadlock has occurred.

Refer to the ALLBASE/SQL Database Administration Guide for information on handling
DBEnvironment errors.

2-50 Using the ALLBASE/SQL COBOL Preprocessor

3

Embedding SQL Commands

In every ALLBASE/SQL COBOL program, you embed SQL commands in the DATA
DIVISION and the PROCEDURE DIVISION in order to:

� 1 � Declare the SQL Communications Area (SQLCA)

� 2 � Declare host variables

� 3 � Start a DBE session by connecting to the DBEnvironment

� 4 �,� 5 � De�ne transactions

� 6 � Terminate the DBE session

� 7 � Implicitly check the status of SQL command execution

� 8 � De�ne or manipulate data in the DBEnvironment

� 9 � Explicitly check the status of SQL command execution

� 10 � Obtain error and warning messages from the ALLBASE/SQL
message catalog

The program listing shown in Figure 3-1 illustrates where in a program you can embed SQL
commands to accomplish the activities listed above.

This chapter is a high-level road map to the logical and physical aspects of embedding SQL
commands in a program. It addresses the reasons for embedding commands to perform the
above activities. It also gives general rules for how and where to embed SQL commands for
these activities. First, however, it describes the general rules that apply when you embed any
SQL command.

Embedding SQL Commands 3-1

* *

* Program COBEX2: *

* This program illustrates the use of SQL's SELECT command to *

* retrieve one row at a time. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX2.

AUTHOR. HP TRAINING

INSTALLATION. HP.

DATE-WRITTEN. 17 JULY 1987.

DATE-COMPILED. 17 JULY 1987.

REMARKS. SQL'S SELECT WITH WHENEVER COMMAND.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

SPECIAL-NAMES. CONSOLE IS TERMINAL-INPUT.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(34).

$PAGE

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC. � 1 �

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC. � 2 �
01 PARTNUMBER PIC X(16).

01 PARTNAME PIC X(30).

01 SALESPRICE PIC S9(8)V99 COMP-3.

01 SALESPRICEIND SQLIND.

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

Figure 3-1. Sample Program COBEX2

3-2 Embedding SQL Commands

77 DONE-FLAG PIC X(01) VALUE 'N'.

88 NOT-DONE VALUE 'N'.

88 DONE VALUE 'Y'.

77 ABORT-FLAG PIC X(01) VALUE 'N'.

88 NOT-STOP VALUE 'N'.

88 ABORT VALUE 'Y'.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(01) VALUE SPACE.

05 FILLER PIC X(15) VALUE SPACES.

01 DOLLARS PIC $$$,$$$,$$$.99.

$PAGE

PROCEDURE DIVISION.

A100-MAIN.

DISPLAY "Program to SELECT specified rows from "

"the Parts Table - COBEX2".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Connect to PartsDBE".

DISPLAY " Begin Work".

DISPLAY " SELECT specified Part Number from the "

"Parts Table until user enters '/' ".

DISPLAY " Commit Work".

DISPLAY " Disconnect from PartsDBE".

DISPLAY " ".

OPEN OUTPUT CRT.

PERFORM A200-CONNECT-DBENVIRONMENT THRU A200-EXIT.

PERFORM B100-SELECT-DATA THRU B100-EXIT

UNTIL DONE.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A100-EXIT.

EXIT.

Figure 3-1. Sample Program COBEX2 (page 2 of 6)

Embedding SQL Commands 3-3

A200-CONNECT-DBENVIRONMENT.

EXEC SQL

WHENEVER SQLERROR

GO TO S300-SERIOUS-ERROR

END-EXEC.

DISPLAY "Connect to PartsDBE".

EXEC SQL CONNECT TO 'PartsDBE' END-EXEC. � 3 �

A200-EXIT.

EXIT.

A300-BEGIN-TRANSACTION.

DISPLAY "Begin Work".

EXEC SQL

BEGIN WORK � 4 �
END-EXEC.

A300-EXIT.

EXIT.

A400-END-TRANSACTION.

DISPLAY "Commit Work".

EXEC SQL

COMMIT WORK � 5 �
END-EXEC.

A400-EXIT.

EXIT.

A500-TERMINATE-PROGRAM.

EXEC SQL

RELEASE � 6 �
END-EXEC.

STOP RUN.

A500-EXIT.

EXIT.

$PAGE

Figure 3-1. Sample Program COBEX2 (page 3 of 6)

3-4 Embedding SQL Commands

B100-SELECT-DATA.

MOVE SPACES TO RESPONSE.

MOVE "Enter Part Number or '/' to STOP> "

TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE.

IF RESPONSE-PREFIX = "/"

MOVE "Y" TO DONE-FLAG

GO TO B100-EXIT

ELSE

MOVE RESPONSE TO PARTNUMBER.

EXEC SQL

WHENEVER SQLERROR � 7 �
GO TO S400-SQL-ERROR

END-EXEC.

EXEC SQL

WHENEVER SQLWARNING

GO TO S500-SQL-WARNING

END-EXEC.

EXEC SQL

WHENEVER NOT FOUND

GO TO S600-NOT-FOUND

END-EXEC.

DISPLAY "SELECT PartNumber, PartName and SalesPrice".

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

EXEC SQL

SELECT PARTNUMBER, PARTNAME, SALESPRICE � 8 �
INTO :PARTNUMBER,

:PARTNAME,

:SALESPRICE :SALESPRICEIND

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

PERFORM B200-DISPLAY-ROW THRU B200-EXIT.

B100-EXIT.
EXIT.

Figure 3-1. Sample Program COBEX2 (page 4 of 6)

Embedding SQL Commands 3-5

B200-DISPLAY-ROW.

DISPLAY " ".

DISPLAY " Part Number: " PARTNUMBER.

DISPLAY " Part Name: " PARTNAME.

IF SALESPRICEIND < 0

DISPLAY " Sales Price is NULL"

ELSE

MOVE SALESPRICE TO DOLLARS

DISPLAY " Sales Price: " DOLLARS.

B200-EXIT.

EXIT.

$PAGE

S100-STATUS-CHECK.

IF SQLCODE < DEADLOCK � 9 �
MOVE 'Y' TO ABORT-FLAG.

PERFORM S200-SQL-EXPLAIN THRU S200-EXIT

UNTIL SQLCODE = 0.

S100-EXIT.

EXIT.

S200-SQL-EXPLAIN.

EXEC SQL

SQLEXPLAIN :SQLMESSAGE � 10 �
END-EXEC.

DISPLAY SQLMESSAGE.

S200-EXIT.

EXIT.

S300-SERIOUS-ERROR.

PERFORM S100-STATUS-CHECK THRU S100-EXIT.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

S300-EXIT.

EXIT.

Figure 3-1. Sample Program COBEX2 (page 5 of 6)

3-6 Embedding SQL Commands

S400-SQL-ERROR.

PERFORM S100-STATUS-CHECK THRU S100-EXIT.

IF ABORT-FLAG = 'Y'

PERFORM A500-TERMINATE-PROGRAM

ELSE

PERFORM A400-END-TRANSACTION THRU A400-EXIT

GO TO B100-EXIT.

S400-EXIT.

EXIT.

S500-SQL-WARNING.

DISPLAY "SQL WARNING has occurred. The following row "

"of data may not be valid:".

PERFORM B200-DISPLAY-ROW THRU B200-EXIT.

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

GO TO B100-EXIT.

S500-EXIT.

EXIT.

S600-NOT-FOUND.

DISPLAY " ".

DISPLAY "Part Number not found!".

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

GO TO B100-EXIT.

S600-EXIT.

EXIT.

Figure 3-1. Sample Program COBEX2 (page 6 of 6)

Embedding SQL Commands 3-7

General Rules for Embedding SQL

Embedded SQL commands must appear in certain locations within the COBOL program.
Each embedded SQL command must be accompanied by a pre�x and a su�x and followed by
punctuation appropriate to the location of the command in the program. Comments may be
placed within an embedded command, and non-numeric literals in embedded commands may
be continued from one line to another.

Location of SQL Commands

Put SQL commands, including their pre�x and su�x, within columns 8 through 72 of either
the DATA DIVISION or the PROCEDURE DIVISION:

BEGIN DECLARE SECTION and END DECLARE SECTION can appear in the FILE
SECTION, the WORKING-STORAGE SECTION, or the LINKAGE SECTION of the
DATA DIVISION.

INCLUDE SQLCA must appear in the WORKING-STORAGE SECTION of the DATA
DIVISION.

All other SQL commands must appear in the PROCEDURE DIVISION.

Prefix and Suffix

Precede each SQL command with the pre�x EXEC SQL and terminate each SQL command
with the su�x END-EXEC. The complete pre�x or su�x must be speci�ed on one line. For
example, the following are legal:

EXEC SQL SELECT PARTNAME INTO :PARTNAME

FROM PURCHDB.PARTS WHERE PARTNUMBER = :PARTNUMBER END-EXEC.

EXEC SQL SELECT PARTNAME

INTO :PARTNAME

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

However, the following is not legal:

EXEC

SQL SELECT PARTNAME INTO :PARTNAME

FROM PURCHDB.PARTS WHERE PARTNUMBER = :PARTNUMBER END-EXEC.

3-8 Embedding SQL Commands

Punctuation

The punctuation you use to terminate an embedded SQL command depends on its location in
the program. In the DATA DIVISION, always terminate the SQL command with a period :

EXEC SQL INCLUDE SQLCA END-EXEC.

In the PROCEDURE DIVISION, terminate the SQL command with a period if it constitutes
an entire COBOL sentence:

EXEC SQL CONNECT TO 'PARTSDBE.SOMEGRP.SOMEACCT' END-EXEC.

Also use a period to terminate the SQL command if it is the �nal statement in a COBOL
sentence; if, however, other statements appear after the SQL command in a COBOL sentence,
use COBOL rules to determine appropriate punctuation:

IF RESPONSE-PREFIX = "1"

EXEC SQL SELECT * FROM PURCHDB.PARTS

INTO :MYARRAY

FROM PURCHDB.PARTS END-EXEC

PERFORM DISPLAY-SELECT-ALL

ELSE

IF RESPONSE-PREFIX = "2"

EXEC SQL DELETE FROM PURCHDB.PARTS END-EXEC

PERFORM DISPLAY-DELETE-ALL

ELSE

EXEC SQL RELEASE END-EXEC.

COBOL Comments

You may insert comment lines within or between embedded SQL commands. Denote comment
lines by placing an asterisk (*) in column 7 and entering the comment in columns 8 through
72 :

EXEC SQL SELECT PARTNUMBER, PARTNAME
*put the data into the following host variables

INTO :PARTNUMBER, :PARTNAME

*find the data in the following table

FROM PURCHDB.PARTS

*retrieve only data that satisfies this search condition

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

Embedding SQL Commands 3-9

ALLBASE/SQL Comments

ALLBASE/SQL comments can be inserted in any line of an SQL statement, except the last
line, by pre�xing the comment character with at least one space followed by two hyphens
followed by one space:

EXEC SQL SELECT * FROM PurchDB.Parts -- This code selects Parts Table values.

WHERE SalesPrice > 500.

END-EXEC.

The comment terminates at the end of the current line. (The decimal point in the 500
improves performance when being compared to SalesPrice, which also has a decimal; no data
type conversion is necessary.)

Continuation Lines

The COBOL preprocessor allows you to continue a non-numeric literal from one line to
the next. Continue the literal through column 72, enter a hyphen (-) in column 7 of the
continuation line, and enter a quotation mark (!) in column 12 immediately before the
continuation of the literal:

IF PREDEFINED-COMMENT = '5'

EXEC SQL INSERT INTO PURCHDB.VENDORS

(VENDORREMARKS)

VALUES ("This vendor is bad news. Definitely place no

- "no orders.")

END-EXEC

ELSE

EXEC SQL INSERT INTO PURCHDB.VENDORS

(VENDORREMARKS)

VALUES (:VENDORREMARKS)

END-EXEC.

3-10 Embedding SQL Commands

Declaring the SQLCA

The SQLCA is an ALLBASE/SQL data structure that contains current information about a
program's DBE session.

Every ALLBASE/SQL COBOL program must contain an SQLCA declaration. When
a program or subprogram starts a DBE session, the SQLCA declaration must be in its
WORKING-STORAGE SECTION. If a subprogram called by such a program contains SQL
commands to be executed in the same DBE session, the SQLCA declaration must also appear
in the LINKAGE SECTION of the subprogram.

As shown in Figure 3-1 at � 1 �, you can declare the SQLCA by using the INCLUDE
command:

EXEC SQL INCLUDE SQLCA END-EXEC.

When the preprocessor encounters this command, it generates a complete COBOL declaration
for this area. Six of the �elds in the SQLCA record are available for programmers to use:

SQLCODE

SQLERRD(3)

SQLWARN1

SQLWARN2

SQLWARN0

SQLWARN6

Some values ALLBASE/SQL places into these �elds indicate warning and error conditions
that resulted when the immediately preceding SQL command was executed. Other values
simply provide information attendant to normal command execution but are programmatically
useful. For example, when you submit an UPDATE command, the number of rows updated
is placed in SQLERRD(3). If this value is greater than one, the program may want to advise
the user of that condition and process a ROLLBACK WORK or COMMIT WORK command
based on the user's response.

Examples discussed later in this chapter under \Implicit Status Checking" and \Explicit
Status Checking" illustrate how the program in Figure 3-1 uses some of the SQLCA �elds to
determine the success or failure of SQL command execution.

Declaring Host Variables

Variables used in SQL commands in the PROCEDURE DIVISION are known as host
variables. All host variables used in a program must be declared in the FILE SECTION, the
WORKING-STORAGE SECTION, or the LINKAGE SECTION of the DATA DIVISION.
The declarations must appear between the two following SQL commands:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

. Host variables are declared here

. in COBOL data declarations.

EXEC SQL END DECLARE SECTION END-EXEC.

For detailed information regarding host variables, see Chapter 4.

Embedding SQL Commands 3-11

Starting a DBE Session

As at � 3 � in Figure 3-1, in most application programs you embed the CONNECT command
to start a DBE session in a program:

EXEC SQL CONNECT TO 'DBEnvironmentName' END-EXEC.

If autostart mode is ON at run time, this command starts a DBE session. If autostart mode
is OFF, a DBA must issue a START DBE command before the program can be executed.
Regardless of the autostart mode in e�ect, the program user must have CONNECT and RUN
authority for this command to execute.

You can embed the START DBE command in a program to start a DBE session if the owner
of the program has DBA authority. However, only one copy of the program can be executed
at a time, by a user with DBA authority. For single-user DBEnvironments, this constraint
poses no problem. In a multiuser environment, however, once a DBEnvironment is started,
only the CONNECT command can be used to initiate additional DBE sessions.

Place the DBE session initiation command in the PROCEDURE DIVISION of your program
such that it executes at run time before all other SQL commands except the WHENEVER
command.

Defining Transactions

You de�ne transactions in the PROCEDURE DIVISION to control what changes are
committed to a DBEnvironment and when they are committed.

A transaction consists of all the SQL commands that are executed between a BEGIN WORK
command and either a COMMIT WORK command or a ROLLBACK WORK command.
When a COMMIT WORK command is successfully executed, all operations performed
within the transaction are permanent in the DBEnvironment. When a ROLLBACK WORK
command is executed, none of the changes remain in the DBEnvironment.

The number and duration of transactions in an application program depends on such
factors a concurrency and data consistency. For detailed information regarding transaction
management, see the ALLBASE/SQL Reference Manual .

The commands at � 4 � and � 5 � in Figure 3-1 start and end a transaction that consists of a
single execution of the SELECT command in paragraph B100-SELECT-DATA.

The BEGIN WORK command in paragraph A300-BEGIN-TRANSACTION is optional, but
recommended. If you omit a BEGIN WORK command, ALLBASE/SQL automatically issues
a BEGIN WORK on your behalf before executing the �rst SQL command that requires that a
transaction be in progress.

The COMMIT WORK command in paragraph A400-END-TRANSACTION terminates the
transaction after each execution of the SELECT command. Because the program does no
DBEnvironment updates, this command is used to terminate the transaction even if an error
is encountered. In programs that update data in a DBEnvironment, a ROLLBACK WORK
command could be used to undo the e�ects of any database changes that occurred during a
transaction before the error occurred.

3-12 Embedding SQL Commands

Implicit Status Checking

In the PROCEDURE DIVISION, you can use the WHENEVER command, as at � 7 � in
Figure 3-1, to have ALLBASE/SQL examine SQLCA values and cause a speci�c action to
be taken. The WHENEVER command is a preprocessor directive that speci�es the action
to be taken if an error or warning condition occurs when each subsequent SQL command is
executed:

EXEC SQL WHENEVER SQLERROR GO TO S400-SQL-ERROR END-EXEC.

| |

| |

| |

| the action

|

the condition

Each WHENEVER command a�ects all ALLBASE/SQL commands that follow it in the
source listing until another WHENEVER command is encountered.

If execution of the SELECT command at � 8 � causes an error condition, control passes to
paragraph S400-SQL-ERROR because the WHENEVER command shown above precedes the
COMMIT WORK RELEASE and SELECT commands in the source listing.

The WHENEVER SQLWARNING and WHENEVER NOT FOUND commands at � 7 �
specify where to pass control when a warning condition occurs or when no row satis�es the
WHERE clause in the SELECT command.

Although you can use a WHENEVER command to have ALLBASE/SQL examine the values
in certain �elds of the SQLCA, you can also examine the values yourself, as discussed under
\Explicit Status Checking" later in this chapter.

Terminating a DBE Session

As illustrated at � 6 � in Figure 3-1, you can terminate a DBE session with the RELEASE
option of the COMMIT WORK command. The program in Figure 3-1 terminates its DBE
session whenever:

The user enters a slash (/) in response to the prompt in paragraph B100-SELECT-DATA.

The program encounters an error serious enough to set ABORT-FLAG to Y in paragraph
S100-STATUS-CHECK .

The program encounters an error when processing the CONNECT, BEGIN WORK, or
COMMIT WORK commands.

Embedding SQL Commands 3-13

Defining and Manipulating Data

You embed data de�nition and data manipulation commands in the PROCEDURE
DIVISION.

Data Definition

You can embed the following SQL commands to create objects or change existing objects:

ALTER DBEFILE CREATE INDEX DROP GROUP

ALTER TABLE CREATE TABLE DROP INDEX

CREATE DBEFILE CREATE VIEW DROP MODULE

CREATE DBEFILESET DROP DBFILE DROP TABLE

CREATE GROUP DROP DBFILESET DROP VIEW

Data de�nition commands are useful for such activities as creating temporary tables or views
to simplify data manipulation or creating an index that improves the program's performance:

EXEC SQL CREATE INDEX PARTNAMEINDEX

ON PURCHDB.PARTS (PARTNAME);

END-EXEC.

The index created with this command expedites data access operations based on partial key
values:

EXEC SQL SELECT PARTNAME

INTO :PARTNAME

FROM PURCHDB.PARTS

WHERE PARTNAME LIKE :PARTIAL-KEY

END-EXEC.

Data Manipulation

SQL has four basic data manipulation commands:

SELECT: retrieves data.

INSERT: adds rows.

DELETE: deletes rows.

UPDATE: changes column values.

These four commands can be used for various types of data manipulation operations:

Simple data manipulation: operations that retrieve a single row, insert a single row, or
delete or update a limited number of rows.

Sequential table processing: operations that use a cursor to operate on a row at a time
within a set of rows. A cursor is a pointer the program advances through the set of rows. ,4

Bulk operations: operations that manipulate multiple rows with a single execution of a data
manipulation command.

Dynamic operations: operations speci�ed by the user at run time.

3-14 Embedding SQL Commands

In all non-dynamic data manipulation operations, you use host variables to pass data back
and forth between your program and the DBEnvironment. Host variables can be used in the
data manipulation commands wherever the syntax in the ALLBASE/SQL Reference Manual
allows them.

The SELECT command shown at � 8 � in Figure 3-1 retrieves the row from
PURCHDB.PARTS that contains a part number matching the value in the host variable
named in the WHERE clause (PARTNUMBER). The three values in the row retrieved are
stored in three host variables named in the INTO clause (PARTNUMBER, PARTNAME, and
SALESPRICE). An indicator variable (SALESPRICEIND) is also used in the INTO clause, to
ag the existence of a null value in column SALESPRICE:

EXEC SQL SELECT PARTNUMBER, PARTNAME, SALESPRICE

INTO :PARTNUMBER,

:PARTNAME

:SALESPRICE :SALESPRICEIND

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

You can also use host variables in non-SQL statements; in this case, omit the colon:

MOVE RESPONSE TO SALESPRICE

EXEC SQL SELECT COUNT(PARTNUMBER)

INTO :PART-COUNT

FROM PURCHDB.PARTS

WHERE SALESPRICE > :SALESPRICE

END-EXEC.

All host variables used in the PROCEDURE DIVISION must be declared in the DATA
DIVISION, as discussed earlier in this chapter under \Declaring Host Variables".

Explicit Status Checking

In explicit status checking, shown at � 9 � in Figure 3-1, you explicitly examine an SQLCA
�eld for a particular value, then perform an operation if the value exists. In this example,
the SQLCA �eld named SQLCODE is examined to determine whether it contains a value
less than -14024. SQLCODE values with greater negative values than -14024 indicate errors
serious enough to warrant terminating the program. If SQLCODE is less than -14024
in this case, the ABORT-FLAG is set and the program is terminated after paragraph
S200-SQL-EXPLAIN is executed.

Embedding SQL Commands 3-15

Obtaining ALLBASE/SQL Messages

As shown at � 10 � in Figure 3-1, you use the SQLEXPLAIN command to obtain a message
from the ALLBASE/SQL message catalog that describes the condition related to certain
SQLCA values:

EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.

ALLBASE/SQL puts a message from the ALLBASE/SQL message catalog into the host
variable named SQLMESSAGE, and the program displays the message.

Sometimes more than one message may be needed to completely describe how an SQL
command executed. To retrieve all messages, the program in Figure 3-1 executes paragraph
S200-SQL-EXPLAIN until SQLCODE is equal to zero. ALLBASE/SQL sets SQLCODE to
zero when no more messages are available.

You can use SQLEXPLAIN in conjunction with either implicit or explicit status checking.
In the program in Figure 3-1, the paragraph containing SQLEXPLAIN is executed in
conjunction with the WHENEVER SQLERROR command.

3-16 Embedding SQL Commands

4

Host Variables

Host variables are variables used in SQL commands in the PROCEDURE DIVISION.
They are used to pass the following information between an application program and
ALLBASE/SQL:

Data values.

Null value indicators.

String truncation indicators.

Bulk processing rows to process.

Dynamic commands.

Savepoint numbers.

Messages from the ALLBASE/SQL message catalog.

DBEnvironment names.

All host variables used in the PROCEDURE DIVISION of a COBOL program or subprogram
are declared in the DATA DIVISION. The data description entries must contain data clauses
that are compatible with ALLBASE/SQL data types. The data description entries must also
satisfy certain preprocessor criteria.

This chapter identi�es where in the PROCEDURE DIVISION you can use host variables and
then discusses how to write type descriptions that complement the way host variables are
used.

Using Host Variables

Host variables are used in SQL commands as follows:

To pass data values with the following data manipulation commands:

SELECT

INSERT

DELETE

UPDATE

DECLARE

FETCH

REFETCH
UPDATE WHERE CURRENT

Host Variables 4-1

To hold null value indicators in these data manipulation commands:

SELECT

INSERT

FETCH

REFETCH

UPDATE

UPDATE WHERE CURRENT

In queries to indicate string truncation and the string length before truncation

To identify the starting row and the number of rows to process in the INTO clause of the
following commands:

BULK SELECT

BULK INSERT

To pass dynamic commands at run time with the following commands:

PREPARE

EXECUTE IMMEDIATE

To hold savepoint numbers, which are used in the following commands:

SAVEPOINT

ROLLBACK WORK TO :savepoint

To hold messages from the ALLBASE/SQL message catalog, obtained by using the
SQLEXPLAIN command.

To hold a DBEnvironment name in the CONNECT command.

Later in this section are examples illustrating where, in the commands itemized above, the
SQL syntax supports host variables.

Host Variable Names

ALLBASE/SQL host variable names in COBOL programs must conform to the following
rules:

Contain from 1 to 30 bytes.

Conform to the rules for ALLBASE/SQL basic names.

Contain characters chosen from the following set: the 26 letters of the ASCII alphabet, the
10 decimal digits, a hyphen (-), or valid characters for any native language you are using.

Begin with an alphabetic character, although the pre�x SQL is not recommended.

Not begin or end with a hyphen.

Not be the same as any ALLBASE/SQL or COBOL reserved word.

In all SQL commands containing host variables, the host variable name must be preceded by a
colon:

:HostVariableName

4-2 Host Variables

The COBOL preprocessor converts hyphens in host variable names to underscores (-) because
ALLBASE/SQL names cannot contain hyphens. Thus, when you use a host variable name in
conjunction with a minus sign, be sure to leave one intervening space between them:

:NEWSALESPRICE - :OLDSALESPRICE

^ ^

|___|_ Leave at least one blank here!

Note Even though hyphens are allowed in host variable names, they are not allowed
in column names or names of other ALLBASE/SQL objects.

Input and Output Host Variables

Host variables can be used for input or for output:

Input host variables provide data for ALLBASE/SQL.

Output host variables contain data from ALLBASE/SQL.

Be sure to initialize an input host variable before using it. When using cursor operations
with the SELECT command, initialize the input host variables in the select list and WHERE
clause before you execute the OPEN command.

In the following SELECT command, the INTO clause contains two output host variables:
PartNumber and PartName. ALLBASE/SQL puts data from the PurchDB.Parts table into
these host variables. The WHERE clause contains one input host variable, PartNumber.
ALLBASE/SQL reads data from this host variable to determine which row to retrieve.

EXEC SQL SELECT PartNumber, PartName

INTO :PartNumber,

:PartName

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber END-EXEC.

In this example, the host variable, PartNumber, is used for both input and output.

Indicator Variables

A special type of host variable called an indicator variable, is used in SELECT, FETCH,
UPDATE, UPDATE WHERE CURRENT, and INSERT commands to identify null values
and in SELECT and FETCH commands to identify truncated output strings.

An indicator variable must appear in an SQL command immediately after the host variable
whose data it describes. The host variable and its associated indicator variable are not
separated by a comma. In SELECT and FETCH commands, an indicator variable is
an output host variable containing one of the following indicators, which describe data
ALLBASE/SQL returns:

Host Variables 4-3

0 value is not null

-1 value is null

>0 string value is truncated; number indicates data length
before truncation.

In the INSERT, UPDATE, and UPDATE WHERE CURRENT commands, an indicator
variable is an input host variable. The value you put in the indicator variable tells
ALLBASE/SQL when to insert a null value in a column:

>=0 value is not null

<0 value is null

The following SELECT command uses an indicator variable, PartNameInd, for data from the
PartName column. When this column contains a null value, ALLBASE/SQL puts a -1 into
PartNameInd:

EXEC SQL SELECT PartNumber, PartName

INTO :PartNumber,

:PartName :PartNameInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber END-EXEC.

Any column not de�ned with the NOT NULL attribute may contain null values. In the
PurchDB.Parts table, ALLBASE/SQL prevents the PartNumber column from containing null
values, because it was de�ned as NOT NULL. In the other two columns, however, null values
are allowed:

CREATE PUBLIC TABLE PurchDB.Parts

(PartNumber CHAR(16) NOT NULL,

PartName CHAR(30),

SalesPrice DECIMAL(10,2));

Null values have certain properties that you need to remember when manipulating data that
may be null. For example, ALLBASE/SQL ignores columns or rows containing null values
when evaluating an aggregate function (except that COUNT (*) includes all null values).
Refer to the ALLBASE/SQL Reference Manual for a complete account of the properties of
null values.

Be sure to use an indicator variable in the SELECT and FETCH commands whenever
columns accessed may contain null values. A runtime error results if ALLBASE/SQL
retrieves a null value and the program contains no indicator variable.

An indicator variable will also detect truncated strings in the SELECT and FETCH
commands. In the SELECT command illustrated above, PartNameInd contains a value
>0 when a part name is too long for the host variable declared to hold it. The value in
PartNameInd indicates the actual length of the string before truncation.

4-4 Host Variables

Bulk Processing Variables

Bulk processing variables can be used with the BULK option of the SELECT or the INSERT
command.

When used with the BULK SELECT command, two input host variables may be named
following the array name in the INTO clause to specify how ALLBASE/SQL should store the
query result in the array:

INTO :ArrayName [,:StartIndex [,:NumberOfRows]]

The StartIndex value denotes at which array element the query result should start. The
NumberOfRows value is the maximum, total number of rows ALLBASE/SQL should put into
the array:

EXEC SQL BULK SELECT PurchasePrice * :Discount,

OrderQty,

OrderNumber

INTO :OrdersArray,

:FirstRow,

:TotalRows

FROM PurchDB.OrderItems

WHERE OrderNumber

BETWEEN :LowValue AND :HighValue

GROUP BY OrderQty, OrderNumber END-EXEC.

ALLBASE/SQL puts the entire query result, or the number of rows speci�ed in TotalRows ,
whichever is less, into the array named OrdersArray, starting at the array subscript stored in
FirstRow . If neither of these input host variables is speci�ed, ALLBASE/SQL stores as many
rows as the array can hold, starting at OrdersArray[1] . If FirstRow plus TotalRows is greater
than the size of the array, a runtime error occurs and the program aborts.

Bulk processing variables may be used with the BULK INSERT command to direct
ALLBASE/SQL to insert only certain rows from the input array:

EXEC SQL BULK INSERT INTO PurchDB.Orders

VALUES (:OrdersArray,

:FirstRow,

:TotalRows) END-EXEC.

If a starting index or total number of rows is not speci�ed, ALLBASE/SQL inserts, starting at
the beginning of the array, as many rows as there are elements in the array.

Host Variables 4-5

Declaring Host Variables

If your program uses host variables in the PROCEDURE DIVISION, you must declare the
host variables in the DATA DIVISION:

If the host variable data is used only within a given program, declare host variables in the
WORKING-STORAGE SECTION.

If the host variable data is used in a calling program, declare host variables in the program's
WORKING-STORAGE SECTION.

Host variable data used in a called program or subprogram is declared in that program's
LINKAGE SECTION.

If host variable values come from an MPE XL �le or are written to an MPE XL �le in the
program, declare these host variables in the FILE SECTION.

Creating Declaration Sections

Host variables must be declared in what is known as a declare section. A declare section
consists of the SQL command EXEC SQL BEGIN DECLARE SECTION END-EXEC., one or
more variable declarations, and the SQL command EXEC SQL END DECLARE SECTION
END-EXEC. (as shown in Figure 4-1).

More than one declare section may appear in the WORKING-STORAGE SECTION, the
LINKAGE SECTION, and the FILE SECTION. Note that variables which are not host
variables may also be declared within a declare section.

Each host variable is declared by using a COBOL data description entry. The declaration
contains the same components as any COBOL data description entry:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 ORDERNUMBER PIC S9(9) COMP.

| | |

| | |

| | data clause

| |

| data name

|

level number

EXEC SQL END DECLARE SECTION END-EXEC.

The level number can be from 01 to 49; single-level variables can have level numbers 01
or 77. The data name must be the same as the corresponding host variable name in the
PROCEDURE DIVISION. The data clause must satisfy ALLBASE/SQL data type and
COBOL preprocessor requirements.

Note, data clauses can also contain the optional constructs highlighted below:

PIC
NNNNNNNNNNNNNN
TURE

NNNNNNNN
IS X(n)

NNNNNNNNNNNNNNNNN
USAGE

NNNNNNNN
IS

NNNNNNNNNNNNNNNNNNNNNNN
DISPLAY

PIC
NNNNNNNNNNNNNN
TURE

NNNNNNNN
IS S9(4)

NNNNNNNNNNNNNNNNN
USAGE

NNNNNNNN
IS COMP

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
UTATIONAL

4-6 Host Variables

DATA DIVISION.

FILE SECTION.

.

.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

. Declarations for host variables whose values

. come from or go to an MPE XL �le appear here.

.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

.

WORKING-STORAGE SECTION.

.

.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

. Declarations for local host variables, including

. those passed from a called program or subprogram, go here.

.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

LINKAGE SECTION.

.

.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

. Declarations for host variables to be passed

. to a calling program or subprogram go here.

.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

Figure 4-1. Host Variable Declarations in the DATA DIVISION

Host Variables 4-7

Declaring Variables for Data Types

Table 4-2 summarizes how to write data description entries for host variables holding each
type of ALLBASE/SQL data. Only the data descriptions shown in Table 4-2 are supported by
the COBOL preprocessor.

CHAR Data

You can insert strings ranging from 1 to 3996 characters into a CHAR column.

When ALLBASE/SQL assigns data to a CHAR host variable from a CHAR host variable, it
adds blanks if necessary on the right of the string to �ll up the accepting variable.

VARCHAR Data

VARCHAR strings can range from 1 to 3996 characters. ALLBASE/SQL stores the actual
length of the string in a four-byte �eld preceding the string itself.

In order to describe both the length and value of a VARCHAR string, you declare VARCHAR
data as a group containing two 49-level items:

The length of the VARCHAR string is declared as PIC S9(9) COMP.

The VARCHAR string itself is declared as PIC X(n), where n is the maximum number of
characters in the string.

The VENDORREMARKS column in the PURCHDB.VENDORS table is de�ned as
VARCHAR(60). It is therefore declared as follows:

01 VENDORREMARKS.

49 REMARKSLENGTH PIC S9(9) COMP.
49 REMARKS PIC X(60).

When using a VARCHAR host variable as an output variable, use the group name:

EXEC SQL SELECT VENDORREMARKS

INTO :VENDORREMARKS

FROM PURCHDB.VENDORS

WHERE VENDORNUMBER = :VENDORNUMBER

END-EXEC.

ALLBASE/SQL places the remarks into the item named REMARKS and the number of
characters in the remarks string into the item named REMARKSLENGTH . When using the
value in REMARKS , only use the number of characters speci�ed in REMARKSLENGTH or
move spaces to REMARKS before �lling it.

When using a VARCHAR host variable as an input variable, you assign the actual length of
the VARCHAR string to the string length variable and assign the value of the string to the
string value variable:

EXEC SQL UPDATE PURCHDB.VENDORS
SET VENDORREMARKS = :VENDORREMARKS

WHERE VENDORNUMBER = :VENDORNUMBER

END-EXEC.

4-8 Host Variables

When ALLBASE/SQL copies data from REMARKS , it copies as many characters as you
have speci�ed in REMARKSLENGTH and stores the value in REMARKSLENGTH in a
four-byte �eld preceding the value in REMARKS . If the value in REMARKSLENGTH is an
odd number, ALLBASE/SQL stores the number of characters speci�ed, plus one space on the
right; in this case, the value in REMARKSLENGTH is incremented by one and stored in the
four-byte �eld preceding the REMARKS value.

SMALLINT Data

Declared as PIC S9(4) COMP, possible values range from -32768 to +32767.

INTEGER Data

Declared as PIC S9(9) COMP, possible values range from -2,147,483,648 to +2,147,483,647.

FLOAT Data

ALLBASE/SQL o�ers the option of specifying the precision of oating point data. In
COBOL, ALLBASE/SQL FLOAT data is declared as DECIMAL. The �rst part of this
discussion relates to the ALLBASE/SQL FLOAT data type. This is followed by a discussion
of declaring ALLBASE/SQL FLOAT data as DECIMAL, in COBOL.

ALLBASE/SQL FLOAT Data.

You have the choice of a 4-byte or an 8-byte oating point number. (This conforms
to ANSI SQL86 level 2 speci�cations.) The keyword REAL, and FLOAT(1) through
FLOAT(24), map to a 4-byte oat. The FLOAT(25) through FLOAT(53) and DOUBLE
PRECISION speci�cations map to an 8-byte oat.

The REAL data type could be useful when the number you are dealing with is very small, and
you do not require a great deal of precision. However, it is subject to overow and underow
errors if the value goes outside its range. It is also subject to greater rounding errors than
double precision. With the DOUBLE PRECISION (8-byte oat) data type, you can achieve
signi�cantly higher precision and have available a larger range of values.

By using the CREATE TABLE or ALTER TABLE command, you can de�ne a oating point
column by using a keyword from Table 4-2. See the ALLBASE/SQL Reference Manual for
complete syntax speci�cations.

Floating Point Data Compatibility.

Floating point data types are compatible with each other and with other ALLBASE/SQL
numeric data types (DECIMAL, INTEGER, and SMALLINT). All arithmetic operations and
comparisons and aggregate functions are supported.

Host Variables 4-9

Table 4-1. ALLBASE/SQL Floating Point Column Specifications

Possible Keywords Range of Possible Values Stored In
and

Boundary
Aligned On

REAL
or
FLOAT(n)
where
n = 1 through 24

�3.402823 E+38 through �1.175495 E�38
and

1.175495 E�38 through 3.402823 E+38
and
0

4 bytes

DOUBLE PRECISION
or
FLOAT
or
FLOAT(n)
where
n = 25 through 53

�1.79769313486231 E+308 through �2.22507385850721 E�308
and

+2.22507385850721 E�308 through +1.79769313486231 E+308
and
0

8 bytes

COBOL DECIMAL Data.

COBOL DECIMAL data for the ALLBASE/SQL FLOAT data type is de�ned in
terms of a precision and a scale:

Precision is the maximum number of digits in the data, excluding sign and decimal point.
ALLBASE/SQL DECIMAL data can have a precision as high as 15.

Scale is the number of digits to the right of the decimal point. ALLBASE/SQL DECIMAL
data can have a scale as low as zero and as high as the precision value.

When you declare a host variable that will contain a DECIMAL value, the data clause de�nes
the number of digits to the left and the right of the decimal point. The following declaration
corresponds to an ALLBASE/SQL column de�ned as DECIMAL (10,2):

PIC S9(8)V9(2) COMP-3

| |

| |

| The number of digits to the right of the decimal

| point, which is the same as the scale.

|

|

The number of digits to the left of the decimal point,

calculated by subtracting the scale from the precision.

When you use DECIMAL values in arithmetic operations and certain aggregate functions, the
precision and scale of the result are functions of the precisions and scales of the values in the
operation. Refer to the ALLBASE/SQL Reference Manual for a complete account of how to
calculate the precision and scale.

4-10 Host Variables

BINARY Data

As with other data types, use the CREATE TABLE or ALTER TABLE command to de�ne
a binary or varbinary column. Up to 3996 bytes can be stored in such a column. Each byte
contains two hexadecimal digits. For example, suppose you insert data via a host variable
into a database column de�ned as binary. The host variable contains the digits, 1234. In the
database, these four digits are stored in two bytes. Each nibble (half byte) contains one digit
in hexadecimal format.

BINARY data is stored as a �xed length of left-justi�ed bytes. It is zero padded up to
the �xed length you have speci�ed. VARBINARY data is stored as a variable length of
left-justi�ed bytes. You specify the maximum possible length. (Note that CHAR and
VARCHAR data is stored in a similar manner except that CHAR data is blank padded.)

Binary Data Compatibility. BINARY and VARBINARY data types are compatible with each
other and with CHAR and VARCHAR data types. They can be used with all comparison
operators and the aggregate functions MIN and MAX; but arithmetic operations are not
allowed.

Using the LONG Phrase with Binary Data Types. If the amount of data in a given column of a
row can exceed 3996 bytes, it must be de�ned as a LONG column. Use the CREATE TABLE
or ALTER TABLE command to specify the column as either LONG BINARY or LONG
VARBINARY.

LONG BINARY and LONG VARBINARY data is stored in the database just as BINARY
and VARBINARY data, except that its maximum possible length is practically unlimited.

When deciding on whether to use LONG BINARY versus LONG VARBINARY, and if
space is your main consideration, you would choose LONG VARBINARY. However, LONG
BINARY o�ers faster data access.

LONG BINARY and LONG VARBINARY data types are compatible with each other, but not
with other data types. Also, the concept of inputting and accessing LONG column data di�ers
from that of other data types. Refer to the ALLBASE/SQL Reference Manual for detailed
syntax and to the chapter in this document titled \De�ning and Using Long Columns" for
information about using LONG column data.

Host Variables 4-11

Table 4-2. Host Variable Data Types

SQL DATA TYPES COBOL DATA DESCRIPTION ENTRIES

CHAR(n) 01 DATA-NAME PIC X(n).

VARCHAR(n) 01 GROUP-NAME . 49 LENGTH-NAME PIC S9(9)

COMP. 49 VALUE-NAME PIC X(n).

BINARY 01 DATA-NAME PIC X(n).

VARBINARY(n) 01 GROUP-NAME . 49 LENGTH-NAME PIC S9(9)

COMP. 49 VALUE-NAME PIC X(n).

SMALLINT 01 DATA-NAME PIC S9(4) COMP.

INTEGER 01 DATA-NAME PIC S9(9) COMP.

FLOAT (DECIMAL(p,s)) 01 DATA-NAME PIC S9(p-s)V9(s) COMP-3.

DATE 01 DATA-NAME PIC X(10). 1

TIME 01 DATA-NAME PIC X(8). 1

DATETIME 01 DATA-NAME PIC X(23). 1

INTERVAL 01 DATA-NAME PIC X(20). 1

1 Applies to default format speci�cation only.

4-12 Host Variables

Table 4-3. Program Element Data Description Entries

PROGRAM ELEMENT COBOL DATA DECLARATIONS

Indicator variable 01 IND-VAR-NAME SQLIND.

Array of n rows 01 ARRAY-NAME .

Data values 05 ROW-NAME OCCURS n TIMES.

10 COLUMN1-NAME valid data clause.
10 COLUMN2-NAME valid data clause.

Indicator variable 10 IND-VAR-NAME SQLIND.

StartIndex 01 START-INDEX-NAME PIC S9(4) COMP. or

01 START-INDEX-NAME PIC S9(9) COMP.

NumberOfRows 01 NUM-ROWS-NAME PIC S9(4) COMP. or

01 NUM-ROWS-NAME PIC S9(9) COMP.

Dynamic commands 01 COMMAND-NAME CHAR or

VARCHAR data clause.

Savepoint numbers 01 SAVEPOINT-NAME PIC S9(9) COMP.

Message catalog messages 01 MESSAGE-NAME CHAR or

VARCHAR data clause.

DBEnvironment name 01 DBE-NAME CHAR or VARCHAR data clause.

Host Variables 4-13

DATE, TIME, DATETIME, and INTERVAL Data

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

** DATETIME DATA TYPE **
01 BATCHSTAMP PIC X(23).

** DATE DATA TYPE **

01 TESTDATE PIC X(10).

01 TESTDATEIND SQLIND.

** TIME DATA TYPE **

01 TESTSTART PIC X(8).

01 TESTSTARTIND SQLIND.

** INTERVAL DATA TYPE **

01 LABTIME PIC X(21).

01 LABTIMEIND SQLIND.

EXEC SQL END DECLARE SECTION END-EXEC.

DECLARE and OPEN CURSOR C1 here. Nulls not allowed for BatchStamp.

EXEC SQL FETCH C1

INTO :BATCHSTAMP,

:TESTDATE :TESTDATEIND,

:TESTSTART :TESTSTARTIND,

:LABTIME :LABTIMEIND

END-EXEC.

Odd-Byte Columns

For BULK record operations, when the precision of a DECIMAL declaration is odd , the
COBOL preprocessor generates a �ller character. This character, known as a slack byte,
ensures that the data is aligned on word boundaries. ALLBASE/SQL requires that data be on
word boundaries for certain data manipulation operations.

DECIMAL values are padded by one byte on the left, and string values are padded by one
byte on the right.

Most of the time, odd-byte padding has no e�ect on an application program. If, however, an
odd-byte host variable in an array is used by a non-SQL subprogram, the subprogram needs
to declare the variable for the passed value in a data description entry compatible with the
way ALLBASE/SQL declares the host variable in the modi�ed source �le. Whenever the
COBOL preprocessor generates a FILLER declaration in the modi�ed source �le, the event is
agged as follows in SQLMSG:

Filler added to adjust for odd-byte field. (DBWARN 10700)

The example in Figure 4-2 highlights the source �le and resulting modi�ed source �le
generated by the COBOL preprocessor for odd-byte columns.

4-14 Host Variables

Source File

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 ODDNUMBER PIC S9(7)V99 COMP-3.

01 ODDCHAR PIC X(15).

01 ODDVARCHAR.

49 ODDVARCHARLEN PIC S9(9) COMP.

49 ODDVARCHARVAL PIC X(15).

01 BUFFER.

05 BUFREC OCCURS 2 TIMES.

10 ODDCHARB PIC X(15).

10 ODDNUMBERB PIC S9(7)V99 C0MP-3.

10 ODDVARCHAR.

49 ODDLEN PIC S9(9) COMP.

49 ODDVAL PIC X(15).

EXEC SQL END DECLARE SECTION END-EXEC.

Modified Source File

**** Start SQL Preprocessor ****
*EXEC SQL BEGIN DECLARE SECTION END EXEC.

**** End SQL Preprocessor ****

01 ODDNUMBER PIC S9(7)V99 COMP-3.

01 ODDCHAR PIC X(15).

01 ODDVARCHAR.

49 ODDVARCHARLEN PIC S9(9) COMP.

49 ODDVARCHARVAL PIC X(15).

01 BUFFER.

05 BUFREC OCCURS 2 TIMES.

10 ODDCHARB PIC X(15).NN
10 FILLER PIC X.

10 ODDNUMBERB PIC S9(7)V99 COMP-3.

10 ODDVARCHAR.

49 ODDLEN PIC S9(9) COMP.

49 ODDVAL PIC X(15).

**** Start SQL Preprocessor ****

*EXEC SQL END DECLARE SECTION END-EXEC.

**** End SQL Preprocessor ****

Figure 4-2. Data Declarations Generated for Boundary Alignment

Host Variables 4-15

Using Default Data Values

You can choose a default value other than NULL when you create or alter a table by using
the DEFAULT speci�cation. Then when data is inserted, and a given column is not in the
insert list, the speci�ed default value is inserted. Or when you alter a table, adding a column
to existing rows, every occurrence of the column is initialized to the default value. (This
conforms to ANSI SQL1 level 2 with addendum-1 and FIPS 127 standards.)

When a table or column is de�ned with the DEFAULT speci�cation, you will not get an error
if a column de�ned as NOT NULL is not speci�ed in the insert list of an INSERT command.
Without the DEFAULT speci�cation, if a column is de�ned as NOT NULL, it must have some
value inserted into it. However, if the column is de�ned with the DEFAULT speci�cation, it
satis�es both the requirement that it be NOT NULL and have some value, in this case, the
default value (unless the DEFAULT value is NULL). If a column not in an insert list does
allow a NULL, then a NULL is inserted instead of the default value.

Your default speci�cation options are as follows:

NULL.
USER (this indicates the current DBEUser ID).
A constant.
The result of the CURRENT DATE function.
The result of the CURRENT TIME function.
The result of the CURRENT DATETIME function.

Complete syntax for the CREATE TABLE and ALTER TABLE commands as well as
de�nitions of the above options are found in the ALLBASE/SQL Reference Manual .

In e�ect, by choosing any option other than NULL, you assure the column's value to be NOT
NULL and of a particular format, unless and until you use the UPDATE command to enter
another value.

In the following example, the OrderNumber column defaults to the constant 5, and it is
possible to insert a NULL value into the column:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DEFAULT 5 ,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

However, suppose you want to de�ne a column default and specify that the column cannot be
null. In the next example, the OrderNumber column defaults to the constant 5, and it is not
possible to insert a NULL value into this column:

4-16 Host Variables

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NN
DEFAULT 5 NOT NULL ,

VendorNumber INTEGER,

OrderDate CHAR(8))
IN OrderFS

Coding Considerations

Any default value must be compatible with the data type of its corresponding column. For
example, when the default is an integer constant, the column for which it is the default must
be created with an ALLBASE/SQL data type of INTEGER, REAL, or FLOAT.

In your application, you input or access data for which column defaults have been de�ned just
as you would data for which defaults are not de�ned. In this chapter, refer to the section,
\Declaring Variables for Data Types," for information on using the data types in your
program. Also refer to the section \Declaring Variables for Compatibility" for information
relating to compatibility.

When the DEFAULT Clause Cannot be Used

You can specify a default value for any ALLBASE/SQL column except those de�ned as
LONG BINARY or LONG VARBINARY. For information on these data types, see the
section in this document titled \Using the LONG Phrase with Binary Data Types."

With the CREATE TABLE command, you can use either a DEFAULT NULL speci�cation
or the NOT NULL speci�cation. An error results if both are speci�ed for a column as in
the next example:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNN
DEFAULT NULL NOT NULL ,

VendorNumber INTEGER,
OrderDate CHAR(8))

IN OrderFS

Declaring Variables for Compatibility

Under the following conditions, ALLBASE/SQL performs data type conversion when
executing SQL commands containing host variables:

When the data types of values transferred between your program and a DBEnvironment do
not match.

When data of one type is moved to a host variable. of a di�erent type

When values of di�erent types appear in the same expression.

Data types for which type conversion can be performed are called compatible data types.
Table 4-4 summarizes data type-host variable compatibility. It also points out which data
type combinations are incompatible and which data type combinations are equivalent, i.e.,
require no type conversion. E describes an equivalent situation, C a compatible situation, and
I an incompatible situation.

Host Variables 4-17

Table 4-4. COBOL Data Type Equivalency and Compatibility

ALLBASE/SQL

DATA

TYPES

PIC

X(n)

PIC X(n)

49-level

ITEM

PIC S9(4)

COMP

PIC S9(9)

COMP

PIC S9(p-s)

V9(s)

COMP-3

CHAR E C I I I

VARCHAR C E I I I

BINARY C C I I I

VARBINARY C C I I I

DATE C C I I I

TIME C C I I I

DATETIME C C I I I

INTERVAL C C I I I

SMALLINT I I E C C

INTEGER I I C E C

DECIMAL I I C C E

As the following example illustrates, the ISQL INFO command provides the information you
need to declare host variables compatible with or equivalent to ALLBASE/SQL data types. It
also provides the information you need to determine whether an indicator variable is needed
to handle null values:

4-18 Host Variables

isql=> INFO PURCHDB.ORDERITEMS;

Column Name Data Type (length) Nulls Allowed

ORDERNUMBER Integer NO

ITEMNUMBER Integer NO

VENDPARTNUMBER Char (16) YES

PURCHASEPRICE Decimal (10,2) NO

ORDERQTY SmallInt YES

ITEMDUEDATE Char (8) YES

RECEIVEDQTY SmallInt YES

The example identi�ed as Figure 4-3 is a query that accesses the PURCHDB.ORDERITEMS
table. The query produces a single-row query result that consists of two maximum values.
The declare section illustrated contains data clauses equivalent to the data types in the
PURCHDB.ORDERITEMS table:

ORDERNUMBER is an INTEGER variable because the column whose data it holds is
INTEGER.

PURCHASEPRICE is declared as a DECIMAL variable because it holds the DECIMAL
result of an aggregate function on a DECIMAL column.

DISCOUNT is declared as a DECIMAL variable because it is used in an arithmetic
expression with a DECIMAL column, PurchasePrice.

ORDERQTY is declared as a SMALLINT variable because it holds the result of a
SMALLINT column, ORDERQTY.

ORDERQTYIND is an indicator variable, necessary because the resulting ORDERQTY can
contain null values. Note in the INFO example above that this column allows null values.

Host Variables 4-19

DATA DIVISION.

.

.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

.

01 ORDERNUMBER PIC S9(9) COMP.

01 PURCHASEPRICE PIC S9(8)V9(2) COMP-3.

01 DISCOUNT PIC S9(8)V9(2) COMP-3.

01 ORDERQTY PIC S9(4) COMP.

01 ORDERQTYIND SQLIND.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.
PROCEDURE DIVISION.

.

.

EXEC SQL SELECT PURCHASEPRICE * :DISCOUNT,

ORDERQTY,

INTO :PURCHASEPRICE,

:ORDERQTY :ORDERQTYIND,

FROM PURCHDB.ORDERITEMS

WHERE ORDERNUMBER = :ORDERNUMBER

END-EXEC.

Figure 4-3. Declaring Host Variables for Single-Row Query Results

The example in Figure 4-4 is similar to that in Figure 4-3. This query, however, is a BULK
query, which may return a multiple-row query result. And it incorporates a HAVING clause.

ORDERSARRAY is the name of the array for storing the query result. It is large enough
to hold as many as 25 rows. Each row in the array has the same format as that in the
single-row query result just discussed.

FIRSTROW and TOTALROWS are declared as SMALLINT variables, since their
maximum value is the size of the array, in this case, 25.

GROUPCRITERION is an INTEGER variable because its value is compared in the
HAVING clause with the result of a COUNT function, which is always an INTEGER value.

4-20 Host Variables

DATA DIVISION.

.

.

.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

.

.

01 DISCOUNT PIC S9(8)V9(2) COMP-3.

01 ORDERSARRAY.

05 EACH-ROW OCCURS 25 TIMES.

10 PURCHASEPRICE PIC S9(8)V9(2) COMP-3.

10 ORDERQTY PIC S9(4) COMP.

10 ORDERQTYIND SQLIND.

10 ORDERNUMBER PIC S9(9) COMP.
01 FIRSTROW PIC S9(4) COMP.

01 TOTALROWS PIC S9(4) COMP.

01 LOWVALUE PIC S9(9) COMP.

01 HIGHVALUE PIC S9(9) COMP.

01 GROUPCRITERION PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

.

PROCEDURE DIVISION.

.

.

.

EXEC SQL BULK SELECT PURCHASEPRICE * :DISCOUNT,

ORDERQTY,

ORDERNUMBER

INTO :ORDERSARRAY,

:FIRSTROW,

:TOTALROWS

FROM PURCHDB.ORDERITEMS

WHERE ORDERNUMBER

BETWEEN :LOWVALUE AND :HIGHVALUE

GROUP BY ORDERQTY, ORDERNUMBER

HAVING COUNT(ITEMNUMBER) > :GROUPCRITERION

END-EXEC.

Figure 4-4. Declaring Host Variables for Multiple-Row Query Results

Host Variables 4-21

String Data Conversion

When ALLBASE/SQL moves string data of one type to a host variable declared as a
compatible type, the following occurs:

When moving CHAR data to a VARCHAR variable, ALLBASE/SQL places the length of
the string in the appropriate 49-level variable and pads the string on the right with spaces
to �ll up the VARCHAR string variable.

When moving VARCHAR data to a CHAR variable, ALLBASE/SQL pads the string on the
right with spaces to �ll up the CHAR string variable.

String Data Truncation

If the target host variable used in a SELECT or FETCH operation is too small to hold an
entire string, the string is truncated. You can use an indicator variable to determine the
actual length of the string in bytes before truncation:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

.

.

01 LITTLE-STRING PIC X(40).

01 LITTLE-STRING-IND SQLIND.

.

.

.
EXEC SQL END DECLARE SECTION END-EXEC.

.

.

.

PROCEDURE DIVISION.

.

.

.

EXEC SQL SELECT BIG_STRING

INTO :LITTLE-STRING :LITTLE-STRING-IND

.

.

.

When the string in column BIG STRING is too long to �t in host variable LITTLE-
STRING , ALLBASE/SQL puts the actual length of the string into indicator variable
LITTLE-STRING-IND .

If a column is too small to hold a string in an INSERT or an UPDATE operation, the string is
truncated and stored. ALLBASE/SQL gives no error or warning message, but SQLWARN1
will contain a W.

4-22 Host Variables

Numeric Data Conversion

When you use numeric data of di�erent types in an expression or comparison operation, data
types with less precision are converted into data types of greater precision. The result has
the greater precision. ALLBASE/SQL numeric types available in COBOL have the following
precedence, from highest to lowest:

1. DECIMAL
2. INTEGER
3. SMALLINT

The following example illustrates numeric type conversion:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 DISCOUNT PIC S9(9) COMP.

01 MAXPURCHASEPRICE PIC S9(9) COMP.

.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

.

PROCEDURE DIVISION.

.

.

.

EXEC SQL SELECT MAX(PURCHASEPRICE) * :DISCOUNT

INTO :MAXPURCHASEPRICE
FROM PURCHDB.ORDERITEMS

END-EXEC.

The query illustrated contains in the select list an aggregate function, MAX. The argument of
the function is the PURCHASEPRICE column, de�ned in the PARTSDBE DBEnvironment
as DECIMAL(10,2). Therefore the result of the function is DECIMAL. Since the host variable
named DISCOUNT is declared as an INTEGER, a data type compatible with DECIMAL,
ALLBASE/SQL converts the value in DISCOUNT to a DECIMAL quantity having a
precision of 10 and a scale of 0.

After subtraction, data conversion occurs again before the DECIMAL result is stored in the
INTEGER host variable MAXPURCHASEPRICE . In this case, the fractional part of the
DECIMAL value is truncated. If the fractional part is zero, no error results. Otherwise, an
error condition occurs.

Refer to the ALLBASE/SQL Reference Manual for additional information on how type
conversion can cause truncation and overow of numeric values.

Host Variables 4-23

Declaring Variables for Program Elements

The following section discusses how to declare elements speci�c to ALLBASE/SQL programs.
In addition, Table 4-3 provides template examples of these special elements.

SQLCA Array

Every ALLBASE/SQL COBOL program must have the SQL Communications Area (SQLCA)
declared in the working storage section of the DATA DIVISION. You can use the INCLUDE
command to declare the SQLCA:

EXEC SQL INCLUDE SQLCA END-EXEC.

Refer to the chapter, \Runtime Status Checking and the SQLCA," for further information
regarding the SQLCA.

Bulk Processing Arrays

When you declare an array for holding the results of a BULK SELECT or BULK FETCH
operation, ensure that you declare the �elds in the same order as in the select list. (For
single-row query results, however, the order of declaration does not have to match the select
list order.) In addition, each indicator variable �eld must be declared immediately after
the host variable �eld it describes. And if used, the bulk processing indicator variables
(starting index and number of rows) are declared as 01 level data descriptions. They must be
referenced in order (starting index followed by number of rows) immediately following your
array reference. Figure 4-4 provides an example.

Indicator Variables

Each indicator variable must be declared immediately following the host variable it describes,
as shown in �gures 4-3 and 4-4. (The SQLIND data clause must be complete before column
64.) If a column allows nulls, a null indicator must be declared for it.

When the COBOL preprocessor encounters SQLIND , it generates the following declaration in
its place in SQLOUT:

PIC S9(4) COMP

Dynamic Commands

The maximum size for the host variable used to hold dynamic commands is 32,762 bytes.
Such a host variable can be declared as a CHAR or VARCHAR data type. In Figure 4-5, one
host variable is declared to hold a CHAR dynamic command of up to 2048 bytes. The second
host variable is declared to hold a VARCHAR dynamic command of 80 bytes or less.

4-24 Host Variables

DATA DIVISION.

.

.

.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

.

.

01 DYNAMIC-COMMAND PIC X(2048).

.

.

01 DYNAMIC-COMMAND-2.

49 LENGTH PIC S9(9) COMP.

49 VALUE PIC X(80).

.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

PROCEDURE DIVISION.

.

.

EXEC SQL PREPARE COMMAND-ON-THE-FLY

FROM :DYNAMIC-COMMAND

END-EXEC.

.

.

EXEC SQL PREPARE COMMAND-ON-THE-FLY

FROM :DYNAMIC-COMMAND-2

END-EXEC.

Figure 4-5. Declaring Host Variables for Dynamic Commands

Host Variables 4-25

Savepoint Numbers

Savepoint numbers are positive numbers ranging from 1 to 2,147,483,647. A host variable for
holding a savepoint number should be declared as an integer.

DATA DIVISION.

.

.

.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

.

.

01 SAVEPOINT1 PIC S9(9) COMP.

.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.
.

.

PROCEDURE DIVISION.

.

.

EXEC SQL SAVEPOINT :SAVEPOINT1 END-EXEC.

Figure 4-6. Declaring Host Variables for Savepoint Numbers

4-26 Host Variables

Messages from the Message Catalog

The maximum size of a message catalog message is 256 bytes. Figure 4-7 illustrates how a
host variable for holding a message might be declared.

DATA DIVISION.

.

.

.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

.

.

01 STATUSMESSAGE.

49 MESSAGE-LENGTH PIC S9(4) COMP.

49 MESSAGE-TEXT PIC X(256).

.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

.

PROCEDURE DIVISION.

.

.

.
EXEC SQL SQLEXPLAIN :STATUSMESSAGE END-EXEC.

DISPLAY MESSAGE-TEXT.

Figure 4-7. Declaring Host Variables for Message Catalog Messages

Host Variables 4-27

DBEnvironment Name

The DBEnvironment you specify in the preprocessor command line is the same as the
DBECon �le name. The maximum length of a fully quali�ed DBEnvironment name is 26
bytes. When used in a host variable, the DBEnvironment name can be unquoted or enclosed
in single quotation marks.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

.

.

01 SOMEDBE PIC X(26).

.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

PROCEDURE DIVISION.
.

.

DISPLAY "Enter DBEnvironment name> ".

ACCEPT SOMEDBE.

EXEC SQL CONNECT TO :SOMEDBE END-EXEC.

Figure 4-8. Declaring Host Variables for DBEnvironment Names

The host variable can be declared as a CHAR or VARCHAR variable. In this example, it is
declared as CHAR.

Declaring Host Variables Passed Between Subprograms

Two instances require that you pass ALLBASE/SQL data structures between calling and
called subprograms and/or programs.

When using the same DBEnvironment in both calling and called code, SQLCA data must
be passed.

When using the same host variables in both calling and called code, both SQLCA data and
host variable data must be passed.

For example, in Figure 4-9 the host variable passed is declared in the CallingProgram outside
a declare section, because it is not used in an SQL command in that program. The passed
host variable is declared in the INSERTsubpgm within a declare section in the LINKAGE
SECTION. This is because it is used in an SQL command in the subprogram.

Note that USING clauses in both calling and called code name both the SQLCA and the
passed host variable. The SQLCA must always be named in this clause in programs and
subprograms that contain SQL commands to be executed from the same DBE session.

4-28 Host Variables

PROGRAM-ID.
NNN
CallingProgram.

.

.

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

01
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PARTNUMBER PIC X(16).

.

PROCEDURE DIVISION.

.

EXEC SQL CONNECT TO 'PARTSDBE.SOMEGRP.SOMEACCT' END-EXEC.

.

.

IF RESPONSE-PREFIX = "1" THEN

DISPLAY "INSERT rows into the Parts Table."

CALL "INSERTsubpgm" USING
NNNNNNNNNNNNNNNNN
SQLCA

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PARTNUMBER

DISPLAY "Last row inserted had part number: " PARTNUMBER.

|

|

V

PROGRAM-ID.
NNN
INSERTsubpgm.

.

.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTNAME PIC X(30).

01 SALESPRICE PIC S9(10)V(2) COMP-3.

EXEC SQL END DECLARE SECTION END-EXEC.

LINKAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PARTNUMBER PIC X(16).

EXEC SQL END DECLARE SECTION END-EXEC.

.

PROCEDURE DIVISION USING
NNNNNNNNNNNNNNNNN
SQLCA

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PARTNUMBER .

.

EXEC SQL INSERT INTO PURCHDB.PARTS

(PARTNUMBER,

PARTNAME,

SALESPRICE)

VALUES (:PARTNUMBER,

:PARTNAME,

:SALESPRICE)

END-EXEC.

.

.

GOBACK.

Figure 4-9. Declaring Host Variables Passed Between Subprograms
Host Variables 4-29

5

Runtime Status Checking and the SQLCA

This chapter examines the need for runtime status checking. It describes the SQLCA and
the conditions under which its data items are set by ALLBASE/SQL. It also gives several
examples of implicit and explicit status checking, some of which use SQLEXPLAIN to display
a status message. Examples of handling speci�c status checking tasks are included under
\Approaches to Status Checking."

When an SQL command is executed, ALLBASE/SQL returns information describing how the
command executed. This information signals one or more of the following status conditions:

The command was successfully executed.

The command could not be executed because an error condition occurred, but the current
transaction will continue.

No rows quali�ed for a data manipulation operation.

A speci�c number of rows were placed into output host variables.

A speci�c number of rows quali�ed for an INSERT, UPDATE, or DELETE operation.

The command was executed, but a warning condition resulted.

The command was executed, but a character string was truncated.

The command was executed, but a null value was eliminated from an aggregate function.

The command could not be executed because an error condition necessitated rolling back
the current transaction.

Based on this runtime status information, a program can COMMIT WORK, ROLLBACK
WORK, continue, terminate, display a message, or perform some other appropriate activity.

You can use the WHENEVER command to perform implicit status checking. This means
that ALLBASE/SQL checks the SQLCODE and SQLWARN0 values for you, then takes an
action based on information you provide in the WHENEVER command.

You can write COBOL code that explicitly examines one or more of the seven SQLCA
elements, then proceeds on the basis of their values. This kind of status checking is called
explicit status checking.

You can use a combination of both implicit and explicit status checking.

In conjunction with status checking of any kind, you can use the SQLEXPLAIN command.
This command retrieves a message from the ALLBASE/SQL message catalog that describes
an error or warning condition.

Runtime Status Checking and the SQLCA 5-1

When several errors or warnings occur, you can use SQLEXPLAIN to retrieve messages for all
of them. Messages are available to your program with the most severe error appearing �rst.
When ALLBASE/SQL rolls back the current transaction, the message indicating the roll back
will be the �rst message, since it is the most severe. An example of this scenario is presented
later in this chapter under \SQLCODE." Refer to the ALLBASE/SQL Message Manual for
an explanation of all error and warning messages.

Purposes of Status Checking

Status checking is performed primarily for the following reasons:

To gracefully handle runtime error and warning conditions.

To maintain data consistency.

To return information about the most recently executed command.

Handling Runtime Errors and Warnings

A program is said to be robust if it anticipates common runtime errors and handles them
gracefully. In online applications, robust programs may allow the user to decide what to do
when an error occurs rather than just terminating. This approach is useful, for example, when
a deadlock occurs.

If a deadlock occurs, SQLCODE is set to -14024 and an SQLEXPLAIN call retrieves the
following message:

Deadlock detected. (DBERR 14024)

ALLBASE/SQL rolls back the transaction containing the SQL command that caused the
deadlock. You may want to either give the user the option of restarting the transaction,
automatically re-execute the transaction a �nite number of times before notifying the user of
the deadlock, or re-execute the transaction until the deadlock is resolved.

Maintaining Data Consistency

Two or more data values, rows, or tables are said to be consistent if they agree in some way.
Changes to such interdependent values are either committed or rolled back at the same
time in order to retain data consistency. In other words, the set of operations that form a
transaction are considered as an atomic operation; either all or none of the operations are
performed on the database. Status checking in this case determines whether to commit or roll
back work.

5-2 Runtime Status Checking and the SQLCA

For example, in the sample database, PartsDBE, each order is de�ned by rows in two tables:
one row in the PurchDB.Orders table and one or more rows in the PurchDB.OrderItems
table. A transaction that deletes orders from the database has to delete all the rows for
a speci�c order from both tables to maintain data consistency. A program containing
such a transaction should commit work to the database only if it is able to delete the
row from the PurchDB.Orders table and delete all the rows for the same order from the
PurchDB.OrderItems table:

EXEC SQL BEGIN WORK END-EXEC.

EXEC SQL DELETE FROM PURCHDB.ORDERS

WHERE ORDERNUMBER = :ORDERNUMBER

END-EXEC.

If this command succeeds, the program submits the following command.

EXEC SQL DELETE FROM PURCHDB.ORDERITEMS

WHERE ORDERNUMBER = :ORDERNUMBER

END-EXEC.

If this command succeeds, the program submits a COMMIT WORK command.

If this command does not succeed, the program submits a ROLLBACK WORK

command to ensure that all rows related to the order are deleted at

the same time.

Checking the Most Recently Executed Command

Depending on which ALLBASE/SQL command was most recently executed, you can make
checks to insure that the command executed in a manner appropriate to the program's
context. The following section, \Using the SQLCA," gives explantions based on each SQLCA
element. Later in this chapter, the section \Explicit Status Checking Techniques" provides
examples based on speci�c programming tasks.

Runtime Status Checking and the SQLCA 5-3

Using the SQLCA

The SQL communications area is known as the SQLCA. Every ALLBASE/SQL COBOL
program must declare the SQLCA by putting the INCLUDE SQLCA statement somewhere in
the WORKING-STORAGE SECTION or the LINKAGE SECTION.

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

The COBOL preprocessor generates the following declaration in SQLOUT after it parses this
SQL command:

WORKING STORAGE SECTION.

**** Start SQL Preprocessor ****

$INCLUDE SQLCONST

$INCLUDE SQLVAR

**** End SQL Preprocessor ****

**** Start SQL Preprocessor ****

*EXEC SQL INCLUDE SQLCA END-EXEC.

**** Start Inserted Statements ****

01 SQLCA.

05 SQLCAID PIC X(8).

05 SQLCABC PIC S9(9) COMP SYNC.

05 SQLCODE PIC S9(9) COMP SYNC. <--

05 SQLERRM.

49 SQLERRML PIC S9(9) COMP SYNC.

49 SQLERRMC PIC X(256).

05 SQLERRP PIC X(8).

05 SQLERRD OCCURS 6 TIMES <--SQLERRD(3)

PIC S9(9) COMP SYNC.

05 SQLWARN.

10 SQLWARN0 PIC X(1). <--

10 SQLWARN1 PIC X(1). <--
10 SQLWARN2 PIC X(1). <--

10 SQLWARN3 PIC X(1).

10 SQLWARN4 PIC X(1).

10 SQLWARN5 PIC X(1).

10 SQLWARN6 PIC X(1). <--

10 SQLWARN7 PIC X(1).

05 SQLEXT1 PIC X(4).

05 SQLEXT2 PIC X(4).

**** End SQL Preprocessor ****

The data items identi�ed by an arrow are for you to use in status checking. The other �elds
are reserved for use by ALLBASE/SQL only .

5-4 Runtime Status Checking and the SQLCA

You may want to place the SQLCA declaration �rst in the WORKING-STORAGE
SECTION. That way, if you compile the program with range checking o� , this vital data
structure will not be inadvertently overwritten by array references beyond the limit of a
previously declared array.

As discussed in the previous chapter \Host Variables," the SQLCA must be passed whenever
you call a subprogram that executes SQL commands in the same DBEnvironment.

The following table gives an overview of how ALLBASE/SQL sets these �elds. Each �eld
is then described with brief examples of how you can use it, including examples for using
SQLEXPLAIN. Methods of handling speci�c status checking tasks are found in the succeeding
section, \Approaches to Status Checking."

Table 5-1. SQLCA Status Checking Fields

FIELD NAME SET TO CONDITION

SQLCODE 0

less than 0

100

no error occurred durring command execution

error, command not executed

no rows qualify for DML operation
(does not apply to dynamic commands)

SQLERRD(3) number of rows put into
output host variables

number of rows processed

0

0

data retrieval operation

data change operation

error in single row data change
operation

SQLCODE equals 100

SQLWARN0 W warning, command not properly executed

SQLWARN1 W at least one character string value
was truncated when being stored in
a host variable

SQLWARN2 W at least one null value was eliminated
from the argument set of an aggregate
function

SQLWARN6 W the current transaction was rolled back

Runtime Status Checking and the SQLCA 5-5

SQLCODE

SQLCODE can contain one of the following values:

0, when an SQL command executes without generating an error condition and without
generating a no rows qualify condition.

A negative number, when an error condition exists and an ALLBASE/SQL command
cannot be executed.

100, when no rows qualify for one of the following commands, but no error condition exists:

SELECT

INSERT

UPDATE (non-dynamic execution only)

DELETE (non-dynamic execution only)

BULK SELECT

FETCH

BULK FETCH

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

Note that the absolute value of SQLCODE is the same as the absolute value associated with
its corresponding message in the ALLBASE/SQL message catalog. This absolute value is part
of the returned message. If an error occurs, the message number is preceded by DBERR. For
example, the error message associated with an SQLCODE of -2613 is:

Precision digits lost in decimal operation MULTIPLY. (DBERR 2613)

SQLCODE is set by all SQL commands except the following directives:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

WHENEVER

When SQLCODE is -4008, -14024, or a greater negative value than -14024, ALLBASE/SQL
automatically rolls back the current transaction. When this condition occurs, ALLBASE/SQL
also sets SQLWARN6 to W. Refer to the discussion later in this chapter on SQLWARN6 for
more on this topic.

More than one SQLCODE is returned when more than one error occurs. For example, if you
attempt to execute the following SQL command, two negative SQLCODE values result:

EXEC SQL ADD PUBLIC, GROUP1 TO GROUP GROUP1 END-EXEC.

The SQLCODEs associated with the two errors are:

-2308, which indicates the reserved name PUBLIC is invalid.

-2318, which indicates you cannot add a group to itself.

5-6 Runtime Status Checking and the SQLCA

To obtain all SQLCODEs associated with the execution of an SQL command, you execute the
SQLEXPLAIN command until SQLCODE is 0:

IF SQLCODE IS EQUAL TO 100
DISPLAY "No rows qualified for this operation."

IF SQLCODE IS LESS THAN ZERO

PERFORM SQL-STATUS-CHECK

UNTIL SQLCODE IS ZERO.

SQL-STATUS-CHECK.

EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.

The paragraph named SQL-STATUS-CHECK is executed when SQLCODE is a negative
number. Before executing SQLEXPLAIN for the �rst time, the program has access to the �rst
SQLCODE returned. Each time SQLEXPLAIN is executed subsequently, the next SQLCODE
becomes available to the program, and so on until SQLCODE equals 0.

This example explicitly tests the value of SQLCODE twice: �rst to determine whether it is
equal to 100 , then to determine whether it is less than 0 . If the value 100 exists, no error will
have occurred and the program will display the message No rows qualify for this operation.

It is necessary for the program to display its own message in this case, because SQLEXPLAIN
messages are available to your program only when SQLCODE contains a negative number or
when SQLWARN0 contains a W.

The SQLCODE is also used in implicit status checking:

ALLBASE/SQL tests for the condition SQLCODE less than 0 when you use the
SQLERROR option of the WHENEVER command.

ALLBASE/SQL tests for the condition SQLCODE equal to 100 when you use the NOT
FOUND option of the WHENEVER command.

In the following situation, when ALLBASE/SQL detects a negative SQLCODE, the paragraph
named GET-SQLCODE is executed. When ALLBASE/SQL detects an SQLCODE of 100, the
paragraph named NOT-FOUND is executed instead:

EXEC SQL WHENEVER SQLERROR GO TO GET-SQLCODE END-EXEC.

EXEC SQL WHENEVER NOT FOUND GO TO NOT-FOUND END-EXEC.

WHENEVER commands remain in e�ect for all SQL commands that appear physically after
them in the source program until another WHENEVER command for the same condition
appears.

The scope of WHENEVER commands is fully explained later in this chapter under \Implicit
Status Checking Techniques."

Runtime Status Checking and the SQLCA 5-7

SQLERRD(3)

SQLERRD(3) can contain one of the following values:

0, when SQLCODE is 100 or when one of the following commands causes an error
condition:

INSERT

UPDATE

DELETE

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

If an error occurs during execution of INSERT, UPDATE, or DELETE, one or more
rows may have been processed prior to the error. In these cases, you may want to either
COMMIT WORK or ROLLBACK WORK, depending on the transaction. For example, if
all or no rows should be updated for logical data consistency, use ROLLBACK WORK.
However, if logical data consistency is not an issue, COMMIT WORK may minimize
re-processing time.

A positive number, when SQLCODE is 0. In this case, the positive number provides
information about the number of rows processed in the following data manipulation
commands.

The number of rows inserted, updated, or deleted in one of the following operations:

INSERT

UPDATE

DELETE

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

The number of rows put into output host variables when one of the following commands is
executed:

SELECT

BULK SELECT

FETCH

BULK FETCH

A positive number, when SQLCODE is less than 0. In this case, SQLERRD(3) indicates the
number of rows that were successfully retrieved or inserted prior to the error condition:

BULK SELECT

BULK FETCH

BULK INSERT

As in the case of INSERT, UPDATE, and DELETE, mentioned above, you can use either a
COMMIT WORK or ROLLBACK WORK command, as appropriate.

5-8 Runtime Status Checking and the SQLCA

SQLWARN0

A W in SQLWARN0, in conjunction with a 0 in SQLCODE, indicates that the SQL command
just executed caused a warning condition.

Warning conditions ag unusual but not necessarily important conditions. For example, if a
program attempts to submit an SQL command that grants an already existing authority, a
message such as the following would be retrieved when SQLEXPLAIN is executed:

User JOANN@GRAY already has DBA authorization. (DBWARN 2006)

In the case of the following warning, the situation may or may not indicate a problem:

A transaction in progress was aborted. (DBWARN 2010)

This warning occurs when a program submits a RELEASE command without �rst
terminating a transaction with a COMMIT WORK or ROLLBACK WORK. If the
transaction did not perform any UPDATE, INSERT, or DELETE operations, this situation
will not cause work to be lost. If the transaction did perform UPDATE, INSERT, or
DELETE operations, the database changes are rolled back when the RELEASE command is
processed.

You retrieve the appropriate warning message by using SQLEXPLAIN. Note that you cannot
explicitly test SQLWARN0 the way you can test SQLCODE, since SQLWARN0 always
contains W when a warning occurs.

An error and a warning condition may exist at the same time. In this event, SQLCODE is set
to a negative number, and SQLWARN0 is set to W. Messages describing all the warnings and
errors can be displayed as follows:

IF SQLCODE IS NOT ZERO

PERFORM DISPLAY-MESSAGE UNTIL SQLCODE IS ZERO.

DISPLAY-MESSAGE.

EXEC SQL SQLEXPLAIN ;SQLMESSAGE END-EXEC.

DISPLAY SQLMESSAGE.

If multiple warnings but no errors result when ALLBASE/SQL processes a command,
SQLWARN0 is set to W and remains set until the last warning message has been retrieved
by SQLEXPLAIN or another SQL command is executed. In the following example,
DISPLAY-WARNINGS is executed when this condition exists:

IF SQLWARN0 IS "W" AND SQLCODE IS ZERO

PERFORM DISPLAY-WARNINGS UNTIL SQLWARN0 IS NOT "W".

When you use the SQLWARNING option of the WHENEVER command, ALLBASE/SQL
checks for a W in SQLWARN0. You can use the WHENEVER command to do implicit status
checking (equivalent to that done explicitly above) as follows:

EXEC SQL WHENEVER SQLWARNING GO TO DISPLAY-WARNINGS END-EXEC.

EXEC SQL WHENEVER SQLERROR GO TO DISPLAY-MESSAGE END-EXEC.

Runtime Status Checking and the SQLCA 5-9

SQLWARN1

A W in SQLWARN1 indicates truncation of at least one character string value when the
string was stored in a host variable. Any associated indicator variable is set to the value of the
string length before truncation.

For example:

EXEC SQL SELECT PartNumber,

PartName

INTO :PartNumber

:PartName :PartNameInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

If PartName was declared as a character array of 20 bytes, and the PartName column in the
PurchDB.Parts table has a length of 30 bytes, then:

SQLWARN1 is set to W

PartNameInd is set to 30 (the length of PartName in the table)

SQLCODE is set to 0

SQLEXPLAIN retrieves the message:

Character string truncation during storage in host variable.

(DBWARN 2040)

SQLWARN2

A W in SQLWARN2 indicates that at least one null value was eliminated from the argument
set of an aggregrate function.

For example:

EXEC SQL SELECT MAX(OrderQty)

INTO :MaxOrderQty

FROM PurchDB.OrderItems;

If any OrderQty values are null:

:SQLWARN2 is set to W

SQLCODE is set to 0

SQLEXPLAIN retrieves the message:

NULL values eliminated from the argument of an aggregate

paragraph. (DBWARN 2041)

5-10 Runtime Status Checking and the SQLCA

SQLWARN6

When an error occurs that causes ALLBASE/SQL to roll back the current transaction,
SQLWARN6 is set to W. ALLBASE/SQL automatically rolls back transactions when
SQLCODE is equal to -4008, or equal to or less than -14024.

When such errors occur, ALLBASE/SQL:

Sets SQLWARN6 to W

Sets SQLWARN0 to W

Sets SQLCODE to a negative number

If you want to terminate your program any time ALLBASE/SQL has to roll back the current
transaction, you can just test SQLWARN6.

IF SQLCODE < 0

IF SQLWARN6 = "W"

PERFORM SQL-STATUS-CHECK UNTIL SQLCODE IS ZERO

PERFORM TERMINATE-PROGRAM

ELSE PERFORM SQL-STATUS-CHECK UNTIL SQLCODE IS ZERO.

In this example, the program executes the paragraph SQL-STATUS-CHECK when an error
occurs. The program terminates whenever ALLBASE/SQL has rolled back a transaction, but
continues if an error has occurred but was not serious enough to cause transaction roll back.

Runtime Status Checking and the SQLCA 5-11

Approaches to Status Checking

This section presents examples of how to use implicit and explicit status checking and to
notify program users of the results of status checking.

Implicit status checking is useful when control to handle warnings and errors can be passed to
one prede�ned point in the program. Explicit status checking is useful when you want to test
for speci�c SQLCA values before passing control to one of several locations in your program.

Error and warning conditions detected by either type of status checking can be conveyed to
the program user in various ways:

SQLEXPLAIN can be used one or more times after an SQL command is processed to
retrieve warning and error messages from the ALLBASE/SQL message catalog. (The
ALLBASE/SQL message catalog contains messages for every negative SQLCODE and for
every condition that sets SQLWARN0.)

Your own messages can be displayed when a certain condition occurs.

You can choose not to display a message; for example, if a condition exists that is irrelevant
to the program user or when an error is handled internally by the program.

Implicit Status Checking Techniques

The WHENEVER command has two components: a condition and an action. The command
format is:

EXEC SQL WHENEVER Condition Action END-EXEC.

There are three possible WHENEVER conditions:

SQLERROR

If WHENEVER SQLERROR is in e�ect, ALLBASE/SQL checks for a negative SQLCODE
after processing any SQL command except:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

SQLEXPLAIN

WHENEVER

SQLWARNING

If WHENEVER SQLWARNING is in e�ect, ALLBASE/SQL checks for a W in SQLWARN0
after processing any SQL command except:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

SQLEXPLAIN

WHENEVER

5-12 Runtime Status Checking and the SQLCA

NOT FOUND

If WHENEVER NOT FOUND is in e�ect, ALLBASE/SQL checks for the value 100 in
SQLCODE after processing a SELECT or FETCH command.

A WHENEVER command for each of these conditions can be in e�ect at the same time.

There are three possible WHENEVER actions:

STOP

If WHENEVER Condition STOP is in e�ect, ALLBASE/SQL rolls back the current
transaction and terminates the DBE session and the program when the Condition exists.

CONTINUE

If WHENEVER Condition CONTINUE is in e�ect, program execution continues when the
Condition exists. Any earlier WHENEVER command for the same condition is cancelled.

GOTO LineLabel .

If WHENEVER Condition GOTO LineLabel is in e�ect, the code routine located at that
alpha-numeric line label is executed when the Condition exists. The line label must appear
in the paragraph where the GOTO is executed. GOTO and GO TO forms of this action
have exactly the same e�ect.

Any action may be speci�ed for any condition.

The WHENEVER command causes the COBOL preprocessor to generate status-checking and
status-handling code for each SQL command that comes after it physically in the program
until another WHENEVER command for the same condition is found. In the following
program sequence, for example, the WHENEVER command in Procedure1 is in e�ect for
SQLCommand1 , but not for SQLCommand2 , even though SQLCommand1 is executed �rst at
run time:

PERFORM PARAGRAPH1.

PERFORM PARAGRAPH2.

PARAGRAPH2.

EXEC SQL SQLCommand2 END-EXEC.

PARAGRAPH1.

EXEC SQL WHENEVER SQLERROR GO TO ERROR-HANDLER END-EXEC.

EXEC SQL SQLCommand1 END-EXEC.

Runtime Status Checking and the SQLCA 5-13

The code that the preprocessor generates depends on the condition and action in a
WHENEVER command. In the previous example, the preprocessor inserts a test for a
negative SQLCODE and a sentence that invokes ERROR-HANDLER:

**** Start SQL Preprocessor ****

* EXEC SQL

* WHENEVER SQLERROR

* GO TO S300-SERIOUS-ERROR

* END-EXEC

**** Start Inserted Statements ****

CONTINUE

**** End SQL Preprocessor ****

**** Start SQL Preprocessor ****

* EXEC SQL SQLCommand1 END-EXEC

**** Start Inserted Statements ****

Statements for executing SQLCommand1 appear here

IF SQLCODE IS NEGATIVE

GO TO S300-SERIOUS-ERROR

END-IF

**** End SQL Preprocessor ****

As the previous example illustrates, you can pass control to an exception-handling paragraph
with a WHENEVER command, but you use a GO TO statement rather than a PERFORM
statement. Therefore after the exception-handling paragraph is executed, control cannot
automatically return to the paragraph which invoked it. You must use another GO TO or a
PERFORM statement to explicitly pass control to a speci�c point in your program:

ERROR-HANDLER.

IF SQLCODE < -14024

THEN PERFORM TERMINATE-PROGRAM

ELSE

PERFORM SQLEXPLAIN UNTIL SQLCODE = 0

GO TO LineLabel.

This exception-handling routine explicitly checks the �rst SQLCODE returned. The program
terminates, or it continues from LineLabel after all warning and error messages are displayed.
Note that a GO TO statement was required in this paragraph in order to allow the program
to continue. Using a GO TO statement may be impractical when you want execution to
continue from di�erent places in the program, depending on the part of the program that
provoked the error. This situation is discussed under \Explicit Status Checking" later in the
chapter.

5-14 Runtime Status Checking and the SQLCA

Implicitly Invoking Status-Checking Procedures

The program illustrated in Figure 5-1 contains �ve WHENEVER commands:

The WHENEVER command numbered �1� handles errors associated with the following
commands:

CONNECT

BEGIN WORK

COMMIT WORK

The WHENEVER commands numbered �2� through �4� handle warnings and errors
associated with the SELECT command.

The paragraph named S300-SERIOUS-ERROR is executed when an error occurs during the
processing of session-related and transaction-related commands. The program terminates after
displaying all available error messages. If a warning condition occurs during the execution of
these commands, the warning condition is ignored, because the WHENEVER SQLWARNING
CONTINUE command is in e�ect by default.

The paragraph named S100-SQL-ERROR is executed when an error occurs during the
processing of the SELECT command.

S100-SQL-ERROR explicitly examines SQLCODE to determine whether a deadlock or shared
memory problem occurred (SQLCODE = -14024 or -4008) or whether the error was serious
enough to warrant terminating the program (SQLCODE < -14024):

If a deadlock or shared memory problem occurred, the program attempts to execute the
SELECT command as many as three times before notifying the user of the situation.

If SQLCODE contains a value less than -14024, the program terminates after all available
warnings and error messages from the ALLBASE/SQL message catalog have been displayed.

In the case of any other errors, the program displays all available messages, then passes
control to B110-EXIT .

The paragraph named S500-SQL-WARNING is executed when only a warning condition
results during execution of the SELECT command. This paragraph displays a message and
the row of data retrieved.

The NOT FOUND condition that may be associated with the SELECT command is handled
by paragraph S600-NOT-FOUND . This paragraph displays the message Part Number not
found! , then passes control to B110-EXIT . SQLEXPLAIN does not provide a message for the
NOT FOUND condition, so the program must provide one.

Code the Preprocessor Generates

The NOT FOUND condition generates code only for data manipulation commands. Had
this program contained other data manipulation commands, NOT FOUND code would
have been generated for each data manipulation command that occurred sequentially after
the WHENEVER NOT FOUND command in the source code. Note also that none of the
WHENEVER commands caused exception-handling code to be generated for SQLEXPLAIN.

Runtime Status Checking and the SQLCA 5-15

* *

*Program COBEX5: *

*This program is the same as program COBEX2, except this *

*program handles deadlocks differently. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX5.

AUTHOR. HP TRAINING

INSTALLATION. HP.

DATE-WRITTEN. 23 JULY 1987.

DATE-COMPILED. 23 JULY 1987.

REMARKS. SQL'S SELECT WITH WHENEVER COMMAND.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

SPECIAL-NAMES. CONSOLE IS TERMINAL-INPUT.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(34).

$PAGE

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTNUMBER PIC X(16).

01 PARTNAME PIC X(30).

01 SALESPRICE PIC S9(8)V99 COMP-3.

01 SALESPRICEIND SQLIND.

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

Figure 5-1. Implicitly Invoking Status-Checking Paragraphs

5-16 Runtime Status Checking and the SQLCA

77 DONE-FLAG PIC X(01) VALUE "N".

88 NOT-DONE VALUE "N".

88 DONE VALUE "Y".

77 ABORT-FLAG PIC X(01) VALUE "N".

88 NOT-STOP VALUE "N".

88 ABORT VALUE "Y".

77 SQL-COMMAND-DONE-FLAG PIC X(01) VALUE "N".

88 NOT-SQL-CMD-DONE VALUE "N".

88 SQL-COMMAND-DONE VALUE "Y".

01 NOMEMORY PIC S9(9) COMP VALUE -4008.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 TRY-COUNTER PIC S9(4) COMP VALUE 0.

01 TRY-LIMIT PIC S9(4) COMP VALUE 3.

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(01) VALUE SPACE.

05 FILLER PIC X(15) VALUE SPACES.

01 DOLLARS PIC $$$,$$$,$$$.99.

PAGE

PROCEDURE DIVISION.

A100-MAIN.

DISPLAY "Program to SELECT specified rows from "

"the Parts Table - COBEX5".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Connect to PartsDBE".

DISPLAY " Begin Work".

DISPLAY " SELECT specified Part Number from the "

"Parts Table until user enters '/' ".

DISPLAY " Commit Work".

DISPLAY " Disconnect from PartsDBE".

DISPLAY " ".

OPEN OUTPUT CRT.

PERFORM A200-CONNECT-DBENVIRONMENT THRU A200-EXIT.

PERFORM B100-SELECT-DATA THRU B100-EXIT
UNTIL DONE.

Figure 5-1. Implicitly Invoking Status-Checking Paragraphs (page 2 of 7)

Runtime Status Checking and the SQLCA 5-17

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A100-EXIT.

EXIT.

A200-CONNECT-DBENVIRONMENT.

EXEC SQL

WHENEVER SQLERROR

GO TO S300-SERIOUS-ERROR �1�
END-EXEC.

DISPLAY "Connect to PartsDBE".

EXEC SQL CONNECT TO 'PartsDBE' END-EXEC.

A200-EXIT.

EXIT.

A300-BEGIN-TRANSACTION.

DISPLAY "Begin Work".

EXEC SQL

BEGIN WORK

END-EXEC.

A300-EXIT.

EXIT.

A400-END-TRANSACTION.

DISPLAY "Commit Work".

EXEC SQL

COMMIT WORK

END-EXEC.

A400-EXIT.

EXIT.

A500-TERMINATE-PROGRAM.

EXEC SQL

RELEASE

END-EXEC.

STOP RUN.

A500-EXIT.
EXIT.

Figure 5-1. Implicitly Invoking Status-Checking Paragraphs (page 3 of 7)

5-18 Runtime Status Checking and the SQLCA

$PAGE

B100-SELECT-DATA.

MOVE SPACES TO RESPONSE.

MOVE "Enter Part Number or '/' to STOP> "

TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE.

IF RESPONSE-PREFIX = "/"

MOVE "Y" TO DONE-FLAG

GO TO B100-EXIT

ELSE

MOVE RESPONSE TO PARTNUMBER.

EXEC SQL

WHENEVER SQLERROR
GO TO S100-SQL-ERROR �2�

END-EXEC.

EXEC SQL

WHENEVER SQLWARNING

GO TO S500-SQL-WARNING �3�
END-EXEC.

EXEC SQL

WHENEVER NOT FOUND

GO TO S600-NOT-FOUND �4�
END-EXEC.

MOVE "N" TO SQL-COMMAND-DONE-FLAG.

MOVE 0 TO TRY-COUNTER.

PERFORM B110-SQL-SELECT THRU B110-EXIT

UNTIL SQL-COMMAND-DONE.

B100-EXIT.

EXIT.

B110-SQL-SELECT.

ADD 1 TO TRY-COUNTER.

DISPLAY "SELECT PartNumber, PartName and SalesPrice".

Figure 5-1. Implicitly Invoking Status-Checking Paragraphs (page 4 of 7)

Runtime Status Checking and the SQLCA 5-19

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

EXEC SQL

SELECT PARTNUMBER, PARTNAME, SALESPRICE

INTO :PARTNUMBER,

:PARTNAME,

:SALESPRICE :SALESPRICEIND

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

IF SQL-COMMAND-DONE

GO TO B110-EXIT.

PERFORM A400-END-TRANSACTION THRU A400-EXIT

PERFORM B200-DISPLAY-ROW THRU B200-EXIT.

MOVE "Y" TO SQL-COMMAND-DONE-FLAG.

B110-EXIT.

EXIT.

B200-DISPLAY-ROW.

DISPLAY " ".

DISPLAY " Part Number: " PARTNUMBER.

DISPLAY " Part Name: " PARTNAME.

IF SALESPRICEIND < 0

DISPLAY " Sales Price is NULL"

ELSE

MOVE SALESPRICE TO DOLLARS

DISPLAY " Sales Price: " DOLLARS.

B200-EXIT.

EXIT.

$PAGE

S100-SQL-ERROR.

IF SQLCODE < DEADLOCK

PERFORM S200-SQL-EXPLAIN THRU S200-EXIT

UNTIL SQLCODE = 0

PERFORM A500-TERMINATE-PROGRAM.

IF SQLCODE = DEADLOCK

OR SQLCODE = NOMEMORY

Figure 5-1. Implicitly Invoking Status-Checking Paragraphs (page 5 of 7)

5-20 Runtime Status Checking and the SQLCA

IF TRY-COUNTER = TRY-LIMIT

MOVE "Y" TO SQL-COMMAND-DONE-FLAG

DISPLAY "Deadlock occurred, or not enough shared "

"memory. You may want to try again."

GO TO B110-EXIT

ELSE

GO TO B110-EXIT

ELSE

PERFORM S200-SQL-EXPLAIN THRU S200-EXIT

PERFORM A500-TERMINATE-PROGRAM.

S100-EXIT.

EXIT.

S200-SQL-EXPLAIN.

EXEC SQL

SQLEXPLAIN :SQLMESSAGE
END-EXEC.

DISPLAY SQLMESSAGE.

S200-EXIT.

EXIT.

S300-SERIOUS-ERROR.

PERFORM S200-SQL-EXPLAIN THRU S200-EXIT.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

S300-EXIT.

EXIT.

S500-SQL-WARNING.

DISPLAY "SQL WARNING has occurred. The following row "

"of data may not be valid:".

PERFORM B200-DISPLAY-ROW THRU B200-EXIT.

IF SQLWARN6 NOT = "W"

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

MOVE "Y" TO SQL-COMMAND-DONE-FLAG

GO TO B110-EXIT.

S500-EXIT.
EXIT.

Figure 5-1. Implicitly Invoking Status-Checking Paragraphs (page 6 of 7)

Runtime Status Checking and the SQLCA 5-21

S600-NOT-FOUND.

DISPLAY " ".

DISPLAY "Part Number not found!".

PERFORM A400-END-TRANSACTION THRU A400-EXIT.

MOVE "Y" TO SQL-COMMAND-DONE-FLAG

GO TO B110-EXIT.

S600-EXIT.

EXIT.

Figure 5-1. Implicitly Invoking Status-Checking Paragraphs (page 7 of 7)

5-22 Runtime Status Checking and the SQLCA

Explicit Status Checking Techniques

With explicit status checking, you invoke a paragraph after explicitly checking SQLCA values
rather than using the WHENEVER command. The program in Figure 5-1 has already
illustrated several uses of explicit status checking to:

Isolate errors so critical that they caused ALLBASE/SQL to roll back the current
transaction.

Control the number of times SQLEXPLAIN is executed.

Detect when more than one row quali�es for the SELECT operation.

The example in Figure 5-1 illustrates how implicit routines can sometimes reduce the amount
of status checking code. As the number of SQL operations in a program increases, however,
the likelihood of needing to return to di�erent locations in the program after execution of such
a routine increases.

The example shown in Figure 5-2 contains four data manipulation operations: INSERT,
UPDATE, DELETE, and SELECT. Each of these operations is executed from its own
paragraph.

As in the program in Figure 5-1, one paragraph is used for status checking: S100-SQL-
ERROR. Unlike the program in Figure 5-1, however, this paragraph is invoked after explicit
tests of SQLCODEs are made immediately following each data manipulation operation.

Because the status-checking paragraph is invoked with a PERFORM command, it does not
need to contain GO TO statements to return control to the point in the program where it was
invoked.

Runtime Status Checking and the SQLCA 5-23

01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 MULTIPLE-ROWS PIC S9(9) COMP VALUE -1002.

01 NOMEMORY PIC S9(9) COMP VALUE -4008.

.

.

PERFORM DM THRU DM-EXIT UNTIL DONE.

.

.

DM.

This paragraph prompts for a number that indicates whether

the user wants to SELECT, UPDATE, DELETE, or INSERT rows,

then invokes a paragraph that accomplishes the selected

activity. The DONE ag is set when the user enters a slash.

DM-EXIT.

.

.

.

INSERT-DATA.

Sentences that accept data from the user appear here.

EXEC SQL INSERT

INTO PURCHDB.PARTS (PARTNUMBER,

PARTNAME,

SALESPRICE)

VALUES (:PARTNUMBER,

:PARTNAME,

:SALESPRICE)

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-ERROR THRU S100-EXIT.

.

.

.

UPDATE-DATA.

This paragraph veri�es that the row(s) to be changed exist, then

invokes paragraph DISPLAY-UPDATE to accept new data from the user.

EXEC SQL SELECT PARTNUMBER, PARTNAME, SALESPRICE

INTO :PARTNUMBER,

:PARTNAME,

:SALESPRICE

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

IF SQLCODE = OK

PERFORM DISPLAY-UPDATE.

IF SQLCODE NOT = OK

PERFORM S100-SQL-ERROR THRU S100-EXIT.

Figure 5-2. Explicitly Invoking Status-Checking Paragraphs

5-24 Runtime Status Checking and the SQLCA

DISPLAY-UPDATE.

Sentences that prompt the user for new data appear here.

EXEC SQL UPDATE PURCHDB.PARTS

SET PARTNAME = :PARTNAME,

SALESPRICE = :SALESPRICE,

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-ERROR THRU S100-EXIT.

.

.

.

DELETE-DATA.

This paragraph veri�es that the row(s) to be deleted

exist, then invokes paragraph DISPLAY-DELETE to delete

the row(s).

EXEC SQL SELECT PARTNUMBER, PARTNAME, SALESPRICE

INTO :PARTNUMBER,

:PARTNAME,

:SALESPRICE

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

IF SQLCODE = OK

PERFORM DISPLAY-DELETE.

IF SQLCODE NOT = OK

PERFORM S100-SQL-ERROR THRU S100-EXIT.

.

.

.

DISPLAY-DELETE.

Sentences that verify that the deletion should

actually occur appear here.

EXEC SQL DELETE FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-ERROR THRU S100-EXIT.

Figure 5-2. Explicitly Invoking Status-Checking Paragraphs (page 2 of 3)

Runtime Status Checking and the SQLCA 5-25

.

SELECT-DATA.

Sentences that prompt for a partnumber appear here.

EXEC SQL SELECT PARTNUMBER, PARTNAME, SALESPRICE

INTO :PARTNUMBER,

:PARTNAME,

:SALESPRICE

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

IF SQLCODE = OK

PERFORM DISPLAY-ROW.

IF SQLCODE NOT = OK

PERFORM S100-SQL-ERROR THRU S100-EXIT.

.

S100-SQL-ERROR.

IF SQLCODE = NOT-FOUND

DISPLAY "Part Number not found!"

PERFORM A400-END-TRANSACTION THRU A400-EXIT

GO TO S100-EXIT.

IF SQLCODE = MULTIPLE-ROWS

DISPLAY "WARNING: More than one row qualifies!"

GO TO S100-EXIT.

IF SQLCODE = DEADLOCK

DISPLAY "Someone else is using that part number. "

"Please try again."

GO TO S100-EXIT.

IF SQLCODE = NOMEMORY

DISPLAY "TEMPORARY PROBLEM! Please try again."

GO TO S100-EXIT.

IF SQLCODE < DEADLOCK

PERFORM S200-SQL-EXPLAIN THRU S200-EXIT

UNTIL SQLCODE = 0

PERFORM A500-TERMINATE-PROGRAM

GO TO S100-EXIT.

IF SQLWARN0 = "W"

PERFORM S300-SQL-WARNING THRU S300-EXIT.

S100-EXIT.

EXIT.

Figure 5-2. Explicitly Invoking Status-Checking Paragraphs (page 3 of 3)

5-26 Runtime Status Checking and the SQLCA

Handling Deadlock and Shared Memory Problems

A deadlock exists when two transactions need data that the other transaction already has
locked. When a deadlock occurs, ALLBASE/SQL rolls back the transaction with the larger
priority number. If two deadlocked transactions have the same priority, ALLBASE/SQL rolls
back the newer transaction.

An SQLCODE of -14024 indicates that a deadlock has occurred:

Deadlock detected. (DBERR 14024)

An SQLCODE of -4008 indicates that ALLBASE/SQL does not have access to the amount of
shared memory required to execute a command:

ALLBASE/SQL shared memory allocation failed in DBCORE. (DBERR 4008)

One way of handling deadlocks and shared memory problems is shown in the previous
example, Figure 5-2. Another method would be to use a counter to reapply the transaction a
speci�ed number of times before notifying the user of the situation.

Determining Number of Rows Processed

SQLERRD(3) is useful in the following ways:

To determine how many rows were processed in one of the following operations, when the
operation could be executed without error:

SELECT

INSERT

UPDATE

DELETE

Cursor operations:

FETCH

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

The SQLERRD(3) value can be used in these cases only when SQLCODE does not contain
a negative number. When SQLCODE is 0, SQLERRD(3) is always equal to 1 for SELECT,
FETCH, UPDATE WHERE CURRENT, and DELETE WHERE CURRENT operations.
SQLERRD(3) may be greater than 1 if more than one row quali�es for an INSERT,
UPDATE, or DELETE operation. When SQLCODE is 100, SQLERRD(3) is 0 .

To determine how many rows were processed in one of the BULK operations:

BULK SELECT

BULK FETCH

BULK INSERT

In this case, you also need to test SQLCODE to determine whether the operation executed
without error. If SQLCODE is negative, SQLERRD(3) contains the number of rows that
could be successfully retrieved or inserted before an error occurred. If SQLCODE is 0,
SQLERRD(3) contains the total number of rows that ALLBASE/SQL put into or took from
the host variable array. If, in a BULK SELECT operation, more rows qualify than the array
can accommodate, SQLCODE will be 0.

Examples follow.

Runtime Status Checking and the SQLCA 5-27

INSERT, UPDATE, and DELETE Operations. The example in Figure 5-2 could be modi�ed to
display the number of rows inserted, updated, or deleted by using SQLERRD(3). In the case
of the update operation, for example, the actual number of rows updated could be displayed
after the UPDATE command is executed:

WORKING-STORAGE SECTION.

.

.

.

01 OK PIC S9(9) COMP VALUE 0.

01 NUMBER-OF-ROWS PIC X(4).

.

.

.

PROCEDURE DIVISION.

.

.

.

DISPLAY-UPDATE.

Sentences that prompt user for new data appear here.

EXEC SQL UPDATE PURCHDB.PARTS

SET PARTNAME = :PARTNAME,

SALESPRICE = :SALESPRICE,

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

IF SQLCODE = OK

MOVE SQLERRD(3) TO NUMBER-OF-ROWS

DISPLAY "The number of rows updated was: " NUMBER-OF-ROWS;

ELSE

DISPLAY "No rows could be updated!"

PERFORM S100-SQL-ERROR.

If the UPDATE command is successfully executed, SQLCODE is OK (de�ned as zero in the
WORKING-STORAGE SECTION) and SQLERRD(3) contains the number of rows updated.
If the UPDATE command cannot be successfully executed, SQLCODE contains a negative
number and SQLERRD(3) contains a 0.

BULK Operations. When using the BULK SELECT, BULK FETCH, or BULK INSERT
commands, you can use the SQLERRD(3) value in several ways:

If the command executes without error, to determine the number of rows retrieved into an
output host variable array or inserted from an input host variable array.

If the command causes an error condition, to determine the number of rows that could be
successfully put into or taken out of the host variable array before the error occurred.

In the code identi�ed as �1� in Figure 5-3, the value in SQLERRD(3) is displayed when only
some of the qualifying rows could be retrieved before an error occurred.

In the code identi�ed as �2�, the value in SQLERRD(3) is compared with the maximum array
size to determine whether more rows might have quali�ed than the program could display.
You could also use a cursor and execute the FETCH command until SQLCODE=100.

5-28 Runtime Status Checking and the SQLCA

In the code identi�ed as �3�, the value in SQLERRD(3) is used to control the number of times
procedure DISPLAY-ROW is executed.

Runtime Status Checking and the SQLCA 5-29

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTSTABLE.

05 TABLE-ELEMENT OCCURS 25 TIMES.

10 PARTNUMBER PIC X(16).

10 PARTNAME PIC X(30).

10 SALESPRICE PIC S9(8)V99 COMP-3.

01 ERRORMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.

01 MAXIMUMROWS PIC S9(9) COMP VALUE 25.

01 I PIC S9(9) COMP.

01 NUMBER-OF-ROWS PIC X(4).

01 DOLLARS PIC $$$,$$$,$$$.99.

.

.

.

PROCEDURE DIVISION.

.

.

.

BULK-SELECT.

EXEC SQL BULK SELECT PARTNUMBER,

PARTNAME,

SALESPRICE

INTO :PARTSTABLE

FROM PURCHDB.PARTS

END-EXEC.

IF SQLCODE = OK;

PERFORM DISPLAY-TABLE;

ELSE

IF SQLCODE = NOTFOUND;

DISPLAY " ";

DISPLAY "No rows qualify for this operation!";

ELSE

MOVE SQLERRD(3) TO NUMBER-OF-ROWS;

DISPLAY "Only " NUMBER-OF-ROWS "rows were retrieved " �1�
"before an error occurred!"

PERFORM DISPLAY-TABLE;

PERFORM DISPLAY-ERROR.

Figure 5-3. Determining Number of Rows Processed After a BULK SELECT

5-30 Runtime Status Checking and the SQLCA

.

.

.

DISPLAY-TABLE.

IF SQLERRD(3) = MAXIMUMROWS; �2�
DISPLAY " ";

DISPLAY "WARNING: There may be additional rows that qualify!"

The column headings are displayed here.

PERFORM DISPLAY-ROW VARYING I FROM 1 BY 1 �3�
UNTIL I > SQLERRD(3).

DISPLAY " ".

DISPLAY-ROW.

MOVE SALESPRICE(I) TO DOLLARS.

DISPLAY PARTNUMBER(I), "|",

PARTNAME(I), "|",

SALESPRICE(I), "|",

DOLLARS.

Figure 5-3. Determining Number of Rows Processed After a BULK SELECT (page 2 of 2)

Runtime Status Checking and the SQLCA 5-31

Detecting End of Scan

Previous examples in this chapter have illustrated how an SQLCODE of 100 can be detected
and handled for data manipulation commands that do not use a cursor. When a cursor is
being used, this SQLCODE value is used to determine when all rows in an active set have
been fetched:

.

.

.

EXEC SQL OPEN CURSOR1 END-EXEC.

.

.

.

PERFORM FETCH-ROW THRU FETCH-ROW-EXIT

UNTIL DONE-FETCH.

.

.

.

FETCH-ROW.

EXEC SQL FETCH CURSOR1

INTO :PARTNUMBER,

:PARTNAME,

:SALESPRICE

END-EXEC.

IF SQLCODE = OK;

PERFORM DISPLAY-ROW

ELSE

IF SQLCODE = NOTFOUND

MOVE "X" TO DONE-FETCH-FLAG;

DISPLAY " ";

DISPLAY "Row not found or no more rows!";
GO TO FETCH-ROW-EXIT;

ELSE

PERFORM DISPLAY-ERROR.

In this example, the active set is de�ned when the OPEN command is executed. The cursor
is then positioned before the �rst row of the active set. When the FETCH command is
executed, the �rst row in the active set is placed into the program's host variables, then
displayed. The FETCH command retrieves one row at a time into the host variables until
the last row in the active set has been retrieved; the next attempt to FETCH after the last
row from the active set has been fetched sets SQLCODE to NOTFOUND (de�ned as 100 in
WORKING-STORAGE). If no rows qualify for the active set, SQLCODE is NOTFOUND the
�rst time paragraph FETCH-ROW is executed.

5-32 Runtime Status Checking and the SQLCA

Determining When More Than One Row Qualifies

If more than one row quali�es for a non-BULK SELECT or FETCH operation,
ALLBASE/SQL sets SQLCODE to -10002. In the following example, when SQLCODE
is MULTIPLEROWS (de�ned as -10002 in WORKING-STORAGE), a status-checking
paragraph is not invoked; instead a warning message is displayed:

UPDATE-DATA.

This paragraph veri�es that the row(s) to be changed

exist, then invokes paragraph DISPLAY-UPDATE to accept

new data from the user.

EXEC SQL SELECT ORDERNUMBER, ITEMNUMBER, ORDERQTY

INTO :ORDERNUMBER,

:ITEMNUMBER,

:ORDERQTY

FROM PURCHDB.ORDERITEMS

WHERE ORDERNUMBER = :ORDERNUMBER

END-EXEC.

IF SQLCODE = OK

PERFORM DISPLAY-UPDATE.

IF SQLCODE NOT = OK

IF SQLCODE = MULTIPLEROWS

DISPLAY "WARNING: More than one row qualifies!"

PERFORM DISPLAY-UPDATE

ELSE

IF SQLCODE NOT = NOTFOUND

DISPLAY "Row not found."

ELSE

PERFORM S100-SQL-ERROR.

Note that the PARTS table in the sample database has a unique index on PARTNUMBER, so
a test for multiple rows is not required. This test is useful for the ORDERITEMS table which
does not have a unique index.

Detecting Log Full Condition

When the log �le is full, log space must be reclaimed before ALLBASE/SQL can process any
additional transactions. Your program can detect the situation, and it can be corrected by the
DBA.

SQLEXPLAIN retrieves the following message:

Log full. (DBERR 14046)

In the following example, SQLCODE is checked for a log full condition. If the condition
is true, ALLBASE/SQL has rolled back the current transaction. The program issues a
COMMIT WORK command, the S100-SQL-STATUS-CHECK routine is executed to display
any messages, and the program is terminated.

IF SQLCODE = -14046

EXEC SQL COMMIT WORK END-EXEC

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM S200-TERMINATE-PROGRAM THRU S200-EXIT.

Runtime Status Checking and the SQLCA 5-33

Handling Out of Space Conditions

It is possible that data or index space may be exhausted in a DBEFileSet. This could happen
as rows are being added or an index is being created or when executing queries which require
that data be sorted. Your program can detect the problem, and the DBA must add index or
data space to the appropriate DBEFileSet.

SQLEXPLAIN retrieves the following message:

Data or Index space exhaused in DBEFileSet. (DBERR 2502)

In the following example, SQLCODE is checked for an out of space condition. If the condition
is true, the transaction is rolled back to an appropriate savepoint. The program issues a
COMMIT WORK command, the S100-SQL-STATUS-CHECK routine is executed to display
any messages, and the program is terminated.

IF SQLCODE = -2502

EXEC SQL ROLLBACK WORK TO :SavePoint END-EXEC

EXEC SQL COMMIT WORK END-EXEC

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM S200-TERMINATE-PROGRAM THRU S200-EXIT.

Checking for Authorizations

When the DBEUserID related to an ALLBASE/SQL command does not have the authority to
execute the command, the following message is retreived by SQLEXPLAIN:

User ! does not have ! authorization. (DBERR 2300)

In the following example, SQLCODE is checked to determine if the user has proper connect
authority. If the condition is true, the S100-SQL-STATUS-CHECK is executed to display any
messages, and the program is terminated.

EXEC SQL CONNECT TO 'PARTSDBE' END-EXEC

IF SQLCODE = -2300

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT
PERFORM S200-TERMINATE-PROGRAM THRU S200-EXIT.

5-34 Runtime Status Checking and the SQLCA

6

Overview Of Data Manipulation

To manipulate data in an ALLBASE/SQL DBEnvironment, you use one of the following SQL
commands:

SELECT: to retrieve one or more rows from one or more tables.

INSERT: to insert one or more rows into a single table.

DELETE: to delete one or more rows from a single table.

UPDATE: to change the value of one or more columns in one or more rows in a single table.

Four techniques exist for using these commands in a program:

With simple data manipulation, you retrieve or insert a single row or you delete or update
one or more rows based on a speci�c criterion.

When using sequential table processing, you operate on a set of rows , one row at a time,
using a cursor. A cursor is a pointer that identi�es one row in the set of rows, called the
active set . You move through the active set, retrieving a row at a time and optionally
updating or deleting it.

With BULK table processing, you manipulate multiple rows at a time using a host variable
declared as an array. You can retrieve rows from a table into the host variable or insert
data from the host variable into rows of a table. A cursor can, but need not, be used for
some BULK operations.

When using dynamic operations, you preprocess SQL commands at run time. For example,
a program might accept data manipulation commands from a user. A cursor is used to
handle dynamic SELECT operations.

Table 6-1 summarizes which data manipulation commands can be used in each technique.
Note that the FETCH command is included in this table, since it must be used when you
manipulate data using a cursor.

Overview Of Data Manipulation 6-1

Table 6-1. How Data Manipulation Commands May Be Used

USABLE SQL COMMANNDS

TYPE OF
OPERATION

SELECT FETCH INSERT DELETE UPDATE DELETE
WHERE
CURRENT

UPDATE
WHERE
CURRENT

Simple X X X X

Sequential X X X X

BULK X X X

Dynamic X X X

The remainder of this chapter briey examines each of the four data manipulation techniques
(each technique is discussed in detail in Chapters 7 through 10) and introduces the use of a
cursor for data manipulation. First, however, this chapter addresses the query, a description
of data you want to retrieve. Queries are fundamental to ALLBASE/SQL data manipulation
because some of the elements of a query are also used to describe and limit data when you
update or delete it. In addition, it is common programming practice to retrieve and display
rows prior to changing or deleting them.

The Query

A query is a SELECT command that describes to ALLBASE/SQL the data you
want retrieved. You can retrieve all or only certain data from a table. You can have
ALLBASE/SQL group or order the rows you retrieve or perform certain calculations or
comparisons before presenting data to your program. You can retrieve data from multiple
tables. You can also retrieve data using views or combinations of tables and views.

The SELECT Command

The SELECT command identi�es the columns and rows you want in your query result as well
as the tables and views to use for data access. The columns are identi�ed in the select list .
The rows are identi�ed in several clauses (GROUP BY, HAVING, and ORDER BY). The
tables and views to access are identi�ed in the FROM clause. Data thus speci�ed is returned
into host variables named in the INTO clause:

EXEC SQL SELECT SelectList

INTO HostVariables

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

ORDER BY ColumnID

END-EXEC.

6-2 Overview Of Data Manipulation

To retrieve all data from a table, the SELECT command need specify only the following:

EXEC SQL BULK SELECT *

INTO :MYARRAY
FROM PURCHDB.PARTS

END-EXEC.

Although the shorthand notation * can be used in the select list to indicate you want all
columns from one or more tables or views, it is better programming practice to explicitly
name columns. Then, if the tables or views referenced are altered, your program will still
retrieve only the data its host variables are designed to accommodate:

EXEC SQL BULK SELECT PARTNUMBER,

PARTNAME,

SALESPRICE

INTO :MYARRAY

FROM PURCHDB.PARTS

END-EXEC.

The SELECT command has several clauses you can use to format the data retrieved from any
table:

The WHERE clause speci�es a search condition. A search condition consists of one or more
predicates. A predicate is a test each row must pass before it is returned to your program.

The GROUP BY clause and the HAVING clause tell how to group rows retrieved before
applying any aggregate function in the select list to each group of rows.

The ORDER BY clause causes ALLBASE/SQL to return rows in ascending or descending
order, based on the value in one or more columns.

The following SELECT command contains a WHERE clause that limits rows returned to
those not containing a SALESPRICE; the predicate used in the WHERE clause is known as
the null predicate:

EXEC SQL BULK SELECT PARTNAME,

SALESPRICE

INTO :MYARRAY

FROM PURCHDB.PARTS

WHERE SALESPRICE IS NULL

END-EXEC.

In the UPDATE and DELETE commands, you may need a WHERE clause to limit the rows
ALLBASE/SQL changes or deletes. In the following case, the sales price of parts priced lower
than $1000 is increased 10 percent; the WHERE clause in this case illustrates the comparison
predicate:

EXEC SQL UPDATE PURCHDB.PARTS
SET SALESPRICE = SALESPRICE * 1.1

WHERE SALESPRICE < 1000.00

END-EXEC.

The ALLBASE/SQL Reference Manual details the syntax and semantics for these and other
predicates.

Overview Of Data Manipulation 6-3

When you use an aggregate function in the select list, you can use the GROUP BY clause
to indicate how ALLBASE/SQL should group rows before applying the function. You can
also use the HAVING clause to limit the groups to only those satisfying certain criteria. The
following SELECT command will produce a query result containing two columns: a sales price
and a number indicating how many parts have that price:

EXEC SQL BULK SELECT SALESPRICE,

COUNT(PARTNUMBER)

INTO :MYARRAY

FROM PURCHDB.PARTS

GROUP BY SALESPRICE

HAVING AVG(SALESPRICE) > 1500.00

END-EXEC.

The GROUP BY clause in this example causes ALLBASE/SQL to group all parts with the
same sales price together. The HAVING clause causes ALLBASE/SQL to ignore any group
having an average sales price less than or equal to $1500.00. Once the groups have been
de�ned, ALLBASE/SQL applies the aggregate function COUNT to each group.

Each null value in a GROUP BY column constitutes a separate group. Therefore a query
result having a null value in the column(s) used to group rows would contain a separate row
for each null value.

An aggregate function is one example of an ALLBASE/SQL expression. An expression
speci�es a value. An expression can be used in several places in the SELECT command as
well as in the other data manipulation commands. Refer to the ALLBASE/SQL Reference
Manual for the syntax and semantics of expressions, as well as the e�ect of null values on
them.

The rows in the query result obtained with the preceding query could be returned in a
speci�c order by using the ORDER BY clause. In the following case, the rows are returned in
descending sales price order :

EXEC SQL BULK SELECT SALESPRICE,

COUNT(PARTNUMBER)

INTO :MYARRAY

FROM PURCHDB.PARTS

GROUP BY SALESPRICE

HAVING AVG(SALESPRICE) > 1500.00

ORDER BY SALESPRICE DESC

END-EXEC.

The examples shown so far have all included the BULK option and a host variable array,
because the query results would most likely contain more than one row. Besides the BULK
table processing technique, the sequential table processing technique could also be used to
handle multiple-row query results. Later in this chapter you'll �nd examples of both these
techniques, as well as examples illustrating simple data manipulation, in which only one-row
query results are expected.

6-4 Overview Of Data Manipulation

Selecting from Multiple Tables

To retrieve data from more than one table or view, the query describes to ALLBASE/SQL
how to join the tables before deriving the query result:

In the FROM clause, you identify the tables and views to be joined.

In the WHERE clause, you specify a join condition. A join condition de�nes the
condition(s) under which rows should be joined.

To obtain a query result consisting of the name of each part and its quantity-on-hand,
you need data from two tables in the sample database: PURCHDB.PARTS and
PURCHDB.INVENTORY. The join condition in this case is that you want ALLBASE/SQL
to join rows in these tables that have the same part number:

EXEC SQL BULK SELECT PARTNAME,

QTYONHAND

INTO :MYARRAY

FROM PURCHDB.PARTS,

PURCHDB.INVENTORY

WHERE PURCHDB.PARTS.PARTNUMBER =

PURCHDB.INVENTORY.PARTNUMBER

END-EXEC.

Whenever two or more columns in a query have the same name but belong to di�erent
tables, you avoid ambiguity by qualifying the column names with table names. Because the
columns speci�ed in the join condition shown above have the same name (PARTNUMBER)
in both tables, they are fully quali�ed with table names (PURCHDB.PARTS and
PURCHDB.INVENTORY). If one of the columns named PARTNUMBER were named
PARTNUM, the WHERE clause could be written as follows:

WHERE PARTNUMBER = PARTNUM

ALLBASE/SQL creates a row for the query result whenever the PARTNUMBER value in one
table matches that in the second table. As illustrated in Figure 6-1, any row containing a null
PARTNUMBER is excluded from the join, as are rows that have a PARTNUMBER value in
one table, but not the other.

Overview Of Data Manipulation 6-5

Figure 6-1. Sample Query Joining Multiple Tables

You can also join a table to itself . This type of join is useful when you want to identify values
within one table that have certain relationships.

6-6 Overview Of Data Manipulation

The PURCHDB.SUPPLYPRICE table contains the unit price, delivery time, and other data
for every vendor that supplies any part. Most parts are supplied by more than one vendor,
and prices vary with vendor. You can join the PURCHDB.SUPPLYPRICE table to itself in
order to identify for which parts the di�erence among vendor prices is greater than $50. The
query and its result would appear as follows:

EXEC SQL BULK SELECT X.PARTNUMBER,

X.VENDORNUMBER,

X.UNITPRICE,

Y.VENDORNUMBER,

Y.UNITPRICE

INTO :MYARRAY

FROM PURCHDB.SUPPLYPRICE X,

PURCHDB.SUPPLYPRICE Y

WHERE X.PARTNUMBER = Y.PARTNUMBER AND

X.UNITPRICE > (Y.UNITPRICE + 50.00)

END-EXEC.

----------------+------------+--------------+------------+--------------

PARTNUMBER |VENDORNUMBER|UNITPRICE |VENDORNUMBER|UNITPRICE

----------------+------------+--------------+------------+--------------

1123-P-01 | 9007| 550.00| 9002| 450.00

1123-P-01 | 9012| 525.00| 9002| 450.00

1123-P-01 | 9007| 550.00| 9008| 475.00

1123-P-01 | 9007| 550.00| 9003| 475.00

1433-M-01 | 9007| 700.00| 9003| 645.00

1623-TD-01 | 9011| 1800.00| 9015| 1650.00

|-------------------------|

|

These vendors charge

at least $50 more for

a part than the vendors

identi�ed in the next

two columns.

To obtain such a query result, ALLBASE/SQL joins one copy of the table with another copy
of the table, using the join condition speci�ed in the WHERE clause:

You name each copy of the table in the FROM clause by using a join variable. In this
example, the join variables are X and Y . Then you use the join variable to qualify column
names in the select list and other clauses in the query.

The join condition in this example speci�es that for each part number, the query result
should contain a row only when the price of the part from vendor to vendor di�ers by more
than $50.

Join variables can be used in any query as a shorthand way of referring to a table, but they
must be used in queries that join a table to itself so that ALLBASE/SQL can distinguish
between the two copies of the table.

Overview Of Data Manipulation 6-7

Selecting Using Views

Views are used to restrict data visibility as well as to simplify data access:

Data visibility can be limited using views by de�ning them such that only certain columns
and/or rows are accessible through them.

Data access can be simpli�ed using views by creating views based on joins or containing
columns that are derived from expressions or aggregate functions.

The sample database has a view called PURCHDB.VENDORSTATISTICS, de�ned as follows:

CREATE VIEW PURCHDB.VENDORSTATISTICS

(VENDORNUMBER,

VENDORNAME,

ORDERDATE,

ORDERQUANTITY,

TOTALPRICE)

AS

SELECT PURCHDB.VENDORS.VENDORNUMBER,

PURCHDB.VENDORS.VENDORNAME,

ORDERDATE,

ORDERQTY,

ORDERQTY * PURCHASEPRICE

FROM PURCHDB.VENDORS,

PURCHDB.ORDERS,

PURCHDB.ORDERITEMS

WHERE PURCHDB.VENDORS.VENDORNUMBER =

PURCHDB.ORDERS.VENDORNUMBER AND

PURCHDB.ORDERITEMS.ORDERNUMBER =

PURCHDB.ORDERITEMS.ORDERNUMBER

This view combines information from three base tables to provide a summary of data on
existing orders with each vendor. One of the columns in the view consists of a computed
expression: the total cost of an item on order with the vendor.

Note that the select list of the SELECT command de�ning this view contains some
quali�ed and some unquali�ed column names. Columns ORDERDATE, ORDERQTY, and
PURCHASEPRICE need not be quali�ed, because these names are unique among the column
names in the three tables joined in this view. In the WHERE clause, however, both join
conditions must contain fully quali�ed column names, since the columns are named the same
in each of the joined tables.

You can use a view in a query without restriction. In the FROM clause, you identify the view
as you would identify a table. When you reference columns belonging to the view, you use
the column names used in the view de�nition. In the view above, for example, the column
containing quantity-on-order is called ORDERQUANTITY, not ORDERQTY as it is in the
base table (PURCHDB.ORDERITEMS).

6-8 Overview Of Data Manipulation

The VENDORSTATISTICS view can be used to quickly determine the total dollar amount
of orders existing for each vendor. Because the view de�nition contains all the details for
deriving this information, the query based on this view is quite simple:

EXEC SQL SELECT VENDORNUMBER,

SUM(TOTALPRICE)

INTO :MYARRAY

FROM PURCHDB.VENDORSTATISTICS

GROUP BY VENDORNUMBER

END-EXEC.

The query result appears as follows:

------------+----------------------

VENDORNUMBER|(EXPR)

------------+----------------------

9001| 31300.00

9002| 6555.00

9003| 6325.00

9004| 2850.00

9006| 2010.00

9008| 12460.00

9009| 7750.00

9010| 9180.00

9012| 12280.00

9013| 8270.00

9014| 2000.00

9015| 17550.00

Although you can use views in queries without restriction, you can use only some views to
insert, update, or delete rows:

You cannot INSERT, UPDATE, or DELETE using a view if the view de�nition contains
one of the following:

Join operation
Aggregate function
DISTINCT option
GROUP BY clause

You cannot INSERT using a view if any column of the view is computed in an arithmetic
expression.

The PURCHDB.VENDORSTATISTICS view cannot be used for any INSERT, UPDATE,
or DELETE operation because it is based on a three table join and contains a column
(TOTALPRICE) derived from a multiplication operation.

Overview Of Data Manipulation 6-9

Simple Data Manipulation

In simple data manipulation, you retrieve or insert single rows or update one or more rows
based on a speci�c criterion. In most cases, the simple data manipulation technique is used to
support the random retrieval and/or change of speci�c rows.

In the following example, if the user wants to perform a DELETE operation, the program
performs the operation only if a single row quali�es. If no rows qualify or if more than one
row quali�es, the program displays a message. Note that the host variables in this case are
designed to accommodate only a single row. In addition, two of the columns may contain null
values, so an indicator variable is used for these columns:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTNUMBER PIC X(16).

01 PARTNAME PIC X(30).

01 PARTNAMEIND SQLIND.

01 SALESPRICE PIC S9(8)V99 COMP-3.

01 SALESPRICEIND SQLIND.

EXEC SQL END DECLARE SECTION END-EXEC.
...:

PROCEDURE DIVISION.

The program accepts a part number from the user,

then executes a query to determine whether one or

more rows containing that value actually exist.

EXEC SQL SELECT PARTNUMBER, PARTNAME, SALESPRICE

INTO :PARTNUMBER,

:PARTNAME :PARTNAMEIND,

:SALESPRICE :SALESPRICEIND

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

IF SQLCODE = OK THEN PERFORM DISPLAY-DELETE

ELSE

IF SQLCODE = 100

DISPLAY "Row not found!"

ELSE

IF SQLCODE = -10002

DISPLAY "WARNING: More than one row qualifies."

ELSE

PERFORM SQL-STATUS-CHECK.

DISPLAY-DELETE.

The qualifying row is displayed for the user to verify that

it should be deleted before the wing command is executed:

EXEC SQL DELETE FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

6-10 Overview Of Data Manipulation

END-EXEC.

Chapter 7 provides more details about simple data manipulation.

Overview Of Data Manipulation 6-11

Introducing The Cursor

You use a cursor to manage a query result that may contain more than one row when you
want to make all the qualifying rows available to the program user. Cursors are used in
sequential table processing and BULK table processing, as shown later in this chapter.

Like the cursor on a terminal screen, an ALLBASE/SQL cursor is a position indicator. It does
not, however, point to a column. Rather, it points to one row in an active set. An active set
is a query result obtained when a SELECT command associated with a cursor (de�ned in a
DECLARE CURSOR command) is executed (using the OPEN CURSOR command).

Each cursor used in a program must be declared before it is used. You use the DECLARE
CURSOR command to declare a cursor. The DECLARE CURSOR command names the
cursor and associates it with a particular SELECT command:

EXEC SQL DECLARE CURSOR1

CURSOR FOR

SELECT PARTNAME,

SALESPRICE

FROM PURCHDB.PARTS

WHERE PARTNUMBER BETWEEN :LOWVALUE AND :HIGHVALUE
ORDER BY PARTNAME

END-EXEC.

All cursor names within one program must be unique. You use a cursor name when you
perform data manipulation operations using the cursor.

The SELECT command in the cursor declaration does not specify any output host variables.
The SELECT command can, however, contain input host variables, as in the WHERE clause
of the cursor declaration above.

6-12 Overview Of Data Manipulation

Rows in the active set are returned to output host variables when the FETCH command is
executed:

EXEC SQL OPEN CURSOR1 END-EXEC.

.

. The OPEN command allocates internal

. bu�er space for the active set.

.

EXEC SQL [BULK] FETCH CURSOR1 INTO OutputHostVariables END-EXEC.

The FETCH command delivers one row or (if the

BULK option is used) multiple rows of the active

set into output host variables.

If a serial scan will be used to retrieve the active set, ALLBASE/SQL locks the table(s) when
the OPEN command is executed. If an index scan will be used, locks are placed when rows
are fetched.

Both the OPEN and the FETCH commands position the cursor:

The OPEN command positions the cursor before the �rst row of the active set.

The e�ect of the FETCH command on the cursor depends on whether the BULK option is
used.

If the BULK option is not used, the FETCH command advances the cursor to the next row
of the active set and delivers that row to the output host variables.

If the BULK option is used, the FETCH command delivers as many rows as the output
host variables (declared as an array) can accommodate and advances the cursor to the last
row delivered.

The row at which the cursor points at any one time is called the current row . When a row is
a current row, you can delete it as follows:

EXEC SQL DELETE FROM PURCHDB.PARTS

WHERE CURRENT OF CURSOR1

END-EXEC.

When you delete the current row, the cursor remains between the row deleted and the next
row in the active set until you execute the FETCH command again:

EXEC SQL FETCH CURSOR1

INTO :PARTNAME :PARTNAMEIND,

:SALESPRICE :SALESPRICEIND

END-EXEC.

When a row is a current row you can update it if the cursor declaration contains a FOR
UPDATE OF clause naming the column(s) you want to change. The following cursor, for
example, can be used to update the SALESPRICE column of the current row by using the
WHERE CURRENT OF option in the UPDATE command:

Overview Of Data Manipulation 6-13

EXEC SQL DECLARE CURSOR2

CURSOR FOR

SELECT PARTNAME, SALESPRICE

FROM PURCHDB.PARTS

WHERE PARTNUMBER BETWEEN :LOWVALUE AND :HIGHVALUE

FOR UPDATE OF SALESPRICE

END-EXEC.

.

. Because the DECLARE CURSOR command is not

. executed at run time, no status checking code

. needs to appear here.

.

EXEC SQL OPEN CURSOR2 END-EXEC.

.

. The program fetches and displays one row at a time.

.

EXEC SQL FETCH CURSOR2

INTO :PARTNAME :PARTNAMEIND,

:SALESPRICE :SALESPRICEIND

END-EXEC.

.

. If the program user wants to change the SALESPRICE

. of the row displayed (the current row), the UPDATE

. command is executed. The new SALESPRICE entered by

. the user is stored in an input host variable named

. NewSALESPRICE.

.

EXEC SQL UPDATE PURCHDB.PARTS

SET SALESPRICE = :NEWSALESPRICE

WHERE CURRENT OF CURSOR2

END-EXEC.

After the UPDATE command is executed, the updated

row remains the current row until the FETCH command

is executed again.

The restrictions that govern deletions and updates using a view also govern deletions and
updates using a cursor. You cannot delete or update a row using a cursor if the cursor
declaration contains any of the following:

Join operation

Aggregate function

DISTINCT

GROUP BY

UNION

ORDER BY

6-14 Overview Of Data Manipulation

After the last row in the active set has been fetched, the cursor is positioned after the last
row fetched and the value in SQLCODE is equal to 100. Therefore to retrieve all rows in
the active set, you execute the FETCH command until SQLCODE = 100. In the following
example, a ag named DONE-FETCH is set to X after the last row in the active set has been
fetched, and fetching stops:

77 DONE-FETCH-FLAG PIC X VALUE SPACE.

88 NOT-DONE-FETCH VALUE SPACE.

88 DONE-FETCH VALUE 'X'.

.

.

.

PROCEDURE DIVISION.

.

.

.

PERFORM FETCH-ROW THRU FETCH-ROW-EXIT

UNTIL DONE-FETCH.

.

.

.

FETCH-ROW.

.

.

.

EXEC SQL FETCH CURSOR3

INTO :PARTNUMBER,

:PARTNAME :PARTNAMEIND,

:SALESPRICE :SALESPRICEIND

END-EXEC.

IF SQLCODE = 0 THEN PERFORM DISPLAY-ROW

ELSE
IF SQLCODE = 100

MOVE 'X' TO DONE-FETCH-FLAG

DISPLAY "Row not found or no more rows"

GO TO FETCH-ROW-EXIT

ELSE

PERFORM SQL-STATUS-CHECK.

FETCH-ROW-EXIT.

When you are �nished operating on an active set, you use the CLOSE command:

EXEC SQL CLOSE CURSOR3 END-EXEC.

When you close a cursor, the active set becomes unde�ned and you cannot use the cursor
again unless you issue an OPEN command to reopen it. The COMMIT WORK and
ROLLBACK WORK commands also close any open cursors, automatically.

Figure 6-2 summarizes the e�ect of the cursor related commands on the position of the cursor
and on the active set. All the commands shown, plus the DECLARE CURSOR command,
must be included within one preprocessed unit (main program or subprogram).

Overview Of Data Manipulation 6-15

Figure 6-2. Effect of SQL Commands on Cursor and Active Sets

Chapter 8 contains more detailed information about using cursors. See Chapter 11 for
examples of using the KEEP CURSOR option of the OPEN command.

6-16 Overview Of Data Manipulation

Sequential Table Processing

In sequential table processing, you process an active set by fetching a row at a time and
optionally deleting or updating it. Sequential table processing is useful when the likelihood
of row changes throughout a set of rows is high and when a program user does not need to
review multiple rows to decide whether to change a speci�c row.

In the following example, rows for parts having the same SALESPRICE are displayed one at
a time. The program user can delete a displayed row or change its SALESPRICE. Note that
the host variable declarations are identical to those for the simple data manipulation example,
since only one row at a time is fetched. Rows are fetched as long as SQLCODE is not equal to
100:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTNUMBER PIC X(16).

01 PARTNAME PIC X(30).

01 PARTNAMEIND SQLIND.

01 SALESPRICE PIC S9(8)V99 COMP-3.

01 SALESPRICEIND SQLIND.

EXEC SQL END DECLARE SECTION END-EXEC.

01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.

.

.

.

PROCEDURE DIVISION.

The cursor declared allows the user to change

the SALESPRICE of the current row. It can also

be used to delete the current row.

EXEC SQL DECLARE PRICECURSOR

CURSOR FOR

SELECT PARTNUMBER, PARTNAME, SALESPRICE

FROM PURCHDB.PARTS

WHERE SALESPRICE = :SALESPRICE

FOR UPDATE OF SALESPRICE

END-EXEC.

.

. The program accepts a salesprice value

. from the user.

.

EXEC SQL OPEN PRICECURSOR END-EXEC.

IF SQLCODE = OK

PERFORM DISPLAY-ROW THRU DISPLAY-ROW-EXIT

UNTIL SQLCODE = NOTFOUND

ELSE

IF SQLCODE = NOTFOUND

DISPLAY "No rows have the salesprice specified!"

Overview Of Data Manipulation 6-17

ELSE

PERFORM SQL-STATUS-CHECK.

6-18 Overview Of Data Manipulation

DISPLAY-ROW.

EXEC SQL FETCH PRICECURSOR

INTO :PARTNUMBER,

:PARTNAME PARTNAMEIND,

:SALESPRICE SALESPRICEIND

END-EXEC.

.

. If all rows have not been fetched, the next

. row in the active set is displayed. Depending on

. the user's response to a program prompt, the row may

. be deleted or its SALESPRICE value changed.

.

IF RESPONSE = '/'

GO TO DISPLAY-ROW-EXIT

ELSE

IF RESPONSE = 'D'

EXEC SQL DELETE FROM PURCHDB.PARTS

WHERE CURRENT OF PRICECURSOR

END-EXEC

.

. Status checking code appears here.

.

ELSE

IF RESPONSE = 'U'

.

. A new SALESPRICE is accepted.

.

EXEC SQL UPDATE PURCHDB.PARTS

SET SALESPRICE = :SALESPRICE

WHERE CURRENT OF PRICECURSOR

END-EXEC

.

. Status checking code appears here.

.

DISPLAY-ROW-EXIT.

Sequential table processing is discussed in more detail in Chapter 8.

Overview Of Data Manipulation 6-19

BULK Table Processing

BULK table processing o�ers a way to retrieve or insert multiple rows with the execution of a
single SQL command. Three commands can be used in this fashion:

You can use the BULK SELECT command when you know in advance the maximum
number of rows in a multiple-row query result, as when the query result will contain a row
for each month of the year or day of the week. This command minimizes the time a table
is locked for the retrieval operation, because the program can execute the BULK SELECT
command, then immediately terminate the transaction, even before displaying any rows.

You can use the BULK FETCH command to handle multiple-row query results of
unpredictable maximum length. This use of a cursor is most suitable for display only
applications, such as programs that let a user browse through a query result, so many rows
at a time.

You can use the BULK INSERT command to insert multiple rows into a table. Like the
BULK SELECT command, this command is e�cient for concurrency, because any exclusive
lock acquired to insert rows need be held only until the BULK INSERT command is
executed.

In each of these three commands, the host variables that hold rows are in an array, as
illustrated in the following example. The example shows how you can use a cursor to retrieve
and display ten rows at a time from the active set. The host variable named STARTINDEX
is set to 1 so that the �rst row in each group of rows fetched is stored in the �rst element
of the PARTSTABLE array. The host variable named NUMBEROFROWS controls the
maximum number of rows returned with each execution of the BULK FETCH command.
STARTINDEX and NUMBEROFROWS are set in the paragraph named DISPLAY-TABLE .

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTSTABLE.

05 TABLE-ELEMENT OCCURS 10 TIMES.

10 PARTNUMBER PIC X(16).

10 PARTNAME PIC X(30).

10 PARTNAMEIND SQLIND.

01 STARTINDEX PIC S9(9) COMP.

01 NUMBEROFROWS PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.

01 I PIC S9(9) COMP.

01 MAXIMUMROWS PIC S9(9) COMP VALUE 10.

.

.

.

PROCEDURE DIVISION.

EXEC SQL DECLARE PARTSCURSOR

CURSOR FOR

SELECT PARTNUMBER, PARTNAME

FROM PURCHDB.PARTS

6-20 Overview Of Data Manipulation

END-EXEC.

.

.

.

EXEC SQL OPEN PARTSCURSOR END-EXEC.

IF SQLCODE = OK

PERFORM DISPLAY-TABLE THRU DISPLAY-TABLE-EXIT

UNTIL SQLCODE = NOTFOUND

ELSE

IF SQLCODE = NOTFOUND

DISPLAY "The PurchDB.Parts table is empty!"

ELSE

PERFORM SQL-STATUS-CHECK.

DISPLAY-TABLE.

The STARTINDEX and NUMBEROFROWS host variables

are initialized, then the BULK FETCH command is

executed.

MOVE 1 TO STARTINDEX.

MOVE MAXIMUMROWS TO NUMBEROFROWS.

EXEC SQL BULK FETCH PARTSCURSOR

INTO :PARTSTABLE,

:STARTINDEX,

:NUMBEROFROWS

END-EXEC.

As many as ten rows are put into the PARTSTABLE

array. If the FETCH command executes without error,

the value in SQLERRD(3) indicates the number of rows

returned to PARTSTABLE.

IF SQLCODE = OK

PERFORM DISPLAY-ROW VARYING I FROM 1 BY 1

UNTIL I = SQLERRD(3)

ELSE

IF SQLCODE = NOTFOUND

DISPLAY "No more rows qualify!"

ELSE

PERFORM SQL-STATUS-CHECK.

DISPLAY-TABLE-EXIT.

DISPLAY-ROW.

This paragraph displays all the rows returned

to the PARTSTABLE array during the last BULK FETCH.

BULK table processing is discussed in additional detail in Chapter 9.

Overview Of Data Manipulation 6-21

Dynamic Operations

Dynamic operations o�er a way to execute SQL commands that cannot be completely
de�ned until run time. You accept part or all of an SQL command that can be dynamically
preprocessed from the user, then use one of the following techniques to preprocess and execute
the command:

You can use the PREPARE command to preprocess a command, then execute it later
during the same transaction using the EXECUTE command. The PREPARE and
EXECUTE commands must be in the same program or subprogram.

You can use the EXECUTE IMMEDIATE command to preprocess and execute an SQL
command in one step.

The data manipulation commands you can dynamically preprocess from an ALLBASE/SQL
COBOL program are: DELETE, INSERT, and UPDATE. Refer to the ALLBASE/SQL
Reference Manual for a list of other commands you can dynamically preprocess.

In the following example, an SQL command entered by the program user is handled by using
the PREPARE and EXECUTE commands. The command to be dynamically preprocessed is
stored in a host variable named DYNAMICCOMMAND , declared to be 1024 bytes long, the
maximum length of a dynamically preprocessed SQL command.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 DYNAMICCOMMAND PIC X(1024).

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

.

PROCEDURE DIVISION

The program accepts an SQL command from the

user and moves it into DYNAMICCOMMAND for

preprocessing.

EXEC SQL PREPARE DYNAMCOMMAND FROM :DYNAMICCOMMAND END-EXEC.

Later during the same transaction, the prepared

command is executed as follows:

EXEC SQL EXECUTE DYNAMCOMMAND END-EXEC.

Dynamic preprocessing from a COBOL program is addressed in Chapter 10.

6-22 Overview Of Data Manipulation

7

Simple Data Manipulation

Simple data manipulation is a programming technique used to SELECT or INSERT a single
row. It can also be used to INSERT, DELETE, or UPDATE one or more rows based on a
speci�c criterion. These types of data manipulation operations are considered simple because
they can be done with SQL data manipulation commands that:

Do not contain the BULK option; therefore the host variables used are not arrays, and data
references are simpli�ed.

Are not executed in conjunction with a cursor; therefore additional SQL commands such as
FETCH and OPEN are not required.

Are not dynamically preprocessed; and therefore, additional arrays and SQL commands are
not required to execute them.

This chapter reviews how to use the SELECT, INSERT, DELETE, and UPDATE
commands for simple data manipulation. It then briey examines transaction management
considerations. For further discussion of transaction management, refer to the
ALLBASE/SQL Reference Manual .

A program illustrating simple data manipulation is found at the end of the chapter.

SQL Commands

The SQL commands used for simple data manipulation are:

SELECT

INSERT

DELETE

UPDATE

Refer to the ALLBASE/SQL Reference Manual for the complete syntax and semantics of
these commands.

SELECT

In simple data manipulation, you use the SELECT command to retrieve a single row, i.e., a
one-row query result. The form of the SELECT command that describes a one-row query
result is:

SELECT SelectList

INTO HostVariables

FROM TableNames

WHERE SearchCondition

Simple Data Manipulation 7-1

Note that the GROUP BY, HAVING, and ORDER BY clauses are not necessary, since these
clauses usually describe multiple-row query results.

You may omit the WHERE clause from certain queries when the select list contains only
aggregate functions:

EXEC SQL SELECT AVG(SALESPRICE)

INTO :AVGSALESPRICE

FROM PURCHDB.PARTS

END-EXEC.

A WHERE clause may be used, however, to qualify the rows over which the aggregate
function is applied:

EXEC SQL SELECT AVG(SALESPRICE)

INTO :AVGSALESPRICE

FROM PURCHDB.PARTS

WHERE SALESPRICE > :SALESPRICE

END-EXEC.

If the select list does not contain aggregate functions, a WHERE clause is used to restrict the
query result to a single row:

EXEC SQL SELECT PARTNAME, SALESPRICE

INTO :PARTNAME, :SALESPRICE

FROM PURCHDB.PARTS

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

Because the host variables that hold query results for a simple SELECT command are not
arrays of records, they can hold only a single row. A runtime error occurs when multiple rows
qualify for a simple SELECT command. You can test for an SQLCODE value of -10002 to
detect this condition:

WORKING-STORAGE SECTION.

.

.

01 MULTIPLEROWS PIC S9(9) COMP VALUE -10002.

.

.

.

PROCEDURE DIVISION.

.

.

.

The SELECT command is executed here.

IF SQLCODE = MULTIPLEROWS

DISPLAY "WARNING: More than one row qualifies."

When multiple rows qualify but the receiving host variables are not in an array of records and
the BULK option is not speci�ed, none of the rows are returned.

7-2 Simple Data Manipulation

When a column named in the WHERE clause has a unique index on it, you can omit testing
for multiple-row query results if the column was de�ned NOT NULL. A unique index prevents
the key column(s) from having duplicate values. The following index, for example, ensures
that only one row will exist for any part number in PURCHDB.PARTS:

CREATE UNIQUE INDEX PARTNUMINDEX

ON PURCHDB.PARTS (PARTNUMBER)

If a key column of a unique index can contain a null value, the unique index ensures that no
more than one null value can exist for that column.

Another method of qualifying the rows you want to select is to use the LIKE speci�cation to
search for a particular character string pattern.

For example, suppose you want to search for all VendorRemarks that contain a reference to
6%. Since the percent sign (%) happens to be one of the wildcard characters for the LIKE
speci�cation, you could use the following SELECT statement specifying the exclamation point
(!) as your escape character.

SELECT * FROM PurchDB.Vendors

WHERE VendorRemarks LIKE '%6!%%' ESCAPE '!'

The �rst and last percent sign character are the wildcard characters. The next to the last
percent sign, preceded by an exclamation point, is the percent sign that you want to escape,
so that it is actually used in the search pattern for the LIKE clause.

The character following an escape character must be either a wildcard character or the escape
character itself. Complete syntax is presented in the ALLBASE/SQL Reference Manual .

It is useful to execute the SELECT command before executing the INSERT, DELETE, or
UPDATE commands in the following situations:

When an application updates or deletes rows, the SELECT command can retrieve the
target data for user veri�cation before the data is changed. This technique minimizes
inadvertent data changes:

The program accepts a part number from the user into a host variable

named PARTNUMBER, then retrieves a row for that part.

EXEC SQL SELECT PARTNUMBER, BINNUMBER

INTO :PARTNUMBER, :BINNUMBER

FROM PURCHDB.INVENTORY

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

The row is displayed, and the user is asked if the bin number is to be

changed. If not, the user is prompted for another part number. If so,

the user is prompted for the new bin number, which is accepted into the

host variable named BINNUMBER. Then the UPDATE command is executed.

EXEC SQL UPDATE PURCHDB.INVENTORY

SET BINNUMBER = :BINNUMBER

WHERE PARTNUMBER = :PARTNUMBER

END-EXEC.

Simple Data Manipulation 7-3

To prohibit the multiple-row changes possible if multiple rows qualify for an UPDATE
or DELETE operation, an application can use the SELECT command. If multiple rows
qualify for the SELECT operation, the UPDATE or DELETE would not be executed.
Alternatively, the user could be advised that multiple rows would be a�ected and given a
choice as to whether to perform the change:

The program prompts the user for an order number and a vendor part

number in preparation for allowing the user to change the vendor part

number. The following SELECT command determines whether more than one

line at a time exists on the order for the speci�ed vendor part number:

EXEC SQL SELECT ITEMNUMBER

INTO :ITEMNUMBER

FROM PURCHDB.ORDERITEMS

WHERE ORDERNUMBER = :ORDERNUMBER

AND VENDPARTNUMBER = :VENDPARTNUMBER

END-EXEC.

When more than one row quali�es for this query, the program lets the

user decide whether to proceed with the update operation.

When an application lets the user INSERT a row that must contain a value higher than an
existing value, the SELECT command can identify the highest existing value:

EXEC SQL SELECT MAX(ORDERNUMBER)

INTO :MAXORDERNUMBER

FROM PURCHDB.ORDERS

END-EXEC.

The program can increment the maximum order number by one, then

provide the user with the new number and prompt for information

describing the new order.

INSERT

In simple data manipulation, you use the INSERT command to either insert a single row or
copy one or more rows into a table from another table.

You use the following form of the INSERT command to insert a single row:

INSERT INTO TableName

(ColumnNames)

VALUES (DataValues)

You can omit ColumnNames when you provide values for all columns in the target table:

EXEC SQL INSERT INTO PURCHDB.PARTS

VALUES (:PARTNUMBER,

:PARTNAME :PARTNAMEIND,

:SALESPRICE :SALESPRICEIND)

END-EXEC.

7-4 Simple Data Manipulation

Remember that when you do include column names but do not name all the columns in the
target table, ALLBASE/SQL attempts to insert a null value into each unnamed column. If an
unnamed column was de�ned as NOT NULL, the INSERT command fails.

To copy one or more rows from one or more tables to another table, use the following form of
the INSERT command:

INSERT INTO TableName

(ColumnNames)

SELECT SelectList

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

Note that the SELECT command embedded in this INSERT command cannot contain
an INTO or ORDER BY clause. In addition, any host variables used must be within the
WHERE or HAVING clauses.

The following example copies historical data for �lled orders into table PurchDB.OldOrders,
then deletes rows for these orders from PurchDB.Orders, keeping that table minimal in size.

The INSERT command copies rows from PURCHDB.ORDERS to PURCHDB.OLDORDERS.

EXEC SQL INSERT INTO PURCHDB.OLDORDERS

(OLDORDER, OLDVENDOR, OLDDATE)

SELECT ORDERNUMBER, VENDORNUMBER, ORDERDATE

FROM PURCHDB.ORDERS

WHERE ORDERNUMBER = :ORDERNUMBER

END-EXEC.

Then the DELETE command deletes rows from PURCHDB.ORDERS:

EXEC SQL DELETE FROM PURCHDB.ORDERS

WHERE ORDERNUMBER: = ORDERNUMBER

END-EXEC.

UPDATE

In simple data manipulation, you use the UPDATE command to change data in one or more
columns:

UPDATE TableName

SET Columname = ColumnValue

[,...]

WHERE SearchCondition

As in the case of the DELETE command, if you omit the WHERE clause, the value of any
column speci�ed is changed in all rows of the table.

If the WHERE clause is speci�ed, all rows satisfying the search condition are changed, for
example:

Simple Data Manipulation 7-5

EXEC SQL UPDATE PURCHDB.VENDORS

SET CONTACTNAME = :CONTACTNAME :CONTACTNAMEIND,

VENDORSTREET = :VENDORSTREET,
VENDORCITY = :VENDORCITY,

VENDORSTATE = :VENDORSTATE,

VENDORZIPCODE = :VENDORZIPCODE

WHERE VENDORNUMBER = :VENDORNUMBER

END-EXEC.

In this example, column CONTACTNAME can contain a null value. To insert a null value,
the program must assign a number less than 0 to the indicator variable for this column,
CONTACTNAMEIND:

The program prompts the user for new values for the four columns.

PROCEDURE DIVISION.

.

.

DISPLAY "Enter Vendor Street> ".

ACCEPT VENDORSTREET FREE.

DISPLAY "Enter Vendor City> ".

ACCEPT VENDORCITY FREE.

DISPLAY "Enter Vendor State> ".

ACCEPT VENDORSTATE FREE.

DISPLAY "Enter Vendor Zip Code> ".

ACCEPT VENDORZIPCODE FREE.

DISPLAY "Enter Contact Name (0 for null)> "

ACCEPT CONTACTNAME FREE.

If the user enters a 0 to assign a null value to column

ContactName, the program assigns a -1 to the indicator

variable; otherwise, the program assigns a 0 to this variable:

IF CONTACTNAME = '0' THEN

MOVE -1 TO CONTACTNAMEIND

ELSE

MOVE ZERO TO CONTACTNAMEIND.

7-6 Simple Data Manipulation

DELETE

In simple data manipulation, you use the DELETE command to delete one or more rows from
a table:

DELETE FROM TableName

WHERE SearchCondition

The WHERE clause speci�es a SearchCondition that rows must meet to be deleted, for
example:

EXEC SQL DELETE FROM PURCHDB.ORDERS

WHERE ORDERDATE < :ORDERDATE

END-EXEC.

If the WHERE clause is omitted, all rows in the table are deleted.

Transaction Management

The major objectives of transaction management are to minimize the contention for locks
and to ensure logical data consistency. Minimizing lock contention implies short transactions
and/or locking small, unique parts of a database. Logical data consistency implies keeping
data manipulations that should all occur or all not occur within a single transaction. De�ning
your transactions should always be made with these two objectives in mind. For in depth
transaction management information, refer to the ALLBASE/SQL Reference Manual .

Most simple data manipulation applications are for random operations on a minimal number
of related rows that satisfy very speci�c criteria. To minimize lock contention, you should
begin a new transaction each time these criteria change. For example, if an application
displays order information for random orders, delimit each new query with a BEGIN WORK
and a COMMIT WORK command:

The program accepts an order number from the user.

EXEC SQL BEGIN WORK END-EXEC.

EXEC SQL SELECT ORDERNUMBER,

VENDORNUMBER,

ORDERDATE

INTO :ORDERNUMBER,

:VENDORNUMBER :VENDORNUMBERIND,

:ORDERDATE :ORDERDATEIND

FROM PURCHDB.ORDERS

WHERE ORDERNUMBER = :ORDERNUMBER

END-EXEC.

Error checking is done here.

EXEC SQL COMMIT WORK END-EXEC.

Simple Data Manipulation 7-7

The program displays the row, then prompts for another order number.

7-8 Simple Data Manipulation

Because SELECT commands are often executed prior to a related UPDATE, DELETE, or
INSERT command, you must decide whether to make each command a separate transaction
or combine commands within one transaction. And you must decide which isolation level to
use to attain your desired data consistency and to minimize possible lock contention.

If, for example, you combine SELECT and DELETE operations within one transaction,
when the DELETE command is executed, the row deleted is guaranteed to be the same row
retrieved and displayed for the user. However, if the program user goes to lunch between
SELECT and DELETE commands, and the default isolation level (RR) is in e�ect, no other
users can modify the page or table locked by the SELECT command until the transaction
terminates.

If you put the SELECT and DELETE operations in separate transactions, another
transaction may change the target row(s) before the DELETE command is executed.
Therefore the user may delete a row di�erent from that originally intended. One way to
handle this situation is to verify that no changes have occurred as follows:

EXEC SQL BEGIN WORK END-EXEC.

The SELECT command is executed and the query result displayed.

EXEC SQL COMMIT WORK END-EXEC.

The program user requests that the row be deleted.

EXEC SQL BEGIN WORK END-EXEC.

The SELECT command is re-executed, and the program compares the

original query result with the new one. If the query results match, the

DELETE command is executed.

EXEC SQL COMMIT WORK END-EXEC.

If the new query result does not match the original query result, the

program re-executes the SELECT command to display the query result.

In the case of some multi-command transactions, you must execute multiple data
manipulation commands within a single transaction for the sake of logical data consistency.

Simple Data Manipulation 7-9

In the following example, the DELETE and INSERT commands are used in place of the
UPDATE command to insert null values into the target table.

EXEC SQL BEGIN WORK END-EXEC.

The DELETE command is executed.

If the DELETE command fails, the transaction can be terminated as follows:

EXEC SQL COMMIT WORK END-EXEC.

If the DELETE command succeeds, the INSERT command is executed.

If the INSERT command fails, the transaction is terminated as follows:

EXEC SQL ROLLBACK WORK END-EXEC.

If the INSERT command succeeds, the transaction is terminated as follows:

EXEC SQL COMMIT WORK END-EXEC.

Logical data consistency is also an issue when an UPDATE, INSERT, or DELETE command
may operate on multiple rows. If one of these commands fails after only some of the target
rows have been operated on, you must use a ROLLBACK WORK command to ensure that
any row changes made before the failure are undone:

EXEC SQL DELETE FROM PURCHDB.ORDERS

WHERE ORDERDATE < :ORDERDATE

END-EXEC.

IF SQLCODE NOT OK

EXEC SQL ROLLBACK WORK END-EXEC.

7-10 Simple Data Manipulation

Sample Program COBEX7 Using Simple DML Commands

The ow chart shown in Figure 7-1 summarizes the functionality of program COBEX7.
This program uses the four simple data manipulation commands to operate on the
PURCHDB.VENDORS table. COBEX7 uses a function menu to determine whether to
execute one or more SELECT, UPDATE, DELETE, or INSERT operations. Each execution
of a simple data manipulation command is done in a separate transaction.

The runtime dialog for program COBEX7 appears in Figure 7-2, and the source code in
Figure 7-3.

Paragraph A200-CONNECT-DBENVIRONMENT starts a DBE session � 1 �. This paragraph
executes the CONNECT command � 3 � for the sample DBEnvironment, PartsDBE .

The operation performed next depends on the number entered when a function menu is
displayed � 7 �:

The program terminates if 0 is entered.

Paragraph C100-SELECT-DATA is executed if 1 is entered.

Paragraph C200-UPDATE-DATA is executed if 2 is entered.

Paragraph C300-DELETE-DATA is executed if 3 is entered.

Paragraph C400-INSERT-DATE is executed if 4 is entered.

Paragraph C100-SELECT-DATA � 8 � prompts for a vendor number or a 0 � 9 �. If a 0
is entered, the function menu is re-displayed. If a vendor number is entered, paragraph
A300-BEGIN-TRANSACTION is executed � 10 � to issue the BEGIN WORK command � 4 �.
Then paragraph D200-SQL-SELECT is performed � 11 � to retrieve all data for the speci�ed
vendor from PURCHDB.VENDORS � 50 �. The SQLCODE returned is examined to determine
the next action:

If no rows qualify for the SELECT operation, a message � 13 � is displayed and the
transaction is terminated � 15 �. Paragraph A400-COMMIT-WORK terminates the
transaction by executing the COMMIT WORK command � 5 �. The user is then
re-prompted for a vendor number or a 0.

Simple Data Manipulation 7-11

If the SELECT command execution results in an error condition, paragraph S100-SQL-
STATUS-CHECK is executed � 14 �. This paragraph executes SQLEXPLAIN � 51 �
to display all error messages. Then the transaction is terminated � 15 � and the user
re-prompted for a vendor number or a 0.

If the SELECT command can be successfully executed, paragraph D100-DISPLAY-ROW
� 12 � is executed to display the row. This paragraph examines the null indicators for
each of the three potentially null columns (CONTACTNAME , PHONENUMBER, and
VENDORREMARKS). If any null indicator contains a value less than 0 � 49 �, a message
indicating that the value is null is displayed. After the row is completely displayed, the
transaction is terminated � 15 � and the user re-prompted for a vendor number or

Paragraph C200-UPDATE-DATA � 16 � lets the user UPDATE the value of a column only
if it contains a null value. The paragraph prompts for a vendor number or a 0 � 17 �. If a
0 is entered, the function menu is re-displayed. If a vendor number is entered, paragraph
A300-BEGIN-TRANSACTION is executed � 18 �. Then a SELECT command is executed to
retrieve data from PURCHDB.VENDORS for the vendor speci�ed � 19 �.

The SQLCODE returned is examined to determine the next action:

If no rows qualify for the SELECT operation, a message � 21 � is displayed and the
transaction is terminated � 23 �. The user is then re-prompted for a vendor number or a 0.

If the SELECT command execution results in an error condition, paragraph S100-SQL-
STATUS-CHECK is executed � 22 �. Then the transaction is terminated � 23 � and the user
re-prompted for vendor number or a 0.

If the SELECT command can be successfully executed, paragraph C250-DISPLAY-
UPDATE � 20 � is executed. This paragraph executes paragraph D100-DISPLAY-ROW to
display the row retrieved � 24 �. The paragraph then determines whether the row contains
any null values. This is the case if any of the three potentially null columns contains a
non-zero value � 25 �.

If no null values exist, a message is displayed � 26 � and the transaction is terminated � 23 �;
the user is then re-prompted for a vendor number or a 0.

If there are any null values, the null indicators are examined to determine which of them
contain a negative value � 27 �. A negative null indicator means the column contains a
null value, and the user is prompted for a new value � 28 �. If the user enters a 0, the
program assigns a -1 to the null indicator � 29 � so that when the UPDATE command
� 30 � is executed, a null value is assigned to that column. If a non-zero value is entered,
the program assigns a 0 to the null indicator so that the value speci�ed is assigned to that
column. After the UPDATE � 30 � command is executed, the transaction is terminated � 23 �
and the user re-prompted for a vendor number or a 0.

7-12 Simple Data Manipulation

Paragraph C300-DELETE-DATA � 31 � lets the user DELETE one row. The paragraph
prompts for a vendor number or a 0 � 32 �. If a 0 is entered, the function menu is re-displayed.
If a vendor number is entered, paragraph A300-BEGIN-TRANSACTION is executed � 33 �.
Then a SELECT command is executed to retrieve all data for the vendor speci�ed from
PURCHDB.VENDORS � 34 � The SQLCODE returned is examined to determine the next
action:

If no rows qualify for the SELECT operation, a message � 36 � is displayed and the
transaction is terminated � 38 �. The user is then re-prompted for a vendor number or a 0.

If the SELECT command execution results in an error condition, paragraph S100-SQL-
STATUS-CHECK is executed � 37 �. Then the transaction is terminated � 38 � and the user
re-prompted for vendor number or a 0.

If the SELECT command can be successfully executed, paragraph C350-DISPLAY-
DELETE � 35 � is executed. This paragraph executes paragraph D100-DISPLAY-ROW to
display the row retrieved � 39 �. Then the user is asked whether the row is to be deleted
� 40 �. If not, the transaction is terminated � 38 � and the user re-prompted for a vendor
number or a 0. If so, the DELETE command � 41 � is executed before the transaction is
terminated � 38 � and the user re-prompted.

Paragraph C400-INSERT-DATA � 42 � lets the user INSERT one row. The paragraph prompts
for a vendor number or a 0 � 43 �. If a 0 is entered, the function menu is re-displayed. If a
vendor number is entered, the user is prompted for values for each column. The user can
enter a 0 to specify a null value for potentially null columns � 44 �; to assign a null value, the
program assigns a -1 to the appropriate null indicator � 45 �. After a transaction is started
� 46 �, an INSERT command � 47 � is used to insert a row containing the speci�ed values. After
the INSERT operation, the transaction is terminated � 48 �, and the user re-prompted for a
vendor number or a 0.

When the user enters a 0 in response to the function menu display, the program terminates
by executing paragraph A500-TERMINATE-PROGRAM � 2 �. This paragraph executes the
RELEASE command � 6 �.

Simple Data Manipulation 7-13

Figure 7-1. Flow Chart of Program COBEX7

7-14 Simple Data Manipulation

Figure 7-1. Flow Chart of Program COBEX7 (page 2 of 2)

Simple Data Manipulation 7-15

:RUN COBEX7P

Program for Simple Data Manipulation of Vendors Table - COBEX7

Connect to PartsDBE

1 SELECT rows from PurchDB.Vendors table

2 UPDATE rows with null values in PurchDB.Vendors table

3 DELETE rows from PuchDB.Vendors table

4 INSERT rows into PurchDB.Vendors table

Enter choice or 0 to stop> 4

*** Procedure to INSERT rows into PurchDB.Vendors ***

Enter Vendor Number or 0 for MENU> 9016

Enter Vendor Name> Wolfe Works

Enter Contact Name (0 for null)> Stanley Wolfe

Enter Phone Number (0 for null)> 408 975 6061

Enter Vendor Street> 7614 Canine Way

Enter Vendor City> San Jose

Enter Vendor State> CA

Enter Vendor Zip Code> 90016

Enter Vendor Remarks (0 for null)> 0

Begin Work

INSERT row into PurchDB.Vendors

Commit Work

Enter Vendor Number or 0 for MENU> 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP> 1

Figure 7-2. Runtime Dialog of Program COBEX7

7-16 Simple Data Manipulation

*** Procedure to SELECT rows from PurchDB.Vendors ***

Enter Vendor Number or 0 for MENU> 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks is NULL

Commit Work

Enter Vendor Number or 0 for MENU> 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP> 2

*** Procedure to UPDATE rows in PurchDB.Vendors ***

Enter Vendor Number or 0 for MENU> 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks is NULL

Enter new VendorRemarks (0 for null)> can expedite shipments

Commit Work

Figure 7-2. Runtime Dialog of Program COBEX7 (page 2 of 3)

Simple Data Manipulation 7-17

Enter Vendor Number or 0 for MENU> 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP> 3

*** Procedure to DELETE rows from PurchDB.Vendors ***

Enter Vendor Number or 0 for MENU> 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works
ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks: can expedite shipments

Is it OK to DELETE this row (N/Y)? > Y

DELETE row from PurchDB.Vendors

Commit Work

Enter Vendor Number or 0 for MENU> 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP> 0

END OF PROGRAM

:

Figure 7-2. Runtime Dialog of Program COBEX7 (page 3 of 3)

7-18 Simple Data Manipulation

* *

* This program illustrates simple data manipulation. It uses *

* the UPDATE command with indicator variables to update any *

* row in the Vendors table that contains null values. It *

* also uses indicator variables in conjunction with SELECT *

* and INSERT. The DELETE command is also illustrated. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX7.

AUTHOR. JIM FRANCIS, KAREN THOMAS, JOANN GRAY

INSTALLATION. HP.

DATE-WRITTEN. 14 OCT 1987.

DATE-COMPILED. 14 OCT 1987.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(40).

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE

Simple Data Manipulation 7-19

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 VENDORNUMBER PIC S9(4) COMP.

01 VENDORNAME PIC X(30).

01 CONTACTNAME PIC X(30).

01 CONTACTNAMEIND SQLIND.

01 PHONENUMBER PIC X(15).

01 PHONENUMBERIND SQLIND.

01 VENDORSTREET PIC X(30).

01 VENDORCITY PIC X(20).

01 VENDORSTATE PIC X(2).

01 VENDORZIPCODE PIC X(10).

01 VENDORREMARKS.

49 REMARKSLENGTH PIC S9(9) COMP.

49 REMARKS-DATA PIC X(60).

01 VENDORREMARKSIND SQLIND.

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

77 DONE-FLAG PIC X VALUE SPACE.

88 NOT-DONE VALUE SPACE.

88 DONE VALUE 'X'.

77 FUNC-DONE-FLAG PIC X VALUE SPACE.

88 FUNC-NOT-DONE VALUE SPACE.

88 FUNC-DONE VALUE 'X'.

77 ABORT-FLAG PIC X VALUE SPACE.

88 NOT-STOP VALUE SPACE.

88 ABORT VALUE 'X'.

01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(1) VALUE SPACE.

05 RESPONSE-SUFFIX PIC X(15) VALUE SPACES.

01 RESPONSE1 PIC S9(9) COMP.

01 COUNTER PIC S9(4) COMP.

01 NUMFORMAT PIC ZZZZZ9.

PROCEDURE DIVISION.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 2 of 14)

7-20 Simple Data Manipulation

A100-MAIN.

DISPLAY "Program for Simple Data Manipulation of Vendors Tabl

- "e - COBEX7"

DISPLAY " ".

OPEN OUTPUT CRT.

PERFORM A200-CONNECT-DBENVIRONMENT THRU A200-EXIT. � 1 �

PERFORM B100-DISPLAY-MENU THRU B100-EXIT

UNTIL DONE.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT. � 2 �

A100-EXIT.

EXIT.

A200-CONNECT-DBENVIRONMENT.

DISPLAY "Connect to PartsDBE".

EXEC SQL

CONNECT TO 'PartsDBE' � 3 �
END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A200-EXIT.

EXIT.

A300-BEGIN-TRANSACTION.

DISPLAY " ".

DISPLAY "Begin Work".

EXEC SQL

BEGIN WORK � 4 �
END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 3 of 14)

Simple Data Manipulation 7-21

A300-EXIT.

EXIT.

A400-COMMIT-WORK.

DISPLAY " ".

DISPLAY "Commit Work".

EXEC SQL

COMMIT WORK � 5 �
END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A400-EXIT.

EXIT.

A500-TERMINATE-PROGRAM.

EXEC SQL

RELEASE � 6 �
END-EXEC.

STOP RUN.

A500-EXIT.

EXIT.

B100-DISPLAY-MENU.

DISPLAY " 1 . . . SELECT rows from PurchDB.Vendors table ".

DISPLAY " 2 . . . UPDATE rows with null values "

"in PurchDB.Vendors table ".

DISPLAY " 3 . . . DELETE rows from PurchDB.Vendors table".

DISPLAY " 4 . . . INSERT rows into PurchDB.Vendors table".

MOVE "Enter choice or 0 to STOP > " TO PROMPT.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 4 of 14)

7-22 Simple Data Manipulation

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE1 FREE. � 7 �
IF RESPONSE1 = ZERO

MOVE "X" TO DONE-FLAG

GO TO B100-EXIT.

MOVE SPACES TO FUNC-DONE-FLAG.

IF RESPONSE1 = 1

DISPLAY " "

DISPLAY " *** Procedure to SELECT rows from PurchDB.Vendo

- "rs *** "

DISPLAY " "

PERFORM C100-SELECT-DATA THRU C100-EXIT
UNTIL FUNC-DONE.

IF RESPONSE1 = 2

DISPLAY " "

DISPLAY " *** Procedure to UPDATE rows in PurchDB.Vendors

- " *** "

DISPLAY " "

PERFORM C200-UPDATE-DATA THRU C200-EXIT

UNTIL FUNC-DONE.

IF RESPONSE1 = 3

DISPLAY " "

DISPLAY " *** Procedure to DELETE rows from PurchDB.Vendo

- "rs *** "

DISPLAY " "

PERFORM C300-DELETE-DATA THRU C300-EXIT

UNTIL FUNC-DONE.

IF RESPONSE1 = 4

DISPLAY " *** Procedure to INSERT rows into PurchDB.Vendo

- "rs *** "

PERFORM C400-INSERT-DATA THRU C400-EXIT

UNTIL FUNC-DONE.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 5 of 14)

Simple Data Manipulation 7-23

IF RESPONSE1 NOT = 0

AND RESPONSE1 NOT = 1

AND RESPONSE1 NOT = 2

AND RESPONSE1 NOT = 3

AND RESPONSE1 NOT = 4

DISPLAY "Enter 0-4 only, please".

B100-EXIT.

C100-SELECT-DATA. � 8 �

MOVE "Enter VendorNumber or 0 for MENU> " TO PROMPT. � 9 �
WRITE PROMPT.

ACCEPT RESPONSE1 FREE.
IF RESPONSE1 = ZERO

MOVE "X" TO FUNC-DONE-FLAG

GO TO C100-EXIT

ELSE

MOVE RESPONSE1 TO VENDORNUMBER.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT. � 10 �

DISPLAY "SELECT * from PurchDB.Vendors".

PERFORM D200-SQL-SELECT THRU D200-EXIT. � 11 �

IF SQLCODE = OK

PERFORM D100-DISPLAY-ROW THRU D100-EXIT � 12 �
ELSE

IF SQLCODE = NOTFOUND

DISPLAY "Row not found!" � 13 �
ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT. � 14 �

PERFORM A400-COMMIT-WORK THRU A400-EXIT. � 15 �

C100-EXIT.

EXIT.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 6 of 14)

7-24 Simple Data Manipulation

C200-UPDATE-DATA. � 16 �

MOVE "Enter VendorNumber or 0 for MENU> " TO PROMPT.

DISPLAY " ".

WRITE PROMPT.

ACCEPT RESPONSE1 FREE.

IF RESPONSE1 = ZERO � 17 �
MOVE "X" TO FUNC-DONE-FLAG

GO TO C200-EXIT

ELSE

MOVE RESPONSE1 TO VENDORNUMBER.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT. � 18 �

DISPLAY "SELECT * from PurchDB.Vendors".

PERFORM D200-SQL-SELECT THRU D200-EXIT. � 19 �

IF SQLCODE = OK

PERFORM C250-DISPLAY-UPDATE THRU C250-EXIT � 20 �
ELSE

IF SQLCODE = NOTFOUND � 21 �
DISPLAY "Row not found!"

ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT. � 22 �

PERFORM A400-COMMIT-WORK THRU A400-EXIT. � 23 �

C200-EXIT.

EXIT.

C250-DISPLAY-UPDATE.

PERFORM D100-DISPLAY-ROW THRU D100-EXIT. � 24 �

IF CONTACTNAMEIND = 0 � 25 �
AND PHONENUMBERIND = 0

AND VENDORREMARKSIND = 0

DISPLAY " No null values exist for this vendor." � 26 �
GO TO C250-EXIT.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 7 of 14)

Simple Data Manipulation 7-25

IF CONTACTNAMEIND < 0 � 27 �
MOVE SPACES TO CONTACTNAME

MOVE "Enter New ContactName (0 for NULL)> " TO PROMPT � 28 �
WRITE PROMPT

ACCEPT CONTACTNAME FREE.

IF PHONENUMBERIND < 0

MOVE SPACES TO PHONENUMBER

MOVE "Enter New PhoneNumber (0 for NULL)> " TO PROMPT

WRITE PROMPT

ACCEPT PHONENUMBER FREE.

IF VENDORREMARKSIND < 0

MOVE SPACES TO VENDORREMARKS

MOVE "Enter New VendorRemarks (0 for NULL)> " TO PROMPT

WRITE PROMPT

ACCEPT REMARKS FREE.

IF CONTACTNAME = 0 � 29 �
MOVE -1 TO CONTACTNAMEIND

ELSE

MOVE 0 TO CONTACTNAMEIND.

IF PHONENUMBER = 0

MOVE -1 TO PHONENUMBERIND

ELSE

MOVE 0 TO PHONENUMBERIND.

IF VENDORREMARKS = 0

MOVE -1 TO VENDORREMARKSIND

ELSE

MOVE 0 TO VENDORREMARKSIND.

EXEC SQL UPDATE PURCHDB.VENDORS � 30 �
SET CONTACTNAME = :CONTACTNAME

:CONTACTNAMEIND,

PHONENUMBER = :PHONENUMBER

:PHONENUMBERIND,

VENDORREMARKS = :VENDORREMARKS

:VENDORREMARKSIND

WHERE VENDORNUMBER = :VENDORNUMBER

END-EXEC.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 8 of 14)

7-26 Simple Data Manipulation

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

C250-EXIT.

EXIT.

C300-DELETE-DATA. � 31 �

MOVE "Enter VendorNumber or 0 for MENU> " TO PROMPT. � 32 �
WRITE PROMPT.

ACCEPT RESPONSE1 FREE.

IF RESPONSE1 = ZERO

MOVE "X" TO FUNC-DONE-FLAG

GO TO C300-EXIT

ELSE

MOVE RESPONSE1 TO VENDORNUMBER.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT. � 33 �

DISPLAY "SELECT * from PurchDB.Vendors".

PERFORM D200-SQL-SELECT THRU D200-EXIT. � 34 �

IF SQLCODE = OK

PERFORM C350-DISPLAY-DELETE THRU C350-EXIT � 35 �
ELSE

IF SQLCODE = NOTFOUND

DISPLAY " "

DISPLAY "Row not found!" � 36 �
ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT. � 37 �

PERFORM A400-COMMIT-WORK THRU A400-EXIT. � 38 �

C300-EXIT.

EXIT.

C350-DISPLAY-DELETE.

PERFORM D100-DISPLAY-ROW THRU D100-EXIT. � 39 �

MOVE "Is it OK to DELETE this row (N/Y) ? > " � 40 �
TO PROMPT.

WRITE PROMPT.

ACCEPT RESPONSE FREE.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 9 of 14)

Simple Data Manipulation 7-27

IF RESPONSE-PREFIX = "Y"

OR RESPONSE-PREFIX = "y"

DISPLAY "DELETE row from PurchDB.Vendors"

EXEC SQL

DELETE FROM PURCHDB.VENDORS � 41 �
WHERE VENDORNUMBER = :VENDORNUMBER

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

C350-EXIT.

C400-INSERT-DATA. � 42 �

MOVE "Enter Vendor Number or 0 for MENU> " TO PROMPT. � 43 �
WRITE PROMPT.

ACCEPT RESPONSE1 FREE.

IF RESPONSE1 = ZERO

MOVE "X" TO FUNC-DONE-FLAG

GO TO C400-EXIT

ELSE

MOVE RESPONSE1 TO VENDORNUMBER.

MOVE "Enter Vendor Name> " TO PROMPT.

MOVE SPACES TO VENDORNAME.

DISPLAY " ".

WRITE PROMPT.

ACCEPT VENDORNAME FREE.

MOVE "Enter Contact Name (0 for null)> " TO PROMPT. � 44 �
MOVE SPACES TO CONTACTNAME.

DISPLAY " ".

WRITE PROMPT.

ACCEPT CONTACTNAME FREE.

IF CONTACTNAME = 0 � 45 �
MOVE -1 TO CONTACTNAMEIND

ELSE

MOVE 0 TO CONTACTNAMEIND.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 10 of 14)

7-28 Simple Data Manipulation

MOVE "Enter Phone Number (0 for null)> " TO PROMPT.

MOVE SPACES TO PHONENUMBER.

WRITE PROMPT.

ACCEPT PHONENUMBER FREE.

IF PHONENUMBER = 0

MOVE -1 TO PHONENUMBERIND

ELSE

MOVE 0 TO PHONENUMBERIND.

MOVE "Enter Vendor Street> " TO PROMPT.

MOVE SPACES TO VENDORSTREET.

WRITE PROMPT.

ACCEPT VENDORSTREET FREE.

MOVE "Enter Vendor City> " TO PROMPT.

MOVE SPACES TO VENDORCITY.

WRITE PROMPT.

ACCEPT VENDORCITY FREE.

MOVE "Enter Vendor State> " TO PROMPT.

MOVE SPACES TO VENDORSTATE.

WRITE PROMPT.

ACCEPT VENDORSTATE FREE.

MOVE "Enter Vendor Zip Code> " TO PROMPT.

MOVE SPACES TO VENDORZIPCODE.

WRITE PROMPT.

ACCEPT VENDORZIPCODE FREE.

MOVE "Enter Vendor Remarks (0 for null)> " TO PROMPT.

MOVE SPACES TO REMARKS.

WRITE PROMPT.

ACCEPT REMARKS FREE.

IF VENDORREMARKS = 0

MOVE -1 TO VENDORREMARKSIND

ELSE

MOVE 0 TO VENDORREMARKSIND.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 11 of 14)

Simple Data Manipulation 7-29

IF VENDORREMARKSIND = 0

MOVE 0 TO COUNTER

INSPECT VENDORREMARKS TALLYING COUNTER

FOR CHARACTERS BEFORE INITIAL " "

MOVE COUNTER TO REMARKSLENGTH.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT. � 46 �

DISPLAY "INSERT row into PurchDB.Vendors".

EXEC SQL INSERT � 47 �
INTO PURCHDB.VENDORS

(VENDORNUMBER,

VENDORNAME,

CONTACTNAME,

PHONENUMBER,

VENDORSTREET,

VENDORCITY,
VENDORSTATE,

VENDORZIPCODE,

VENDORREMARKS)

VALUES(:VENDORNUMBER,

:VENDORNAME,

:CONTACTNAME :CONTACTNAMEIND,

:PHONENUMBER :PHONENUMBERIND,

:VENDORSTREET,

:VENDORCITY,

:VENDORSTATE,

:VENDORZIPCODE,

:VENDORREMARKS :VENDORREMARKSIND)

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

PERFORM A400-COMMIT-WORK THRU A400-EXIT. � 48 �

C400-EXIT.

EXIT.

D100-DISPLAY-ROW.

MOVE VENDORNUMBER TO NUMFORMAT.

DISPLAY " VendorNumber: " NUMFORMAT.

DISPLAY " VendorName: " VENDORNAME.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 12 of 14)

7-30 Simple Data Manipulation

IF CONTACTNAMEIND < 0 � 49 �
DISPLAY " ContactName is NULL"

ELSE

DISPLAY " ContactName: " CONTACTNAME.

IF PHONENUMBERIND < 0

DISPLAY " PhoneNumber is NULL"

ELSE

DISPLAY " PhoneNumber: " PHONENUMBER.

DISPLAY " VendorStreet: " VENDORSTREET.

DISPLAY " VendorCity: " VENDORCITY.

DISPLAY " VendorState: " VENDORSTATE.

DISPLAY " VendorZipCode: " VENDORZIPCODE.

IF VENDORREMARKSIND < 0

DISPLAY " VendorRemarks is NULL"

ELSE

DISPLAY " VendorRemarks: " REMARKS.

D100-EXIT.
EXIT.

D200-SQL-SELECT. � 50 �

EXEC SQL SELECT VENDORNUMBER,

VENDORNAME,

CONTACTNAME,

PHONENUMBER,

VENDORSTREET,

VENDORCITY,

VENDORSTATE,

VENDORZIPCODE,

VENDORREMARKS

INTO :VENDORNUMBER,

:VENDORNAME,

:CONTACTNAME :CONTACTNAMEIND,

:PHONENUMBER :PHONENUMBERIND,

:VENDORSTREET,

:VENDORCITY,

:VENDORSTATE,

:VENDORZIPCODE,

:VENDORREMARKS :VENDORREMARKSIND

FROM PURCHDB.VENDORS

WHERE VENDORNUMBER = :VENDORNUMBER

END-EXEC.

D200-EXIT.

EXIT.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 13 of 14)

Simple Data Manipulation 7-31

S100-SQL-STATUS-CHECK.

IF SQLCODE < DEADLOCK

MOVE 'X' TO ABORT-FLAG.

PERFORM S200-SQLEXPLAIN UNTIL SQLCODE = 0.

IF ABORT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

S100-EXIT.

EXIT.

S200-SQLEXPLAIN.

EXEC SQL

SQLEXPLAIN :SQLMESSAGE � 51 �
END-EXEC.

DISPLAY SQLMESSAGE.

S200-EXIT.

EXIT.

Figure 7-3. Using INSERT, UPDATE, SELECT and DELETE (page 14 of 14)

7-32 Simple Data Manipulation

8

Processing with Cursors

Processing with cursors gives you the option of operating on a multiple-row query result,
one row at a time. The query result is referred to as an active set. You use a pointer called
a cursor to move through the active set, retrieving a row at a time into host variables and
optionally updating or deleting the row. Reporting applications may �nd this technique
useful. Update applications such as those that periodically operate on tables not being
concurrently accessed (e.g., inventory adjustments) may also �nd this technique useful.

This chapter presents:

SQL Cursor Commands

Transaction Management for Cursor Operations (Further discussion of transaction
management is found in the ALLBASE/SQL Reference Manual .)

Sample Program Using Cursor Operations

The emphasis in this chapter is on FETCHing one row at a time. For an example of using the
FETCH command with the BULK option, see the \BULK FETCH" section of Chapter 9.

SQL Cursor Commands

The following ALLBASE/SQL commands are used in cursor processing:

DECLARE CURSOR de�nes a cursor and associates it with a query.

OPEN de�nes the active set.

FETCH retrieves one row of the active set into host variables; when a row resides in host
variables it is known as the current row. When a row is current and the active set is a
query result derived from a single table, you can use one of the following two commands to
change the row.

UPDATE WHERE CURRENT updates the current row.

DELETE WHERE CURRENT deletes the current row.

CLOSE terminates access to the active set and frees up ALLBASE/SQL bu�er space used
to handle the cursor.

For a given cursor, the commands listed above (with the exception of DECLARE CURSOR)
should be contained within the same transaction. Refer to the ALLBASE/SQL Reference
Manual for the complete syntax and semantics of these commands.

Processing with Cursors 8-1

DECLARE CURSOR

The DECLARE CURSOR command names a cursor and associates with it a particular
SELECT command:

DECLARE CursorName

[IN DBEFileSetName]

CURSOR FOR

SelectCommand

[FOR UPDATE OF ColumnName [,ColumnName...]

This command does not retrieve rows from a table.

In the physical order of your source program statements, the DECLARE CURSOR command
must precede any command that references the cursor; for example, the OPEN command.

Note that the DECLARE CURSOR command has two optional clauses:

The IN clause de�nes the DBEFileSet in which the section generated by the preprocessor
for this command is stored. If no IN clause is speci�ed, �le space in the SYSTEM
DBEFileSet is used.

The FOR UPDATE OF clause is used when you use the UPDATE WHERE CURRENT
command to update a current row. This command may o�er the simplest way to update a
current row, but it imposes certain restrictions on the SelectCommand . Updating a current
row is fully discussed later in this chapter under \UPDATE WHERE CURRENT."

The SELECT command for cursor declarations that do not include the FOR UPDATE clause
can consist of any of the SELECT command clauses except the INTO clause:

SELECT SelectList

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnNames

HAVING SearchCondition2

ORDER BY ColumnIdenti�ers

A SELECT command associated with a cursor does not name output host variables, but
may name input host variables in the select list, the WHERE clause, or the HAVING clause.
In the following example, the rows qualifying for the query result will be those with a
COUNTCYCLE matching that speci�ed by the user in input host variable COUNTCYCLE :

EXEC SQL DECLARE INVENTORY

CURSOR FOR

SELECT PARTNUMBER,

BINNUMBER,

QTYONHAND,

ADJUSTMENTQTY

FROM PURCHDB.INVENTORY

WHERE COUNTCYCLE = :COUNTCYCLE

ORDER BY BINNUMBER

END-EXEC.

8-2 Processing with Cursors

When performing cursor processing, the ORDER BY clause may be useful. In the previous
example, the rows in the query result will be in order by ascending bin number, to help the
program user, who will be moving from bin to bin, taking a physical inventory.

The DECLARE CURSOR command is actually a preprocessor directive. When the COBOL
preprocessor parses this command, it stores a section in the target DBEnvironment. At run
time, the section is not executed when the DECLARE CURSOR command is encountered,
but when the OPEN command is executed. Because the DECLARE CURSOR command
is not executed at run time, you do not need to perform status checking in your program
following this command.

OPEN

The OPEN command examines any input host variables, determines the active set, and
allocates internal bu�er space for the active set.

OPEN CursorName
�
KEEP CURSOR

�� WITH LOCKS

WITH NOLOCKS

�

The following command opens the cursor de�ned earlier:

EXEC SQL OPEN INVENTORY END-EXEC.

Once the active set is de�ned, the FETCH command will retrieve data from it, one row at a
time.

You can use the KEEP CURSOR WITH NOLOCKS option for a cursor that involves sorting,
whether through the use of a DISTINCT, GROUP BY, or ORDER BY clause, or as the result
of a union or a join operation. However, for kept cursors involving sorting, ALLBASE/SQL
does not ensure data integrity.

For more information on using KEEP CURSOR see the \Using KEEP CURSOR" section
later in this chapter.

FETCH

The FETCH command de�nes a current row and delivers the row into output host variables:

FETCH CursorName INTO OutputHostVariables

Remember to include indicator variables when one or more columns in the query result may
contain a null value:

EXEC SQL FETCH INVENTORY

INTO :PARTNUMBER,

:BINNUMBER,

:QTYONHAND :QTYONHANDIND,

:ADJUSTMENTQTY :ADJUSTMENTQTYIND

END-EXEC.

Processing with Cursors 8-3

The �rst time you execute the FETCH command, the �rst row in the query result becomes
the current row. With each subsequent execution of the FETCH command, each succeeding
row in the query result becomes current. After the last row in the query result has been
fetched, ALLBASE/SQL sets SQLCODE to 100. ALLBASE/SQL also sets SQLCODE to 100
if no rows qualify for the active set. You should test for an SQLCODE value of 100 after each
execution of the FETCH command to determine whether to re-execute this command:

77 DONE-FETCH-FLAG PIC X VALUE SPACE.

88 NOT-DONE-FETCH VALUE SPACE.

88 DONE-FETCH VALUE 'X'.

.

.

.

PROCEDURE DIVISION.

.

.

PERFORM FETCH-ROW THRU FETCH-ROW-EXIT UNTIL DONE-FETCH.

.

.

.

FETCH-ROW.

The FETCH command appears here.

IF SQLCODE = 0 PERFORM DISPLAY-ROW

ELSE

IF SQLCODE = 100

MOVE 'X' TO DONE-FETCH-FLAG

DISPLAY "No rows qualify or no additional rows qualify."

GO TO FETCH-ROW-EXIT

ELSE

PERFORM SQL-STATUS-CHECK.

FETCH-ROW-EXIT.

When a row is current, you can update it by using the UPDATE WHERE CURRENT
command or delete it by using the DELETE WHERE CURRENT command.

UPDATE WHERE CURRENT

This command can be used to update the current row when the SELECT command
associated with the cursor does not contain one of the following:

DISTINCT clause in the select list.
Aggregate function in the select list.
FROM clause with more than one table.
ORDER BY clause.
GROUP BY clause.

8-4 Processing with Cursors

The UPDATE WHERE CURRENT command identi�es the active set to be updated by
naming the cursor and the column(s) to be updated:

UPDATE TableName

SET ColumnName = ColumnValue

[,...]

WHERE CURRENT OF CursorName

Any columns you name in this command must also have been named in a FOR UPDATE
clause in the related DECLARE CURSOR command:

EXEC SQL
NNN
DECLARE ADJUSTQTYONHAND

CURSOR FOR

SELECT PARTNUMBER,

BINNUMBER,

QTYONHAND,

ADJUSTMENTQTY

FROM PURCHDB.INVENTORY

WHERE QTYONHAND IS NOT NULL

AND ADJUSTMENTQTY IS NOT NULLNN
FOR UPDATE OF QTYONHAND,NNN

ADJUSTMENTQTY

END-EXEC.

EXEC SQL OPEN ADJUSTQTYONHAND END-EXEC.

.

In this case, the output host variables do not need to include

indicator variables, because the SELECT command associated with the

cursor eliminates from the active set any rows having null values.

.

EXEC SQL
NN
FETCH ADJUSTQTYONHAND

INTO :PARTNUMBER,

:BINNUMBER,

:QTYONHAND,

:ADJUSTMENTQTY

END-EXEC.

.

.

EXEC SQL
NNNNNNNNNNNNNNNNNNNN
UPDATE PURCHDB.INVENTORY

SET
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
QTYONHAND = :QTYONHAND + :ADJUSTMENTQTY,NNN
ADJUSTMENTQTY = 0NN

WHERE CURRENT OF ADJUSTQTYONHAND

END-EXEC.

In this example, the order of the rows in the query result is not important. Therefore the
SELECT command associated with cursor ADJUSTQTYONHAND does not need to contain
an ORDER BY clause and the UPDATE WHERE CURRENT command can be used.

Processing with Cursors 8-5

In cases where order is important and the ORDER BY clause must be used, you can use the
UPDATE command with the WHERE clause to update values in the current row as well as
any other rows that qualify for the search condition.

EXEC SQL
NNN
DECLARE INVENTORY

CURSOR FOR

SELECT PARTNUMBER,

BINNUMBER,

QTYONHAND,

ADJUSTMENTQTY

FROM PURCHDB.INVENTORY

WHERE COUNTCYCLE = :COUNTCYCLE

ORDER BY BINNUMBER

END-EXEC.

.

.

.

EXEC SQL
NN
FETCH INVENTORY

INTO :PARTNUMBER,

:BINNUMBER,

:QTYONHAND :QTYONHANDIND,

:ADJUSTMENTQTY :ADJUSTMENTQTYIND

END-EXEC.

.

The program displays the current row. If the QTYONHAND value is not null,

the program prompts the user for an adjustment quantity. Adjustment

quantity is the di�erence between the quantity actually in the bin and the

QTYONHAND in the row displayed. If the QTYONHAND value is null, the program

prompts the user for both QTYONHAND and ADJUSTMENTQTY. Any value entered

is used int he following UPDATE command.

.

.

EXEC SQL
NNNNNNNNNNNNNNNNNNNN
UPDATE PURCHDB.INVENTORY

SET QTYONHAND = :QTYONHAND :QTYONHANDIND,

ADJUSTMENTQTY = :ADJUSTMENTQTY :ADJUSTMENTQTYINDNNNNNNNNNNNNNNNNN
WHERE PARTNUMBER = :PARTNUMBER

AND BINNUMBER = :BINNUMBER

END-EXEC.

After either the UPDATE WHERE CURRENT or the UPDATE command is executed, the
current row remains the same until the FETCH command is re-executed.

If you want to execute UPDATE commands inside the FETCH loop, remember that more
than one row in the active set may qualify for the UPDATE operation, as when the WHERE
clause in the UPDATE command does not specify a unique key. When more than one row
quali�es for the UPDATE, you may not see a changed row unless you CLOSE and re-OPEN
the cursor. To avoid this problem, either ensure your UPDATE commands change only one
row (the current row) or perform the UPDATE operations outside the FETCH loop.

8-6 Processing with Cursors

DELETE WHERE CURRENT

This command can be used to delete the current row when the SELECT command associated
with the cursor does not contain one of the following:

DISTINCT clause in the select list.
Aggregate function in the select list.
FROM clause with more than one table.
ORDER BY clause.
GROUP BY clause.

The DELETE WHERE CURRENT command has a very simple structure:

DELETE FROM TableName

WHERE CURRENT OF CursorName

The DELETE WHERE CURRENT command can be used in conjunction with a cursor
declared with or without the FOR UPDATE clause:

The program displays the current row and asks the user whether to update

or delete it. If the user wants to delete the row, the following command

is executed.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DELETE FROM PURCHDB.INVENTORYNN
WHERE CURRENT OF ADJUSTQTYONHAND

END-EXEC.

Even though the SELECT command associated with cursor INVENTORY names only some
of the columns in table PURCHDB.INVENTORY, the entire current row is deleted.

After the DELETE WHERE CURRENT command is executed, there is no current row. You
must re-execute the FETCH command to obtain another current row.

As in the case of the UPDATE WHERE CURRENT command, if the SELECT command
associated with the cursor contains an ORDER BY clause or other components listed earlier,
you can use the DELETE command with the WHERE clause to delete a row:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DELETE FROM PURCHDB.INVENTORYNNNNNNNNNNNNNNNNN

WHERE PARTNUMBER = :PARTNUMBER

AND BINNUMBER = :BINNUMBER

END-EXEC.

If you use the DELETE command to delete a row while using a cursor to examine an active
set, remember that more than one row will be deleted if multiple rows satisfy the conditions
speci�ed in the WHERE clause of the DELETE command. In addition, the row that is
current when the DELETE command is executed remains the current row until the FETCH
command is re-executed.

Processing with Cursors 8-7

CLOSE

When you no longer want to operate on the active set, use the CLOSE command:

CLOSE CursorName

The CLOSE command frees up ALLBASE/SQL internal bu�ers used to handle cursor
operations. This command does not release any locks obtained since the cursor was opened; to
release locks, you must terminate the transaction with a COMMIT WORK or a ROLLBACK
WORK:

The program opens a cursor and operates on the active set. After the last

row has been operated on, the cursor is closed:

EXEC SQL CLOSE INVENTORY END-EXEC.

Additional SQL commands are executed, then the transaction is terminated:

EXEC SQL COMMIT WORK END-EXEC.

When a transaction terminates, any cursors opened during that transaction are automatically
closed, unless you ar using the KEEP CURSOR option of the OPEN command. To avoid
possible confusion, it is good programming practice to always use the CLOSE command
followed by a COMMIT WORK to explicitly close any open cursors before ending a
transaction. Refer to the chapter, \Programming for Performance," for more information on
closing a kept cursor.

Transaction Management for Cursor Operations

The time at which ALLBASE/SQL obtains locks during cursor processing depends on
whether ALLBASE/SQL uses an index scan or a sequential scan to retrieve the query result.

When a cursor is based on a SELECT command for which ALLBASE/SQL can use an index
scan, locks are obtained when the FETCH command is executed. In the following example, an
index scan can be used, because the predicate is optimizable and an index exists on column
ORDERNUMBER:

EXEC SQL DECLARE ORDERREVIEW

CURSOR FOR

SELECT ORDERNUMBER,

ITEMNUMBER,

ORDERQTY,

RECEIVEDQTY

FROM PURCHDB.ORDERITEMS

WHERE ORDERNUMBER = :ORDERNUMBER

END-EXEC.

When the cursor is based on a SELECT command for which ALLBASE/SQL will use a
sequential scan, locks are obtained when the OPEN command is executed. A sequential scan
would be used in conjunction with the following cursor:

8-8 Processing with Cursors

EXEC SQL DECLARE ORDERREVIEW

CURSOR FOR

SELECT ORDERNUMBER,
ITEMNUMBER

ORDERQTY,

RECEIVEDQTY

FROM PURCHDB.ORDERITEMS

WHERE ORDERNUMBER > :ORDERNUMBER

END-EXEC.

The scope and strength of any lock obtained depends in part on the automatic locking mode
of the target table(s). If the lock obtained is a shared lock, as for PUBLIC or PUBLICREAD
tables, ALLBASE/SQL elevates the lock to an exclusive lock when you update or delete a row
in the active set.

The use of lock types, lock granularities, and isolation levels is discussed in the
ALLBASE/SQL Reference Manual .

As mentioned in the previous section, when a transaction terminates, any cursors opened
during that transaction are either automatically closed, or they remain open if you are using
the KEEP CURSOR option of the OPEN command. To avoid possible confusion, it is good
programming practice to always use the CLOSE command to explicitly close any open cursors
before ending a transaction with the COMMIT WORK or ROLLBACK WORK command.

When the transaction terminates, any changes made to the active set during the transaction
are either all committed or all rolled back , depending on how you terminate the transaction.

Using KEEP CURSOR

Cursor operations in an application program let you manipulate data in an active set
associated with a SELECT command. The cursor is a pointer to a row in the active set. The
KEEP CURSOR option of the OPEN command lets you maintain the cursor position in an
active set beyond transaction boundaries. This means you can scan and update a large table
without holding locks for the duration of the entire scan. You can also design transactions
that avoid holding any locks around terminal reads. In general, use the KEEP CURSOR
option when you wish to release locks periodically in long or complicated transactions.

After you specify KEEP CURSOR in an OPEN command, a COMMIT WORK does not close
the cursor, as it normally does. Instead, COMMIT WORK releases all locks not associated
with the kept cursor and begins a new transaction while maintaining the current (kept) cursor
position. This makes it possible to update tuples in a large active set, releasing locks as the
cursor moves from page to page, instead of requiring you to reopen and manually reposition
the cursor before the next FETCH.

Locks held on pages corresponding to the current kept cursor are either held until after the
transaction ends (the default) or released depending on whether you specify WITH LOCKS or
WITH NOLOCKS. (Pages held include data and system pages.)

Processing with Cursors 8-9

If you use the KEEP CURSOR WITH NOLOCKS option for a cursor that involves sorting,
whether through the use of a DISTINCT, GROUP BY, or ORDER BY clause, or as the result
of a union or a join operation, ALLBASE/SQL does not ensure data integrity.

It is your responsibility to ensure data integrity by verifying the continued existence of a row
before updating it or using it as the basis for updating some other table. For an updatable
cursor, you can use either the REFETCH or SELECT command to verify the continued
existence of a row. For a cursor that is non-updatable, you must use the SELECT command.

A warning (DBWARN 2056) regarding the kept cursor on a sort with no locks is generated.
You must check for this warning if you want to detect the execution of this type of cursor
operation.

KEEP CURSOR and Isolation Levels

The KEEP CURSOR option retains the current isolation level that you have speci�ed in the
BEGIN WORK command. Moreover, the exact pattern of lock retention and release for
cursors opened using KEEP CURSOR WITH LOCKS depends on the current isolation level.
For example:

With the CS isolation level, KEEP CURSOR maintains locks until the next FETCH is
completed. See Figure 8-2.

With the RC isolation level, KEEP CURSOR maintains locks only until the current
FETCH is completed; no locks are maintained across transactions. Therefore, KEEP
CURSOR WITH LOCKS does not retain locks at the RC isolation level.

For additional information on isolation levels, refer to the chapter \Controlling Performance"
in the ALLBASE/SQL Database Administration Guide.

KEEP CURSOR and Declaring for Update

When you DECLARE a cursor for UPDATE, SIX locks are obtained at the page level
rather than share locks. There is less concurrency and less chance of deadlock because lock
promotion is unnecessary. Although concurrency is reduced, throughput is often improved due
to the reduction in deadlock recovery overhead.

OPEN Command Without KEEP CURSOR

Figure 8-1 shows the operation of cursors when you do not select the KEEP CURSOR option.

8-10 Processing with Cursors

Figure 8-1. Cursor Operation without the KEEP CURSOR Feature

After the cursor is opened, successive FETCH commands advance the cursor position. Any
exclusive locks acquired along the way are retained until the transaction ends. If you have
selected the Cursor Stability option in the BEGIN WORK command, locks on pages that
have not been updated are released when the cursor moves to a tuple on a new data page.
Exclusive locks are not released until a COMMIT WORK, which also closes the cursor.

OPEN Command Using KEEP CURSOR WITH LOCKS and CS Isolation Level

The feature has the following e�ects:

A COMMIT WORK command does not close the cursor. Instead, it ends the current
transaction and immediately starts another one.

When you issue a COMMIT WORK, locks associated with the cursor are not released.

Successive FETCHES advance the cursor position, which is retained in between transactions
until the cursor is explicitly closed with the CLOSE command.

After the CLOSE command, you use an additional COMMIT WORK command. This step
is essential . The �nal COMMIT after the CLOSE is necessary to end the KEEP state,
release all locks associated with the cursor, and prevent a new implicit BEGIN WORK.

Processing with Cursors 8-11

Figure 8-2 shows the e�ect of the KEEP CURSOR WITH LOCKS.

Figure 8-2. Cursor Operation Using KEEP CURSOR WITH LOCKS

OPEN Command Using KEEP CURSOR WITH NOLOCKS

The feature has the following e�ects:

A COMMIT WORK command does not close the cursor. Instead, it ends the current
transaction and immediately starts another one.

When you issue a COMMIT WORK, all locks associated with the cursor are released. This
means that another transaction may delete or modify the next tuple in the active set before
you have the chance to FETCH it.

Successive FETCHES advance the cursor position, which is retained in between transactions
until the cursor is explicitly closed with the CLOSE command.

After the CLOSE command, you use an additional COMMIT WORK command. This step
is essential . The �nal COMMIT after the CLOSE is necessary to end the KEEP state and
prevent a new implicit BEGIN WORK.

8-12 Processing with Cursors

You cannot use the KEEP CURSOR option WITH NOLOCKS for a cursor declared as a
SELECT with a DISTINCT or ORDER BY clause.

When using KEEP CURSOR WITH NOLOCKS, be aware that data at the cursor position
may be lost before the next FETCH:

If another transaction deletes the current row, ALLBASE/SQL will return the next row.
No error message is displayed.

If another transaction deletes the table being accessed, the user will see the message:
TABLE NOT FOUND (DBERR 137)

Figure 8-3 shows the e�ect of KEEP CURSOR WITH NOLOCKS.

Figure 8-3. Cursor Operation Using KEEP CURSOR WITH NOLOCKS

Processing with Cursors 8-13

KEEP CURSOR and BEGIN WORK

ALLBASE/SQL automatically begins a transaction whenever you issue a command if a
transaction is not already in progress. Thus, although you can code an explicit BEGIN
WORK to start transactions, it is not necessary to do so unless you wish to specify an
isolation level other than RR.

With KEEP CURSOR, an implicit BEGIN WORK follows immediately after you perform
a COMMIT WORK, so if you do an explicit BEGIN WORK, ALLBASE/SQL returns an
error message stating that a transaction is already in progress. If this problem should arise,
re-code to eliminate the BEGIN WORK from the loop.

KEEP CURSOR and COMMIT WORK

When the KEEP CURSOR option of the OPEN command is activated for a cursor,
COMMIT WORK may or may not release locks associated with the cursor depending on
the setting of the WITH LOCKS/WITH NOLOCKS option.

COMMIT WORK does not close cursors opened with the KEEP CURSOR option.
COMMIT WORK does end the previous implicit transaction and starts an implicit
transaction with the same isolation level as that speci�ed with the BEGIN WORK
command.

Remember that COMMIT WORK will still close all cursors opened without the KEEP
CURSOR option.

KEEP CURSOR and ROLLBACK WORK

When the KEEP CURSOR option is activated for an opened cursor, all locks are released
when you ROLLBACK WORK, whether or not you have speci�ed WITH LOCKS or WITH
NOLOCKS. The position of the cursor is restored to what it was at the beginning of the
transaction being rolled back. The current transaction is ended and a new transaction is
implicitly started with the same isolation level as speci�ed in the BEGIN WORK command.

Remember that ROLLBACK WORK closes all cursors that you opened during the current
transaction, unless the cursor was opened with the KEEP CURSOR option and its position
saved with a COMMIT WORK immediately following the the OPEN command.

When a cursor is opened with the KEEP CURSOR option, ROLLBACK WORK TO
SavePoint is not allowed.

KEEP CURSOR and Aborted Transactions

When a transaction is aborted by ALLBASE/SQL, the cursor position is retained, and a
new transaction begins, as with ROLLBACK WORK.

Remember that when a transaction aborts all cursors that you opened during the current
transaction are closed unless the cursor was opened with the KEEP CURSOR option and
its position saved with a COMMIT WORK immediately following the the OPEN command.

The use of multiple cursors may require frequent examination of several system catalog
tables. This means acquiring exclusive locks, which creates the potential for deadlock.
However, the behavior of aborted transactions with KEEP CURSOR lets you create
automatic deadlock handling routines. Simply repeat the operation until deadlock does not
occur. The technique is shown under \Examples," below.

8-14 Processing with Cursors

Writing Keep Cursor Applications

A skeleton outline of a KEEP CURSOR application showing the sections and speci�c code
examples follow appear below.

Because of the potential for deadlock, you must be careful to test for that condition frequently
in applications using KEEP CURSOR. An aborted transaction results when a deadlock
is encountered. (There is no need to test for deadlock following a COMMIT WORK or a
BEGIN WORK command.) Use the following steps to create your code:

1. Declare all cursors to be used in the application.

2. Use a loop to test for a deadlock condition as you open all cursors that will use the
KEEP CURSOR option. Start the loop with a BEGIN WORK statement that speci�es
the isolation level, then include a separate test for non-deadlock errors for each OPEN
statement. Create an S100-SQL-STATUS-CHECK routine to display all error messages
and RELEASE the DBEnvironment in the event of fatal errors. See the \Examples"
section below.

3. Use the COMMIT WORK command. If you do not COMMIT at this point, an aborted
transaction will roll back all the OPEN statements, and you will lose the cursor positions.
The COMMIT starts a new transaction and keeps the cursor positions.

4. Use a loop to scan your data until all rows have been processed.

First, open any non-kept cursors. Do not include a COMMIT WORK after opening the
non-kept cursors. If a deadlock is detected and the transaction aborted, the program
reapplies the transaction.

Next, execute any FETCH, UPDATE WHERE CURRENT, or DELETE WHERE
CURRENT commands. Be sure to test for unexpected errors and branch to
S100-SQL-STATUS-CHECK to display messages and RELEASE in the event of a
non-deadlock error. Again, if a deadlock is detected and the transaction aborted, the
program reapplies the transaction.

At the end of the loop, include a COMMIT WORK. This will commit your data to the
database, and it will close any non-kept cursors opened so far in the program. It will also
start a new transaction and maintain the cursor position of all kept cursors.

Place any terminal or �le I/O after this COMMIT , in order to prevent duplicate
messages from appearing in the event of a rollback because of deadlock.

5. Once the program is �nished scanning the tables, you should close all kept cursors within a
�nal loop which tests for a deadlock condition. Once again, test for unexpected errors and
branch to S100-SQL-STATUS-CHECK if necessary.

6. Execute a �nal COMMIT WORK to release the KEEP state.

Processing with Cursors 8-15

Examples

This code is intended as a guide; you will want to customize it for your speci�c needs.

The code illustrates status checking techniques with emphasis on deadlock detection. Four
generalized code segments are presented:

A status checking routine to be used in conjunction with the other code segments.

Using a single kept cursor with locks.

Using multiple cursors and cursor stability.

Avoiding locks on terminal reads.

Common StatusCheck Procedure

S100-SQL-STATUS-CHECK.

**

* Deadlock did not occur; Set Deadlock-Flag to DeadlockFree. *

* Exit status checking routine without displaying a message. *

**

IF SQLCODE = 0

MOVE SPACE TO Deadlock-Flag

GOTO S100-EXIT.

**

* Deadlock occurred; set Deadlock-Flag to Deadlock. *

* Exit status checking routine without displaying a message. *

**

IF SQLCODE = -14024

MOVE "X" TO Deadlock-Flag

**

* If your program monopolizes CPU time by repeatedly *

* reapplying a transaction, you could include a call *

* to the XL PAUSE intrinsic at this point. *

**

GOTO S100-EXIT.

**

* No more rows found; Set EndOfScan-Flag to EndOfScan. *

* Exit status checking routine without displaying a message. *

**

IF SQLCODE = 100

MOVE "X" TO EndOfScan-Flag
GOTO S100-EXIT.

8-16 Processing with Cursors

**

* For other fatal errors: *

* PERFORM S200-SQLEXPLAIN to display messages *
* RELEASE the DBE *

* Stop the program *

* *

* Some errors which could be considered fatal are: *

* -3040 DBA issued a STOP DBE command *

* -3043 DBA issued a terminate user command *

* -14046 log full error *

* -14047 system clock/timestamp error *

* -14074 DBCore internal error *

* -14075 DBCore internal error *

* -15048 DBCore internal error *

**

PERFORM S200-SQLEXPLAIN THRU S200-EXIT

UNTIL SQLCODE = 0

EXEC SQL

RELEASE

END-EXEC.

STOP RUN.

S100-EXIT.

EXIT.

S200-SQLEXPLAIN.

EXEC SQL

SQLEXPLAIN :SQLMessage
END-EXEC.

DISPLAY SQLMessage.

S200-EXIT.

EXIT.

S300-OPEN-C1-WITH-LOCKS.

EXEC SQL

OPEN C1 KEEP CURSOR WITH LOCKS

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

S300-EXIT.

EXIT.

Processing with Cursors 8-17

S400-OPEN-C1-WITH-NOLOCKS.

EXEC SQL
OPEN C1 KEEP CURSOR WITH NOLOCKS

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

S400-EXIT.

EXIT.

S500-CLOSE-C1.

EXEC SQL

CLOSE C1

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

S500-EXIT.

EXIT.

S600-COMMIT-WORK.

EXEC SQL

COMMIT WORK

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

S600-EXIT.

EXIT.

8-18 Processing with Cursors

Single Cursor WITH LOCKS

A100-SINGLE-CURSOR.

**

* Declare cursor C1. *

**

EXEC SQL

DECLARE C1 CURSOR FOR
SELECT PartName, SalesPrice FROM PurchDB.Parts

WHERE SalesPrice > 500.00

END-EXEC.

**

* Open cursor C1 using KEEP CURSOR WITH LOCKS option, *

* testing for deadlocks. *

**

MOVE "X" TO Deadlock-Flag.

PERFORM S300-OPEN-C1-WITH-LOCKS THRU S300-EXIT

UNTIL Deadlock-Free.

**

* COMMIT WORK in order to preserve initial cursor position. *

**

PERFORM S600-COMMIT-WORK THRU S600-EXIT.

**

* BULK FETCH data from the Parts table using cursor C1 until *

* there is no more data. Display qualifying rows. *

**

MOVE SPACE TO EndOfScan-Flag.

PERFORM A200-FETCH-AND-DISPLAY THRU A200-EXIT

UNTIL EndOfScan.

**

* CLOSE cursor C1, testing for deadlocks. *

**
MOVE "X" TO Deadlock-Flag.

PERFORM S500-CLOSE-C1 THRU S500-EXIT

UNTIL Deadlock-Free.

**

* Execute final COMMIT WORK to release all locks held by *

* cursor C1. *

**

PERFORM S600-COMMIT-WORK THRU S600-EXIT.

A100-EXIT.

EXIT.

Processing with Cursors 8-19

A200-FETCH-AND-DISPLAY.

**
* BULK FETCH qualifying rows from the Parts table using *

* cursor C1 until there is no more data, testing for *

* deadlocks. *

**

MOVE "X" TO Deadlock-Flag.

PERFORM A300-BULK-FETCH-C1 THRU A300-EXIT

UNTIL Deadlock-Free OR EndOfScan.

IF EndOfScan

GOTO A200-EXIT.

**

* Execute COMMIT WORK to release all page locks held by *

* cursor C1 except the current page. *

**

PERFORM S600-COMMIT-WORK THRU S600-EXIT.

**

* Display qualifying rows. SQLERRD(3) contains the actual *

* number of qualified rows. BUFFEREND contains the maximum *

* number of rows declared in the buffer which receives data *

* from the BULK FETCH command. *

**

PERFORM A400-DISPLAY-ROW THRU A400-EXIT

VARYING NUMROWS FROM 1 BY 1

UNTIL NUMROWS = SQLERRD(3) OR NUMROWS = BUFFEREND.

A200-EXIT.

EXIT.

A300-BULK-FETCH-C1.

EXEC SQL

BULK FETCH C1 INTO :PriceList, 1, 20

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

A300-EXIT.

EXIT.

A400-DISPLAY-ROW.

DISPLAY " Part Name: " PARTNAME(NUMROWS).

DISPLAY " Sales Price: " SALESPRICE(NUMROWS).

DISPLAY " ".

A400-EXIT.

EXIT.

8-20 Processing with Cursors

Multiple Cursors and Cursor Stability

B100-MULTI-CURSOR.

**

* Declare cursor C1 and cursor C2. *

**

EXEC SQL

DECLARE C1 CURSOR FOR
SELECT BranchNo FROM Tellers WHERE TellerNo > 15000

FOR UPDATE OF Status

END-EXEC.

EXEC SQL

DECLARE C2 CURSOR FOR

SELECT BranchNo FROM Branches

FOR UPDATE OF Credit

END-EXEC.

**

* Open cursor C1 using KEEP CURSOR WITH LOCKS option, *

* testing for deadlocks. Use an explicit BEGIN WORK CS *

* command in the loop to ensure that ALLBASE/SQL will use *

* the CURSOR STABILITY isolation level if a deadlock occurs. *

**

MOVE "X" TO Deadlock-Flag.

PERFORM B400-BEGIN-WORK-OPEN-C1 THRU B400-EXIT

UNTIL Deadlock-Free.

**

* COMMIT WORK in order to preserve initial cursor position. *

**

PERFORM S600-COMMIT-WORK THRU S600-EXIT.

**

* FETCH and UPDATE data in qualifying rows of the Tellers *

* table and Branches table using cursors C1 and C2 until *
* no more rows are found. *

**

MOVE SPACE TO EndOfScan-Flag.

PERFORM B200-FETCH-C1-AND-UPDATE THRU B200-EXIT

UNTIL EndOfScan.

**

* CLOSE cursor C1, testing for deadlocks. *

**

MOVE "X" TO Deadlock-Flag.

PERFORM S500-CLOSE-C1 THRU S500-EXIT

UNTIL Deadlock-Free.

Processing with Cursors 8-21

**

* Execute final COMMIT WORK to release all locks held by *

* cursor C1. *
**

PERFORM S600-COMMIT-WORK THRU S600-EXIT.

B100-EXIT.

EXIT.

B200-FETCH-C1-AND-UPDATE.

**

* FETCH data from Tellers table using cursor C1. *

**

EXEC SQL

FETCH C1 INTO :HostBranchNo1

END-EXEC.

**

* OPEN cursor C2 (without the KEEP CURSOR option). *

**

IF SQLCODE = 0

EXEC SQL

OPEN C2

END-EXEC.

**

* For each qualifying row in the Tellers table: *

* FETCH and UPDATE rows in the Branches table using cursor *

* C2 until no more rows are found, testing for deadlocks. *

**

IF SQLCODE = 0
MOVE SPACE TO Deadlock-Flag

PERFORM B300-FETCH-C2-AND-UPDATE THRU B300-EXIT

UNTIL EndOfScan OR Deadlock

IF EndOfScan

MOVE SPACE TO EndOfScan-Flag

EXEC SQL

CLOSE C2

END-EXEC.

**

* After successfully completing the FETCH and UPDATE of data *

* in qualifying rows of the Branches table using cursor C2, *

* UPDATE the Tellers table using cursor C1. *

**

IF SQLCODE = 0

EXEC SQL

UPDATE TELLERS SET Status = :NewStatus

WHERE CURRENT OF C1

END-EXEC.

8-22 Processing with Cursors

**

* Execute COMMIT WORK to: *

* Save UPDATEs to Branches table using cursor C2 *
* Release all page locks held by cursor C2 *

* Save UPDATES to Tellers table using cursor C1 *

* Release pages locked by cursor C1 except current page *

**

IF SQLCODE = 0

EXEC SQL

COMMIT WORK

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

B200-EXIT.

EXIT.

B300-FETCH-C2-AND-UPDATE.

**

* FETCH data from the Branches table using cursor C2. *

**

EXEC SQL

FETCH C2 INTO :HostBranchNo2

END-EXEC.

**

* Update Branches table if: *

* FETCH was successful (SQLCODE = 0), and *

* Teller.BranchNo = Branches.BranchNo *

**
IF SQLCODE = 0 AND HostBranchNo1 = HostBranchNo2

EXEC SQL

UPDATE Branches

SET Credit = Credit * 0.005 WHERE CURRENT OF C2

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

B300-EXIT.

EXIT.

Processing with Cursors 8-23

B400-BEGIN-WORK-OPEN-C1.

**
* Open cursor C1 using KEEP CURSOR WITH LOCKS option, *

* testing for deadlocks. Use an explicit BEGIN WORK CS *

* command in the loop to ensure that ALLBASE/SQL will use *

* the CURSOR STABILITY isolation level if a deadlock occurs. *

**

EXEC SQL

BEGIN WORK CS

END-EXEC.

IF SQLCODE = 0

EXEC SQL

OPEN C1 KEEP CURSOR WITH LOCKS

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

B400-EXIT.

EXIT.

8-24 Processing with Cursors

Avoiding Locks on Terminal Reads

C100-NO-TERM-LOCK.

**

* Declare cursor C1. *

**

EXEC SQL

DECLARE C1 CURSOR FOR
SELECT PartName, SalesPrice FROM PurchDB.Parts

END-EXEC.

**

* Open cursor C1 using KEEP CURSOR WITH NOLOCKS option, *

* testing for deadlocks. *

**

MOVE "X" TO Deadlock-Flag.

PERFORM S400-OPEN-C1-WITH-NOLOCKS THRU S400-EXIT

UNTIL Deadlock-Free.

**

* COMMIT WORK in order to preserve initial cursor position. *

**

PERFORM S600-COMMIT-WORK THRU S600-EXIT.

**

* FETCH and DISPLAY data in qualifying rows of the Parts *

* table using cursors C1 until no more rows are found, *

* testing for deadlocks. *

**

MOVE SPACE TO EndOfScan-Flag.

PERFORM C200-FETCH-AND-DISPLAY THRU C200-EXIT

UNTIL EndOfScan.

**

* CLOSE cursor C1, testing for deadlocks. *

**
MOVE "X" TO Deadlock-Flag.

PERFORM S500-CLOSE-C1 THRU S500-EXIT

UNTIL Deadlock-Free.

**

* Execute final COMMIT WORK to release all locks held by *

* cursor C1. *

**

PERFORM S600-COMMIT-WORK THRU S600-EXIT.

C100-EXIT.

EXIT.

Processing with Cursors 8-25

C200-FETCH-C1-AND-DISPLAY.

**
* FETCH data from the Parts table using cursor C1, testing *

* for deadlocks. *

**

MOVE "X" TO Deadlock-Flag.

PERFORM C300-FETCH THRU C300-EXIT

UNTIL DeadlockFree.

**

* Execute COMMIT WORK to release all page locks held by *

* cursor C1. *

**

PERFORM S600-COMMIT-WORK THRU S600-EXIT.

**

* Display values from Parts.PartNumber and Parts.SalesPrice, *

* and prompt user for a new sales price. *

**

DISPLAY " Part Number: " PartNumber.

DISPLAY " Sales Price: " PresentSalesPrice.

DISPLAY "Enter new sales price: ".

ACCEPT NewSalesPrice.

**

* Re-select data from the Parts table and verify that the *

* SalesPrice has not changed. If unchanged, update the row *

* with the value in NewSalesPrice. *

**

MOVE "X" TO Deadlock-Flag.
PERFORM C400-SELECT-AND-UPDATE THRU C400-EXIT

UNTIL DeadlockFree.

C200-EXIT.

EXIT.

C300-FETCH-C1.

EXEC SQL

FETCH C1 INTO :PartNumber, :PresentSalesPrice

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

C300-EXIT.

EXIT.

8-26 Processing with Cursors

C400-SELECT-AND-UPDATE.

**
* Re-select data from the Parts table. *

**

EXEC SQL

SELECT SalesPrice INTO :SalesPrice FROM PurchDB.Parts

WHERE PartNumber = :PartNumber

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

IF EndOfScan

DISPLAY "Part number no longer in database. Not updated."

GOTO C500-EXIT.

IF SalesPrice NOT = PresentSalesPrice

DISPLAY "Current price has changed. Not updated."

GOTO C500-EXIT.

**

* If Parts.SalesPrice has not changed, update the qualifying *

* row with the value in NewSalesPrice. *

**

EXEC SQL

UPDATE PurchDB.Parts

SET SalesPrice = :NewSalesPrice

WHERE PartNumber = :PartNumber

END-EXEC.

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

C400-EXIT.

EXIT.

Processing with Cursors 8-27

Program Using UPDATE WHERE CURRENT

The ow chart in Figure 8-4 summarizes the functionality of program COBEX8. This
program uses a cursor and the UPDATE WHERE CURRENT command to update column
RECEIVEDQTY in table PURCHDB.ORDERITEMS. The runtime dialog for COBEX8
appears in Figure 8-5, and the source code in Figure 8-6.

The program �rst performs paragraph DECLARE-CURSOR � 1 �, which contains the
DECLARE CURSOR command � 5 �. This command is a preprocessor directive and is
not executed at run time. At run time, paragraph DECLARE-CURSOR only displays the
message Declare Cursor . The DECLARE CURSOR command de�nes a cursor named
ORDERREVIEW . The cursor is associated with a SELECT command that retrieves the
following columns for all rows in table PURCHDB.ORDERITEMS having a speci�c order
number but no null values in column VENDPARTNUMBER:

ORDERNUMBER (defined NOT NULL)

ITEMNUMBER (defined NOT NULL)

VENDPARTNUMBER

RECEIVEDQTY

Cursor ORDERREVIEW has a FOR UPDATE clause naming column RECEIVEDQTY to
allow the user to change the value in this column.

To establish a DBE session, program COBEX8 performs paragraph CONNECT-
DBENVIRONMENT � 2 �. This paragraph executes the CONNECT command � 24 � for the
sample DBEnvironment, PARTSDBE.

The program then performs paragraph FETCH-UPDATE through FETCH-UPDATE-EXIT
until the DONE ag is set � 3 �.

Paragraph FETCH-UPDATE prompts for an order number or a zero � 6 �. When the
user enters a zero � 7 �, the DONE ag is set and the program terminates. When the
user enters an order number, the program begins a transaction by performing paragraph
BEGIN-TRANSACTION � 8 �, which executes the BEGIN WORK command � 25 �.

Cursor ORDERREVIEW is then opened � 9 � and paragraph FETCH-ROW through
FETCH-ROW-EXIT performed � 10 � to retrieve a row at a time from the active set. This
paragraph is performed until the DONE-FETCH ag is set; this ag is set when:

The FETCH command fails; this command fails when no rows qualify for the active set,
when the last row has already been fetched, or when ALLBASE/SQL cannot execute this
command for some other reason.

The program user wants to stop reviewing rows from the active set.

The FETCH command � 12 � names an indicator variable for RECEIVEDQTY, the only
column in the query result that may contain a null value. If the FETCH command is
successful, the program performs paragraph DISPLAY-UPDATE � 13 � to display the current
row and optionally update it.

Paragraph DISPLAY-UPDATE performs paragraph DISPLAY-ROW � 16 � to display the
current row � 11 �. If column RECEIVEDQTY in the current row contains a null value, the
message ReceivedQty is NULL is displayed.

8-28 Processing with Cursors

Paragraph DISPLAY-UPDATE then asks the user whether he wants to update the current
RECEIVEDQTY value � 17 �. If so, the user is prompted for a new value. The value accepted
is used in one of two UPDATE WHERE CURRENT commands, depending on whether the
user wants to assign a null value to RECEIVEDQTY � 18 �. If the user entered a zero, a null
value is assigned to this column.

The program then asks whether to FETCH another row � 19 �. If so, the FETCH command is
re-executed. If not, the program asks whether the user wants to make permanent any updates
he may have made in the active set � 20 �. To keep any row changes, the program performs
paragraph COMMIT-WORK � 22 �, which executes the COMMIT WORK command � 26 �. To
undo any row changes, the program performs paragraph ROLLBACK-WORK � 21 �, which
executes the ROLLBACK WORK command � 27 �.

The COMMIT WORK command is also executed when ALLBASE/SQL sets SQLCODE to
100 following execution of the FETCH command � 14 �. SQLCODE is set to 100 when no
rows qualify for the active set or when the last row has already been fetched. If the FETCH
command fails for some other reason, the ROLLBACK WORK command is executed instead
� 15 �.

Before any COMMIT WORK or ROLLBACK WORK command is executed, cursor
ORDERREVIEW is closed � 23 �. Although the cursor is automatically closed whenever a
transaction is terminated, it is good programming practice to use the CLOSE command to
close open cursors prior to terminating transactions.

When the program user enters a zero in response to the order number prompt � 6 �, the
program terminates by performing paragraph TERMINATE-PROGRAM � 4 �, which executes
the RELEASE command.

Processing with Cursors 8-29

Figure 8-4. Flow Chart of Program COBEX8

8-30 Processing with Cursors

:RUN COBEX8P

Program to UPDATE OrderItems Table via a CURSOR - COBEX8

Event List:

Connect to PartsDBE

Prompt for Order Number

Begin Work

Open Cursor

FETCH a row

Display the retrieved row

Prompt for new Received Quantity

Update row within OrderItems Table

FETCH the next row, if any, with the same Order Number

Repeat the above five steps until there are no more rows

Close Cursor

End Transaction

Repeat the above eleven steps until user enters 0

Release PartsDBE

Declare Cursor

Connect to PartsDBE

Enter OrderNumber or 0 to STOP > 30520

Begin Work

Open Cursor

OrderNumber: 30520

ItemNumber: 1

VendPartNumber: 9375

ReceivedQty: 9

Do you want to change ReceivedQty (Y/N)? > N

Do you want to see another row (Y/N)? > Y

OrderNumber: 30520

ItemNumber: 2

VendPartNumber: 9105

ReceivedQty is NULL

Figure 8-5. Execution of Program COBEX8

Processing with Cursors 8-31

Do you want to change ReceivedQty (Y/N)? > Y

Enter New ReceivedQty (0 for NULL)> 15

Update PurchDB.OrderItems Table

Do you want to see another row (Y/N)? > Y

OrderNumber: 30520

ItemNumber: 3

VendPartNumber: 9135

ReceivedQty: 3

Do you want to change ReceivedQty (Y/N)? > N

Do you want to see another row (Y/N)? > Y

Row Not Found or no more rows

Close Cursor

Do you want to save changes you made (Y/N)? > Y

Commit Work

1 row(s) changed.

Enter OrderNumber or 0 to STOP > 30510

Begin Work

Open Cursor

OrderNumber: 30510

ItemNumber: 1

VendPartNumber: 1001

ReceivedQty: 3

Do you want to change ReceivedQty (Y/N)? > N

Do you want to see another row (Y/N)? > N

Close Cursor

Rollback Work

Enter OrderNumber or 0 to STOP > 0

END OF PROGRAM

Figure 8-5. Execution of Program COBEX8 (page 2 of 2)

8-32 Processing with Cursors

* *

* This program illustrates the use of UPDATE WHERE CURRENT *

* with a Cursor to update a single row at a time. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX8.

AUTHOR. JIM FRANCIS AND KAREN THOMAS.

INSTALLATION. HP.

DATE-WRITTEN. 13 MAY 1987.

DATE-COMPILED. 13 MAY 1987.

REMARKS. ILLUSTRATES UPDATE VIA A CURSOR.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

SPECIAL-NAMES. CONSOLE IS TERMINAL-INPUT.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(34).

01 PROMPT2 PIC X(44).

01 PROMPT3 PIC X(38).

01 PROMPT4 PIC X(41).

01 PROMPT5 PIC X(51).

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 ORDERNUMBER PIC S9(9) COMP.

01 ITEMNUMBER PIC S9(9) COMP.

01 VENDPARTNUMBER PIC X(16).

01 RECEIVEDQTY PIC S9(4) COMP.

01 RECEIVEDQTYIND SQLIND.

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

$PAGE

77 DONE-FLAG PIC X VALUE SPACE.

88 NOT-DONE VALUE SPACE.

88 DONE VALUE 'X'.

Figure 8-6. Program COBEX8: Using UPDATE WHERE CURRENT

Processing with Cursors 8-33

77 DONE-FETCH-FLAG PIC X VALUE SPACE.

88 NOT-DONE-FETCH VALUE SPACE.

88 DONE-FETCH VALUE 'X'.

77 ABORT-FLAG PIC X VALUE SPACE.

88 NOT-STOP VALUE SPACE.

88 ABORT VALUE 'X'.

01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 RESPONSE PIC S9(9) COMP VALUE 0.

01 RESPONSE1 PIC X(3) VALUE SPACE.

01 ROWCOUNTER PIC S9(9) COMP VALUE 0.

01 ORDERNUMFORMAT PIC ZZZZZ9.

01 ITEMNUMFORMAT PIC ZZZZZ9.
01 QTYNUMFORMAT PIC ZZZZZ9.

01 ROWCOUNTFORMAT PIC ZZZ9.

$PAGE

PROCEDURE DIVISION.

BEGIN.

DISPLAY "Program to UPDATE OrderItems Table via "

"a CURSOR - COBEX8".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Connect to PartsDBE".

DISPLAY " Prompt for Order Number".

DISPLAY " Begin Work".

DISPLAY " Open Cursor".

DISPLAY " FETCH a row".

DISPLAY " Display the retrieved row".

DISPLAY " Prompt for new Received Quantity".

DISPLAY " Update row within OrderItems Table".

DISPLAY " FETCH the next row, if any, with the same "

"Order Number".

DISPLAY " Repeat the above five steps until "

"there are no more rows".

DISPLAY " Close Cursor".

DISPLAY " End Transaction".

DISPLAY " Repeat the above eleven steps until "

"user enters 0".

DISPLAY " Release PartsDBE".

DISPLAY " ".

Figure 8-6. Program COBEX8: Using UPDATE WHERE CURRENT (page 2 of 7)

8-34 Processing with Cursors

PERFORM DECLARE-CURSOR. � 1 �

OPEN OUTPUT CRT.

PERFORM CONNECT-DBENVIRONMENT. � 2 �

PERFORM FETCH-UPDATE THRU FETCH-UPDATE-EXIT UNTIL DONE. � 3 �

PERFORM TERMINATE-PROGRAM. � 4 �

TERMINATE-PROGRAM.

EXEC SQL RELEASE END-EXEC.

STOP RUN.

DECLARE-CURSOR.

DISPLAY "Declare Cursor".

EXEC SQL DECLARE ORDERREVIEW � 5 �
CURSOR FOR

SELECT ORDERNUMBER,

ITEMNUMBER,

VENDPARTNUMBER,

RECEIVEDQTY

FROM PURCHDB.ORDERITEMS

WHERE ORDERNUMBER = :ORDERNUMBER

AND VENDPARTNUMBER IS NOT NULL

FOR UPDATE OF RECEIVEDQTY

END-EXEC.

$PAGE

FETCH-UPDATE.

MOVE SPACE TO RESPONSE1.

MOVE "Enter OrderNumber or 0 to STOP > � 6 �
TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE FREE.

IF RESPONSE IS ZERO THEN � 7 �
MOVE "X" TO DONE-FLAG

GO TO FETCH-UPDATE-EXIT

ELSE

MOVE RESPONSE TO ORDERNUMBER

MOVE 0 TO ROWCOUNTER.

PERFORM BEGIN-TRANSACTION. � 8 �

Figure 8-6. Program COBEX8: Using UPDATE WHERE CURRENT (page 3 of 7)

Processing with Cursors 8-35

DISPLAY "Open Cursor".

EXEC SQL OPEN ORDERREVIEW END-EXEC. � 9 �
IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

MOVE "X" TO DONE-FLAG

GO TO FETCH-UPDATE-EXIT.

MOVE SPACES TO DONE-FETCH-FLAG.

PERFORM FETCH-ROW THRU FETCH-ROW-EXIT � 10 �
UNTIL DONE-FETCH.

FETCH-UPDATE-EXIT.

EXIT.

DISPLAY-ROW. � 11 �
MOVE ORDERNUMBER TO ORDERNUMFORMAT.

MOVE ITEMNUMBER TO ITEMNUMFORMAT.
MOVE RECEIVEDQTY TO QTYNUMFORMAT.

DISPLAY " ".

DISPLAY " OrderNumber: " ORDERNUMFORMAT.

DISPLAY " ItemNumber: " ITEMNUMFORMAT.

DISPLAY " VendPartNumber: " VENDPARTNUMBER.

IF RECEIVEDQTYIND < 0 THEN

DISPLAY " ReceivedQty is NULL"

ELSE

DISPLAY " ReceivedQty: " QTYNUMFORMAT.

$PAGE

FETCH-ROW.

EXEC SQL FETCH ORDERREVIEW � 12 �
INTO :ORDERNUMBER,

:ITEMNUMBER,

:VENDPARTNUMBER,

:RECEIVEDQTY :RECEIVEDQTYIND

END-EXEC.

IF SQLCODE = OK THEN

PERFORM DISPLAY-UPDATE � 13 �
ELSE

IF SQLCODE = NOTFOUND THEN

MOVE "X" TO DONE-FETCH-FLAG

DISPLAY " "

DISPLAY "Row Not Found or no more rows"

PERFORM LAST-ROW

GO TO FETCH-ROW-EXIT � 14 �

Figure 8-6. Program COBEX8: Using UPDATE WHERE CURRENT (page 4 of 7)

8-36 Processing with Cursors

ELSE

PERFORM SQL-STATUS-CHECK

MOVE "X" TO DONE-FETCH-FLAG

PERFORM CLOSE-CURSOR

PERFORM ROLLBACK-WORK.

FETCH-ROW-EXIT.

EXIT.

$PAGE

LAST-ROW.

MOVE "X" TO DONE-FETCH-FLAG.

PERFORM CLOSE-CURSOR.

IF ROWCOUNTER > 0 THEN

MOVE "Do you want to save changes you made (Y/N)? > "

TO PROMPT5.

MOVE SPACE TO RESPONSE1.
WRITE PROMPT5 AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE1.

IF RESPONSE1 = "N" OR RESPONSE1 = "n" THEN

PERFORM ROLLBACK-WORK

ELSE

PERFORM COMMIT-WORK

MOVE ROWCOUNTER TO ROWCOUNTFORMAT

DISPLAY ROWCOUNTFORMAT, " row(s) changed."

ELSE IF ROWCOUNTER = 0 THEN

PERFORM COMMIT-WORK.

DISPLAY-UPDATE.

PERFORM DISPLAY-ROW. � 16 �

MOVE "Do you want to change ReceivedQty (Y/N)? > " � 17 �
TO PROMPT2.

MOVE SPACE TO RESPONSE1.

WRITE PROMPT2 AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE1.

IF RESPONSE1 = "Y" OR RESPONSE1 = "y" THEN

MOVE "Enter New ReceivedQty (0 for NULL)>" TO PROMPT3

WRITE PROMPT3 AFTER ADVANCING 1 LINE

ACCEPT RECEIVEDQTY FREE

DISPLAY "Update PurchDB.OrderItems Table"

Figure 8-6. Program COBEX8: Using UPDATE WHERE CURRENT (page 5 of 7)

Processing with Cursors 8-37

IF RECEIVEDQTY = 0 THEN � 18 �
MOVE -1 TO RECEIVEDQTYIND

ELSE

MOVE 0 TO RECEIVEDQTYIND

EXEC SQL UPDATE PURCHDB.ORDERITEMS

SET RECEIVEDQTY = :RECEIVEDQTY :RECEIVEDQTYIND

WHERE CURRENT OF ORDERREVIEW

END-EXEC

IF SQLCODE NOT = OK THEN PERFORM SQL-STATUS-CHECK

ELSE ADD 1 TO ROWCOUNTER.

MOVE "Do you want to see another row (Y/N)? > " � 19 �
TO PROMPT4.

MOVE SPACE TO RESPONSE1.

WRITE PROMPT4 AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE1.

IF RESPONSE1 = "N" OR RESPONSE1 = "n" THEN � 20 �
PERFORM LAST-ROW.

$PAGE

CLOSE-CURSOR.

DISPLAY "Close Cursor".

EXEC SQL CLOSE ORDERREVIEW END-EXEC. � 23 �
IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

SQL-STATUS-CHECK.

IF SQLCODE < DEADLOCK THEN

MOVE 'X' TO ABORT-FLAG.

PERFORM SQLEXPLAIN UNTIL SQLCODE = 0.

IF ABORT THEN PERFORM TERMINATE-PROGRAM.

SQL-STATUS-CHECK-EXIT.

EXIT.

SQLEXPLAIN.

EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.

DISPLAY SQLMESSAGE.

Figure 8-6. Program COBEX8: Using UPDATE WHERE CURRENT (page 6 of 7)

8-38 Processing with Cursors

CONNECT-DBENVIRONMENT.

DISPLAY "Connect to PartsDBE".

EXEC SQL CONNECT TO 'PartsDBE' END-EXEC. � 24 �

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

BEGIN-TRANSACTION.

DISPLAY "Begin Work".

EXEC SQL BEGIN WORK END-EXEC. � 25 �
IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

COMMIT-WORK.

DISPLAY "Commit Work".

EXEC SQL COMMIT WORK END-EXEC. � 26 �
IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

ROLLBACK-WORK.

DISPLAY "Rollback Work".

EXEC SQL ROLLBACK WORK END-EXEC. � 27 �
IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

Figure 8-6. Program COBEX8: Using UPDATE WHERE CURRENT (page 7 of 7)

Processing with Cursors 8-39

9

Bulk Table Processing

BULK table processing is the programming technique you use to SELECT, FETCH, or
INSERT multiple rows at a time. This chapter describes the following aspects of BULK
processing:

Variables Used in BULK Processing.

SQL BULK Commands.

Transaction Management for BULK Operations.

Sample Program Using BULK Processing.

Variables Used in BULK Processing

Rows are retrieved into or inserted from host variables declared as an array of records.
Any column that may contain a null value must have an indicator variable immediately
following the declaration for the column in the array. For example, the indicator variable for
COLUMN2-NAME is COLUMN2-IND-VAR:

01 ARRAY-NAME.

05 ROW-NAME OCCURS n TIMES.

10 COLUMN1-NAME Valid data clause.

10 COLUMN2-NAME Valid data clause.

10 COLUMN2-IND-VAR SQLIND.

.

.

.

10 COLUMNn-NAME Valid data clause.

Bulk Table Processing 9-1

You reference the name of the array in the BULK SQL command:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTSARRAY.
05 EACH-ROW OCCURS 25 TIMES.

10 PARTNUMBER PIC X(16).

10 PARTNAME PIC X(30).

10 PARTNAMEIND SQLIND.

01 SALESPRICE PIC S9(8)V99 COMP-3.

.

.

.

EXEC SQL BULK SELECT PARTNUMBER, PARTNAME

INTO :PARTSARRAY

FROM PURCHDB.PARTS

WHERE SALESPRICE < :SALESPRICE

END-EXEC.

Two additional host variables may be speci�ed in conjunction with the array:

A StartIndex variable: a SMALLINT or INTEGER variable that speci�es an array
subscript. The subscript identi�es where in the array ALLBASE/SQL should store the
�rst row in a group of rows retrieved. In the case of an INSERT operation, the subscript
identi�es where in the array the �rst row to be inserted is stored. If not speci�ed, the
assumed subscript is one.

A NumberOfRows variable: a SMALLINT or INTEGER variable that indicates to
ALLBASE/SQL how many rows to transfer into or take from the array, starting at the
array record designated by StartIndex . If not speci�ed for an INSERT operation, the
assumed number of rows is the number of records in the array from the StartIndex to the
end of the array. If not speci�ed for a SELECT operation, the assumed number of rows is
the smaller of two values: the number of records in the array or the number of rows in the
query result. NumberOfRows can be speci�ed only if you specify the StartIndex variable.

In the BULK SELECT example shown earlier, these two variables would be declared and
referenced as follows:

9-2 Bulk Table Processing

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTSARRAY.

05 EACH-ROW OCCURS 25 TIMES.
10 PARTNUMBER PIC X(16).

10 PARTNAME PIC X(30).

10 PARTNAMEIND SQLIND.

01 SALESPRICE PIC S9(8)V99 COMP-3.

01 STARTINDEX PIC S9(4) COMP.

01 NUMBEROFROWS PIC S9(4) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

EXEC SQL BULK SELECT PARTNUMBER, PARTNAME

INTO :PARTSARRAY,

:STARTINDEX,

:NUMBEROFROWSi

FROM PURCHDB.PARTS

WHERE SALESPRICE < :SALESPRICE

END-EXEC.

Note that StartIndex and NumberOfRows must be referenced in that order and immediately
following the array reference.

SQL Bulk Commands

The SQL commands used for BULK table processing are:

BULK SELECT

BULK FETCH

BULK INSERT

BULK SELECT

The BULK SELECT command is useful when the maximum number of rows in the query
result is known at programming time and when the query result is not too large. For example,
this command might be used in an application that retrieves a query result containing a row
for each month of the year.

The form of the BULK SELECT command is:

BULK SELECT SelectList

INTO ArrayName [,StartIndex [,NumberOfRows]]

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

ORDER BY ColumnID

Remember, the WHERE, GROUP BY, HAVING, and ORDER BY clauses are optional. Note
that the order of the select list items must match the order of the corresponding host variables
in the array.

Bulk Table Processing 9-3

In the following example, parts are counted at one of three frequencies or cycles: 30, 60, or 90
days. The host variable array needs to contain only three records, since the query result will
never exceed three rows.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTSPERCYCLE.

05 EACH-ROW OCCURS 3 TIMES.

01 COUNTCYCLE PIC S9(4) COMP.

01 PARTCOUNT PIC S9(9) COMP.

.

.

.

EXEC SQL BULK SELECT COUNTCYCLE, COUNT(PARTNUMBER)

INTO :PARTSPERCYCLE

FROM PURCHDB.INVENTORY

END-EXEC.

The query result is a three row table that describes how many parts are counted per count
cycle.

9-4 Bulk Table Processing

Multiple query results can be retrieved into the same host variable array by using StartIndex
and NumberOfRows values and executing a BULK SELECT command multiple times:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PARTSPERCYCLE.

05 EACH-ROW OCCURS 3 TIMES.

01 COUNTCYCLE PIC S9(4) COMP.

01 PARTCOUNT PIC S9(9) COMP.

01 STARTINDEX PIC S9(4) COMP.

01 NUMBEROFROWS PIC S9(4) COMP.

01 LOWBINNUMBER PIC X(16).

01 HIGHBINNUMBER PIC X(16).

.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.

01 COUNTCYCLEFORMAT PIC ZZZZZ9.

01 PARTCOUNTFORMAT PIC ZZZZZ9.

01 I PIC S9(4) COMP.

01 PROMPT PIC X(37).

01 PROMPT1 PIC X(25).

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(1) VALUE SPACE.

05 FILLER PIC X(15) VALUE SPACE.

77 ENTRY-DONE-FLAG PIC X VALUE SPACE.

88 ENTRY-NOT-DONE VALUE SPACE.

88 ENTRY-DONE VALUE "X".

.

.

.

Several variables are initialized:

MOVE 1 TO STARTINDEX.

MOVE 3 TO NUMBEROFROWS.

MOVE SPACE TO ENTRY-DONE-FLAG.

PERFORM SELECT-ROWS UNTIL ENTRY-DONE.

IF STARTINDEX > 1 THEN

PERFORM DISPLAY-ROWS VARYING I FROM 1 BY 1 UNTIL I > STARTINDEX.

.

.

Bulk Table Processing 9-5

.

.

SELECT-ROWS.

.

The user is prompted for a range of bin numbers or a 0. If bin numbers are entered,

they are used in a BETWEEN predicate in the BULK SELECT command. This WHILE loop can

be executed as many as �ve times, at which time the array would be �lled.

.

MOVE "ENTER A LOW BIN NUMBER OR / TO STOP> " TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE.

IF RESPONSE-PREFIX NOT = "/"

MOVE RESPONSE TO LOWBINNUMBER

MOVE "ENTER A HIGH BIN NUMBER> " TO PROMPT1

WRITE PROMPT1 AFTER ADVANCING 1 LINE

ACCEPT HIGHBINNUMBER

EXEC SQL BULK SELECT COUNTCYCLE, COUNT(PARTNUMBER)

INTO :PARTSPERCYCLE,

:STARTINDEX,

:NUMBEROFROWS

FROM PURCHDB.INVENTORY

WHERE BINNUMBER

BETWEEN :LOWBINNUMBER AND :HIGHBINNUMBER

END-EXEC

COMPUTE STARTINDEX = STARTINDEX + NUMBEROFROWS

IF STARTINDEX = 16 THEN MOVE "X" TO ENTRY-DONE-FLAG

ELSE

MOVE "X" TO ENTRY-DONE-FLAG.

DISPLAY-ROWS.

The �nal STARTINDEX value can be used to display the �nal contents of the host variable array:

DISPLAY " ".

MOVE COUNTCYCLE(I) TO COUNTCYCLEFORMAT.

DISPLAY " CountCycle: " COUNTCYCLEFORMAT.

MOVE PARTCOUNT(I) TO PARTCOUNTFORMAT.

DISPLAY " PartCount: " PARTCOUNTFORMAT.

9-6 Bulk Table Processing

The following example illustrates the use of SQLERRD(3) to display rows stored in the
host variable array. It also checks SQLCODE in conjunction with SQLERRD(3), to
determine whether or not the BULK SELECT executed without error and whether there
may be additional quali�ed rows for which there was not room in the array. In each case, an
appropriate message is displayed.

The variable MAXIMUMROWS is set to the number of records in the host variable array.

MOVE 25 TO MAXIMUMROWS.

EXEC SQL BULK SELECT ORDERNUMBER, VENDORNUMBER

INTO :ORDERSARRAY

FROM PURCHDB.ORDERS

END-EXEC.

IF SQLCODE = 0

IF SQLERRD(3) = 25

DISPLAY "There may be additional rows "

"that cannot be displayed."

PERFORM DISPLAY-ROWS VARYING I FROM 1 BY 1

UNTIL I > SQLERRD(3)

ELSE

PERFORM DISPLAY-ROWS VARYING I FROM 1 BY 1

UNTIL I > SQLERRD(3).

IF SQLCODE = 100

DISPLAY "No rows were found.".

IF SQLCODE < 0

IF SQLERRD(3) > 0

DISPLAY "The following rows were retrieved "

"before an error occurred:"

PERFORM DISPLAY-ROWS VARYING I FROM 1 BY 1

UNTIL I > SQLERRD(3)

PERFORM SQL-STATUS-CHECK

ELSE

PERFORM SQL-STATUS-CHECK.

DISPLAY-ROWS.

DISPLAY " ".

MOVE ORDERNUMBER (I) TO ORDERNUMBERFORMAT.

DISPLAY " OrderNumber: " ORDERNUMBERFORMAT.

MOVE VENDORNUMBER(I) TO VENDORNUMBERFORMAT.

DISPLAY " VendorNumber: " VENDORNUMBERFORMAT.

Bulk Table Processing 9-7

BULK FETCH

The BULK FETCH command is useful for reporting applications that operate on large query
results or query results whose maximum size is unknown at programming time. The form of
the BULK FETCH command is:

BULK FETCH CursorName

INTO ArrayName [,StartIndex [,NumberOfRows]]

You use this command in conjunction with the following cursor commands:

DECLARE CURSOR: de�nes a cursor and associates with it a query. The cursor
declaration should not contain a FOR UPDATE clause, however, because the BULK
FETCH command is designed to be used for active set retrieval only. The order of
the select list items in the embedded SELECT command must match the order of the
corresponding host variables in the host variable array.

OPEN: de�nes the active set.

BULK FETCH: delivers rows into the host variable array and advances the cursor to the
last row delivered. If a single execution of this command does not retrieve the entire active
set, you re-execute it to retrieve subsequent rows in the active set.

CLOSE: releases ALLBASE/SQL internal bu�ers used to handle cursor operations.

To retrieve all the rows in an active set larger than the host variable array, you can test for a
value of 100 in SQLCODE to determine when you have fetched the last row in the active set:

EXEC SQL BEGIN DECLARE SECTION END-EXEC....
01 SUPPLIERBUFFER.

05 EACH-ROW OCCURS 20 TIMES.

10 PARTNUMBER PIC X(16).

10 VENDORNAME PIC X(30).

10 DELIVERYDAYS PIC S9(4) COMP.

10 DELIVERYDAYSIND SQLIND.

EXEC SQL END DECLARE SECTION END-EXEC.
RESPONSE PIC X(3).

77 FETCH-FLAG PIC X VALUE SPACE.

88 FETCH-NOT-DONE VALUE SPACE.

88 FETCH-DONE VALUE "X"....
EXEC SQL DECLARE SUPPLIERINFO

CURSOR FOR

SELECT PARTNUMBER,

VENDORNAME,

DELIVERYDAYS

FROM PURCHDB.VENDORS,

PURCHDB.SUPPLYPRICE

WHERE PURCHDB.VENDORS.VENDORNUMBER =

PURCHDB.SUPPLYPRICE.VENDORNUMBER

ORDER BY PARTNUMBER

END-EXEC.

9-8 Bulk Table Processing

EXEC SQL OPEN SUPPLIERINFO END-EXEC.

MOVE SPACE TO FETCH-FLAG.

PERFORM FETCH-ROWS UNTIL FETCH-DONE.

EXEC-SQL CLOSE SUPPLIERINFO END-EXEC.

FETCH-ROWS.

EXEC SQL BULK FETCH SUPPLIERINFO

INTO SUPPLIERBUFFER

END-EXEC.

IF SQLCODE = 0 THEN PERFORM DISPLAY-ROWS.

IF SQLCODE = 100 THEN

DISPLAY "No rows were found."

MOVE "X" TO FETCH-FLAG.

IF SQLCODE < 0 THEN

PERFORM DISPLAY-ROWS

PERFORM SQL-STATUS-CHECK

MOVE "X" TO FETCH-FLAG.

DISPLAY-ROWS.

PERFORM SHOW-FETCH VARYING I FROM 1 BY 1

UNTIL I > SQLERRD(3).

IF SQLCODE = 0 THEN

MOVE "Do you want to see additional rows? (YES/NO)> "

TO PROMPT

WRITE PROMPT AFTER ADVANCING 1 LINE

ACCEPT RESPONSE

IF RESPONSE = "N" OR "n" THEN

MOVE "X" TO FETCH-FLAG.

SHOW-FETCH.

This paragraph displays the values in each row returned by the BULK FETCH command.

Each time the BULK FETCH command is executed, the CURRENT row is the last row put
by ALLBASE/SQL into the host variable array. When the last row in the active set has been
fetched, ALLBASE/SQL sets SQLCODE to 100 the next time the BULK FETCH command
is executed.

Bulk Table Processing 9-9

BULK INSERT

The BULK INSERT command is useful for multiple-row insert operations. The form of the
BULK INSERT command is:

BULK INSERT INTO TableName

(ColumnNames)

VALUES (ArrayName [,StartIndex [,NumberOfRows]]

As in the case of the simple INSERT command you can omit ColumnNames when you provide
values for all columns in the target table. ALLBASE/SQL attempts to assign a null value to
any unnamed column.

In the following example, a user is prompted for multiple rows. When the host variable array
is full and/or when the user is �nished specifying values, the BULK INSERT command is
executed:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

.

.

The user is prompted for three column values, and

the values are assigned to the appropriate record

in the host variable array; then the array row

counter (NumberOfRows)is incremented and the user

asked whether s/he wants to specify another line item:

.

01 NEWPARTS.

05 EACH-ROW OCCURS 20 TIMES.

10 PARTNUMBER PIC X(16).

10 PARTNAME PIC X(30).

10 PARTNAMEIND SQLIND.

10 SALESPRICE PIC S9(8)V99 COMP-3.

10 SALESPRICEIND SQLIND.

01 STARTINDEX PIC S9(4) COMP.

01 NUMBEROFROWS PIC S9(4) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

01 RESPONSE PIC X(4).

77 ENTRY-DONE-FLAG PIC X VALUE SPACE.

88 ENTRY-NOT-DONE VALUE SPACE.

88 ENTRY-DONE VALUE "X".

.

.

.

MOVE 1 TO STARTINDEX.

MOVE 0 TO NUMBEROFROWS.

MOVE SPACE TO ENTRY-DONE-FLAG.

PERFORM PART-ENTRY UNTIL ENTRY-DONE.

9-10 Bulk Table Processing

PART-ENTRY.

.

Bulk Table Processing 9-11

.

.

COMPUTE NUMBEROFROWS = NUMBEROFROWS + 1.
MOVE "Do you want to specify another line item (Y/N)?> "

TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE.

IF RESPONSE = "N" OR "n" THEN

MOVE "X" TO ENTRY-DONE-FLAG

PERFORM BULK-INSERT

ELSE

IF NUMBEROFROWS = 20 THEN

PERFORM BULK-INSERT

MOVE 0 TO NUMBEROFROWS.

BULK-INSERT.

EXEC SQL BULK INSERT INTO PURCHDB.PARTS

(PARTNUMBER,

PARTNAME,

SALESPRICE)

VALUES (:NEWPARTS,

:STARTINDEX,

:NUMBEROFROWS)

END-EXEC.

Transaction Management for BULK Operations

Bulk processing, by using only one ALLBASE/SQL command to operate on multiple rows,
provides a way of minimizing the time page or table locks are held. Locks are only held while
moving rows between database tables and an array de�ned by the program, and operations
can be done while holding data in that array without holding locks against the database.

Because the BULK FETCH command may need to be executed several times before an entire
active set is retrieved, locks obtained to execute this command may be held longer than locks
needed to execute the other BULK commands. Therefore this command is most useful for
applications running when multi-user DBEnvironment access is minimal or when concurrent
transactions do not need to update the table that is the target of the BULK FETCH.

Transaction management is further discussed in the ALLBASE/SQL Reference Manual .

9-12 Bulk Table Processing

Sample Program Using BULK Processing

The ow chart in Figure 9-1 summarizes the functionality of program COBEX9. This
program creates orders in the sample DBEnvironment, PARTSDBE. Each order is placed with
a speci�c vendor, to obtain one or more parts supplied by that vendor.

The order header consists of data from a row in table PURCHDB.ORDERS:

ORDERNUMBER (defined NOT NULL)

VENDORNUMBER

ORDERDATE

An order usually also consists of one or more line items, represented by one or more rows in
table PURCHDB.ORDERITEMS:

ORDERNUMBER (defined NOT NULL)

ITEMNUMBER (defined NOT NULL)

VENDPARTNUMBER

PURCHASEPRICE (defined NOT NULL)

ORDERQTY

ITEMDUEDATE
RECEIVEDQTY

Program COBEX9 uses a simple INSERT command to create the order header and,
optionally, a BULK INSERT command to insert line items.

The runtime dialog for COBEX9 appears in Figure 9-2, and the source code in Figure 9-3.

To establish a DBE session, COBEX9 performs paragraph CONNECT-DBENVIRONMENT
� 3 �, which executes the CONNECT command � 52 �.

The program then executes paragraph CREATE-ORDER through CREATE-ORDER-EXIT
until the DONE-FLAG contains an X � 4 �.

Paragraph CREATE-ORDER prompts for a vendor number or a zero � 7 �. When the user
enters a zero, an X is moved to DONE-FLAG � 8 � and the program terminates. When the
user enters a vendor number, COBEX9:

Validates the number entered.

Creates an order header if the vendor number is valid.

Optionally inserts line items if the order header has been successfully created; the part
number for each line item is validated to ensure the vendor actually supplies the part.

Displays the order created.

Bulk Table Processing 9-13

To validate the vendor number, paragraph VALIDATE-VENDOR is executed � 9 �.
Paragraph VALIDATE-VENDOR starts a transaction by performing paragraph
BEGIN-TRANSACTION � 38 �, which executes the BEGIN WORK command � 53 �. Then
a SELECT command � 39 � is processed to determine whether the vendor number exists in
column VENDORNUMBER of table PURCHDB.VENDORS:

If the number exists in table PURCHDB.VENDORS, the vendor number is valid. A space
is moved to VENDOR-FLAG , and the transaction is terminated by performing paragraph
COMMIT-WORK � 40 �. Paragraph COMMIT-WORK executes the COMMIT WORK
command � 54 �.

If the vendor number is not found, COMMIT WORK is executed and a message displayed
to inform the user that the number entered is invalid � 41 �. Several ags are set to X so
that when control returns to paragraph CREATE-ORDER, the user is again prompted for a
vendor number.

If the SELECT command fails, paragraph SQL-STATUS-CHECK is performed � 42 � to
display any error messages � 51 � before the transaction is terminated and the appropriate
ags set.

If the vendor number is valid, COBEX9 performs paragraph CREATE-HEADER to create the
order header � 10 �. The order header consists of a row containing the vendor number entered,
plus two values computed by the program: ORDERNUMBER and ORDERDATE .

Paragraph CREATE-HEADER starts a transaction � 13 �, then obtains an exclusive lock on
table PURCHDB.ORDERS � 14 �. Exclusive access to this table ensures that when the row is
inserted, no row having the same number will have been inserted by another transaction. The
unique index that exists on column ORDERNUMBER prevents duplicate order numbers in
table PURCHDB.ORDERS. Therefore an INSERT operation fails if it attempts to insert a
row having an order number with a value already in column ORDERNUMBER.

In this case, the exclusive lock does not threaten concurrency. No operations conducted
between the time the lock is obtained and the time it is released involve operator intervention:

Paragraph CREATE-HEADER executes a SELECT command to retrieve the highest order
number in PURCHDB.ORDERS � 15 �. The number retrieved is incremented by one � 16 �
to assign a number to the order.

Paragraph CREATE-HEADER then moves the special register word CURRENT-DATE to
variable TODAY � 17 �. This variable is declared as an array � 2 � containing elements that
can be concatenated to the YYYYMMDD format � 18 � in which ORDERDATE values are
stored.

Paragraph CREATE-HEADER then executes a simple INSERT command � 19 � to insert
a row into PURCHDB.ORDERS. If the INSERT command succeeds, the transaction is
terminated with a COMMIT WORK command, and a space is moved to HEADER-FLAG
� 20 �. If the INSERT command fails, the transaction is terminated with COMMIT WORK,
but an X is moved to HEADER-FLAG � 21 � so that the user is prompted for another
vendor number when control returns to paragraph CREATE-ORDER.

To create line items, paragraph CREATE-ORDER performs paragraph CREATE-ORDER-
ITEMS until the DONE-ITEMS-FLAG contains an X � 11 �. CREATE-ORDER-ITEMS asks
the user whether she wants to specify line items � 22 �.

9-14 Bulk Table Processing

If the user wants to create line items, CREATE-ORDER-ITEMS performs paragraph
ITEM-ENTRY through ITEM-ENTRY-EXIT until the DONE-ITEMS-FLAG contains an X
� 24 �, then performs paragraph BULK-INSERT � 25 �:

ITEM-ENTRY assigns values to host variable array ORDERITEMS � 1 �; each row in
the array corresponds to one line item, or row in table PURCHDB.ORDERITEMS. The
paragraph �rst assigns the order number and a line number to each row � 26 �, beginning at
one. ITEM-ENTRY then prompts for a vendor part number � 27 �, which is validated by
performing paragraph VALIDATE-PART � 28 �.

VALIDATE-PART starts a transaction � 43 �. Then it executes a SELECT command � 44 �
to determine whether the part number entered matches any part number known to be
supplied by the vendor. If the part number is valid, the COMMIT WORK command is
executed � 45 � and a space moved to PART-FLAG . If the part number is invalid, COMMIT
WORK is executed � 46 �, and the user informed that the vendor does not supply any part
having the number speci�ed; then an X is moved to PART-FLAG so that the user is
prompted for another part number when control returns to paragraph ITEM-ENTRY .

If the part number is valid, paragraph ITEM-ENTRY completes the line item. It prompts
for values to assign to columns PURCHASEPRICE, ORDERQTY, and ITEMDUEDATE
� 29 �. The paragraph then assigns a negative value to the indicator variable for column
RECEIVEDQTY � 30 � in preparation for inserting a null value into this column.

ITEM-ENTRY terminates when the user indicates that she does not want to specify any
more line items � 32 � or when the host variable array is full � 31 �.

Paragraph BULK-INSERT starts a transaction � 33 �, then executes the BULK INSERT
command � 35 �. The line items in array ORDERITEMS are inserted into table
PURCHDB.ORDERITEMS, starting with the �rst row in the array and continuing for
as many rows as there were line items speci�ed � 34 �. If the BULK INSERT command
succeeds, the COMMIT WORK command is executed � 36 � and a space moved to
ITEMS-FLAG . If the BULK INSERT command fails, paragraph ROLLBACK-WORK is
executed � 37 � to process the ROLLBACK WORK command � 55 � so that any rows inserted
prior to the failure are rolled back.

If the user does not want to create line items, paragraph CREATE-ORDER-ITEMS displays
the order header by performing paragraph DISPLAY-HEADER � 23 �. DISPLAY-HEADER
displays the row inserted earlier in PURCHDB.ORDERS � 49 �.

If line items were inserted into PURCHDB.ORDERITEMS, paragraph DISPLAY-ORDER
is performed � 12 � to display the order created. DISPLAY-ORDER performs paragraph
DISPLAY-HEADER � 47 � to display the order header. Then it performs paragraph
DISPLAY-ITEMS � 48 � to display each row inserted into PURCHDB.ORDERITEMS.
DISPLAY-ITEMS displays values from array ORDERITEMS � 50 �.

When the program user enters a zero in response to the vendor number prompt, the program
terminates by performing paragraph TERMINATE-PROGRAM � 5 �, which executes the
RELEASE command � 6 �.

Bulk Table Processing 9-15

Figure 9-1. Flow Chart of Program COBEX9

9-16 Bulk Table Processing

:RUN COBEX9P

Program to Create an Order - COBEX9

Event List:

Connect to PartsDBE

Prompt for VendorNumber

Validate VendorNumber

INSERT a row into PurchDB.Orders

Prompt for line items

Validate VendPartNumber for each line item

BULK INSERT rows into PurchDB.OrderItems

Repeat the above six steps until user enters 0

Release PartsDBE

Connect to PartsDBE

Enter VendorNumber or 0 to STOP> 9015

Begin Work
Validating VendorNumber

Commit Work

Begin Work

Calculating OrderNumber

Calculating OrderDate

INSERT INTO PurchDB.Orders

Commit Work

Do you want to specify line items (Y/N)?> y

You can specify as many as 25 line items.

Enter data for ItemNumber 1:

VendPartNumber> 9040

Begin Work

Validating VendPartNumber

Commit Work

PurchasePrice> 1500

OrderQty> 5

ItemDueDate (YYYYMMDD)> 19870630

Do you want to specify another line item (Y/N)?> y

You can specify as many as 25 line items.

Enter data for ItemNumber 2:
VendPartNumber> 9055

Figure 9-2. Execution of Program COBEX9

Bulk Table Processing 9-17

Begin Work

Validating VendPartNumber

Commit Work

The vendor has no part with the number you specified.

You can specify as many as 25 line items.

Enter data for ItemNumber 2:

VendPartNumber> 9050

Begin Work

Validating VendPartNumber

Commit Work

PurchasePrice> 345

OrderQty> 2

ItemDueDate (YYYYMMDD)> 19870801

Do you want to specify another line item (Y/N)?> n

Begin Work

BULK INSERT INTO PurchDB.OrderItems

Commit Work

The following order has been created:

OrderNumber: 30538

VendorNumber: 9015

OrderDate: 19870603

ItemNumber: 1

VendPartNumber: 9040

PurchasePrice: $1,500.00

OrderQty: 5

ItemDueDate: 19870630

ReceivedQty: NULL

ItemNumber: 2

VendPartNumber: 9050

PurchasePrice: $345.00

OrderQty: 2

ItemDueDate: 19870801

ReceivedQty: NULL

Enter VendorNumber or 0 to STOP> 0

END OF PROGRAM

Figure 9-2. Execution of Program COBEX9 (page 2 of 2)

9-18 Bulk Table Processing

* *

* This program illustrates the use of BULK INSERT *

* to insert multiple rows at a time. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX9.

AUTHOR. JIM FRANCIS AND KAREN THOMAS.

INSTALLATION. HP.

DATE-WRITTEN. 20 MAY 1987.

DATE-COMPILED. 20 MAY 1987.

REMARKS. ILLUSTRATES BULK INSERT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

SPECIAL-NAMES. CONSOLE IS TERMINAL-INPUT.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(33).

01 PROMPT1 PIC X(42).

01 PROMPT2 PIC X(17).

01 PROMPT3 PIC X(16).

01 PROMPT4 PIC X(11).

01 PROMPT5 PIC X(25).

01 PROMPT6 PIC X(49).

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 ORDERNUMBER1 PIC S9(9) COMP.

01 VENDORNUMBER PIC S9(9) COMP.

01 ORDERDATE PIC X(8).

01 PARTSPECIFIED PIC X(16).

01 MAXORDERNUMBER PIC S9(9) COMP.

01 ORDERITEMS. � 1 �
05 EACH-ROW OCCURS 25 TIMES.

10 ORDERNUMBER2 PIC S9(9) COMP.

10 ITEMNUMBER PIC S9(9) COMP.

10 VENDPARTNUMBER PIC X(16).

10 PURCHASEPRICE PIC S9(8)V99 COMP-3.
10 ORDERQTY PIC S9(4) COMP.

10 ITEMDUEDATE PIC X(8).

Figure 9-3. Program COBEX9: Using BULK INSERT

Bulk Table Processing 9-19

10 RECEIVEDQTY PIC S9(4) COMP.

10 RECEIVEDQTYIND SQLIND.

01 STARTINDEX PIC S9(4) COMP.

01 NUMBEROFROWS PIC S9(4) COMP.

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

$PAGE

77 DONE-FLAG PIC X VALUE SPACE.

88 NOT-DONE VALUE SPACE.

88 DONE VALUE "X".

77 DONE-ITEMS-FLAG PIC X VALUE SPACE.

88 NOT-DONE-ITEMS VALUE SPACE.

88 DONE-ITEMS VALUE "X".

77 VENDOR-FLAG PIC X VALUE SPACE.
88 VENDOR-OK VALUE SPACE.

88 VENDOR-NOT-OK VALUE "X".

77 HEADER-FLAG PIC X VALUE SPACE.

88 HEADER-OK VALUE SPACE.

88 HEADER-NOT-OK VALUE "X".

77 PART-FLAG PIC X VALUE SPACE.

88 PART-OK VALUE SPACE.

88 PART-NOT-OK VALUE "X".

77 ITEMS-FLAG PIC X VALUE SPACE.

88 ITEMS-OK VALUE SPACE.

88 ITEMS-NOT-OK VALUE "X".

77 ABORT-FLAG PIC X VALUE SPACE.

88 NOT-STOP VALUE SPACE.

88 ABORT VALUE "X".

01 I PIC S9(4) COMP.

01 J PIC S9(4) COMP.

01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 RESPONSE PIC S9(9) COMP VALUE 0.

01 RESPONSE1 PIC X(4) VALUE SPACE.

01 ORDERNUMFORMAT PIC ZZZZZ9.

01 VENDORNUMFORMAT PIC ZZZZZ9.

Figure 9-3. Program COBEX9: Using BULK INSERT (page 2 of 10)

9-20 Bulk Table Processing

01 ITEMNUMFORMAT PIC ZZZZZ9.

01 QTYNUMFORMAT PIC ZZZZZ9.

01 DOLLARS PIC $$$,$$$,$$$.99.

01 TODAY. � 2 �
05 TMONTH PIC X(2).

05 FILLER PIC X(1).

05 TDAY PIC X(2).

05 FILLER PIC X(1).

05 TYEAR PIC X(2).

$PAGE

PROCEDURE DIVISION.

BEGIN.

DISPLAY "Program to Create an Order - COBEX9".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Connect to PartsDBE".
DISPLAY " Prompt for VendorNumber".

DISPLAY " Validate VendorNumber".

DISPLAY " INSERT a row into PurchDB.Orders".

DISPLAY " Prompt for line items".

DISPLAY " Validate VendPartNumber for each line item".

DISPLAY " BULK INSERT rows into PurchDB.OrderItems".

DISPLAY " Repeat the above six steps until "

"user enters 0".

DISPLAY " Release PartsDBE".

DISPLAY " ".

OPEN OUTPUT CRT.

PERFORM CONNECT-DBENVIRONMENT. � 3 �

PERFORM CREATE-ORDER THRU CREATE-ORDER-EXIT UNTIL DONE. � 4 �

PERFORM TERMINATE-PROGRAM. � 5 �

TERMINATE-PROGRAM.

EXEC SQL RELEASE END-EXEC. � 6 �

STOP RUN.

CREATE-ORDER.

MOVE SPACES TO DONE-ITEMS-FLAG.

MOVE "Enter VendorNumber or 0 to STOP> " TO PROMPT. � 7 �

Figure 9-3. Program COBEX9: Using BULK INSERT (page 3 of 10)

Bulk Table Processing 9-21

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE FREE.

IF RESPONSE IS ZERO THEN � 8 �
MOVE "X" TO DONE-FLAG

GO TO CREATE-ORDER-EXIT

ELSE

MOVE RESPONSE TO VENDORNUMBER.

PERFORM VALIDATE-VENDOR. � 9 �

IF VENDOR-OK THEN PERFORM CREATE-HEADER. � 10 �

IF HEADER-OK THEN

PERFORM CREATE-ORDER-ITEMS UNTIL DONE-ITEMS. � 11 �

IF ITEMS-OK THEN PERFORM DISPLAY-ORDER. � 12 �

CREATE-ORDER-EXIT.

EXIT.

CREATE-HEADER.

DISPLAY " ".

DISPLAY "Begin Work".

PERFORM BEGIN-TRANSACTION. � 13 �

EXEC SQL LOCK TABLE PURCHDB.ORDERS � 14 �
IN EXCLUSIVE MODE

END-EXEC.

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM COMMIT-WORK

MOVE "X" TO HEADER-FLAG

GO TO CREATE-HEADER-EXIT.

EXEC SQL SELECT MAX(ORDERNUMBER) � 15 �
INTO :MAXORDERNUMBER

FROM PURCHDB.ORDERS

END-EXEC.

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM COMMIT-WORK
MOVE "X" TO HEADER-FLAG

GO TO CREATE-HEADER-EXIT.

Figure 9-3. Program COBEX9: Using BULK INSERT (page 4 of 10)

9-22 Bulk Table Processing

DISPLAY "Calculating OrderNumber".

COMPUTE ORDERNUMBER1 = MAXORDERNUMBER + 1. � 16 �
DISPLAY "Calculating OrderDate".

MOVE CURRENT-DATE TO TODAY. � 17 �

STRING "19", TYEAR, TMONTH, TDAY � 18 �
DELIMITED BY SIZE INTO ORDERDATE.

DISPLAY "INSERT INTO PurchDB.Orders".

EXEC SQL INSERT INTO PURCHDB.ORDERS � 19 �
(ORDERNUMBER,

VENDORNUMBER,

ORDERDATE)

VALUES (:ORDERNUMBER1,

:VENDORNUMBER,

:ORDERDATE)

END-EXEC.

IF SQLCODE = OK THEN � 20 �
PERFORM COMMIT-WORK

MOVE SPACE TO HEADER-FLAG

ELSE

PERFORM SQL-STATUS-CHECK

PERFORM COMMIT-WORK

MOVE "X" TO HEADER-FLAG. � 21 �

CREATE-HEADER-EXIT.

EXIT.

CREATE-ORDER-ITEMS.

MOVE "Do you want to specify line items (Y/N)?> " � 22 �
TO PROMPT1.

MOVE SPACE TO RESPONSE1.

WRITE PROMPT1 AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE1.

IF RESPONSE1 = "N" OR "n" THEN

MOVE "X" TO DONE-ITEMS-FLAG

MOVE "X" TO ITEMS-FLAG

PERFORM DISPLAY-HEADER � 23 �
ELSE

MOVE 1 TO I

PERFORM ITEM-ENTRY THRU ITEM-ENTRY-EXIT � 24 �
UNTIL DONE-ITEMS

PERFORM BULK-INSERT. � 25 �

Figure 9-3. Program COBEX9: Using BULK INSERT (page 5 of 10)

Bulk Table Processing 9-23

ITEM-ENTRY.

MOVE ORDERNUMBER1 TO ORDERNUMBER2(I). � 26 �
MOVE I TO ITEMNUMBER(I).

MOVE I TO ITEMNUMFORMAT.

DISPLAY " ".

DISPLAY "You can specify as many as 25 line items.".

DISPLAY " ".

DISPLAY "Enter data for ItemNumber " ITEMNUMFORMAT ":".

MOVE " VendPartNumber> " TO PROMPT2. � 27 �
WRITE PROMPT2 AFTER ADVANCING 1 LINE.

MOVE SPACES TO VENDPARTNUMBER(I).

ACCEPT VENDPARTNUMBER(I).

PERFORM VALIDATE-PART. � 28 �

IF PART-OK THEN

MOVE " PurchasePrice> " TO PROMPT3 � 29 �
WRITE PROMPT3 AFTER ADVANCING 1 LINE

ACCEPT PURCHASEPRICE(I) FREE

MOVE " OrderQty> " TO PROMPT4

WRITE PROMPT4 AFTER ADVANCING 0 LINES

ACCEPT ORDERQTY(I) FREE

MOVE " ItemDueDate (YYYYMMDD)> " TO PROMPT5

WRITE PROMPT5 AFTER ADVANCING 0 LINES

MOVE SPACES TO ITEMDUEDATE(I)

ACCEPT ITEMDUEDATE(I)

MOVE -1 TO RECEIVEDQTYIND(I) � 30 �

IF I = 25 THEN � 31 �
MOVE "X" TO DONE-ITEMS-FLAG

GO TO ITEM-ENTRY-EXIT

ELSE

DISPLAY " "

MOVE "Do you want to specify another line item (Y/N)?> "

TO PROMPT6

MOVE SPACE TO RESPONSE1

WRITE PROMPT6 AFTER ADVANCING 1 LINE

ACCEPT RESPONSE1

IF RESPONSE1 = "N" OR "n" THEN � 32 �
MOVE "X" TO DONE-ITEMS-FLAG

ELSE

COMPUTE I = I + 1.

Figure 9-3. Program COBEX9: Using BULK INSERT (page 6 of 10)

9-24 Bulk Table Processing

ITEM-ENTRY-EXIT.

EXIT.

BULK-INSERT.

DISPLAY " ".

DISPLAY "Begin Work".

PERFORM BEGIN-TRANSACTION. � 33 �

MOVE I TO NUMBEROFROWS. � 34 �
MOVE 1 TO STARTINDEX.

DISPLAY "BULK INSERT INTO PurchDB.OrderItems".

EXEC SQL BULK INSERT INTO PURCHDB.ORDERITEMS � 35 �
(ORDERNUMBER,

ITEMNUMBER,

VENDPARTNUMBER,

PURCHASEPRICE,
ORDERQTY,

ITEMDUEDATE,

RECEIVEDQTY)

VALUES (:ORDERITEMS,

:STARTINDEX,

:NUMBEROFROWS)

END-EXEC.

IF SQLCODE = OK THEN � 36 �
PERFORM COMMIT-WORK

MOVE SPACE TO ITEMS-FLAG

ELSE

PERFORM SQL-STATUS-CHECK

PERFORM ROLLBACK-WORK � 37 �
MOVE "X" TO ITEMS-FLAG.

VALIDATE-VENDOR.

DISPLAY " ".

DISPLAY "Begin Work".

DISPLAY "Validating VendorNumber".

PERFORM BEGIN-TRANSACTION. � 38 �

EXEC SQL SELECT VENDORNUMBER � 39 �
INTO :VENDORNUMBER

FROM PURCHDB.VENDORS

WHERE VENDORNUMBER = :VENDORNUMBER
END-EXEC.

Figure 9-3. Program COBEX9: Using BULK INSERT (page 7 of 10)

Bulk Table Processing 9-25

IF SQLCODE = OK THEN � 40 �
PERFORM COMMIT-WORK

MOVE SPACE TO VENDOR-FLAG

ELSE

IF SQLCODE = NOTFOUND � 41 �
PERFORM COMMIT-WORK

DISPLAY " "

DISPLAY "No vendor has the VendorNumber you specified."

MOVE "X" TO VENDOR-FLAG

MOVE "X" TO HEADER-FLAG

MOVE "X" TO ITEMS-FLAG

ELSE

PERFORM SQL-STATUS-CHECK � 42 �
PERFORM COMMIT-WORK

MOVE "X" TO VENDOR-FLAG

MOVE "X" TO HEADER-FLAG

MOVE "X" TO ITEMS-FLAG.

VALIDATE-PART.

DISPLAY " ".

DISPLAY "Begin Work".

DISPLAY "Validating VendPartNumber".

PERFORM BEGIN-TRANSACTION. � 43 �

MOVE VENDPARTNUMBER(I) TO PARTSPECIFIED.

EXEC SQL SELECT VENDPARTNUMBER � 44 �
INTO :PARTSPECIFIED

FROM PURCHDB.SUPPLYPRICE

WHERE VENDORNUMBER = :VENDORNUMBER

AND VENDPARTNUMBER = :PARTSPECIFIED

END-EXEC.

IF SQLCODE = OK THEN � 45 �
PERFORM COMMIT-WORK

MOVE SPACE TO PART-FLAG

ELSE

IF SQLCODE = NOTFOUND � 46 �
PERFORM COMMIT-WORK

DISPLAY " "

DISPLAY "The vendor has no part "

"with the number you specified."

MOVE "X" TO PART-FLAG

ELSE

PERFORM SQL-STATUS-CHECK

PERFORM COMMIT-WORK
MOVE "X" TO PART-FLAG.

Figure 9-3. Program COBEX9: Using BULK INSERT (page 8 of 10)

9-26 Bulk Table Processing

DISPLAY-ORDER.

PERFORM DISPLAY-HEADER. � 47 �
DISPLAY " ".

PERFORM DISPLAY-ITEMS VARYING J FROM 1 BY 1 UNTIL J > I.� 48 �

DISPLAY-HEADER. � 49 �

DISPLAY " ".

DISPLAY "The following order has been created:"

DISPLAY " ".

MOVE ORDERNUMBER1 TO ORDERNUMFORMAT

DISPLAY " OrderNumber: " ORDERNUMFORMAT.

MOVE VENDORNUMBER TO VENDORNUMFORMAT.

DISPLAY " VendorNumber: " VENDORNUMFORMAT.

DISPLAY " OrderDate: " ORDERDATE.

DISPLAY-ITEMS. � 50 �

DISPLAY " ".

MOVE ITEMNUMBER(J) TO ITEMNUMFORMAT.

DISPLAY " ItemNumber: " ITEMNUMFORMAT.

DISPLAY " VendPartNumber: " VENDPARTNUMBER(J).

MOVE PURCHASEPRICE(J) TO DOLLARS.

DISPLAY " PurchasePrice: " DOLLARS.

MOVE ORDERQTY(J) TO QTYNUMFORMAT.

DISPLAY " OrderQty: " QTYNUMFORMAT.

DISPLAY " ItemDueDate: " ITEMDUEDATE(J).

DISPLAY " ReceivedQty: NULL".

SQL-STATUS-CHECK. � 51 �

IF SQLCODE < DEADLOCK THEN

MOVE "X" TO ABORT-FLAG.

PERFORM SQLEXPLAIN UNTIL SQLCODE = 0.

IF ABORT THEN PERFORM TERMINATE-PROGRAM.

SQL-STATUS-CHECK-EXIT.

EXIT.

Figure 9-3. Program COBEX9: Using BULK INSERT (page 9 of 10)

Bulk Table Processing 9-27

SQLEXPLAIN.

EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.

DISPLAY SQLMESSAGE.

CONNECT-DBENVIRONMENT.

DISPLAY "Connect to PartsDBE".

EXEC SQL CONNECT TO "PartsDBE" END-EXEC. � 52 �

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

BEGIN-TRANSACTION.

EXEC SQL BEGIN WORK END-EXEC. � 53 �

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

COMMIT-WORK.

DISPLAY "Commit Work".

EXEC SQL COMMIT WORK END-EXEC. � 54 �

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

ROLLBACK-WORK.

DISPLAY "Rollback Work".

EXEC SQL ROLLBACK WORK END-EXEC. � 55 �

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

Figure 9-3. Program COBEX9: Using BULK INSERT (page 10 of 10)

9-28 Bulk Table Processing

10

Using Dynamic Operations

Dynamic operations are used to execute SQL commands that are not preprocessed until run
time. Such commands, known as dynamic SQL commands, are submitted to ALLBASE/SQL
through several special SQL statements: PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE.

This chapter contrasts dynamic with non-dynamic operations and introduces the techniques
used to handle dynamic operations from a program. In COBOL programs, you cannot
dynamically preprocess a query (SELECT command). However, you can call a Pascal or C
subprogram which can dynamically preprocess a query. The following topics are considered:

Review of Preprocessing Events.
Di�erences between Dynamic and Non-Dynamic Preprocessing.
Preprocessing of Dynamic Queries (See note below.)
Preprocessing of Dynamic Non-Queries.
Programs Using Dynamic Operations.

Note COBOL, by itself, cannot use dynamic queries. However, a method for calling
a C or Pascal routine to process the dynamic query is presented.

Review of Preprocessing Events

All embedded SQL statements must be preprocessed before they can be executed.
Preprocessing may be done by running the COBOL preprocessor during application
development, or it may be done for dynamic commands when the program is run.
Preprocessing does the following:

Checks syntax: The syntax of SQL commands and host variable declarations must be
correct.

Veri�es the existence of objects: Any object named in an SQL command must exist.

Optimizes data access: If the statement accesses data, the fastest way to access the data
must be determined.

Checks authorizations: Both the program owner and the executor must have the required
authorities.

Creates sections: ALLBASE/SQL creates sections for SQL commands when this is
appropriate. At run time, the section is executed.

Using Dynamic Operations 10-1

These preprocessing events take place for all non-dynamic SQL commands when you run the
ALLBASE/SQL preprocessor. Non-dynamic commands are fully de�ned in the source code
and are preprocessed before run time. So far, most of the examples in this manual have shown
non-dynamic preprocessing.

ALLBASE/SQL completes the preprocessing of dynamic commands at run time, in an event
known as dynamic preprocessing. Any SQL command except the following, which do not
require sections for execution, can be preprocessed at run time:

BEGIN DECLARE SECTION FETCH

CLOSE CURSOR INCLUDE

DECLARE CURSOR OPEN CURSOR

DELETE WHERE CURRENT PREPARE

DESCRIBE SQLEXPLAIN

END DECLARE SECTION UPDATE WHERE CURRENT

EXECUTE WHENEVER

EXECUTE IMMEDIATE

Dynamic commands that are not queries can be preprocessed at run time using the
PREPARE and EXECUTE statements or the EXECUTE IMMEDIATE statement.

Differences between Dynamic and Non-Dynamic Preprocessing

The authorization checking and section creation activities for non-dynamic and dynamic
ALLBASE/SQL commands di�er in the following ways:

Authorization checking. A non-dynamic command is executed if the owner of the program
module has the proper authority at run time. A dynamic command is executed if the
program executor has the proper authority at run time.

Section creation. Any section created for a non-dynamic command becomes part of a
module permanently stored in a DBEnvironment by the COBOL preprocessor. The module
remains in the system catalog until you execute the DROP MODULE command or invoke
the preprocessor with the DROP option. Any section created for a dynamic command is
temporary. The section is created at run time, temporarily stored, then deleted at the end
of the transaction in which it was created.

Permanently Stored vs. Temporary Sections

In some instances, you could code the same SQL statement as either dynamic or non-dynamic,
depending on whether you wanted to store permanent sections. A program that has
permanently stored sections associated with it can be executed only against DBEnvironments
containing those sections. Figure 10-1 illustrates how you create and use such programs. Note
that the sections can be permanently stored either by the preprocessor or by using the ISQL
INSTALL command.

10-2 Using Dynamic Operations

Figure 10-1. Creation and Use of a Program that has a Stored Module

Programs that contain only SQL commands that do not have permanently stored sections can
be executed against any DBEnvironment without the prerequisite of storing a module in the
DBEnvironment. Figure 10-2 illustrates how you create and use programs in this category.
Note that the program must still be preprocessed in order to create compilable �les and
generate ALLBASE/SQL external procedure calls.

Using Dynamic Operations 10-3

Figure 10-2. Creation and Use of a Program that has No Stored Module

Examples of Non-Dynamic and Dynamic SQL Statements

The following example shows an embedded SQL statement that is coded so as to generate a
stored section before run time:

EXEC SQL UPDATE STATISTICS FOR TABLE PurchDB.Parts;

When you run the preprocessor on a source �le containing this statement, a permanent section
will be stored in the appropriate DBEnvironment.

The following example shows an SQL statement that is coded so as to generate a temporary
section at run time:

DynamicCommand := 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

EXEC SQL PREPARE MyCommand FROM :DynamicCommand;

EXEC SQL EXECUTE MyCommand;

10-4 Using Dynamic Operations

In this case, the SQL statement is stored in a host variable which is passed to ALLBASE/SQL
in the PREPARE statement at run time. A temporary section is then created and executed,
and the section is not stored in the DBEnvironment.

Why Use Dynamic Preprocessing?

In some cases, it may be desirable to preprocess an SQL command at run time:

You may need to code an application that permits SQL commands to be entered by the user
at run time. (ISQL is an example of an ad hoc query facility in which the command the
user will submit is completely unknown at programming time.)

You may need more specialized applications requiring SQL commands that are de�ned
partly at programming time and partly by the user at run time. An application may, for
example, perform UPDATE STATISTICS operations on tables the user speci�es at run
time.

You may wish to run an application on di�erent DBEnvironments at di�erent times without
the need to permanently store sections in those DBEnvironments.

You may wish to code only one dynamic command (a CONNECT, for instance) and then
preprocess or install the same application in several di�erent DBEnvironments.

Passing Dynamic Commands to ALLBASE/SQL

A dynamic command is passed to ALLBASE/SQL either as a string literal or as a host
variable containing a string. It must be terminated with a semicolon. The maximum length
for such a string is 2048 bytes.

To pass a dynamic command that can be completely de�ned at programming time, you can
use a delimited string:

EXEC SQL

PREPARE MyCommand FROM 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';
END-EXEC.

or

EXEC SQL

EXECUTE IMMEDIATE 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

END-EXEC.

Using Dynamic Operations 10-5

To pass a dynamic command that cannot be completely de�ned at programming time, you use
a host variable declared with PIC, as follows:

01 DYNAMICHOSTVAR PIC X(2048).
.

.

EXEC SQL EXECUTE IMMEDIATE :DYNAMICHOSTVAR END-EXEC.

Understanding the Types of Dynamic Operations

Dynamic operations in ALLBASE/SQL are of two major types:

Dynamic Non-Queries: dynamic operations that do not retrieve rows from the database.
Note that dynamic non-queries either do or do not require the use of sections at execution
time. For example, a CONNECT does not require a section, but a DELETE does.

Dynamic Queries: dynamic operations that do retrieve rows. Note that dynamic queries
may have a query result whose format is known to you at programming time, or they may
have a query result whose format is unknown. Dynamic queries always use sections at
execution time.

COBOL does not permit dynamic queries. However, you can call a C or Pascal routine
from your COBOL program. This technique is discussed under \Preprocessing of Dynamic
Queries with C or Pascal Routines" below. You can use either the EXECUTE IMMEDIATE
command or the PREPARE and EXECUTE commands to handle non-query dynamic
commands.

The following paragraphs �rst examine COBOL queries using C or Pascal routines, then
examine COBOL non-queries using the EXECUTE IMMEDIATE or PREPARE and
EXECUTE commands.

Preprocessing of Dynamic Queries with C or Pascal Routines

Although you cannot dynamically preprocess a query (SELECT command) in COBOL, you
can call a Pascal or C subprogram which can dynamically preprocess a query.

COBOL Call Example

In the example program used in this section, a COBOL program calls a subprogram named
performcommand to dynamically preprocess an SQL command. The same COBOL code
is used when calling both the Pascal or C versions of performcommand . Parameters are
passed by reference to performcommand . For more information on passing parameters to
non-COBOL programs, please refer to the HP COBOL II/XL Programmer's Guide .

The following example shows the COBOL parameter declarations and CALL statement:

10-6 Using Dynamic Operations

.

.

WORKING-STORAGE SECTION.

.

.

DYNAMIC-CMD contains the SQL command to be executed by the subprogram.

01
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DYNAMIC-CMD PIC X(1014).

SQLCA is the data structure that contains current information about a program's DBE session.

EXEC SQL INCLUDE
NNNNNNNNNNNNNNNNN
SQLCA END-EXEC.

.

.

PROCEDURE DIVISION.

.

.

Connect to the DBEnvironment.

.

.

Load DYNAMIC-CMD with the SQL command to be executed.

.

.NNN
CALL "performcommand" USING DYNAMIC-CMD,NNNNNNNNNNNNNNNNNNNN

SQLCA.

.

.

C Subprogram Example

This section describes the C version of a subprogram called by a COBOL program to
dynamically preproccess SQL commands. The C routines that actually perform the dynamic
preproccessing are similar to those used in cex10a, a sample C program described in the
ALLBASE/SQL C Application Programming Guide.

The performcommand subprogram includes the following steps:

1. Copy the parameters passed from the calling COBOL program into the C global variables
needed by the SQL calls.

2. Issue the SQL PREPARE and DESCRIBE statements.

3. Parse the data bu�er and display the rows.

4. Copy the C global SQLCA variable back into the sqlcaparm parameter before returning to
the COBOL program.

The source code of the performcommand subprogram is summarized below:

Using Dynamic Operations 10-7

.

.

Global variable declarations needed by the C routines for dynamic preprocessing:

EXEC SQL BEGIN DECLARE SECTION;

char
NN
DynamicCommand[1014] ;

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE
NNNNNNNNNNNNNNNNN
SQLCA ;

EXEC SQL INCLUDE
NNNNNNNNNNNNNNNNN
SQLDA ;

.

.NN
performcommand (dynamicparm, sqlcaparm)

The COBOL program has passed the parameters to performcommand by reference, so

the formal parameters are declared here as addresses.

char
NNN
dynamicparm[] ;

char
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
sqlcaparm[] ;

{

int k;

char *destptr;

char *sourceptr;

DynamicCommand must be declared as host variable in this subprogram. Copy the

formal parameter into the host variable.

for (k = 0; k < sizeof(DynamicCommand); k++)

DynamicCommand[k] = dynamicparm[k];

The sqlcaparm passed to this subprogram is an address pointing to the SQLCA

area of the calling program, and the SQLCA used by this subprogram is a global

variable. Since the formal parameters in performcommand cannot be global

(i.e.-- extern), copy the sqlcaparm parameter to the SQLCA.

Use pointers (addresses) to copy the sqlcaparm to SQLCA because the SQLCA is

a structure. Sourceptr is set to sqlcaparm, the address of the SQLCA passed to

the subprogram.

Destptr is assigned the address of the SQLCA used by this subprogram. Then,

assign the contents of the sourceptr to the contents of the destptr and increment

the values of both pointers until the entire sqlcaparm has been copied.

10-8 Using Dynamic Operations

sourceptr = sqlcaparm;

destptr = &sqlca;

for (k = 1; k <= sizeof(sqlca); k++) {

*destptr = *sourceptr;

sourceptr++;

destptr++;

}

Issue the SQL PREPARE and DESCRIBE commands. Parse the data bu�er and

display the rows fetched by the query. See the cex10a program in the ALLBASE/SQL

C Application Programming Guide for more information.

Before returning to the COBOL program copy SQLCA to sqlcaparm. This permits

the COBOL program to access the information in the SQLCA.

sourceptr = &sqlca;

destptr = sqlcaparm;

for (k = 1; k <= sizeof(sqlca); k++) {

*destptr = *sourceptr;

sourceptr++;

destptr++;

}

} /* End of performcommand */

Pascal Subprogram Example

The Pascal version of the subprogram is described in this section. The Pascal procedures that
actually perform the dynamic preprocessing are similar to those used in the pasex10a Pascal
sample program, which is described in the ALLBASE/SQL Pascal Application Programming
Guide.

The PerformCommand subprogram includes the following steps:

1. Copy the DynamicParm parameter passed from the calling COBOL program into the
global Pascal host variable needed by the SQL calls. The SQLCA parameter does not need
to be copied because it is not declared as a host variable, and because it may be accessed
by other procedures nested within PerformCommand.

2. Issue the SQL PREPARE and DESCRIBE statements.

3. Parse the data bu�er and display the rows.

The source code of the PerformCommand subprogram is summarized below:

Using Dynamic Operations 10-9

Type

Dynamic_Type = Packed Array [1..1014] of char;

.

.

Global variable declarations needed by the Pascal routines for dynamic

preprocessing:

EXEC SQL BEGIN DECLARE SECTION;NN
DynamicCommand : Packed Array [1..1014] of char;

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE
NNNNNNNNNNNNNNNNN
SQLDA ;

.

.

Procedure PerformCommand (Var
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DynamicParm : Dynamic_Type;

Var
NNNNNNNNNNNNNNNNN
SQLCA : SQLCA_Type);

.

.

Begin (* Procedure PerformCommand *)

Because the outer block is a non-Pascal program, the stdlist and stdin must be

opened explicitly.

Rewrite (output,'$stdlist');

Reset (input, '$stdin','shared');

DynamicCommand must be declared as a host variable in the Pascal subprogram.

Copy the DynamicParm parameter to the DynamicCommand host variable before

proceeding.

DynamicCommand := '';

strmove (1014,DynamicParm,1,DynamicCommand,1);

Issue the SQL PREPARE and DESCRIBE commands. Parse the data bu�er and

display the rows fetched by the query. See the pasex10a program in the

ALLBASE/SQL Pascal Application Programming Guide for more information.

End; (* Procedure PerformCommand *)

10-10 Using Dynamic Operations

How To Preprocess, Compile, Link and Run the Example Programs

COBOL Calling a C Subprogram

In the example below, the COBOL source code is in COBEXS, the C source code is in CEXS,
and the DBEnvironment is PartsDBE.

1. Preprocess the COBOL source code.

:PCOB COBEXS,PARTSDBE

2. Compile the COBOL source code generated by the preprocessor.

:COB85XL SQLOUT,COBEXO,$NULL

3. Preprocess the C source code.

:PC CEXS,PARTSDBE

4. Compile the C source code generated by the preprocessor.

:CCXL SQLOUT,CEXO,$NULL

5. Link the COBOL and C object code into an executable program.

:LINK FROM=COBEXO,CEXO;TO=COBEXP

6. Run the executable program.

:RUN COBEXP

COBOL Calling a Pascal Subprogram

In the example below, the COBOL source code is in COBEXS, the Pascal source code is in
PASEXS, and the DBEnvironment is PartsDBE.

1. Preprocess the COBOL source code.

:PCOB COBEXS,PARTSDBE

2. Compile the COBOL source code generated by the preprocessor.

:COB85XL SQLOUT,COBEXO,$NULL

3. Preprocess the Pascal source code.

:PPAS PASEXS,PARTSDBE

4. Compile the Pascal source code generated by the preprocessor.

:PASXL SQLOUT,PASEXO,$NULL

5. Link the COBOL and Pascal object code into an executable program.

:LINK FROM=COBEXO,PASEXO;TO=COBEXP

6. Run the executable program.

:RUN COBEXP

Using Dynamic Operations 10-11

Preprocessing of Dynamic Non-Queries

There are two methods for dynamic preprocessing of a non-query:

Using EXECUTE IMMEDIATE.
Using PREPARE and EXECUTE.

The �rst method can be used with any non-query; the second is only for those non-query
commands that use sections at execution time.

Using PREPARE and EXECUTE

Use the PREPARE command to create and store a temporary section for the dynamic
command:

PREPARE CommandName FROM CommandSource

Because the PREPARE command operates only on sections, it can be used to dynamically
preprocess only SQL commands executed by using sections. The DBE session management
and transaction management commands can only be dynamically preprocessed by using
EXECUTE IMMEDIATE.

With PREPARE, ALLBASE/SQL creates a temporary section for the command that you can
execute one or more times in the same transaction by using the EXECUTE command:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
PREPARE MyNonQuery FROM :DynamicCommand;

PERFORM CMD-BEGIN THRU CMD-END UNTIL CMD-DONE.

CMD-BEGIN.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
EXECUTE MyNonQuery; END-EXEC.

CMD-END.

CMD-DONE would be initialized at the start, and set to end the PERFORM command as
desired. As soon as you process a COMMIT WORK or ROLLBACK WORK command, the
temporary section is deleted.

Defining SQL Commands at Run Time

In some applications, a dynamic command may be completely de�nable at programming time.
To handle such a command, you enclose it within single quotation marks in the PREPARE or
EXECUTE IMMEDIATE command:

EXEC SQL PREPARE DynamicCommand

FROM 'UPDATE STATISTICS FOR TABLE SYSTEM.TABLE;'

END-EXEC.

Applications such as generalized utilities do not have available at programming time all the
information required to preprocess some SQL commands. Sometimes the entire command is
unknown. Sometimes parts of a command are unknown.

Whether known or unknown at programming time, the dynamic command must be
terminated with a semicolon. If you specify the command as a literal, the command cannot
exceed 2048 bytes.

10-12 Using Dynamic Operations

To handle a command entirely unknown at programming time, you accept the command into
a host variable that can hold CHAR or VARCHAR data. In the following example, an SQL
command is accepted into a host variable named DYNAMICCOMMAND , declared large
enough to accommodate the maximum size dynamic command. User input is accepted into
DYNAMICCLAUSE and concatenated in DYNAMICCOMMAND until the user enters only a
semicolon in response to the input prompt.

WORKING-STORAGE SECTION....
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 DYNAMICCOMMAND PIC X(2048).

EXEC SQL END DECLARE SECTION END-EXEC.

01 DYNAMICCLAUSE.

05 CLAUSE-PREFIX PIC X(1) VALUE SPACE.

05 FILLER PIC X(79) VALUE SPACES.

01 INDEXER PIC S9(4) COMP.

77 COMMAND-DONE-FLAG PIC X VALUE SPACE.

88 CMD-NOT-DONE VALUE SPACE.

88 CMD-DONE VALUE 'X'....
PROCEDURE DIVISION....
PERFORM ACCEPT-COMMAND THRU ACCEPT-COMMAND-EXIT

UNTIL CMD-DONE.

STRING ";" DELIMITED BY SIZE INTO DYNAMICCOMMAND

WITH POINTER INDEXER.

EXEC SQL EXECUTE IMMEDIATE :DYNAMICCOMMAND END-EXEC....
ACCEPT-COMMAND.

MOVE "> " TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.
ACCEPT DYNAMICCLAUSE.

IF CLAUSE-PREFIX = ";" THEN

MOVE "X" TO COMMAND-DONE-FLAG

GO TO ACCEPT-COMMAND-EXIT.

STRING DYNAMICCLAUSE DELIMITED BY " "

INTO DYNAMICCOMMAND WITH POINTER INDEXER.

MOVE SPACES TO DYNAMICCLAUSE.

ADD 1 TO INDEXER.

ACCEPT-COMMAND-EXIT.

EXIT.

Using Dynamic Operations 10-13

To handle a command partially known at programming time, you prompt the user for
information to complete the command. Then you concatenate this information with the
prede�ned part of the command:

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(35).

.

.

.

WORKING-STORAGE SECTION.

.

.

.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 CMDLINE PIC X(80).

EXEC SQL END DECLARE SECTION END-EXEC.

01 CMDLITERAL PIC X(28).

01 TABLENAME PIC X(42).

01 SQL-TERMINATOR PIC X(2) VALUE "; ".

.

.

.

PROCEDURE DIVISION.

.

.

.

MOVE "Enter table name> " TO PROMPT.

WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT TABLENAME.

.

.

.

MOVE "UPDATE STATISTICS FOR TABLE "

TO CMDLITERAL.

STRING CMDLITERAL, TABLENAME, SQL-TERMINATOR

DELIMITED BY SIZE INTO CMDLINE.

EXEC SQL EXECUTE IMMEDIATE :CMDLINE END-EXEC.

10-14 Using Dynamic Operations

Sample Program Using EXECUTE IMMEDIATE

To preprocess and execute a dynamic command in only one step, you use the EXECUTE
IMMEDIATE command:

EXEC SQL EXECUTE IMMEDIATE :DynamicCommand END-EXEC.

Program COBEX10A, whose run time dialog is shown in Figure 10-3 and whose source code
is given in Figure 10-4, can be used to execute the UPDATE STATISTICS command in
any DBEnvironment. This program prompts for both the DBEnvironment name and the
name of tables upon which to execute the UPDATE STATISTICS command. The UPDATE
STATISTICS command is handled by using the EXECUTE IMMEDIATE command.

Program COBEX10A performs paragraph CONNECT-DBENVIRONMENT � 3 � to start a
DBE session. Paragraph CONNECT-DBENVIRONMENT � 18 � prompts for the name of a
DBEnvironment � 19 �. A CONNECT command that references the name entered at � 1 � is
executed � 20 �.

The program then performs paragraph BEGIN-TRANSACTION � 4 �, which executes a
BEGIN WORK command � 21 �. Paragraph EXECUTE-IMMEDIATE is then performed � 5 �
until the DONE-FLAG � 2 � is set to X .

Paragraph EXECUTE-IMMEDIATE prompts for the name of a table � 8 �. The table name is
concatenated with the rest of the UPDATE STATISTICS command � 10 � in CMDLINE � 11 �.
Then the UPDATE statistics command is preprocessed and executed with the EXECUTE
IMMEDIATE command � 12 �. After paragraph END-TRANSACTION � 13 �terminates the
transaction with a COMMIT WORK command � 22 �, the program prompts for another table
name � 8 �. Paragraph EXECUTE-IMMEDIATE terminates when the user enters a slash in
response to the table name prompt � 9 �.

The paragraph named TERMINATE-PROGRAM � 6 � is performed in order to terminate the
DBE session � 7 �.

When ALLBASE/SQL returns a negative SQLCODE following the execution of the embedded
SQL commands, paragraph SQL-STATUS-CHECK � 14 � is performed. This paragraph
performs paragraph SQLEXPLAIN � 17 � to display one or more messages. If an error
is very serious (SQLCODE < -14024), a ag named ABORT is set � 15 �, and paragraph
TERMINATE-PROGRAM is performed � 16 �.

When an error occurs during the execution of the CONNECT, BEGIN WORK, or COMMIT
WORK commands, the program terminates after paragraph SQL-STATUS-CHECK has been
performed. Otherwise, the program continues after warning or error messages are displayed.

Using Dynamic Operations 10-15

:RUN COBX10AP

Program to EXECUTE IMMEDIATE the UPDATE STATISTICS command - COBEX10A

Event List:

Prompt for DBE name

Connect to DBE

Begin Work

Prompt for table name

EXECUTE IMMEDIATE UPDATE STATISTICS command

Commit Work

Repeat the above three steps until user enters '/'

Release Database Environment

Enter name of DBEnvironment> PARTSDBE

Connect to DBE

Begin Work

Enter table name or '/' to STOP> PURCHDB.VENDORS

UPDATE STATISTICS FOR TABLE PURCHDB.VENDORS ;

EXECUTE IMMEDIATE UPDATE STATISTICS command

Commit Work

Enter table name or '/' to STOP> SYSTEM.TABLE

UPDATE STATISTICS FOR TABLE SYSTEM.TABLE ;

EXECUTE IMMEDIATE UPDATE STATISTICS command

Commit Work

Enter table name or '/' to STOP> PURCHDB.VENDORSTATISTICS

UPDATE STATISTICS FOR TABLE PURCHDB.VENDORSTATISTICS ;

EXECUTE IMMEDIATE UPDATE STATISTICS command

Command UPDATE STATISTICS is not for views (PURCHDB.VENDORSTATISTICS).

(DBERR 2724)

Enter table name or '/' to STOP> /

END OF PROGRAM

Figure 10-3. Execution of Program COBEX10A

10-16 Using Dynamic Operations

* *

* This program illustrates the use of SQL's EXECUTE *

* IMMEDIATE Command. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX10A.

AUTHOR. JIM FRANCIS AND KAREN THOMAS.

INSTALLATION. HP.

DATE-WRITTEN. 17 MARCH 1987.

DATE-COMPILED. 17 MARCH 1987.

REMARKS. ILLUSTRATES EXECUTE IMMEDIATE

ENVIRONMENT DIVISION.

$CONTROL USLINIT

CONFIGURATION SECTION.

SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

SPECIAL-NAMES. CONSOLE IS TERMINAL-INPUT.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT1 PIC X(32).

01 PROMPT2 PIC X(35).

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SQLMESSAGE PIC X(132).

01 CMDLINE PIC X(80).

01 DBENAME PIC X(32). � 1 �
EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

$PAGE

01 CMDLITERAL PIC X(28).

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(1) VALUE SPACE.

05 RESPONSE-TEXT PIC X(41) VALUE SPACES.

01 SQL-TERMINATOR PIC X(2) VALUE "; ".

77 DONE-FLAG PIC X VALUE SPACE. � 2 �
88 NOT-DONE VALUE SPACE.
88 DONE VALUE 'X'.

Figure 10-4. Program COBEX10A: Using EXECUTE IMMEDIATE

Using Dynamic Operations 10-17

77 ABORT-FLAG PIC X VALUE SPACE.

88 NOT-STOP VALUE SPACE.

88 ABORT VALUE 'X'.

01 OK PIC S9(9) COMP VALUE 0.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

$PAGE

PROCEDURE DIVISION.

BEGIN.

DISPLAY "Program to EXECUTE IMMEDIATE the "

"UPDATE STATISTICS command - COBEX10A".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Prompt for DBE name".

DISPLAY " Connect to DBE".

DISPLAY " Begin Work".
DISPLAY " Prompt for table name".

DISPLAY " EXECUTE IMMEDIATE UPDATE STATISTICS command".

DISPLAY " Commit Work".

DISPLAY " Repeat the above three steps until "

"user enters '/'".

DISPLAY " Release Database Environment".

DISPLAY " ".

OPEN OUTPUT CRT.

PERFORM CONNECT-DBENVIRONMENT. � 3 �

PERFORM BEGIN-TRANSACTION. � 4 �

PERFORM EXECUTE-IMMEDIATE THRU EXECUTE-IMMEDIATE-EXIT � 5 �
UNTIL DONE.

PERFORM TERMINATE-PROGRAM. � 6 �

TERMINATE-PROGRAM.

EXEC SQL COMMIT WORK RELEASE END-EXEC. � 7 �

STOP RUN.

Figure 10-4. Program COBEX10A: Using EXECUTE IMMEDIATE (page 2 of 4)

10-18 Using Dynamic Operations

$PAGE

EXECUTE-IMMEDIATE.

MOVE SPACES TO CMDLINE.

MOVE SPACES TO RESPONSE.

MOVE "Enter table name or '/' to STOP> " � 8 �
TO PROMPT2.

WRITE PROMPT2 AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE.

IF RESPONSE-PREFIX = "/" THEN � 9 �
MOVE "X" TO DONE-FLAG

GO TO EXECUTE-IMMEDIATE-EXIT

ELSE

MOVE "UPDATE STATISTICS FOR TABLE " � 10 �
TO CMDLITERAL

STRING CMDLITERAL, RESPONSE, SQL-TERMINATOR � 11 �
DELIMITED BY SIZE INTO CMDLINE.

DISPLAY CMDLINE.

DISPLAY "EXECUTE IMMEDIATE UPDATE STATISTICS command".

EXEC SQL EXECUTE IMMEDIATE :CMDLINE � 12 �
END-EXEC.

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

GO TO EXECUTE-IMMEDIATE-EXIT

ELSE PERFORM END-TRANSACTION. � 13 �

EXECUTE-IMMEDIATE-EXIT.

EXIT.

$PAGE

SQL-STATUS-CHECK. � 14 �

IF SQLCODE < DEADLOCK THEN � 15 �
MOVE 'X' TO ABORT-FLAG.

PERFORM SQLEXPLAIN UNTIL SQLCODE = 0.

IF ABORT THEN PERFORM TERMINATE-PROGRAM. � 16 �

SQL-STATUS-CHECK-EXIT.

EXIT.

Figure 10-4. Program COBEX10A: Using EXECUTE IMMEDIATE (page 3 of 4)

Using Dynamic Operations 10-19

SQLEXPLAIN. � 17 �

EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.

DISPLAY SQLMESSAGE.

CONNECT-DBENVIRONMENT. � 18 �

MOVE "Enter name of DBEnvironment> " � 19 �
TO PROMPT1.

WRITE PROMPT1 AFTER ADVANCING 1 LINE.

ACCEPT DBENAME FREE.

DISPLAY "Connect to DBE".

EXEC SQL CONNECT TO :DBENAME END-EXEC. � 20 �

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

BEGIN-TRANSACTION.

DISPLAY "Begin Work".

EXEC SQL BEGIN WORK END-EXEC. � 21 �
IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

END-TRANSACTION.

DISPLAY "Commit Work".

EXEC SQL COMMIT WORK END-EXEC. � 22 �
IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

Figure 10-4. Program COBEX10A: Using EXECUTE IMMEDIATE (page 4 of 4)

10-20 Using Dynamic Operations

Sample Program Using PREPARE and EXECUTE

To prepare a dynamic command for execution later during the current transaction, you use
the PREPARE command to dynamically preprocess the command. ALLBASE/SQL creates
a temporary section for the command that you can execute one or more times in the same
transaction by using the EXECUTE command:

EXEC SQL PREPARE MyCommand FROM :DynamicCommand END-EXEC.

.

.

EXEC SQL EXECUTE :DynamicCommand END-EXEC.

As soon as you process a COMMIT WORK or ROLLBACK WORK command, the temporary
section is deleted.

Figure 10-5 illustrates the run time dialog for a program that uses the PREPARE and
EXECUTE commands, program COBEX10B. The program starts a DBE session in the
DBEnvironment named PartsDBE, then prompts for entry of an SQL command or clause. As
the user enters information, the program displays the SQL command as it grows. When the
program user enters only a semicolon in response to the prompt, the command is dynamically
preprocessed and executed. Note what happens when a SELECT command is entered.

As illustrated in Figure 10-6, Program COBEX10B performs a paragraph named
CONNECT-DBENVIRONMENT � 3 � to start a DBE session. The CONNECT command
� 21 � starts a DBE session in the DBEnvironment named PartsDBE.

The program then performs paragraph BEGIN-TRANSACTION � 4 � to start a transaction
with the BEGIN WORK command � 22 �. Once a transaction has been started, paragraph
PREPARE-EXECUTE is performed � 5 � until the DONE-FLAG � 1 � is set to X .

Paragraph PREPARE-EXECUTE �rst performs paragraph INITIALIZE-VARIABLES � 6 �
to initialize the variables used to handle the building and display of each SQL command:

DYNAMICCMD � 17 � is a host variable that holds the fully assembled SQL command.

INPUT-CLAUSES � 18 � holds the SQL command as it is being built.

RESPONSE � 19 � holds the SQL command clauses entered by the program user.

INDEXER � 20 � contains a number identifying the location in INPUT-CLAUSES to store
user input.

The program then performs paragraph ACCEPT-COMMAND � 7 � until the COMMAND-
DONE-FLAG � 2 � is set to X . This paragraph prompts for user input � 12 �, which is put
into the INPUT-CLAUSES variable � 14 � by using the STRING statement. The STRING
statement uses the variable INDEXER to determine where in INPUT-CLAUSES to start
writing information entered by the user. INDEXER is incremented by one � 15 � to allow for
a space between items of user input. The current contents of INPUT-CLAUSES is displayed
each time the user enters information � 16 �. When the user enters a semicolon � 13 �, control
returns to paragraph PREPARE-EXECUTE .

After a semicolon is appended to the SQL command in INPUT-CLAUSES � 8 �, the
command is moved to host variable DYNAMICCMD � 9 � for dynamic preprocessing with the
PREPARE command � 10 �. If the PREPARE command executes successfully, the EXECUTE
command � 11 � is processed.

Using Dynamic Operations 10-21

:RUN COBX10BP

Program to PREPARE & EXECUTE SQL commands - COBEX10B

Event List:

Connect to PartsDBE

Begin Work

Prompt for SQL command

PREPARE SQL Command

EXECUTE SQL Command

Repeat the above three steps until user enters '/'

Commit Work

Release PartsDBE

Connect to PartsDBE

Begin Work

Enter an SQL command or clause; enter only a semicolon when done.

> UPDATE STATISTICS FOR

UPDATE STATISTICS FOR

> TABLE PURCHDB.PARTS

UPDATE STATISTICS FOR TABLE PURCHDB.PARTS

> ;

PREPARE COMMAND

EXECUTE COMMAND

Enter an SQL command or clause; enter only a semicolon when done.

> SELECT * FROM

SELECT * FROM

> PURCHDB.PARTS

SELECT * FROM PURCHDB.PARTS

> ;

PREPARE COMMAND

EXECUTE COMMAND

Module TEMP.COBEX10B(1) is not a procedure. (DBERR 2752)

Enter an SQL command or clause; enter only a semicolon when done.

> /

END OF PROGRAM

Figure 10-5. Execution of Program COBEX10B

10-22 Using Dynamic Operations

* *

* This program illustrates the use of SQL's PREPARE-EXECUTE *

* Commands. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX10B.

AUTHOR. JIM FRANCIS AND KAREN THOMAS.

INSTALLATION. HP.

DATE-WRITTEN. 17 MARCH 1987.

DATE-COMPILED. 17 MARCH 1987.

REMARKS. ILLUSTRATES PREPARE-EXECUTE.

ENVIRONMENT DIVISION.

$CONTROL USLINIT

CONFIGURATION SECTION.

SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

SPECIAL-NAMES. CONSOLE IS TERMINAL-INPUT.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT PIC X(3).

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SQLMESSAGE PIC X(132).

01 DYNAMICCMD PIC X(1014).

EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

01 I PIC S9(4) COMP.

01 INPUT-CLAUSES.

05 COMMAND-LINE-TABLE OCCURS 13 TIMES.

10 PARTIAL-COMMAND PIC X(78).

$PAGE''

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(1) VALUE SPACE.

05 FILLER PIC X(79) VALUE SPACES.

Figure 10-6. Program COBEX10B: Using PREPARE and EXECUTE

Using Dynamic Operations 10-23

01 INDEXER PIC S9(4) COMP.

77 DONE-FLAG PIC X VALUE SPACE. � 1 �
88 NOT-DONE VALUE SPACE.

88 DONE VALUE 'X'.

77 COMMAND-DONE-FLAG PIC X VALUE SPACE. � 2 �
88 CMD-NOT-DONE VALUE SPACE.

88 CMD-DONE VALUE 'X'.

77 ABORT-FLAG PIC X VALUE SPACE.

88 NOT-STOP VALUE SPACE.

88 ABORT VALUE 'X'.

01 OK PIC S9(9) COMP VALUE 0.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

$PAGE
PROCEDURE DIVISION.

BEGIN.

DISPLAY "Program to PREPARE & EXECUTE SQL commands "

"- COBEX10B".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Connect to PartsDBE".

DISPLAY " Begin Work".

DISPLAY " Prompt for SQL command".

DISPLAY " PREPARE SQL Command".

DISPLAY " EXECUTE SQL Command".

DISPLAY " Repeat the above three steps until "

"user enters '/'".

DISPLAY " Commit Work".

DISPLAY " Release PartsDBE".

DISPLAY " ".

OPEN OUTPUT CRT.

PERFORM CONNECT-DBENVIRONMENT. � 3 �

PERFORM BEGIN-TRANSACTION. � 4 �

PERFORM PREPARE-EXECUTE THRU PREPARE-EXECUTE-EXIT � 5 �
UNTIL DONE.

Figure 10-6. Program COBEX10B: Using PREPARE and EXECUTE (page 2 of 5)

10-24 Using Dynamic Operations

PERFORM TERMINATE-PROGRAM.

TERMINATE-PROGRAM.

EXEC SQL COMMIT WORK RELEASE END-EXEC.

STOP RUN.

$PAGE

PREPARE-EXECUTE.

PERFORM INITIALIZE-VARIABLES. � 6 �

DISPLAY "Enter an SQL command or clause; enter only a"

" semicolon when done.".

MOVE SPACE TO COMMAND-DONE-FLAG.

PERFORM ACCEPT-COMMAND THRU ACCEPT-COMMAND-EXIT � 7 �
UNTIL CMD-DONE.

IF NOT-DONE

STRING ";" DELIMITED BY SIZE INTO INPUT-CLAUSES � 8 �
WITH POINTER INDEXER

MOVE INPUT-CLAUSES TO DYNAMICCMD � 9 �
DISPLAY "PREPARE COMMAND"

EXEC SQL PREPARE CMD1 FROM :DYNAMICCMD � 10 �
END-EXEC

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

GO TO PREPARE-EXECUTE-EXIT;

ELSE

DISPLAY "EXECUTE COMMAND"

EXEC SQL EXECUTE CMD1 END-EXEC � 11 �
IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK.

PREPARE-EXECUTE-EXIT.

EXIT.

ACCEPT-COMMAND.

MOVE "> " TO PROMPT. � 12 �
WRITE PROMPT AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE.

Figure 10-6. Program COBEX10B: Using PREPARE and EXECUTE (page 3 of 5)

Using Dynamic Operations 10-25

IF RESPONSE-PREFIX = "/" THEN

MOVE "X" TO DONE-FLAG

MOVE 'X' TO COMMAND-DONE-FLAG

GO TO ACCEPT-COMMAND-EXIT.

IF RESPONSE-PREFIX = ";" THEN � 13 �
MOVE "X" TO COMMAND-DONE-FLAG

GO TO ACCEPT-COMMAND-EXIT.

STRING RESPONSE DELIMITED BY " " � 14 �
INTO INPUT-CLAUSES WITH POINTER INDEXER;

ON OVERFLOW

DISPLAY "Command too long!"

DISPLAY "Try again!"

PERFORM INITIALIZE-VARIABLES

GO TO ACCEPT-COMMAND.

MOVE SPACES TO RESPONSE.
ADD 1 TO INDEXER. � 15 �

DISPLAY ' '.

PERFORM DISPLAY-COMMAND VARYING I FROM 1 BY 1 � 16 �
UNTIL I > 13.

ACCEPT-COMMAND-EXIT.

EXIT.

INITIALIZE-VARIABLES.

MOVE SPACES TO DYNAMICCMD. � 17 �

MOVE SPACES TO INPUT-CLAUSES. � 18 �

MOVE SPACES TO RESPONSE. � 19 �

MOVE 1 TO INDEXER. � 20 �

$PAGE

DISPLAY-COMMAND.

IF PARTIAL-COMMAND(I) IS NOT = ' ' THEN

DISPLAY PARTIAL-COMMAND(I).

Figure 10-6. Program COBEX10B: Using PREPARE and EXECUTE (page 4 of 5)

10-26 Using Dynamic Operations

SQL-STATUS-CHECK.

IF SQLCODE < DEADLOCK THEN

MOVE 'X' TO ABORT-FLAG.

PERFORM SQLEXPLAIN UNTIL SQLCODE = 0.

IF ABORT THEN PERFORM TERMINATE-PROGRAM.

SQL-STATUS-CHECK-EXIT.

EXIT.

SQLEXPLAIN.

EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.

DISPLAY SQLMESSAGE.

CONNECT-DBENVIRONMENT.

DISPLAY "Connect to PartsDBE".

EXEC SQL CONNECT TO 'PartsDBE' END-EXEC. � 21 �

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

BEGIN-TRANSACTION.

DISPLAY "Begin Work".

EXEC SQL BEGIN WORK END-EXEC. � 22 �

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

END-TRANSACTION.

DISPLAY "Commit Work".

EXEC SQL COMMIT WORK END-EXEC.

IF SQLCODE NOT = OK THEN

PERFORM SQL-STATUS-CHECK

PERFORM TERMINATE-PROGRAM.

Figure 10-6. Program COBEX10B: Using PREPARE and EXECUTE (page 5 of 5)

Using Dynamic Operations 10-27

11

Programming With Constraints

This chapter explains the use of statement level integrity versus row level integrity. Also,
methods of implementing schema level unique and referential integrity constraints in your
database are highlighted.

Integrity constraints allow you to have ALLBASE/SQL verify data integrity at the schema
level. Thus you can avoid coding complex veri�cation routines in application programs and
avoid the increased execution time of additional queries. Your coding tasks are simpli�ed, and
performance is improved.

The following sections are presented in the chapter:

Comparing Statement Level and Row Level Integrity.
Using Unique and Referential Integrity Constraints.
Designing an Application Using Statement Level Integrity Checks.

Comparing Statement Level and Row Level Integrity

In ALLBASE/SQL release E.1, enforcement of de�ned constraints is performed at statement
level rather than at the row level of previous releases. This is called statement level integrity.
Even though a constraint may be violated on a particular row, the check for that constraint
is not made until the statement has completed processing. At that time, if there are one or
more constraint errors, an error message is issued and the entire statement is rolled back with
no rows being processed. You do not need to detect constraint errors yourself and code your
program to respond to partially processed tables.

When a statement is rolled back, the appropriate sqlerrd �eld will be 0, reecting that no
rows were processed. If a constraint error is the cause of the rollback, this �eld will not
be greated than zero indicating a partially processed table. Thus, applications written for
ALLBASE/SQL may need to check for a di�erent value in the sqlerrd �eld.

For information on status checking, see the chapter, \Runtime Status Checking and the
SQLCA." For information on deferring constraint error checking to the transaction level
and other error checking enhancements related to releases after E.1, see the ALLBASE/SQL
Release F.0 Application Programming Bulletin for MPE/iX .

Programming With Constraints 11-1

Using Unique and Referential Integrity Constraints

Any database containing tables with interdependent data is a good candidate for the use of
integrity constraints. You can pro�t from their use whether your data is volatile or stable
in nature. For instance, your database might contain a table of employee and department
data that is constantly changing, or it could contain a table of part number data that rarely
changes even though it is frequently accessed. (Note that integrity constraints cannot be
assigned to LONG columns. LONG columns are described in the chapter, Programming with
LONG Columns.)

To implement unique and referential constraints, use the CREATE TABLE command and
optionally the GRANT REFERENCES command in your schema �le. The following table
lists the commands you might use in dealing with integrity constraints.

Table 11-1. Commands Used with Integrity Constraints

DDL Operations DCL Operations DML Operations

CREATE TABLE GRANT REFERENCES [BULK] INSERT

DROP TABLE GRANT DBA UPDATE [WHERE CURRENT]

REMOVE FROM GROUP REVOKE REFERENCES DELETE [WHERE CURRENT]

DROP GROUP REVOKE DBA

The concepts and syntax of integrity constraints are fully discussed in the ALLBASE/SQL
Reference Manual , and database administration considerations are found in the
ALLBASE/SQL Database Administration Guide . This chapter contains techniques to use
when coding applications that manipulate data upon which integrity constraints have been
de�ned.

When executing the [BULK] INSERT, UPDATE [WHERE CURRENT], or DELETE
[WHERE CURRENT] commands, ALLBASE/SQL considers applicable integrity constraints
depending on what the overall e�ect of a statement would be once it completes execution.
The syntax for UNIQUE or PRIMARY KEY requires unique constraint enforcement. The
syntax for REFERENCES requires referential constraint enforcement on the referencing and
referenced tables involved. For example, consider the following table showing what tests must
be passed for a DML command to successfully complete.

11-2 Programming With Constraints

Table 11-2. Constraint Test Matrix

DML Operations UNIQUE or
PRIMARY KEY

Referenced Table Referencing Table

[BULK] INSERT
or Type 2 INSERT

Must be unique in
the table.

Must match a unique key in
the referenced table.

UPDATE
[WHERE

CURRENT]

Must be unique in
the table.

No foreign key can reference
the unique key being
updated.

Must match a unique key in
the referenced table.

DELETE
[WHERE

CURRENT]

No foreign key can reference
the unique key being deleted.

Designing an Application Using Statement Level Integrity Checks

This section contains examples based on the recreation database, RecDB, which is supplied as
part of the ALLBASE/SQL software package. The schema �les used to create the database
are found in appendix C of the ALLBASE/SQL Reference Manual .

The recreation database is made up of three tables (Clubs, Members, and Events). Two
primary key constraints and two referential constraints were speci�ed (when the tables were
created) to secure the data integrity of these tables.

Figure 11-1 illustrates these constraint relationships by showing the name of each constraint
and its referencing or referenced columns. Referencing columns are shaded. Referenced
columns are clear white.

Programming With Constraints 11-3

Figure 11-1. Constraints Enforced on the Recreation Database

Suppose you designed an application program providing a user interface to the recreation
database. The interface gives choices for inserting, updating, and deleting data in any of the
three tables. Your application is user friendly and guides the user with informational messages
when their request is denied because it would violate data integrity. The main interface menu
might look like this:

Main Menu for Recreation Database Maintenance

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. INSERT a Club 4. INSERT a Member 7. INSERT an Event

2. UPDATE a Club 5. UPDATE Member Info. 8. UPDATE Event Info.

3. DELETE a Club 6. DELETE a Member 9. DELETE an Event

When users make a selection (by number or by tabbing to a �eld), a screen displaying all the
appropriate information allows them to insert, update, or delete.

The next sections provide generic examples of how you can code such an application. The
error checking in these examples deals with constraint enforcement errors only. (For complete
explanation of these errors, see the ALLBASE/SQL Message Manual .) Your error checking
routine should also include a method of handling multiple errors per command and errors not
related to constraint enforcement. (For more information on error coding techniques, see the
chapter, \Runtime Status Checking and the SQLCA.")

11-4 Programming With Constraints



Insert a Member in the Recreation Database

The user chooses to insert a new member in the database. For this activity to complete, the
foreign key (Club) which is being inserted into the Members table must exist in the primary
key (ClubName) of the Clubs table.

Execute subroutines to display and prompt for information needed in the

Members table.

Place user entered information in appropriate host variables.

INSERT INTO RecDB.Members

VALUES (:MemberName,

:Club,

:MemberPhone :MemberPhoneInd)

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating no primary key match, display the error

message and prompt the user to indicate whether or not to insert

a new ClubName in the Clubs table, to reenter the Club for the new member,

or to exit to the main menu. Execute the appropriate subroutine.

If sqlcode equals �2295, indicating that the user tried to insert a non-unique

primary key, display the error message and prompt the user to enter a

unique MemberName/Club combination or to exit to the main menu.

Execute the appropriate subroutine.

Else, if sqlcode = 0, tell the user the member was inserted successfully,

and prompt for another new member or a return to the main menu display.

Programming With Constraints 11-5



Update an Event in the Recreation Database

The user now wants to update information in the Events table. For this activity to complete,
the SponsorClub and Coordinator being updated in the Events table must exist in the
primary key composed of MemberName and Club in the Members table.

Execute subroutines to display and prompt for information needed in the

Events table.

Place user entered information in appropriate host variables.

UPDATE RecDB.Events

SET SponsorClub = :SponsorClub :SponsorClubInd,

Event = :Event :EventInd,

Date = :Date :DateInd,

Time = :Time :TimeInd,

Coordinator = :Coordinator :CoordinatorInd

WHERE Event = :Event

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating no primary key match, display the error

message and prompt the user to indicate whether or not to insert a new

MemberName/Club primary key in the Members table, to reenter update

information for the Events table, or to exit to the main menu. Execute

the appropriate subroutine.

Else, if sqlcode = 0, tell the user the event was updated successfully,

and prompt for another event or a return to the main menu display.

11-6 Programming With Constraints



Delete a Club in the Recreation Database

The user chooses to delete a club. For this activity to complete, no foreign key must reference
the primary key (ClubName) that is being deleted.

Execute subroutines to display and prompt for a ClubName in the Clubs table.

Place user entered information in appropriate host variables.

DELETE FROM RecDB.Clubs

WHERE ClubName = :ClubName

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating that referencing data exists for ClubName,

display the error message and prompt the user to indicate whether or not

to delete the Members table row or rows that reference the ClubName,

to reenter the ClubName to be deleted, or to exit to the main menu.

Execute the appropriate subroutine.

(If you execute the subroutine to delete those rows in the Members table

which reference the Clubs table, be sure to test sqlcode.

Depending on the result, you can prompt the user to delete referencing

Events table rows, to reenter the Members table information, or to exit

to the main menu. Execute the appropriate subroutine.)

Else, if sqlcode = 0, tell the user the club was deleted successfully,

and prompt for another club or a return to the main menu display.

Delete an Event in the Recreation Database

The user chooses to delete an event. Because no primary key or unique constraints are de�ned
in the Events table, no constraint enforcement is necessary.

Execute subroutines to display and prompt for an Event in the Events table.

Place user entered information in appropriate host variables.

DELETE FROM RecDB.Clubs

WHERE Event = :Event

Check the sqlcode �eld of the sqlca.

If sqlcode = 0, tell the user the event was deleted successfully, and

prompt for another event or a return to the main menu display.

Programming With Constraints 11-7



12

Programming with LONG Columns

LONG columns in ALLBASE/SQL enable you to store a very large amount of binary data in
your database, referencing that data via a table column name. You might use LONG columns
to store text �les, software application code, voice data, graphics data, facsimile data, or
test vectors. You can easily SELECT or FETCH this data, and you have the advantages
of ALLBASE/SQL's recoverability, concurrency control, locking strategies, and indexes on
related columns.

You can use LONG columns in an application program to be preprocessed or with ISQL. This
discussion focuses on application programming concerns. As you will see, great exibility is
provided so that you can custom design your application.

The chapter highlights methods of implementing LONG columns in your database as follows:

General Concepts.
Restrictions.
De�ning LONG Columns with the CREATE TABLE or ALTER TABLE command.
De�ning Input and Output with the LONG Column I/O String.
Putting Data into a LONG Column with INSERT.
Retrieving LONG Column Data with SELECT, FETCH, or REFETCH.
Changing a LONG Column with UPDATE [WHERE CURRENT].
Using the LONG Column Descriptor.
Removing LONG Column Data with DELETE or DELETE WHERE CURRENT.
Coding Considerations.

For every DDL and DML command that can be used with LONG columns, examples
are included with discussion of related considerations. These examples pertain to the
same logical table (PartsTable) and set of columns. In contrast to other examples in this
document, PartsTable is a hypothetical table created and altered in this chapter. Refer to the
ALLBASE/SQL Reference Manual which contains complete syntax speci�cations for using
long columns.

Table 12-1. Commands You Can Use with LONG Columns

DDL Operations DML Operations

ALTER TABLE INSERT

CREATE TABLE UPDATE [WHERE CURRENT]

SELECT

FETCH

REFETCH

DELETE [WHERE CURRENT]

Programming with LONG Columns 12-1



General Concepts

ALLBASE/SQL stores LONG column data in a database for later retrieval. LONG column
data is not processed by ALLBASE/SQL. Any formatting, viewing, or other processing
must be accomplished by means of your program. For example, you might use a graphics
application to create an intricate graphic display (or set of graphic displays). You could then
write a program in which you embed ALLBASE/SQL commands to store each graphics �le
in your database along with related data in a given row. Your graphics application could be
called from another program, this time to select a row and display the graphic. The graphic
could be displayed on the upper portion of a screen, with related data from the same row
displayed on the lower portion of a screen. The related data in standard columns or LONG
columns could be a graphics explanation or an entire chapter.

LONG column data can occupy a practically unlimited amount of space in the database,
the maximum number of bytes being 231�1 (or 2,147,483,647) per LONG column per row.
Standard column data is restricted to 3996 bytes maximum.

The LONG speci�cation is used with a given ALLBASE/SQL data type when you create the
LONG column. Currently, LONG BINARY and LONG VARBINARY are available. Refer to
the chapter on \Host Variables" for the details of BINARY and VARBINARY data types.

The concept of how LONG column data is stored in a row and retrieved di�ers from that of
standard columns. Although LONG column data is associated with a particular row, it can be
stored separately from the row. Thus you can specify a DBEFileSet in which to store data for
a LONG column.

During an INSERT or UPDATE operation, you specify a LONG column I/O string to
indicate where LONG column input data is located and where that data is to be placed when
it is later selected or fetched. You indicate either an operating system �le or random heap
space.

A LONG column descriptor (rather than the data itself ) is selected or fetched into a host
variable. Figure 12-1 and Figure 12-2 illustrate these concepts.

12-2 Programming with LONG Columns



Figure 12-1. Flow of LONG Column Data and Related Information to the Database

Figure 12-2. Flow of LONG Column Data and Related Information from the Database

Programming with LONG Columns 12-3



Restrictions

A LONG column can be referenced in a select list and/or a host variable declaration. Some
restrictions do apply to LONG columns. However, related standard columns are not a�ected
by these restrictions.

LONG columns cannot be used as follows:

In a WHERE clause.
In a Type 2 INSERT command.
Remotely through ALLBASE/NET.
As hash or B-tree index key columns.
In a GROUP BY, ORDER BY, DISTINCT, or UNION clause.
In an expression.
In a subquery.
In aggregate functions (AVG, SUM, MIN, MAX).
As columns to which integrity constraints are assigned.
With the DEFAULT option of the CREATE or ALTER TABLE commands.

Defining LONG Columns with a CREATE TABLE or ALTER TABLE
Command

Following is the new portion of the CREATE TABLE or ALTER TABLE command syntax for
specifying a LONG column column de�nition . A maximum of 40 such LONG columns may be
de�ned for a single table.

(ColumnName LONG

�
BINARY

VARBINARY

�
(ByteSize)

�
IN DBEFileSet

� �
NOT NULL

�
)
�
, . . .

�

When you create or add a LONG column to a table you have the option of specifying the
DBEFileSet in which it is to be stored. Because LONG column data may take up a large
chunk of a given DBEFile's data pages, placing LONG column data in a separate DBEFileSet
is strongly advantageous from the standpoint of storage as well as performance.

If the IN DBEFileSetName clause is not speci�ed for a LONG column, this column's data is
by default stored in the same DBEFileSet as its related table.

Note It is recommended that you do not use the SYSTEM DBEFileSet in which to
store your data, as this could severely impact database performance.

In the following example, LONG column data for PartPicture will be stored in PartPictureSet
while data for columns PartName and PartNumber will be stored in PartsTableSet.

CREATE TABLE PartsTable (

PartName CHAR(10),

PartNumber INTEGER,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartPicture LONG VARBINARY(1000000) IN PartPictureSet)NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

IN PartsTableSet

12-4 Programming with LONG Columns



The next command speci�es that data for new LONG column, PartModule, be stored in
PartPictureSet.

ALTER TABLE PartsTable

ADD
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartModule LONG VARBINARY(70000) IN PartPictureSet

See the \BINARY Data" section of the \Host Variables" chapter for more information on
using BINARY and VARBINARY data types in long columns.

Now that we have de�ned our table, let's see how to put data into it and to specify where
data goes when it is retrieved.

Defining Input and Output with the LONG Column I/O String

Both the INSERT and the UPDATE commands allow you to de�ne various input and output
parameters for any LONG column. Parameters are speci�ed with a LONG column I/O string.
You'll need to understand this string in order to input, change, or retrieve LONG column
data. This section o�ers an overview. See the ALLBASE/SQL Reference Manual for complete
syntax.

Using the INSERT or UPDATE command, you pass the string to ALLBASE/SQL as either a
host variable or a literal. Host variables are covered in detail in the \Host Variables" chapter.

Note The input and output portions of the I/O string are not positional. In the
following examples, < indicates input, and > indicates output. See the
ALLBASE/SQL Reference Manual for a full description of I/O operations
with LONG columns.

The input portion of the LONG column I/O string speci�es the location of data that you
want written to the database. It is also referred to as an input device speci�cation. You can
indicate a �le name or a random heap address.

Use the output portion of the I/O string (output device speci�cation) to indicate where you
want LONG column data to be placed when you use the SELECT or FETCH command.
You have the option of specifying a �le name, part of a �le name, or having ALLBASE/SQL
specify a �le name. You also can direct output to a random heap address. Additional output
parameters allow you to append to or overwrite an existing �le. Information in the output
device speci�cation is stored in the database table and is available to you when a LONG
column is selected or fetched (via a LONG column descriptor, discussed later in the section,
\Using the LONG Column Descriptor").

It's important to note that �les used for LONG column input and output are opened and
closed by ALLBASE/SQL for its purposes. You need not open or close such �les in your
program unless you use them for additional purposes. ALLBASE/SQL does not control input
or output device �les once they are on the operating system. So, any operation on the �le is
valid, whether by your application or another application or user of the system. Such �les are
your responsibility, even before the transaction is complete.

The syntax for the INSERT and UPDATE commands is identical except that the input device
is required for the INSERT command.

Programming with LONG Columns 12-5



Putting Data into a LONG Column with a INSERT Command

As with any column, use the INSERT command to initially put data into a LONG column.
At the time of the insert, all input devices must be on the system in the locations you have
speci�ed. Should your insert operation fail, nothing is inserted, a relevant error message is
returned to the program, and the transaction continues. Depending on your application, you
might want to write a veri�cation routine that reads a portion of each speci�ed input device
to make certain valid data exists prior to using the INSERT command.

The next examples are based on the PartsTable created and altered in the previous section,
\De�ning LONG Columns with CREATE TABLE or ALTER TABLE." Additional examples
of LONG column I/O string usage are found in the ALLBASE/SQL Reference Manual .

Insert Using Host Variables for LONG Column I/O Strings

When inserting a single row, use a version of the LONG Column I/O String for each LONG
column following the VALUES clause, as below.

INSERT INTO PartsTable VALUES (

'bracket',

200,

:PartPictureIO,

:PartModuleIO)

An example of the values that might be stored in the host variables, :PartPictureIO and
:Part ModuleIO, are shown in the last two �elds of a hypothetical record below. In the above
example, the values, bracket and 200, are coded as constants, rather than coming from the
data �le. Your data �le might look like this (note that each item is limited to 80 characters
per record to facilitate documentation):

bracket 200 0'<bracket.tools >bracket' 0'<mod88.module > mod88' 0

hammer 011 0'<hammer.tools >hammer' 0'<mod11.module > mod11' 0

file 022 0'<file.tools >file' 0'<mod22.module > mod22' 0

saw 033 0'<saw.tools > saw' 0'<mod33.module > mod33' 0

wrench 044 0'<wrench.tools >wrench' 0'<mod44.module > mod44' 0

lathe 055 0'<lathe.tools >lathe' 0'<mod55.module > mod55' 0

drill 066 0'<drill.tools >drill' 0'<mod66.module > mod66' 0

pliers 077 0'<pliers.tools >pliers' 0'<mod77.module > mod77' 0

.

.

.

12-6 Programming with LONG Columns



Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH
Command

The following syntax represents the available subset when your select list includes one or more
LONG columns. Remember, a LONG column can be referenced only in a select list and/or a
host variable declaration.

SELECT
�
ALL

�
8>><
>>:

*�
Owner.

�
Table.*

CorrelationName.*

CorrelationName.ColumnName

9>>=
>>;
�
, . . .

�

�
INTO HostVariableDeclaration

�
FROM

� �
Owner.

�
FromTableName

�
CorrelationName

� 	
�
, . . .

�
As we noted earlier, the concept of how LONG column data is retrieved di�ers from that of
standard columns. The LONG column descriptor (rather than the data itself) is selected or
fetched into a host variable. In the case of a dynamic FETCH command, the LONG column
descriptor information goes to the data bu�er. In any case, the LONG column data is written
to a �le or random heap space.

When the following SELECT command is executed, :HostPartPic will contain the LONG
column descriptor information for column PartPicture. LONG column data will go to the
output device speci�ed when column PartPicture was last inserted or updated.

SELECT PartNumber, PartPicture

INTO :HostPartNum, :HostPartPic

FROM PartsTable

WHERE PartNumber = 200

Using the LONG Column Descriptor

ALLBASE/SQL does not swap LONG column data into or out of a host variable. Instead
a 96-byte descriptor is available to your program at select or fetch time. It contains LONG
column information for your program for which you must declare an appropriate host variable.

For example, if you do not know the output device type and its name or address, you obtain
this information from the descriptor. Then open the appropriate �le or call the operating
system to access random heap space.

Note The LONG column descriptor must be declared whether or not you access its
contents in your code.

Programming with LONG Columns 12-7



Table 12-2. LONG Column Descriptor

Description Possible Binary Values Byte Range

Name or Address of Output
Device

File name or heap address 1 through 44

Output Device Options 0 = no output speci�ed
1 = overwrite
2 = append
3 = wildcard
4 = overwrite and wildcard
5 = append and wildcard

45

Output Device Type 0 = no device speci�ed
1 = �le
3 = random heap space

46

Input Device Type 0 = no device speci�ed
1 = �le
3 = random heap space

47

Reserved for Internal Use 48

Size in Bytes of LONG Column
Data

1 to 231�1 (or 2,147,483,647) per LONG
column per row. Standard column data is
restricted to 3996 bytes maximum.

49 through 52

Reserved for Internal Use 53 through 96

Example LONG Column Descriptor Declaration

* Use this when you don't need to break down the descriptor.

01 LONG-COLUMN-DESCRIPTOR.

* Here n equals the number of consecutive LONG columns *

* you are referencing. *

05 EACH-ROW OCCURS n TIMES.

10 DESCRIPTOR-INFO PIC X(96).

* Use this when you want to access a portion of the descriptor.

01 LONG-COLUMN-DESCRIPTORS.

* Here n equals the number of consecutive LONG columns *

* you are referencing. *

05 EACH-ROW OCCURS n TIMES.

10 OUTPUT-DEVICE-NAME PIC X(44).

10 OUTPUT-DEVICE-OPTION PIC X.

10 OUTPUT-DEVICE-TYPE PIC X.

10 INPUT-DEVICE-TYPE PIC X.

10 FILLER PIC X.

12-8 Programming with LONG Columns



10 SIZE-IN-BYTES PIC S9(9) COMP.

10 FILLER PIC X(44).

Programming with LONG Columns 12-9



Using LONG Columns with a BULK SELECT Command

The following code segments illustrate a declaration for the BULK SELECT command with
long columns. Should an error occur before completion of the BULK SELECT command, any
operating system �les written before the error occurred remain on the system, and LONG
column descriptors written to a host variable array remain. It is your responsibility to remove
such �les as appropriate.

Example

.

.

.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 PARTSARRAY.

05 EACH-ROW OCCURS 25 TIMES.

10 PARTNAME PIC X(10).

10 PARTNAMEIND SQLIND.

10 PARTNUMBER PIC S9(9) COMP.

10 PARTNUMBERIND SQLIND.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
10 PARTPICTURE PIC X(96).NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
10 PARTPICTUREIND SQLIND.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
10 PARTMODULE PIC X(96).NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
10 PARTMODULEIND SQLIND.

01 STARTINDEX PIC S9(4) COMP.

01 NUMBEROFROWS PIC S9(4) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

.

.

.

Using LONG Columns with a Dynamic FETCH Command

If you have the need to dynamically retrieve LONG column data, the sqlrowbuf column of
the sqlda, as always, contains the address of the data bu�er. However, the data bu�er, rather
than containing LONG column data, holds the 96-byte LONG column descriptor.

The sqltype �eld of the format array holds a data type ID number of 15 for a LONG BINARY
column and 16 for a LONG VARBINARY column. And the sqltotallen and sqlvallen columns
will always contain a value of 96 (indicating the length of the descriptor).

When a NULL is fetched as the LONG column value, no external �les are created, and the
associated indicator variable for the LONG column descriptor is set to �1.

12-10 Programming with LONG Columns



Changing a LONG Column with an UPDATE [WHERE CURRENT]
Command

When you issue an UPDATE command on a LONG column, you have the following options:

Change the stored data as well as the output device name and/or options.
Change the stored data only.
Change the output device name and/or options only.

Specify a LONG column I/O string (discussed earlier in this chapter) following the SET
clause, for each LONG column to be updated. You must specify either the input device, the
output device, or both. Complete syntax with examples is found in the ALLBASE/SQL
Reference Manual .

In the following example, the LONG column I/O string is contained in host variable
PartPictureIO.

UPDATE PartsTable

SET PartPicture = :PartPictureIO

WHERE PartName = 'saw'

Removing LONG Column Data with a DELETE [WHERE CURRENT]
Command

Syntax for the DELETE and DELETE WHERE CURRENT commands is unchanged for use
with LONG columns. It is limited for the DELETE command in that a LONG column cannot
be used in the WHERE clause.

In the following example, any rows in PartsTable with the PartName of hammer are deleted.

DELETE FROM PartsTable WHERE PartName = 'hammer'

When LONG column data is deleted, the space it occupied in the DBEnvironment is released
when your transaction ends. But any data �le selected earlier still exists on the operating
system. You may want to design a \cleanup" strategy for such �les that are no longer needed.

Coding Considerations

File versus Random Heap Space

Depending on your application, you might want to use a �le or random heap space as your
input or output device. Random heap space may provide faster data access. Consider how
much random heap will be available.

What about using a �le as an I/O device? You might ask yourself the following questions.
Whom do you want to access the �le during and after the application transaction is complete?
How will it be \cleaned up" when it is no longer being used; perhaps the overwrite option
would be helpful, or you could create a maintenance procedure.

Programming with LONG Columns 12-11



File Naming Conventions

When a LONG column is selected or fetched, data goes to the output device you have
speci�ed at insert or update time. In the case of a �le, because this output device name can
be completely de�ned by you, partially de�ned by you, or assigned by ALLBASE/SQL, you
may want to consider whether or not naming conventions are necessary. For instance, if your
application is such that you can always give the same name to your LONG column output
device as you give to the standard column you use in the WHERE clause, no need exists to
extract the device name from the LONG column descriptor when you select or fetch it. For
example, assuming your WHERE clause uses the PartsTable PartName column, the data �le
example in the previous section, \Example Data File," uses this strategy. (Your application
might still require information other than a �le name from the descriptor area.)

Considering Multiple Users

With multiple users reading the same LONG column data, it is preferable for each user to run
the application in a local area. This can prevent �le access problems.

If several users must access the same data from the same group, you might want to use the
wildcard option ($) and avoid using the overwrite option (!).

Deciding How Much Space to Allocate and Where

Remember to consider the space requirements of any DBEFileSet used for LONG column
data. For example, suppose you execute an INSERT or UPDATE command for a LONG
column de�ned as VARBINARY. If inadequate space is available in the database for the new
data, an error message is returned to your program, and the transaction is rolled back. In this
case, you can CREATE another DBEFile and add it to the appropriate DBEFileSet.

You will also want to consider the amount of random heap space available for your use in
relation to the size and number of LONG columns to be selected or fetched.

12-12 Programming with LONG Columns



13

Programming with ALLBASE/SQL Functions

This chapter highlights functions available in ALLBASE/SQL. The functions return values
that can be used to access, search, update, and delete data. Refer to the \Expressions"
chapter of the ALLBASE/SQL Reference Manual for a discussion of other available
ALLBASE/SQL functions. The ALLBASE/SQL functions discussed in this chapter are as
follows:

Date/Time functions.
Tuple Identi�er (TID) function.

Programming with Date/Time Functions

Seven functions can be used with date/time data types. These functions provide exibility for
inputting and retrieving date/time data from the database.

These functions can be used with a preprocessed application or with ISQL. This chapter
outlines basic principles for using date/time functions in an application program. The
following sections are included:

Where Date/Time Functions Can Be Used.
De�ning and Using Host Variables with Date/Time Functions.
Using Date/Time Input Functions.
Using Date/Time Output Functions.
Using the Date/Time ADD MONTHS Function.
Coding Considerations.
Program Examples for Date/Time Data.

Date/time functions are used as you would use an expression. And when used in a select list,
all date/time functions produce data output. Refer to the section in this chapter, \De�ning
and Using Host Variables with Date/Time Functions."

Suppose for example that you are programming for an international corporation. Your
database tables contain various date/time columns and the data is used by employees in
several countries. You write a generic program on which you base a set of customized
programs, one for each geographical location. Each customized program allows the employees
at a given location to input and retrieve date/time information in the formats with which they
are most comfortable.

Refer to the \Host Variables" chapter for more information on date/time data types.
Complete syntax and format speci�cations for date/time functions are found in the
ALLBASE/SQL Reference Manual in the \Expressions" and \Data Types" chapters.

Programming with ALLBASE/SQL Functions 13-1



Note For all date/time functions, character input and output values are in
Native-3000 format.

Where Date/Time Functions Can Be Used

Use date/time functions, as you would an expression, in the DML operations listed below:

Table 13-1. Where to Use Date/Time Functions

DML Operation Clause

INSERT 1 VALUES

WHERE

UPDATE or SET

UPDATE WHERE CURRENT WHERE

DELETE or WHERE

DELETE WHERE CURRENT

SELECT Select list 2

WHERE

DECLARE Select list 2

WHERE

1 In the case of a INSERT, output functions, TO CHAR and TO INTEGER, and the ADD MONTHS function, are

limited to use in the select list and the WHERE clause of a Type 2 INSERT.

2 Input functions, TO DATE, TO TIME, TO DATETIME, and TO INTERVAL, are generally not appropriate in a

select list.

Defining and Using Host Variables with Date/Time Functions

Date/time functions can be used in the way an expression is used; that is, in a select list to
indicate the columns you want in the query result, in a search condition to de�ne the set
of rows to be operated on, and to de�ne the value of a column when using the UPDATE
command. (See the ALLBASE/SQL Reference Manual for in-depth information regarding
expressions.)

Whether you use host variables or literal strings to specify the parameters of the date/time
functions depends on the elements of your application and on how you are using the functions.
This section focuses on the use of host variables.

You can use host variables to specify input or output format speci�cations. Use them as well
to hold data input to and any resulting data output from the date/time functions. (Host
variables cannot be used to indicate column names.)

Host variables for format speci�cations must be de�ned in your application to be compatible
with ALLBASE/SQL CHAR or VARCHAR data types. The exception is the ADD MONTHS
function which requires an INTEGER compatible host variable.

13-2 Programming with ALLBASE/SQL Functions



As for host variables containing input and output data, de�ne them to be CHAR or
VARCHAR compatible with one exception. The TO INTEGER function requires an
INTEGER compatible host variable for its output.

Reference the chapter on de�ning host variables for additional information about de�ning
a host variable to be compatible with a speci�c ALLBASE/SQL data type. Note that the
declarations relate to the default format speci�cation for each date/time data type. Your
declaration must reect the length of the format you are using.

Table 13-2 shows host variable data type compatibility for date/time functions.

Table 13-2. Host Variable Data Type Compatibility for Date/Time Functions

Date/Time
Function

Input Format
Speci�cation

Output Format
Speci�cation

Input Data Output Data

TO DATE (VAR)CHAR (VAR)CHAR (VAR)CHAR 1

TO TIME

TO DATETIME

TO INTERVAL

TO CHAR (VAR)CHAR (VAR)CHAR

TO INTEGER (VAR)CHAR INTEGER

ADD MONTHS INTEGER (VAR)CHAR 1

1 Applies only when used in a select list.

Using Date/Time Input Functions

The new input functions are designed so that you can easily input data for a given date/time
data type in either the default format or a format of your choice. (When you do not include a
format speci�cation, the default is used.)

You have the option of choosing a literal string or a host variable to indicate a desired data
value and/or optional format speci�cation. See the ALLBASE/SQL Reference Manual for
detailed syntax.

Following is the general syntax for date/time input functions:

8>><
>>:

TO_DATETIME (DataValue
�
,FormatSpeci�cation

�
)

TO_DATE (DataValue
�
,FormatSpeci�cation

�
)

TO_TIME (DataValue
�
,FormatSpeci�cation

�
)

TO_INTERVAL (DataValue
�
,FormatSpeci�cation

�
)

9>>=
>>;

Input functions can be used in DML operations as shown in Table 13-1. It is most appropriate
to use date/time input functions in a WHERE, VALUES, or SET clause. Although they can
be used in a select list, it is generally not appropriate to do so. The data value returned to
the function in this instance is not a column value but is identical to the value you specify as
input to the function.

Programming with ALLBASE/SQL Functions 13-3



Examples of TO DATETIME, TO DATE, TO TIME, and TO INTERVAL Functions

Imagine a situation in which users will be inputting and retrieving date/time data in formats
other than the default formats. (Refer to the ALLBASE/SQL Reference Manual for default
format speci�cations.)

The data is located in the TestData table in the manufacturing database. (Reference
appendix C in the ALLBASE/SQL Reference Manual .)

You are to provide them with the capability of keying and retrieving data in the formats
shown in Table 13-3.

Table 13-3. Sample of User Requested Formats for Date/Time Data

Date/Time Data Type Desired Format Speci�cation Length of Format
Speci�cation in ASCII

Characters

DATETIME MM-DD-YYYY HH:MM:SS.FFF 23

DATE MM-DD-YYYY 10

TIME HH:MM:SS 1 8

INTERVAL DDDDDDD HH:MM:SS 16

1 This is the default time data format.

You might use the following generic code examples to meet their needs.

13-4 Programming with ALLBASE/SQL Functions



Example Using the INSERT Command.

Your application allows users to enter data in their desired formats with a minimum
of e�ort on your part.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp, :BatchStamp-Format, :TestDate,

:TestDate-Format, :TestStart, :LabTime, and LabTime-Format) to be compatible

with data type CHAR or VARCHAR.

Declare input indicator variables (:TestDateInd and :LabTimeInd).

END DECLARE SECTION

.

.

.

INSERT

INTO MANUFDB.TESTDATA

(BatchStamp,

TestDate,

TestStart,

TestEnd,

LabTime,

PassQty,

TestQty)

VALUES
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(TO_DATETIME (:BatchStamp, :BatchStamp-Format),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATE (:TestDate :TestDateInd, :TestDate-Format),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_TIME (:TestStart :TestStartInd),

:TestEnd :TestEndInd,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTERVAL (:LabTime :LabTimeInd, :LabTime-Format),

:PassQty :PassQtyInd,

:TestQty :TestQtyInd)

Note that the user requested time data format is the default format. Using the two time data
columns in the TestData table (TestStart and TestEnd), the above example illustrates two
ways of specifying a default format. Specify a date/time function without a format, or simply
do not use a date/time function.

Programming with ALLBASE/SQL Functions 13-5



Example Using the UPDATE Command.

These users want the capability of updating data based on the BatchStamp
column.

BEGIN DECLARE SECTION

Declare input host variables (:TestDate, :TestDate-Format, :BatchStamp,

and :BatchStamp-Format) to be compatible with data type CHAR or VARCHAR.

Declare input indicator variable (:TestDateInd).

END DECLARE SECTION

.

.

.

UPDATE MANUFDB.TESTDATA

SET TESTDATE =
NNNNNNNNNNNNNNNNNNNNNNN
TO_DATENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(:TestDate :TestDateInd, :TestDate-Format),

TestStart = :TestStart :TestStartInd,,

TestEnd = :TestEnd :TestEndInd,,

LabTime = :LabTime :LabTimeInd,

PassQty = :PassQty :PassQtyInd,

TestQty = :TestQty :TestQtyInd

WHERE BatchStamp =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIMENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(:BatchStamp, :BatchStamp-Format)

13-6 Programming with ALLBASE/SQL Functions



Example Using the SELECT Command.

The users are planning to select data from the TestData table based on the lab time
interval between the start and end of a given set of tests.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp, :BatchStamp-Format,

LabTime, and LabTime-Format) to be compatible with data type

CHAR or VARCHAR.

END DECLARE SECTION

.

.

.

SELECT BatchStamp

TestDate

TestStart,

TestEnd,

LabTime

PassQty,

TestQty

INTO :BatchStamp,

:TestDate :TestDateInd,

:TestStart :TestStartInd,

:TestEnd :TestEndInd,

:LabTime :LabTimeInd,

:PassQty : PassQtyInd,

:TestQty :TestQtyInd

FROM MANUFDB.TESTDATA

WHERE LabTime >
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTERVAL (:LabTime, :LabTime-Format)

AND
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format),

BETWEEN :StampOne AND :StampTwo

Example Using the DELETE Command.

The users want to delete data from the TestData table by entering a value for the
BatchStamp column.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp and :BatchStamp-Format)

to be compatible with data type CHAR or VARCHAR.

END DECLARE SECTION

.

.

.

DELETE FROM MANUFDB.TESTDATA

Programming with ALLBASE/SQL Functions 13-7



WHERE BatchStamp =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format)

Using Date/Time Output Functions

Specify the output format of any type of date/time column by using a date/time output
function. Use an output function with any DML operation listed in Table 13-2 with one
exception. In the case of a INSERT command, output functions are limited to use in the
select list and the WHERE clause of a Type 2 INSERT command.

As with date/time input functions, use a host variable or a literal string to indicate a format
speci�cation. See the ALLBASE/SQL Reference Manual for detailed syntax.

Following is the general syntax for date/time output functions:

�
TO_CHAR (ColumnName

�
,FormatSpeci�cation

�
)

TO_INTEGER (ColumnName, FormatSpeci�cation)

�

Example TO CHAR Function

The default format for the DATETIME data type speci�es the year followed by the month
followed by the day. The default format for the TIME data type speci�es a 24-hour clock.
(Refer to the ALLBASE/SQL Reference Manual .)

Suppose users located in Italy want to input a speci�ed batch stamp to obtain the start and
end times of the related test in 12-hour format. They will key the batch stamp in this format,
\DD-MM-YYYY HH12:MM:SS:FFF AM or PM." The times returned will be in this format,
\HH12:MM:SS.FFF AM or PM."

Data is located in the TestData table in the manufacturing database. (Refer to appendix C in
the ALLBASE/SQL Reference Manual .) The following code could be used:

13-8 Programming with ALLBASE/SQL Functions



BEGIN DECLARE SECTION

Declare input host variables (:TwelveHourClockFormat, :BatchStamp,

:ItalianFormat, and :Speci�edInput) to be compatible with data type

CHAR or VARCHAR.

Declare output host variables (:TestStart and :TestEnd) to be compatible

with data type CHAR or VARCHAR .

Declare output indicator variables (:TestStartInd and :TestEndInd).

END DECLARE SECTION

.

.

.

SELECT
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_CHAR(TestStart, :TwelveHourClock),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_CHAR(TestEnd, :TwelveHourClock)

INTO :TestStart :TestStartInd,

:TestEnd :TestEndInd,

FROM ManufDB.TestData

WHERE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME(:BatchStamp, :ItalianFormat) = :SpecifiedInput

Note the use of indicator variables in the above example. Because the TO CHAR function is
used in the select list, no need exists to specify an indicator variable as part of the function.

Example TO INTEGER Function

The TO INTEGER format speci�cation is mandatory and di�ers from that of other
date/time functions in that it must consist of a single element only. See the ALLBASE/SQL
Reference Manual for detailed format speci�cations.

Perhaps you are writing a management report that indicates the quarter of the year in which
tests were performed. (As in the previous example, data is located in the TestData table in
the manufacturing database.) You could use the following code:

Programming with ALLBASE/SQL Functions 13-9



BEGIN DECLARE SECTION

Use the ALLBASE/SQL Reference Manual to determine your desired format

speci�cation. (In this case it is Q.)

Declare the input host variable, :QuarterlyFormat, to be compatible with data

types CHAR or VARCHAR.

Declare an output host variable (:TestDateQuarter)

to be compatible with data type INTEGER. Declare other output host

variables (:BatchStamp, :LabTime, :PassQty, and :TestQty) to be

compatible with data type CHAR or VARCHAR.

Remember to declare output indicator variables (:TestDateQuarterInd,

LabTimeInd, PassQtyInd, and :TestQtyInd).

END DECLARE SECTION

.

.

.

DECLARE ReportInfo CURSOR FOR

SELECT BatchStamp,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTEGER(TestDate, :QuarterlyFormat),

LabTime,

PassQty,

TestQty

FROM ManufDB.TestData

.

.

.

FETCH ReportInfo

INTO ReportBuffer :BatchStamp

:TestDateQuarter :TestDateQuarterInd

:LabTime :LabTimeInd

:PassQty :PassQtyInd

:TestQty :TestQtyInd

13-10 Programming with ALLBASE/SQL Functions



Using the Date/Time ADD MONTHS Function

This function allows you to add an integer number of months to a DATE or DATETIME
column. Do so by indicating the number of months as a positive, negative, or unsigned integer
value. (An unsigned value is assumed positive.) Also, you can specify the integer in a host
variable of type INTEGER.

The ADD MONTHS function can be used in both input and output operations as shown in
Table 13-1.

Following is the general syntax for the ADD MONTHS function:

�
ADD_MONTHS (ColumnName, IntegerValue)

	
As with date/time output functions, use the ADD MONTHS function with any DML
operation listed in Table 13-2 with one exception. In the case of a [BULK] INSERT command,
the ADD MONTHS function is limited to use in the select list and the WHERE clause of a
Type 2 INSERT command.

Example ADD MONTHS Function

Perhaps you want to increment each date in the TestDate column by one month in the
ManufDB.TestData table of the manufacturing database. The following command could be
used:

UPDATE ManufDB.TestData

SET TestDate = ADD_MONTHS (TestDate, 1);

Coding Considerations

The following list provides helpful reminders when you are using date/time functions:

Input functions require leading zeros to match the �xed format of an element. (Z is not
supported.)

For all date/time functions, when you provide only some elements of the complete format in
your format speci�cation, any unspeci�ed elements are �lled with default values.

Arithmetic operations are possible with functions of type INTEGER.

The length of the data cannot exceed the length of the format speci�cation for that data.
The maximum size of a format speci�cation is 72 bytes.

Because LIKE works only with CHAR and VARCHAR values, if you want to use LIKE
with date/time data, you must �rst convert it to CHAR or VARCHAR. For this you can
use the TO CHAR conversion function.

MIN, MAX, COUNT can be used with any DATE/TIME column type. SUM, AVG can be
used with INTERVAL data only.

Do not specify an indicator variable as a parameter of a date/time function used in the
select list of a query.

When using the ADD MONTHS function, if the addition of a number of months (positive
or negative) would result in an invalid day, the day �eld is set to the last day of the month
for the appropriate year, and a warning is generated indicating the adjustment.

Programming with ALLBASE/SQL Functions 13-11



Program Examples for Date/Time Data

The example programs in this section are based on the manufacturing database and the
purchasing database that are a part of the sample database environment, PartsDBE.
(Reference the ALLBASE/SQL Reference Manual , appendix C.)

Informative comments and explanations are present throughout each listing. The following
programs are included:

COBEX30, using date/time functions to allow input and display of DATE and DATETIME
columns in European format.

COBEX9a, converting a column data type from CHAR to DATE.

Example Program Using Date/Time Functions

The following program is intended as a framework in which to illustrate why you might
use date/time functions and how they are implemented. It is based on the manufacturing
database, ManufDB, which is supplied as part of the ALLBASE/SQL software package. The
schema �les used to create the database are found in appendix C of the ALLBASE/SQL
Reference Manual .

As you work with the program, you will also become familiar with integrity contraints, since
the BatchStamp column in the TestData table references the BatchStamp column in the
SupplyBatches table.

You could enhance this program to �t your needs. One useful enhancement might be to use
bulk table processing rather than simple data manipulation commands. Thus you could
operate on duplicate BatchStamps within the TestData table.

13-12 Programming with ALLBASE/SQL Functions



* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* This program illustrates the use of DATE/TIME functions. *

* Simple data manipulation commands are used on the TestData *

* table (part of the sampleDB). Rows can be selected,deleted,*

* or updated on the basis of the BatchStamp column (defined in*

* the table as of DATETIME data type). Any column that can *

* contain null values (any column except BatchStamp) can be *

* updated. Rows can also be inserted. *

* *

* User input and output for DATETIME and DATE columns is in *

* European formats rather than the default formats for these *

* data types. *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX30.

AUTHOR. JOANN GRAY

INSTALLATION. HP.

DATE-WRITTEN. 31 OCT 1990.
DATE-COMPILED. 31 OCT 1990.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT-USER PIC X(40).

Figure 13-1. Using Date/Time Functions

Programming with ALLBASE/SQL Functions 13-13



WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

* DATETIME column, not null *

01 BATCHSTAMP PIC X(23).

01 BATCHSTAMP2 PIC X(23).

01 BATCHSTAMP3 PIC X(23).

* DATE column, nulls allowed *

01 TESTDATE PIC X(10).

01 TESTDATEIND SQLIND.

* TIME column, nulls allowed *

01 TESTSTART PIC X(8).

01 TESTSTARTIND SQLIND.

* TIME column, nulls allowed *

01 TESTEND PIC X(8).

01 TESTENDIND SQLIND.

* INTERVAL column, nulls allowed *
01 LABTIME PIC X(20).

01 LABTIMEIND SQLIND.

* INTEGER column, nulls allowed *

01 PASSQTY PIC S9(9) COMP.

01 PASSQTYIND SQLIND.

* INTEGER column, nulls allowed *

01 TESTQTY PIC S9(9) COMP.

01 TESTQTYIND SQLIND.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* Host Variables for date/time function format specifications. *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

01 BATCHSTAMP-FORMAT PIC X(23).

01 TESTDATE-FORMAT PIC X(10).

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

77 DONE-FLAG PIC X VALUE SPACE.

88 NOT-DONE VALUE SPACE.

88 DONE VALUE "X".

77 FUNC-DONE-FLAG PIC X VALUE SPACE.

88 FUNC-NOT-DONE VALUE SPACE.

88 FUNC-DONE VALUE "X".

77 ABORT-FLAG PIC X VALUE SPACE.
88 NOT-ABORT VALUE SPACE.

88 ABORT VALUE "X".

Figure 13-1. Using Date/Time Functions (page 2 of 15)

13-14 Programming with ALLBASE/SQL Functions



01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.

01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 NOMEMORY PIC S9(9) COMP VALUE -4008.

01 RESPONSE.

05 RESPONSE-PREFIX PIC X(1) VALUE SPACE.

05 RESPONSE-SUFFIX PIC X(22) VALUE SPACES.

01 RESPONSE1 PIC S9(9) COMP.

01 COUNTER PIC S9(4) COMP.

01 NUMFORMAT PIC ZZZZZ9.

PROCEDURE DIVISION.

A100-MAIN.

DISPLAY "Program COBEX30."

DISPLAY "Using Date/Time Functions to Allow Input and Display
- " of DATE and DATETIME".

DISPLAY "Columns in European Format."

DISPLAY " ".

OPEN OUTPUT CRT.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* Initialize host variable format specifications for date/time *

* operations. These could be changed depending on the standard *

* format used by a particular set of users in a given location. *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

MOVE "DD-MM-YYYY HH:MI:SS.FFF" TO BATCHSTAMP-FORMAT.

MOVE "DD-MM-YYYY" TO TESTDATE-FORMAT.

PERFORM A200-CONNECT-DBENVIRONMENT THRU A200-EXIT.

PERFORM B100-DISPLAY-MENU THRU B100-EXIT

UNTIL DONE.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A100-EXIT.

EXIT.

Figure 13-1. Using Date/Time Functions (page 3 of 15)

Programming with ALLBASE/SQL Functions 13-15



A200-CONNECT-DBENVIRONMENT.

DISPLAY "Connect to PartsDBE".

EXEC SQL

CONNECT TO 'PartsDBE'

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A200-EXIT.

EXIT.

A300-BEGIN-TRANSACTION.

DISPLAY " ".

DISPLAY "Begin Work".
EXEC SQL

BEGIN WORK

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A300-EXIT.

EXIT.

A400-COMMIT-WORK.

DISPLAY " ".

DISPLAY "Commit Work".

EXEC SQL

COMMIT WORK

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A400-EXIT.

EXIT.

Figure 13-1. Using Date/Time Functions (page 4 of 15)

13-16 Programming with ALLBASE/SQL Functions



A500-TERMINATE-PROGRAM.

EXEC SQL

RELEASE

END-EXEC.

STOP RUN.

A500-EXIT.

EXIT.

B100-DISPLAY-MENU.

DISPLAY " ".

DISPLAY " ".

DISPLAY " 1 . . . SELECT rows from ManufDB.TestData table.".

DISPLAY " 2 . . . UPDATE rows in ManufDB.TestData table.".

DISPLAY " 3 . . . DELETE rows from ManufDB.TestData table.".

DISPLAY " 4 . . . INSERT rows into ManufDB.TestData table.".

DISPLAY " ".
MOVE "Enter choice or 0 to STOP > " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE1 FREE.

IF RESPONSE1 = ZERO

MOVE "X" TO DONE-FLAG

GO TO B100-EXIT.

DISPLAY " ".

MOVE SPACES TO FUNC-DONE-FLAG.

IF RESPONSE1 = 1

DISPLAY " "

DISPLAY " *** Procedure to SELECT rows from ManufDB.TestD

- "ata *** "

DISPLAY " "

PERFORM C100-SELECT-DATA THRU C100-EXIT

UNTIL FUNC-DONE

MOVE SPACES TO FUNC-DONE-FLAG

GO TO B100-EXIT.

IF RESPONSE1 = 2

DISPLAY " "

DISPLAY " *** Procedure to UPDATE rows in ManufDB.TestData

- " *** "

DISPLAY " "

PERFORM C200-UPDATE-DATA THRU C200-EXIT

UNTIL FUNC-DONE

MOVE SPACES TO FUNC-DONE-FLAG
GO TO B100-EXIT.

Figure 13-1. Using Date/Time Functions (page 5 of 15)

Programming with ALLBASE/SQL Functions 13-17



IF RESPONSE1 = 3

DISPLAY " "

DISPLAY " *** Procedure to DELETE rows from ManufDB.TestD

- "ata *** "

DISPLAY " "

PERFORM C300-DELETE-DATA THRU C300-EXIT

UNTIL FUNC-DONE

MOVE SPACES TO FUNC-DONE-FLAG

GO TO B100-EXIT.

IF RESPONSE1 = 4

DISPLAY " "

DISPLAY " *** Procedure to INSERT rows into ManufDB.Vendo

- "rs *** "

DISPLAY " "

PERFORM C400-INSERT-DATA THRU C400-EXIT

UNTIL FUNC-DONE

MOVE SPACES TO FUNC-DONE-FLAG
GO TO B100-EXIT.

IF RESPONSE1 NOT = 0

AND RESPONSE1 NOT = 1

AND RESPONSE1 NOT = 2

AND RESPONSE1 NOT = 3

AND RESPONSE1 NOT = 4

DISPLAY "Enter 0-4 only, please".

B100-EXIT.

Figure 13-1. Using Date/Time Functions (page 6 of 15)

13-18 Programming with ALLBASE/SQL Functions



C100-SELECT-DATA.

MOVE "Enter BatchStamp or 0 for MENU> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE FREE.

IF RESPONSE-PREFIX = ZERO AND RESPONSE-SUFFIX = SPACES

MOVE "X" TO FUNC-DONE-FLAG

GO TO C100-EXIT

ELSE

MOVE RESPONSE TO BATCHSTAMP.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

PERFORM D200-SQL-SELECT THRU D200-EXIT.

IF SQLCODE = OK

PERFORM D100-DISPLAY-ROW THRU D100-EXIT

ELSE
IF SQLCODE = NOTFOUND

DISPLAY " "

DISPLAY "Row not found!"

ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

PERFORM A400-COMMIT-WORK THRU A400-EXIT.

C100-EXIT.

EXIT.

C200-UPDATE-DATA.

MOVE "Enter BatchStamp or 0 for MENU> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE FREE.

IF RESPONSE-PREFIX = ZERO AND RESPONSE-SUFFIX = SPACES

MOVE "X" TO FUNC-DONE-FLAG

GO TO C200-EXIT

ELSE

MOVE RESPONSE TO BATCHSTAMP.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

PERFORM D200-SQL-SELECT THRU D200-EXIT.

Figure 13-1. Using Date/Time Functions (page 7 of 15)

Programming with ALLBASE/SQL Functions 13-19



IF SQLCODE = OK

PERFORM C250-DISPLAY-UPDATE THRU C250-EXIT

ELSE

IF SQLCODE = NOTFOUND

DISPLAY " "

DISPLAY "Row not found!"

ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

PERFORM A400-COMMIT-WORK THRU A400-EXIT.

C200-EXIT.

EXIT.

C250-DISPLAY-UPDATE.

PERFORM D100-DISPLAY-ROW THRU D100-EXIT.

MOVE SPACES TO TESTDATE.

MOVE "Enter New TestDate (0 for NULL)> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT TESTDATE FREE.

MOVE SPACES TO TESTSTART.

MOVE "Enter New TestStart (0 for NULL)> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT TESTSTART FREE.

MOVE SPACES TO TESTEND.

MOVE "Enter New TestEnd (0 for NULL)> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT TESTEND FREE.

MOVE SPACES TO LABTIME.

MOVE "Enter New LabTime (0 for NULL)> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT LABTIME FREE.

MOVE ZERO TO PASSQTY.

MOVE "Enter New PassQty (0 for NULL)> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT PASSQTY FREE.

Figure 13-1. Using Date/Time Functions (page 8 of 15)

13-20 Programming with ALLBASE/SQL Functions



MOVE ZERO TO TESTQTY.

MOVE "Enter New TestQty (0 for NULL)> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT TESTQTY FREE.

IF TESTDATE = 0

MOVE -1 TO TESTDATEIND

ELSE

MOVE 0 TO TESTDATEIND.

IF TESTSTART = 0

MOVE -1 TO TESTSTARTIND

ELSE

MOVE 0 TO TESTSTARTIND.

IF TESTEND = 0

MOVE -1 TO TESTENDIND

ELSE

MOVE 0 TO TESTENDIND.

IF LABTIME = 0

MOVE -1 TO LABTIMEIND

ELSE

MOVE 0 TO LABTIMEIND.

IF PASSQTY = 0

MOVE -1 TO PASSQTYIND

ELSE

MOVE 0 TO PASSQTYIND.

IF TESTQTY = 0

MOVE -1 TO TESTQTYIND

ELSE

MOVE 0 TO TESTQTYIND.

EXEC SQL UPDATE MANUFDB.TESTDATA

SET TESTDATE = TO_DATE

(:TESTDATE :TESTDATEIND, :TESTDATE-FORMAT),

TESTSTART = :TESTSTART :TESTSTARTIND,

TESTEND = :TESTEND :TESTENDIND,

LABTIME = :LABTIME :LABTIMEIND,

PASSQTY = :PASSQTY :PASSQTYIND,

TESTQTY = :TESTQTY :TESTQTYIND

WHERE BATCHSTAMP = TO_DATETIME

(:BATCHSTAMP, :BATCHSTAMP-FORMAT)

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

Figure 13-1. Using Date/Time Functions (page 9 of 15)

Programming with ALLBASE/SQL Functions 13-21



C250-EXIT.

EXIT.

C300-DELETE-DATA.

MOVE "Enter BatchStamp or 0 for MENU> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE FREE.

IF RESPONSE-PREFIX = ZERO AND RESPONSE-SUFFIX = SPACES

MOVE "X" TO FUNC-DONE-FLAG

GO TO C300-EXIT

ELSE

MOVE RESPONSE TO BATCHSTAMP.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

PERFORM D200-SQL-SELECT THRU D200-EXIT.

IF SQLCODE = OK
PERFORM C350-DISPLAY-DELETE THRU C350-EXIT

ELSE

IF SQLCODE = NOTFOUND

DISPLAY " "

DISPLAY "Row not found!"

ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

PERFORM A400-COMMIT-WORK THRU A400-EXIT.

C300-EXIT.

EXIT.

C350-DISPLAY-DELETE.

PERFORM D100-DISPLAY-ROW THRU D100-EXIT.

MOVE "Is it OK to DELETE this row (N/Y) ? > "

TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE FREE.

IF RESPONSE-PREFIX = "Y"

OR RESPONSE-PREFIX = "y"

DISPLAY "DELETE row from ManufDB.TestData"

EXEC SQL

DELETE FROM MANUFDB.TESTDATA

WHERE BATCHSTAMP = TO_DATETIME
(:BATCHSTAMP, :BATCHSTAMP-FORMAT)

END-EXEC.

Figure 13-1. Using Date/Time Functions (page 10 of 15)

13-22 Programming with ALLBASE/SQL Functions



IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

C350-EXIT.

EXIT.

C400-INSERT-DATA.

MOVE "Enter BatchStamp or 0 for MENU> " TO PROMPT-USER.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT RESPONSE FREE.

IF RESPONSE-PREFIX = ZERO AND RESPONSE-SUFFIX = SPACES

MOVE "X" TO FUNC-DONE-FLAG

GO TO C400-EXIT

ELSE

MOVE RESPONSE TO BATCHSTAMP.

MOVE "Enter TestDate (0 for null)> " TO PROMPT-USER.
MOVE SPACES TO TESTDATE.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT TESTDATE FREE.

IF TESTDATE = 0

MOVE -1 TO TESTDATEIND

ELSE

MOVE 0 TO TESTDATEIND.

MOVE "Enter TestStart (0 for null)> " TO PROMPT-USER.

MOVE SPACES TO TESTSTART.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT TESTSTART FREE.

IF TESTSTART = 0

MOVE -1 TO TESTSTARTIND

ELSE

MOVE 0 TO TESTSTARTIND.

MOVE "Enter TestEnd (0 for null)> " TO PROMPT-USER.

MOVE SPACES TO TESTEND.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT TESTEND FREE.

IF TESTEND = 0

MOVE -1 TO TESTENDIND

ELSE

MOVE 0 TO TESTENDIND.

Figure 13-1. Using Date/Time Functions (page 11 of 15)

Programming with ALLBASE/SQL Functions 13-23



MOVE "Enter LabTime (0 for null)> " TO PROMPT-USER.

MOVE SPACES TO LABTIME.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT LABTIME FREE.

IF LABTIME = 0

MOVE -1 TO LABTIMEIND

ELSE

MOVE 0 TO LABTIMEIND.

MOVE "Enter PassQuantity (0 for null)> " TO PROMPT-USER.

MOVE ZERO TO PASSQTY.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT PASSQTY FREE.

IF PASSQTY = 0

MOVE -1 TO PASSQTYIND

ELSE

MOVE 0 TO PASSQTYIND.

MOVE "Enter TestQuantity (0 for null)> " TO PROMPT-USER.

MOVE ZERO TO TESTQTY.

WRITE PROMPT-USER AFTER ADVANCING 1 LINE.

ACCEPT TESTQTY FREE.

IF TESTQTY = 0

MOVE -1 TO TESTQTYIND

ELSE

MOVE 0 TO TESTQTYIND.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

Figure 13-1. Using Date/Time Functions (page 12 of 15)

13-24 Programming with ALLBASE/SQL Functions



DISPLAY "INSERT row into ManufDB.TestData".

EXEC SQL INSERT

INTO MANUFDB.TESTDATA

(BATCHSTAMP,

TESTDATE,

TESTSTART,

TESTEND,

LABTIME,

PASSQTY,

TESTQTY)

VALUES (TO_DATETIME (:BATCHSTAMP, :BATCHSTAMP-FORMAT),

TO_DATE (:TESTDATE :TESTDATEIND,

:TESTDATE-FORMAT),

:TESTSTART :TESTSTARTIND,

:TESTEND :TESTENDIND,

:LABTIME :LABTIMEIND,

:PASSQTY :PASSQTYIND,
:TESTQTY :TESTQTYIND)

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

PERFORM A400-COMMIT-WORK THRU A400-EXIT.

C400-EXIT.

EXIT.

D100-DISPLAY-ROW.

DISPLAY " ".

DISPLAY " BatchStamp: " BATCHSTAMP.

IF TESTDATEIND < 0

DISPLAY " TestDate is NULL."

ELSE

DISPLAY " TestDate: " TESTDATE.

IF TESTSTARTIND < 0

DISPLAY " TestStart is NULL."

ELSE

DISPLAY " TestStart: " TESTSTART.

IF TESTENDIND < 0

DISPLAY " TestEnd is NULL."

ELSE

DISPLAY " TestEnd: " TESTEND.

Figure 13-1. Using Date/Time Functions (page 13 of 15)

Programming with ALLBASE/SQL Functions 13-25



IF LABTIMEIND < 0

DISPLAY " LabTime is NULL."

ELSE

DISPLAY " LabTime: " LABTIME.

IF PASSQTYIND < 0

DISPLAY " PassQuantity is NULL."

ELSE

MOVE PASSQTY TO NUMFORMAT

DISPLAY " PassQuantity: " NUMFORMAT.

IF TESTQTYIND < 0

DISPLAY " TestQuantity is NULL."

ELSE

MOVE TESTQTY TO NUMFORMAT

DISPLAY " TestQuantity: " NUMFORMAT.

D100-EXIT.

EXIT.

D200-SQL-SELECT.

DISPLAY "SELECT * FROM ManufDB.TestData".

EXEC SQL SELECT TO_CHAR

(BATCHSTAMP, :BATCHSTAMP-FORMAT),

TO_CHAR

(TESTDATE, :TESTDATE-FORMAT),

TESTSTART,

TESTEND,

LABTIME,

PASSQTY,

TESTQTY

INTO :BATCHSTAMP,

:TESTDATE :TESTDATEIND,

:TESTSTART :TESTSTARTIND,

:TESTEND :TESTENDIND,

:LABTIME :LABTIMEIND,

:PASSQTY :PASSQTYIND,

:TESTQTY :TESTQTYIND

FROM MANUFDB.TESTDATA

WHERE BATCHSTAMP = TO_DATETIME

(:BATCHSTAMP, :BATCHSTAMP-FORMAT)

END-EXEC.

D200-EXIT.

EXIT.

Figure 13-1. Using Date/Time Functions (page 14 of 15)

13-26 Programming with ALLBASE/SQL Functions



S100-SQL-STATUS-CHECK.

MOVE SPACE TO ABORT-FLAG.

IF SQLCODE <= DEADLOCK

MOVE "X" TO ABORT-FLAG.

IF SQLCODE = NOMEMORY

MOVE "X" TO ABORT-FLAG.

PERFORM S200-SQLEXPLAIN UNTIL SQLCODE = 0.

IF ABORT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

S100-EXIT.

EXIT.

S200-SQLEXPLAIN.

EXEC SQL

SQLEXPLAIN :SQLMESSAGE

END-EXEC.

DISPLAY SQLMESSAGE.

S200-EXIT.

EXIT.

Figure 13-1. Using Date/Time Functions (page 15 of 15)

Programming with ALLBASE/SQL Functions 13-27



Example Program Converting a Column from CHAR to DATE Data Type

The next data conversion program is intended as a guide should you decide to convert any
character (CHAR) columns in an existing table to a date/time data type.

Before running this program, you must create a new table, PurchDB.NewOrders, in
PartsDBE. This table is similar to the PurchDB.Orders table already existing in PartsDBE,
except that the OrderDate column is of the DATE data type. (Reference the ALLBASE/SQL
Reference Manual , appendix C.) You can create the table by issuing the following command
from ISQL:

CREATE PUBLIC TABLE PurchDB.NewOrders(

OrderNumber INTEGER NOT NULL,

VendorNumber INTEGER,
OrderDate DATE)

IN OrderFS;

13-28 Programming with ALLBASE/SQL Functions



Example Program to Convert from CHAR to Default Data Type

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* This program uses BULK FETCH and BULK INSERT commands to select all *

* rows from the Orders table (part of the sample DBEnvironment, *

* PartsDBE), convert the order date column from the CHAR data type to *

* the DATE data type default format, and write all Orders table *

* information to another table called NewOrders table (created *

* previously by you as described in this chapter). *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
IDENTIFICATION DIVISION.

PROGRAM-ID. COBEX9A.

AUTHOR. JOANN GRAY

INSTALLATION. HP.

DATE-WRITTEN. 31 OCT 1990.

DATE-COMPILED. 31 OCT 1990.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. HP-3000.

OBJECT-COMPUTER. HP-3000.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CRT ASSIGN TO "$STDLIST".

DATA DIVISION.

FILE SECTION.

FD CRT.

01 PROMPT-USER PIC X(40).

Figure 13-2. Converting Date from CHAR to Default Type

Programming with ALLBASE/SQL Functions 13-29



WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* * * * * * BEGIN HOST VARIABLE DECLARATIONS * * * * * * *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 ORDERS.

05 EACH-ROW OCCURS 25 TIMES.

10 ORDERNUMBER PIC S9(9) COMP.

10 VENDORNUMBER PIC S9(9) COMP.

10 VENDORNUMBERIND SQLIND.

10 ORDERDATE PIC X(8).

10 ORDERDATEIND SQLIND.

01 STARTINDEX PIC S9(4) COMP.

01 NUMBEROFROWS PIC S9(4) COMP.

01 NEW-ORDERS.

05 EACH-ROW OCCURS 25 TIMES.

10 NEW-ORDERNUMBER PIC S9(9) COMP.

10 NEW-VENDORNUMBER PIC S9(9) COMP.

10 NEW-VENDORNUMBERIND SQLIND.

10 NEW-ORDERDATE PIC X(10).

10 NEW-ORDERDATEIND SQLIND.

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

* * * * * * END OF HOST VARIABLE DECLARATIONS * * * * * * *

77 DONE-CONVERT PIC X VALUE SPACE.

88 NOT-DONE VALUE SPACE.

88 DONE VALUE 'X'.

77 ORDERS-OK PIC X VALUE SPACE.

88 NOT-OK VALUE SPACE.

88 OK-ORDERS VALUE 'X'.

77 ABORT-FLAG PIC X VALUE SPACE.

88 NOT-ABORT VALUE SPACE.

88 ABORT VALUE 'X'.

77 CONNECT-FLAG PIC X VALUE SPACE.

88 NOT-CONNECT VALUE SPACE.

88 CONNECT VALUE 'X'.

Figure 13-2. Converting Date from CHAR to Default Type (page 2 of 9)

13-30 Programming with ALLBASE/SQL Functions



01 DATE-TRANSFER PIC X(8).

01 DATE-TRANSFER-FROM REDEFINES DATE-TRANSFER.

10 YEAR PIC X(4).

10 MONTH PIC X(2).

10 DAY-FROM PIC X(2).

01 DATE-TRANSFER-TO.

10 YEAR-TO PIC X(4).

10 DASH PIC X VALUE '-'.

10 MONTH-TO PIC X(2).

10 DASH2 PIC X VALUE '-'.

10 DAY-TO PIC X(2).

01 COUNTER1 PIC S9(9) COMP VALUE 0.

01 I PIC S9(9) COMP VALUE 0.

01 OK PIC S9(9) COMP VALUE 0.

01 NOTFOUND PIC S9(9) COMP VALUE 100.
01 DEADLOCK PIC S9(9) COMP VALUE -14024.

01 NOMEMORY PIC S9(9) COMP VALUE -4008.

PROCEDURE DIVISION.

A100-MAIN.

***********************************************************************

* The cursor for the BULK FETCH is declared in a function that is *

* never executed at run time. The section for this cursor is created *

* and stored in the program module at preprocess time. *

***********************************************************************

EXEC SQL DECLARE OrdersCursor

CURSOR FOR

SELECT *

FROM PURCHDB.ORDERS

END-EXEC.

DISPLAY "Program to convert date from CHAR to DATE data type.

- "".

DISPLAY " ".

DISPLAY "Event List:".

DISPLAY " Connect to PartsDBE.".

DISPLAY " BULK FETCH all rows from OrdersTable.".

DISPLAY " Convert the date.".

DISPLAY " BULK INSERT all fetched rows into NewOrders Table".

DISPLAY " with converted date.".

DISPLAY " Release PartsDBE".

DISPLAY " ".

Figure 13-2. Converting Date from CHAR to Default Type (page 3 of 9)

Programming with ALLBASE/SQL Functions 13-31



PERFORM A200-CONNECT-DBENVIRONMENT THRU A200-EXIT.

MOVE SPACE TO DONE-CONVERT.

MOVE "X" TO ORDERS-OK.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

EXEC SQL OPEN ORDERSCURSOR KEEP CURSOR WITH LOCKS END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A450-ROLLBACK-WORK THRU A450-EXIT

MOVE SPACE TO ORDERS-OK

MOVE "X" TO DONE-CONVERT.

PERFORM B100-FETCH-OLD THRU B100-EXIT UNTIL DONE.

***********************************************************************
* DoneConvert is TRUE when all data has been converted and inserted *

* or when an error condition not serious enough for ALLBASE/SQL to *

* rollback work was encountered. *

***********************************************************************

***********************************************************************

* If there were no errors in processing, data is committed to the *

* database. Else, if there were ALLBASE/SQL errors, rollback the *

* transaction before releasing the database environment. *

***********************************************************************

IF OK-ORDERS

PERFORM A400-COMMIT-WORK THRU A400-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT

ELSE

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A100-EXIT.

EXIT.

A200-CONNECT-DBENVIRONMENT.

***********************************************************************

* Subroutine to connect to the sample database environment, PartsDBE. *

***********************************************************************

DISPLAY "Connect to PartsDBE".

EXEC SQL
CONNECT TO 'PartsDBE'

END-EXEC.

Figure 13-2. Converting Date from CHAR to Default Type (page 4 of 9)

13-32 Programming with ALLBASE/SQL Functions



IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A200-EXIT.

EXIT.

A300-BEGIN-TRANSACTION.

***********************************************************************

* Subroutine to begin the transaction with cursor stability specified.*

***********************************************************************

EXEC SQL

BEGIN WORK CS

END-EXEC.

IF SQLCODE NOT = OK
PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A300-EXIT.

EXIT.

A400-COMMIT-WORK.

***********************************************************************

* Subroutine to commit work to the database OR save the cursor *

* position. *

***********************************************************************

DISPLAY "Commit Work".

EXEC SQL

COMMIT WORK

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

A400-EXIT.

EXIT.

A450-ROLLBACK-WORK.

Figure 13-2. Converting Date from CHAR to Default Type (page 5 of 9)

Programming with ALLBASE/SQL Functions 13-33



***********************************************************************

* Subroutine to rollback the transaction. *

***********************************************************************

DISPLAY "Rollback Work".

EXEC SQL

ROLLBACK WORK

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT.

A450-EXIT.

EXIT.

A500-TERMINATE-PROGRAM.

***********************************************************************

* Subroutine to release PartsDBE. *

***********************************************************************

EXEC SQL

RELEASE

END-EXEC.

STOP RUN.

A500-EXIT.

EXIT.

***********************************************************************

* Subroutine to BULK FETCH Orders table data 25 rows at a time into *

* an array. *

***********************************************************************

B100-FETCH-OLD.

MOVE 25 TO NUMBEROFROWS.

MOVE 1 TO STARTINDEX.

DISPLAY 'BULK FETCH PurchDB.Orders'.

EXEC SQL BULK FETCH ORDERSCURSOR

INTO :ORDERS, :STARTINDEX, :NUMBEROFROWS

END-EXEC.

Figure 13-2. Converting Date from CHAR to Default Type (page 6 of 9)

13-34 Programming with ALLBASE/SQL Functions



* Set COUNTER1 to the number of rows fetched. *

MOVE SQLERRD(3) TO COUNTER1.

IF SQLCODE = OK

PERFORM A400-COMMIT-WORK THRU A400-EXIT

ELSE

IF SQLCODE = NOTFOUND

DISPLAY 'There are no Orders Table rows to FETCH.'

MOVE "X" TO DONE-CONVERT

ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A450-ROLLBACK-WORK THRU A450-EXIT

MOVE SPACE TO ORDERS-OK

MOVE "X" TO DONE-CONVERT.

IF NOT-DONE

PERFORM B200-TRANSFER-DATA THRU B200-EXIT.

IF NOT-DONE

PERFORM B300-INSERT-NEW THRU B300-EXIT.

B100-EXIT.

EXIT.

B200-TRANSFER-DATA.

***********************************************************************

* Subroutine to convert OrderDate form CHAR to DATE data type and *

* transfer data to an array in preparation for BULK INSERT into a new *

* table. *

***********************************************************************

MOVE COUNTER1 TO NUMBEROFROWS.

PERFORM C200 THRU C200-EXIT

VARYING I FROM 1 BY 1 UNTIL I > NUMBEROFROWS.

PERFORM C205 THRU C205-EXIT

VARYING I FROM 1 BY 1 UNTIL I > NUMBEROFROWS.

B200-EXIT.

EXIT.

Figure 13-2. Converting Date from CHAR to Default Type (page 7 of 9)

Programming with ALLBASE/SQL Functions 13-35



C200.

MOVE ORDERNUMBER(I) TO NEW-ORDERNUMBER(I).

MOVE VENDORNUMBER(I) TO NEW-VENDORNUMBER(I).

C200-EXIT.

EXIT.

C205.

* Here the old orderdate column data is moved to a data item *

* to break it into the component parts of the default DATE format.*

MOVE ORDERDATE(I) TO DATE-TRANSFER.

MOVE YEAR TO YEAR-TO.

MOVE MONTH TO MONTH-TO.

MOVE DAY-FROM TO DAY-TO.

MOVE DATE-TRANSFER-TO TO NEW-ORDERDATE(I).

C205-EXIT.

EXIT.

B300-INSERT-NEW.

***********************************************************************

* Subroutine to BULK INSERT into PURCHDB.NewOrders table. *

***********************************************************************

MOVE COUNTER1 TO NUMBEROFROWS.

MOVE 1 TO STARTINDEX.

DISPLAY 'BULK INSERT INTO PurchDB.NewOrders'.

EXEC SQL BULK INSERT INTO PURCHDB.NEWORDERS

VALUES (:NEW-ORDERS,

:STARTINDEX,

:NUMBEROFROWS)

END-EXEC.

IF SQLCODE NOT = OK

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A450-ROLLBACK-WORK THRU A450-EXIT

MOVE SPACE TO ORDERS-OK

MOVE "X" TO DONE-CONVERT.

B300-EXIT.
EXIT.

Figure 13-2. Converting Date from CHAR to Default Type (page 8 of 9)

13-36 Programming with ALLBASE/SQL Functions



S100-SQL-STATUS-CHECK.

***********************************************************************

* Subroutine to display error messages and terminate the program when *

* the transaction has been rolled back by ALLBASE/SQL. *

***********************************************************************

MOVE SPACE TO ABORT-FLAG.

IF SQLCODE <= DEADLOCK

MOVE 'X' TO ABORT-FLAG.

IF SQLCODE = NOMEMORY

MOVE 'X' TO ABORT-FLAG.

PERFORM S200-SQLEXPLAIN

UNTIL SQLCODE = 0.

* The abort flag is set if the transaction was rolled back by *

* ALLBASE/SQL. *

IF ABORT

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

S100-EXIT.

EXIT.

S200-SQLEXPLAIN.

EXEC SQL

SQLEXPLAIN :SQLMESSAGE

END-EXEC.

DISPLAY SQLMESSAGE.

S200-EXIT.

EXIT.

Figure 13-2. Converting Date from CHAR to Default Type (page 9 of 9)

Programming with ALLBASE/SQL Functions 13-37



Programming with TID Data Access

Each row (tuple) in an ALLBASE/SQL table is stored at a database address on disk. This
unique address is called the tuple identi�er or TID. When using a SELECT statement, you
can obtain the TID of any row. In turn, you can use this TID to specify the target row for a
SELECT, UPDATE, or DELETE statement. TID functionality provides the fastest possible
data access to a single row at a time (TID access) in conjunction with maximum coding
exibility. The following options are available:

Rapid read and write access to a speci�c row without the use of a cursor (less overhead).
Rapid update and delete capability based on TIDs returned by a nested query, a union
query, a join query, or a query specifying sorted data.

Other ALLBASE/SQL functionality provides a method of processing a multiple row query
result sequentially, one row at a time. This involves the use of a cursor with the UPDATE
WHERE CURRENT, DELETE WHERE CURRENT, and REFETCH commands which
internally utilize TID access. See the ALLBASE/SQL Reference Manual for more details.

The nature of your applications will determine how valuable TID functionality can be to you.
It could be most useful for applications designed for interactive users and applications that
must update a set of related rows as a group with the same TID.

A TID function and host variable data type are provided. The TID function is used in the
select list and/or the WHERE clause of a SELECT statement and in the WHERE clause
of an UPDATE or DELETE statement. The new host variable data type is used in an
application program to hold data input to and output from the TID function.

Understanding TID Function Input and Output

The next sections describe how TID output is accessed via a select list and how you provide
TID input via a WHERE clause. Topics discussed are as follows:

Using the TID Function in a Select List.
Using the TID Function in a WHERE Clause.
Declaring TID Host Variables.
Understanding the SQLTID Data Format.

Using the TID Function in a Select List

When using the TID function in a select list, specify it as you would a column name. In an
application, you could use a statement like the following:

SELECT TID(), VendorNumber, VendorName, PhoneNumber

INTO :TidHostVar, :VendorNumber,

:VendorName, :PhoneNumber;

FROM Purchdb.Vendors

WHERE VendorName = :VendorName

The resulting TID and column data is placed in the host variables, VendorNumber,
VendorName, PhoneNumber.

The next example illustrates how to obtain TID values for qualifying rows of a two table join.
Correlation names are used.

13-38 Programming with ALLBASE/SQL Functions



SELECT TID(sp), TID(o)

FROM PurchDB.SupplyPrice sp,

PurchDB.Orders o
WHERE sp.VendorNumber = :VendorNumber

AND o.VendorNumber = :VendorNumber

Using the TID Function in a WHERE Clause

When using the TID function in a WHERE clause, you provide an input parameter. For
application programs, this parameter can be speci�ed as a host variable, a constant, or a
question mark (?) representing a dynamic parameter. The input parameter is a constant. For
example:

DELETE FROM PurchDB.Parts WHERE TID() = 3:3:30;

In an application, you could use a statement like the following to verify the data integrity of a
previously accessed row:

SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber, :PartName, :SalesPrice

FROM PurchDB.Parts

WHERE TID() = :PartsTID

You might use the following statement in an application to update a row:

UPDATE PurchDB.Parts

SET PartNumber = :PartNumber,

PartName = :PartName,

SalesPrice = :SalesPrice

WHERE TID() = :PartsTID

Declaring TID Host Variables

Host variables for TID function input and output must be declared in your application as
SQLTID host variables. You would declare an SQLTID host variable as follows:

01 TIDVarName SQLTID.

Understanding the SQLTID Data Format

The data in SQLTID host variables has its own unique format which is not compatible with
any other ALLBASE/SQL data type. It is not necessary to know the internal format of
SQLTID data to use the TID function. The information in this section is provided in case you
require the TID value to be broken into its components.

For instance, you might want to know the page numbers of all TID's in a table in order to
analyze data distribution. To do this, you must parse the SQLTID host variable.

ALLBASE/SQL does allow you to unload SQLTID data. However, you cannot use the LOAD
command to load TID data back into a table. The TID is a unique identi�er generated
internally by ALLBASE/SQL, and cannot be assigned by users.

Programming with ALLBASE/SQL Functions 13-39



An SQLTID host variable consists of eight bytes of binary data and has the following format:

Table 13-4. SQLTID Data Internal Format

Content Byte Range

Version Number 1 through 2

File Number 3 through 4

Page Number 5 through 7

Slot Number 8

The SQLTID version number is an optional input parameter. If not speci�ed, the version
number defaults to 0. If you do specify the version, it must always be 0. If a version other
than 0 is speci�ed, no rows will qualify for the operation.

TID function application output always contains a version number of 0.

Transaction Management with TID Access

TID data access is fast, and it must be used with care. A great deal of exibility of use is
possible, and exactly how it should be used depends on your application programming needs.

The next sections look at performance, concurrency and data integrity issues involved in
designing database transactions that use TID access. Although a possible usage scenario is
given, you must decide how to combine the elements of transaction management to best suit
your purposes. The following concepts are highlighted:

Comparing TID Access to Other Types of Data Access.
Insuring that the Optimizer Chooses TID Access.
Verifying Data that is Accessed by TID.
Stable versus Volatile Data.
Using Isolation Levels with the TID Function.
Considering Interactive User Applications.
Coding Strategies.

TID access requires an initial SELECT, BULK SELECT, FETCH or BULK FETCH to
obtain TID values. You can then SELECT, UPDATE or DELETE data by TID.

Comparing TID Access to Other Types of Data Access

When using TID functionality, data access speed is always improved compared to the speed of
other ALLBASE/SQL access methods, for the following reasons:

Index access must lock more pages (i.e. index pages).
Relation access locks more pages to �nd the TID of any qualifying row.
Hash access employs more search overhead.

Note that use of the TID function in a WHERE clause does not guarantee that TID access
will be chosen by the optimizer. For example, the following statement would utilize TID
access:

13-40 Programming with ALLBASE/SQL Functions



DELETE FROM PurchDB.Parts

WHERE TID() = :PartsTID AND PartName = 'Winchester Drive'

However, in the next statement TID access would not be used because it uses an OR:

DELETE FROM PurchDB.Parts

WHERE TID() = :PartsTID1 OR TID() = :PartsTID2

See the \Expressions" chapter of the ALLBASE/SQL Reference Manual for a full explanation
about using TID access.

Verifying Data that is Accessed by TID

It is important to note that a TID in ALLBASE/SQL is unique and is valid until its related
data is deleted. You must take precautions to assure that the data you are selecting or
changing exists when your statement executes. (Note that a TID can be reassigned after its
data has been deleted.)

You can rely on the existence of a given TID, if you know its data won't be deleted. That
is, you know the nature of the data is non-volatile. In this case, you can select the TID and
update by TID with the assurance that data integrity will be maintained. An example might
be a table that has been created as private. Another example might be a table that you know
is currently being accessed only by your application. (You have begun the transaction with
the RR isolation level, or you have used the LOCK TABLE command.)

By contrast, you may be dealing with data that changes frequently. In cases where you are
using the CS, RC, or RU isolation levels, you must verify that your data has not changed
between the time you select it and the time you update or delete it. A method is to end the
transaction in which you selected the data, and begin an RR transaction in which you use a
SELECT statement with the TID function in the WHERE clause. See the following section
titled \Coding Strategies" for an example.

When you attempt to access a row for update or delete, the status checking procedure is the
same as for a statement that does not contain the TID function. An application must check
the sqlcode �eld of the sqlca for a value of 100.

Considering Interactive User Applications

Some transaction management basics that apply to TID functionality when used in interactive
applications are listed below:

Be sure to avoid holding locks against the database within a transaction driven by
interactive user input. This is sometimes termed \holding locks around terminal reads." It
means that the speed at which the user enters required data determines the execution time
of your transaction and thus the time span of transaction locks.
Does your transaction use the RR isolation level? If so, there is no need to verify your data
prior to updating or deleting within the same transaction.
Does your transaction use the CS, RC, or RU isolation level? If so, in order to maintain
data integrity, you must verify that the data has not changed before you attempt to
update or delete it. By verifying the data in this way, you insure that it still exists and can
determine whether or not it has changed from the time it was last presented to the user.

Programming with ALLBASE/SQL Functions 13-41



Coding Strategies

Suppose you are writing an application that will be executed by many simultaneous users in
an online transaction processing environment. You want each user to be able to locate and
update just a few rows in a table that is frequently accessed by many users.

The following scenario illustrates the use of two transactions with di�erent isolation levels.
Figure 13-3 uses the RC isolation level with a BULK SELECT statement to obtain data and
the RR isolation level with a SELECT statement based on TID access to verify the data
before it is updated.

De�ne two arrays, one (OrdersArray) to hold the qualifying rows of the Orders
table and another (NewOrdersArray) to hold the rows that the user wants to change.

Be sure to de�ne an element in each array to hold the TID value.

Begin the transaction with RC isolation level. This ensures maximum

concurrency for committed data. Locks are released immediately following

data access.

BEGIN WORK RC

BULK SELECT TID(), OrderNumber, VendorNumber, OrderDate

INTO :OrdersArray, :StartIndex, :NumberOfRows;

FROM PurchDB.Orders

WHERE OrderNumber BETWEEN 30510 AND 30520

COMMIT WORK

Once all qualifying rows have been loaded into OrdersArray, end the

transaction. Then loop through the array displaying the rows and accepting any

user entered changes in NewOrdersArray. Include the appropriate TID

values with each NewOrdersArray entry.

Figure 13-3. Using RC and RR Transactions with BULK SELECT, SELECT, and UPDATE

13-42 Programming with ALLBASE/SQL Functions



When all user changes have been entered, use a loop to compare the previously

fetched rows (in OrdersArray) with the same rows as they now exist in the

database.

Begin your transaction with the RR isolation level. No other transaction can

access the locked data until this transaction ends, providing maximum data

integrity.

BEGIN WORK RR

For each entry in NewOrdersArray, do the following:

SELECT TID(), *

INTO :TIDvalue, :OrderNumber, :VendorNumber, :OrderDate

FROM PurchDB.Orders

WHERE TID() = :TIDHostVariable

Verify the selected data against the corresponding data in OrdersArray.

If the row is unchanged, update it using TID access.

UPDATE PurchDB.Orders

SET OrderNumber = :NewOrderNumber :NewOrderNumberInd,

VendorNumber = :NewVendorNumber :NewVendorNumberInd,

OrderDate = :NewOrderDate :NewOrderDateInd

WHERE TID() = :TIDHostVariable

If the row has changed or has been deleted, inform the user and o�er

appropriate options.

COMMIT WORK

Figure 13-3. Using RC and RR Transactions with BULK SELECT, SELECT, and UPDATE (2 of 2)

Reducing Commit Overhead for Multiple Updates with TID Access

Figure 13-4 shows how to reduce COMMIT overhead when performing multiple updates
following a BULK FETCH. Two loops are used, each with its own cursor and own set of locks.

In the outer loop, a BULK FETCH is performed with a cursor to load an array. The
transaction enveloping the outer loop uses an RC isolation level to allow maximum
concurrency while the user is entering data at the terminal. The locks associated with the
BULK FETCH cursor are released after each fetch.

The inner loop uses another cursor to FETCH a single row of data based on the TID value.
Since an RC isolation is being used, the data must be refetched to prevent other transactions
from modifying it. The data is veri�ed, and an UPDATE is performed.

After the inner loop has �nished updating the rows of data, a COMMIT WORK is issued to
actually commit the updates to the data base and to release the exclusive locks held by the

Programming with ALLBASE/SQL Functions 13-43



updates in the inner loop. This use of a single COMMIT WORK for the multiple updates in
the inner loop reduces overhead.

13-44 Programming with ALLBASE/SQL Functions



De�ne two arrays, one (PartsArray) to hold the qualifying rows of the Parts

table and another (NewPartsArray) to hold the rows that the user wants to

change. Be sure to de�ne an element in each array to hold the TID value.

Declare the cursor (BulkCursor) used by the BULK FETCH � 4 � that

loads the PartsArray.

DECLARE BulkCursor CURSOR FOR

SELECT TID(), PartNumber, PartName, SalesPrice

FROM PurchDB.Parts

Declare the cursor (TidCursor) used to UPDATE � 11 � an individual row based

on the TID value.

DECLARE TidCursor CURSOR FOR � 1 �
SELECT PartName, SalesPrice

FROM PurchDB.Parts

WHERE TID() = :HostPartTid

FOR UPDATE OF PartName, SalesPrice

Begin the transaction with a RC isolation level. This ensures maximum

concurrency while assuring that only commited data is read.

BEGIN WORK RC � 2 �

OPEN the cursor associated with the BULK FETCH � 4 � . The KEEP CURSOR

parameter maintains the cursor position across transactions until the

CLOSE � 6 � statement. The WITH NOLOCKS parameter releases all locks

associated with the cursor when the COMMIT WORK � 7 � statement is executed.

OPEN BulkCursor KEEP CURSOR WITH NOLOCKS

The following COMMIT WORK � 3 � statement preserves the open cursor

position and automatically starts a new transaction with an RC isolation level.

COMMIT WORK � 3 �
Loop until no more rows are fetched

BULK FETCH BulkCursor INTO :PartsArray � 4 �

Display the rows in PartsArray and move any changes entered by the user

to NewPartsArrray. Include the appropriate TID value with each

NewPartsArray entry.

For each row in the NewPartsArray

VerifyAndUpdate � 8 �
End For

Figure 13-4. Using TID Access to Reduce Commit Overhead

Programming with ALLBASE/SQL Functions 13-45



The following COMMIT WORK � 5 � statement commits the updates � 11 � in

VerifyAndUpdate and releases the locks held.

COMMIT WORK � 5 �

End Loop

CLOSE BulkCursor � 6 �

The �nal COMMIT WORK � 7 � statement ends the transaction started by the

BEGIN WORK RC � 2 � . Any locks still held are released.

COMMIT WORK � 7 �
Begin the VerifyAndUpdate routine. � 8 �

Assign to HostPartTid the TID value in NewPartsArray.

OPEN TidCursor

Using the cursor declared above � 1 � as TidCursor, perform a FETCH � 9 �
and REFETCH � 10 � to verify the data. The REFETCH � 10 � places a lock

on the data page, to prevent another transaction from modifying the data.

The lock is held until all the rows in the NewPartsArray have been updated

and when the COMMIT WORK � 5 � is performed.

FETCH TidCursor INTO :PartName, :SalesPrice � 9 �

REFETCH TidCursor INTO :PartName, :SalesPrice � 10 �

Verify the fetched data against the corresponding row in PartsArray.

If the row is unchanged, update it using the TID cursor.

UPDATE PurchDB.Parts � 11 �
SET PartName = :NewPartName,

SalesPrice = :NewSalesPrice

WHERE CURRENT OF TidCursor

If the row has changed or has been deleted, inform the user and o�er

appropriate options.

CLOSE TidCursor

End the VerifyAndUpdate routine.

Figure 13-4. Using TID Access to Reduce Commit Overhead (2 of 2)

13-46 Programming with ALLBASE/SQL Functions



Index

A

access
optimization, 1-14
validation, 1-14

active set, 6-12
ADD MONTHS function
example with BULK SELECT, 13-11
syntax, 13-11

aggregate function, 6-4
simple data manipulation, 7-2

ALTER TABLE command
syntax for LONG columns, 12-4

ANSI SQL1 level 2
specifying a default value, 4-16

ANSI SQL86 level 2
oating point data, 4-9

application development, 2-1
arrays, 4-24, 6-20
BULK SELECT, 4-5
declarations of, 4-24

atomic operation
de�ned, 5-2

authorization, 1-6
and program maintenance, 1-20
changing, 1-21
dynamic preprocessing, 10-2
granting, 1-17

automatic rollback, 5-11
autostart mode, 3-12

B

BEGIN DECLARE SECTION, 3-8
declaring host variables, 4-6

BEGIN WORK
de�ning transactions, 3-12
in transaction management, 7-7

binary data
compatibility, 4-11
host variable de�nition, 4-11
how stored, 4-11
using the LONG phrase with, 4-11

BULK FETCH, 6-20
basic uses of, 9-8

BULK FETCH command
used in example program, 13-29

BULK INSERT, 6-20
basic uses of, 9-10

BULK INSERT command
used in example program, 13-29
used with LONG columns, 12-6

bulk processing
INTO clause, 4-5

bulk processing variables, 4-5
BULK SELECT, 6-3
basic uses, 9-3

[BULK] SELECT command
used with LONG columns, 12-7

BULK SELECT command
example with LONG columns, 12-10
with ADD MONTHS function, 13-11

BULK table processing, 6-1
BULK FETCH, 9-8
BULK INSERT, 9-10
BULK SELECT, 9-3
commands, 9-3
overview, 6-20
sample program, 9-13
techniques, 9-1

C

CHAR data, 4-8
CLOSE, 6-15
before ending a transaction, 8-8, 8-9
freeing bu�er space with, 8-8
with COMMIT WORK, 8-11
with KEEP CURSOR, 8-11

COBEX10A, 10-15
COBEX10B, 10-21
COBEX2, 2-8, 3-2
COBEX5, 5-16
COBEX7, 7-19
COBEX8, 8-33
COBEX9, 9-20
COBOL compiler directives
$SQL COPY, 2-27
$SQL NOCOPY, 2-27

COBOL COPY statement
code expansion, 2-28
compiler directives for, 2-27
introduction to, 2-27
REPLACING clause, 2-27

Index-1



use of NOLIST reserved word, 2-28
where used, 2-28

COBOL SET and IF statement
use of NOMIXED reserved word, 2-30

COBOL SET and IF statements
where used, 2-30

COBOL subprograms, 2-1
coding considerations
for date/time functions, 13-11
for LONG columns, 12-11, 12-12

column speci�cations for oating point data,
4-9

comments, ALLBASE/SQL, 3-10
comments, COBOL, 3-9
COMMIT WORK, 1-12
de�ning transactions, 3-12
in transaction management, 7-7
with CLOSE, 8-11
with KEEP CURSOR, 8-11

comparison predicate, 6-3
compiler, 1-15
separate compilable section, 1-5

compiler directive
$INCLUDE, 2-15

compiler directives
for COBOL COPY statement, 2-27

compiling and linking, 2-5, 10-11
C subprogram COBOL calls, 10-11

concurrency, 7-7
CONNECT, 1-18
CONNECT authority, 1-6
with START DBE, 3-12

constant
as default data value, 4-16

constraint test matrix for integrity constraints,
11-3

continuation lines, 3-10
conversion, 4-17
COPY statement in COBOL
code expansion, 2-28
compiler directives for, 2-27
introduction to, 2-27
REPLACING clause, 2-27
use of NOLIST reserved word, 2-28
where used, 2-28

CREATE TABLE command
syntax for LONG columns, 12-4

C subprogram COBOL calls, 10-7, 10-11
CURRENT DATE function result
used as default data value, 4-16

CURRENT DATETIME function result
used as default data value, 4-16

current language, 1-8
current row, 6-13
DELETE WHERE CURRENT, 8-7

CURRENT TIME function result
used as default data value, 4-16

cursor
and BULK FETCH, 9-8
closing, 6-15
deleting with, 6-13
e�ect of commands on, 6-16
introduction to, 3-15
opening, 6-12
positioning, 6-13
updating with, 6-13
use of, 6-12

cursor processing
CLOSE, 8-8
commands, 8-1
DECLARE CURSOR, 8-2
de�nition, 8-1
DELETE WHERE CURRENT, 8-7
FETCH, 8-3
OPEN, 8-3
techniques, 8-1
transaction management, 8-8
UPDATE and FETCH, 8-6
UPDATE WHERE CURRENT, 8-4

D

Database Environment Con�guration File, 1-7
data compatibility
binary, 4-11
oating point, 4-9
for date/time function parameters, 13-2, 13-3
for default data values, 4-17
LONG binary, 4-11
LONG varbinary, 4-11

data consistency, 5-2
in sample database, 5-2

data de�nition
overview, 3-14

data description entries, 4-6
DATA DIVISION, 3-1
data input using date/time functions, 13-3
data integrity
changes to error checking , 11-1
introduction to, 11-1
number of rows processed , 11-1
row level versus statement level, 11-1
using sqlerrd[2], 11-1

data manipulation
commands, 3-14, 6-2
overview, 3-14, 6-1
techniques, 6-1

data retrieval using date/time functions, 13-8
data storage
binary data, 4-11

data type

Index-2



compatibility, 4-17
data type conversion, 4-17
data types, 4-8
binary, 4-11
compatibility, 4-17
equivalency, 4-17
oating point, 4-9
used with LONG columns, 12-2

date/time ADD MONTHS function
overview, 13-11
where to use, 13-11

date/time data conversion
example program, 13-29
example programs, 13-28

date/time functions, 13-1
coding considerations, 13-11
data compatibility, 13-2, 13-3
example program, 13-12
example programs, 13-12
examples using ManufDB database, 13-4,

13-8, 13-11
example using default format speci�cations,

13-5
how used, 13-2
introduction to, 13-1
leading zeros required for input functions,

13-11
parameters for, 13-2
unspeci�ed format elements default �lled,

13-11
used to add a number of months, 13-11
used when inputting data, 13-3
used when retrieving data, 13-8
using host variables for format speci�cations,

13-2
using host variables for input and output data,

13-2
using host variables with, 13-2
where to use ADD MONTHS, 13-11
where to use input functions, 13-3
where to use output functions, 13-8
where to use TO CHAR, 13-8
where to use TO DATE, 13-3
where to use TO DATETIME, 13-3
where to use TO INTEGER, 13-8
where to use TO INTERVAL, 13-3
where to use TO TIME, 13-3
where used, 13-2

date/time input functions
examples, 13-4
not intended for use in select list, 13-3
overview, 13-3
where to use, 13-3

date/time output functions
examples, 13-8, 13-10

overview, 13-8
where to use, 13-8, 13-11

DBA authority, 1-6, 2-42
DBECon �le, 1-7
DBEnvironment
access, 1-5, 2-2

DBE session
and autostart mode, 3-12
terminating, 3-13

DDL operations
used with integrity constraints, 11-2
used with LONG columns, 12-1

deadlock
and error recovery, 5-2
status checking, 5-27

DECIMAL data, 4-9
declaration of data
FLOAT, 4-9

DECLARE CURSOR, 6-12
FOR UPDATE OF, 8-2
preprocessor directive, 8-3
SELECT, 8-2
specify location of stored section, 8-2
syntax, 8-2

DECLAREing for UPDATE
KEEP CURSOR, 8-10

declare section, 4-6
de�ned, 4-6

declaring
host variables, 3-11, 4-6
indicator variables, 4-24
SQLCA, 3-11

default data values
constant, 4-16
data compatibility, 4-17
for columns allowing nulls, 4-16
in addition to null, 4-16
not used with LONG BINARY data, 4-17
not used with LONG columns, 4-17
not used with LONG VARBINARY data,

4-17
NULL, 4-16
result of CURRENT DATE function, 4-16
result of CURRENT DATETIME function,

4-16
result of CURRENT TIME function, 4-16
USER, 4-16

default format speci�cation example
date/time functions, 13-5

de�ning integrity constraints, 11-2
de�ning LONG columns
in a table, 12-4
input and output speci�cation, 12-5
with the LONG column I/O string, 12-5

de�nitions

Index-3



input device speci�cation, 12-5
LONG column I/O string, 12-5
output device speci�cation, 12-5
row level integrity, 11-1

DELETE
and simple data manipulation, 7-7

DELETE command
used with LONG columns, 12-11
with TO DATETIME function, 13-7

DELETE WHERE CURRENT, 6-13
current row, 8-7
restrictions, 8-7
syntax, 8-7

DELETE WHERE CURRENT command
used with LONG columns, 12-11

delimiting SQL commands, 1-5
designing an application using statement level

integrity, 11-3
directives, 1-2
DML operations
used with date/time functions, 13-2
used with integrity constraints, 11-2
used with LONG columns, 12-1

DROP MODULE, 2-41
obsoleting programs, 1-21
updating programs, 1-20

dynamic command, 10-1
passing to ALLBASE/SQL, 10-5

dynamic commands, 1-20
and authorization, 1-6

dynamic FETCH command
used with LONG columns, 12-10

dynamic operations, 6-1
dynamic commands, 10-2
overview, 6-22
queries, using C, Pascal routines, 10-6
techniques, 10-1

dynamic preprocessing, 10-2
authorization for, 10-2

E

embedding commands
continuation lines, 3-10
introduction, 1-3
pre�x, 1-3
su�x, 1-3

embedding SQL commands, 1-2, 3-1
comments, 3-9
general rules, 3-8
punctuation, 3-9

END DECLARE SECTION, 3-8
declaring host variables, 4-6

END-EXEC, 3-8
error checking
changes for this release, 11-1

example COBOL copy �le, 2-28
using sqlerrd[2], 11-1
with row level integrity, 11-1
with statement level integrity, 11-1

error messages, 3-16
example
BULK SELECT command with

ADD MONTHS function, 13-11
BULK SELECT command with LONG

columns, 12-10
DELETE command with TO DATETIME

function, 13-7
FETCH command with TO INTEGER

function, 13-10
INSERT command with TO DATE function

, 13-5
INSERT command with TO DATETIME

function, 13-5
INSERT command with TO INTERVAL

function, 13-5
INSERT command with TO TIME function,

13-5
LONG column descriptor declaration, 12-8
SELECT command with TO CHAR function,

13-8
SELECT command with TO DATETIME

function, 13-7, 13-8
SELECT command with TO INTERVAL

function, 13-7
UPDATE command with TO DATE function,

13-6
UPDATE command with TO DATETIME

function, 13-6
example application design
using integrity constraints, 11-3

example COBOL copy �le
for error checking, 2-28

example data �le
BULK INSERT command with LONG

columns, 12-6
example program
date/time data conversion, 13-29
using date/time functions, 13-12

example programs
date/time data conversion, 13-28
date/time functions, 13-12

examples of date/time input functions, 13-4
examples of date/time output functions, 13-8,

13-10
EXEC SQL, 3-8
EXECUTE, 6-22
non-dynamic queries, 10-12
using, 10-21

EXECUTE IMMEDIATE, 6-22
using, 10-15

Index-4



executing programs, 1-18
explicit status checking
de�ned, 5-1
introduction, 3-15, 5-12
uses of, 5-23

expression, 6-4

F

FETCH, 6-13
and null values, 8-4
cursor processing, 8-3

FETCH command
used dynamically with LONG columns, 12-10
used with LONG columns, 12-7
with TO INTEGER function, 13-10

�le
Database Environment Con�guration, 1-7
DBECon, 1-7

�le IO
KEEP CURSOR, 8-15

�le name
fully quali�ed, 1-7
relative, 1-7

FLOAT data
host variables and, 4-9

FLOAT data declaration, 4-9
oating point data
4-byte, 4-9
8-byte, 4-9
column speci�cations, 4-9
compatibility, 4-9
REAL keyword, 4-9

FOR UPDATE OF
UPDATE WHERE CURRENT, 8-2, 8-5

FROM clause, 6-2
fully quali�ed �le name, 1-7

G

GOTO vs. GO TO, 5-13
GRANT, 1-17
GROUP BY clause, 6-3

H

heap space input and output, 12-6
host variables
and data manipulation, 3-15
and modi�ed source code, 1-12
bulk processing, 4-5
declaring, 3-11, 4-6
declaring for savepoints, 4-26
for dynamic commands, 4-24
for messages, 4-24
for savepoint numbers, 4-24
in arrays, 4-24

in data types, 4-8
indicator, 4-3
initialization, 4-3
input, 4-3
names, 4-2
output, 4-3
overview, 3-11
purpose, 4-1
used for binary data, 4-11
used for LONG column I/O strings, 12-6
used with date/time functions, 13-2
uses, 4-1

I

IF statement in COBOL
use of NOMIXED reserved word, 2-30

implicit status checking
de�ned, 5-1
introduction, 3-13
usage, 5-12

$INCLUDE
compiler directive, 2-15

INCLUDE, 3-8
include �les
contents of, 2-25
creation, 1-2

index scan, 6-13
indicator variables, 4-3
declaring, 4-24
location of, 4-3
null, 4-3
null values, 8-4
truncation, 4-3

input device speci�cation
de�nition, 12-5

INSERT
and null values in unnamed columns, 7-4
and simple data manipulation, 7-4

INSERT command
used with LONG columns, 12-6
using host variables for LONG column I/O

strings, 12-6
with LONG columns:example data �le, 12-6
with TO DATE function, 13-5
with TO DATETIME function, 13-5
with TO INTERVAL function, 13-5
with TO TIME function, 13-5

INSTALL, 1-17, 1-20, 2-34
INTEGER data, 4-9
integrity constraint de�nition, 11-2
integrity constraints
and statement level integrity, 11-3
commands used with, 11-2
constraint test matrix, 11-3
designing an application, 11-3

Index-5



example application using RecDB database,
11-3

in RecDB database, 11-3
introduction to, 11-1
restrictions, 11-2
unique and referential, 11-2

J

job mode, 2-49
join condition, 6-5
joining tables, 6-5
join variable, 6-7

K

KEEP CURSOR
DECLAREing for UPDATE, 8-10
example code, 8-16
�le IO, 8-15
terminal IO, 8-15

KEEP CURSOR WITH NOLOCKS command
use with OPEN command , 8-3, 8-10

L

language
current language, 1-8
native language support, 1-8, 2-31

linker, 1-15
separate linked objects, 1-5

locking
and cursors, 6-13
table level, 6-13

logging, 2-42
LONG binary data
compatibility, 4-11
de�nition, 4-11
how stored, 4-11

LONG binary versus LONG varbinary data
usage, 4-11

LONG column de�nition
in a table, 12-4
input and output speci�cation , 12-5
with the LONG column I/O string, 12-5

LONG column descriptor
contents of, 12-7
example declaration, 12-8
general concept, 12-2
how used, 12-7
introduction to, 12-5

LONG column I/O string
general concept, 12-2
heap space input and output, 12-6
how used , 12-5
input device speci�cation, 12-5
output device speci�cation, 12-5

used with host variable, 12-6
used with INSERT command, 12-6

LONG columns
changing data, 12-11
coding considerations, 12-11
commands used with, 12-1
considering multiple users, 12-12
data types used with, 12-2
deciding on space allocation, 12-12
deleting data, 12-11
�le usage from an application, 12-5
general concepts, 12-2
input options, 12-5
introduction to, 12-1
maximum per table de�nition, 12-4
output options, 12-5
performance, 12-4
putting data in, 12-6
restrictions, 12-4
retrieving data from, 12-7
size maximum, 12-2
specifying a DBEFileSet, 12-4
storage, 12-4
storing and retrieving data, 12-2
used with [BULK] INSERT command, 12-6
used with [BULK] SELECT command, 12-7
used with DELETE [WHERE CURRENT]

command, 12-11
used with dynamic FETCH command, 12-10
used with FETCH or REFETCH commands,

12-7
used with UPDATE [WHERE CURRENT]

command, 12-11
using �le naming conventions, 12-12
using �le versus heap space, 12-11
using the LONG column descriptor, 12-7

LONG phrase
used with binary data, 4-11
used with varbinary data, 4-11

LONG varbinary data
compatibility, 4-11
de�nition, 4-11
how stored, 4-11

M

maintaining ALLBASE/SQL programs, 1-20
ManufDB database
examples using date/time functions, 13-4,

13-8, 13-11
program using date/time functions, 13-12

message catalog, 1-18, 2-4
and SQLEXPLAIN, 3-16
defaults, 2-31
introduction, 1-18

message catalog number

Index-6



related to SQLCODE, 5-6
messages from SQLEXPLAIN
when produced, 5-7

modi�ed source
creation, 1-2
inserted statements, 1-10
sample, 5-22

modi�ed source �le, 2-4, 2-15
module
creation, 1-12
DBE�leset, 2-35
de�nition, 1-2
installation, 1-17
name, 1-12, 2-35, 2-41
owner, 1-6, 2-35, 2-41
ownership, 1-17
storage, 10-2
updating, 1-20

multiple rows
not allowed in simple data manipulation, 7-2

multiple rows qualify
runtime error, 7-2

multiple users of LONG columns, 12-12
multiple warnings
SQLEXPLAIN, 5-9

N

name quali�cation, 6-5
naming conventions for LONG column �les,

12-12
NATIVE-3000
de�ned, 1-8

native language
current language, 1-8
defaults, 1-8

native language support, 1-8
message catalog, 2-31
SQLMSG, 2-31

NOLIST reserved word
used with COBOL COPY �les, 2-28

NOMIXED reserved word
used with COBOL SET and IF statements ,

2-30
non-dynamic commands, 10-1
NULL
as default data value, 4-16

null predicate, 6-3
NULL result of a dynamic fetch of a LONG

column, 12-10
null value
in key column of unique index, 7-3

null values
and unnamed columns in an INSERT, 7-4
indicator variables mandatory, 8-4
in groups, 6-4

in UPDATE, 7-6
properties of, 4-4
runtime errors, 4-4
using indicator variables with, 7-6
with FETCH, 4-4, 8-4
with SELECT, 4-4

number of rows processed
data integrity, 11-1

NumberOfRows variable
usage, 9-2

O

odd-byte columns, 4-14
OPEN, 6-13
cursor processing, 8-3

OPEN command
use with KEEP CURSOR WITH NOLOCKS

command, 8-3, 8-10
optimization, 1-14
ORDER BY clause, 6-3
output device speci�cation
de�nition, 12-5

output �le
attributes, 2-15
preprocessor, 2-15

overow, 4-17
OWNER
authority, 1-17

OWNER authority, 1-6

P

padding of DECIMAL values, 4-14
Pascal subprogram COBOL calls, 10-9, 10-11
passing SQLCA, 5-5
performance
integrity constraints, 11-1
LONG columns, 12-4

permanent section
and DBEnvironment, 10-2

precision, 4-9
predicates, 6-3
pre�x, 3-8
PREPARE
non-dynamic queries, 10-12
using, 10-21

preprocessing
directives, 1-2

preprocessor
access to DBEnvironment, 1-5
and authorization, 1-6
and DBE sessions, 1-12
e�ect on source code, 1-10
events, 1-2, 1-9
input, 2-4

Index-7



invoking, 2-39
job mode, 2-49
logging, 2-42
modes, 2-3
modi�ed source �le, 2-4
modifying output of, 1-12
output, 2-4, 2-15
transactions, 1-12
UDC's, 2-43
vs. COBOL preprocessor, 1-9

preprocessor directive
DECLARE CURSOR, 8-3

PROCEDURE DIVISION, 3-1
program
compiling and linking, 1-2, 1-15
creation steps, 1-1
date/time data conversion, 13-29
execution, 1-16, 1-18
maintenance, 1-20
obsolescence, 1-21
starting DBE session, 1-6
user authorization, 1-18

programs
date/time functions, 13-12

program structure, 1-3
punctuation, 3-9
PurchDB database
date/time conversion example programs, 13-28

Q

query result, 6-2, 6-12

R

REAL keyword
oating point data, 4-9

RecDB database application design
example maintenance menu, 11-4
example of deleting data, 11-7
example of error checking, 11-4
example of inserting data, 11-5
example of updating data, 11-6
integrity constraints de�ned, 11-3

REFETCH command
used with LONG columns, 12-7

relative �le name, 1-7
RELEASE
introduction, 3-13
without ending transaction, 5-9

REPLACING clause
used with COBOL COPY Statement, 2-27

restrictions
integrity constraints, 11-2
LONG columns, 12-4

retrieving LONG column data

with SELECT, FETCH, or REFETCH
commands, 12-7

REVOKE, 1-21
robust program
de�ned, 5-2

ROLLBACK WORK
de�ning transactions, 3-12
to ensure data consistency, 7-10

row level integrity
de�nition, 11-1

RUN authority, 1-6
with START DBE, 3-12

running the preprocessor, 2-39
run-time
de�ning SQL commands at, 10-12

runtime
authorization, 1-6
events, 1-19

runtime errors, 5-2
bulk processing, 4-5
multiple rows qualify, 7-2
null values, 4-4

runtime status checking
possible errors, 5-1
status codes, 5-1

runtime warnings, 5-2

S

sample database
data consistency, 5-2

sample program
COBEX10A, 10-15
COBEX10B, 10-21
COBEX2, 2-8, 3-2
COBEX5, 5-16
COBEX7, 7-19
COBEX8, 8-33
COBEX9, 9-20
simple data manipulation, 7-11

scale, 4-9
section
commands requiring, 1-13
creation, 1-12
dynamic vs. non-dynamic, 10-2
permanently stored, 10-2
purpose, 1-14
temorarily stored, 10-2
temporary, 10-12
validity, 1-14

segmenter, 1-15
SELECT, 6-2
and simple data manipulation, 7-1
DECLARE CURSOR, 8-2

SELECT command
used with LONG columns, 12-7, 12-10

Index-8



with TO CHAR function, 13-8
with TO DATETIME function, 13-7, 13-8
with TO INTERVAL function, 13-7

select list, 6-2
SELECT with CURSOR
input host variables only, 8-2

self-joins, 6-6
sequential table processing, 6-1
overview, 6-17

serial scan, 6-13
SET and statements in COBOL
where used, 2-30

shared memory problem
status checking, 5-27

simple data manipulation
commands, 7-1
DELETE, 7-7
INSERT, 7-4
multiple rows not allowed, 7-2
overview, 6-10
sample program, 7-11
SELECT, 7-1
techniques, 7-1
transaction management, 7-7
UPDATE, 7-5

size maximum
LONG columns, 12-2

slack byte
odd byte columns, 4-14

SMALLINT data, 4-9
space allocation for LONG column data, 12-12
sqlca
declaring, 4-24

SQLCA
declaring, 3-11
elements of, 5-4
in subprograms, 5-5
overview, 3-11
purpose, 5-5

SQLCODE, 5-32, 5-33
and SQLWARN6, 5-6
a negative number, 5-6
deadlock detected, 5-27
introduction, 5-5
multiple messages, 5-6
multiple SQLCODEs, 5-6
of 0, 5-6
of 100, 5-6
of -14024, 5-11, 5-27
related to message catalog number, 5-6
SQLEXPLAIN, 5-7
usage, 5-6

SQLCODE of -10002, 7-2
SQLCODE of -4008, 5-11
SQL commands

and data manipulation, 6-2
de�ning at run time, 10-12
delimiting, 1-5
embedding, 3-1
for data de�nition, 3-14
for data manipulation, 3-14
length, 3-8
length of, 3-8
location, 1-5, 3-8
pre�x, 3-8
su�x, 3-8
use of, 1-2

SQLCONST, 2-25
$SQL COPY
COBOL compiler directive, 2-27

sqlerrd[2]
error checking, 11-1

SQLERRD(3)
introduction, 5-5
usage, 5-8
uses for, 5-27

SQLEXPLAIN
introduction, 1-18, 5-1
multiple messages, 5-1
multiple warnings, 5-9
no message for SQLCODE=100, 5-7
overview, 3-16
simultaneous warning and error, 5-9
SQLCODE, 5-7
SQLWARN0, 5-9
using, 5-7
when messages are available, 5-12

SQLIN, 2-7
SQLMOD, 2-34
SQLMSG
defaults, 2-31

$SQL NOCOPY
COBOL compiler directive, 2-27

SQLOUT, 2-15
SQLVAR, 2-25
SQLWARN0
introduction, 5-5
SQLEXPLAIN, 5-9
usage, 5-9

SQLWARN1
introduction, 5-5
string data truncation, 4-22
usage, 5-10

SQLWARN2
introduction, 5-5
usage, 5-10

SQLWARN6, 5-11
introduction, 5-5
transaction rollback, 5-11
usage, 5-11

Index-9



START DBE, 3-12
StartIndex variable
usage, 9-2

statement level integrity
and integrity constraints, 11-3

status checking
deadlock, 5-27
explicit, 3-15, 5-23
explicit de�ned, 5-1
implicit, 3-13, 5-12
implicit de�ned, 5-1
information available, 5-1
introduction to explicit, 5-12
kinds of, 5-12
procedures, 5-15, 5-23
purposes of, 5-2
runtime techniques, 5-2
shared memory problem, 5-27

status codes
runtime status checking, 5-1

storage
LONG columns, 12-4

stored sections, 2-35
string data truncation
SQLWARN1, 4-22

subprograms
COBOL, 2-1
C subprogram COBOL calls, 10-7
Pascal subprogram COBOL calls, 10-9
SQLCA declaration, 5-5

su�x, 3-8
syntax for date/time functions
ADD MONTHS, 13-11
input functions, 13-3
output functions, 13-8
TO CHAR, 13-8
TO DATE, 13-3
TO DATETIME, 13-3
TO INTEGER, 13-8
TO INTERVAL, 13-3
TO TIME, 13-3

syntax for LONG columns
ALTER TABLE command, 12-4
CREATE TABLE command, 12-4
select list, 12-7

system catalog, 1-12

T

temporary �les, 2-15
temporary section, 10-12
terminal IO
KEEP CURSOR, 8-15

TID function, 13-1, 13-38
TO CHAR function
example with SELECT command, 13-8

syntax, 13-8
TO DATE function
example with INSERT command, 13-5
example with UPDATE command, 13-6
syntax, 13-3

TO DATETIME function
example with DELETE command, 13-7
example with INSERT command, 13-5
example with SELECT command, 13-7, 13-8
example with UPDATE command, 13-6
syntax, 13-3

TO INTEGER function
example with FETCH command, 13-10
syntax, 13-8

TO INTERVAL function
example with INSERT command, 13-5
example with SELECT command, 13-7
syntax, 13-3

TO TIME function
example with INSERT command, 13-5
syntax, 13-3

transaction management, 5-11
automatic, 3-12
cursor processing, 8-8
overview, 3-12
simple data manipulation, 7-7

truncation, 4-17
detecting in strings, 4-4

type
compatibility, 4-17

U

UDC's
PCOB, 2-43
PPCOB, 2-44
preprocess, 2-43
preprocess, compile, link, 2-44

unique index, 7-3
UPDATE
and simple data manipulation, 7-5

UPDATE and FETCH
cursor processing, 8-6

UPDATE command
used with LONG columns, 12-11
used with TO DATE function, 13-6
used with TO DATETIME function, 13-6

UPDATE WHERE CURRENT, 6-13
FOR UPDATE OF, 8-2, 8-5
restrictions, 8-4
syntax, 8-5

UPDATE WHERE CURRENT command
used with LONG columns, 12-11

updating application programs, 1-20
USER
as default data value, 4-16

Index-10



using default data values
introduction to, 4-16

using host variables, 4-28
using indicator variables
assigning null values, 7-6

V

validation, 1-14
varbinary data
using the LONG phrase with, 4-11

VARCHAR data, 4-8
views
and DELETE, 6-9
and SELECT, 6-8
and UPDATE, 6-9
restrictions, 6-9, 6-14

W

warning message
and SQLCODE, 5-9
and SQLWARN0, 5-9
and SQLWARN1, 5-9
SQLWARN2, 5-10

warning messages, 2-33, 3-16
warnings
runtime handling, 5-2

WHENEVER
components of, 5-12
duration of command, 5-7
for di�erent conditions, 5-13
introduction to, 3-13, 3-16
transaction roll back, 5-13

when starting DBE session, 3-12

Index-11




	Contents
	Getting Started with ALLBASE/SQL Programming in COBOL
	ALLBASE/SQL COBOL Programs
	Native Language Support
	The ALLBASE/SQL COBOL Preprocessor
	The Stored Section
	The Compiler and the Linker
	ALLBASE/SQL Program Execution
	Maintaining ALLBASE/SQL Programs

	Using the ALLBASE/SQL COBOL Preprocessor
	The Preprocessor and Application Development
	Preprocessor Modes
	Preprocessor Input and Output
	Installable Module File

	Invoking the COBOL Preprocessor
	Using the Preprocessor UDC's
	Running the Preprocessor in Job Mode
	Preprocessing Errors

	Embedding SQL Commands
	General Rules for Embedding SQL
	Declaring the SQLCA
	Starting a DBE Session
	Defining Transactions
	Implicit Status Checking
	Terminating a DBE Session
	Defining and Manipulating Data
	Explicit Status Checking
	Obtaining ALLBASE/SQL Messages

	Host Variables
	Using Host Variables
	Declaring Host Variables

	Runtime Status Checking and the SQLCA
	Purposes of Status Checking
	Using the SQLCA
	Approaches to Status Checking

	Overview Of Data Manipulation
	The Query
	Selecting from Multiple Tables
	Selecting Using Views

	Simple Data Manipulation
	Introducing The Cursor
	Sequential Table Processing
	BULK Table Processing
	Dynamic Operations

	Simple Data Manipulation
	SQL Commands
	Transaction Management
	Sample Program COBEX7 Using Simple DML Commands

	Processing with Cursors
	SQL Cursor Commands
	DECLARE CURSOR
	OPEN
	FETCH
	UPDATE WHERE CURRENT
	DELETE WHERE CURRENT
	CLOSE

	Transaction Management for Cursor Operations
	Using KEEP CURSOR
	Examples
	Program Using UPDATE WHERE CURRENT

	Bulk Table Processing
	Variables Used in BULK Processing
	SQL Bulk Commands
	BULK FETCH
	BULK INSERT

	Transaction Management for BULK Operations
	Sample Program Using BULK Processing

	Using Dynamic Operations
	Review of Preprocessing Events
	Differences between Dynamic and Non-Dynamic Preprocessing
	Passing Dynamic Commands to ALLBASE/SQL
	Understanding the Types of Dynamic Operations
	Preprocessing of Dynamic Queries with C or Pascal Routines
	Preprocessing of Dynamic Non-Queries

	Programming With Constraints
	Comparing Statement Level and Row Level Integrity
	Using Unique and Referential Integrity Constraints
	Designing an Application Using Statement Level Integrity Checks

	Programming with LONG Columns
	General Concepts
	Restrictions
	Defining LONG Columns with a CREATE TABLE or ALTER TABLE Command
	Defining Input and Output with the LONG Column I/O String
	Putting Data into a LONG Column with a INSERT Command
	Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH Command
	Changing a LONG Column with an UPDATE [WHERE CURRENT] Command
	Removing LONG Column Data with a DELETE [WHERE CURRENT] Command

	Programming with ALLBASE/SQL Functions
	Programming with Date/Time Functions
	Using Date/Time Output Functions
	Using the Date/Time ADD MONTHS Function

	Program Examples for Date/Time Data
	Programming with TID Data Access
	Transaction Management with TID Access

	Index

