
System Debug Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 4
Manufacturing Part Number: 32650-90901
E0201

U.S.A. February 2001

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1992, 2000, 2001 by Hewlett-Packard Company
2

Contents
1. INTRODUCTION
What Is Debug? . 18

2. User Interface
Command Line Overview. 21
Data Types . 23
Literals . 28
Operators . 29
Expressions. 37
Operator Precedence . 38
Variables . 39
Environment Variables . 40
Predefined Functions . 40
Macros. 40
Procedure Name: Symbols . 41
Operand Lookup Precedence . 43
Command Line Substitutions . 44
Aliases . 46
Command Lookup Precedence. 46
Error Handling . 46
Control-Y. 48
Command History, REDO . 48
Debug Input/Output: The System Console . 48
Automatic DBUGINIT Files . 49

3. System Debug Interface Commands and Intrinsics
Debug Interfaces . 51
Debug Command and Intrinsic Descriptions . 55
:DEBUG Command . 55
:RESETDUMP Command . 56
:SETDUMP Command . 57
DEBUG Intrinsic . 58
HPDEBUG Intrinsic . 59
HPRESETDUMP Intrinsic . 61
HPSETDUMP Intrinsic . 62
RESETDUMP Intrinsic . 64
SETDUMP Intrinsic. 64
STACKDUMP Intrinsic . 66
STACKDUMP' Intrinsic. 69

4. System Debug Command Specifications :-Exit
: . 72
3

Contents
= .73
ABORT .75
ALIAS. .75
ALIASD[EL]. .77
ALIASINIT. .79
ALIASL[IST] .80
B (break). .82
BD. .92
BL .95
CLOSEDUMP .97
CM .98
CMDL[IST] .98
CMG .102
C[ONTINUE] .103
D (display) .104
DATAB .111
DATABD. .113
DATABL. .115
DEBUG .116
DELETExxx .117
DEMO. .117
DIS .118
DO. .121
DPIB. .122
DPTREE. .122
DR. .123
DUMPINFO .129
ENV .131
ENVL[IST] .156
ERR .158
ERRD[EL] .159
ERRL[IST] .159
E[XIT]. .161

5. System Debug Command Specifications Fx-LOG
Fx (format) .164
Fmm (freeze) .168
FINDPROC .171
FOREACH .172
FPMAP. .174
FUNCL[IST] .174
GETDUMP. .176
4

Contents
H[ELP] . 179
HIST[ORY] . 182
IF . 183
IGNORE . 184
INITxx. 185
KILL . 187
LEV . 188
LIST . 190
LISTREDO . 191
LOADINFO. 191
LOADPROC . 193
LOC . 193
LOCL[IST] . 195
LOG. 196

6. System Debug Command Specifications M-X
M (modify). 200
MAC[RO]. 204
MACD[EL] . 211
MACECHO . 212
MACL[IST] . 215
MACREF. 222
MACTRACE . 225
MAP. 227
MAPL[IST] . 229
MODD . 230
MODL . 230
MPSW . 232
MR. 233
NM. 239
OPENDUMP. 240
PAUSE . 241
PIN . 241
PROCLIST . 242
PSEUDOMAP. 247
PURGEDUMP . 250
REDO . 251
REGLIST . 252
RESTORE . 252
RET[URN] . 253
SET . 254
SETxxx . 257
5

Contents
SHOWxxx. .257
S, SS .257
STORE .258
SYMCLOSE .259
SYMF[ILES] .260
SYMINFO .260
SYML[IST] .262
SYMOPEN .263
SYMPREP .264
T (translate) .265
TERM .268
TR[ACE] .269
TRAP .274
UF. .278
UNMAP .281
UPD .282
USE .282
VAR. .284
VARD[EL] .286
VARL[IST] .287
W (write). .288
WHELP .293
WHILE .294
XL .294
XLD .295
XLL. .295

7. Symbolic Formatting Symbolic Access
Creating and Accessing Symbol Definitions .299
The Path Specification. .301
Using the Symbolic Formatter .303
Using Symbolic Access .308

8. System Debug Windows
A Typical Screen Display of CM Windows .310
A Typical Screen Display of NM Windows. .311
Window Operations .311
Window Updates .312
Window Real/Virtual Modes .313
R - The CM Register Window .313
Gr - The NM General Registers Window .314
Sr - The NM Special Registers Window .314
6

Contents
P (cmP) - The CM Program Window . 315
P (nmP) - The NM Program Window . 316
Program Windows for Object Code Translation . 317
Q - The CM Stack Frame Window. 318
S - The CM Stack Window . 319
G - The Group (of User) Window . 320
The Command Window . 320
U - The User Windows . 321
V - The Virtual Windows . 321
Z - The Memory Window . 322
L - The LDEV Window . 322
TX- The Text Windows . 323

9. System Debug Window Commands
RED. 327
WDEF . 327
WGRP . 328
WOFF . 328
WON . 329
wB . 329
wC . 331
wD . 331
wE . 332
wF . 333
wH . 335
wI. 336
wJ . 337
wK . 341
wL . 342
wM. 344
wN . 345
wR . 345
wS . 346
UWm . 347
wW. 349

10. System Debug Standard Functions
func abstolog . 355
func asc . 356
func ascc . 361
func bin . 362
func bitd . 362
7

Contents
func bitx .364
func bool .365
func bound .366
func btow .368
func cisetvar. .369
func civar .370
func cmaddr .371
func cmbpaddr .372
func cmbpindex .373
func cmbpinstr .374
func cmentry .375
func cmg .377
func cmnode .378
func cmproc .379
func cmproclen .382
func cmseg .384
func cmstackbase .385
func cmstackdst .386
func cmstacklimit .386
func cmstart .387
func cmtonmnode. .389
func cmva .390
func cst .391
func cstx .393
func dstva. .394
func eaddr .395
func errmsg .396
func grp .397
func hash .399
func lgrp .400
func logtoabs .401
func lptr .402
func lpub. .404
func ltolog. .405
func ltos .407
func macbody .408
func mapindex .408
func mapsize .409
func mapva. .410
func nmaddr. .410
func nmbpaddr. .413
func nmbpindex .414
8

Contents
func nmbpinstr . 415
func nmcall . 417
func nmentry . 418
func nmfile . 419
func nmmod . 420
func nmnode . 421
func nmpath . 422
func nmproc . 424
func nmstackbase . 425
func nmstacklimit. 426
func nmtocmnode . 426
func off. 427
func pcb . 428
func pcbx . 429
func phystolog. 429
func pib . 430
func pibx . 431
func prog . 431
func pstate . 433
func pub . 434
func rtov . 436
func s16 . 436
func s32 . 438
func s64 . 439
func saddr . 440
func sid . 442
func sptr . 443
func stol. 444
func stolog . 445
func str . 446
func strapp . 447
func strdel . 448
func strdown . 449
func strextract . 450
func strinput . 451
func strins . 451
func strlen . 452
func strltrim . 453
func strmax. 453
func strpos. 454
func strrpt . 455
func strrtrim . 456
9

Contents
func strup .457
func strwrite. .457
func symaddr .461
func symconst. .462
func syminset .463
func symlen .464
func symtype .466
func symval .467
func sys. .468
func tcb .470
func trans .471
func typeof .472
func u16 .474
func u32 .476
func user. .477
func vainfo .479
func vtor .480
func vtos .481

11. System Debug Standard Functions
func civar .487
func strrtrim .489
func strwrite. .489
func symaddr .493
func symconst. .494
func syminset .496
func symlen .497
func symtype .498
func symval .500
func sys. .502
func tcb .504
func trans .505
func typeof .506
func u16 .508
func u32 .510
func user. .511
func vainfo .513
func vtor .515

12. Dump Analysis Tool (DAT)
How DAT Works .517
Operating DAT. .517
10

Contents
The DAT Macros. 520

13. Standalone Analysis Tool (SAT)
How SAT Works . 525
Operating SAT . 525
Operating Restrictions . 527
SAT Functions and Commands . 529
Literal Expressions (Match Exactly These Characters) . 531
Metacharacters . 531
Character Classes (Match Any One of the Following Characters) . 532
Expression Closure (Match Zero or More of the Previous Expressions) 532
Technical Summary . 533
Debugging Emulated CM Code . 538
Object Code Translation . 539
Node Points in Translated Code . 540
Executing a Translated Section. 541
The Node Functions . 542
CM Breakpoints in Translated Code. 543
NM Breakpoints in Translated Code . 544
Examples: CM Breakpoints in Translated Code . 545
Examples: Program Windows for Translated Code . 546
11

Contents
12

Tables
Table 2-1.. Type Table . 27
Table 2-2.. Long Pointers . 27
Table 2-3.. Operators . 30
Table 2-4.. Indirection Operator Syntax. 34
Table 2-5.. Indirection Operator Examples . 36
Table 2-6.. Operator Precedence . 38
Table 4-1.. General Registers . 124
Table 4-2.. Psuedo-Registers . 125
Table 4-3.. Space Registers . 125
Table 4-4.. Control Registers. 126
Table 4-5.. Floating Point Registers . 127
Table 4-6.. NM Control Registers . 138
Table 6-1.. General Registers . 235
Table 6-2.. Pseudo Registers . 235
Table 6-3.. Space Registers . 236
Table 6-4.. Control Registers. 236
Table 6-5.. Floating Point Registers . 237
Table 6-6.. Fixed Field Widths . 290
Table 7-1.. Symbolic Functions Available . 308
Table 9-1.. Default Scrolling Parameters . 330
Table 9-2.. Scrolling Amount. 334
Table 10-1.. Length of Coerced Strings . 361
Table 10-2.. Derivation of the CST Bit Pattern . 392
Table 10-3.. Derivation of the CSTX Bit Pattern. 393
Table 10-4.. Derivation of the EADDR Bit Pattern . 395
Table 10-5.. Derivation of the GRP Bit Pattern. 398
Table 10-6.. Derivation of the LGRP Bit Pattern. 400
Table 10-7.. Derivation of the LPTR Bit Pattern. 403
Table 10-8.. Derivation of the LPUB Bit Pattern . 404
Table 10-9.. Derivation of PROG LGRP Bit Pattern . 432
Table 10-10.. Derivation of the PUB Bit Pattern. 434
Table 10-11.. Derivation of the S16 Bit Pattern . 437
Table 10-12.. Derivation of the S32 Bit Pattern . 438
Table 10-13.. Derivation of the S64 Bit Pattern . 440
Table 10-14.. Derivation of the EADDR Bit Pattern . 441
Table 10-15.. Derivation of the SPTR Bit Pattern . 443
Table 10-16.. Derivation of the SYS Bit Pattern . 469
Table 10-17.. Derivation of the TRANS Bit Pattern . 471
Table 10-18.. Derivation of the U16 Bit Pattern . 474
13

Tables
Table 10-19.. Derivation of the U32 Bit Pattern. 476
Table 10-20.. Derivation of the USER Bit Pattern . 478
Table 11-1.. Derivation of the SYS Bit Pattern. 502
Table 11-2.. Derivation of the TRANS Bit Pattern. 505
Table 11-3.. Derivation of the U16 Bit Pattern. 508
Table 11-4.. Derivation of the U32 Bit Pattern. 510
Table 11-5.. Derivation of the USER Bit Pattern . 512
Table D-1.. Predefined Environment Variables and Functions . 547
14

Preface
The System Debug Reference Manual is written for the experienced programmer. It is a
reference manual that provides information about System Debug. System Debug provides
a family of low-level assembly language debugging tools for MPE/iX (for both Native and
Compatibility Mode code):

• Debug

• Dump Analysis Tool (DAT)

• Standalone Analysis Tool (SAT)

A certain level of knowledge is required to utilize System Debug. Specifically, familiarity
with assembly code, procedure calling conventions, parameter passing conventions, and
HP 3000 and HP Precision Architecture is assumed.

This manual is organized into the following chapters and appendices:

Chapter 1 Introduction contains an introductory overview of System Debug
features and describes how to get started with the debugger.

Chapter 2 User Interface describes the common user interface supported by System
Debug. This chapter describes expressions, types, operators, operands,
functions, variable macros, error handling, regular expressions, the history
stack, and Control-Y handling.

Chapter 3 System Debug Interfaces Commands & Intrinsics describes the
commands and intrinsics (both CM and NM) that enable you to invoke
System Debug either interactively or programmatically.

Chapter 4 System Debug Command Specifications lists the System Debug
commands in alphabetic order, complete with full syntax, parameter
descriptions, and examples of use.

Chapter 5 Symbolic Formatting Symbolic Access presents an overview of
symbolic formatting and symbolic access functions.

Chapter 6 System Debug Windows describes the System Debug screen windows.
Basic window operations are introduced, and a typical screen display is
presented. Each type of window is described, along with an explanation of
each field within the window.

Chapter 7 System Debug Window Commands lists the System Debug window
commands, broken into logical groups. The window commands are then
listed in alphabetical order, along with full syntax, parameter descriptions,
and examples of use.

Chapter 8 System Debug Standard Functions lists the predefined System Debug
functions in alphabetical order, complete with full syntax, parameter
descriptions, and examples of use.

Chapter 9 Dump Analysis Tool (DAT) contains information on the Dump Analysis
Tool (DAT).
15

Chapter 10 Standalone Analysis Tool (SAT) contains information on the
standalone Analysis Tool (SAT).

Appendix A Patterns and Regular Expressions presents pattern matching and
regular expressions.

Appendix B Expression Diagrams contains System Debug expression diagrams.

Appendix C Emulated/Translated CM Code describes CM Object Code Translation

Appendix D Reserved Variables/Functions contains a full summary of all reserved
variables and functions.

Appendix E System Debug Command Summary contains a full System Debug
command summary.
16

INTRODUCTION
1 INTRODUCTION

System Debug provides a family of low-level assembly language debugging tools for
MPE/iX:

• Debug

• Dump Analysis Tool (DAT)

• Standalone Analysis Tool (SAT)

A certain level of knowledge is required to utilize System Debug. Specifically, familiarity
with assembly code, procedure calling conventions, parameter passing conventions, and
HP 3000 and HP Precision Architecture is assumed. If you do not require the features
offered by an assembly language debugger, please be aware that two excellent source-level
symbolic debuggers are available from Hewlett-Packard: Symbolic Debug/XL and
Toolset/XL.
Chapter 1 17

INTRODUCTION
What Is Debug?
What Is Debug?
Debug provides non-privileged and privileged users with both interactive and
programmatic debugging facilities for examining their operating environments.

Debug enables you to do the following:

• Set, delete, and list breakpoints in a program. The program executes until a breakpoint
is reached, then stops and passes control to the user. When you set breakpoints, you can
specify a list of commands that automatically are executed when the breakpoint is hit.

• Single step (multiple steps) through a program.

• Display and/or modify the contents of memory locations. A full set of addressing modes
is offered, including absolute CM memory, code segment relative, data segment relative,
S relative, Q relative, DB relative, HP Precision Architecture virtual addresses, and HP
Precision Architecture real memory addresses.

• Display a symbolic procedure stack trace, optionally displaying interleaved NM and CM
calls. You can also set the current debug environment back temporarily to the
environment which existed at any marker on the stack.

• Calculate the value of expressions in order to determine the correct values of variables
at a given point in a program. Values can be custom formatted in several bases.

• Use new full screen displays (windows) which allow inspection of registers, program
code, the current stack frame, and the top of stack. Groups of custom user windows can
be aimed at important data blocks to monitor changing values dynamically.

• Display online help for all commands, predefined functions, and environment variables.

• Create and reference user-defined variables.

• Define powerful parameterized macros. Macros can be invoked as new commands to
perform useful sequences of commands, or as functions within expressions that return
single values.

• Define aliases for command and macro names.

• Execute commands from a file, record all user input to a log file, and record all Debug
output to a list file.

What Is the Dump Analysis Tool (DAT)?

The Dump Analysis Tool (DAT) aids support and lab personnel in analyzing MPE XL
system events such as process hangs, operating system failures, or hardware failures. This
tool is used primarily by Hewlett-Packard support personnel.

Refer to chapter 9 for detailed information regarding DAT.

What Is the Standalone Analysis Tool (SAT)?

The Standalone Analysis Tool (SAT) aids support and lab personnel in analyzing MPE XL
system events such as process hangs, operating system failures, and hardware failures.
18 Chapter 1

INTRODUCTION
What Is Debug?
Refer to chapter 10 for detailed information regarding SAT.

How to Debug

This chapter gives a very brief introduction to debugging. For additional information, refer
to the Programmer's Guide corresponding to the language compiler you are using. There
you will find details and examples specific to your language.

How to Debug a CM Program

Compile and, using the Segmenter, prepare your program file and optional library files.

In order to take full advantage of Debug's symbolic capabilities, you must ensure that your
program (and library) contain the necessary FPMAP symbolic records. This is easily
accomplished with the Segmenter as follows:

For program files, use the FPMAP option when you prepare your program:

 : PREP USLFILE, PROGFILE;FPMAP

For libraries, use the FPMAP option each time you add a segment to the library:

ADDSL SEG ; FPMAP

To debug your program, specify the Debug parameter in the RUN command:

 : RUN CMPROG.GRP.ACCT;LIB=G;DEBUG

The program file is loaded, and you break at the first instruction in your program, at the
main entry point.

Debug announces your arrival into the debugger. You are now ready to debug your
program (set breakpoints, define macros, turn on the windows, and so on). For example,

 : RUN CMPROG.GRP.ACCT;LIB=G;DEBUG
 CM DEBUG Intrinsic: PROG %0.22

 %cmdebug > won

How to Debug an NM Program

Compile and link your program file and any necessary libraries.

To Debug your program, specify the DEBUG parameter in the RUN command:

 : RUN NMPROG;DEBUG

The NM program file is loaded, and a temporary breakpoint is set at the external stub that
is linked to your program's main entry point.

When the program is launched into execution, the temporary breakpoint is hit, and you
immediately enter Debug (in NM mode). Debug announces your arrival and deletes the
temporary breakpoint.

To best observe the actual entrance (through the stub procedure) into your main program,
type WON to turn the windows on. Note that you are at a stub procedure, which is marked
with a question mark:

 > ?PROGRAM
Chapter 1 19

INTRODUCTION
What Is Debug?
 ?PROGRAM+0004 etc.

Single step a few times to advance the program through the stub and into the main body of
the program. In summary,

 : RUN NMPROG;DEBUG
 Break at: [0] PROG 31.00022e7c ?PROGRAM
 $nmdebug > won
 $nmdebug > s
 $nmdebug > s

You are now ready to debug your program (set breakpoints, define macros, turn on the
windows, and so forth).
20 Chapter 1

User Interface
Command Line Overview
2 User Interface

The System Debug user interface is command oriented. That is, all requests for System
Debug to perform some operation must be expressed as commands. Normally, commands
are read either from the standard input device ($STDIN) in the case of DAT, or from the
session LDEV using low-level I/O routines in the case of Debug. But commands may also
be read from command files, sometimes known as use files, stored on disk.

System Debug output is displayed in one of two ways. List output is typically written to the
user's terminal as a sequence of lines, but may also be automatically echoed to disk files,
interleaved with the interactive command input that generated it. System Debug also
offers a tiled window facility, which provides an interpretation of the machine state as well
as code and data memory areas. The windows are updated to reflect changes in the
displayed areas that occurred between commands.

This chapter discusses the various data types supported by System Debug and how values
of these types are created or accessed, manipulated, and stored. Other topics, such as error
handling, Control-Y startup processing, error handling, Control-Y management, and
debugging at the console, are also discussed.

For detailed information of the syntax, operation, and output of individual commands,
please refer to chapters 4, 5, and 6. Windows, and the commands that control them, are
explained in chapters 8 and 9.

Command Line Overview
System Debug displays a prompt when it is ready to accept a command interactively. The
standard prompt looks like this:

 $10 ($42) nmdebug >

The first number is the current command number. This is the number that is assigned to
the command entered at the prompt. Blank lines do not cause the command number to
increase. The number in parentheses is the process identification number (PIN) of the
current process. If Debug is entered from the CI, then this is the CI's PIN.

The dollar signs in front of the numbers indicate that the current output radix is
hexadecimal. Except for a few obvious exceptions, most numbers are displayed in the
current output base. The abbreviations for numeric radices are

 % - octal, # - decimal, $ - hexadecimal.

The nmdebug > part of the prompt is composed of two parts. The first, nm, indicates that
the current mode of System Debug is native mode. The other possibility is cm for
compatibility mode. The second part, debug , identifies the name of the tool being run.
Chapter 2 21

User Interface
Command Line Overview
Another possibility for this is dat .

The prompt can be changed with the ENV command as follows:

 $10 ($42) nmdebug > env prompt "mode ' > '"
 nm >

Command names can be entered in either upper- or lowercase and may be followed by
their parameters, separated from one another by either blanks or commas. The
specifications of individual commands may also describe special parameters that are also
accepted.

Comments can be entered on any command line, and are introduced by the sequence /* .
Everything on a command line after the /* is ignored:

 CMD1 parm1 /* this is a comment...

Long commands may be spread across several lines by using the command continuation
character "&". Command lines ending with this character are continued on the following
line. The special prompt cont > is used to indicate that command continuation is in
progress:

 $nmdebug > wl 'This is a long &
 cont > line broken into&
 cont > three parts.'
 This is a long line broken into three parts.
 $nmdebug >

The semicolon separates multiple commands entered on the same line:

 CMD1; CMD2; CMD3; ...

A command list can be formed by enclosing multiple commands within curly braces.
Command lists are syntactically single commands, and are frequently used as command
parameters:

 b myproc, 1,, {CMD1; CMD2; CMD3}

Unterminated command lists, which are introduced with a left curly brace, can be
continued on successive input lines without the use of the command continuation
character. The command prompt changes to indicate that a multiline command list is
being read, and it displays the current nesting level of the braces. When the final closing
right brace is encountered, the prompt changes back to the normal command line prompt:

 $nmdebug > if p1 > 0 then {
22 Chapter 2

User Interface
Data Types
 {$1} multi > wl "parm is:" p1;
 {$1} multi > var curbias = p1+bias}
 $nmdebug >

Data Types
Several data types are supported by System Debug. This section introduces each of the
types by giving the mnemonics by which they are known, along with a description of the
data which they represent.

Integer Types

Three sizes of signed and unsigned integers are supported:

S16 Signed 16-bit integer.

U16 Unsigned 16-bit integer.

S32 Signed 32-bit integer.

U32 Unsigned 32-bit integer.

S64 Signed 64-bit integer.

All of the signed types obey the properties of twos complement binary arithmetic. The type
S64 has not been fully implemented, and it supports only those values in the range
-2 52..2 52 - 1 . Other than this restriction, S64 values behave as if they consume 64 bits.

Boolean Type

Data of type BOOL may assume the values TRUE and FALSE. Integer values also are
generally accepted where BOOLs are called for, and when this occurs, zero (0) is taken to be
FALSE; all other values are TRUE.

String Types

The type STR is used to represent variable-length character (text) data. Strings quoted
with single and double quotes (' and ") represent literal text. But strings quoted with the
back-quote character (`) are sometimes interpreted as regular expressions, which are used
to match other text. Refer to appendix A for a discussion of how patterns and regular
expressions can be constructed for use in pattern matching.

Pointer Types

System Debug supports many different kinds of pointer types, but most are actually
variations of the same theme. Pointers come in two sizes, long and short, and both may be
interpreted quite differently depending on the current mode of System Debug.
Chapter 2 23

User Interface
Data Types
The most frequently used pointer types are long pointer (LPTR) and short pointer
(SPTR). An LPTR is simply a pair of 32-bit numbers separated by a dot, sometimes called a
dotted pair. What the two numbers actually mean is unspecified by the type. Instead, the
context in which the LPTR is used determines the meaning. An SPTR is just one 32-bit
number, and it is often thought of as being the low-order (rightmost) part of an LPTR. When
used in CM, both long and short pointer values are often range-checked to verify that they
fit within 16 bits.

The remaining pointer types are variations of long pointers (that is, they are all dotted
pairs). However, unlike LPTRs, they project an additional meaning on the dotted pair. Since
the interpretation of pointers is heavily dependent on the mode of System Debug, the rest
of this discussion deals with each mode individually.

Compatibility Mode Pointers

An LPTR in CM is usually a segment.offset . If a CM LPTR refers to data, then the
segment number is the DST number of the addressed data segment, and the offset is the
CM word offset from the beginning of the segment. If a CM LPTR refers to code, there are
many possible interpretations of the segment number, and without additional information
the LPTR is ambiguous. It is for this reason that the additional long pointer types exist.
Their purpose is to differentiate LPTRs. Most users who work with CM code are probably
familiar with the logical code segment numbers assigned by the Segmenter. The
Segmenter's -PREP command assigns logical code segment numbers to program file
segments, while the -ADDSL command assigns logical code segment numbers to SL file
segments. These segment numbers always begin with zero (0) in each program or SL file.
System Debug allows users to refer to loaded CM code using these logical code segment
numbers through use of the following logical code pointer types:

PROG Program file long pointer.

GRP Group library file long pointer.

PUB Public library file long pointer.

LGRP Logon group library file long pointer.

LPUB Logon public library file long pointer.

SYS System library file long pointer.

Logon group and public libraries are loaded only by the CM LOADPROC intrinsic.

The above long pointer subtypes are by far the preferred choice for specifying code
addresses. Since System Debug also displays CM code addresses logically, it usually is not
necessary to refer to CM code segments by the CST/CSTX segment numbers assigned to
them by the CM loader. However, low-level system debugging sometimes requires this
method of addressing, and it is supported by the following absolute code pointer types:

CST Absolute CST long pointer.

CSTX Absolute CSTX long pointer.

CM program segments are assigned numbers in the CSTX, while CM SL segments are
assigned numbers in the CST. CST and CSTX segment numbers start with 1. The
following illustration depicts the relationships between CM logical code segment numbers
and absolute ones.
24 Chapter 2

User Interface
Data Types
 Logical Absolute Absolute Logical
 System Library CST CSTX Program
 Segments Segments Segments Segments

 +-------+ +--------+ +--------+ +--------+
 | SYS 0 | -----> | CST 1 | | CSTX 1 | <----- | PROG 0 |
 | | | sys 0 | | prog 0 | | |
 +-------+ +--------+ +--------+ +--------+
 | SYS 1 | --+ | CST 2 | | CSTX 2 | <----- | PROG 1 |
 | | | | sys 5 | | prog 1 | | |
 +-------+ | +--------+ +--------+ +--------+
 | SYS 2 | | | CST 3 | | CSTX 3 | <----- | PROG 2 |
 | | | | sys 11 | | prog 2 | | |
 +-------+ | +--------+ +--------+ +--------+
 | | +--> | CST 4 | | CSTX 4 | <----- | PROG 3 |
 | | | sys 1 | | prog 3 | | |
 +-------+ +--------+ +--------+ +--------+
 | SYS n | | CST 5 |
 | | | |
 +-------+ +--------+
 | CST 6 |
 | |
 +--------+
 Logical | |
 Group Library | |
 Segments +--------+
 +--> | CST 74 |
 | | grp 0 |
 +-------+ | +--------+
 | GRP 0 | --+ | CST 75 | <-+
 | | | grp 3 | |
 +-------+ +--------+ |
 | GRP 1 | -----> | CST 76 | |
 | | | grp 1 | |
 +-------+ +--------+ |
 | GRP 2 | |
 | | |
 +-------+ |
 | GRP 3 | -----------------------+
 | |
 +-------+

Note that the following pairs specify the same segment:

 (logical) PROG 1 <--> CSTX 2 (absolute)
 (logical) SYS 1 <--> CST 4 (absolute)
 (logical) GRP 3 <--> CST 75 (absolute)
Chapter 2 25

User Interface
Data Types
Native Mode Pointers

An LPTR in NM is usually a sid.offset virtual address. As such, NM LPTRs are
unambiguous, even without some context of use. However, it is still useful to tag NM long
pointers to code by using a type that expresses the code's logical origin. Thus, the following
logical code pointer types are available for NM code addresses:

PROG Program file long pointer.

GRP Group library file long pointer.

PUB Public library file long pointer.

SYS System library file long pointer.

USER User library file long pointer.

TRANS Translated CM code long pointer.

Individual space IDs (SIDs) are assigned to each loaded NM program or library file by the
NM loader. These numbers should be expected to be different each time the files are
loaded. The LOADINFO command displays the relationships between loaded NM code files
and their assigned SIDs.

Note the following differences between CM and NM logical code pointers. First, the CM
types LGRP and LPUB do not exist for NM code, since addresses of this type are generated
only by the CM LOADPROC intrinsic. Next, the types USER and TRANS are specific to NM.
USERis a long pointer to a location in a user library file which was loaded by the XL= option
of the RUN command. Since more than one such user library may be loaded, the type USER
also includes the name of the user library file with which the long pointer is associated.
Finally, the type TRANSis used to refer to a location in NM code which was translated from
CM. Although the original CM code came from either a CM program file or one of the
group, PUB or SYS SL files, the type TRANS gives no information about which one. A
conversion function, NMTOCMNODE, can be used to convert NM TRANS addresses to CM
logical code pointers, which reveal the originating CM code locations. Refer to appendix C
for a discussion of CM object code translation node points and breakpoints in translated
CM code. Finally, the types CSTand CSTXdo not apply to NM code. The analogous NM type
is simply an NM LPTR.

Extended Address Types

The extended addres (EADDR) type is available for cases where the 32-bit offset part of a
long pointer isn't large enough. An EADDRis a dotted pair, where the offset part to the right
of the dot is 64 bits wide. An EADDRis effectively equivalent to an LPTRwhen it's offset part
is representable in 32 bits. The secondary address (SADDR) type is a special form of
EADDR, where the dotted pair is interpreted as a disk LDEV and disk byte offset. This is
currently the only instance where an extended address is necessary.

Type Classes

All of the elementary data types introduced above are organized into type classes. These
classes are particularly useful when defining parameters to functions and macros. By
declaring a parameter to be of a particular type class, all actual values passed are
automatically checked to be a member of the class.
26 Chapter 2

User Interface
Data Types
The type tables below give the names of the type classes and show which elementary types
belong to them.

Table 2-1. Type Table

Class Type

INT S16 Signed 16-bit integer.

INT U16 Unsigned 16-bit integer.

INT S32 Signed 32-bit integer.

INT U32 Unsigned 32-bit integer.

INT S64 Signed 64-bit integer.

BOOL BOOL Boolean.

STR STR Variable-length character string.

PTR SPTR Short pointer (offset).

PTR LONG Long pointer subclass. See table below.

EADDR EADDR Extended address.

EADDR SADDR Secondary address.

Table 2-2. Long Pointers

Class Type

LONG LPTR Long pointer

LONG CPTR Code pointers

LONG CPTR LCPTR Logical code pointers

LONG CPTR LCPTR PROG Program file

LONG CPTR LCPTR GRP Program group library

LONG CPTR LCPTR PUB Program account library

LONG CPTR LCPTR LGRP Logon group library

LONG CPTR LCPTR LPUB Logon account library

LONG CPTR LCPTR SYS System library: SL(CM),
NL(NM)

LONG CPTR LCPTR USER User library (NM)

LONG CPTR LCPTR TRANS Translated object code (NM)

LONG CPTR ACPTR Absolute Code Pointers

LONG CPTR ACPTR CST Absolute CST (CM only)

LONG CPTR ACPTR CSTX Absolute CSTX (CM only)
Chapter 2 27

User Interface
Literals
Literals
Literals represent specific values of one of the data types supported by System Debug. This
section explains how to construct and interpret literals.

Numeric Literals

Numeric literals are a sequence of digits that are valid in the indicated radix. If the digits
are not preceded by one of the base prefix characters, %, #, or $, the current input base is
assumed.

Examples of valid numeric literals are the following:

 #2048
 $fff
 %1762
 26

The type of a numeric literal is determined by the smallest amount of storage required to
store the value and by whether or not the literal is treated as being signed. The presence of
a preceding minus sign, which must always precede the base prefix character, does not
affect the sign of the literal. Such minus signs are treated as unary operators and are not
considered to be parts of literals.

Octal and hex literals are considered to be signed if the representation of the unsigned
digits fits into the natural word size of the current mode of System Debug (16 bits for CM,
32 bits for NM), and the high-order bit of the word is 1. Decimal literals are always
unsigned.

Examples:

 $nmdebug > env outbase '#' /* set output base to decimal
 #nmdebug > wl $ffffffff /* S32 - sign bit 1, NM word size
 #-1
 #nmdebug > wl $ffff /* U16 - sign bit 1, but not NM word size
 #65535
 #nmdebug > cm /* switch to CM
 #cmdebug > wl $ffff /* S16 - sign bit 1, CM word size
 #-1
 #cmdebug > wl $ffffffff /* U32 - sign bit 1, but not CM word size
 #4294967295
 #cmdebug >

Pointer Literals

Short pointer literals are represented by numeric literals. Essentially, this means that
wherever a short pointer is required, a numeric literal that fits in 32 bits is accepted and is
silently converted to the type SPTR.
28 Chapter 2

User Interface
Operators
Long pointer literals of type LPTR are entered as a pair of (32-bit) numbers separated by a
dot, forming the so-called dotted pair. Long pointer literals are entered in the form
sid.offset. When the offset part exceeds 32 bits, the type of the literal becomes EADDR.

Examples are:

$c0002040 short pointer literal

3f.204c long pointer literal (SID=3f , offset=204c)

String Literals

String literals are formed by enclosing an arbitrary sequence of ASCII characters within
either single quotes (') or double quotes (").

The same type of quote used to start the string (single or double) must be used to
terminate it. For example, 'abc ' and "abc" are valid string literals, but 'abc" is not.

A string which is defined with single quotes can contain one or more double quotes within
the string body, and vice versa. For example, "don't fret" and "SEG'ONE" are valid
strings.

In order to include the same quote character that is used as the string delimiter within the
string itself, that quote character should appear in duplicate within the string. For
example, the apostrophe in'don&'&'t 'comes out as don't .

Examples of string literals are:

 'Rufus T. Firefly'

 "OB'"

 'xltypes:pib_type.parent'

 'The sun isn''t shining and I''m feeling so sad.'

Regular Expression String Literals

A special class of string literals called regular expressions is formed by enclosing an
arbitrary sequence of characters with the backquote character (`). Refer to appendix A for
a discussion of how patterns and regular express can be constructed for use in pattern
matching.

Operators
An operator denotes an operation to be performed on existing values to create a new value
of a particular type.
Chapter 2 29

User Interface
Operators
Operators are classified as arithmetic, Boolean, relational, address, and concatenation. A
particular operator symbol may occur in more than one class of operators. For example, the
symbol '+' is an arithmetic operator representing numeric addition, as well as string
concatenation.

The table below summarizes the System Debug supported operators by operator class, and
lists the possible operand and operator result types. The following subsections discuss the
operators in detail.

Arithmetic Operators

Arithmetic operators perform integer arithmetic. The operators include the familiar +, -,
*, /, and MOD. The operator / computes the integer quotient of two numbers, while MOD
computes the remainder. The result of MODis always nonnegative, regardless of the sign of
the left operand. This implementation of MOD is the same as that in HP Pascal, which
defines the result of i MOD j, j > 0 , to be

 i - k * j

for some integer k, such that

Table 2-3. Operators

Class Operator Operand Types Result Types

Arithmetic + (addition)
- (subtraction)
* (multiplication)
/ (division, quotient)
MOD (division, modulus)

INT, PTR INT, PTR

Boolean AND (logical and)
OR (logical or)
NOT (logical not)

BOOL, INT BOOL

Bit BAND (bitwise and)
BOR (bitwise or)
BNOT (bitwise not)
<< (left shift bits)
>> (right shift bits)

INT, PTR INT, PTR

Relational < (less than)
<= (less than or equal to)
= (equal)
<> (not equal)
>= (greater than or equal to)
> (greater than)

BOOL, INT,
PTR, STR

BOOL

Address [] (indirection) PTR U16, U32

String + (concatenation) STR STR
30 Chapter 2

User Interface
Operators
 0 <= i MOD j < j.

The operation i MOD j , where j <= 0 , is illegal.

Unary minus is also allowed, but note that the - operator must precede any base prefix
character for numeric literals. This means that

 -#32767

is allowed, but

 #-32767

is not.

Arithmetic operands are restricted to the classes INT and PTR. In general, the types of the
operands determine the result type of an arithmetic operation. In certain cases, one of the
operands may be converted to another type before the operation is performed (see the
following discussion).

Arithmetic on the INT Class

When both operands are of the INT class, the result of the arithmetic operation is also an
INT . The type of the result is the largest type of the two operands, unless this type is not
large enough to represent the result. In this case, the next larger type that can hold the
result is used. The order of the two operands does not affect the result type.

The INT types are shown below in order of size:

smallest : S16, U16, S32, U32, S64 : largest

The following examples illustrate the result types of some simple arithmetic operations.

 2 + 5 = 7 1 + 65535 = 65536
 (U16) (U16) (U16) (U16) (U16) (U32)

 2 - 5 = -3 1 - 65535 = -65534
 (U16) (U16) (S16) (U16) (U16) (S32)

Pointer Arithmetic

Arithmetic between a pointer and an integer is just like arithmetic between two integers,
except only the offset part of a pointer contributes to the operation. With short pointers,
only the (unsigned) low-order 30 bits are used. With long pointers, the entire 32-bit offset
is used, treated as a U32. With extended address pointers, the 64-bit offset is used. The
type of the result is that of the pointer, with the same bits that contributed to the
computation being replaced by the result. Negative results, and results that cannot be
represented with the available bits, cause an overflow condition.

The most common arithmetic operation between two pointers is subtraction, and the result
is of type S32 or S64. Other arithmetic operations may be performed between two pointers,
but both pointers, whether long, short or extended, must reference the same space IDs. As
Chapter 2 31

User Interface
Operators
with pointer/integer arithmetic, only the low-order 30 bits of a short pointer's offset
contribute to the operation. The result is placed back in the same bits of the larger of the
two operands, when they differ in size, which determines the result type. Note that if the
two pointers are logical, their types must be identical due to the space ID check mentioned
above.

Boolean Operators

The Boolean operators are AND, OR, and NOT. They perform logical functions on Boolean and
integer operands and produce Boolean results. Integer operands are considered to be
FALSE if they are 0, otherwise they represent TRUE.

The operation of the Boolean operators is defined below.

AND Logical and. The evaluation of the two Boolean operands produces a
Boolean result according to the following table:

 a b a AND b

 T T T
 T F F
 F T F
 F F F

OR Logical or. The evaluation of the two Boolean operands produces a Boolean
result according to the following table:

 a b a OR b

 T T T
 T F T
 F T T
 F F F

NOT Logical negation. The Boolean result is the logical negation of the single
Boolean operand as defined in the following table:

 a NOT a

 T F
 F T

Examples of the use of Boolean operators are listed below:

 NOT 0 result = TRUE
 NOT 6 result = FALSE
 1 AND 0 result = FALSE
 1 AND 6 result = TRUE
 (1<2) OR (4<2) result = TRUE

Bit Operators

The bit operators are BNOT, BAND, BOR, << (shift left), and >> (shift right). They perform
bitwise logical operations on their operands and return the result as the type of the largest
32 Chapter 2

User Interface
Operators
operand type.

BAND, BOR, and BNOT

These operators perform the indicated logical operation bit-by-bit on their operand(s),
which are treated as unsigned integers of the appropriate size. When the sizes of the
operands differ, they are aligned at the rightmost bits, with the smaller operand extended
on the left with zeros. When a long pointer and an extended address are BANDed or BORed
together, the operation is performed separately on the SID and offset parts, with the
offsets aligned at the right.

For example, when a U16 is BANDed with a U32, the U16 is treated as a U32 whose
high-order 16 bits are all zero.

The definitions of the logical operations BAND, BOR, and BNOT, are the same as those for the
Boolean operators AND, OR, and NOT, respectively, where the Boolean operands TRUE and
FALSE are represented by the integer values 1 and 0, respectively.

<< and >>

These operators shift the first operand (the shift operand) left or right by the number of
bits specified by the second operand (the shift count). The type of the result is the same as
that of the first operand. For right shifting, if the shift operand is signed (S16 or S32), sign
extension is used when shifting. Otherwise, zeros move in from the left. For left shifts,
zeros always move in from the right. Negative shift counts reverse the direction of the
shift.

Relational Operators

The relational operators <, <=, =, <>, >=, and > compare two operands and return a
Boolean result. Unless the comparison is for strict equality (= or <>), the operands must be
members of the same primary type class (INT/BOOL, STR , or PTR).

Comparisons of integers and/or Booleans are based on the normal mathematical order of
the integers, substituting 0 for FALSE and 1 for TRUE.

Comparisons between two long pointers are performed by first comparing their SIDs and,
if equal, comparing their offsets, with each comparison being made as if the pointer parts
were of type U32. Two short pointers are compared as if they were of type U32. When a
short pointer is compared to a long pointer, the short pointer is first converted to a long
pointer, and the comparison is then made between the two long pointers. Extended
addresses behave similarly to long pointers in comparisons.

A comparison between two pointers with different SIDs is considered to be invalid unless
the comparison is for strict equality (= or <>). System Debug recognizes the two special nil
pointers 0 and 0.0 . These may only be involved in comparisons for strict equality, and 0 is
considered to be equal to 0.0 .

Examples of pointer comparisons are listed below:

 wl 1.200 < 1.204 TRUE
 c0000200 >= c0000100 TRUE
 1.200 < 2.30 invalid
Chapter 2 33

User Interface
Operators
 0.0 = sptr(0) TRUE
 a.0 = sptr(0) FALSE

String comparisons are performed character by character, using the order defined by the
ASCII collating sequence. If the two strings are not the same length, but are equal up to
the length of the shorter one, the shorter string is considered to be less than the other.

Examples of string comparisons are listed below:

 "abc" < "abcde" TRUE
 "Big" <= "Small" TRUE
 "Hi Mom" = "Hi " + "Mom" TRUE

Indirection Operator

Square brackets ([]) are used as the indirection operator to return the value at the address
they enclose.

The syntax of the indirection operator is shown below.

NOTE Please note that the non-bold square brackets in the following table are used
to denote optional syntax, and are not meant to represent the literal square
brackets (presented here in bold) of the indirection operator.

Table 2-4. Indirection Operator Syntax

Indirection Default Alignment Return Type

[[prefix] [VIRT] virtaddr] 4 byte (S32) 4 bytes

[[prefix] REALrealaddr] 4 byte (S32) 4 bytes

[[prefix] SECldev.offset] 4 byte (S32) 4 bytes

where [prefix] can be any one of the following:

 BYTE byte-aligned (U16) 1 byte

 U16 2-byte-aligned (U16) 2 bytes

 S16 2-byte-aligned (S16) 2 bytes

 LPTR 4-byte-aligned (LPTR) 8 bytes

These additional address specifications are supported (without the prefix):

 [ABS[offset]] (S16) 2 bytes

 [DL[offset]] (S16) 2 bytes

 [DB[offset]] (S16) 2 bytes

 [Q[offset]] S16 2 bytes
34 Chapter 2

User Interface
Operators
Address specifications for the indirection operator contain an address mode keyword . All
address modes can be used in both NM and CM.

The default address mode is VIRT (NM virtual address). Virtual addresses can be specified
as short pointers, long pointers, or full NM logical code addresses.

REAL mode addresses physical memory in the HP Precision Architecture machine.

SEC mode addresses secondary storage. The address is always specified in the form of a
long pointer or extended address to indicate the LDEV and byte offset.

VIRT, REAL , and SECmode addresses are always automatically 4-byte-aligned (backwards
to the nearest NM word boundary) before any data is retrieved. The indirect contents
result value is returned as a signed 32-bit (S32) value.

Additional address modes provide access to compatibility mode data structures. In these
modes, addresses are interpreted as CM word (16-bit-alignment) addresses, and the
indirect contents result value is returned as a signed 16-bit (S16) value. The following CM
modes are supported:

• ABS mode accesses emulated compatibility mode bank 0 addresses. This terminology is
derived from absolute memory addressing in the HP 3000 architecture.

• DL mode addresses are DL-relative.

• DB mode addresses are DB-relative.

• Q mode addresses are Q-relative.

• S mode addresses are S-relative.

• P mode addresses are P-relative.

• DST mode accesses a word at the specified data segment and offset.

• CST mode accesses a word at the specified CST code segment and offset.

• CSTX mode accesses a word at the specified CSTX code segment and offset.

Since the default addressing mode is VIRT, a special CM mode CMLOG is provided to
indicate that the address is a full CM logical code address.

 [S[offset]] S16 2 bytes

 [P[offset]] S16 2 bytes

 [DST[dst.offset]] S16 2 bytes

[CST[cst.offset]] S16 2 bytes

[CSTX[cstx.offset]] S16 2 bytes

[CMLOG[lcptr]] S16 2 bytes

Table 2-4. Indirection Operator Syntax

Indirection Default Alignment Return Type
Chapter 2 35

User Interface
Operators
NOTE Nesting of indirection operators uses a significant amount of stack space. A
stack overflow could occur if the user's stack is small and a large number of
nested indirection operators are used.

Table 2-5. Indirection Operator Examples

Indirection Operator Examples:

 $nmdebug > w1 [r25]
 $400c6bd0

Contents of virtual address, contained in
register R25.

 $nmdebug > w1 [400c6bd0]
 $3f

Contents of virtual address, specified as a short
pointer.

 $nmdebug > w1 [r25]
 $3f

Indirect operator can be nested.

 $nmdebug > w1 [3dc.204c]
 $f4000

Contents of virtual address, specified as a long
pointer.

 $nmdebug > w1 [HPFOPEN+2c]
 $6bcd3671

Contents of virtual address, specified as a NM
logical address.

 $nmdebug > w1 [REAL tr1]
 $2cb20

Contents of real memory address, which is
contained in register TR1.

 $nmdebug > w1 [SEC 1.0]
 $804c2080

Contents of secondary storage at address:
LDEV 1 offset 0.

 $nmdebug > w1 [c0004bc1]
 $804c2080,

Contents of virtual address which is
automatically 4-byte-aligned back to address
c0004bc0.

 $nmdebug > w1 [byte c0004bc1]
 $4c

Contents of the byte at byte virtual address
c0004bc1.

 $nmdebug > w1 [u16 c0004bc1]
 $804c

Contents of two bytes (as unsigned) at
2-byte-aligned address c0004bc0.

 $nmdebug > w1 [LPTR 402d5c63]
 $a.472280

Contents of eight bytes found starting at
4-byte-aligned address 402d5c60, returned as a
long pointer.

 $nmdebug > w1 [S16 real 3d3]
 $3fff

Contents of two bytes (as signed) found in real
memory at 2-byte-aligned memory address 3d2.

 $nmdebug > w1 [BYTE REAL 3d3]
 $ff

Contents of the byte found in real memory at
address 3d3.

 $nmdebug > w1 [LPTR REAL 4c]
 $31c.2200

Contents of eight bytes found starting at
4-byte-aligned address 3d0, returned as a long
pointer.

 $nmdebug > w1 [REAL 4c].[REAL 50]
 $31.2200

Same as above.
36 Chapter 2

User Interface
Expressions
Concatenation Operator

The concatenation operator (&+) concatenates two string operands. Examples of the use of
this operator are listed below:

 $nmdebug > var s1 = "abc"
 $nmdebug > var s2 = "def"
 $nmdebug > var s3 = s1 + s2
 $nmdebug > wl s3
 abcdef
 $nmdebug > var s4 = s3 + '123'
 $nmdebug > wl s4
 abcdef123
 $nmdebug >

Expressions
Expressions are formulas for computing new values from a collection of operators and
their operands. Operator precedence, in combination with the use of parentheses,
determines the order of expression evaluation. When two or more operators of the same
precedence occur at the same level of evaluation, they are evaluated from left to right.

 $cmdebug > w1 [DST 22.203]
 %20377

Contents of data segment 22 offset 203.

 $cmdebug > w1 [S-2]
 %0

Contents of S-2.

 $cmdebug > w1 [cmlog fopen+3]
 %213442

Contents of the instruction found at CM
logical code address FOPEN+3.

 $nmdebug > w1 [cst 12.432]
 $6

Contents of code segment 12 offset 432.

 $nmdebug > w1 [cst %12.%432]
 $6

Same as above but from NM instead of CM.

 $nmdebug > w1 [virt CSTVA(%12.%432)]
 $6

Same as above. The CSTVA function is used to
translate CST %12.%432 to its virtual address.

 $cmdebug > w1 [Q-3]
 %17

Contents of Q-3.

 $nmdebug > w1 [virt dstva(sdst.q-3)]
 $f

Same as above. Contents of Q-3.

Table 2-5. Indirection Operator Examples

Indirection Operator Examples:
Chapter 2 37

User Interface
Operator Precedence
Expression operands may be literals, variables, functions, macros, and symbolic procedure
names, each of which denotes a value of some type. Examples of valid expressions are:

 $12 Simple numeric literal

 pc + 4 Predefined variable

 FOPEN + 12 Symbolic procedure name

 [dst 2.104] Indirection - contents of DST 2.104

 (count < 5) and (q>200) Boolean expression with relational operators

 strup('hello') + "MOM" Standard function result

Operator Precedence
The precedence ranking of an operator determines the order in which it is evaluated in an
expression. The levels of ranking are:

Operators of highest precedence are evaluated first. For example, since * ranks above +,
the following expressions are evaluated identically:

 (x + y * z) and (x + (y * z))

When operators in a sequence have equal precedence, evaluation proceeds from left to
right. For example, each of the following expressions are evaluated identically:

 (x + y + z) and ((x + y) + z)

Table 2-6. Operator Precedence

Precedence Operators

highest []

 . NOT, BNOT

 . <<, >>, BAND, BOR

 . *, /, MOD, AND

 . +, -, OR

lowest <, <=, =, >, >=, <>
38 Chapter 2

User Interface
Variables
Variables
System Debug provides variables in which values may be stored for use as operands in
expressions. Variable names must begin with an alphabetic character, which may be
followed by any combination of alphanumeric, apostrophe ('), underscore (_), or dollar sign
($) characters. Variable names are case insensitive and may not exceed 32 characters.

System Debug supports two levels of variable scoping: global and local. Global variables
are defined by the VAR command and exist for the lifetime of the System Debug session
(unless removed by the VARD command):

 $nmdebug > var v1 $2f
 $nmdebug > var s2 = "hello mom"
 $nmdebug > var p3:lptr = 2f.102c

The type of a variable is determined by the type of the expression which computes its
value. The optional : type syntax which follows the variable name imposes a check on the
expression type for that particular assignment only. It does not establish the variable's
type over its entire lifetime. A value of a different type may be assigned to the same
variable by a subsequent VAR command.

Local variables are defined by the LOC command only from within macro bodies and exist
only for the lifetime of the macro in which they are defined. Local variable definitions nest
with macro execution level, and they supercede global variables of the same name. Note
that local variables normally are not visible from outside the macro in which they are
created (that is, from macros called by the one in which they are created). To make local
variable visible to called macros, the environment variable NONLOCALVARS must be TRUE.

 loc v1 200
 loc s2 = "new string"

Note that, although a macro cannot reference the value of a global variable once a local
variable of the same name has been defined, it may change the global value by using the
VAR command instead of LOC.

!variable

The use of the letters a through f to denote hex digits implies the possibility of ambiguity
between hex constants and variable names composed of just these characters. System
Debug warns the user of this occurrence when such variables are defined by the VAR and
LOCcommands, but uses the value of the constant when the name occurs in an expression.
This may be overridden by preceding the variable name with the exclamation point as
follows:

 $nmdebug > var a 123
 Variable name collides with hex numeric literal. (warning #55)
 Name: "a"
 $nmdebug > wl a+1 /* a is a hex constant here
 $b
 $nmdebug > wl !a+1 /* !a references the variable a
 $124
 $nmdebug >
Chapter 2 39

User Interface
Environment Variables
Environment Variables
System Debug provides a large collection of predefined environment variables, the names
of which are reserved and may not be replaced by user-defined variables with the VAR and
LOC commands.

Several environment variables provide access to the current System Debug execution
environment. Examples of these variables include the current input radix and the prompt
string. Other environment variables are used to access key components of the state of the
machine being examined. For example, all of the machine registers defined in the HP 3000
and HP Precision Architectures are available as environment variables. Subject to the
context of use, some of these variables may be set by the user with the ENV command. The
environment variables that correspond to the CM and NM machine registers are also
accessible through the MR (modify register) and DR (display register) commands. All
environment variables may be read (accessed) as expression operands. Some environment
variables also require privileged mode for modification access.

The ENV command in chapter 4 gives a detailed description of each of the predefined
environment variables and specifies which ones may be modified and which ones are
read-only.

Predefined Functions
A large collection of predefined functions exist that provide access to the machine being
debugged, as well as those which perform various operations on values of the data types
supported by System Debug.

Syntactically, a function reference appears as an operand in an expression and is denoted
by its name, followed optionally by a list of parameters surrounded by parentheses.
Multiple parameters are separated from one another by either spaces or commas.
Functions evaluate to a single value of some type.

Detailed descriptions of all the System Debug predefined functions may be found in
chapter 8.

Macros
System Debug supports an extensive macro facility that allows users to define a sequence
of commands that may be invoked either as a command or as a function in an expression.
The MAC command is used to define a macro, as the following examples illustrate:

 $nmdebug > mac double (n=2) { return n * 2 }
40 Chapter 2

User Interface
Procedure Name: Symbols
 $nmdebug > mac formattable (entry=1) { ... }

Reference to macros as functions in expressions look exactly like references to predefined
functions:

 $nmdebug > wl double (1)
 $2
 $nmdebug > wl double (double (1))
 $4
 $nmdebug >

Macro parameters may be defined as being either required or optional (as indicated by the
presence of default parameter values in the macro definition). When all of a macro's
parameters are optional and it is referenced as a function without any parameters, the
enclosing parentheses are optional:

 $nmdebug > wl double ()
 $2
 $nmdebug > wl double
 $2
 $nmdebug >

When macros are used as commands, the parentheses surrounding the parameters may be
omitted:

 $nmdebug > formattable 3
 ...
 $nmdebug > formattable (3)
 ...

However, since macro command parameters may still be surrounded by parentheses as an
option, care must be used when the first parameter is an expression that begins with a
parenthesis of its own. In this case, the parenthesis is seen as the beginning of a
parenthesized list of command parameters, and not as belonging to the expression for the
first parameter. Thus, parameters surrounding the entire command list are required when
the first parameter starts with a parenthesis:

 $nmdebug > formattable (current_entry + 1) * 2 /* wrong
 $nmdebug > formattable ((current_entry + 1) * 2) /* right

Procedure Name: Symbols
Symbolic procedure names, which represent logical code addresses of the type class LCPTR,
may be used as operands in expressions. Thus, to determine the virtual address of the
procedure FOPEN, the WL command may be used as follows:
Chapter 2 41

User Interface
Procedure Name: Symbols
 $nmdebug > wl FOPEN
 SYS $a.345498
 $nmdebug >

In the above example, since no System Debug variable named FOPEN was found, the
expression evaluator searched for the symbol in the currently loaded program file and
libraries, finding it in NL.PUB.SYS.

Procedure name symbols stand for slightly different locations depending on the mode of
System Debug. In CM, they stand for the starting address of the code bodies that they
name. In NM, they stand for the entry address. Since compilers may emit constants before
executable instructions in System Object Modules, breakpoints should always be set at
entry addresses. To find the entry address of a CM procedure, the procedure symbol name
should be prefixed by the question mark (?), as explained below.

When searching program files and libraries for procedure symbols, System Debug behaves
differently depending on its mode. In NM, procedure names are case sensitive, and the
program file and libraries are searched in the following order:

NM search order: first... PROG, GRP, PUB, USER s, SYS ...last

In CM, procedure names are case insensitive, and the following search order is used:

CM search order: first... PROG, GRP, PUB, LGRP, LPUB, SYS ...last

Each of the above search orders, which visit all currently loaded files, is known as a full
search path. Note that this order is the same as that used by the CM and NM loaders in
satisfying external references in program files and libraries, as specified in the LIB= and
LIBLIST= parameters of the RUN command.

Variations of certain commands, such as BREAK, DISPLAY,
MODIFY, TRANSLATE, FREEZE,and UNFREEZE, restrict the search path for procedure name
symbols in their parameters to a single loaded code file. In addition, certain coercion
functions (PROG, GRP, PUB, LGRP, LPUB, SYS) also restrict the search path for
procedure name symbols in their parameters to a single loaded code file. This allows
references to procedure symbols in a particular library, that would otherwise be
inaccessible if they were redefined in preceding libraries on the full search path.

Two symbol tables are present in NM executable libraries and program files. The first
symbol table is called the Loader Symbol Table (LST) and is utilized by the native mode
loader. It contains only exported level 1 procedure names, which are hashed to support fast
symbol name lookups.

The second symbol table is called the System Object Module (SOM) symbol table. This
symbol table contains all compiler-generated symbols (procedure, data, internal labels,
try/recover, and so on), which are maintained in no particular order. Any lookup attempt
must be made sequentially through the symbols.

If the SOM symbols are being searched and an ambiguous name is entered, the first
symbol that matches the name found during the sequential search of the symbol table is
used.

The symbol table used by the expression evaluator for symbol lookups is based on the
environment variable LOOKUP_ID. The variable may take on any of the following values.
(The default setting is LSTPROC.)
42 Chapter 2

User Interface
Operand Lookup Precedence
UNIVERSAL Search exported procedures in the SOM symbols.

LOCAL Search nonexported procedures in the SOM symbols.

NESTED Search nested procedures in the SOM symbols.

PROCEDURES Search local or exported procedures in the SOM symbols.

ALLPROC Search local/exported/nested procedures in the SOM symbols.

EXPORTSTUB Search export stubs in the SOM symbols.

DATAANY Search exported or local data SOM symbols.

DATAUNIV Search exported data SOM symbols.

DATALOCAL Search local data SOM symbols.

LSTPROC Search exported level 1 procedures in the LST.

LSTEXPORTSTUBSearch export stubs in the LST.

ANY Search for any type of symbol in the SOM symbols.

NOTE Using the SOM symbol table is noticeably slower than using the LST.

!procedure_name

Just as System Debug variable names composed of only the letters "A" through "F" may
conflict with hex constants, so may procedure name symbols. Preceding such name
symbols with an exclamation point makes the expression scanner see the name as a
symbol instead of a hex constant. However, System Debug variable names take precedence
over procedure name symbols, so the variable name ADD makes a procedure of that name
invisible in expressions. In this case, the functions CMADDR and NMADDR can be used to
locate the procedure names.

?procedure_name

Sometimes the address that a procedure name symbol represents is not appropriate for a
particular use. By preceding a procedure name symbol with a question mark, a different
address is returned, depending on the mode of System Debug.

In CM, ?procedure_name returns the entry point address for the named procedure instead
of its start address. This is the address of interest when setting CM breakpoints. In NM,
the question mark prefix returns the export stub address of the procedure. This is the
entry location used by callers from external modules. Please refer to the Procedure Calling
Conventions Reference Manual for a detailed discussion of export stubs and native mode
procedure organization.

Operand Lookup Precedence
When expressions are scanned and parsed, they are ultimately broken down into a series
of tokens, which represent either operators or operands. The preceding sections of this
Chapter 2 43

User Interface
Command Line Substitutions
chapter introduced all the possibilities for operand tokens in expressions, thereby
answering the question, "What sorts of things can be used as operands?" This section deals
with the converse: "Given an operand, what sort of thing is it?"

The process of evaluating an operand token can be modeled by a list of possible
interpretations of a token. The unknown token is tested against each of the possibilities in
the list, in the specified order, with the first match determining the token's meaning.

The following list determines the interpretation of an operand token:

1. Test for a string literal or a numeric literal in the current input base.

2. Test for a predefined variable.

3. Test for a user-defined variable.

4. Test for a predefined function.

5. Test for a macro.

6. Test for a procedure name symbol in the current mode, subject to the search path in
effect.

7. If still unresolved, fail.

There are two operand modifiers that, when prefixed to an operand, alter the above search
order for that operand. The exclamation point (!) signals that the operand to which it is
prefixed is not to be treated as a numeric literal. This prevents the token from being
mistaken as a hex constant and initiates the operand search at step 2.

A question mark prefix (?) indicates that the operand is to be treated as a procedure name
symbol and that the entry point or export stub address of the named procedure is being
referenced instead of its starting address. The search for such symbols begins with step 6.

Command Line Substitutions
Command line scanning proceeds from left to right and is done in two phases. The first
preprocessing phase scans a command line for the vertical bar character (|), which
introduces the following syntax:

 | expression [: fmtspec][~]

When the command preprocessor recognizes the above syntax, it removes all the
characters associated with it from the command line and replaces them with text
representing the value of the expression. The expression part of the substitution syntax
may be any valid expression as previously described in this manual. In particular, there
are no special restrictions placed on command line substitution expressions.

The optional :fmtspec represents special formatting directives that may be used to control
the formatting of the value of the expression when it is converted to characters and
inserted back into the command line. Fmtspec is always specified as a string literal and is
44 Chapter 2

User Interface
Command Line Substitutions
fully defined by the W (WRITE) command in chapter 4.

The optional closing tilde (~) character is used to terminate the command line substitution
string when it appears adjacent to text that is not to participate in the substitution. The
tilde is always removed as part of the substitution.

During the preprocessing phase, a command line is scanned repeatedly until no command
line substitutions are performed. Note that, after an individual substitution is performed,
scanning continues after the point of substitution. If the substituted text causes another
substitution (by containing a new vertical bar character), it is processed during the next
scan of the command line.

The special meanings of both the vertical bar and the tilde are cancelled when they are
immediately preceded by the backslash (\) escape character. After the preprocessing phase
of command line scanning is finished, the escape characters are removed, leaving the
following vertical bar or tilde by itself. The practice of using the escape character to remove
the special meaning of some other character is known as escaping , and is often used in
string literals, particularly in regular expressions. Refer to appendix A for a discussion of
how patterns and regular expression can be constructed for use in pattern matching.

Command line substitutions are performed on every command line, including those which
define macros. If a macro definition is to contain a command line substitution to be
performed when the macro is executed, it should be escaped to prevent it from being
performed when the macro is defined.

Command line substitution is subject to the current state of the CMDLINESUBSenvironment
variable. If set to FALSE, command line substitutions are not performed.Examples of
command line substitutions are listed below:

Assuming the following declarations have been entered,

 var grp = 'PUB'
 var acnt = 'SYS'
 var cmd = 'SYMOPEN'
 var const = $20
 var n = $1

the following examples demonstrate command line substitutions:

symopen myfile.|grp~.|acnt

becomes

 symopen myfile.PUB.SYS

while

 while n < |const:"#" do {cmd1;cmd2;cmd3}

becomes

 while n < #32 do {cmd1;cmd2;cmd3}

which saves many searches for the constant. And

 while |n < |const do {cmd1;cmd2;cmd3}

becomes
Chapter 2 45

User Interface
Aliases
 while $1 < $20 do {cmd1;cmd2;cmd3}

which will loop infinitely. Next consider the following:

 $nmdebug > var n "mom"
 $nmdebug > wl "|n"
 mom
 $nmdebug > wl "\|n"
 |n

Note how the presence of the backslash cancels the command line substitution.

Aliases
Aliases may be established for command names, macros, and even other aliases. By
defining an alias for one of these objects, one is merely specifying an alternative name by
which the aliased object may be referred. Note that this defines an alternative, rather than
a change, and affects no other aspect of the thing being aliased. For instance, the alias has
no effect on the parameters of an aliased command. Once established, the alias name may
be used wherever the original name is valid.

Command Lookup Precedence
The second phase of command line scanning is performed after the preprocessing phase, in
which command line substitution is performed. In the second phase, the command name is
extracted from the command line and is interpreted according to the following sequence:

1. Search for the command in the alias table. If found, repeat this process recursively with
the aliased name until the search fails. Infinitely recursive aliases result in an error.
Proceed with the aliased command name, if found.

2. Search for the command in the command table.

3. Search for the command in the window command table.

4. Search for the command in the macro definition table. If found, execute the macro as a
command, discarding any macro return value.

5. If still unresolved, then fail.

Error Handling
System Debug employs an error stack for error messages and maintains the environment
46 Chapter 2

User Interface
Error Handling
variable ERROR for detection of errors by control commands. When an internal error is
detected, appropriate error messages are pushed onto the error stack and the variable
ERROR is set to the error number of the last error generated.

While the highest-level error messages are typically displayed on the user's terminal,
lower-level (intermediate) errors are usually pushed silently onto the error stack. All
errors can be inspected with the ERRLIST command:

 $nmdebug > dv 1234.98127345
 $ VIRT 1234.98127344 $
 Display error. Check ERRLIST for details. (error #3800)
 $nmdebug > errl
 $1: Display error. Check ERRLIST for details. (error # 3800)
 $1: data read access error (error #805)
 $1: READ_CMWORD bad address: $ VIRT 1234.98127344
 $1: Virtual read failed (error #6000)
 $1: VADDR= 1234.98127344
 $1: A pointer was referenced which contained a virtual address outside
 of the bounds of an object.
 $nmdebug >

The error stack can be reset (cleared) with the ERRDEL command:

 $nmdebug > errd

The System Debug command interpreter (CI) checks the variable ERROR after each
command is executed. When an error condition is detected (ERROR < 0), all pending
commands (in loops, command lists, macros, and so on) are aborted. The command stack is
flushed, and the outermost prompt is issued. Note that only negative ERROR values
constitute an error. Positive values represent warnings, and do not cause command stack
execution to cease.

The IGNORE command protects the next single command, command list, macro, or use file
from being aborted if an error is detected. IGNORE has the same effect as the CONTINUE
command of the MPE XL CI.

Although the IGNORE command prevents abnormal command termination, it does not
automatically prevent generated errors from being displayed. The QUIET option of the
IGNORE command suppresses the error messages as well.

While the IGNORE command affects just the following command or command list, the
environment variable AUTOIGNOREmay be set to TRUE to cause errors for all commands to
be ignored and is equivalent to entering an IGNORE LOUD command before each one.

User-defined macros can take advantage of the error handling mechanism. A user error
message can be pushed onto the error stack with the ERR command, and the ERROR
variable can be explicitly set to a negative value. For example,

 $nmdebug > ERR "a very nasty error happened"
 $nmdebug > ENV error -125
Chapter 2 47

User Interface
Control-Y
Control-Y
System Debug allows the user to prematurely terminate command execution by entering a
Control-Y (press and hold the CONTROL key and press Y). Command loops, display loops
and modification loops can be interrupted with this mechanism.

When Control-Y is entered during window updates, interrupted output lines may disturb
portions of the windows. When this occurs, redraw the windows with the RED (redraw)
command.

NOTE There is only one Control-Y handler per session. When Debug is entered, it
takes ownership of the Control-Y handler. When Debug is exited, it returns
the Control-Y handler to the process that owned it when Debug was entered.

If other processes are active in a session while Debug is being used, it is possible for one of
the other process to steal Control-Y ownership from Debug. In this situation, when Debug
exits it will, in effect, steal Control-Y back from the current owner and give it to the process
that owned it when Debug was entered. If Control-Y is stolen from Debug, it is also
possible to create infinite loops in Debug from which there is no way out (for example,
"while TRUE do {}").

Both DAT and Debug rearm the Control-Y trap after every CI command (for
example, the ":" command).

Command History, REDO
System Debug maintains a very short history of command lines in the form of a stack.
Commands in the stack can be displayed with the HIST (or LISTREDO) command, and may
be reexecuted with the DOcommand or edited prior to reexecution with the REDOcommand.

Commands read from outer level or interactive input are pushed onto the history stack.
Currently, commands read from USE files are also pushed onto the stack. Commands
executed as part of macro commands are not pushed.

Debug Input/Output: The System Console
Under normal circumstances, Debug Input/Output is typically directed to the user's
terminal. However, during the following occasions, Debug I/O is redirected to the MPE XL
system console:

• During the bootstrap process (until the system is up), all Debug I/O is directed to the
system console.
48 Chapter 2

User Interface
Automatic DBUGINIT Files
• All system process debugging uses the system console.

• All job debugging uses the system console. The environment variable JOB_DEBUG
allows jobs to enter Debug.

• The environment variable CONSOLE_DEBUG can be used to cause all processes that are
entering Debug for the first time to use the system console.

• The environment variable CONSOLE_IO can be used to cause all debugging for the
current process to be directed to the system console.

• The environment variable TERM_LDEV allows the use of any terminal for debugging. A
privileged procedure, DEBUG_AT_LDEV (ldev : ldev_type) , is also available to
enter the debugger and direct I/O to the specified terminal LDEV.

When Debug is using the system console, the following technique is recommended to
prevent confusion while sharing the console with the CI:

 $cmdebug > :restore

Running RESTORE prevents unwanted terminal reads from the console's CI.

See the ENV command for detailed descriptions of all of the environment variables
mentioned above.

Automatic DBUGINIT Files
Debug supports the automatic execution of commands within special initialization files
named DBUGINIT. These files must be in the form of a USE file as described by the USE

command.

Debug first tests for an initialization file (DBUGINIT) in the same group Uand account as
the program that is being debugged. Next, Debug looks for an initialization file in the
user's logon group and account (if different).

Based on the existence of these special files, it is possible to execute initialization
command files from both the program's group and account and the user's logon group and
account.

The following initialization sequence is possible for Debug:

 1) DBUGINIT.ProgGrp.ProgAcnt (program group/account)
 2) DBUGINIT.UserGrp.UserAcnt (user's group/account)

Refer to chapter 9 for a discussion of initialization files used for DAT.
Chapter 2 49

User Interface
Automatic DBUGINIT Files
50 Chapter 2

System Debug Interface Commands and Intrinsics
Debug Interfaces
3 System Debug Interface Commands
and Intrinsics

Debug may be invoked directly through an integrated set of commands and intrinsics. All
MPE V intrinsics are supported. In addition, several new intrinsics have been added to
enhance the functionality of MPE/iX and take advantage of the new debugger. The
commands and intrinsics allow you to enter the debugger from three different paths:

• Directly from a command interpreter (CI) command in a session.

• From a program through an intrinsic call.

• From the system during an abnormal process termination (a process abort).

Many of the commands and intrinsics that make up the system debugger interface also
allow you to specify an optional character string containing Debug commands . If supplied,
this string is passed to Debug for execution as part of debugger initialization.

The MPE/iX commands and intrinsics allow you to do the following:

• Enter Debug from a program or in a session directly from the CI.

• Generate stack trace upon demand from within a program.

• Execute a defined series of Debug commands from a session, job, or program.

• Arm a call to Debug to take place during the process abort sequence.

• Disarm the call to Debug during the process abort sequence.

The Debug commands and intrinsics are described in the following sections. For additional
information, refer to the MPE/iX Commands Reference Manual and the MPE/iX
Intrinsics Reference Manual.

Debug Interfaces
Debug may be invoked directly or indirectly: directly from the CI of a session, or from an
intrinsic call within a program; indirectly through arming a call to Debug in the case of a
process abort.

The MPE/iX CI commands are identical to the MPE V commands, with the exception that
the user may specify an optional command string to be passed to Debug when it is invoked.
The following is a list of the available MPE/iX CI commands and their syntax:

 DEBUG [commands]

 SETDUMP [DB [,ST [,QS[;ASCII [;DEBUG=" commands"]

 RESETDUMP
Chapter 3 51

System Debug Interface Commands and Intrinsics
Debug Interfaces
All intrinsics can be called from NM with the exception of STACKDUMP'. This intrinsic is not
supported in native mode and is found only in the CM intrinsic file. Only those intrinsics
available in MPE V are callable by the CM user. The following table summarizes which
intrinsics are callable from compatibility mode (CM) and native mode (NM):

Callable From Intrinsic Name

CM/NM DEBUG

CM/NM RESETDUMP

CM/NM SETDUMP

CM/NM STACKDUMP

CM STACKDUMP'

NM HPDEBUG

NM HPRESETDUMP

NM HPSETDUMP

Note that no HPSTACKDUMPintrinsic is present. It is intended that the user call HPDEBUGto
produce a custom stackdump when desired.

Direct Calls

If you want to invoke Debug from the CI of the current session, use the DEBUG command.
This command is implemented through intrinsics. The CI simply calls the DEBUG or
HPDEBUG intrinsic. Note that this command requires privileged mode (PM) capability.

DEBUG
 DEBUG/XL A.00.00

 DEBUG Intrinsic at: a.00702d74 hxdebug+$24
 $1 ($25) nmdebug>

The following example shows a call to Debug with a command to display the registers and
then return to the CI.

: DEBUG DR;C
DEBUG/XL A.00.00

HPDEBUG Intrinsic at: a.006b4104 hxdebug+$130
R0 =00000000 006b0000 006b4100 00000002 R4 =40221a80 40221638 402213d8 00000400
R8 =00000001 40200268 40221558 402215c4 R12=402213d4 00000000 00000000 00000000
R16=00000000 00000000 00000000 0000000c R20=00000000 0000000b 0000007f 40221a80
R24=40221add 00000001 00000001 c0200008 R28=0000000b 00000000 40221c58 00000000

IPSW=0006000f=jthlnxbCVmrQPDI PRIV=0 SAR=0011 PCQF=a.6b4104 a.6b410

SR0=0000000a 00000188 0000000a 00000000 SR4=0000000a 00000188 0000000b 0000000a
TR0=00616200 00646200 00005600 00545274 TR4=40222168 00000001 00000001 00000018
PID1=0184=00c2(W) PID2=0000=0000(W) PID3=0000=0000(W) PID4=0000=0000(W)

RCTR=ffffffff ISR=0000000a IOR=00000000 IIR=87e0211a IVA=000aa800 ITMR=35b49924
EIEM=ffffffff EIRR=00000000 CCR=0080
:

52 Chapter 3

System Debug Interface Commands and Intrinsics
Debug Interfaces
Debug may also be invoked with the HPDEBUG/DEBUG intrinsic calls from within any
program. Native mode programs enter Debug assuming that the user will be viewing the
native mode environment (program, stack, registers); this is referred to as NM Debug.
Compatibility mode programs enter Debug assuming that the user will be viewing the
compatibility mode environment; this is called CM Debug.

Process Abort Calls

You may arm a call to Debug which occurs in the event of a process abort. The call may be
armed by:

• The SETDUMP command.

• The SETDUMP intrinsic.

• The HPSETDUMP intrinsic.

Once a SETDUMP command or intrinsic has been issued, all new processes created are
affected. Both the setdump attribute and the DEBUG command string are inherited by new
child processes. This feature may be disarmed by the following:

• The RESETDUMP command.

• The RESETDUMP intrinsic.

• The HPRESETDUMP intrinsic.

If the Debug process abort call has not been armed through one of the SETDUMPinterfaces,
and a process abort occurs, an abbreviated stack trace is produced. This abbreviated trace
shows only the most recently called procedure in the program file and in each library being
used. This is done for both the CM and NM stacks.

The following is an example of a CM program aborting without invocation of SETDUMP.

 : run cmbomb
 **** PROGRAM ERROR #4 :INTEGER DIVIDE BY ZERO
 ABORT: CMBOMB.DEMO.TELESUP
 **** PROCESS ABORT TRACE ****

 NM SYS a.006d7798 dbg_abort_trace+$30
 CM SYS % 27.261 SWITCH'TO'NM'+4 SUSER1
 CM PROG % 0.1215 TEST_ARITH_TRAP+24 SEG'
 PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)
 :

The following example is the same as above except that the code was compiled with a
native mode compiler.

 : run nmbomb
 **** Integer divide by zero (TRAPS 30)

 ABORT: NMBOMB.DEMO.TELESUP
 **** PROCESS ABORT TRACE ****

 NM PROG 191.00006b20 test_arith_trap+$28
Chapter 3 53

System Debug Interface Commands and Intrinsics
Debug Interfaces
 PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)
 :

If the SETDUMP command (or intrinsic) is invoked before running this program, a full dual
stack trace and a register dump is produced when the process aborts. Consider the
following example:

: setdump
: run nmbomb
**** Integer divide by zero (TRAPS 30)

ABORT: NMBOMB.DEMO.TELESUP
**** PROCESS ABORT STACKDUMP FACILITY ****

 PC=191.00006b20 test_arith_trap+$28
NM* 0) SP=40221178 RP=191.00006e8c do_traps+$2ac
NM 1) SP=40221140 RP=191.00007c08 PROGRAM+$360
NM 2) SP=402210f8 RP=191.00000000
 (end of NM stack)

R0 =00000000 00000000 00006e8f c1c60000 R4 =81c2b6c0 00000001 c0000000 00000000
R8 =00000000 00000000 00000000 00000000 R12=00000000 00000000 00000000 00000000
R16=00000000 00000000 00000000 00000061 R20=00000020 00000191 00000005 0000003a
R24=0000001a 00000000 00000005 40200008 R28=0000018d 00000000 40221178 00006b23

IPSW=0006ff0f=jthlnxbCVmrQPDI PRIV=3 SAR=0000 PCQF=191.6b23 191.6b27

SR0=0000000a 0000000a 0000018d 00000000 SR4=00000191 0000018d 0000000b 0000000a
TR0=00616200 00646200 0000ac00 00545274 TR4=40221de8 00000001 00000001 00000022
PID1=018a=00c5(W) PID2=0000=0000(W) PID3=0000=0000(W) PID4=0000=0000(W)

RCTR=00000000 ISR=00000191 IOR=00000000 IIR=b3202000 IVA=000aa800 ITMR=ad40a0fd
EIEM=ffffffff EIRR=00000000 CCR=0080

**** PROCESS ABORT INTERACTIVE DEBUG FACILITY ****

$2 ($22) nmdebug >

Note that in the above example, the user is left in Debug. At this point, the user is able to
enter any Debug command. The process may even be resumed (see the CONTINUEcommand
in chapter 4).

It is possible to specify what action should be taken when a process aborts by providing a
list of commands for Debug to execute. In the following example, a simple message is
printed if the process aborts.

 : setdump ;debug="wl 'Oh my, our process is aborting !'"
 : run cmbomb
 **** PROGRAM ERROR #4 :INTEGER DIVIDE BY ZERO
 ABORT: CMBOMB.DEMO.TELESUP
 **** PROCESS ABORT STACKDUMP FACILITY ****

Oh my, our process is aborting !

 PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)
 :
54 Chapter 3

System Debug Interface Commands and Intrinsics
Debug Command and Intrinsic Descriptions
Notice that the user was not left in Debug after the command string was executed. In order
to be left in Debug, several criteria must first be met:

• The abort did not occur while in system code, and

• The process entered the abort code through a native mode interrupt. Such aborts are
typically caused by arithmetic and code-related traps (see the XARITRAP and
XCODETRAP intrinsics).

Most CM programs fail these checks and are returned to the CI without entering Debug.

The SETDUMP functionality is also accessible programmatically with the SETDUMP and
HPSETDUMP intrinsics. Refer to the following pages for detailed descriptions and examples.

Debug Command and Intrinsic Descriptions
The commands and intrinsics used with the Stackdump system debugger interface are
described on the following pages. The programming examples are written in Pascal. Refer
to the appropriate language manual set for details of calling system intrinsics from other
languages.

:DEBUG Command
PRIVILEGED MODE

Enters Debug from the CI.

Syntax

 :DEBUG [commands]

Parameters

commands A series of Debug commands to be executed before the Debug prompt is
displayed. The string may be up to 255 characters long. All text on the
command line following :DEBUG is passed unaltered to Debug. Note that
the commands should not be quoted.

Discussion

The :DEBUG command enters Debug directly from the session CI. Optional Debug
commands may be entered on the command line, and they will be executed before the
Debug prompt is displayed.

If the optional commands contain a Debug command that returns the user to the CI, any
further commands are left pending on Debug's command stack. The next time Debug is
Chapter 3 55

System Debug Interface Commands and Intrinsics
:RESETDUMP Command
entered, any pending commands are executed before the Debug prompt is displayed. If no
commands were specified, Debug displays its prompt and waits for the user to enter
interactive commands. This command is ignored in a job.

Example

The example below calls Debug to produce a stack trace and return to the CI.

 : debug trace;c
 DEBUG XL A.00.00

 HPDEBUG Intrinsic at: a.006b4104 hxdebug+$130
 PC=a.006b4104 hxdebug+$130
 * 0) SP=40221c58 RP=a.006b8e7c exec_cmd+$73c
 1) SP=40221ac8 RP=a.006ba41c try_exec_cmd+$ac
 2) SP=40221a78 RP=a.006b8638 command_interpret+$274
 3) SP=40221620 RP=a.006bae5c xeqcommand+$1d0
 4) SP=40221210 RP=a.006b7604 ?xeqcommand+$8
 export stub: 7d.000068dc main_ci+$94
 5) SP=40221178 RP=7d.00007420 PROGRAM+$250
 6) SP=40221130 RP=7d.00000000
 (end of NM stack)
 :

:RESETDUMP Command
Disarms the Debug call that is made during abnormal process termination.

Syntax

 :RESETDUMP

Discussion

The :RESETDUMPcommand disarms the Debug call which is made during abnormal process
termination. If the setdump feature was not previously armed by one of the Setdump
intrinsics or commands, this command has no effect. The command affects all processes
subsequently created under the current session or job. If performed in BREAK mode,
existing processes are not affected by the command.

Example

Since there are no parameters or options for this command, the example is quite simple
and straightforward:

 : resetdump
 :
56 Chapter 3

System Debug Interface Commands and Intrinsics
:SETDUMP Command
:SETDUMP Command
Arms the Debug call that is made during abnormal process termination.

Syntax

 :SETDUMP [DB [,ST [,QS]] [;ASCII] [;DEBUG=" commands"]]

Parameters

commands A quoted string of system Debug commands, up to 255 characters long. If
not specified, this parameter defaults to a command string that produces a
dual mode stack trace and a register dump.

DB, ST, QS, ASCII These parameters are provided for compatibility with MPE V. If
specified, they are ignored.

Discussion

The :SETDUMP command enables automatic execution of a set of Debug commands when a
process terminates abnormally (aborts). This command affects all processes subsequently
created under the current job or session. That is, the setdump attribute and the commands
parameter are inherited by any new process.

During the process abort sequence, Debug executes the commands specified in the
commandsparameter. Any output is sent to the process's standard list file ($STDLIST) . Any
commands that require input generate an error message.

If the process that aborts is being run from a job, the process terminates after executing
the command string. If the process is being run from a session, after the specified
command string has been executed, Debug stops to accept interactive commands with I/O
performed at the user terminal, contingent upon the following requirements:

• The abort did not occur while in system code, and

• The process entered the abort code through a native mode interrupt. Such aborts are
typically caused by arithmetic and code-related traps (see the XARITRAP and
XCODETRAP intrinsics).

NOTE CM programs usually fail these tests.

Once Debug accepts interactive input, you can enter any Debug command. You may choose
to resume the process or have it terminate (refer to the CONTINUE command in chapter 4).

If the cause of the abort is a stack overflow, the command list is ignored and a stack trace is
sent to $STDLIST , after which the process is terminated with no interactive debugging
allowed.
Chapter 3 57

System Debug Interface Commands and Intrinsics
DEBUG Intrinsic
Examples

The first example arms the Setdump feature. No parameters are specified, so the default
command string is assumed (the default command string produces a stack trace and
register dump).

 : setdump
 :

The following example also arms the Setdump feature but specifies a list of commands to
be executed if the process aborts.

 : setdump ;debug="w 'Process abort at ';w pc; wl ' ' nmpath(pc)"
 :

DEBUG Intrinsic
Enters Debug.

Callable from: NM, CM

Syntax

 DEBUG;

Discussion

The DEBUG intrinsic calls Debug from an interactive program. The intrinsic call acts as a
hard-coded breakpoint. Execution of the calling program is halted, and the Debug prompt
is displayed.

If the call is made from a batch program, it is ignored.

Refer to the MPE/iX Intrinsics Reference Manual for additional discussion of this
intrinsic.

Condition Codes

This intrinsic does not return meaningful condition code values.

Example

The following example is a code fragment from a Pascal program. It declares DEBUG as an
intrinsic and then calls it.

 PROCEDURE call_debug;

 procedure debug; intrinsic;

 BEGIN
58 Chapter 3

System Debug Interface Commands and Intrinsics
HPDEBUG Intrinsic
 debug;
 END;

HPDEBUG Intrinsic
Enters Debug and optionally executes a specified set of system Debug commands.

Callable from: NM

Syntax

 HPDEBUG (status, cmdstr [,itemnum, item] [...]);

Parameters

status 32-bit signed integer by reference (optional)

The status returned by the HPDEBUGintrinsic call. The variable is a record
containing two 16-bit fields, with the error number in the high-order 16
bits and the intrinsic subsystem number in the low-order 16 bits.

cmdstr character array (optional)

A packed array of characters from 255 to 1024 bytes that contains the
Debug commands to be executed. The first character in the array is
recognized as the command delimiter. The last character in the command
string must be followed immediately by the same delimiter.

itemnum 32-bit signed integer by value (optional)

The item number of an HPDEBUGoption as defined in the following HPDEBUG
options.

item type varies by value (optional)

Passes and/or returns the HPDEBUG option indicated by the corresponding
itemnum parameter. The itemnum/item optional parameters must appear
in pairs. You can specify any number of option pairs. Any itemnum takes
precedence over any previously specified duplicate itemnum . The following
discussion lists the optional itemnum/item parameter pairs available to
you.

itemnum =1 Output file number (I32)

Passes an item value specifying an opened file number to
which DEBUG output is sent. The file must be a writeable
ASCII file. The item value 1 is valid and specifies that
$STDLIST will be used. Default: Use terminal LDEV for
sessions and $STDLIST for jobs.

itemnum =2 Welcome Banner Flag (I32)
Chapter 3 59

System Debug Interface Commands and Intrinsics
HPDEBUG Intrinsic
Passes an item value indicating if the Debug welcome
banner should be printed. An item value of zero (0) keeps
the banner from printing. Any other value causes the
banner to print. Default: Print the welcome banner (1).

Discussion

The HPDEBUG intrinsic calls Debug with an optional character array containing Debug
commands. If the command list is specified, Debug pushes the commands onto its
command stack and executes them.

If no command in the command string causes control to be returned to the calling
procedure (that is, a CONTINUEcommand), the user is left in Debug as long as the process is
being run from a session environment. Processes run from a job are not allowed to stop in
Debug. If the command string does cause control to return to the calling procedure, any
remaining commands are left pending on Debug's command stack to be executed the next
time Debug is called.

Refer to the MPE/iX Intrinsics Reference Manual for additional discussion of this
intrinsic.

Condition Codes

This intrinsic does not return meaningful condition code values. Status information is
returned in the optional status parameter described above.

Example

The following example is an excerpt from a Pascal program which illustrates a call to the
HPDEBUG intrinsic. The commands passed to Debug produce output similar to that of the
STACKDUMPintrinsic. The command string contains commands that tell Debug to first open
a list file, print a title, produce a stack trace, and finally close the list file and return to the
calling routine.

 PROCEDURE call_hpdebug;

 VAR debug_cmds : string[255];:
 status : integer;

 procedure HPDEBUG; intrinsic;

 BEGIN

 debug_cmds := '\list myfile;wl "***STACKDUMP***";tr,dual;list close;c\';

 hpdebug(status, debug_cmds);

 IF (status <> 0) THEN
 error_routine(status, 'HPDEBUG');
 END;
60 Chapter 3

System Debug Interface Commands and Intrinsics
HPRESETDUMP Intrinsic
HPRESETDUMP Intrinsic
Disarms Debug call which is made during abnormal process terminations.

Callable from: NM

Syntax

 HPRESETDUMP (status);

Parameters

status 32-bit signed integer (optional)

The status returned by the HPRESETDUMP intrinsic call. The variable is a
record containing two 16-bit fields, with the error number in the
high-order 16 bits and the intrinsic subsystem number in the low-order 16
bits.

Discussion

The HPRESETDUMP intrinsic disarms the Debug call that is made during abnormal process
termination. If the Setdump feature was not previously armed by one of the Setdump
intrinsics or commands, this intrinsic has no effect. Only the current process is affected; all
other existing processes retain their current Setdump attributes. After this call, any child
process of the calling process will not have the Setdump attribute. This intrinsic performs
the same function as the RESETDUMP intrinsic.The only difference is the means by which
status information is returned.

Refer to the MPE/iX Intrinsics Reference Manual for additional discussion of this
intrinsic.

Condition Codes

This intrinsic does not return meaningful condition code values. Status information is
returned in the optional status parameter described above.

Example

The following example is a code fragment from a Pascal program. It declares HPRESETDUMP
as an intrinsic and then calls it.

 PROCEDURE call_hpresetdump;
VAR status : integer;
procedure HPRESETDUMP; intrinsic;
BEGIN

 HPRESETDUMP(status);
IF (status <> 0) THEN

 error_routine(status, 'HPRESETDUMP');
 END;
Chapter 3 61

System Debug Interface Commands and Intrinsics
HPSETDUMP Intrinsic
HPSETDUMP Intrinsic
Arms a call to Debug which takes place during abnormal process termination.

Callable from: NM

Syntax

 HPSETDUMP (status, cmdstr);

Parameters

status 32-bit signed integer (optional)

The status returned by the HPSETDUMP intrinsic call. The variable is a
record containing two 16-bit fields, with the error number in the
high-order 16 bits and the intrinsic subsystem number in the low-order
16-bits.

cmdstr character array (optional)

A packed array of characters (up to 255 bytes) that contains the DEBUG
commands to be executed if the process aborts. The first character in the
array is recognized as the command delimiter. The last character in the
command string must be immediately followed by the same delimiter.

Discussion

The HPSETDUMP intrinsic enables automatic execution of a set of Debug commands when a
process terminates abnormally (aborts). This intrinsic affects the current process, child
process, and any generation grandchild processes subsequently created by the calling
process. That is, the Setdump attribute and cmdstr is inherited by any new child process
and all generations thereafter.

Debug executes the commands in cmdstr and sends the output to the standard list file
($STDLIST). Any commands which require input generate an error message.

If the process that aborts is being run from a job, the process terminates after executing
the command string. If the process is being run from a session, then after the specified
command string has been executed, Debug stops to accept interactive commands with I/O
performed at the user terminal, contingent upon the following requirements:

• The abort did not occur while in system code, and

• The process entered the abort code through a native mode interrupt. Such aborts are
typically caused by arithmetic and code-related traps (refer to the XARITRAP and
XCODETRAP intrinsics).

NOTE CM programs usually fail these tests.

Once Debug accepts interactive input, the user is free to enter any Debug command. The
62 Chapter 3

System Debug Interface Commands and Intrinsics
HPSETDUMP Intrinsic
user may choose to resume the process or have it terminate (see the CONTINUEcommand in
chapter 4).

If the cause of the abort is a stack overflow, the command list is ignored and a stack trace is
sent to $STDLIST , after which the process is terminated with no interactive debugging
allowed.

Refer to the MPE/iX Intrinsics Reference Manual for additional discussion of this
intrinsic.

Condition Codes

This intrinsic does not return meaningful condition code values. Status information is
returned in the optional status parameter described above.

Example

Assume that a file called ABORTCMD contains a set of Debug commands to be used when a
process abort occurs.

A process abort in the following procedure opens a list file, performs a stack trace, executes
the commands from the use file, and closes the list file:

 PROCEDURE myproc{};

 VAR
 status : integer;
 debug_cmds : string[255];

 BEGIN
 debug_cmds := '\list errfile;tr,dual;use abortcmd;list close\';
 hpsetdump(status, debug_cmds);

 IF (status <> 0) THEN
 error_routine(status, 'HPSETDUMP');

 .
 . <code in this area is protected with the "setdump" facility>
 .

 hpresetdump(status);

 IF (status <> 0) THEN
 error_routine(status, 'HPRESETDUMP');
 END;
Chapter 3 63

System Debug Interface Commands and Intrinsics
RESETDUMP Intrinsic
RESETDUMP Intrinsic
Disarms the Debug call that is made during abnormal process termination

Callable from: NM, CM

Syntax

 RESETDUMP;

Discussion

The RESETDUMP intrinsic disarms the Debug call that is made during abnormal process
termination. If the Setdump feature was not previously armed by one of the Setdump
intrinsics or commands, this intrinsic has no effect. Only the current process is affected.
This intrinsic performs a function identical to the HPRESETDUMP intrinsic. The only
difference is the means by which status information is returned.

Refer to the MPE/iX Intrinsics Reference Manual for additional discussion of this
intrinsic.

Condition Codes

CCE Request granted.

CCG Abnormal process termination; Debug call is not currently enabled and
remains disabled.

CCL Not returned by this intrinsic.

Example

The following example is a code fragment from a Pascal program. It declares RESETDUMPas
an intrinsic and then calls it.

 PROCEDURE call_resetdump;

 procedure RESETDUMP; intrinsic;

 BEGIN
 RESETDUMP;
 END;

SETDUMP Intrinsic
Arms the Debug call that is made during abnormal process termination.

Callable from: NM, CM
64 Chapter 3

System Debug Interface Commands and Intrinsics
SETDUMP Intrinsic
Syntax

 SETDUMP (flags);

Parameters

flags 16-bit unsigned integer (required)

This parameter is provided for compatibility with MPE V. It is required,
but is ignored.

Discussion

The SETDUMP intrinsic arms a call to Debug which is made during abnormal process
terminations (aborts). If the process aborts, Debug is called with a command string that
results in a full stack trace of both the CM and NM data stacks along with a dump of the
native mode registers. This output is sent to the standard list device ($STDLIST) . This
intrinsic affects the current process, child process, and any generation grandchild
processes subsequently created by the calling process. That is, the Setdump attribute and
the default cmdstr are inherited by any new child process and all generations thereafter.

If the process that aborts is being run from a job, the process terminates after the stack
trace and register dump are performed. If the process is being run from a session, after the
stack trace and register dump have been completed, Debug stops to accept interactive
commands with I/O performed at the user terminal, contingent upon the following
requirements:

• The abort did not occur while in system code, and

• The process entered the abort code through a native mode interrupt. Such aborts are
typically caused by arithmetic and code-related traps (see the XARITRAP and
XCODETRAP intrinsics).

NOTE CM programs usually fail these tests.

Once Debug accepts interactive input, the user is free to enter any Debug command. The
user may choose to resume the process or have it terminate (refer to the CONTINUE
command in chapter 4).

If the cause of the abort is a stack overflow, the command list is ignored and a stack trace is
sent to $STDLIST , after which the process terminates. No interactive debugging is allowed.

Refer to the HPSETDUMP intrinsic for a more flexible version of this intrinsic.

Refer to the MPE/iX Intrinsics Reference Manual for additional discussion of this
intrinsic.

Condition Codes

CCE Request granted.

CCG Abnormal process termination. Debug call is already enabled and remains
enabled.
Chapter 3 65

System Debug Interface Commands and Intrinsics
STACKDUMP Intrinsic
CCL Not returned by this intrinsic.

Examples

The following example is a code fragment from a Pascal program. It declares SETDUMP as
an intrinsic and then calls it. The rest of the code in the program is protected by the
Setdump facility, unless another routine in the program explicitly turns it off.

 PROGRAM myprog;

 TYPE bit16 = 0 .. 65535;

 flags : bit16;

 procedure SETDUMP; intrinsic;

 BEGIN
 SETDUMP(flags);

 .
 . <the rest of the program follows>
 .

 END.

STACKDUMP Intrinsic
Produces a full stack trace.

Callable from: NM, CM

Syntax

 STACKDUMP (filename, idnumber, flags, selec);

Parameters

filename Byte array (optional)

An array of characters giving the file name of a new output file to be
opened. The name should be terminated by any nonalphanumeric
character except a slash (/) or a period (.). The same restrictions for the
formaldesignator parameter in the FOPEN intrinsic apply to this
parameter.

idnumber 16-bit integer (optional)

If the intrinsic fails due to a file system error, the file system specific error
66 Chapter 3

System Debug Interface Commands and Intrinsics
STACKDUMP Intrinsic
number of the failure is returned here. Any value passed into the intrinsic
through this parameter is ignored.

flags 16-bit unsigned integer (optional)

This parameter is provided for compatibility with MPE V. If it is present in
the intrinsic call, it is ignored and has no effect.

selec 32-bit integer array by reference (optional)

This parameter is provided for compatibility with MPE V. If it is present in
the intrinsic call, it is ignored and has no effect.

Discussion

The STACKDUMP intrinsic calls Debug to send a stack trace to the standard list file
($STDLIST) or to a new file named in the filename parameter. Control then returns to the
calling procedure.

Refer to the MPE/iX Intrinsics Reference Manual for additional discussion of this
intrinsic.
Chapter 3 67

System Debug Interface Commands and Intrinsics
STACKDUMP Intrinsic
Condition Codes

CCE Request granted.

CCG Request denied. An invalid address for the location of the filename
parameter was detected.

CCL Request denied. File system error occurred during opening or closing of the
file. The specific file system error number is returned in the idnumber
described above.

Examples

The following example is a code fragment from a Pascal program. First, it prints out the
error status and intrinsic name that were passed as parameters. Next, it calls the
STACKDUMPintrinsic to produce a stack trace. Finally, the process is terminated with a call
to the TERMINATE intrinsic.

 PROCEDURE error_routine(status : integer; { error status }
proc : proc_str); { Intrinsic name that

failed }

 procedure STACKDUMP; intrinsic;
 procedure TERMINATE; intrinsic;

 BEGIN
 writeln(proc, ' returned error status of ', status);

 stackdump;

 terminate;
 END;

The next example prompts the user for a file name and then calls the STACKDUMP intrinsic
to print a stack trace to the specified file.

 PROCEDURE show_stack;

 VAR fname : string[80];

 procedure STACKDUMP; intrinsic;

 BEGIN
 prompt('Print stack trace to which file: ');
 readln(fname);

 fname := fname + ' '; { Add terminator character }

 stackdump(fname);
 END;
68 Chapter 3

System Debug Interface Commands and Intrinsics
STACKDUMP' Intrinsic
STACKDUMP' Intrinsic

Writes a full stack trace to a previously opened file.

Callable from: CM

Syntax

 STACKDUMP' (filename, idnumber, flags, selec);

Parameters

filename Byte array (required)

The first byte of this array contains the file number of a previously opened
file. The file is used as the output file. The file must have a record length
between 32 and 256 CM words, and write access must be allowed for the
file.

idnumber 16-bit integer (required)

If the intrinsic fails due to a file system error, the file system specific error
number of the failure is returned here. Any value passed into the intrinsic
through this parameter is ignored.

flags 16-bit unsigned integer (optional)

This parameter is provided for compatibility with MPE V. If it is present in
the intrinsic call, it is ignored and has no effect.

selec 32-bit integer array by reference (optional)

This parameter is provided for compatibility with MPE V. If it is present in
the intrinsic call, it is ignored and has no effect.

Discussion

The STACKDUMP'intrinsic writes a full dual stack trace to a previously opened file. The file
number of this file is passed to the intrinsic in the first byte of the filename parameter.

This intrinsic exists only in the compatibility mode library SL.PUB.SYS . No native mode to
compatibility mode switch stub is provided.

Condition Codes

CCE Request granted.

CCG Request denied. One of two possible problems causes this condition code.
First, an invalid address for the location of the filename parameter was
detected. Second, the file record size was not between 32 and 256 CM
words.

CCL Request denied. User does not have access to the file number passed in the
Chapter 3 69

System Debug Interface Commands and Intrinsics
STACKDUMP' Intrinsic
filename parameter.

Example

The following example is a code fragment from a Pascal/V program. It is a procedure which
is passed the file number of an already opened file. The procedure then uses the
STACKDUMP' intrinsic to have a stack trace printed to the specified file number. Note the use
of the Pascal $ALIAS$ directive in declaring the intrinsic.

PROCEDURE dump_stack_to_fnum(fnum : shortint);

 TYPE bit8 = 0..255;

 kludge_record = RECORD
 CASE integer OF
 0 : (byte_1 : bit8;
 byte_2 : bit8);

 1 : (pac : packed array[1..2] OF char);
 END;

 VAR kludge_var : kludge_record;

 procedure STACKDUMP_PRIME $alias 'stackdump'''$; intrinsic;

 BEGIN
kludge_var.byte_1 := fnum; { This assumes that the value

of FNUM }
 { is no bigger than 8 bits.
This is }

{ a valid assumption.
}

 stackdump_prime(kludge_var.pac); { Call STACKDUMP' to produce
the }

{ stack trace.
}
 END;
70 Chapter 3

System Debug Command Specifications :-Exit
4 System Debug Command
Specifications :-Exit

Specifications for the System Debug commands are presented in this chapter in
alphabetical order.

Window command specifications are presented in chapter 7, "System Debug Window
Commands."

System Debug tools share the same command set. A few commands, however, are
inappropriate in either DAT or Debug. These commands are clearly identified as "DAT
only" or "Debug only" on the top of the page that defines the command.

Debug only

The following Debug commands cannot be used in DAT:

B All forms of the break command

BD Breakpoint delete

BL Breakpoint list

C[ONTINUE] Continue

DATAB Data breakpoint

DATABD Data breakpoint delete

DATABL Data breakpoint list

F All forms of the FREEZE command

FINDPROC Dynamically loads NL library procedure

KILL Kills a process

LOADINFO Displays currently loaded program / libraries

LOADPROC Dynamically loads CM library procedure

M All forms of the modify command

S[S] Single step

TERM Terminal semaphore control

TRAP Arm/Disarm/List Traps

UF All forms of the UNFREEZE command
Chapter 4 71

System Debug Command Specifications :-Exit
:

DAT only

The following DAT commands cannot be used in Debug:

CLOSEDUMP Closes a dump file

DEBUG Enters Debug; used to debug DAT

DPIB Displays a portion of the Process Information Block

DPTREE Displays the process tree

DUMPINFO Displays dump file information

GETDUMP Reads in a dump tape to create a dump file

OPENDUMP Opens a dump file

PURGEDUMP Purges a dump file

:
The CI command - Access to the MPE/iX command interpreter (CI).

Syntax

 : [command]

The HPCICOMMAND intrinsic is used to access the MPE/iX command interpreter (CI).

Parameters

command The command to execute via the CI. If no command is given, a new version
(new process) of the CI is created.

Examples

 $nmdebug > :showtime
 WED, JAN 8, 1986, 1:32 PM

The above is typical use of the CI command.

 $nmdebug > :file t;dev=tape

See the note below.

Limitations, Restrictions

Semicolons normally separate commands for System Debug. When the ": " command is
entered at the System Debug prompt, however, the entire user command line is passed to
the CI. One exception is within macro bodies, where the command line is split at the
semicolons.
72 Chapter 4

System Debug Command Specifications :-Exit
=

Every time this command is used, Debug assumes ownership of the Control-Y handler
(even if it already owns it).

=
The calculator command.

Calculates the value of an expression and displays the result in the specified base.

Syntax

 = expression [base]

Parameters

expression The expression to evaluate.

base The desired representation mode for output values:

% or octal Octal representation

or decimal Decimal representation

$ or hexadecimal Hexadecimal representation

ASCII ASCII representation

This parameter can be abbreviated to a single character.

If omitted, the current output base is used. Refer to the SET command to
change the current output base.

String expressions (of four or fewer characters) are automatically coerced
into a numeric value when the display base of octal, decimal, or
hexadecimal is specified.

Examples

 %cmdebug > = 12 + #10 + $a, d
 #30

What is octal 12 (current input base) plus decimal 10 plus hex a, in decimal?

 %cmdebug > = 5 + (-2)
 %3

Negative values that follow immediately after an operator (+, -, *, /) must be placed within
parentheses.

 %cmdebug > = 'ABCD'
 'ABCD'
 %cmdebug > = 'ABCD',h
 $41424344
Chapter 4 73

System Debug Command Specifications :-Exit
=

In the second example, the string is coerced into a hexadecimal value.

 %cmdebug > = [dst 12.100] + [db+4], $
 $4820

The sum of the contents of data segment 12.100 plus the contents of DB+4, displayed in
hexadecimal.

 %cmdebug > = fopen
 SYS %22.4774

What is the start address of the CM procedure FOPEN? The address is returned as logical
code address.

 %cmdebug > = ?fopen
 SYS %22.5000

What is the entry point address of the CM procedure FOPEN?The question mark is used
(CM) to indicate entry point, rather than start address.

 $nmdebug > = [r12]
 $c04

The indirect contents of register 12.

 $nmdebug > = vtor (c.c0000000)
 $0020800
 $nmdebug > = rtov (20800)
 $c.c0000000

Translate a virtual address to a real address and then back again.

 $nmdebug > = 1 << 2
 $4

The value 1, left-shifted by two bits.

 $nmdebug > = $1234 band $ff
 $34

The value $1234, Bit-ANDed with the mask $ff.

 $nmdebug > = sendio
 SYS $a.$219ef0

What is the start address of NM procedure sendio ?

 $nmdebug > = ?sendio
 SYS $a.$217884

What is the address of the export stub for NM procedure sendio ? Note the different use of
"?" in CM and NM. In CM "?" is used for entry address, while in NM "?" is used for
export stub.

 $nmdebug > = strup("super") + 'duper'
 "SUPERduper"

The calculator accepts string expressions as well as numeric expressions.
74 Chapter 4

System Debug Command Specifications :-Exit
ABORT
Limitations, Restrictions

none

ABORT
Aborts/terminates the current System Debug process.

Syntax

 ABORT

Parameters

none

Examples

 %cmdebug > ABORT

 END OF PROGRAM
 :

Limitations, Restrictions

If Debug is entered using the DEBUG command at the CI, the ABORT command causes the
current session to be logged off.Use CONTINUE to exit from Debug in this case.

If the process holds a SIR (system internal resource) or is "critical," you are not allowed to
execute this command.

ALIAS
Defines an alias (alternative) name for a command or macro.

Syntax

 ALIAS name command

Aliases are useful for defining a new (shorter or longer) name for a command name or
macro name. Aliases have higher precedence than command or macro names, and they can
therefore be used to redefine (or conceal) commands or macros. When a new alias redefines
a command, a warning is generated, indicating that a command has been hidden.

User defined aliases, created with the ALIAS command, are classified as user aliases.
Chapter 4 75

System Debug Command Specifications :-Exit
ALIAS
Several predefined aliases (command abbreviations) are automatically generated, and are
classified as predefined aliases. Refer to the ALIASLIST and ALIASINIT commands.

Parameters

name The name of the alias (the new name to be used in place of another). Alias
names are restricted to 16 characters.

command The command name to be used when the alias name is encountered. This
can be any command or macro name. The command name is restricted to
32 characters.

Examples

 $nmdebug > printtableentrylength 6
 $200
 $nmdebug > alias tbl printtableentrylength
 $nmdebug > tbl 6
 $200

The above example assumes that a macro called printtableentrylength has been
defined, and a typical macro invocation is displayed. Since the macro name is long, and
difficult to enter, an alias named TBL is defined. The shorter alias name can now be used in
place of the longer macro name.

 $nmdebug > alias loop foreach
 $nmdebug > loop j '1 2 3' {wl j}
 $1
 $2
 $3

Create an alias named LOOP that is the same as the FOREACH command.

 $nmdat > macro concealexit { wl "type EXIT to exit."}
 $nmdat > alias e concealexit
 A command is hidden by this new alias. (warning #71)
 $nmdat > e
 type EXIT to exit.

In this example, the single character command e (for EXIT) is protected by an alias, that
conceals (hides) the original command. Note that a warning message is generated
whenever a command name is concealed by an alias definition.

 $nmdat > alias one two
 $nmdat > alias two three
 $nmdat > alias three one
 $nmdat > one
 Circular ALIAS error. Recursive ALIAS definition(s). (error
#2445)

It is legal for an alias (for example, one in the example above) to refer to another alias (two
in the example above), so long as the chain of aliases does not wrap back onto itself.
Recursive aliases are detected, and an error is generated.
76 Chapter 4

System Debug Command Specifications :-Exit
ALIASD[EL]
 $nmdat > alias showtime "wl time"
 $nmdat > aliasl showtime
 alias showtime wl time /* user
 $nmdat > showtime
 Unknown command. (error #6105)
 Command "showtime" was aliased to "wl time".

Note that alias command names are restricted to simple command or macro names. In the
above example, the command wl time was assumed to be the name of a command or
macro. Since no match was found in the command or macro table, an error is generated.
Macros should be used when more complex command lists or commands with parameters
are desired.

Related commands: ALIASINIT, ALIASL, ALIASD .

Limitations, Restrictions

A maximum of 60 alias definitions are currently supported.

The alias command (the replacement name) is limited to command and macro names; no
parameters or complex command lists are allowed. Refer to the showtime example above.

The ALIASD command cannot be aliased.

No testing is performed for invalid characters within the name or command parameters.

CAUTION The output format of all System Debug commands is subject to change
without notice. Programs that are developed to postprocess System Debug
output should not depend on the exact format (spacing, alignment, number of
lines, uppercase or lowercase, or spelling) of any System Debug command
output.

ALIASD[EL]
Deletes the specified alias(es).

Syntax

 ALIASD[EL] pattern [group]

Parameters

pattern The alias name(s) to be deleted.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.
Chapter 4 77

System Debug Command Specifications :-Exit
ALIASD[EL]
The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 `log2[0-9][0-9]4`

This parameter must be specified; no default is assumed.

group The type(s) of aliases that are deleted. Aliases are classified as USER or
PREDEFINED aliases. ALL refers to both types of aliases.

U[SER] User-defined aliases

P[REDEFINED] Predefined aliases

A[LL] Both user-defined and predefined aliases

By default, only USER aliases are deleted. In order to delete a predefined
alias, the group PREDEFINED or ALL must be specified.

Examples

 $nmdebug > aliasd loop
 $nmdebug >

Remove the user alias loop from the alias table.

 $nmdebug > aliasd s@ pre
 $nmdebug >

Delete all predefined aliases that begin with the letter "s".

Related commands: ALIAS, ALIASINIT, ALIASLIST .

Limitations, Restrictions

Numerous System Debug commands are implemented with aliases. If these predefined
aliases are deleted, commands you are accustomed to using may not be available. Refer to
the ALIASINIT command for a complete list of predefined aliases.
78 Chapter 4

System Debug Command Specifications :-Exit
ALIASINIT
ALIASINIT
Restores the predefined aliases, in case they have been deleted.

Syntax

 ALIASINIT

For a full listing of all predefined aliases, see the example below.

Parameters

none

Examples

 $nmdebug > aliasd @ all
 $nmdebug > aliasinit
 $nmdebug > aliasl @
 alias aliasdel aliasd /* predefined
 alias aliaslist aliasl /* predefined
 alias cmdlist cmdl /* predefined
 alias deletealias aliasd /* predefined
 alias deleteb bd /* predefined
 alias deleteerr errd /* predefined
 alias deletemac macd /* predefined
 alias deletevar vard /* predefined
 alias envlist envl /* predefined
 alias errlist errl /* predefined
 alias funclist funcl /* predefined
 alias history hist /* predefined
 alias listredo hist /* predefined
 alias loclist locl /* predefined
 alias macdel macd /* predefined
 alias maclist macl /* predefined
 alias maplist mapl /* predefined
 alias proclist procl /* predefined
 alias setalias alias /* predefined
 alias setenv env /* predefined
 alias seterr err /* predefined
 alias setloc loc /* predefined
 alias setmac mac /* predefined
 alias setvar var /* predefined
 alias showalias aliasl /* predefined
 alias showb bl /* predefined
 alias showcmd cmdl /* predefined
 alias showdatab databl /* predefined
 alias showenv envl /* predefined
Chapter 4 79

System Debug Command Specifications :-Exit
ALIASL[IST]
 alias showerr errl /* predefined
 alias showfunc funcl /* predefined
 alias showloc locl /* predefined
 alias showmac macl /* predefined
 alias showmap mapl /* predefined
 alias showset set /* predefined
 alias showsym syml /* predefined
 alias showvar varl /* predefined
 alias symfiles symf /* predefined
 alias symlist syml /* predefined
 alias trace tr /* predefined
 alias vardel vard /* predefined
 alias varlist varl /* predefined
 $nmdebug >

Delete all aliases (user-defined and predefined). ALIASINIT is used to restore the
predefined aliases. The entire set of predefined aliases is listed.

Related commands: ALIAS, ALIASD, ALIASL .

Limitations, Restrictions

A maximum of 60 alias definitions are currently supported. Therefore, the ALIASINIT
command may not be able to re-establish all of the predefined aliases if the number of
current user aliases is already close to the limit.

ALIASL[IST]
Lists the currently defined aliases.

Syntax

 ALIAS[LIST] [pattern] [group]

Parameters

pattern The alias name(s) to be displayed.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.
80 Chapter 4

System Debug Command Specifications :-Exit
ALIASL[IST]
The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 `log2[0-9][0-9]4`

By default, all alias names are listed, subject to the group specification
described below.

group The type of aliases that are to be listed. Aliases are classified as USER or
PREDEFINED aliases. ALL refers to both types of alias.

U[SER] User-defined aliases

P[REDEFINED] Predefined aliases

A[LL] Both user-defined and predefined aliases

By default, ALL aliases are deleted. In order to restrict the listing to a
single group of aliases, the group USER or PREDEFINED must be specified.

Examples

 $nmdebug > aliasl del@ p
 alias deletealias aliasd /* predefined
 alias deleteb bd /* predefined

 alias deleteerr errd /* predefined
 alias deletemac macd /* predefined
 alias deletevar vard /* predefined

List all predefined aliases that start with "del".

 $nmdebug > alias quit exit
 $nmdebug > alias q quit
 $nmdebug > alias bye exit
 $nmdebug > aliasl ,user
 alias bye exit /* user
 alias q quit /* user
 alias quit exit /* user

Define three other command aliases that can be used in place of the EXIT command and
list them.

Related commands: ALIAS, ALIASD, ALIASINIT .
Chapter 4 81

System Debug Command Specifications :-Exit
B (break)
Limitations, Restrictions

none

B (break)
Debug only

Privileged Mode: BA, BAX, BS

Break. Sets a breakpoint.

Syntax
 B logaddr [: pin | @] [count] [loud] [cmdlist] Program
 BG logaddr [: pin | @] [count] [loud] [cmdlist] Group library
 BP logaddr [: pin | @] [count] [loud] [cmdlist] Account library
 BLG logaddr [: pin | @] [count] [loud] [cmdlist] Logon group lib
 BLP logaddr [: pin | @] [count] [loud] [cmdlist] Logon account lib
 BS logaddr [: pin | @] [count] [loud] [cmdlist] System library

 BU fname logaddr [: pin | @] [count] [loud] [cmdlist] User library

 BV virtaddr [: pin | @] [count] [loud] [cmdlist] Virtual address

 BA cmabsaddr [: pin | @] [count] [loud] [cmdlist] Absolute CST
 BAX cmabsaddr [: pin | @] [count] [loud] [cmdlist] Absolute CSTX

The various forms of the BREAK command are used to set process-local and global
(system-wide) breakpoints. Only users with privileged mode (PM) capability are allowed to
set global breakpoints. Users without PM capability may only specify PINs that are
descendant processes (any generation) of the current PIN.

Setting a breakpoint for another process is implemented such that it appears the target
process set the breakpoint itself. Therefore, when the target process encounters the
breakpoint, it enters Debug with its output directed to the LDEV associated with the
target process.

If a breakpoint is set in CM code that has been translated by the Object Code Translator
(OCT), Debug automatically sets a NM breakpoint in the closest previous corresponding
translated code node point. If more than one CM breakpoint is set within a given node,
only one NM breakpoint is set; however, a counter is incremented so the number of
corresponding CM breakpoints can be tracked. If a NM breakpoint is set in translated
code, no corresponding CM emulated breakpoint is set. Refer to appendix C for a
discussion of CM object code translation, node points, and breakpoints in translated CM
code.
82 Chapter 4

System Debug Command Specifications :-Exit
B (break)
Parameters

logaddr A full logical code address (LCPTR) specifies three necessary items:

• The logical code file (PROG, GRP, SYS, , and so on)

• NM: the virtual space ID number (SID) CM: the logical segment
number

• NM: the virtual byte offset within the space CM: the word offset within
the code segment

Logical code addresses can be specified in various levels of detail:

• As a full logical code pointer (LCPTR):

B procname+20 procedure name lookups return LCPTRs

B pw+4 predefined ENV variables of type LCPTR

B SYS(2.200) explicit coercion to a LCPTR type

• As a long pointer (LPTR):

B 23.2644 sid.offset or seg.offset

The logical file is determined based on the command suffix, for example:

B implies PROG

BG implies GRP

BS implies SYS

• As a short pointer (SPTR):

B 1024 offset only

For NM, the short pointer offset is converted to a long pointer using the
function STOLOG, which looks up the SID of the loaded logical file. This is
different from the standard short to long pointer conversion, STOL, which
is based on the current space registers (SRs).

For CM, the current executing logical segment number and the current
executing logical file are used to build a LCPTR.

The search path used for procedure name lookups is based on the
command suffix letter:

B Full search path:

NM: PROG, GRP, PUB, USER(s), SYS

CM: PROG, GRP, PUB, LGRP, LPUB, SYS

BG Search GRP, the group library.

BP Search PUB, the account library.

BLG Search LGRP, the logon group library.
Chapter 4 83

System Debug Command Specifications :-Exit
B (break)
BLP Search LPUB, the logon account library.

BS Search SYS, the system library.

BU Search USER, the user library.

For a full description of logical code addresses, refer to the section "Logical
Code Addresses" in chapter 2.

fname The file name of the NM user library. Since multiple NM libraries can be
bound with the XL= option on a RUN command,

 : run nmprog; xl=lib1,lib2.testgrp,lib3

it is necessary to specify the desired NM USER library. For example,

 BU lib1 204c
 BU lib2.testgrp test20+1c0

If the file name is not fully qualified, the following defaults are used:

Default account: the account of the program file.

Default group: the group of the program file.

virtaddr The virtual address of NM code.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

Short pointers are implicitly converted to long pointers using the STOL
(short to long) function.

cmabsaddr A full CM absolute code address specifies three necessary items:

• Either the CST or the CSTX.

• The absolute code segment number.

• The CM word offset within the code segment.

Absolute code addresses can be specified in two ways:

• As a long pointer (LPTR)

BA 23.2644 Implicit CST 23.2644

BAX 5.3204 Implicit CSTX 5.3204

• As a full absolute code pointer (ACPTR)

BA CST(2.200) Explicit CST coercion

BAX CSTX(2.200) Explicit CSTX coercion

BAX logtoabs(prog(1.20)) Explicit absolute conversion

The search path used for procedure name lookups is based on the
command suffix letter:

BA GRP, PUB, LGRP, LPUB, SYS

BAX PROG
84 Chapter 4

System Debug Command Specifications :-Exit
B (break)
pin | @ The process identification number (PIN) of the process for which the
breakpoint is to be set. If omitted, the breakpoint is set for the current
process. The character "@" can be used to set a global breakpoint at which
all processes stop.

count Count has a twofold meaning: it specifies a break every nth time the
breakpoint is encountered, and it is used to set permanent/temporary
breakpoints. If count is positive, the breakpoint is permanent. If count is
negative, the breakpoint is temporary and is deleted as soon as the process
breaks at it. For example, a count of 4 means break every fourth time the
breakpoint is encountered; a count of -4 means break on the fourth time,
and immediately delete the breakpoint. If count is omitted, +1 is used,
which breaks every time, permanently.

loud Either LOUDor QUIET. If QUIET is selected the debugger does not print out
a message when the breakpoint is hit. This is useful for performing a
command list a great number of times before stopping without being
inundated with screen after screen of breakpoint messages. These
keywords may be abbreviated as desired. The default is LOUD.

cmdlist A single Debug command or a list of Debug commands that are executed
immediately when the breakpoint is encountered. Command lists for
breakpoints are limited to 80 characters. (If this is too few characters,
write a macro and have the command list invoke the macro.) Cmdlist has
the form:

 CMD1
 { CMD1; CMD2; CMD3; ... }

NM Code Examples

 $nmdebug > loadinfo
 nm PROG GRADES.DEMO.TELESUP SID = $115
 parm = #0 info = ""
 nm GRP XL.DEMO.TELESUP SID = $118
 nm USER XL.PUB.SYS SID = $f4
 nm SYS NL.PUB.SYS SID = $a
 cm SYS SL.PUB.SYS

Show the list of loaded files and the space into which they are loaded.

 $nmdebug > b PROGRAM+270
 added: NM [1] PROG 115.00006a8c PROGRAM+$270

Set a breakpoint at the procedure PROGRAM plus an offset of $270. This corresponds to a
statement in the outer block of the program being debugged. The name and offset were
determined by looking at the statement map produced by the Pascal compiler (all language
compilers produce similar maps). The expression evaluator found the procedure PROGRAM
in the program file.

 $nmdebug > b 6a90
 added: NM [2] PROG 115.00006a90 PROGRAM+$274

Break in the program file at offset $6a90. Remember that when only an offset is specified
Chapter 4 85

System Debug Command Specifications :-Exit
B (break)
as a logical address for this command, the space (SID) for the program file is assumed. A
STOLOG conversion (not STOL) with the "prog" selector is used to accomplish this.

 $nmdebug > b processstudent,,, {wl "Processing #" r26:"d";c}
 added: NM [3] PROG 115.00005d24 processstudent

Set a breakpoint at the procedure called processstudent and provide a command list to
be executed each time the breakpoint is encountered. In this example, we know that the
student number being processed is passed to the routine in general register 26. Each time
the routine is entered, Debug prints the student number and automatically continue
execution of the process.

 $nmdebug > b nmaddr("processstudent.highscore"),-1
 added: NM T[4] PROG 115.00005b50 processstudent.highscore

Set a breakpoint at the nested procedure highscore that is contained in the level 1
procedure processstudent . The NMADDRfunction is used to specify the breakpoint address
since the expression parent_proc .nested_proc would not have been recognized by the
expression evaluator (a.b implies space .offset , for example, a long pointer). This
breakpoint is a temporary breakpoint, which is automatically deleted after it is
encountered. T[4] indicates a temporary breakpoint with index number 4.

 $nmdebug > b average
 added: NM [5] GRP 118.00015c88 average

 $nmdebug > bg average+4
 added: NM [6] GRP 118.00015c8c average+$4

 $nmdebug > b grp(average)+8
 added: NM [7] GRP 118.00015c90 average+$8

 $nmdebug > bs average
 Missing or invalid logical code address. (error #1741)

Set a breakpoint at the procedure average . Notice that the routine was found in the group
(GRP) library. The B command starts searching for symbol names in the program file and
continues through all of the loaded library files until a match is found. The second example
uses the BG command to explicitly restrict the search for symbol names to the group
library. The third example shows how the coercion function GRP is used to restrict
procedure name lookups to the group library. In the fourth example above, the BS
command is used to restrict the search for procedure names to the system library. The
routine average was not found in the system library, and so an error was generated.

 $nmdebug > dc pc
 GRP $118.15c88
 00015c88 average 0000400e BREAK (nmdebug bp)

 $nmdebug > wl r2
 $15c77

 $nmdebug > wl sr4
 $118

 $nmdebug > b r2
86 Chapter 4

System Debug Command Specifications :-Exit
B (break)
 The virtual address specified does not exist. (error #1407)

 $nmdebug > errl
 $28: The virtual address specified does not exist. (error #1407)
 $28: The virtual address does not exist. (error #6017)
 $28: VADDR= 115.15c74
 $28: A pointer was referenced that contained a virtual address outside
 of the bounds of an object.

The above example starts by showing that Debug has stopped in the group library in the
average procedure. The B command was used to set a breakpoint at the address specified
in r2, and this caused the command to fail. Recall that the B command assumes that the
breakpoint is to be set in the program file when only an offset is provided. The SID for the
program file ($115) is retrieved, and a long pointer is generated by performing a STOLOG
conversion. The resulting address ($115.$15c74) does not exist in the program file; thus an
error is generated.

 $nmdebug > bg r2
 added: NM [3] GRP 118.00015c74 ?average+$8

 $nmdebug > bd 3
 deleted: NM [3] GRP 118.00015c74 ?average+$8

The BG command is used to set a breakpoint at the offset indicated by the contents of
general register 2. This command assumes the breakpoint is to be set in the group library.
The SID for the group library ($118) is retrieved, and a long pointer is generated by
performing a STOLOG conversion. The resulting address ($118.$15c74) is a valid group
library virtual address, and so the breakpoint is set. The address corresponds to the export
stub for the average procedure. Refer to the PA-RISC Procedure Calling Conventions
Reference Manual for an explanation of the use and purpose of export stubs.

 $nmdebug > bv r2
 added: NM [3] GRP 118.00015c74 ?average+$8

 $nmdebug > bd 3
 deleted: NM [3] GRP 118.00015c74 ?average+$8

The BV command is used to set a breakpoint at the offset indicated by general register 2.
Unlike the above example, the offset in r2 is converted to a long pointer by performing a
STOL conversion. The resulting address (sr4.r2 = $118.$15c74) is a valid group library
virtual address, and so the breakpoint is set. A full long pointer is always valid, so the
command b 118.r2 also results in the breakpoint being set.

 $nmdebug > b P_INIT_HEAP
 added: NM [8] USER f4.0012f2b8 p_heap:P_INIT_HEAP

 $nmdebug > bu xl.pub.sys U_INIT_TRAPS
 added: NM [9] USER f4.001f9188 U_INIT_TRAPS

The above example sets a breakpoint at the procedure P_INIT_HEAP . The routine was
found in one of the loaded user libraries (this process only has one loaded user library).
The BU command is used in the second example to specify which user library to search
when looking for procedure names. The U_INIT_TRAPS routine was found in the user
library XL.PUB.SYS and a breakpoint was set.
Chapter 4 87

System Debug Command Specifications :-Exit
B (break)
 $nmdebug > bs ?FREAD,#100,q,{wl "Read another 100 records";c}
 added: NM |10| SYS a.0074aa34 FREAD

Set a breakpoint at the FREAD intrinsic. Every #100 times the routine is called, stop and
print out a message. The QUIET option is specified so this operation produces no extra
terminal output. The vertical bars in the breakpoint notation indicates that the process
does not stop the next time the breakpoint is encountered, since the count is not yet
exhausted.

 $nmdebug > bs trap_handler:@,,,{trace ,ism}
 added: NM @[1] SYS a.00668684 trap_handler

Set a system-wide breakpoint in the trap handler. This routine is in the system NL. When
the breakpoint is hit, perform a stack trace. The "@" indicates that the breakpoint is a
global breakpoint.

 $nmdebug > b pw+4
 added: NM [11] PROG $115.00006984 initstudentrecord+14

Break at the address specified by adding 4 to the address of the first line in the program
window. In this case, the program window must have been aimed at
initstudentrecord+10 .

 $nmdebug > bl
 NM [1] PROG 115.00006a8c PROGRAM+$270
 NM [2] PROG 115.00006a90 PROGRAM+$274
 NM [3] PROG 115.00005d24 processstudent
 cmdlist: {wl "Processing #" r26:"d";c}
 NM T[4] PROG 115.00005b50 processstudent.highscore
 NM [5] GRP 118.00015c88 average
 NM [6] GRP 118.00015c8c average+$4
 NM [7] GRP 118.00015c90 average+$8
 NM [8] USER f4.0012f2b8 p_heap:P_INIT_HEAP
 NM [9] USER f4.001f9188 U_INIT_TRAPS
 NM |10| SYS a.0074aa34 FREAD
 [QUIET] count: 0/64 cmdlist: {wl "Read another 100 records";c}
 NM [11] PROG $115.00006984 initstudentrecord+14
 NM @[1] SYS a.00668684 trap_handler
 [QUIET] cmdlist: {trace ,ism}

Now list all of the breakpoints just set above.

CM Code Examples

 %cmdebug > loadinfo
 cm PROG GRADES.DEMOCM.TELESUP
 parm = #0 info = ""
 cm GRP SL.DEMOCM.TELESUP
 cm SYS SL.PUB.SYS
 nm SYS NL.PUB.SYS SID = $a

Show the list of all currently loaded files.

 %cmdebug > b ?processstudent
 added: CM [1] PROG % 0.1665 ?PROCESSSTUDENT

Set a breakpoint at the entry point (indicated by the ? character) of the procedure
88 Chapter 4

System Debug Command Specifications :-Exit
B (break)
PROCESSSTUDENT. The expression evaluator found the procedure in the program file in
logical segment zero, at an offset of %1665 CM words from the start of the segment
procedure.

 %cmdebug > b 0.1670
 added: CM [2] PROG % 0.1670 PROCESSSTUDENT+%263

Set a breakpoint %1670 CM words into the program file's logical segment zero. That
address corresponds to the %263rd CM word from the start of the PROCESSSTUDENT
procedure. Note that this command sets a breakpoint in the program file, no matter where
the process was stopped (in the group library for example), since the B command implies
the program file.

 %cmdebug > b 1672
 added: CM [3] PROG % 0.1672 PROCESSSTUDENT+%265

Set a breakpoint %1672 CM words into the program file. The logical segment number from
the current value of CMPC is used as the segment number for this command.

 %cmdebug > b processstudent+14
 added: CM [4] PROG % 0.1421 PROCESSSTUDENT+%14

Set a breakpoint %14 CM words into the start of the procedure PROCESSSTUDENT. This
address corresponds to the first statement of the nested procedure HIGHSCORE which is
contained in the level 1 procedure PROCESSSTUDENT. The correct offset to use for nested
procedures is determined by looking at the statement map produced by the Pascal
compiler. (All language compilers produce similar maps.) Unfortunately, information about
nested procedure names and size is not available for CM programs.

 %cmdebug > b ob'+40,-3
 added: CM T|5| PROG % 0.40 OB'+%40

Set a breakpoint %40 words into the procedure ob' (the outer block of the Pascal program
being run). The third time the breakpoint is encountered, stop in Debug and delete the
breakpoint. The notation T|5| indicates a temporary breakpoint with index number 2. The
vertical bars indicate that the process does not stop the next time the breakpoint is
encountered, since the count is not yet exhausted.

 %cmdebug > b ?average
 added: CM [6] GRP % 0.13 ?AVERAGE

 %cmdebug > bg ?average+4
 added: CM [7] GRP % 0.17 AVERAGE+%17

 %cmdebug > b grp(0.20)
 added: CM [10] GRP % 0.20 AVERAGE+%20

Set a breakpoint at the entry point to the procedure average . Notice that the procedure
was found in the group (GRP) library. The B command starts searching for symbol names in
the program file and continues through all of the loaded library files until a match is found.
The second example uses the BG command to explicitly restrict the search for symbol
names to the group library. The third example shows how the coercion function GRPis used
to specify a logical segment in the group library rather than the program file.

 %cmdebug > bs ?fwrite,#100,q,{wl "Another #100 records written";c}
Chapter 4 89

System Debug Command Specifications :-Exit
B (break)
 added: CM |11| SYS % 27.4727 ?FWRITE
 NM |1| TRANS 30.00737fb4 SUSER1:?FWRITE

The above example sets a breakpoint at the entry point of the FWRITE intrinsic which is
located in the system library SL.PUB.SYS . Every #100 times the routine is called, stop and
print out a message. The QUIET option is specified so this operation produces no extra
terminal output. SL.PUB.SYS has been translated with the Object Code Translator (OCT),
and so Debug automatically sets a breakpoint in the translated native mode code. Refer to
appendix C for a discussion of CM object code translation, node points, and breakpoints in
translated CM code.

 %cmdebug > bl
 CM [1] PROG % 0.1665 ?PROCESSSTUDENT SEG' (CSTX 1)
 CM [2] PROG % 0.1670 PROCESSSTUDENT+%263 SEG' (CSTX 1)
 CM [3] PROG % 0.1672 PROCESSSTUDENT+%265 SEG' (CSTX 1)
 CM [4] PROG % 0.1421 PROCESSSTUDENT+%14 SEG' (CSTX 1)
 CM T|5| PROG % 0.40 OB'+%40 SEG' (CSTX 1)
 count: 0/3
 CM [6] GRP % 0.13 ?AVERAGE SEG' (CST 112)
 CM [7] GRP % 0.17 AVERAGE+%17 SEG' (CST 112)
 CM [10] GRP % 0.20 AVERAGE+%20 SEG' (CST 112)
 CM |11| SYS % 27.4727 ?FWRITE SUSER1 (CST 30)
 [QUIET] count: 0/144 cmdlist: {wl "Another #100 records written";c}
 Corresponding NM bp = 1

Now list the breakpoints that were set in the above examples.

Translated Code Examples

 %cmdebug > bg ?average
 added: CM [1] GRP % 0.13 ?AVERAGE
 NM [1] TRANS 3d.0016962c SEG':?AVERAGE

Set a breakpoint in the group library at the entry point to the AVERAGE procedure. The
group library and program file have been translated by the Object Code Translator (OCT).
Debug determined that the code is translated and thus set a CM breakpoint in the
emulated code and a NM breakpoint in the translated code. Refer to appendix C for a
discussion of CM object code translation, node points, and breakpoints in translated CM
code.

 %cmdebug > b ?processstudent
 added: CM [2] PROG % 0.1665 ?PROCESSSTUDENT
 NM [2] TRANS 48.0000a610 SEG':?PROCESSSTUDENT

Set a breakpoint at the entry point to the PROCESSSTUDENT procedure. As in the above
example, the code is translated, and so Debug sets two breakpoints.

 %cmdebug > b cmpc
 added: CM [3] PROG % 0.1672 PROCESSSTUDENT+%265
 NM [3] TRANS 48.0000a66c SEG':PROCESSSTUDENT+%265

 %cmdebug > b cmpc+1
 added: CM [4] PROG % 0.1673 PROCESSSTUDENT+%266
 NM [3] TRANS 48.0000a66c SEG':PROCESSSTUDENT+%265
90 Chapter 4

System Debug Command Specifications :-Exit
B (break)
Set a breakpoint at the current CM program counter. Both the CM emulated and NM
translated breakpoints are set. Next, set a breakpoint at the instruction following the
current CM program counter. Again, both the CM and NM breakpoints are set. Note that
the index number for the NM breakpoint is the same. This is because the two CM
breakpoints are contained in the same node. Appendix C provides a description of node
points.

 %cmdebug > nm
 $nmdebug > b 20.b940,#100,,{wl "Read another 100 records";c}
 added: NM |4| TRANS $20.b940 FSEG:?FREAD

Break in space 20 at the indicated offset. Every 100 times the routine is called, stop and
print out a message. As with all breakpoint commands, the address typed in is converted
to a logical address. In this example, the long to logical (LTOLOG) routine is used by the
debugger. Space 20 does not correspond to any of the native mode libraries or the program
file. It is, however, found to correspond to a translated body of CM code (in this instance,
the FREAD intrinsic). Note that the corresponding CM emulator breakpoint is not set by
Debug.

 %cmdebug > bl
 CM [1] GRP % 0.13 ?AVERAGE SEG' (CST 112)
 Corresponding NM bp = 1
 CM [2] PROG % 0.1665 ?PROCESSSTUDENT SEG' (CSTX 1)
 Corresponding NM bp = 2
 CM [3] PROG % 0.1672 PROCESSSTUDENT+%265 SEG' (CSTX 1)
 Corresponding NM bp = 3
 CM [4] PROG % 0.1673 PROCESSSTUDENT+%266 SEG' (CSTX 1)
 Corresponding NM bp = 3

 %cmdebug > nm
 $nmdebug > bl
 NM [1] TRANS 3d.0016962c SEG':?AVERAGE
 CM Ref count = 1
 NM [2] TRANS 48.0000a610 SEG':?PROCESSSTUDENT
 CM Ref count = 1
 NM [3] TRANS 48.0000a66c SEG':PROCESSSTUDENT+%265
 CM Ref count = 2
 NM [4] TRANS 20.0000b940 FSEG:?FREAD
 count: 0/64 cmdlist: {wl "Read another 100 records";c}
 CM Ref count = 1

Now list the breakpoints that have been set.

Limitations, Restrictions

You cannot set a breakpoint on a gateway page.

If breakpoints are set for a process other than the current PIN, Debug has no knowledge of
the procedure names for the specified process unless the specified process is running the
exact same program file.

Having breakpoints set causes slight process overhead. Arming a global breakpoint causes
all processes to suffer this overhead.

Breakpoints are ignored in the following circumstances:
Chapter 4 91

System Debug Command Specifications :-Exit
BD
• While on the ICS.

• While disabled.

• In a "dying" process. (See the DYING_DEBUG variable in the ENV command discussion.)

• In a job. (See the JOB_DEBUG variable in the ENV command discussion.)

Breakpoints set in CM translated code (which has been optimized) may not always be hit.
In some cases, the optimizer saves an instruction by targeting a branch to the delay slot
immediately following a node point. As a result, a breakpoint that was set at the node
point is not hit.

CAUTION Setting global breakpoints must be done with extreme care, and only when
debugging requires it. Do not try this on a system under use. A global
breakpoint may cause processes to suspend unexpectedly.

BD
Debug only

Breakpoint delete. Deletes a breakpoint entry specified by index number.

Syntax

 BD [number | @ [: pin | @]]

The BD command is used to delete process-local breakpoints and global (system-wide)
breakpoints. Only users with privileged mode (PM) capability are allowed to view and
delete global breakpoints. Users without PM capability may only specify PINs that are
descendant processes (any generation) of the current PIN.

When an NM breakpoint set in translated code is deleted, all corresponding CM
breakpoints are automatically removed. When a CM breakpoint is deleted, the CM
reference counter in the corresponding NM breakpoint (if any) is decremented. If the
reference count reaches zero, the NM breakpoint is deleted. Refer to appendix C for a
discussion of CM object code translation, node points, and breakpoints in translated CM
code.

Parameters

number | @ The index number of the breakpoint entry that is to be deleted. The
character "@" can be used to delete all breakpoint entries.

If the index number is omitted, Debug displays each breakpoint, one at a
time, and asks the user if it should be deleted (Y/N?). The following
responses are recognized:

Y[E[S]] Yes, remove the breakpoint.
92 Chapter 4

System Debug Command Specifications :-Exit
BD
YESany_text Yes, remove the breakpoint.

N[O] No, do not remove the breakpoint.

NOany_text No, do not remove the breakpoint.

If any other response is given, the default value NO is assumed.

pin | @ The PIN for the process whose breakpoint entry is to be deleted. Typically
this is omitted, and pin defaults to the current process.

The character "@" can be used to specify that a global breakpoint is to be
deleted.

Examples
 $nmdebug > bl
 NM [1] PROG 115.00006a8c PROGRAM+$270
 NM [2] PROG 115.00006a90 PROGRAM+$274
 NM [3] PROG 115.00005d24 processstudent
 cmdlist: {wl "Processing #" r26:"d";c}
 NM T[4] PROG 115.00005b50 processstudent.highscore
 NM [5] GRP 118.00015c88 average
 NM [6] GRP 118.00015c8c average+$4
 NM [7] GRP 118.00015c90 average+$8
 NM [8] USER f4.0012f2b8 p_heap:P_INIT_HEAP
 NM [9] USER f4.001f9188 U_INIT_TRAPS
 NM |10| SYS a.0074aa34 FREAD
 [QUIET] count: 0/64 cmdlist: {wl "Read another 100 records";c}
 NM [11] PROG $115.00006984 initstudentrecord+14
 NM @[1] SYS a.00668684 trap_handler
 [QUIET] cmdlist: {trace ,ism}

Display all breakpoints. Process-local breakpoints are always displayed first, followed by
all global breakpoints.

 $nmdebug > bd 2
 deleted: NM [2] PROG 115.00006a90 PROGRAM+$274

Delete process-local breakpoint number 2.

 $nmdebug > bd
 NM [1] PROG 115.00006a8c PROGRAM+$270 (Y/N) ?
 NM [3] PROG 115.00005d24 processstudent (Y/N) ? y
 NM T[4] PROG 115.00005b50 processstudent.highscore (Y/N) ?
 NM [5] GRP 118.00015c88 average (Y/N) ?
 NM [6] GRP 118.00015c8c average+$4 (Y/N) ? YES
 NM [7] GRP 118.00015c8c average+$4 (Y/N) ? YES
 NM [8] USER f4.0012f2b8 p_heap:P_INIT_HEAP (Y/N) ? YES
 NM [9] USER f4.001f9188 U_INIT_TRAPS (Y/N) ? YES
 NM |10| SYS a.0074aa34 FREAD (Y/N) ?
 NM [11] PROG $115.00006984 initstudentrecord+14 (Y/N) y
 NM @[1] SYS a.00668684 trap_handler (Y/N) ?

Display each breakpoint (local first, then global), then ask the user if the breakpoint
should be deleted. In this example, process-local breakpoints numbers 3, 6, 7, 8, and 9 are
removed.

 $nmdebug > bl
Chapter 4 93

System Debug Command Specifications :-Exit
BD
 NM [1] PROG 115.00006a8c PROGRAM+$270
 NM T[4] PROG 115.00005b50 processstudent.highscore
 NM [5] GRP 118.00015c88 average
 NM |10| SYS a.0074aa34 FREAD
 [QUIET] count: 0/64 cmdlist: {wl "Read another 100 records";c}
 NM @[1] SYS a.00668684 trap_handler
 [QUIET] cmdlist: {trace ,ism}

List the remaining breakpoints.

 $nmdebug > bd 1:@
 deleted: NM @[1] SYS a.00668684 trap_handler

Delete global breakpoint number 1.

 $nmdebug > bd @
 deleted: NM [1] PROG 115.00006a8c PROGRAM+$270
 deleted: NM T[4] PROG 115.00005b50 processstudent.highscore
 deleted: NM [5] GRP 118.00015c88 average
 deleted: NM |10| SYS a.0074aa34 FREAD
 [QUIET] count: 0/64 cmdlist: {wl "Read another 100 records";c}

Delete all remaining process-local breakpoints.

Translated Code Examples
 %cmdebug > bl
 CM [1] GRP % 0.13 ?AVERAGE SEG' (CST 112)
 Corresponding NM bp = 1
 CM [2] PROG % 0.1665 ?PROCESSSTUDENT SEG' (CSTX 1)
 Corresponding NM bp = 2
 CM [3] PROG % 0.1672 PROCESSSTUDENT+%265 SEG' (CSTX 1)
 Corresponding NM bp = 3
 CM [4] PROG % 0.1673 PROCESSSTUDENT+%266 SEG' (CSTX 1)
 Corresponding NM bp = 3

 %cmdebug > nm
 $nmdebug > bl
 NM [1] TRANS 3d.0016962c SEG':?AVERAGE
 CM Ref count = 1
 NM [2] TRANS 48.0000a610 SEG':?PROCESSSTUDENT
 CM Ref count = 1
 NM [3] TRANS 48.0000a66c SEG':PROCESSSTUDENT+%265
 CM Ref count = 2
 NM [4] TRANS 20.0000b940 FSEG:?FREAD
 count: 0/64 cmdlist: {wl "Read another 100 records";c}
 CM Ref count = 1

Show all of the CM and NM breakpoints. Notice that all of the native mode breakpoints
are set in translated code and correspond to the emulated CM code breakpoints.

 $nmdebug > bd 1
 deleted: CM [1] GRP $ 0.b ?AVERAGE
 deleted: NM [1] TRANS 3d.0016962c SEG':?AVERAGE
 CM Ref count = 0

Delete NM breakpoint number 1. The corresponding CM breakpoint is also deleted. If
more than one CM breakpoint corresponds to the NM breakpoint, then all of the CM
breakpoints are deleted.
94 Chapter 4

System Debug Command Specifications :-Exit
BL
 $nmdebug > cm
 %cmdebug > bd 2
 deleted: NM [2] TRANS 48.0000a610 SEG':?PROCESSSTUDENT
 CM Ref count = 0
 deleted: CM [2] PROG % 0.1665 ?PROCESSSTUDENT

Delete CM breakpoint number 2. The corresponding NM breakpoint is also deleted.

 %cmdebug > bd 3
 deleted: NM [3] TRANS 48.0000a66c SEG':PROCESSSTUDENT+%265
 CM Ref count = 1
 deleted: CM [3] PROG % 0.1672 PROCESSSTUDENT+%265

Delete CM breakpoint number 3. In this example, two CM breakpoints are mapped to one
NM breakpoint (indicated by the reference counter). The corresponding NM breakpoint
has its CM reference count decremented by one. When the reference count is zero, the NM
breakpoint is deleted.

 %cmdebug > bl
 CM [4] PROG % 0.1673 PROCESSSTUDENT+%266 SEG' (CSTX 1)
 Corresponding NM bp = 3

 %cmdebug > nm
 $nmdebug > bl
 NM [3] TRANS 48.0000a66c SEG':PROCESSSTUDENT+%265
 CM Ref count = 1
 NM [4] TRANS 20.0000b940 FSEG:?FREAD
 count: 0/64 cmdlist: {wl "Read another 100 records";c}
 CM Ref count = 1

List the remaining CM and NM breakpoints.

Limitations, Restrictions

If breakpoints are listed for a process other than the current PIN, Debug has no knowledge
of the procedure names associated with the addresses unless the specified process is
running the exact same program file.

BL
Debug only

Breakpoint list. Lists breakpoint entries, specified by index number.

Syntax
 BL [number | @ [: pin | @]]

The BL command is used to list process-local and global (system-wide) breakpoints. Global
breakpoints are always displayed after the process-local breakpoints. Users without
privileged mode (PM) capability are shown only the list of process-local breakpoints. Users
Chapter 4 95

System Debug Command Specifications :-Exit
BL
without PM capability may only specify PINs that are descendant processes (any
generation) of the current PIN.

Parameters

number The index number of the breakpoint entry to display. The symbol "@" can
be used to display all entries. If omitted, then all entries are displayed.

pin The PIN for the process whose breakpoint entries are to be displayed.
Typically this is omitted, and pin defaults to the current process.

The character "@" can be used to indicate global breakpoint(s).

Refer to appendix C for a discussion of CM object code translation, node points, and
breakpoints in translated CM code.

Examples
 $nmdebug > bl
 NM [1] PROG 115.00006a8c PROGRAM+$270
 NM [2] PROG 115.00006a90 PROGRAM+$274
 NM [3] PROG 115.00005d24 processstudent
 cmdlist: {wl "Processing #" r26:"d";c}
 NM T[4] PROG 115.00005b50 processstudent.highscore
 NM [5] GRP 118.00015c88 average
 NM [6] GRP 118.00015c8c average+$4
 NM [7] GRP 118.00015c90 average+$8
 NM [8] USER f4.0012f2b8 p_heap:P_INIT_HEAP
 NM [9] USER f4.001f9188 U_INIT_TRAPS
 NM |10| SYS a.0074aa34 FREAD
 [QUIET] count: 0/64 cmdlist: {wl "Read another 100 records";c}
 NM [11] PROG $115.00006984 initstudentrecord+14
 NM @[1] SYS a.00668684 trap_handler
 [QUIET] cmdlist: {trace ,ism}

Display all breakpoints. Process-local breakpoints are always displayed first, followed by
all global breakpoints. See the Conventions page for a description of breakpoint notation.

 $nmdebug > bl 3
 NM [3] PROG 115.00005d24 processstudent
 cmdlist: {wl "Processing #" r26:"d";c}

Display process-local breakpoint number 3.

 $nmdebug > bl :@
 NM @[1] SYS a.00668684 trap_handler
 [QUIET] cmdlist: {trace ,ism}

List all of the global breakpoints.

Translated Code Examples
 %cmdebug > bl
 CM [1] GRP % 0.13 ?AVERAGE SEG' (CST 112)
 Corresponding NM bp = 1
 CM [2] PROG % 0.1665 ?PROCESSSTUDENT SEG' (CSTX 1)
 Corresponding NM bp = 2
96 Chapter 4

System Debug Command Specifications :-Exit
CLOSEDUMP
 CM [3] PROG % 0.1672 PROCESSSTUDENT+%265 SEG' (CSTX 1)
 Corresponding NM bp = 3
 CM [4] PROG % 0.1673 PROCESSSTUDENT+%266 SEG' (CSTX 1)
 Corresponding NM bp = 3

 %cmdebug > nm
 $nmdebug > bl
 NM [1] TRANS 3d.0016962c SEG':?AVERAGE
 CM Ref count = 1
 NM [2] TRANS 48.0000a610 SEG':?PROCESSSTUDENT
 CM Ref count = 1
 NM [3] TRANS 48.0000a66c SEG':PROCESSSTUDENT+%265
 CM Ref count = 2
 NM [4] TRANS 20.0000b940 FSEG:?FREAD
 count: 0/64 cmdlist: {wl "Read another 100 records";c}
 CM Ref count = 1

Show all of the CM and NM breakpoints. Notice that the CM breakpoints all have
corresponding NM breakpoints. The NM breakpoints show a counter reflecting the number
of corresponding CM breakpoints. However, the list of corresponding CM breakpoint
numbers is not part of the NM breakpoint listing.

Limitations, Restrictions

If breakpoints are listed for a process other than the current process, Debug has no
knowledge of the procedure names associated with the addresses unless the specified
process is running the exact same program file.

CLOSEDUMP
DAT only

Closes a dump file. (See OPENDUMP to open a dump.)

Syntax

 CLOSEDUMP

Parameters

none

Examples

 $nmdat > closedump
 $nmdat >

Closes the dump file currently opened.
Chapter 4 97

System Debug Command Specifications :-Exit
CM
Limitations, Restrictions

none

CM
Enters compatibility mode (cmdat/cmdebug). See the NM command.

Syntax

 CM

The command switches from NM (nmdat/nmdebug) to CM (cmdat/cmdebug). If the
windows are on, the screen is cleared and the set of windows enabled for cmdebug is
redrawn. The command also sets several environment variables. The variables affected
and their new values are shown below:

 ENV MODE "CM"
 ENV INBASE CM_INBASE
 ENV OUTBASE CM_OUTBASE

Parameters

none

Examples

 $nmdebug > cm
 %cmdebug >

Switch from nmdebug to cmdebug.

Limitations, Restrictions

none

CMDL[IST]
Command list. Displays a list of the valid commands for System Debug.

Syntax

 CMDL[IST] [pattern] [group] [options]

This command displays a list of valid commands for System Debug. Several System Debug
98 Chapter 4

System Debug Command Specifications :-Exit
CMDL[IST]
commands are actually implemented as aliases. Aliases are not displayed with the CMDL
command; rather, the ALIASL command must be used to view them.

Parameters

pattern The command name(s) to be displayed.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754".

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 `log2[0-9][0-9]4`

By default, all command names are listed.

group Commands are logically organized in groups. When listed, the commands
can be filtered by group, that is, only those commands in the specified
group are displayed.

PROCESS Process control

BREAK Breakpoint setting/listing/deleting

DISPLAY Display memory/code/segments

OBJECTS File mapping, Object freezing

REGISTER Display/modification/listing of registers

STACK Stack tracing, level switching

MODIFY Modify memory/code/segments

SYMBOLIC Symbolic file access

VAR Variable definition/listing/deleting

MACRO Macro definition/listing

FUNC Predefined function information
Chapter 4 99

System Debug Command Specifications :-Exit
CMDL[IST]
ENV Commands to list/show/alter the environment

TRANSLATE Translate CM addresses to NM address

CI Command Interpreter-related

IO For producing I/O

DUMP Open/close/purge/info on dumps

ERROR Error management

MISC Grab bag

WINDOW Window related

ALL | @ All groups

options Any number of the following options can be specified in any order,
separated by blanks or commas:

NAME Display command name only (default).

USE Display command syntax, and summary of use.

NOUSE Skip the syntax/summary.

PARMS Display parameter names and types.

NOPARMS Skip parameter display.

DESC Display a general description.

NODESC Skip the description.

EXAMPLE Display an example.

NOEXAMPLE Skip the example.

ALL | @ Display everything. Same as:

NAME USE PARMS DESC EXAMPLE

PAGE Page eject after each command definition. Useful for paged
(listfile) output.

NOPAGE No special page ejects. (default)

If none of the options above are specified, NAME is displayed by default. If
any options are specified, then they are accumulated to describe which
fields are printed.

Examples

 $nmdat > cmdl ,err
 cmd ERR error nm cm
 cmd ERRD error nm cm
 cmd ERRL error nm cm
 cmd IGNORE error nm cm

 Type "WHELP" for a list of the window commands
100 Chapter 4

System Debug Command Specifications :-Exit
CMDL[IST]
 Type "ALIASL" for a list of the command aliases

List all of the commands that deal with error management.

 $nmdat > cmdl w@
 cmd W io nm cm
 cmd WCOL io nm cm
 cmd WHELP window nm cm
 cmd WHILE ci nm cm
 cmd WL io nm cm
 cmd WP io nm cm
 cmd WPAGE io nm cm

List all of the commands that start with the letter "W".

 $nmdat > cmdl w@,ci
 cmd WHILE ci nm cm

List all of the commands that start with the letter "W" and deal with System Debug's
command interpreter. There is only one such command, WHILE.

 $nmdat > cmdl while,,all
 cmd WHILE ci nm cm

 USE:

 WHILE condition DO command | {cmdlist}

 PARMS:

 condition A logical expression to be repeatedly evaluated.
command A single command to be executed while CONDITION is true.

 cmdlist A list of commands to be executed while CONDITION is
true.

 DESC:

 The WHILE command evaluates a logical expression and, if TRUE,
executes a command/command list. The expression is then
reevaluated, and the process continues until the expression is

FALSE.

 EXAMPLE:

 $nmdebug > while [pc] >> $10 <> $2000 do ss
 <Single step until the next Pascal statement number>

Provide all information available for the WHILE command.

 $nmdat > cmdl while,,all noexample nodesc
 cmd CMDL ci nm cm

 USE:
Chapter 4 101

System Debug Command Specifications :-Exit
CMG
 WHILE condition DO command | {cmdlist}

 PARMS:

 condition A logical expression to be repeatedly evaluated.
command A single command to be executed while CONDITION is true.

 cmdlist A list of commands to be executed while CONDITION is
true.

Provide all information available for the WHILE command except examples and
description.

Limitations, Restrictions

none

CMG
Privileged Mode

Displays values in the CMGLOBALS record for a process.

Syntax

 CMG [pin]

The CMGLOBALSrecord is an operating system data structure that maintains compatibility
mode information.

Parameters

pin The PIN for the process whose CMGLOBALS are to be displayed.

Examples

 $nmdat > cmg
 dp0 : 0
 dp_scratch : c0105b60
 cm_info : c
 cm_ctrl : 0
 stack_dst : 84
 db_dst : 84
 db_3k_offset : 200
 db_sid : 2c4
 db_offset : 400120b0
 dl : 2c4.40012000
102 Chapter 4

System Debug Command Specifications :-Exit
C[ONTINUE]
 s : 2c4.4001245e
 z : 2c4.40014310
 stack_base : 2c4.40011cb0
 stack_limit : 2c4.40015fff
 cst : 80000700
 cstx : c6bc8000
 lstt : 0.0
 nrprgmsegs : 0
 dst : 81800000
 bank0 : 80000000
 bank0_size : 10000
 debug : 0
 mcode_adr : 3ee090
 $nmdat >

Display the CMGLOBALS record for the current PIN.

Limitations, Restrictions

none

C[ONTINUE]
Continues/resumes execution of user program.

Syntax

 C[ONTINUE]
 C[ONTINUE] [IGNORE]
 C[ONTINUE] [NOIGNORE]

The program executes until a breakpoint is encountered or the program completes.

Used to exit Debug when it was entered via the DEBUG command at the CI.

Parameters

[NO]IGNORE This parameter is meaningful only in two states. The first is when Debug
has stopped due to one of the MPE/iX traps defined in the TRAP command
(XLIB, XCODE, XARI, XSYS). The default value is NOIGNORE. If you wish
to have the trap ignored (pretend it never happened), you must use the
IGNORE option.

The second state is when the debugger has stopped due to a SETDUMP
command. That is, the process is about to be killed by the trap handler and
Debug has been called. If one just continues from this state, the process is
terminated. If the IGNORE option is specified, the process is relaunched as
if the error did not occur. It is up to the user to update registers and the
Chapter 4 103

System Debug Command Specifications :-Exit
D (display)
process stack as appropriate to enable the process to continue correctly.

Examples

 %cmdebug > c

Limitations, Restrictions

The CONTINUE command cannot be used from within macro bodies that are invoked as a
function.

This command resumes execution of your program or the CI if you entered the debugger
with a DEBUG command. If you wish to abort your program or session, use the ABORT
command.

D (display)
Privileged Mode: DA, DCS, DCA, DZ, DSEC

Displays the contents of the specified address.

Syntax
 DA offset [count] [base] [recw] [bytew] ABS relative
 DD dst.off [count] [base] [recw] [bytew] CM data segment
 DDB offset [count] [base] [recw] [bytew] DB relative
 DS offset [count] [base] [recw] [bytew] S relative
 DQ offset [count] [base] [recw] [bytew] Q relative

 DC logaddr [count] [base] [recw] [bytew] Program file
 DCG logaddr [count] [base] [recw] [bytew] Group library
 DCP logaddr [count] [base] [recw] [bytew] Account library
 DCLG logaddr [count] [base] [recw] [bytew] Logon group lib
 DCLP logaddr [count] [base] [recw] [bytew] Logon account lib
 DCS logaddr [count] [base] [recw] [bytew] System library
 DCU fname logaddr [count] [base] [recw] [bytew] User library

 DCA cmabsaddr [count] [base] [recw] [bytew] Absolute CST
 DCAX cmabsaddr [count] [base] [recw] [bytew] Absolute CSTX

DV virtaddr [count] [base] [recw] [bytew] Virtual
 DZ realaddr [count] [base] [recw] [bytew] Real memory

DSEC ldev.off [count] [base] [recw] [bytew] Secondary store

Parameters

offset DA, DDB, DQ, DS only.

The CM word offset that specifies the relative starting location of the area
to be displayed.

dst.off DD only.
104 Chapter 4

System Debug Command Specifications :-Exit
D (display)
The data segment number and CM word offset that specifies the starting
location of the area to be displayed.

logaddr DC, DCG, DCP, DCLG, DCLP, DCS, DCU only.

A full logical code address (LCPTR) specifies three necessary items:

• the logical code file (PROG, GRP, SYS, and so on)

• NM: the virtual space ID number (SID)

CM: the logical segment number

• NM: the virtual byte offset within the space.

CM: the word offset within the code segment.

Logical code addresses can be specified in various levels of detail:

• as a full logical code pointer (LCPTR)

DC procname+20 procedure name lookups return LCPTRs

DC pw+4 predefined ENV variables of type LCPTR

DC SYS(2.200) explicit coercion to a LCPTR type

• as a long pointer(LPTR)

DC 23.2644 sid.offset or seg.offset

The logical file is determined based on the command suffix, for example:

DC implies PROG
DCG implies GRP
DCS implies SYS

• as a short pointer (SPTR)

DC 1024 offset only

For NM, the short pointer offset is converted to a long pointer using the
function STOLOG, which looks up the SID of the loaded logical file. This is
different from the standard short to long pointer conversion, STOL, which
is based on the current space registers (SRs).

For CM, the current executing logical segment number and the current
executing logical file are used to build an LCPTR.

The search path used for procedure name lookups is based on the
command suffix letter:

DC Full search path:

NM: PROG, GRP, PUB, USER(s), SYS

CM: PROG, GRP, PUB, LGRP, LPUB, SYS

DCG Search GRP, the group library.

DCP Search PUB, the account library.

DCLG Search LGRP, the logon group library.
Chapter 4 105

System Debug Command Specifications :-Exit
D (display)
DCLP Search LPUB, the logon account library.

DCS Search SYS, the system library.

DCU Search USER, the user library.

For a full description of logical code addresses, refer to the section "Logical
Code Addresses" in chapter 2.

fname DCU only.

The file name of the NM USER library. Since multiple NM libraries can be
bound with the XL= option on a RUN command,

 : run nmprog; xl=lib1,lib2.testgrp,lib3

it is necessary to specify the desired NM user library. For example,

 DCU lib1 204c
 DCU lib2.testgrp test20+1c0

If the file name is not fully qualified, then the following defaults are used:

Default account: the account of the program file.

Default group: the group of the program file.

cmabsadr DCA, DCAX only.

A full CM absolute code address specifies three necessary items:

• Either the CST or the CSTX

• The absolute code segment number

• The CM word offset within the code segment.

Absolute code addresses can be specified in two ways:

• As a long pointer (LPTR)

DCA 23.2644 Implicit CST 23.2644

DCAX 5.3204 Implicit CSTX 5.3204

• As a full absolute code pointer (ACPTR)

DCA CST(2.200) Explicit CST coercion

DCAX CSTX(2.200) Explicit CSTX' coercion \DCAX
logtoabs(prog(1.20)), \Explicit absolute conversion

The search path used for procedure name lookups is based on the
command suffix letter:

DCA GRP, PUB, LGRP, LPUB, SYS

DCAX PROG

virtaddr DV only. The virtual address to be displayed.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.
106 Chapter 4

System Debug Command Specifications :-Exit
D (display)
realaddr DZ only.

The real mode HP Precision Architecture memory address to be displayed.

ldev.off DSEC only.

The logical device number (LDEV) and offset (in bytes) of the data on disk
to be displayed.

count DA, DC@ (CM), DD, DDB, DS, DQ: The number of CM 16-bit words to be
displayed.

DC@(NM), DV, DZ, DSEC: The number of NM 32-bit words to be displayed. If
omitted, then a single value is displayed.

base The desired representation mode for output values:

% or OCTAL Octal representation

or DECIMAL Decimal representation

$ or HEXADECIMAL Hexadecimal representation

ASCII ASCII representation

BOTH Numeric and ASCII together

CODE Disassembled code representation

STRING Packed ASCII representation

This parameter can be abbreviated to as a single character.

By default, and for the numeric portion of B[OTH] , the current output base
is used.

Display code commands (DC@) automatically set the base to CODE, unless
another base is explicitly specified.

Note that the address portion of the display is always formatted using the
current output base (see ENV OUTBASE and the SET command), not the
specified base parameter.

recw The number of words to be displayed per line. Large requests may cause
lines to wrap around on the terminal, but may be appropriate for offline
listings, based on the ENV variable LIST_WIDTH.

By default, either 4 or 8 words will be displayed per line, based on the
command, count, and base.

When the base CODE is selected, disassembled code is always displayed
one word per line.

bytew The width in bytes of the displayed values. Values can be displayed as

1 byte Single bytes (8 bits)

2 bytes CM (16-bit words)

4 bytes NM (32-bit words) / CM double-words

If omitted, values are displayed as CM words (2) or NM words (4), based on
Chapter 4 107

System Debug Command Specifications :-Exit
D (display)
the current mode (CM/NM) and the specified command.

This parameter is ignored for display code commands (DC@).

Examples
 %cmdebug > dd 77.0
 DST %77.0 % 000655

Display DST 77.0 . By default, one word is displayed in the current output base, octal.

 %cmdebug > dd 77.0,20
 DST %77.0
 %0 % 000655 000012 000000 000000 000000 000000 000000 000000
 %10 % 000000 000000 041515 023511 047111 052111 040514 020040

Display DST 77.0 for %20 words. By default, the data is displayed in the current output
base, octal, at eight words per line.

 %cmdebug > dd 77.0,20,a
 DST %77.0
 %0 ASCII
 %10 ASCII CM 'I NI TI AL

Display DST 77.0 for %20 words in ASCII. The two character ASCII Representations for
each word are displayed, separated by blanks. Dots (". ") are displayed for nonprintable
characters.

 %cmdebug > dd 77.0,20,b
 DST %77.0
 %0 % 000655 000012 000000 000000
 %4 % 000000 000000 000000 000000
 %10 % 000000 000000 041515 023511 CM 'I
 %14 % 047111 052111 040514 020040 NI TI AL

Display DST 77.0 for %20 words. Display both numeric and ASCII data together. By
default, four words are displayed per line.

 %cmdebug > dd 77.0,100,a,12
 DST %77.0
 %0 ASCII
 %12 ASCII CM 'I NI TI AL
 %24 ASCII MI X' PA RM
 %36 ASCII LO AD
 %50 ASCII GE TS IR
 %62 ASCII RE LS IR
 %74 ASCII FR EE 'P RI

Display DST 77.0 , for %100 words, in ASCII, in a width of %12 words per line.

 %cmdebug > dd 77.0,100,s,12
 DST %77.0 "...................."
 DST %77.12 "CM'INITIAL "
 DST %77.24 "MIX'PARM "
 DST %77.36 "LOAD "
 DST %77.50 "GETSIR "
 DST %77.62 "RELSIR "
 DST %77.74 "FREE'PRI"

Display DST 77.0 for %100 words, as a string, in a width of %12 CM words = #10 CM
words = 20 characters per line.
108 Chapter 4

System Debug Command Specifications :-Exit
D (display)
 %cmdebug > dd 77.0,20,h,6,1
 DST %77.0
 %0 $ 01 ad 00 0a 00 00 00 00 00 00 00 00
 %6 $ 00 00 00 00 00 00 00 00 43 4d 27 49
 %14 $ 4e 49 54 49 41 4c 20 20

 %cmdebug > dd 77.0,20,h,6,2
 DST %77.0
 %0 $ 01ad 000a 0000 0000 0000 0000
 %6 $ 0000 0000 0000 0000 434d 2749
 %14 $ 4e49 5449 414c 2020

 %cmdebug > dd 77.0,20,h,6,4
 DST %77.0
 %0 $ 01ad000a 00000000 00000000 00000000 00000000 434d2749
 %14 $ 4e495449 414c2020 20202000 930c0000 4d495827 5041524d
 %30 $ 20202020 20202000 00000000 4c4f4144

Display DST 77.0 , for 20 words, in hexadecimal.

Display the data as bytes (1), CM 16-bit words (2), and NM 32-bit words (4).

Note that the offset addresses are displayed in octal (the current output base), while the
data is displayed in hexadecimal, as requested.

 $nmdebug > dsec 1.0,4,a
 SEC $1.0 ASCII ..HP ESYS ..]@

Display secondary storage at the disk address 1.0 (LDEV=1, byteoffset=0). Display four
words in ASCII. This example displays a portion of the volume label.

 %cmdebug > da %1114,3,a
 ABS+%1114 ASCII 82 04 9

 %cmdebug > da %1474,3,a
 ABS+%1474 ASCII 9 82 04

Two examples that display CM ABS relative. Both examples display three words in ASCII.

ABS is CM Bank 0 low core memory. CM SYSGLOB starts at ABS+%1000.

The first example displays the SEL release ID in the form: uu ff vv .

The second example displays the MPE/iX system version ID in the form: vv uu ff .

 $nmdat > wl pc
 SYS $a.728304
 $nmdat > wl vtor(pc)
 $c18304
 $nmdat > dz tr0+((vtor(pc)>>$b)*$10),4
 REAL $00603500 $ 80000000 0000000a 00728000 02400000

The logical code address of PCis SYS $a.728304 , which translates to real memory address
c18304 .

This example displays the 4-word PDIR entry in real memory for the page that contains
PC.

Display real memory (DZ) at the address TR0 (start of PDIR) plus the offset to entry, which
Chapter 4 109

System Debug Command Specifications :-Exit
D (display)
is calculated by right-shifting the real address of PCby $b (to determine page number), and
then multiplying by $10 since each 4-word PDIR entry is $10=#16 bytes long.

Examples of Code Displays
 $nmdebug > dcs sendio+18,7
 SYS $a.219f08
 00219f08 sendio+$18 6bd83d69 STW 24,-332(0,30)
 00219f0c sendio+$1c 4bda3d51 LDW -344(0,30),26
 00219f10 sendio+$20 081a0241 OR 26,0,1
 00219f14 sendio+$24 081e025f OR 30,0,31
 00219f18 sendio+$28 34180050 LDO 40(0),24
 00219f1c sendio+$2c ebfe174d BL ?ldm_completion+$1e4,31
 00219f20 sendio+$30 37d93dc1 LDO -288(30),25

Display code in the NM system library, starting at sendio+18 , for seven words. By default,
the display code commands use the CODEradix and display formatted lines of disassembled
code.

 $nmdebug > dcs sendio+18,7,h
 SYS $a.219f08 $ 6bd83d69 4bda3d51 081a0241 081e025f
 SYS $a.219f18 $ 34180050 ebfe174d 37d93dc1

Display code in the system library, starting at sendio+18 , for seven words in hexadecimal.
By default, four words are displayed per line.

 %cmdebug > dcs lsearch+11,10
 SYS %12.20262
 %020262: LSEARCH+%11 051401 S. STOR Q+1
 %020263: LSEARCH+%12 000600 .. ZERO, NOP
 %020264: LSEARCH+%13 151607 .. LDD Q-7
 %020265: LSEARCH+%14 041605 C. LOAD Q-5
 %020266: LSEARCH+%15 041604 C. LOAD Q-4
 %020267: LSEARCH+%16 031105 2E PCAL ?LSEARCH'
 %020270: LSEARCH+%17 013712 .. BRE P+%12
 %020271: LSEARCH+%20 031107 2G PCAL ?TRANS'XDST'TO'L

Display code starting at lsearch+11 , for %10 words. The procedure is located in the CM
system library, SL.PUB.SYS .

Listing Disassembled Code to a File

The following example demonstrates how to dump disassembled code into a file. The
example is explained command by command, based on the command numbers that appear
within the prompt lines.

Command %10 opens an offline list file with the name codedump . All Debug input and
output is recorded into this file, including the code we intend to display.

Command %11 sets the environment variable term_loud to FALSE. This prevents
subsequent Debug output from being displayed on the terminal. We capture the output in
the list file (codedump), but we do not want the output on the terminal.

Command %12 contains the desired display code command. We display %20 words of
disassembled code, starting at the entry point address ?fopen .

Command %13 closes (and saves) the current list file (codedump).
110 Chapter 4

System Debug Command Specifications :-Exit
DATAB
Command %14 uses the SET DEFAULT command to effectively reset the environment
variable term_loud back to TRUE. Debug output once again is displayed on the terminal.

Command %15 issues an MPE/iX CI command PRINT CODEDUMP to display the newly
created list file with the disassembled code. Note the additional Debug commands that
were captured in the list file.

 %10 (%53) cmdebug > list codedump
 %11 (%53) cmdebug > env term_loud false
 %12 (%53) cmdebug > dc ?fopen,20
 %13 (%53) cmdebug > list close
 %14 (%53) cmdebug > set def
 %15 (%53) cmdebug > :print codedump

 Page: 1 DEBUG/XL A.01.00 WED, FEB 23, 1987 11:42 AM

 %11 (%53) cmdebug > env term_loud false
 %12 (%53) cmdebug > dc ?fopen,20
 SYS %22.5000
 %005000: ?FOPEN 170404 .. LRA P-4
 %005001: FOPEN+%5 030400 1. SCAL 0
 %005002: FOPEN+%6 000600 .. ZERO, NOP
 %005003: FOPEN+%7 051451 S) STOR Q+%51
 %005004: FOPEN+%10 140060 .0 BR P+%60
 %005005: FOPEN+%11 140003 .. BR P+3
 %005006: ?FSOPEN 170412 .. LRA P-%12
 %005007: FOPEN+%13 030400 1. SCAL 0
 %005010: FOPEN+%14 021001 ". LDI 1
 %005011: FOPEN+%15 051451 S) STOR Q+%51
 %005012: FOPEN+%16 140052 .* BR P+%52
 %005013: FOPEN+%17 140003 .. BR P+3
 %005014: ?FJOPEN 170420 .. LRA P-%20
 %005015: FOPEN+%21 030400 1. SCAL 0
 %005016: FOPEN+%22 021002 ". LDI 2
 %005017: FOPEN+%23 051451 S) STOR Q+%51
 %13 (%53) cmdebug > list close

Limitations, Restrictions

none

DATAB
Debug only

Privileged Mode

Sets a data breakpoint.

Syntax

 DATAB virtaddr [:pin|@] [byte_count] [count] [loudness] [cmdlist]
Chapter 4 111

System Debug Command Specifications :-Exit
DATAB
Data breakpoints "break" when the indicated address is written to. The debugger stops at
the instruction that is about to perform the write operation.

The DATAB command is used to set process-local and global (system-wide) data
breakpoints.

Setting a breakpoint for another process is implemented so that it appears the target
process set the breakpoint itself. Therefore, when the target process encounters the
breakpoint, it enters Debug with its output directed to the LDEV associated with that
process.

Parameters

virtaddr The virtual address at which to set the data breakpoint.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

pin | @ The process identification number (PIN) of the process for which the
breakpoint is to be set. If omitted, the breakpoint is set for the current
process. The character "@" can be used to set a global breakpoint at which
all processes stop.

byte_count Byte_count specifies the number of bytes to "protect" with the data
breakpoint. If no value is given, one byte is assumed.

count Count has a twofold meaning: it specifies to break every nth time the
breakpoint is encountered, and it is used to set permanent/temporary
breakpoints.

count is positive, the breakpoint is permanent. If count is negative, the
breakpoint is temporary and is deleted as soon as the process attempts to
modify the protected address. For example, a count of 4 means break
every fourth time the protected address range is modified; a count of -4
means break on the fourth time, and immediately delete the breakpoint. If
count is omitted, +1 is used, which breaks every time the address range is
written to, permanently.

loudness Either LOUDor QUIET. If QUIET is selected the debugger does not print out
a message that the breakpoint has been hit. This is useful for performing a
command list a great number of times before stopping without being
inundated with screen after screen of breakpoint messages. These
keywords may be abbreviated as desired. The default value is LOUD.

cmdlist A single Debug command or a list of Debug commands that are executed
immediately when the breakpoint is encountered. Command lists for
breakpoints are limited to 80 characters. (If this is too few characters,
write a macro and have the command list invoke the macro). Cmdlist has
the form:

 CMD1

 { CMD1; CMD2; CMD3; ... }
112 Chapter 4

System Debug Command Specifications :-Exit
DATABD
Examples

 $ nmdebug > datab dp+c14,8
 added: [1] 49.40150c68 for 8 bytes

Set a data breakpoint at DP+c14. (We will assume it's a global variable.) Protect 8 bytes
starting at that address.

 $ nmdebug > datab r24,c4,-1
 added: T[2] 49.401515d4 for c4 bytes

Set a temporary data breakpoint at the address pointed to by general register 24. For this
example we assume that r24 contains a pointer to the user's dynamic heap space. Protect
c4 bytes starting at that address. The breakpoint is a temporary breakpoint (that is, it is
deleted after it is encountered for the first time).

 $ nmdebug > databl
 [1] 49.40150c68 for 8 bytes
 T[2] 49.401515d4 for c4 bytes
 count 0/1

Now list the data breakpoints we have just set.

Limitations, Restrictions

Keep in mind that the architecture supports data breakpoints on a page basis only.
Anything more granular requires substantial software intervention.

CAUTION Data breakpoints on process stacks are not supported, and setting
breakpoints there may crash the system.

Breakpoints set in the global data area of a user's stack are safe as long as the page
containing the global data contains only global data (that is, the process does not use that
page for stacking procedure call frames or local data).

Setting data breakpoints at addresses on a process stack can severely degrade
performance of the process.

Data breakpoints are ignored in the following circumstances:

• While on the ICS (interrupt control stack).

• While disabled.

• In a "dying" process (See ENV DYING_DEBUG).

• In a job (See ENV JOB_DEBUG).

DATABD
Debug only
Chapter 4 113

System Debug Command Specifications :-Exit
DATABD
Privileged Mode

Deletes a data breakpoint entry specified by index number.

Syntax

 DATABD [number | @ [: pin | @]]

The DATABD command is used to delete process-local data breakpoints and global
(system-wide) data breakpoints.

Parameters

number | @ The index number of the data breakpoint entry that is to be deleted. The
character "@" can be used to delete all breakpoint entries.

If the index number is omitted, Debug displays each breakpoint, one at a
time, and asks the user if it should be deleted (Y/N?). The following
responses are recognized:

Y[E[S]] Yes, remove the breakpoint.

YESany_text Yes, remove the breakpoint.

N[O] No, do not remove the breakpoint.

NOany_text No, do not remove the breakpoint.

If any other response is given, the default value NO is assumed.

pin | @ The PIN for the process whose data breakpoint entry is to be deleted.
Typically this is omitted, and pin defaults to the current process.

The character "@" can be used to specify that a global breakpoint is to be
deleted.

Examples

 $ nmdebug > databl
 [1] 49.40150c68 for 8 bytes
 T[2] 49.401515d4 for c4 bytes
 count 0/1
 @[1] c.c1040480 for 4 bytes
 cmdlist: {WL "pib data breakpoint was hit"}

List the data breakpoints that exist.

 $ nmdebug > databd
 [1] 49.40150c68 for 8 bytes (Y/N) ?
 T[2] 49.401515d4 for c4 bytes (Y/N) ?
 @[1] c.c1040480 for 4 bytes (Y/N) ? y

Display each breakpoint and ask the user if the breakpoint should be deleted. In this
example, the global breakpoint is deleted.

 $ nmdebug > databd 1
 deleted: [1] 49.40150c68 for 8 bytes
114 Chapter 4

System Debug Command Specifications :-Exit
DATABL
Delete data breakpoint number 1.

 $ nmdebug > databl
 T[2] 49.401515d4 for c4 bytes
 count 0/1

List the data breakpoints that remain.

Limitations, Restrictions

none

DATABL
Debug only

Privileged Mode

Lists data breakpoint entries, specified by index number.

Syntax

 DATABL [number | @ [: pin | @]]

The DATABL command is used to list process-local and global (system-wide) data
breakpoints. Global data breakpoints are always displayed after the process-local data
breakpoints.

Parameters

number The index number of the data breakpoint entry to display. The symbol "@"
can be used to display all entries. If omitted, all entries are displayed.

pin The PIN number for the process whose data breakpoint entries are to be
displayed. Typically this is omitted, and pin defaults to the current
process.

The character "@" can be used to indicate global data breakpoint(s).

Examples

 $ nmdebug > databl
 [1] 49.40150c68 for 8 bytes
 T[2] 49.401515d4 for c4 bytes
 count 0/1
 @[1] c.c1040480 for 4 bytes
 cmdlist: {WL "pib data breakpoint was hit"}

Display all data breakpoints. Process-local breakpoints are always displayed first, then
global breakpoints are displayed.
Chapter 4 115

System Debug Command Specifications :-Exit
DEBUG
 $ nmdebug > databl 1
 [1] 49.40150c68 for 8 bytes

Display data breakpoint number 1.

 $ nmdebug > databl @:@
 @[1] c.c1040480 for 4 bytes
 cmdlist: {WL "pib data breakpoint was hit"}

Display all of the global data breakpoints.

Limitations, Restrictions

none

DEBUG
DAT only

Privileged Mode

DEBUG command—access to DEBUG XL.

Syntax

 DEBUG

Parameters

none

Examples

 $nmdat > debug
 DEBUG XL A.00.00

 DEBUG Intrinsic at: 401.000b431c do_the_command+2c4
 $1 ($38) nmdebug >

Limitations, Restrictions

The DEBUG command is generally useful only to the developer of DAT.
116 Chapter 4

System Debug Command Specifications :-Exit
DELETExxx
DELETExxx

Delete various items. These are predefined aliases for other commands.

Syntax

 DELETEB alias for BD
 DELETEALIAS alias for ALIASD
 DELETEERR alias for ERRD
 DELETEMAC alias for MACD
 DELETEVAR alias for VARD

See the ALIASINIT command.

DEMO
Privileged Mode

Adds/deletes/lists terminals used for demonstrating System Debug.

Syntax

 DEMO
 DEMO LIST
 DEMO ADD ldevs
 DEMO DELETE ldevs

The DEMO command is used for giving demonstrations of System Debug. With this
command, the user is able to enslave up to 50 terminals. Each of the enslaved terminals
receives all input and output generated by System Debug. Output generated by the CI
through the use of the ":" command or CIGETVAR and CIPUTVAR functions is not sent to
the enslaved terminals.

Please read and heed the warnings listed in "Limitations, Restrictions."

Parameters

DEMO List the terminal LDEV's that currently are receiving System Debug I/O.

DEMO LIST Both command forms are identically supported.

DEMO ADD This keyword tells System Debug to add the following LDEVs to the list of
terminals to receive a copy of all System Debug I/O.

DEMO DELETE This keyword tells System Debug to remove the following LDEVs from the
list of terminals that receive a copy of all System Debug I/O.

ldevs A list of terminal LDEV numbers (logical device numbers), separated by
blanks or commas. A note of caution: remember that the LDEV numbers
Chapter 4 117

System Debug Command Specifications :-Exit
DIS
are interpreted using the current input base for System Debug.

Examples

 $nmdat > demo
 No demonstration terminals are defined

 $nmdat > demo add #200 #201 #205 #206

 $nmdat > demo list
 DEMO LDEVS (#): 200 201 205 206

First, check to see if any demonstration LDEVs have been specified. Next, add four LDEVs
to the list of terminals to receive a copy of DAT's input and output stream. As soon as the
DEMO ADD command is processed, the indicated terminals begin receiving I/O. Finally,
display the list of demonstration terminals.

Limitations, Restrictions

A total of 50 demonstration LDEVs are supported.

The functionality is implemented with low-level I/O routines. I/O is done directly to the
LDEV. No attempt is made to lock or obtain ownership of the LDEV before sending data to
it. Nonpreemptive I/O is used when sending data to the LDEVs. Therefore, if a read is
pending at the LDEV (For example, the CI prompt), System Debug blocks until the
pending read is satisfied. It is good practice to free up the LDEVs that will be used during
a demonstration by issuing the :RESTOREcommand at each terminal (do not REPLY to the
resulting tape request). This removes any pending I/O from the LDEV. When the
demonstration is finished, break out of the RESTORE process and issue an ABORT
command.

No validation of LDEV numbers is performed. If you give an ldev , then no matter what
the value is, System Debug tries to write to it!

The same LDEV may be specified more than once, in which case the LDEV is sent a copy of
any I/O for each occurrence in the list of LDEVs.

The Control-S/Control-Q/stop keys suspend output only for the master terminal (that is,
the one where the demonstration is being run). All of the enslaved terminals continue to
receive output as an uninterrupted flow.

DIS
Disassembles a single NM or CM assembly instruction, based on the current mode.

Syntax

 DIS nmword [virtaddr]
118 Chapter 4

System Debug Command Specifications :-Exit
DIS
 DIS cmword1 [cmword2] [cmlogaddr]

The DCx (display code) commands can be used to display a block of code at a specified
address. The program windows also display disassembled code.

Parameters

nmword The Precision Architecture instruction to disassemble. All disassembled
values are in decimal unless otherwise indicated.

cmword1 The CM HP 3000 instruction to disassemble.

cmword2 A second CM HP 3000 instruction to disassemble for double-word
instructions.

virtaddr If a virtual address is given, this value is used when computing branch
addresses. That is, "disassemble this instruction as if it were at the
indicated address." A valid virtual address results in branch targets being
printed as a procedure name plus offset. If this value is omitted, branch
targets always appear as numeric values.

cmlogaddr If a CM logical address is specified, the address is used to compute the
targets of CM PCAL instructions.

Cmlogaddr must be a full CM logical code address (LCPTR).

For example,

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102

fopen+102 CM procedure fopen + %102 (assumes CM mode)

cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM
mode)

Examples

 $nmdebug > dis 6bc23fd9
 STW 2,-20(0,30)

This NM example disassembles the NM word $6bc23fd9 into the STW instruction.

 $nmdebug > dis e84001d8
 BL $000000f4,2
 $nmdebug > dis e84001d8, a.4adeb4
 BL test_proc+$68,2

This NM example disassembles the word $e84001d8 into a BL instruction. In the second
command, the virtual address of the instruction is specified, and the disassembler is able
to compute and to display the effective procedure name target of the branch.

 %cmdebug > dis 41101
 LOAD DB+%101
Chapter 4 119

System Debug Command Specifications :-Exit
DIS
This CM example disassembles the single CM word %41101 into the LOAD DB+%101
instruction.

 %cmdebug > dis 20477 43
 LDDW SDEC=1

This CM example disassembles the two CM words, %20477 and %43, into the LDDW
SDEC=1 instruction.

 %cmdat > dis 31163
 PCAL %163
 %cmdat > dis 31163,,sys(25.0)
 PCAL ?SWITCH'TO'NM'
 %cmdat > dis 31163,,sys(1.0)
 PCAL ?ATTACHIO

These CM examples involve the CM PCAL instruction. In the first example, 31163 is
recognized as the PCAL instruction, but the STT number is invalid for the current CM
segment. In the second example, the instruction is disassembled as if it were found in CM
logical segment SYS %25, and the resulting destination of the PCAL is displayed as
?SWITCH'TO'NM. The third example indicates that within CM logical segment SYS 1 , the
resulting target of a PCAL %163 is ?ATTACHIO.

 %cmdat > var n 1
 %cmdat > while 1 do {w "stt: " n:"w3" " " ;dis 31000+n; var n n+1}
 stt: %1 PCAL ?TERMINATE
 stt: %2 PCAL ?TERMINATE
 stt: %3 PCAL ?ABORTJOB
 stt: %4 PCAL ?ACTIVATE
 stt: %5 PCAL ?ADOPT
 stt: %6 PCAL ?ONENET'ADOPT
 stt: %7 PCAL ?CREATEPROCESS
 stt: %10 PCAL ?EXEC'TERMINATE
 stt: %11 PCAL ?GET'PLFD'TBLPTR
 stt: %12 PCAL ?GETORIGIN
 stt: %13 PCAL ?GETPRIORITY
 stt: %14 PCAL ?GETPROCID
 stt: %15 PCAL ?GETPROCINFO
 stt: %16 PCAL ?JSM'TO'CI'PIN
 stt: %17 PCAL ?KILL
 stt: %20 PCAL ?PROCINFO
 stt: %21 PCAL ?PROCTIME
 stt: %22 PCAL ?SET'JSM'TIME'LI
 stt: %23 PCAL ?SET'PLFD'TBLPTR
 stt: %24 PCAL ?SUSPEND
 stt: %25 PCAL ?XCONTRAP
 stt: %26 PCAL ?NM'BREAKCONTROL
 stt: %27 PCAL ?SETSERVICE
 stt: %30 PCAL ?REQUESTSERVICE
 stt: %31 PCAL ?RESETCONTROL
 stt: %32 PCAL ?CAUSEBREAK
 stt: %33 PCAL ?CAUSEBREAK'
 stt: %34 PCAL ?BRK'IN'BREAK
 stt: %35 PCAL ?BRK'ABORT
 stt: %36 PCAL ?BRK'RESUME

 control-Y encountered
 %cmdat >
120 Chapter 4

System Debug Command Specifications :-Exit
DO
This example demonstrates how a simple loop can be used to display the targets for each
STT entry within the current CM segment. Since we know that %31000 is the PCAL
instruction, we simply add the desired STT number and use the DIS command to display
the target entry point name. Control-Y is used to terminate the loop.

Limitations, Restrictions

none

DO
Reexecutes a command from the command stack.

Syntax

 DO [cmd_string]
 DO [history_index]

DO, entered alone, reexecutes the most recent command.

Parameters

cmd_string Execute the most recent command in the history stack that commences
with cmd_string . For example, do wh could be used to match the most
recent WHILE statement.

history_index The history stack index of the command that is to be executed.

A negative index can be used to specify a command relative to the current
command. For example, -2 implies the command used two commands ago.

Examples

 %cmdebug > do w
 %cmdebug > wl 2+4
 %6

Execute the most recent command that started with "w".

Limitations, Restrictions

Upon initial entry into System Debug, the command stack is empty, since no prior
command has been executed. If the DOcommand is entered as the first command, an empty
command is reexecuted. This is effectively the same as entering a blank line.

The MPE/iX command interpreter allows an edit string to be specified on the DOcommand
line. This feature is not supported in System Debug.
Chapter 4 121

System Debug Command Specifications :-Exit
DPIB
DPIB
DAT only

Display data from the process identification block (PIB) for a process. You can use DPIB in
both native mode and compatibility mode.

Syntax

 DPIB [pin]

Parameters

pin The process identification number for the process whose PIB values are to
be displayed. If no pin is specified, the current pin is used.

Examples
 %cmdebug > dpib 2

 PIN: 20 Pid: 0000002000000001 Process state: 1 Space ID: 000002c4

 PCB : 80001b40 PCBX : 40011cb0 PIBX : 83980000 CMGLB : 83980000
 Parent : 80e0db18 Sibling : 00000000 Child : 00000000 JSMAIN : 80e0d5c0

Display the PIB values for PIN 2.

Limitations, Restrictions

none

DPTREE
DAT only

Prints out the process tree starting at the given PIN.

Syntax

 DPTREE [pin]

Parameters

pin The process identification number (PIN) where the process tree display
starts. If omitted, PIN 1 (the first PIN in all process trees) is assumed, and
the entire process tree is printed.
122 Chapter 4

System Debug Command Specifications :-Exit
DR
Examples
 $nmdat > dptree

 1 (PROGEN.PUB.SYS)
 2 (LOAD.PUB.SYS)
 3 (..)
 4 (..)
 5 (..)
 6 (LOG.PUB.SYS)
 7 (SYSMAIN.PUB.SYS)
 9 (SESSION.PUB.SYS)
 a (JSMAIN.PUB.SYS)
 15 (CI.PUB.SYS)
 16 (JSMAIN.PUB.SYS)
 17 (CI.PUB.SYS)
 12 (FCOPY.PUB.SYS)
 8 (JOB.PUB.SYS)
 b (JSMAIN.PUB.SYS)
 c (DIAGMON.DIAG.SYS)
 d (RUNPROG.DIAG.SYS)
 e (MEMLOGP.DIAG.SYS)
 f (RUNPROG.DIAG.SYS)
 10 (LOGGER.DIAG.SYS)

 $nmdat >

Prints out the entire process tree.

Limitations, Restrictions

none

DR
Displays contents of the CM or NM registers.

Syntax

 DR [cm_register] [base]
 DR [nm_register] [base]

Parameters

cm_register The CM register to be displayed. This can be the:

DB The stack base relative word offset of DB.

DBDST The DB data segment number.

DL The DL register word offset, DB relative.
Chapter 4 123

System Debug Command Specifications :-Exit
DR
CIR The current instruction register.

CMPC The full logical CM program counter address.

MAPDST The CST expansion mapping data segment number.

MAPFLAG The CST expansion mapping bit.

Q The Q register word offset, DB relative.

S The S register word offset, DB relative.

SDST The CM stack data segment number.

STATUS The CM status register.

X The X (index) register.

If cm_register is omitted, all of the above CM registers are displayed.

nm_register The NM register to be displayed.

If no value is provided, all NM registers are displayed (excluding the
floating-point registers). The ENVL ,FP command displays all of the
floating-point registers at once.

To fully understand the use and conventions for the various registers, refer
to the Precision Architecture and Instruction Reference Manual
(09740-90014) and Procedure Calling Conventions Reference Manual
(09740-90015). (These may be ordered as a set with the part number
09740-64003.) The Procedure Calling Conventions Reference
Manual is of particular importance for understanding how the language
compilers utilize the registers to pass parameters, return values, and hold
temporary values.

The following tables list the native mode registers available within System
Debug. Many registers have aliases through which they may be
referenced. Alias names in italics are not available in System Debug.

Access rights abbreviations are listed below. PM indicates that privileged
mode (PM) capability is required.

d Display access

D PM display access

m Modify access

M PM modify access

The following registers are known as the General Registers.

Table 4-1. General Registers

Name Alias Access Description

R0 none d A constant 0

R1 none dm General register 1

R2 none dm Used to hold RP at times
124 Chapter 4

System Debug Command Specifications :-Exit
DR
The following registers are pseudo-registers. They are not defined in the Precision
Architecture, but are terms used in the procedure calling conventions document and by the
language compilers. They are provided for convenience. They are computed based on stack
unwind information. They may not be modified.

The following registers are known as the Space Registers. Registers SR4 through SR7 are
used for short pointer addressing:

R3 none dm General register 3

[vellip]

R22 none dm General register 22

R23 ARG3 dm Argument register 3

R24 ARG2 dm Argument register 2

R25 ARG1 dm Argument register 1

R26 ARG0 dm Argument register 0

R27 DP dM Global data pointer

R28 RET1 dm Return register 1

R29 RET0 dm Return register 0

SL dm Static link

R30 SP dM Current stack pointer

R31 MRP dm Millicode return pointer

Table 4-2. Psuedo-Registers

Name Alias Access Description

RP none d Return pointer (not the same as R2)

PSP none d Previous stack pointer

Table 4-3. Space Registers

Name Alias Access Description

SR0 none dm Space register 0

SR1 SARG dm Space register argument

SRET dm Space return register

SR2 none dm Space register 2

SR3 none dm Space register 3

Table 4-1. General Registers

Name Alias Access Description
Chapter 4 125

System Debug Command Specifications :-Exit
DR
The following registers are known as the Control Registers. They contain system state
information.

SR4 none dM Process local code space (tracks PC
space)

SR5 none dM Process local data space

SR6 none dM Operating system data space 1

SR7 none dM Operating system data space 2

Table 4-4. Control Registers

Name Alias Access Description

CR0 RCTR dM Recovery counter

CR8 PID1 dM Protection ID 1 (16 bits)

CR9 PID2 dM Protection ID 2 (16 bits)

CR10 CCR dM Coprocessor configuration (8 bits)

CR11 SAR dm Shift amount register (5 bits)

CR12 PID3 dM Protection ID 3 (16 bits)

CR13 PID4 dM Protection ID 4 (16 bits)

CR14 IVA dM Interrupt vector address

CR15 EIEM dM External interrupt enable mask

CR16 ITMR dM Interval timer

CR17 PCSF dM PC space queue front

none PCSB dM PC space queue back

CR18 PCOF dM PC offset queue front

none PCSB dM PC offset queue back

none PCQF dM PC queue (PCOF.PCSF) front

none PCQB dM PC queue (PCOB.PCSB) back

none PC dM PCQF with priv bits set to zero.

none PRIV dM Low two order bits (30,31) of PCOF.

CR19 IIR dM Interrupt instruction register

CR20 ISR dM Interrupt space register

CR21 IOR dM Interrupt offset register

Table 4-3. Space Registers

Name Alias Access Description
126 Chapter 4

System Debug Command Specifications :-Exit
DR
NOTE The Precision Architecture and Instruction Reference Manual refers to the PC
(program counter) registers as the IA (instruction address) registers. This
manual will use the PC mnemonic when referring to the IA registers.

The following registers are floating-point registers. If a machine has a floating-point
coprocessor board, these values are from that board. If no floating-point hardware is
present, the operating system emulates the function of the hardware; in that case these
are the values from floating-point emulation.

CR22 IPSW dM Interrupt processor status word

PSW dM Processor status word

CR23 EIRR dM External interrupt request register

CR24 TR0 dM Temporary register 0

[vellip]

CR31 TR7 dM Temporary register 7

Table 4-5. Floating Point Registers

Name Alias Access Description

FP0 none dm FP register 0

FP1 none dm FP register 1

FP2 none dm FP register 2

FP3 none dm FP register 3

FP4 FARG0 dm FP argument register 0

FRET dm FP return register

FP5 FARG1 dm FP argument register 1

FP6 FARG2 dm FP argument register 2

FP7 FARG3 dm FP argument register 3

FP8 none dm FP register 8

[vellip]

FP15 none dm FP register 15

FPSTATUS none dm FP status reg(left half of FP0)

FPE1 none dm FP exception reg 1 (right half of
FP0)

Table 4-4. Control Registers

Name Alias Access Description
Chapter 4 127

System Debug Command Specifications :-Exit
DR
base Specifies the base used to display the register data.

% or OCTAL Octal representation

or DECIMAL Decimal representation

$ or HEXADECIMALHexadecimal representation

ASCII ASCII representation

This parameter can be abbreviated to as little as a single character.

Examples

 %cmdebug > dr
 DBDST=%132 DB=%1000 X=%102 STATUS=%140075=(MItroc CCG 075)
 SDST=%132 DL=%650 Q=%1006 S=%1007 CMPC=PROG %12.2046
 SEG =%12 P=%2046 CIR=%000700 MDST=%0

Display the contents of all CM registers.

 %cmdebug > dr status
 STATUS=%022002=(miTRoC CCE 002)

Display the contents of the CM status register.

 $nmdebug > dr

R0 =00000000 00464800 005a6e48 00000000 R4 =00000000 00000000 00000000 00000000
R8 =00000000 00000000 00000000 00000000 R12=00000000 00000000 00000000 00000000
R16=00000000 00000000 00000000 0000002a R20=00000006 00007fff ffff8000 400524a8
R24=400524a0 00000400 40052058 c0080008 R28=00000000 00000000 40052520 0000003f

 IPSW=0006ff0f=jthlnxbCVmrQPDI PRIV=0000 SAR=0010 PCQF=a.5a6e48 a.5a6e4c

SR0=0000000a 00000057 00000017 00000000 SR4=0000000a 00000057 0000000a 0000000a
TR0=007ea040 0080a040 0000000a 007727c0 TR4=40052848 400526a8 00bba1e0 00bba228

 PID1=0020=0010(W) PID2=0000=0000(W) PID3=0000=0000(W) PID4=0000=0000(W)
RCTR=ffffffff ISR=00000057 IOR=4005250c IIR=6bc23fd9 IVA=001cb000 ITMR=5b8b1e69

FPE2 none dm FP exception reg 2 (left half of FP1)

FPE3 none dm FP exception reg 3 (right half of
FP1)

FPE4 none dm FP exception reg 4 (left half of FP2)

FPE5 none dm FP exception reg 5 (right half of
FP2)

FPE6 none dm FP exception reg 6 (left half of FP3)

FPE7 none dm FP exception reg 7 (right half of
FP3)

Table 4-5. Floating Point Registers

Name Alias Access Description
128 Chapter 4

System Debug Command Specifications :-Exit
DUMPINFO
 EIEM=ffffffff EIRR=00000000 CCR=0000

Display all NM registers.

 $nmdebug > dr pcqb
 PCQB=0000000a.0021d7b8

Display the contents of "pcq back".

 $nmdebug > dr pid2
 PID2=$0004=0002(W)

Display the contents of protection ID register number 2.

Limitations, Restrictions

Floating-point registers are displayed as 64-bit long pointers. No interpretation of the data
is attempted.

DUMPINFO
DAT only

Displays dump file information.

Syntax

 DUMPINFO [options]

Parameters

options This parameter specifies what information is to be displayed. If no option
is given, STATE is assumed. The following list shows the valid options:

STATE Display the last active PIN and the state of the system at
the time the dump was taken.

DIRECTORY Display the dump file directory.

MAP Display a map of all secondary store addresses dumped.

TABLES Display the basic machine characteristics, such as memory
size, register pointers, and address translation tables
location.

CACHE Display internal cache statistics.

ALL Display all the above information.

Examples
 $nmdat > DUMPINFO
Chapter 4 129

System Debug Command Specifications :-Exit
DUMPINFO
 Dump Title: SA 2559 on KC (8/29/88 9:40)
 Last PIN : 34 - On ICS -- Dispatcher running

 $nmdat >

Display the dump title (entered by the dump operator) and the machine state at the time
the dump was taken.

 $nmdat> DUMPINFO DIR

 Dump file set D7054.DUMP.CMDEBUG
 Dumped OS MPE-XL (99999X B.09.22)
 Dump tape creator SOFTDUMP (99999X A.00.02)
 Dump disc file creator . . DAT/XL (X.09.00)
 Tape format ID 9.00.00
 Tape creation date THU, MAY 16, 1991, 3:23 PM
 Tape compression 36% (RLE)
 Dump disc format ID . . . B.01.00

 NAME LDEV DESC BYTES MBYTES BYTES RESTORED (All decimal)

 DUMP DIRECTORY (All Values Decimal)

 NAME LDEV DESC BYTES MBYTES BYTES RESTORED COMPRESSION

 PIM00 4096 0.0 4096, 100%
 MEMDUMP 50331648 48.0 50331648, 100% 61%
 VM001 1 66 41013248 39.1 41013248, 100% 79%
 VM002 2 3 585728 0.6 585728, 100% 82%
 VM003 3 2 61440 0.1 61440, 100% 84%
 VM004 4 209 17227776 16.4 17227776, 100% 82%
 VM014 14 3 585728 0.6 585728, 100% 83%

 Dump disc file space reduced by 71% due to LZ data compression.

 $nmdat >

Display the dump file directory.

 $nmdat > dumpinfo tables

 Logical page size: 00001000 Memory size : 03000000
 Hash table adress: 00744200 Hash table length: 00040000
 PDIR table adress: 006e4200 PDIR table length: 00060000
 REALGLOB address: 00788000 ICS address : 009cf000
 TCB table address: 009f7000 Current TCB adr : 00a000a0

 $nmdat >

Display the basic machine characteristics.

Limitations, Restrictions

none
130 Chapter 4

System Debug Command Specifications :-Exit
ENV
ENV
Assigns a new value to one of the predefined environment variables.

Syntax

 ENV var_name [=] var_value

The environment variables allow control and inspection of the operation of System Debug.

Parameters

var_name The name of the environment variable to set.

var_value The new value for the variable, which can be an expression.

The environment variables are logically organized in the following groups:

(cmd) Command related

(cmreg) Compatibility mode registers

(const) Predefined constants

(fpreg) Native mode floating-point registers

(io) Input/output related

(limits) Limits

(misc) Miscellaneous

(nmreg) Native mode registers

(system) System-wide Debug registers

(state) All nmreg + cmreg + fpreg registers

(win) Window

Access rights abbreviations are listed below. PM indicates that privileged
mode (PM) capability is required.

d Display access (DR command)

D PM display access (DR command)

m Modify access (MR command)

M PM modify access (MR command)

r Read access

R PM read access

w Write access

W PM write access

Two names separated by a hyphen indicate a range of names. For example,
Chapter 4 131

System Debug Command Specifications :-Exit
ENV
ARG0 - ARG3 implies the full range: ARG0, ARG1, ARG2, and ARG3.

The Environment Variables - Sorted by Group

The following table lists all environment variables, arranged by their logical groups. A full
alphabetically-sorted listing and description of each variable can be found following this
table.

const - constants

 const r FALSE : BOOL
 const r TRUE : BOOL

cmd - command related

 cmd rw AUTOIGNORE : BOOL
 cmd rw AUTOREPEAT : BOOL
 cmd rw CMDLINESUBS : BOOL
 cmd rw CMDNUM : U32
 cmd rw ECHO_CMDS : BOOL
 cmd rw ECHO_SUBS : BOOL
 cmd rw ECHO_USE : BOOL
 cmd rw ERROR : S32
 cmd r MACRO_DEPTH : U16
 cmd rw MULTI_LINE_ERRS : U16
 cmd rw NONLOCALVARS : BOOL
 cmd rw TRACE_FUNC : U16

io - input/output

 io rw CM_INBASE : STR
 io rw CM_OUTBASE : STR
 io r COLUMN : U16
 io rW CONSOLE_IO : BOOL (Debug only)
 io rw FILL : STR
 io rw FILTER : STR
 io rw HEXUPSHIFT : BOOL
 io rw INBASE : STR
 io rw JUSTIFY : STR
 io rw LIST_INPUT : BOOL
 io rw LIST_PAGELEN : U16
 io r LIST_PAGENUM : U16
 io rw LIST_PAGING : BOOL
 io rw LIST_TITLE : STR
 io rw LIST_WIDTH : U16
 io rw NM_INBASE : STR
 io rw NM_OUTBASE : STR
 io rw OUTBASE : STR
 io rw PROMPT : STR
 io rw TERM_KEEPLOCK : BOOL (Debug only)
 io rW TERM_LDEV : U16 (Debug only)
 io rw TERM_LOCKING : BOOL (Debug only)
 io rw TERM_LOUD : BOOL
 io rw TERM_PAGING : BOOL
 io rw TERM_WIDTH : U16

limits - limits for macros and variables

 limits rw MACROS : U16
 limits r MACROS_LIMIT : U16
132 Chapter 4

System Debug Command Specifications :-Exit
ENV
 limits rw VARS : U16
 limits r VARS_LIMIT : U16
 limits rw VARS_LOC : U16
 limits r VARS_TABLE : U16

misc - miscellaneous

 misc rW CCODE : STR (Debug only)
 misc rw CHECKPSTATE : BOOL
 misc r d CPU : U16
 misc rW CSTBASE : LPTR
 misc r DATE : STR
 misc r DISP : BOOL
 misc rW DSTBASE : LPTR
 misc rw DUMPALLOC_LZ : U16
 misc rw DUMPALLOC_RLE : U16
 misc r DUMP_COMP_ALGO : STR
 misc r ENTRY_MODE : STR
 misc rW ESCAPECODE : U32 (Debug only)
 misc r EXEC_MODE : STR
 misc rw GETDUMP_COMP_ALGO : STR
 misc r ICSNEST : U16
 misc r ICSVA : LPTR

misc r ISM_ARCH : S32
misc r LASTPIN : U16

 misc rw LOOKUP_ID : STR
 misc r MODE : STR
 misc r d MONARCHCPU : U16
 misc rw MPEXL_TABLE_VA : LPTR

misc r PHYS_REG_WIDTH : S32
misc r PIN : U16

 misc rW PRIV_USER : BOOL
 misc r PROGNAME : STR
 misc r d PSEUDOVIRTREAD : BOOL
 misc rw PSTMT : U16
 misc rw QUIET_MODIFY : BOOL
 misc rw SYMPATH_UPSHIFT : BOOL
 misc r SYSVERSION : STR
 misc r TIME : STR

misc rw USER_REG_WIDTH : S32
misc r VERSION : STR

win - window

 win rw CHANGES : STR
 win rw CMPW : LCPTR
 win r LW : SADDR
 win rw MARKERS : STR
 win r NMPW : LCPTR
 win r PW : LCPTR
 win r PWO : SPTR
 win r PWS : U32
 win r SHOW_CCTL : BOOL
 win r VW : LPTR
 win r VWO : SPTR
 win r VWS : U32
 win rw WIN_LENGTH : U32
 win rw WIN_WIDTH : U32
 win r ZW : U32
Chapter 4 133

System Debug Command Specifications :-Exit
ENV
cmreg - compatibility mode regs

 cmreg r dm CIR : S16
 cmreg r dm CMPC : LCPTR
 cmreg r dm DB : S16
 cmreg r dm DBDST : S16
 cmreg r dm DL : S16
 cmreg r d MAPDST : S16
 cmreg r d MAPFLAG : S16
 cmreg r dm Q : S16
 cmreg r dm S : S16
 cmreg r dm SDST : S16
 cmreg r dm STATUS : S16
 cmreg r dm X : S16

nmreg - native mode regs

 nmreg r dm ARG0 - ARG3 : U32
 nmreg r dM CCR : U16
 nmreg r dm CR0 : U32
 nmreg r dm CR8 - CR31 : U32
 nmreg r dm DP : U32
 nmreg r dM EIEM : U32
 nmreg r dM EIRR : U32
 nmreg r dM IIR : U32
 nmreg r dM IOR : U32
 nmreg r dM IPSW : U32
 nmreg r dM ISR : U32
 nmreg r dM ITMR : U32
 nmreg r dM IVA : U32
 nmreg r dm PC : LPTR
 nmreg r dm PCOB : U32
 nmreg r dm PCOF : U32
 nmreg r dm PCQB : LPTR
 nmreg r dm PCQF : LPTR
 nmreg r dm PCSB : U32
 nmreg r dm PCSF : U32
 nmreg r dM PID1 - PID4 : U16
 nmreg r dM PRIV : BOOL
 nmreg r d PSP : U32
 nmreg r dM PSW : U32
 nmreg r d R0 : U32
 nmreg r dm R1 - R31 : U32
 nmreg r dM RCTR : U32
 nmreg r dm RET0 : U32
 nmreg r dm RET1 : U32
 nmreg r d RP : U32
 nmreg r dm SAR : U16
 nmreg r dm SL : U32
 nmreg r dm SP : U32
 nmreg r dm SR0 - SR7 : U32
 nmreg r dM TR0 - TR7 : U32

fpreg - floating point regs

 fpreg r dM FP0 - FP15 : LPTR (until S64 is supported)
 fpreg r dM FPE0 - FPE7 : U32
 fpreg r dM FPSTATUS : U32

system - system wide debug
134 Chapter 4

System Debug Command Specifications :-Exit
ENV
 system rW CONSOLE_DEBUG : BOOL (Debug only)
 system rW DYING_DEBUG : BOOL (Debug only)
 system rW JOB_DEBUG : BOOL (Debug only)

state - process state

The state variables consist of all NMREG, CMREG, and FPREG variables.

The Environment Variables - Sorted Alphabetically

The following table lists all predefined environment variables. Each variable description
displays on the first line the variable name and type, group name in parentheses, and
access rights, for example:

name TYPE (group) access [*]

Environment variable description

Those variables flagged with a "*" have their value reset to their default value if the SET
DEFAULT command is issued.

ARG0 - ARG3 U32 (nmreg) r dm

NM argument registers. These registers are used by the language
compilers for parameter passing. (Alias for R26 - R23)

AUTOIGNORE BOOL (cmd) rw *

Setting AUTOIGNORE is equivalent to using the IGNORE LOUD command
before every command. When AUTOIGNORE is set, System Debug ignores
errors (that is, the ERRORvariable contains a negative value). Among other
things, this means that System Debug continues processing USE files,
macros, and looping constructs even though an error occurs while doing so.
(Refer to the IGNORE command.) The default for this variable is FALSE.

AUTOREPEAT BOOL (cmd) rw

Controls the automatic repetition of the last command whenever a lone
carriage return is entered. Setting AUTOREPEAT allows repetitive
operations (such as single stepping or PF) to be automatically executed by
pressing Return . This variable may also be altered with the SET CRON and
SET CROFF commands. The default value for the AUTOREPEAT variable is
FALSE.

CCODE STR (misc) rW

Condition code. This value is captured on entry to Debug. It is restored
when the debugger resumes the process. Since Debug itself causes the
condition code for the process to change, it is necessary to cache the
original value. The following string literals are valid: "CCE", "CCG",
"CCL".

CCR U16 (nmreg) r dM

NM coprocessor configuration register. (Alias for CR10)

CHANGES STR (win) rw

Selects the type of video enhancement used to flag window values modified
Chapter 4 135

System Debug Command Specifications :-Exit
ENV
since the last command. The following string literals are valid:
"INVERSE", "HALFINV", "BLINK", "ULINE", and "FEABLE". Note that
this is a string variable; thus, literals must be quoted. The default value is
"HALFINV".

CHECKPSTATEBOOL (misc) rw

If FALSE, inhibits validation of the process state when performing the
following functions: PIB , PIBX, PCB, PCBX, CMG, CMSTACKBASE, CMSTACKDST,
CMSTACKLIMIT, NMSTACKBASE and NMSTACKLIMIT.

CIR U16 (cmreg) r dm

CM current instruction register.

CMDLINESUBSBOOL (cmd) rw

Setting CMDLINESUBS enables command line substitutions (for example,
expanding the "|" character in-line). When macro bodies use command
line substitutions, it is sometimes desirable to disable CMDLINESUBS while
reading the macro definitions in from a USE file. (Refer to the ECHO_SUBS
variable). The default for this variable is TRUE.

CMDNUM U32 (cmd) rw

The current command number is maintained as a running counter. This
value is displayed as part of the default prompt string.

CMPC LCPTR (cmreg) r

The full logical code address for CM, based on the current logical code file,
logical segment number, and offset.

CMPW LCPTR (win) r

The address (as a logical code address) where the CM program window is
aimed.

CM_INBASE STR (io) rw

The current CM input conversion base. When in cmdebug, all values
entered are assumed to be in this base unless otherwise specified. The
following values are allowed:

% or OCTAL

or DECIMAL

$ or HEXADECIMAL

The names may be abbreviated to a single character. The default value is %
(octal). Refer to the SET command for an alternate method of setting this
variable.

CM_OUTBASE STR (io) rw *

The current CM output display base. The following values are allowed:

% or OCTAL
136 Chapter 4

System Debug Command Specifications :-Exit
ENV
or DECIMAL

$ or HEXADECIMAL

The names may be abbreviated to a single character. The default value is %
(octal). Refer to the SET command for an alternate method of setting this
variable.

COLUMN U16 (io) rw

The current character position in the user's output buffer. The position is
advanced by the W and WCOL commands (or by the C directive in a format
specification). Refer to the W command for details.

CONSOLE_DEBUGBOOL (system) rW

If this system-wide flag is set, all processes entering the debugger for the
first time automatically have their debug I/O performed at the system
console with the system console I/O routines. Processes that have already
entered Debug and have established a debugging environment are not
affected by this variable. When this variable is set, the CONSOLE_IO
variable is set to TRUE for all processes entering Debug for the first time.
Setting CONSOLE_DEBUG is useful when doing system debugging. If global
breakpoints have been set, all of the I/O can be directed to one terminal by
setting this variable. The default value is FALSE.

This variable is not available in DAT.

CONSOLE_IO BOOL (io) rW

If set, the current process uses the system console I/O routines to perform
Debug I/O. No other processes are affected by this command. Note that
this variable has precedence over the TERM_LDEV variable. System
processes and jobs entering Debug (assuming the JOB_DEBUGenvironment
variable was set), has this variable set to TRUE upon entry to the
debugger. The default value is FALSE.

This variable is not available in DAT.

CPU U16 (misc) r d

The CPU number of the processor that is being examined.

CR0 U32 (nmreg) r dm

NM control register 0 (alias for RCTR). Debug uses this value while single
stepping.

CR8 - CR31 U32 (nmreg) r dm

NM control registers. These registers have the following aliases and
names (for descriptions of their usage, refer to the PA-RISC 1.1 Instruction
Chapter 4 137

System Debug Command Specifications :-Exit
ENV
Set Reference Manual):

Refer to the PID environment variable entry for a detailed description of
the format of PID registers.

Refer to the IPSW environment variable entry for a detailed description of
the format for the PSW register.

CSTBASE LPTR (misc) rW

The virtual address of the CST table.

DATE STR (misc) r

The current date string in the form 'WED, OCT 14, 1951'.

DB U16 (cmreg) r dm

Table 4-6. NM Control Registers

Register Alias Description

CR0 RCTR Recovery counter

CR8 PID1 Protection ID 1

CR9 PID2 Protection ID 2

CR10 CCR Coprocessor configuration register

CR11 SAR Shift amount register

CR12 PID3 Protection ID 3

CR13 PID4 Protection ID 4

CR14 IVA Interrupt vector address

CR15 EIEM External interrupt enable mask

CR16 ITMR Interval timer

CR17 PCSF PC space queue front

CR18 PCOF PC offset queue front

CR19 IIR Interrupt instruction register

CR20 ISR Interrupt space register

CR21 IOR Interrupt offset register

CR22 IPSW PSW Interrupt processor status word

CR23 EIRR External interrupt request register

CR24 TR0 Temporary register 0

[vellip]

CR31 TR7 Temporary register 7
138 Chapter 4

System Debug Command Specifications :-Exit
ENV
The CM DB register.

DBDST U16 (cmreg) r dm

The CM DB DST number.

DISP BOOL (misc) r

A Boolean value that indicates whether or not the dispatcher is currently
running. This value is always FALSE in Debug.

DL U16 (cmreg) r dm

The CM DL register.

DP U32 (nmreg) r dm

NM global data pointer register. (Alias for R27)

DSTBASE LPTR (misc) rW

The virtual address of the CM DST table.

DUMPALLOC_LZU16 (misc) rw

Determines the percentage of disk space DAT will preallocate before
restoring a dump encoded with LZ data compression. The percentage is
relative to the space required to contain a fully uncompressed dump. This
means if you normally expect your dumps to be compressed by 60%,
setting DUMPALLOC_LZ to 40 should preallocate enough disk space to
contain the entire dump.

DUMPALLOC_RLEU16 (misc) rw

Similar to DUMPALLOC_LZ, except that it applies to dumps encoded with
RLE data compression.

DUMP_COMP_ALGOSTR (misc) r

Set to the data compression algorithm used by the currently opened dump.
Possible values are:

"NONE" The dump is not compressed.

"RLE" The dump is RLE-compressed.

"LZ" The dump is LZ-compressed.

DYING_DEBUGBOOL (system) rW

When a process is being killed, its state is said to be "dying." Once a
process is in this state, Debug normally ignores all breakpoints, traps, and
so on. If this system-wide variable is set to TRUE, Debug stops for all
events even if the process is dying. This is useful to operating system
developers only. It is possible to cause system failures if this variable is
turned on and breakpoints are set at inappropriate locations. The default
value for this variable is FALSE.

This variable is not available in DAT.

ECHO_CMDS BOOL (cmd) rw *
Chapter 4 139

System Debug Command Specifications :-Exit
ENV
When ECHO_CMDS is set, each command (other than those executed within
macros) is echoed just prior to its execution. The default value for this
variable is FALSE.

ECHO_SUBS BOOL (cmd) rw *

When ECHO_SUBS is set, and CMDLINESUBS is enabled, command line
substitutions are displayed as they are performed. In the following
example, the first line displays the location of the substitution and the
second line displays the result after the substitution has taken place. The
default value for this variable is FALSE.

 subs > fv a.c0341450 "|symfile :student_record"
 /\
 done > fv a.c0341450 "gradtyp:student_record"

ECHO_USE BOOL (cmd) rw *

When ECHO_USEis set, each command line that is read in from a use file is
echoed (along with the name of the USE file), prior to its execution. The
USE file name is used as the prompt. The default value for this variable is
FALSE.

EIEM U32 (nmreg) r dm

NM external interrupt enable mask. (Alias for CR15)

EIRR U32 (nmreg) r dM

The NM external interrupt request register. (Alias for CR23)

ENTRY_MODE STR (misc) r

This variable contains either "NM" or "CM". For Debug, it indicates
whether you entered either in cmdebug or nmdebug. For DAT, it just
tracks the MODE variable.

ERROR S32 (cmd) rw

The ERRORvariable contains the most recent error number. It is cleared on
entry to any user-defined macro. Refer to the IGNORE command, the ENV
variable AUTOIGNORE, and the "Error Handling" section in Chapter 2 for
additional error handling information. Note that only negative values
constitute errors. Positive values are warnings.

ESCAPECODE U32 (misc) rW

This is the last ESCAPECODE value that was stored for the process at the
moment Debug was entered. This variable is restored when the debugger
resumes execution of the process. Since Debug itself causes the escape
code for the process to change, it is necessary to cache the original value.

This variable is not available in DAT.

EXEC_MODE STR (misc) r

This variable contains either "NM" or "CM". It indicates the execution
mode of the current process. This value is obtained from the TCB
(operating system data structure). This value does not necessarily match
140 Chapter 4

System Debug Command Specifications :-Exit
ENV
the ENTRY_MODE variable.

FALSE BOOL (const) r

The constant FALSE.

FILL STR (io) rw *

This variable determines how leading zeros in right-justified data (refer to
JUSTIFY variable) are output from the Display commands and in the
windows. This variable may take on one of two quoted literal values:
"BLANK" (show leading zeros as blanks) or "ZERO" (show leading zeros as
zeros). The default value is "ZERO".

FILTER STR (io) rw *

All output, with the exception of error messages and the prompts, passes
through a final filtering process. Those lines that match the value in the
FILTER variable are displayed and the rest are discarded. By default,
FILTER is initialized to the blank string (&'&', &"&", or) that matches all
output. FILTER can be set to a regular expression for the purpose of
pattern matching. For example, the following shows how to find the
pattern "123" in memory. Only a line that contains "123" anywhere in the
line is displayed. Note that FILTER is displayed as part of the default
prompt.

 $6 ($10) nmdat > env FILTER 123
 $7 ($10) nmdat 123> dv a.c0000000, 4000
 $ VIRT a.c0001020 $ 40020330 4002033c 40012348 c0002342
 $ VIRT a.c0001238 $ c0062344 ffffffff fffffec2 00000004
 $ VIRT a.c0003240 $ 00000001 0000cf42 40012362 000000bc
 $8 ($10) nmdat 123> env filter ''
 $9 ($10) nmdat >

Three lines of output were matched. The pattern "123" has been
highlighted in the example to help point out where the pattern was found
in the line. Notice that one of the lines contained the pattern as part of the
address displayed by the DV command. We could use a fancier regular
expression to have just those lines with a "123" in the data part of the
output be displayed. In the following example, the regular expression
translates into "Match those lines that start with a dollar sign (^$) , are
followed by any number of any characters (.*) , that are followed by a
dollar sign and a space ($) , and followed by any number of any character
(.*) , and finally followed by characters 123 (123) ."

 $a ($10) nmdat > env FILTER `^$.*$.*123`
 $b ($10) nmdat ^$.*$.*123> dv a.c0000000, 4000
 $ VIRT a.c0001020 $ 40020330 4002033c 40012348 c0002342
 $ VIRT a.c0003240 $ 00000001 0000cf42 40012362 000000bc
 $c ($10) nmdat ^$.*$.*123> set def
 $d ($10) nmdat >

Note that only those lines with "123" as part of the data output by the DV
command were matched and displayed. For additional information on how
to specify regular expressions, refer to appendix A.

FP0-FP15 LPTR (fpreg) r dm
Chapter 4 141

System Debug Command Specifications :-Exit
ENV
NM floating-point registers 0-15. The 64 bits of these registers are
presented as long pointers until System Debug supports 64-bit integers.

FPE1-FPE7 S32 (fpreg) r dm

NM floating-point exception registers 1-7. These registers are extracted
from FP0-FP3. That is, FPE1 is an alias for the right 32 bits of FP0, FPE2 is
an alias for the left 32 bits of FP1, and so on. (Refer to the Precision
Architecture and Instruction Reference Manual (09740-90014).)

FPSTATUS U32 (fpreg) r dm

NM floating-point status register. (Alias for the left 32 bits of FP0.)

GETDUMP_COMP_ALGOSTR (misc) r

Determines the data compression algorithm to be used when creating a
new dump disk file with the GETDUMP command. This algorithm may be
different from the one used on the dump tape. Possible values are:

"" or "DEFAULT" Use the best algorithm supported by the current
version of DAT.

"TAPE" Use the same algorithm used on the dump tape.

"NONE" Don't compress the dump.

"RLE" Use RLE compression on the disk file.

"LZ" Use LZ compression on the disk file.

HEXUPSHIFT BOOL (io) r *

If TRUE, all hex output is displayed in uppercase; otherwise it is displayed
in lowercase. The default is FALSE, lowercase.

ICSNEST U16 (misc) r

The current ICS nest count as found in the base of the ICS. This value is
always 0 for Debug.

ICSVA LPTR (misc) r

The virtual address for the base of the ICS.

IIR U32 (nmreg) r dM

NM interrupt instruction register. (Alias for CR19)

INBASE STR (io) rw *

The current input conversion radix, which is based on the current mode.
Values entered are assumed to be in this radix unless otherwise specified.
This variable tracks NM_INBASE and CM_INBASE dependent upon the MODE
variable. The following values are allowed:

% or OCTAL

or DECIMAL

$ or HEXADECIMAL
142 Chapter 4

System Debug Command Specifications :-Exit
ENV
The names may be abbreviated to 1 character.

The default is based on the current mode (NM or CM). Refer to the SET
command for an alternate method of setting this variable.

IOR U32 (nmreg) r dM

NM interrupt offset register. (Alias for CR21)

IPSW U32 (nmreg) r dM

NM interrupt processor status word (alias for CR22 and PSW). Debug may
set or alter the "R" bit while single stepping, as well as the "T" bit if the
TRAP BRANCH ARM command has been issued.

This register has the following format:

 1 1 1 1 1 1 1 2 2 2 2 3 3
 0 7 8 9 0 1 2 3 4 5 6 4 7 8 9 0 1

|J| |T|H|L|N|X|B|C|V|M| C/B | |R|Q|P|D|I|

J Joint instruction and data TLB misses/page faults pending

T Taken branch trap enabled

H Higher-privilege transfer trap enable

L Lower-privilege transfer trap enable

N Instruction whose address is at front of PC queue is
nullified

X Data memory break disable

B Taken branch in previous cycle

C Code address translation enable

V Divide step correction

M High-priority machine check disable

C/B Carry/borrow bits

R Recovery counter enable

Q Interruption state collection enable

P Protection ID validation enable

D Data address translation enable

I External, power failure, & low-priority machine check
interruption enable

System Debug displays this register in two formats:

 IPSW=$6ff0b=jthlnxbCVmrQpDI

The first value is a full 32-bit integer representation of the register. The
second format shows the value of the special named bits. An uppercase
Chapter 4 143

System Debug Command Specifications :-Exit
ENV
letter means the bit is ON while a lowercase letter indicates the bit is OFF.

ISM_ARCH S32 (misc) r dM

Returns the software interrupt stack marker architecture as 32 or 64. The
two architectures currently in use differ in their abilities to hold either a
32 or 64-bit state, and are associated with the operating system version.
Note that this is NOT the same as the hardware register size, which may
be determined by ENV CPU_ARCH.

ISR U32 (nmreg) r dM

NM interrupt space register. (Alias for CR20)

ITMR U32 (nmreg) r dM

NM interval timer register. (Alias for CR16)

IVA U32 (nmreg) r dM

NM interrupt vector address. (Alias for CR14)

JOB_DEBUG BOOL (system) rW

A system wide flag that enables the debugging of jobs. The default value is
FALSE; any process attempting to access Debug in a job has that request
ignored (with the exception of the HPDEBUG intrinsic, which will execute a
command string but not stop in Debug). If this variable is set, and a job
does call Debug, upon entry the CONSOLE_IO variable is set to TRUE and
the TERM_LDEV variable is set to the console port (LDEV 20).

This variable is available only in Debug.

JUSTIFY STR (io) rw *

This variable controls the form justification used when numeric values are
displayed in the windows or from the Display commands. This variable
may take on one of two quoted literal values: "LEFT" or "RIGHT". When
right-justified, values can be blank or zero filled (refer to the FILL
variable). Decimal values are always left-justified in windows, despite this
setting. The default value is "RIGHT".

LAST_PIN U16 (misc) r

For DAT, this is the last PIN that was running at dump time (as found in
SYSGLOB). For Debug, this variable is the PIN on whose stack the
debugger is running.

LIST_INPUT U16 (io) rw

When LIST_INPU T is set, all user input lines are written into any
currently opened list file (refer to the LIST command). When ECHO_USE is
set, those lines that are input from the USE file are always displayed to
the list file, even if LIST_INPUT is disabled. The default value is TRUE.

LIST_PAGELEN U16 (io) rw *

The page length (in lines) of the list file (refer to the LIST command). The
default page length is #60. If the LIST_PAGING environment variable is
144 Chapter 4

System Debug Command Specifications :-Exit
ENV
set, a page eject is placed in the list after every LIST_PAGELEN lines.

LIST_PAGENUMU16 (io) r

The current page number of the list file (refer to the LIST command).
When a list file is opened, this variable is reset to 1. The default
LIST_TITLE uses this value as part of the page title written to each page.

LIST_PAGING BOOL (io) r *

When LIST_PAGING is set, output to the list file (refer to the LIST
command) is paged (based on LIST_PAGELEN). In addition, the LIST_TITLE
is written at the top of each new page. The default value for this variable is
TRUE.

LIST_TITLE STR (io) rw *

When the LIST_PAGING variable is enabled, this LIST_TITLE is written to
the top of each new page in the list file (refer to the LIST command). The
default LIST_TITLE is displayed below, followed by the output it produces:

'"Page: " list_pagenum:"d" " " version " " date " " time'

Page: 1 DAT-XL 9.00.00 FRI, FEB 13, 1987 2:22 PM

The variables in the title are evaluated each time the title is written to the
list file.

LIST_WIDTH U16 (io) rw *

The width (in number of characters) to be used for the list file (refer to the
LIST command). This number must be in the range 1-132, and is 80
characters by default. Lines written to the list file that are longer than the
LIST_WIDTH length are not truncated; instead they are split, with the
extra data placed on the following line.

LOOKUP_ID STR (misc) rw *

This variable is used by the expression evaluator in determining where to
look up NM procedure names. Refer to the "Procedure Name Symbols"
section in chapter 2 "User Interfaces" for additional details. It may take on
any of the following values:

UNIVERSAL Search exported procedures in the System Object Module
symbols.

LOCAL Search non-exported procedures in the System Object
Module symbols.

NESTED Search nested procedures in the System Object Module
symbols.

PROCEDURES Search local or exported procedures in the System Object
Module symbols.

ALLPROC Search local/exported/nested procedures in the System
Object Module symbols.

EXPORTSTUB Search export stubs in the System Object Module symbols.
Chapter 4 145

System Debug Command Specifications :-Exit
ENV
DATAANY Search exported or local data System Object Module
symbols.

DATAUNIV Search exported data System Object Module symbols.

DATALOCAL Search local data System Object Module symbols.

LSTPROC Search exported level 1 procedures in the LST.

LSTEXPORTSTUBSearch export stubs in the LST.

ANY Search for any type of symbol in the System Object Module
symbols.

The default is LSTPROC. Note that it is noticeably slower to look up symbols
from the System Object Module symbol table. For additional information,
see the section "Procedure Names" in chapter 2, the PROCLIST command,
and the NMADDR function.

LW SADDR (win) r

The secondary address where the LDEV window is aimed. The value
returned is interpreted as ldev.offset .

MACROS U16 (limits) rw

The MACROS variable controls the size of the macro table, and must be
changed (from the default size) before any macros are created. The MACROS
limit is automatically increased to the nearest prime number, which must
be less than or equal to MACROS_LIMIT.

MACROS_LIMIT U16 (limits) r

MACROS_LIMIT is a compile time constant that defines the absolute
maximum size of the macro table. The product must be recompiled and
redistributed to increase this absolute capacity.

MACRO_DEPTHU16 (cmd) r

MACRO_DEPTH tracks the current nested call level for macros. A depth of 1
implies the macro was invoked from the user interface. A depth of 2
implies that the current macro was called by another macro, and so on.

MAPDST U16 (cmreg) r

This variable contains the mapping DST number for CM CST expansion.

MAPFLAG U16 (cmreg) r

MAPFLAGindicates the mapping of the current CM segment, running under
CST expansion. If MAPFLAG = 0, the current CM segment is logically
mapped. If MAPFLAG = 1, the current CM segment is physically mapped.

MARKERS STR (win) rw *

The MARKERSvariable selects the type of video enhancement which is used
to flag stack markers in the CM Q (frame) and S (stack) windows. The
following string literals are valid: "INVERSE", "HALFINV", "BLINK",
"ULINE", and "FEABLE". The default is "ULINE".
146 Chapter 4

System Debug Command Specifications :-Exit
ENV
MODE STR (misc) r This variable contains either "NM" if you are in NMDebug,
or "CM" if in cmdebug.

MONARCHCPUU16 (misc) r d

This variable contains the number of the Monarch processor.

MPEXL_TABLE_VAU16 (misc) rw

This variable contains the address of the table used by the MPEXL
command. Initially the address is set to NIL (0.0). The first invocation of
the MPEXL command will correctly replace the NIL value with the actual
table address. If any (non-NIL) virtual address is written into this
variable, then the MPEXL comand will honor this address and use it to
attempt access to the MPEXL table.

MULTI_LINE_ERRS U16 (cmd) rw *

When a user's multiple line input contains an error, it is sometimes
desirable to limit the quantity of error output generated. In particular this
variable controls how much of the user's original input line is displayed in
the error message:

1 Display the single input line that contains the error.

2 Display all lines up to and including the line with the
error.

3 Display all input lines (up to, including and after) the
error.

The default value is 2. Any value larger than 3 is interpreted as a 3.

NMPW LCPTR (win) r

The logical code address where the NM program window is aimed.

NM_INBASE STR (io) rw *

The current NM input conversion base. When in NMDebug, all values
entered are assumed to be in this base unless otherwise specified. The
following values are allowed:

% or OCTAL

or DECIMAL

$ or HEXADECIMAL

The names may be abbreviated to as little as a single character.

The default value is $ (hex). Refer to the SET command for an alternate
method of setting this variable.

NM_OUTBASE STR (io) rw *

When in NM (nmdat or nmdebug), all numbers printed will be this base,
unless otherwise indicated (refer to the SET command). The following
values are allowed:
Chapter 4 147

System Debug Command Specifications :-Exit
ENV
% or OCTAL

or DECIMAL

$ or HEXADECIMAL

The names may be abbreviated to as little as a single character.

The default value is $ (hex). Refer to the SET command for an alternate
method of setting this variable.

NONLOCALVARSBOOL (cmd) rw

When NONLOCALVARS is FALSE (default), macro bodies can only reference
local variables that are declared locally within the current macro. When
NONLOCALVARS is TRUE, a macro body can reference a local variable
within another macro that called it. Setting this variable is useful when a
macro is too large for the current macro size restrictions and must be
broken into several pieces. The first piece can call the subsequent pieces
without passing all of the local variables as parameters.

OUTBASE STR (io) rw *

This variable tracks NM_OUTBASE and CM_OUTBASE dependent upon the
MODE variable. The following values are allowed:

% or OCTAL

or DECIMAL

$ or HEXADECIMAL

The names may be abbreviated to as little as 1 character.

The default is based on the current mode (NM or CM). Refer to the SET
command for an alternate method of setting this variable.

PC LPTR (nmreg) r dm

NM program counter register as a logical code address. This value is
composed of data taken from CR17 (PCSF) and CR18 (PCOF). The
privileged bits from CR18 (bits 30, 31) are masked out (that is, they are set
to zero).

PCOB U32 (nmreg) r dm

NM program counter offset (next in pipeline queue).

PCOF U32 (nmreg) r dm

NM program counter offset (first in pipeline queue).

PCQB LPTR (nmreg) r dm

NM program counter sid.offset (next in pipeline queue). (Alias for
CR18)

PCQF LPTR (nmreg) r dm

NM program counter sid.offset (first in pipeline queue). (Alias for
CR17)
148 Chapter 4

System Debug Command Specifications :-Exit
ENV
PCSB U32 (nmreg) r dm

NM program counter sid (next in pipeline queue).

PCSF U32 (nmreg) r dm

NM program counter sid (first in pipeline queue).

PHYS_REG_WIDTHS32 (misc) r

Returns the physical width of the registers in the machine, as 32 or 64.
Note that 64 is returned only when the machine has HP-PA 2.0 64-bit
hardware AND the OS supports it with 64-bit ISMs.

PID1 - PID4 U16 (nmreg) r dM

NM protection ID registers. (Alias for CR8, CR9, CR12, CR13.) The format
of the PID registers is as follows:

 1 1 3
0 5 6 1
--
| <reserved> | Protection ID |WD|
--

<reserved> The top 16 bits are undefined for this register.

Protection ID The protection ID number.

WD Write disable bit (1 = read only, 0 = write enabled)

System Debug displays these registers in two formats:

 PID1=030e=0187(W)

The first value is the register as a 16-bit value. The second form is the
original 16-bit register shifted right by 1 bit followed by the value of the
write disable bit. The (W) indicates the WD bit is off. That is, write
capability is enabled. When the WD bit is on, an (R) is displayed
indicating Read access.

PIN U16 (misc) r

The current process identification number (PIN). Note that this variable
changes when one uses the PIN command. PIN 0 (zero) indicates that the
dispatcher is running. (Refer to the variable LAST_PIN.)

PRIV U16 (nmreg) r dM

Current privilege level (low two bits of PCOF).

PRIV_USER BOOL (nmreg) r rW

This variable is TRUE if the user running Debug has privileged mode
(PM) capabilities. If set, the user has access to all privileged commands
within Debug. Privileged users may alter the value of this variable if
desired to supply a "safe" environment.

In DAT, this variable is always TRUE.

PROGNAME STR (misc) r
Chapter 4 149

System Debug Command Specifications :-Exit
ENV
This variable contains the name of the tool that is being run. It is either
'dat' or 'debug'.

PROMPT STR (io) rw

Current user prompt. It is defined as a quoted string with the same syntax
and options as the WL command. The default prompt is:

 'cmdnum " (" pin ") " mode progname " " filter "> "'

The variables in the prompt are evaluated each time the prompt is
displayed.

PSEUDOVIRTREADBOOL (misc) r d

This variable is TRUE if the last virtual access came from a
pseudomapped file. Otherwise, the access came from virtual memory.

PSP U32 (nmreg) r d

Previous SP. This is not really a register; it is computed based on the
current SP and size of the current frame.

PSTMT BOOL (misc) rw *

When PSTMT is set, the NM disassembler interprets certain LDIL
instructions as statement numbers, as generated by some of the language
compilers. The default value is TRUE.

PSW U32 (nmreg) r dM

Processor status register (alias for IPSW and CR22). Refer to the IPSW
environment variable for a complete description of this variable.

PW LCPTR (win) r

The address (as a logical code address) where the (current) program
window is aimed.

PWO SPTR (win) r

The offset where the (current) program window is aimed.

PWS U32 (win) r

The SID (NM) or SEG (CM) where the (current) program window is aimed.

Q U16 (cmreg) r dm

This is the CM Q register. The value in this register is relative to the CM
DB register.

QUIET_MODIFY U16 (io) rw *

When this variable is FALSE (the default value), all modifications to
registers and memory cause the current value of the item to be displayed.
If the variable is set to TRUE, all modifications are performed quietly.
Quiet modifications are useful in macros and breakpoint command lists.

R0 U32 (nmreg) r d

NM register 0; the constant 0 (zero).
150 Chapter 4

System Debug Command Specifications :-Exit
ENV
R1 - R31 U32 (nmreg) rwdm

NM general registers. Many of these registers have aliases. Refer to the DR
command for a complete list.

RCTR U32 (nmreg) r dM

NM recovery counter register. (Alias for CR0)

RET0 U32 (nmreg) r dm

NM return register 0 (alias for R28). This register is used by the language
compilers to return function results.

RET1 U32 (nmreg) r dm

NM return register 1 (alias for R29). This register is used by the language
compilers to return function results.

RP U32 (nmreg) r d

NM return pointer. This value is determined based on stack unwind
information. It may be the contents of R2 or it may be the return address
stored somewhere in the NM stack. Note that RP is not an alias for R2.

S U16 (cmreg) r dm

CM S (stack) register. The value in this register is relative to the CM DB
register.

SAR U16 (nmreg) r dm

NM shift amount register. (Alias for SR11)

SDST U16 (cmreg) r dm

DST number of the CM stack.

SL U32 (nmreg) r dm

NM static link register. (Alias for R29)

SP U32 (nmreg) r dm

NM stack pointer register. (Alias for R30)

SR0 - SR7 U32 (nmreg) r dM

NM space registers 0 - 7.

STATUS U16 (cmreg) r dm

CM status register. This register has the following format:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 |M|I|T|R|O|C|CC | Segment # |

M bit 1 if program is privileged

0 if program is in user mode
Chapter 4 151

System Debug Command Specifications :-Exit
ENV
I bit 1 if external Interrupts are enabled

0 if not

T bit 1 if user Traps are enabled

0 if not

R bit 1 if right stack operation pending

0 if left stack operation pending

O bit 1 if Overflow bit set (not set if user traps enabled)

0 if not

C bit 1 if Carry bit set

0 if not

CC bits 01 if CCL (This is the condition code value)

10 if CCE

00 if CCG

System Debug display this register with two formats:

 STATUS=%100030=(Mitroc CCG 030)

The first value is the full 16-bit integer representation of the register. The
second format shows the value of the special named bits. An uppercase
letter means the bit is on while a lowercase letters indicates the bit is off.

The segment number has various interpretations. For non-CST expansion
systems, this is an absolute segment number. For CST expansion systems,
refer to the MPE V/E Tables Manual for details on its interpretation.

SYMPATH_UPSHIFTBOOL (misc) rw

TRUE if path specifications used by symbolic formatting should be
upshifted. This should be FALSE if a symbol file originated with a
case-sensitive language, such as C. Note that this variable affects only
those symbols entered in System Debug commands and functions, not
those in symbol files.

SYSVERSION STR (nmreg) r

The version of the operating system (as found in SYSGLOB).

This variable is currently a null string in DAT.

TERM_KEEPLOCKBOOL (io) rw

If this variable is set, the terminal semaphore is not released when the
process is resumed by Debug. The default for this variable is FALSE. If the
process dies, the terminal semaphore is automatically released. If the TERM
NEXT command is issued or the value of TERM_LOCKING is changed, this
variable is reset to FALSE.

This variable is available only in Debug.
152 Chapter 4

System Debug Command Specifications :-Exit
ENV
TERM_LDEV U16 (io) rW

This variable contains the logical device number (LDEV) to use for I/O.
Debug determines this value by looking up the LDEV for the session.

If the ENVcommand is used to alter this value, Debug attempts to allocate
the indicated LDEV. If the LDEV is already allocated (that is, in use by
another session), an error status is returned. If the user has privileged
mode (PM) capabilities, the allocation check may be bypassed by specifying
a negative LDEV. In this case, all security and validity checking is
bypassed. Non-Preemptive send_io calls are done to the specified LDEV
without question.

When Debug is entered from a job (this is possible when the HPDEBUG
intrinsic is used), this variable is not used. Rather, Debug performs I/O to
the job's standard list file ($STDLIST).

If the JOB_DEBUG system wide variable is set, when a process being run in
a job enters Debug, this variable is set to the console port (LDEV 20) and
the CONSOLE_IO variable is set to TRUE.

Note that the CONSOLE_IO environment variable has precedence over
TERM_LDEV.

NOTE A privileged procedure exists that allows the user to enter Debug and specify
the initial value of this variable. The name of the routine is debug_at_ldev .
It takes one parameter, the LDEV.

This variable is not available in DAT.

TERM_LOCKINGBOOL (io) rw

If this variable is set (the default value), the debugger will perform
"terminal locking" (with a semaphore) to ensure that only one debug
process can use a terminal at any given time. This prevents multiple
prompts from appearing on the screen when debugging multiple processes
at the same terminal. The TERM command may then be used to control
which process owns the semaphore. If this variable is not set, no terminal
locking is performed.

The TERM_LDEV variable is not used to determine which semaphore to
attempt to lock; rather, the session number is used for this purpose. There
is one semaphore per session. If a process enters Debug with its I/O from
the system console (that is, the CONSOLE_IO variable was set to TRUE at
entry), a single console semaphore is used.

Altering the value of the CONSOLE_IO variable or the TERM_LDEV variable
does _not affect which semaphore is used for terminal locking.

This variable is not available in DAT.

TERM_LOUD BOOL (io) rw *

If this variable is clear, all output to the terminal is suppressed with the
exception of prompts and error messages. This is useful when listing large
Chapter 4 153

System Debug Command Specifications :-Exit
ENV
amounts of data to a list file so that you do not see it on your screen. The
default for this variable is TRUE.

TERM_PAGINGBOOL (io) rw *

If this variable is set, all output is paged. That is, after each full screen of
output, System Debug pauses. At that point the user is prompted with the
question "MORE?". Any response that does not begin with the letter "Y" or
"y" will cause the user to be returned to the System Debug prompt (any
pending output is flushed). This variable may also be set with the SET
MOREON/SET MOREOFF commands. The default value is FALSE.

TERM_WIDTH U16 (io) rw *

This is the number of characters to print per line. The default is set at 79.
Any output line longer than this value is split with the remainder placed
on the next line.

TIME STR (misc) r

The current time of day in the format: "5:25 PM".

TR0 - TR7 U32 (n*eg) r dM

NM "temp" registers (alias for CR24..CR31).

TRACE_FUNC U16 (cmd) rw

Setting this variable allows you to observe function calls and their
parameters. The current values and meanings are:

0 Trace is off.

1 Trace EXIT from functions.

2 Trace ENTRY and EXIT from functions.

3 Trace function PARAMETERS as well as ENTRYand EXIT .

TRUE BOOL (const) r

The constant "TRUE".

USER_REG_WIDTHS32 (misc) rw

Determines the number of register bits the user sees with the debugger.
This will affect the register display window, the output from the DR
command, and the sizes (types) of the register ENV variables. May be
either 32 or 64, but 64 bits are displayed or returned ONLY when a 64-bit
state is available. (That is, only when ENV PHYS_REG_WIDTH is also
64.)

VARS U16 (limits) rw

The VARS limit determines the maximum number of variables that can be
defined by the VAR command. The VARS limit must be set (changed from
the default) before the first variable is defined. The VARS limit is
automatically increased to the nearest prime number. The combined sum
of the VARSand VARS_LOClimits must be less than or equal to the value of
VARS_LIMIT .
154 Chapter 4

System Debug Command Specifications :-Exit
ENV
VARS_LIMIT U16 (limits) r

VARS_LIMIT is the compile time constant that defines the absolute
maximum size of the variable table. The product must be recompiled and
redistributed to increase this absolute capacity. The combined sum of the
VARS and VARS_LOC limits must be less than or equal to the value
VARS_LIMIT.

VARS_LOC U16 (limits) rw

The VARS_LOC limit determines the maximum number of local variables
that can be defined. Local variables are explicitly defined by the LOC
command, and are implicitly defined for macro parameters.
The VARS_LOC limit must be set before any local variable is defined. The
combined sum of the VARS and VARS_LOC limits must be less than the
value VARS_LIMIT .

VARS_TABLE U16 (limits) rw

VARS_TABLEtracks the total number of entries in the variable table, which
is defined to be the sum of variables VARSplus VARS_LOC. The VARS_TABLE
size must always be less than or equal to VARS_LIMIT .

VERSION STR (misc) r

The version ID of the program, for example, "DAT XL A.00.00".

VW LPTR (win) r

The virtual address where the current virtual window is aimed.

VWO SPTR (win) r

The offset portion for the virtual address where the current virtual window
is aimed.

VWS U32 (win) r

The sid portion for the virtual address where the current virtual window is
aimed.

WIN_LENGTH U32 (io) rw *

Specifies the number of lines available on the display terminal. The
default value is #24. Values grater than or less than the actual number of
terminal lines may cause unpredictable screen output.

WIN_WIDTH U32 (io) rw *

Specifies the number of columns available on the display terminal. The
default value is #80. Modification of this value is permitted, but the value
is ignored.

X U16 (c*eg) r dm

The CM X (index) register.

ZW U32 (win) r

The real address where the Z window is aimed.
Chapter 4 155

System Debug Command Specifications :-Exit
ENVL[IST]
Examples

 %cmdebug > env autoignore true

Set the environment variable AUTOIGNORE to TRUE.

 $nmdebug > env cmdlinesubs true

Set the variable CMDLINESUBS to TRUE. This enables command line substitutions, that
may have been disabled while macros were being read in from a file.

Limitations, Restrictions

none

ENVL[IST]
Displays the current values for environment variables.

Syntax

 ENVL[IST] [pattern] [group] [options]

Parameters

pattern The name of the environment variable(s) to be listed.

This parameter can be specified with wildcards or with a full regular
expression. Refer to Appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 `log2[0-9][0-9]4`
156 Chapter 4

System Debug Command Specifications :-Exit
ENVL[IST]
By default, all variables are listed.

group The environment variables are logically organized in groups. When listed,
the variables can be filtered by group; that is, only those variables in the
specified group is displayed.

CONST Predefined constants

CMD Command-related

IO Input/output-related

MISC Miscellaneous

WIN Window

SYSTEM System-wide Debug registers

C*EG Compatibility mode registers

N*EG Native mode registers

FPREG Native mode floating-point registers

STATE Same as C*EG N*EG FPREG

NOSTATE Same as CONST CMD IO MISC WIN SYSTEM (default)

ALL | @ All groups

If the group name is omitted, NOSTATE is used by default.

options Any number of the following options can be specified in any order,
separated by blanks:

NAME Display variable name only

USE Display a one-line summary

NOUSE Skip the summary

DESC Display a general description

NODESC Skip the description

EXAMPLE Display an example

NOEXAMPLE Skip the example

ALL | @ Display everything, Same as:

NAME USE DESC EXAMPLE

If none of the options above are specified, NAME is displayed by default. If
any options are specified, they are accumulated to describe which fields
are printed.

Examples
 $nmdat > envl, win
 win rw CHANGES : STR = 'HALFINV'
 win r CMPW : LCPTR = SYS $15.0
 win r LW : SADDR = SADDR $1.0
Chapter 4 157

System Debug Command Specifications :-Exit
ERR
 win rw MARKERS : STR = 'ULINE'
 win r NMPW : LCPTR = SYS $a.702d6c
 win r PW : LCPTR = SYS $a.702d6c
 win r PWO : SPTR = $00702d6c
 win r PWS : U32 = $a
 win rw SHOW_CCTL : BOOL = FALSE
 win r VW : LPTR = $0.0
 win r VWO : SPTR = $00000000
 win r VWS : U32 = $0
 win r ZW : U32 = $0

Display all window-related environment variables.

 $nmdat > envl m@
 cmd r MACRO_DEPTH : U16 = $0
 win rw MARKERS : STR = 'ULINE'
 misc r MODE : STR = 'nm'
 cmd rw MULTI_LINE_ERRS : U16 = $2

Display all environment variables that begin with the letter "m".

 $nmdat > envl vw,,all
 win r VW : LPTR = $0.0

 DESC:

 The virtual address where the current virtual window is aimed.

Display the environment variable VW and all related information associated with that
variable.

 $nmdat > env term_loud 0
 $nmdat > list envinfo
 $nmdat > envl @,,all page
 $nmdat > list close
 $nmdat > env term_loud 1

Create a list file with complete information on all of the environment variables. The list file
is paged with one environment variable description per page.

Limitations, Restrictions

none

ERR
Pushes a user error message onto the error command stack.

Syntax

 ERR errmsg

The ERR command is typically used within user defined macros.
158 Chapter 4

System Debug Command Specifications :-Exit
ERRD[EL]
Parameters

errmsg The error message that is to be pushed onto the error stack. This message
must be entered as a string expression (that is, a quoted string literal, a
string function or macro result).

Examples

 $nmdat > err "Illegal negative parameter value"

Push a custom user error message onto the error stack.

Limitations, Restrictions

The error stack is implemented as a ring, with a total of 10 elements.

Note that the ERROR environment variable is not set by this command.

ERRD[EL]
Deletes all errors on the error stack (reset the stack).

Syntax

 ERRD[EL]

Parameters

none

Examples

 $nmdat > errd

Reset the error stack.

Limitations, Restrictions

none

ERRL[IST]
Error list. Lists the most recent error(s) on the error stack.
Chapter 4 159

System Debug Command Specifications :-Exit
ERRL[IST]
Syntax

 ERRL[IST] [ALL]

Parameters

ALL By default, only the most recent (set) of errors are displayed. If the special
option ALL is specified, all sets of errors are displayed.

Examples
 $nmdat > dv a.234e0
 Display error. Check ERRLIST for details. (error #3800)

$nmdat > errl
 $47: Display error. Check ERRLIST for details. (error #3800)
 $47: data read access error (error #805)
 $47: READ_CMWORD bad address: $ VIRT a.234e0
 $47: No dump file set is opened (error #5083)

Display error information from the error stack about the last error. Useful additional error
information is often available in the error stack. In this example, we see that several error
lines were stacked for command number $47 . The display command failed because no
dump has been opened.

 $nmdat > errl all

 $47: Display error. Check ERRLIST for details. (error #3800)
 $47: data read access error (error #805)
 $47: READ_CMWORD bad address: $ VIRT a.234e0
 $47: No dump file set is opened (error #5083)

 $22: Error evaluating a predefined function. (error #4240)
 $22: function is"vtor"
 $22: wl vtor(pc)
 ^
 $22: Virtual-to-real translation failed. (error #6013)

 $1f: Unknown topic for HELP. (error #1488)

 $1c: This command is invalid for this program. (error #6115)
 $1c: Program: DAT
 $1c: mv a.c00012c4
 ^

 $17: File system error opening an old file. (error #1302)
 $17: NONEXISTENT PERMANENT FILE (FSERR 52) [LOADMACS]

Display all entries in the error stack. Multiple stacked errors are displayed, along with the
command numbers that caused the errors. Errors are recorded for commands $47, $22,
$1f, $1c , and $17 .

Limitations, Restrictions

The error stack is implemented as a ring, with a total of 10 elements.
160 Chapter 4

System Debug Command Specifications :-Exit
E[XIT]
E[XIT]
Exits/resumes execution of user program.

Syntax

 E[XIT] Same as CONTINUE (in Debug)
 E[XIT] Exit program (in DAT)

Same as the C[ONTINUE] command in Debug. For DAT, this command exits the DAT
program.
Chapter 4 161

System Debug Command Specifications :-Exit
E[XIT]
162 Chapter 4

System Debug Command Specifications Fx-LOG
5 System Debug Command
Specifications Fx-LOG

Specifications for the System Debug commands continue to be presented in this chapter in
alphabetical order.

Window command specifications are presented in chapter 7, "System Debug Window
Commands."

System Debug tools share the same command set. A few commands, however, are
inappropriate in either DAT or Debug. These commands are clearly identified as "DAT
only" or "Debug only" on the top of the page that defines the command.

Debug only

The following Debug commands cannot be used in DAT:

B All forms of the break command

BD Breakpoint delete

BL Breakpoint list

C[ONTINUE] Continue

DATAB Data breakpoint

DATABD Data breakpoint delete

DATABL Data breakpoint list

F All forms of the FREEZE command

FINDPROC Dynamically loads NL library procedure

KILL Kills a process

LOADINFO Displays currently loaded program / libraries

LOADPROC Dynamically loads CM library procedure

M All forms of the modify command

S[S] Single step

TERM Terminal semaphore control

TRAP Arm/Disarm/List Traps

UF All forms of the UNFREEZE command
Chapter 5 163

System Debug Command Specifications Fx-LOG
Fx (format)
DAT only

The following DAT commands cannot be used in Debug:

CLOSEDUMP Closes a dump file

DEBUG Enters Debug; used to debug DAT

DPIB Displays a portion of the Process Information Block

DPTREE Displays the process tree

DUMPINFO Displays dump file information

GETDUMP Reads in a dump tape to create a dump file

OPENDUMP Opens a dump file

PURGEDUMP Purges a dump file

Fx (format)
Formats a specified data structure.

Syntax
 FT path ft_options

 FV virtaddr path fv_options

FT = format data structure with type information.

FV = format data structure with data starting at sid.off .

Parameters

virtaddr FV only. The virtual address of the data to be formatted. Virtaddr can be
a short pointer, a long pointer, or a full logical code pointer.

path A path specification, as described in chapter 5, "Symbolic
Formatting/Symbolic Access".

ft_options These options are for the FT command only. The MAP option causes a
location map to be printed for components of complex structures such as
records or arrays.

MAP Include a location map.

NOMAP Do not include a location map (default).

fv_options These options are for the FV command only.

PAC Print packed array of chars as a string of characters.

NOPAC Print packed array of chars as an array index followed by
164 Chapter 5

System Debug Command Specifications Fx-LOG
Fx (format)
the element value.

PAB Print packed array of boolean as a bit string.

NOPAB Print packed array of boolean as an array index followed
by the element value.

ARCH For selected MPE/XL architect types, print the data in the
"expected" fashion.

NOARCH Do no special formatting for MPE/XL architected types.

If no options are given, the default set is:

 PAC PAB ARCH

The known types given special treatment with the ARCH option are:

 VA_TYPE
 SHORT_VA_TYPE
 CONVERT_PTR_TYPE

Examples
 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES . . MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;
 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];
 StudentRecord = RECORD
 Name : NameStr;
 Id : integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;

FT (Format Type) Examples
 $nmdebug > FT "StudentRecord"

 RECORD
 NAME : NAMESTR ;
 ID : INTEGER ;

 YEAR : CLASS ;
 NUMGRADES: GRADERANGE ;
 GRADES : GRADESARRAY ;
 END

Display the structure of StudentRecord .
Chapter 5 165

System Debug Command Specifications Fx-LOG
Fx (format)
 $nmdebug > FT "StudentRecord" MAP

 RECORD
 NAME : NAMESTR ; (0.0 @ 10.0)
 ID : INTEGER ; (10.0 @ 4.0)
 YEAR : CLASS ; (14.0 @ 1.0)
 NUMGRADES: GRADERANGE ; (15.0 @ 1.0)
 GRADES : GRADESARRAY ; (18.0 @ 28.0)
 END ;
 RECORD Size: 40 bytes

Display the structure of StudentRecord and print a component map.

$nmdebug > FT "StudentRecord.grades"
 ARRAY [GRADERANGE] OF INTEGER

 $nmdebug > FT "graderange"
 1 .. 10

 $nmdebug > FT "maxgrades"
 INTEGER

Display various types. Notice that structure name is not limited to a simple type or
constant name; rather, it may consist of any composite structure name.

FV (Format Virtual) Examples

The following examples assume that debug variable data contains the virtual address of a
data structure corresponding to the type StudentArray .

Before looking at FV examples, let's take a look at the data for student number 1 the "old
fashioned way" (with the DV command):

 $nmdebug > dv data,10
 $ VIRT 7b8.40200010 $ 00000004 42696c6c 00000000 00000000
 $ VIRT 7b8.40200020 $ 00000001 00040000 0000002d 00000041
 $ VIRT 7b8.40200030 $ 0000004e 00000042 00000000 00000000
 $ VIRT 7b8.40200040 $ 00000000 00000000 00000000 00000000

 $nmdebug > dv data,6,a
 $ VIRT 7b8.40200010 A Bill

This is what the first few words of the StudentArray data looks like in virtual memory.

 $nmdebug > fv data "StudentRecord"
 RECORD
 NAME : 'Bill'
 ID : 1
 YEAR : SENIOR
 NUMGRADES : 4
 GRADES :
 [1]: 2d
 [2]: 41
 [3]: 4e
 [4]: 42
 [5]: 0
 [6]: 0
 [7]: 0
 [8]: 0
166 Chapter 5

System Debug Command Specifications Fx-LOG
Fx (format)
 [9]: 0
 [a]: 0
 END

This is what the first element of the StudentArray data looks like when formatted as if it
were a StudentRecord .

 $nmdebug > fv data "StudentRecord.Name"

 'Bill'

 $nmdebug > fv data "StudentRecord.Year"

 SENIOR

 $nmdebug > fv data "StudentRecord.Grades[3]"

 4e

MPE XL Operating System Examples

We can also look at individual items of a data structure as the above examples depict.

 $nmdebug > symopen symos.pub.sys
 $nmdebug > fv pib(pin) "pib_type.cm_global"
 c79c0000

Open the operating system symbolic file. Format the data in the cm_global field of the PIB
for the current PIN. It is a short pointer.

 $nmdebug > fv pib(pin) "pib_type.cm_global̂ "
 PACKED RECORD
 CM_DP0 : 0
 CM_DP_SCRATCH : c0105d40
 CM_INFO :
 CM_INFO_INT : c
 CM_CTRL :
 CM_CTRL_INT : 0
 CM_STACK_DST : ac
 CM_DB_DST : ac
 CM_DB_3K_OFFSET : 200
 CM_DB_SID : 7d4
 CM_DB_OFFSET : 400110b0
 CM_DL : CONVERT_PTR_TYPE(7d4.40011000)
 CM_S : CONVERT_PTR_TYPE(7d4.400110be)
 CM_Z : CONVERT_PTR_TYPE(7d4.40015ed0)
 CM_STACK_BASE : CONVERT_PTR_TYPE(7d4.40010cb0)
 CM_STACK_LIMIT : CONVERT_PTR_TYPE(7d4.40020fff)
 CM_CST : 80000700
 CM_CSTX : 0
 CM_LSTT : CONVERT_PTR_TYPE(0.0)
 CM_NRPGMSEGS : 0
 CM_DST : 81400000
 CM_BANK0 : 80000000
 CM_BANK0_SIZE : 10000
 CM_DEBUG : 0
 CM_MCODE_ADR : 484228
 CM_RESVD6 : 0
 CM_RESVD5 : 0
Chapter 5 167

System Debug Command Specifications Fx-LOG
Fmm (freeze)
 CM_RESVD4 : 0
 CM_RESVD3 : 0
 CM_RESVD2 : 0
 CM_RESVD1 : 0
 END

Format the data in the cm_global field of the PIB for the current PIN. That is, format
what the pointer points to.

 $nmdebug > fv pib(pin) "pib_type.cm_global̂ .cm_info"
 CRUNCHED RECORD
 CM_INFO_INT : c
 END

Format the data in the cm_info record of the cm_global record.

 $nmdebug > ft "pib_type.cm_global̂ .cm_info"
 CRUNCHED RECORD
 CASE BOOLEAN OF
 TRUE: (CM_INFO_INT: SEM_LOCK_TYPE);
 FALSE: (SPLITSTACK : BIT1 ;
 SINGLE_STEP: BIT1 ;
 CNTRL_Y : BIT1 ;
 SCRATCH1 : BIT5);
 END

Format the type for the acm_info record contained in the cm_global record. We see that
the record has an invariant case structure. By default, the formatter takes the first
invariant structure found.

 $nmdebug > fv pib(pin) "pib_type.cm_global̂ .cm_info,false"
 CRUNCHED RECORD
 SPLITSTACK : 0
 SINGLE_STEP : 0
 CNTRL_Y : 0
 SCRATCH1 : c
 END

Format the data for the cm_info record contained in the cm_global record. Note that we
asked for a specific case invariant.

Limitations, Restrictions

none

Fmm (freeze)
Debug only

Privileged Mode

Freezes a code segment, data segment, or virtual address (range) in memory.
168 Chapter 5

System Debug Command Specifications Fx-LOG
Fmm (freeze)
Syntax
 FC logaddr [bytelength] Program file
 FCG logaddr [bytelength] Group library
 FCP logaddr [bytelength] Account library
 FCLG logaddr [bytelength] Logon group library
 FCLP logaddr [bytelength] Logon account library
 FCS logaddr [bytelength] System library
 FCU fname logaddr [bytelength] User library

 FCA cmabsaddr CM absolute CST
 FCAX cmabsaddr CM absolute CST

 FDA dstof f CM data segment

 FVA virtaddr [bytelength] Virtual address

Parameters

logaddr A full logical code address (LCPTR) specifies three necessary items:

• the logical code file (PROG, GRP, SYS , and so on).

• NM: the virtual space ID number (SID).

CM: the logical segment number.

• NM: the virtual byte offset within the space.

CM: the word offset within the code segment.

Logical code addresses can be specified in various levels of detail:

• As a full logical code pointer (LCPTR):

FC procname+20 Procedure name lookups return LCPTRs.

FC pw+4 Predefined ENV variables of type LCPTR.

FC SYS(2.200) Explicit coercion to a LCPTR type.

• As a long pointer (LPTR):

FC 23.2644 sid.offset or seg.offset

The logical file is determined based on the command suffix:

FC implies PROG.

FCG implies GRP.

FCS implies SYS, and so on.

• As a short pointer (SPTR):

FC 1024 offset only

For NM, the short pointer offset is converted to a long pointer using the
function STOLOG, which looks up the SID of the loaded logical file. This
is different from the standard short to long pointer conversion, STOL,
which is based on the current space registers (SRs).
Chapter 5 169

System Debug Command Specifications Fx-LOG
Fmm (freeze)
For CM, the current executing logical segment number and the current
executing logical file are used to build a LCPTR.

The search path used for procedure name lookups is based on the
command suffix letter:

FC Full search path:

NM: PROG, GRP, PUB, USER(s), SYS.

CM: PROG, ``GRP , PUB, LGRP, LPUB, SYS.

FCG Search GRP, the group library.

FCP Search PUB, the account library.

FCLG Search LGRP, the logon group library.

FCLP Search LPUB, the logon account library.

FCS Search SYS, the system library.

FCU Search USER, the user library.

For a full description of logical code addresses, refer to the section "Logical
Code Addresses" in chapter 2.

cmabsaddr A full CM absolute code address specifies three necessary items:

• Either the CST or the CSTX.

• The absolute code segment number.

• The CM word offset within the code segment.

Absolute code addresses can be specified in two ways:

• As a long pointer (LPTR):

FCA 23.2644 Implicit CST 23.2644

FCAX 5.3204 Implicit CSTX 5.3204

• As a full absolute code pointer (ACPTR):

FCA CST(2.200) Explicit CST coercion

FCAX CSTX(2.200) Explicit CSTX coercion

FCAX logtoabs(prog(1.20)) Explicit absolute conversion

The search path used for procedure name lookups is based on the
command suffix letter:

FCA GRP, PUB, LGRP, LPUB, SYS

FCAX PROG

fname The file name of the NM USER library. Since multiple NM libraries can be
bound with the XL= option on a :RUN command,

 : run nmprog; xl=lib1,lib2.testgrp,lib3

it is necessary to specify the desired NM user library. For example,
170 Chapter 5

System Debug Command Specifications Fx-LOG
FINDPROC
 FCU lib1 204c
 FCU lib2.testgrp test20+1c0

If the file name is not fully qualified, the following defaults are used:

Default account: the account of the program file.

Default group: the group of the program file.

dstoff A data segment address (specified as DST.OFFSET) of the data segment to
be frozen in memory. The segment remains frozen until it is explicitly
unfrozen (see UDA command).

virtaddr The starting virtual address of the page(s) that are to be frozen in memory.
The pages remain frozen until they are explicitly unfrozen (see UVA
command). Virtaddr can be a short pointer, a long pointer, or a full logical
code pointer.

bytelength This parameter is valid only when in nmdebug. It indicates the desired
number of bytes to be frozen. Based on the starting virtual address and the
specified bytelength, the appropriate number of virtual pages are frozen. If
omitted, the default is four bytes. The implementation of this command
dictates that the smallest unit that is actually frozen is one page of virtual
memory. That is, if you say 1 byte, the whole page on which that byte
resides is made resident.

Examples
 %cmdebug > fc cmpc

Freeze the current CM code segment, as indicated by the CM logical address CMPC.

 %cmdebug > fcs sys(12.0)

Freeze CM logical code segment SYS 12.

 $nmdebug > fva 22.104, #1000

Freeze 1000 bytes starting at virtual address 22.104.

Limitations, Restrictions

none

FINDPROC
Debug only

Dynamically loads a specified NM procedure from any NM library.

Syntax
 FINDPROC procedurename library_file [[NO]IGNORECASE]
Chapter 5 171

System Debug Command Specifications Fx-LOG
FOREACH
This command dynamically loads a NM procedure from any NM library. The complete
executable System Object Module containing the named procedure is loaded. This
command is implemented by calling the HPGETPROCPLABELintrinsic. (Refer to the MPE/iX
Intrinsics Reference Manual for additional information.) If no error message is printed, the
user can assume the command succeeded. The LOADINFO command may be used to verify
that the library was loaded.

Parameters

 procedurename The name of the procedure to be loaded.

 library_file Any valid NM library file from which the procedure is to be loaded.

IGNORECASE If IGNORECASE is specified, a case-insensitive search is performed for the
program file. The default is NOIGNORECASE.

Examples
 $nmdebug > findproc libsort testlib.test
 $nmdebug >

Dynamically load the procedure libsort from the file TESTLIB.TEST

Limitations, Restrictions

This routine functions by calling the FINDPROCintrinsic. Refer to the MPE XL Intrinsics
Reference Manual (32650-90028) for additional information.

FOREACH
Each time a FOREACH command is executed, name is set to the next expression value in
value_list prior to the execution of cmdlist . Execution ends when there are no more
expression values in the value_list .

Syntax
 FOREACH name value_list command

 FOREACH name value_list { cmdlist }

Parameters

name The name for the control variable that is set to the next expression value
in value_list . A local variable is declared automatically, and it can be
referenced with the cmdlist .

An optional type specification can be appended to the variable name, in
172 Chapter 5

System Debug Command Specifications Fx-LOG
FOREACH
order to restrict/convert the values in the list to a specific desired type:

 foreach j:S16 '1 2 3+4 5' {wl j }

If the type specification is omitted, the type ANY is assumed.

value_list This is a quoted string (or string variable) that contains a list of values
(expressions). The cmdlist is evaluated once for every expression in the
list. The list may contain string and or numeric expressions.

command cmdlist A single command (or command list) that is executed for each value in
value_list .

Examples
 %cmdebug > foreach j '1 2 3 "MOM" date 12.330' wl j
 $1
 $2
 $3
 MOM
 WED. SEPT 3, 1986
 $12.00000330

A local variable j is assigned each of the expression values in the value list string, and the
specified command references the current value of j in order to write its value.

 $nmdebug > foreach j '6 -2 "a" + "b" 3 +4' {wl j}
 $4
 "ab"
 $7

This example shows that full expression values are evaluated within the value list.

 $nmdebug > var nums '"1" "2" "3"'
 $nmdebug > var lets '"A" "B" "C"'
 $nmdebug > foreach l lets { foreach n nums {wl l n }}
 A1
 A2
 A3
 B1
 B2
 B3
 C1
 C2
 C3

This is an example of nested FOREACH commands that use string variables for their value
lists.

Limitations, Restrictions

none
Chapter 5 173

System Debug Command Specifications Fx-LOG
FPMAP
FPMAP
Reinitializes CM FPMAP symbolic procedure name access.

Syntax
 FPMAP

Initialization of CM FPMAP symbolic procedure names is automatic in System Debug.

The FPMAP command is typically used to "pick up" new libraries that have been
dynamically loaded (through LOADPROC or SWITCH intrinsics) since the original program
execution.

The FPMAPcommand inspects the CM program file and all currently loaded CM libraries in
order to locate the necessary FPMAP records.

Examples
 %cmdebug > fpmap

Re-initialize CM symbolic access for FPMAP records.

Limitations, Restrictions

The CM program file and libraries must have been prepared with the Segmenter's FPMAP
option.

FUNCL[IST]
Function list. Displays information about the predefined functions.

Syntax
 FUNCL[IST] [pattern] [group] [options]

Parameters

pattern The name(s) of the function(s) to be displayed. This parameter can be
specified with wildcards or with a full regular expression. Refer to
appendix A for additional information about pattern matching and regular
expressions.

The following wildcards are supported:

@ Matches any character(s).
174 Chapter 5

System Debug Command Specifications Fx-LOG
FUNCL[IST]
? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

By default, all functions are displayed.

group The functions are logically divided into groups, and they can be displayed,
filtered by group name.

COERCION Coercion functions.

UTILITY General utility functions.

ADDRESS Address manipulation functions.

PROCESS Process data structure address functions.

PROCEDURE Procedure name/length/entry/path functions.

STRING String manipulation functions.

SYMBOLIC Symbolic access functions.

ALL | @ Display all groups.

By default, all groups are displayed.

options Any number of the following options can be specified in any order,
separated by blanks:

NAME Display function name and result type.

USE Display a short summary of use.

NOUSE Skip the use summary.

PARMS Display parameter names, types, default values.

NOPARMS Skip parameter displays.

DESC Display a general description.

NODESC Skip the description.

EXAMPLE Display the example.

NOEXAMPLE Skip the example.

ALL | @ Display everything. Same as:
Chapter 5 175

System Debug Command Specifications Fx-LOG
GETDUMP
NAME USE PARMS DESC EXAMPLE

PAGE Page eject after each function definition. Useful for paged
(listfile) output.

NOPAGE No special page ejects.

If none of the options above are specified, the NAMEis displayed by default.
If any options are specified, they are accumulated to describe which fields
are printed.

Examples
 %cmdebug > funcl

List all functions.

 %cmdebug > funcl @node
 func CMNODE : LPTR ADDRESS
 func CMTONMNODE : LPTR ADDRESS
 func NMNODE : LPTR ADDRESS
 func NMTOCMNODE : LPTR ADDRESS

List all functions (in all groups) that match the pattern "@node".

 $nmdebug > funcl cm@ procedure
 func CMADDR : LCPTR PROCEDURE
 func CMBPADDR : LCPTR PROCEDURE Not in: dat sat
 func CMBPINDEX : U16 PROCEDURE Not in: dat sat
 func CMBPINSTR : U16 PROCEDURE Not in: dat sat
 func CMENTRY : LPTR PROCEDURE
 func CMPROC : STR PROCEDURE
 func CMPRCLEN : U16 PROCEDURE
 func CMSEG : STR PROCEDURE
 func CMSTART : LCPTR PROCEDURE

List all functions, in the group PROCEDURE, that start with "CM".

NOTE Some functions are not available in all programs. For example, the three
breakpoint functions above, are flagged as NOT being available in DAT or
SAT (since breakpoints are not supported in these programs).

Limitations, Restrictions

none

GETDUMP
DAT only

Reads in a dump tape and creates a dump file.
176 Chapter 5

System Debug Command Specifications Fx-LOG
GETDUMP
Syntax
 GETDUMP dumpfile [ldevlist]
 GETDUMP dumpfile [DIR]

This command is used to restore the contents of a tape created by the DUMP utility onto
disk. Once restored, the dump must be opened by the OPENDUMPcommand for access by the
DAT program. A tape request for dumptape is generated; a message appears on the system
console informing the operator of the request.

In order to conserve the disk space used to store a dump, DAT is capable of applying one of
several data compression algorithms to reduce the required storage. Normally, DAT selects
the algorithm which is known to produce the greatest compression, but other algorithms
may be selected based on the setting of the environmental variable GETDUMP_COMP_ALGO.
This variable may be set to a specific algorithm, or to the value "TAPE" . This special
setting instructs DAT to use the same algorithm used by DUMP when the tape was
produced. While this setting may not result in minimal disk space consumption, it will
optimize GETDUMP performance, since the dump tape data will never have to be
recompressed with a different algorithm.

Before data on a dump tape are copied to disk, DAT will preallocate a certain amount of
disk space in order to avoid running out of this resource in the middle of a GETDUMP. The
amount of space preallocated is controlled by the environmental variables DUMPALLOC_RLE
and DUMPALLOC_LZ. One of these two variables will be used depending on the data
compression algorithm applied to the dump disk file.

See the ENV command for further information about the environmental variables
mentioned above.

Parameters

dumpfile The name of the dump file to be created. Dump file names are limited to a
maximum of five characters. All files related to the dump are given names
composed of this name followed by a three-character mnemonic indicating
the file contents.

ldevlist A list of secondary-store LDEVs to be read from the dump. If no list is
given, all LDEVs on the dump are read.

DIR This option indicates that only the dump tape directory should be read and
displayed, along with an estimate of the amount of disk space required to
restore the dump. However, the dump itself is not restored. The use of the
DIR option requires a dummy file parameter to be supplied, even though
no disk files are created.

Examples
 $nmdat > getdump examp dir

 Please mount dump volume #1.

 SA 2559 on KC (8/29/88 9:40)
 Tape created by SOFTDUMP 99999X A.00.00
 MPE-XL A.11.10 dumped on MON, AUG 29, 1988, 9:39 AM
Chapter 5 177

System Debug Command Specifications Fx-LOG
GETDUMP
 Dump Tape Contents

 PIM00 4.0 Kbytes
 MEMDUMP 48.0 Mbytes
 VM001 39.1 Mbytes
 VM002 0.6 Mbytes
 VM003 0.1 Mbytes
 VM004 16.4 Mbytes
 VM014 0.6 Mbytes

 This dump will require approximately 62.1 Mbytes (#257913 sectors)
 of disc space.

 $nmdat >

The above example displays the directory of a dump tape and an estimate of the amount of
disk space required to restore the dump.

 $nmdat > getdump examp

 Please mount dump volume #1.

 SA 2559 on KC (8/29/88 9:40)
 Tape created by SOFTDUMP 99999X A.00.00
 MPE-XL A.11.10 dumped on MON, AUG 29, 1988, 9:39 AM

 Dump Tape Contents

 PIM00 4.0 Kbytes
 MEMDUMP 48.0 Mbytes
 VM001 39.1 Mbytes
 VM002 0.6 Mbytes
 VM003 0.1 Mbytes
 VM004 16.4 Mbytes
 VM014 0.6 Mbytes

 This dump will require approximately 62.1 Mbytes (#257913 sectors)
 of disc space.

 Please stand by for disc space allocation.

 0 100%
 Loading tape file PIM00 : +....+....+
 Loading tape file MEMDUMP : +....+....+
 Loading tape file VM001 : +....+....+
 Loading tape file VM002 : +....+....+
 Loading tape file VM003 : +....+....+
 Loading tape file VM004 : +....+....+
 Loading tape file VM014 : +....+....+

 Please stand by while dump pages are posted to disk.

 Dump disc file space reduced by 60% due to LZ data compression.
 $nmdat >

The above example creates the dump file EXAMP. DAT keeps the user informed as to how
178 Chapter 5

System Debug Command Specifications Fx-LOG
H[ELP]
much of the dump has been read in by printing a dot every time it transfers 10% of each
file in the dump file from tape to disk. When the dump has been fully restored, the amount
of disk space saved due to data compression is displayed.

Limitations, Restrictions

DUMP stores data on dump tapes in compressed form. Prior to DAT A.01.18, dumps were
restored on disk in expanded form, possibly resulting in extremely large dump files. As of
DAT A.01.18 and later versions, the GETDUMP command restores dumps in compressed
form, often resulting in a significant savings in disk space when compared to
uncompressed dumps. These versions of DAT are also able to access (with OPENDUMP)
uncompressed dumps restored by previous DAT versions.

GETDUMP always creates at least one file when restoring a dump, known as the MEM file.
Its name is made up of the dump file name followed by "MEM". Uncompressed dump files
use separate files for storing data dumped from secondary store (LDEVs) and Processor
Internal Memory (PIM), while compressed dumps are usually restored entirely within the
MEM file.

H[ELP]
Displays online help messages for System Debug.

Syntax
 H[ELP] [topic] [options]

The HELP command is used to obtain help information about any command, window
command, user macro, user variable, function, environment variable, and so on. Some
items may fall into more than one category. For example, S is the single step command and
the CM S register. In such cases, the help entries for all defined items are displayed.

Refer to the WHELP command for an overview of window commands.

Parameters

topic The topic for which help is desired. Help is available for a single:

• Command name.

• Environment variable name.

• Predefined function name.

• Macro name.

• User variable name.

Use the CMDLIST, ENVLIST, FUNCLIST, MACLIST , and VARLIST
commands to see all of the names that are defined for each respective class
Chapter 5 179

System Debug Command Specifications Fx-LOG
H[ELP]
listed above.

options The options available depend upon the class of the topic. In general, the
following options are available:

USE/NOUSE Short summary of usage.

PARMS/NOPARMSInformation about parameters.

DESC/NODESCGeneral description.

EXAMPLE/NOEXAMPLEExamples.

ACCESS/NOACCESSAccess rights information.

ALL Everything.

The following table indicates which combination of topics/options are valid
(invalid options are ignored).

Examples
 $nmdat > help dc
 "dc" is a NUMBER, and a COMMAND name.

 cmd DC display nm cm

 USE:

 DC logaddr [count] [base] [recw] [bytew]

 PARMS:

 logaddr The logical code address of the first byte of code to be
 displayed. Short pointers are treated as program file off-
 sets (NM) or offsets in the currently executing code segment
 (CM). Long pointers are unambiguous in NM, but are treated
 as a CM program file seg.offset in CM.
 count The number of words to be displayed (default = 1).
 base The desired output base/mode of representation:
 OCT, % Octal.
 DEC, # Decimal.
 HEX, $ Hexadecimal.
 ASCII Character output, separated at word boundaries.
 BOTH Both numeric (current output base) and ASCII.
 CODE Disassembled code.

USE PARMS DESC EXAMPLE

Commands YES YES YES YES

ENV variables NO NO YES NO

Functions YES YES YES YES

Macros YES YES YES YES

User variables NO NO NO NO
180 Chapter 5

System Debug Command Specifications Fx-LOG
H[ELP]
 STRING Continuous character output.
 recw The number of words to be displayed per line when the code
 is not disassembled. Defaults are 4 (CM) and 8 (NM).
 bytew The width in bytes of the displayed values when the code is
 not disassembled. Used to determine the output spacing, and
 may be 1, 2 (CM default) or 4 (NM default).

 DESC:

 The DC (Display Code) command displays CM or NM program file code.
 Library code may also be displayed based on the type of the LOGADDR
 parameter (e.g., GRP(1.70), SYS(1.40)), or by using the appropriate
 Display Code command variant (e.g., DCG, DCS, and so on.). By default,
 disassembled code is displayed one instruction per line.

 EXAMPLE:

 $ nmdebug > dc FOPEN,4
 SYS $a.3714f8
 003714f8 FOPEN 6bc23fd9 STW 2,-20(0,30)
 003714fc FOPEN+$4 37de00d0 LDO 104(30),30
 00371500 FOPEN+$8 6bda3ee9 STW 26,-140(0,30)
 00371504 FOPEN+$c 67d93ee5 STH 25,-142(0,30)

Display the help entry for the DCcommand. Notice that the two characters "DC" are a valid
hexadecimal literal, so the help facility reports that fact.

 $nmdat > help dc, desc

 "dc" is a NUMBER, and a COMMAND name.

 cmd DC display nm cm

 DESC:

 The DC (Display Code) command displays CM or NM program file code.
 Library code may also be displayed based on the type of the LOGADDR
 parameter (e.g., GRP(1.70), SYS(1.40)), or by using the appropriate
 Display Code command variant (e.g., DCG, DCS, and so on.). By default,
 disassembled code is displayed one instruction per line.

 $nmdat >

Display the help entry for the DC command but only show the command description.

 $nmdat > help 123
 "123" is a NUMBER.

Display the help text for the number "123".

Limitations, Restrictions

Topical help (for example, general help with expressions, breakpoints, and so on.) is not
supported.

Help for the window commands do not contain help text broken down by USE, PARMS, DESC,
and EXAMPLEs.
Chapter 5 181

System Debug Command Specifications Fx-LOG
HIST[ORY]
HIST[ORY]
Displays the history command stack.

Syntax
 HIST[ORY] option

Parameters

option The history stack can be displayed three ways:

ABS With absolute command numbers. Default.

REL With relative command numbers.

UNN Without command numbers.

Examples
 %nmdebug > hist
 $1 = 1836/4 + 12
 $2 ddb+224,20
 $3 = [s-12]
 $4 c
 $5 ss
 $6 while [s] <> 0 do ss
 $7 dr status
 $8 ss

By default, the history stack is displayed with absolute command numbers.

 %nmdebug > hist unn
 = 1836/4 + 12
 ddb+224,20
 = [s-12]
 c
 ss
 while [s] <> 0 do ss
 dr status
 ss

Display the history stack without command numbers. This option allows the history to be
written into a file in a form suitable for use as command file input at a later time.

Limitations, Restrictions

none
182 Chapter 5

System Debug Command Specifications Fx-LOG
IF
IF
If condition evaluates to TRUE, then execute all commands in cmdlist , else execute all
commands in cmdlist2 .

Syntax
 IF condition THEN command

 IF condition THEN { cmdlist }

 IF condition THEN command1 ELSE command2

 IF condition THEN { cmdlist } ELSE command2

 IF condition THEN command1 ELSE { cmdlist2 }

 IF condition THEN { cmdlist } ELSE { cmdlist2 }

Parameters

condition A logical expression to be evaluated.

command cmdlist A single command (or command list) that is executed if condition
evaluates to TRUE.

command2 cmdlist2 A single command (or command list) that is executed if
condition evaluates to FALSE.

Note that in nested IF-THEN-ELSE clauses, the first ELSE clause always matches the first
IF clause. This is different from the conventions of most compilers, and it may not be
intuitive. Explicit use of {cmdlists} is recommended in these nested cases.

Examples
 %cmdebug > if [q-3]>[db+4] then c

If the contents of Q−3 are greater than the contents of DB+4, then continue.

 $nmdebug > if (length>20) and (pcsf=a) then {wl "GOT IT"; c}

If the value of the variable length is greater than 20, and the contents of the predefined
variable pcsf equals $a, then execute the following from the command list: print the string
"GOT IT", then continue.

 $nmdat > if 1 then {if 0 then wl "wee" else wl "willy"} else wl "wonka"
 willy

This example shows a nested IF-THEN-ELSE clause within a cmdlist clause.

Limitations, Restrictions

The interpreter does not parse or analyze the contents of the clauses prior to their
execution. Based on the value of the condition, the THENor ELSEclause is be executed, and
Chapter 5 183

System Debug Command Specifications Fx-LOG
IGNORE
the other clause disregarded.

This implies that the clauses may be syntactically illegal, but the errors are not discovered
until they are executed.

Note that in the following examples, entire clauses are bogus, but not detected:

 $nmdebug > if TRUE then wl "good" else XXXXXXXXXXXXXXXXXX
 good

 $nmdebug > if FALSE then XXXXXXXXXXXXXXXX else wl "good"
 good

IGNORE
Protects the next command (list) from error bailout.

Syntax
 IGNORE option

The IGNOREcommand protects the following command, or command list, from aborting due
to a detected error condition. Unless protected by the IGNOREcommand, a command list or
subsequent macro commands are aborted/flushed as soon as any error occurs.

A special option, QUIET, causes error messages that occur within a protected command list
to be suppressed.

This is similar to the MPE V/E CONTINUEcommand used in job and command files. See the
environment variable AUTOIGNORE.

Parameters

option The user can choose to display/suppress error messages that occur during
the command (list) that is protected by the IGNOREcommand. Two options
are supported:

LOUD Display error messages (default)

QUIET Suppress error messages

Examples
 %nmdebug > {wl 111; wl 22q; wl 333; wl 444}
 $111
 Expected a number, variable,function, or procedure (error #3720)
 undefined operator is:"22q"

In this example, an error causes the rest of a command list to be aborted, since it is not
protected by the IGNORE command. As a result, the command that prints the value ($333)
is never executed.
184 Chapter 5

System Debug Command Specifications Fx-LOG
INITxx
 %nmdebug > ignore; {wl 111; wl 22q; wl 333; wl 444}
 $111
 Expected a number, variable,function, or procedure (error #3720)
 undefined operator is:"22q"
 $333
 $444

In this example, the IGNORE command is used to protect the entire command list that
follows it. Even though the second command in the list produces an error, execution of the
rest of the list continues. By default, the option LOUD is assumed, and all resulting error
messages are displayed.

 %nmdebug > ignore quiet; {wl 111; wl 22q; wl 333; wl 444}
 $111
 $333
 $444

In this example, the IGNORE QUIET command is used to protect the command list that
follows it AND to suppress all error messages. Note that the error encountered when
attempting to write the value "22" is silently ignored, and the command list execution
continues.

 %nmdebug > ignore quiet; use unwind

In this example, the IGNORE QUIET command is used to protect the execution of all
commands found within the USE file unwind . If this use file uses additional USE files, the
commands in those additional USE files are also protected.

 %nmdebug > ignore quiet; printsum (200 tablesize("mytable"))

In this example, the IGNORE QUIET command is used to protect the following command
that invokes a macro named printsum . All commands within this macro are protected. In
addition, all commands within the macro function tablesize are protected.

Limitations, Restrictions

none

INITxx

Privileged Mode

Initialize registers from a specified location.

Syntax
 INITNM virtaddr [ISM |PIMREAL |PIMVIRTUAL]
 INITCM virtaddr [ISM |PIMREAL |PIMVIRTUAL]

 INITNM TCB
 INITCM TCB | CMG | REGS

This command is for use by experienced DAT users and internals specialists to initialize
Chapter 5 185

System Debug Command Specifications Fx-LOG
INITxx
DAT when a dump is corrupted. The command is also provided for the experienced Debug
user.

For the INITNM command, the NM register set is loaded from the specified location. It is
assumed that the location contains data in the form of an interrupt stack marker (ISM)
which is the default, or in the form of processor internal memory (PIM). Not all of the
machine's registers are found in an ISM. If this is the structure being used, those registers
not stored in the ISM are retrieved from the save state area in the dump (or from the
running machine in Debug).

For the INITCM command, the CM register set is loaded from one of several locations
depending upon the option specified. Four possibilities exist:

• The emulator/translator is not running, and the CM state for the process is stored in
the CMGLOBALS area of the PIB. The CMG option is used in this case.

• The emulator/translator is running, in which case the CM state is maintained in the
native mode registers. In this case the virtual address of an interrupt stack marker
(ISM) or processor internal memory record (PIM) containing the emulator/translator's
native mode register set should be given so that the CM state may be extracted from the
registers.

• The state of the emulator/translator is stored in the task control block (TCB). As in the
PIM and ISM case above, the register data found is used to set up the CM state.

• The user desires to construct the CM state from scratch. To do this, the user must place
into the current NM register set (using the MRcommand) values that correspond to the
state of an active emulator/translator. The appropriate values are then extracted from
the register set to build the CM state. The REGS options allows this to be done.

Parameters

virtaddr Any valid expression specifying the virtual address of an interrupt stack
marker (ISM) or a processor internal memory (PIM) record. The type of
structure is indicated by one of the following optional parameters:

ISM The data is an interrupt stack marker (default).

PIMVIRTUAL The data is processor internal memory format.

PIMREAL The data is processor internal memory format, but the
address is a real memory address. If a full virtual address
is given, the offset part is used as the real memory
address.

TCB This parameter indicates that the register save state in the task control
block (TCB) for the current PIN should be used for initialization. The
register save state in the TCB is in the form of an
interrupt_marker_type .

CMG This parameter indicates that the CM registers should be initialized based
on CMGLOBALS area in the process information block (PIB) of the
current process.

REGS This parameter indicates that the CM registers should be initialized based
186 Chapter 5

System Debug Command Specifications Fx-LOG
KILL
on the current NM regs. The NM regs are interpreted as containing values
used by the emulator/translator.

Examples
 $ nmdebug > initnm 0.tcb(20)

Initialize the native mode registers from the indicated virtual address.

 % cmdebug > initcm 40153014

Initialize the CM registers from the interrupt marker that starts at address 40153014. The
process was most likely in the emulator (or else the CM state would be stored in the
CMGLOBALS area of the PIB).

Limitations, Restrictions

none

KILL
Debug only

Privileged Mode

Issues a request to process management to kill the specified process.

Syntax
 KILL pin

Parameters

pin The process identification number (PIN) to be killed. If you are a privileged
user, you may specify any PIN. If you are not privileged, you may specify
any PIN that is a child of the process making this request.

Examples
 $nmdat > kill 8

Tell process management to kill PIN 8.

Limitations, Restrictions.

This routine is implemented by calling the process management KILL routine. That
routine does not kill a process until it is out of system code and is no longer critical. Debug
waits until the request can be completed.
Chapter 5 187

System Debug Command Specifications Fx-LOG
LEV
LEV
Sets the current environment to the specified stack level in the stack markers.

Syntax
 LEV [number]
 LEV [number] [interrupt_level]

The LEV command changes the current environment to the environment at the specified
stack level.

All commands accurately reflect the register values that are in effect a level change.
Windows also reflect the new level values.

If the CONTINUEor SScommand in Debug is issued after changing levels, an implicit LEV 0
is performed.

If any error is encountered during a level change, the environment is automatically set to
stack level 0.

The following algorithm is used to set level n on the CM stack:

WHILE lev <> desired level DO

Get previous stack marker.

Set Q based on delta-Q in marker.

Set S to Q-4.

Set X based on X in marker.

Set STATUS based on status marker.

Set CMPC based on status and P offset in marker.

Set CIR based on fetch from new value of CMPC.

The following algorithm is used to set level n on the NM stack:

Get current frame info (based on unwind info);

WHILE lev <> desired level DO

Restore entry save registers (based on frame unwind info);

Get previous frame (based on unwind info);

IF frame is an interrupt stack marker (ISM) THEN

— Restore RP, SP, DP, SR4, SR5, SR0, PCQ from the ISM

ELSE

— Set RP, SP, DP, SR4, to new values from the stack;

— Restore call save registers (based on unwind info);
188 Chapter 5

System Debug Command Specifications Fx-LOG
LEV
Parameters

number The stack level number at which the environment should be set.

interrupt_level The interrupt level number at which the environment should be set. If this
parameter is omitted, the current interrupt level is assumed.

This parameter is valid only for NM.

Examples
 %cmdebug > tr
 PROG % 0.1421 PROCESSSTUDENT+14 (mITroc CCG) SEG'
 * 0) PROG % 0.2004 PROCESSSTUDENT+377 (mITroc CCG) SEG'
 1) PROG % 0.253 OB'+253 (mITroc CCG) SEG'
 2) SYS % 25.0 ?TERMINATE (MItroc CCG) CMSWITCH''

 %cmdebug > dr cmpc
 CMPC=PROG %0.1421

 %cmdebug > lev 2

First use TR to list the stack trace in order to decide which level is desired. The current
value of CMPC is then displayed. Next the stack level is set to level 2.

 %cmdebug > tr
 PROG % 0.1421 PROCESSSTUDENT+14 (mITroc CCG) SEG'
 0) PROG % 0.2004 PROCESSSTUDENT+377 (mITroc CCG) SEG'
 1) PROG % 0.253 OB'+253 (mITroc CCG) SEG'
 * 2) SYS % 25.0 ?TERMINATE (MItroc CCG) CMSWITCH''

 %cmdebug > dr cmpc
 CMPC=PROG %0.253

The above stack trace reveals that the level has been changed to stack level two (note the
asterisk). The current value of CMPC is also displayed and confirms that the registers
have been correctly updated as well.

 $nmdebug > tr,ism
 PC=a.006777fc trap_handler
 * 0) SP=40221338 RP=a.002a1fec conditional+$ac
 1) SP=40221338 RP=a.000a5040 hpe_interrupt_marker_stub
 --- Interrupt Marker
 2) SP=402211e8 RP=25d.00015134 small_divisor+$8
 --- End Interrupt Marker Frame ---

 PC=25d.00015134 small_divisor+$8
 0) SP=402211e8 RP=25d.00015d38 average+$b0
 1) SP=402211e8 RP=25d.00015c74 ?average+$8
 export stub: 25c.00005d98 processstudent+$74
 2) SP=40221180 RP=25c.00006b1c PROGRAM+$300
 3) SP=40221100 RP=25c.00000000
 (end of NM stack)

Show a native mode stack trace that contains an interrupt marker.

 $nmdebug > lev 1,1
 $nmdebug > tr,ism
 PC=25d.00015134 small_divisor+$8
Chapter 5 189

System Debug Command Specifications Fx-LOG
LIST
 0) SP=402211e8 RP=25d.00015d38 average+$b0
 * 1) SP=402211e8 RP=25d.00015c74 ?average+$8
 export stub: 25c.00005d98 processstudent+$74
 2) SP=40221180 RP=25c.00006b1c PROGRAM+$300
 3) SP=40221100 RP=25c.00000000
 (end of NM stack)

Use the LEV command to set the environment to stack level 1, interrupt level 1. A stack
trace confirms that the environment has been correctly changed.

Limitations, Restrictions

You must be at stack level 0 in order to modify any registers.

For native mode code, if you are in procedure entry or exit code, this command may not
function properly. For example, if the user is stopped in entry code, callee save registers
have not been saved and therefore are restored incorrectly. Other scenarios exist.

If the environment for the CM stack is set to a level that is a switch marker, no values for
CMPC and CIR are available.

LIST
Controls the recording of input and output to a list file.

Syntax
 LIST

 LIST [filename]

 LIST [ON]
 LIST [OFF]

 LIST [CLOSE]

All Debug input/output is recorded to an open, active list file. This includes the prompt,
user command input, and all resulting output, with the exception of window displays and
updates. Users typically use the list file to record Debug output to a file for later reference
or printing.

LIST , entered alone, displays the state of the list file, including the file name, if open, and
current status (ON/OFF).

LIST filename opens the specified file and activates (turns ON) the list file. If another list
file was already opened, it is first closed (saved), before the new file is opened.

LIST ON and LIST OFF can be used to activate/deactivate the currently opened list file. The
file remains open (pending), but Debug output is not recorded if the list file is OFF.

LIST CLOSE closes (saves) the current opened list file.
190 Chapter 5

System Debug Command Specifications Fx-LOG
LISTREDO
Parameters

filename The file name for the list file that is to be opened. If the file already exists,
it is automatically purged (without warning), and reopened new.

If omitted, the status of the current list file is displayed.

Examples
 %cmdebug > list junk1

Open a new list file named junk1 and activate it (ON). All Debug input/output is
automatically recorded in this file until it is explicitly deactivated (LIST OFF) or closed
(LIST CLOSE).

 %cmdebug > list off
 %cmdebug > dq-40, 200
 %cmdebug > list on

Temporarily disable the list file, while we display 200 Q-relative words, then enable the
list file again.

 %cmdebug > list close

Close (and save) the current list file. Auto-listing is now off.

Limitations, Restrictions

Unless a file equation is used, the list file is opened as follows:

CCTL, FIXED, ASCII, 20000 Records.

The record size is based on the LIST_WIDTH environment variable.

LISTREDO
Displays the history command stack.

Syntax
 LISTREDO alias for HIST[ORY]

LISTREDO is a predefined alias for the HIST[ORY] command.

LOADINFO
Debug only
Chapter 5 191

System Debug Command Specifications Fx-LOG
LOADINFO
Lists information about the currently loaded program and libraries.

Syntax
 LOADINFO

For Debug, this command displays the list of files that are loaded by the current process.
Both CM and NM libraries and program files are included in the list. This list is
automatically updated as the process dynamically loads NM and CM libraries.

For DAT and SAT, this command displays the list of files for which symbol name and
address information is available. In most cases, this consists of the system libraries
(NL.PUB.SYS and SL.PUB.SYS). In addition, any files that were loaded by the loader as
"dumpworthy" files are included in this list.

For all of the tools, any file mapped in with the XL command has an entry in this loaded file
list as well. It is therefore possible to have several entries with the same space ID (SID) in
the list. (Refer to the XL command for additional details).

Parameters

none

Examples
 $ nmdebug > loadinfo
 nm PROG TEST4.TEST.QA SID=$23
 parm=#2 info=""
 nm GRP XL.TEST.QA SID=$1d
 nm USER LIB1.TESTLIBS.QA SID=$26
 nm USER LIB2.TESTLIBS.QA SID=$27
 nm SYS NL.PUB.SYS SID=$a
 cm GRP SL.TEST.QA

Assume that a typical NM program is being executed. Display the currently loaded
program and library files.

%cmdebug > loadinfo

 cm PROG PFLIGHT.MODEL.DESIGN
 parm=#3 info="wind 5, clouds2"
 cm GRP SL.MODEL.DESIGN
 cm PUB SL.PUB.DESIGN
 cm SYS SL.PUB.SYS
 nm GRP XL.PUB.SYS SID=$1c
 nm SYS NL.PUB.SYS SID=$a

Assume that a typical CM program is being executed. Display the currently loaded
program and library files.

Limitations, Restrictions

If the INFO string is longer than 255 characters, it is not displayed.
192 Chapter 5

System Debug Command Specifications Fx-LOG
LOADPROC
LOADPROC
Debug only

Dynamically loads a specified CM procedure from a logically specified CM library selector.

Syntax
 LOADPROC procedurename libselect

Parameters

procedurename The name of the procedure to be loaded.

libselect The logical library from which the procedure is to be loaded.

The library selector must be specified from the following keyword list:

GRP Group library (program group)

PUB Account library (program group)

LGRP Group library (logon group)

LPUB Account library (logon group)

SYS System library

Examples
 %cmdebug > loadproc mysort pub

Dynamically load the procedure mysort from PUB (the account library).

Limitations, Restrictions

none

LOC
Defines a local variable within a macro body.

Syntax
 LOC var_name [: var_type] [=] var_value

The LOC command can only be executed within a macro.

Local variables are known only to the macro in which they are defined. The environment
Chapter 5 193

System Debug Command Specifications Fx-LOG
LOC
variable NONLOCALVARSmay be changed so that local variables are accessible to any macro
called after a local variable has been defined. (Refer to the ENV command).

Local variables are automatically deleted when the macro in which the variable was
defined finishes execution.

Parameters

var_name The name of the local variable being defined. Names must begin with an
alphabetic character and are restricted to thirty-two (32) characters, that
must be alphanumeric or an underscore (_), an apostrophe ('), or a dollar
sign ($). Longer names are truncated (with a warning). Names are case
insensitive.

var_type The type of the local variable. The following types are supported:

STR String

BOOL Unsigned 16 bit

U16 Unsigned 16 bit

S16 Signed 16 bit

U32 Unsigned 32 bit

S32 Signed 32 bit

S64 Signed 64 bit

SPTR Short pointer

LPTR Long pointer

PROG Program logical address

GRP Group library logical address

PUB Account library logical address

LGRP Logon group library logical address

LPUB Logon account library logical address

SYS System library logical address

USER User library logical address

TRANS Translated CM code virtual address

If the type specification is omitted, the type is assigned automatically,
based on var_value .

The optional var_type allows the user to explicitly specify the desired
internal representation for var_value (that is, signed or unsigned, 16-bit or
32-bit) for this particular assignment only. It does not establish a fixed
type for the lifetime of this variable. A new value of a different type may be
assigned to the same local variable (name) by a subsequent LOC command.

var_value The new value for the variable, which can be an expression. An optional
equal sign "=" can be inserted before the variable value.
194 Chapter 5

System Debug Command Specifications Fx-LOG
LOCL[IST]
Examples
 $nmdat > loc temp a.c000243c

Define local variable temp to be the address a.c000243c. By default, this variable is of type
LPTR (long pointer), based on the value.

 $nmdebug > loc count=1c

Define local variable count to be the value 1c.

 $nmdebug > loc s1:str="this is a string"

Define local variable s1 to be of type STR (string) and assign the value "this is a string".

 nmdat > mac sum(p1 p2) {loc temp p1+p2; loclist; ret temp}
 nmdat > wl sum (1 2)
 var temp : U16 = $3
 var loc p2 : U16 = $2
 var loc p1 : U16 = $1
 $3

This example shows how the LOCLIST command, when executed as part of a macro body,
displays all currently defined local variables. Note that the macro parameters appear as
local variables. Local variables are always listed in the reverse order that they were
created.

Limitations, Restrictions

none

LOCL[IST]
Lists the local variables that are defined with a macro.

Syntax
 LOCL[IST] [pattern]

Parameters

pattern The name of the local variable(s) to be listed.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.
Chapter 5 195

System Debug Command Specifications Fx-LOG
LOG
Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

By default, all local variables are listed.

Examples
 nmdat > mac sum(p1 p2) {loc temp p1+p2; loclist; ret temp}
 nmdat > wl sum (1 2)
 var temp : U16 = $3
 var loc p2 : U16 = $2
 var loc p1 : U16 = $1
 $3

This example shows how the LOCLIST command, when executed as part of a macro body,
displays all currently defined local variables. Note that the macro parameters appear as
local variables. Local variables are always listed in the reverse order that they were
created.

Limitations, Restrictions

none

LOG
Controls the recording of user input to the logfile.

Syntax
 LOG

LOG [filename]
LOG [ON]

 LOG [OFF]
 LOG [CLOSE]

All Debug user input can be recorded to the log file. The log file can be used as a playback
file.
196 Chapter 5

System Debug Command Specifications Fx-LOG
LOG
LOG, entered alone, displays the state of the log file, including the file name, if open, and
the current status (ON/OFF).

LOG filename opens the specified file and activates (turns on) the log file. If another log
file is already opened, it is first closed (saved) before the new file is opened. This command
does an implicit LOG ON

LOG ON and LOG OFF can be used to activate/deactivate-activate the currently opened log
file. The file remains open (pending), but Debug input is not recorded if the log file is OFF.

LOG CLOSEcloses (saves) the current opened log file. Note that this command is written to
the log file. Executing this command without a log file has no effect.

Parameters

filename The file name for the logfile that is to be opened. If the file already exists, it
is automatically purged (without warning), and reopened new. This
command performs an implicit LOG ON.

If omitted, the status of the current log file is displayed.

Examples
 %cmdebug > log logfile

Open a new logfile named logfile and start logging to it.

 %cmdebug > log close

Close (and save) the current logfile. Auto-logging is now off.

Limitations, Restrictions

Unless a file equation is used, the list file is opened as the following:

CCTL, FIXED, ASCII, 10000 Records, 80 byte record width.
Chapter 5 197

System Debug Command Specifications Fx-LOG
LOG
198 Chapter 5

System Debug Command Specifications M-X
6 System Debug Command
Specifications M-X

Specifications for the System Debug commands continue to be presented in this chapter in
alphabetical order.

Window command specifications are presented in chapter 7, "System Debug Window
Commands."

System Debug tools share the same command set. A few commands, however, are
inappropriate in either DAT or Debug. These commands are clearly identified as "DAT
only" or "Debug only" on the top of the page that defines the command.

Debug only

The following Debug commands cannot be used in DAT:

B All forms of the break command

BD Breakpoint delete

BL Breakpoint list

C[ONTINUE] Continue

DATAB Data breakpoint

DATABD Data breakpoint delete

DATABL Data breakpoint list

F All forms of the FREEZE command

FINDPROC Dynamically loads NL library procedure

KILL Kills a process

LOADINFO Displays currently loaded program / libraries

LOADPROC Dynamically loads CM library procedure

M All forms of the modify command

S[S] Single step

TERM Terminal semaphore control

TRAP Arm/Disarm/List Traps

UF All forms of the UNFREEZE command
Chapter 6 199

System Debug Command Specifications M-X
M (modify)
DAT only

The following DAT commands cannot be used in Debug:

CLOSEDUMP Closes a dump file

DEBUG Enters Debug; used to debug DAT

DPIB Displays a portion of the Process Information Block

DPTREE Displays the process tree

DUMPINFO Displays dump file information

GETDUMP Reads in a dump tape to create a dump file

OPENDUMP Opens a dump file

PURGEDUMP Purges a dump file

M (modify)
Debug only

Privileged Mode: MA, MD, MCS, MZ, MSEC

Modifies the contents of the specified number of words at the specified address.

Syntax

 MA offset [count] [base] [newvalue(s)] ABS relative
 MD dst.off [count] [base] [newvalue(s)] Data segment
 MDB offset [count] [base] [newvalue(s)] DB relative
 MS offset [count] [base] [newvalue(s)] S relative
 MQ offset [count] [base] [newvalue(s)] Q relative

MC logaddr [count] [base] [newvalue(s)] Program file (default)
 MCG logaddr [count] [base] [newvalue(s)] Group library
 MCP logaddr [count] [base] [newvalue(s)] Account library
 MCLG logaddr [count] [base] [newvalue(s)] Logon group
 MCLP logaddr [count] [base] [newvalue(s)] Logon account
 MCS logaddr [count] [base] [newvalue(s)] System library
 MCU fname logaddr [count] [base] [newvalue(s)] User library
 MCA cmabsadd r [count] [base] [newvalue(s)] Absolute CST
 MCAX cmabsaddr [count] [base] [newvalue(s)] Absolute CSTX

 MV virtaddr [count] [base] [newvalue(s)] Virtual
 MZ realaddr [count] [base] [newvalue(s)] Real memory

 MSEC ldev.off [count] [base] [newvalue(s)] Secondary store

By default, the current value is displayed. The ENV variable QUIET_MODIFY can be used to
suppress the display of the current value.
200 Chapter 6

System Debug Command Specifications M-X
M (modify)
Parameters

offset MA, MDB, MQ, MS only. The CM word offset that specifies the relative
starting location of the area to be modified.

logaddr MC, MCG, MCP, MCLG, MCLP, MS, MCUonly. A full logical code address
(LCPTR) specifies three necessary items:

• The logical code file (PROG, GRP, SYS, and so on.).

• NM: the virtual space ID number (SID).

CM: the logical segment number.

• NM: the virtual byte offset within the space.

CM: the word offset within the code segment.

Logical code addresses can be specified in various levels of detail:

• As a full logical code pointer (LCPTR):

MC procname+20 Procedure name lookups return LCPTRs.

MC pw+4 Predefined ENV variables of type LCPTR.

MC SYS(2.200) Explicit coercion to a LCPTR type.

• As a long pointer (LPTR):

MC 23.2644 sid.offset or seg.offset

The logical file is determined based upon the command suffix. For
example:

MC implies PROG

MCG implies GRP

MCS implies SYS, and so on

• As a short pointer (SPTR):

MC 1024 offset only

For NM, the short pointer offset is converted to a long pointer using the
function STOLOG, which looks up the SID of the loaded logical file. This
is different from the standard short to long pointer conversion, STOL,
which is based on the current space registers (SRs).

For CM, the current executing logical segment number and the current
executing logical file are used to build a LCPTR.

The search path used for procedure name lookups is based on the
command suffix letter:

MC Full search path:

NM: PROG, GRP, PUB, USER(s), SYS

CM: PROG, GRP, PUB, LGRP, LPUB, SYS

MCG Search GRP, the group library.
Chapter 6 201

System Debug Command Specifications M-X
M (modify)
MCP Search PUB, the account library.

MCLG Search LGRP, the logon group library.

MCLP Search LPUB, the logon account library.

MCS Search SYS, the system library.

MCU Search USER, the user library.

For a full description of logical code addresses, refer to the section "Logical
Code Addresses" in Chapter 2.

fname MCU only. The file name of the NM user library. Since multiple NM
libraries can be bound with the XL= option on a RUN command,

 : run nmprog; xl=lib1,lib2.testgrp,lib3

it is necessary to specify the desired NM user library. For example:

 MCU lib1 204c
 MCU lib2.testgrp test20+1c0

If the file name is not fully qualified, the following defaults are used:

Default account: the account of the program file.

Default group: the group of the program file.

cmabsaddr MCA, MCAX only. A full CM absolute code address specifies three necessary
items:

• Either the CST or the CSTX.

• The absolute code segment number.

• The CM word offset within the code segment.

Absolute code addresses can be specified in two ways:

• As a long pointer (LPTR):

MCA 23.2644 Implicit CST 23.2644

MCAX 5.3204 Implicit CSTX 5.3204

• As a full absolute code pointer (ACPTR):

MCA CST(2.200) Explicit CST coercion

MCAX CSTX(2.200) Explicit CSTX coercion

MCAX logtoabs(prog(1.20)) Explicit absolute conversion

The search path used for procedure name lookups is based on the
command suffix letter:

MCA GRP, PUB, LGRP, LPUB, SYS

MCAX PROG

virtaddr MV only. The virtual address to be modified.

Virtaddr can be a short pointer, a long pointer, or a full logical code
202 Chapter 6

System Debug Command Specifications M-X
M (modify)
pointer.

realaddr MZ only. The real mode memory address to be modified.

ldev.off MSEConly. The logical device number (LDEV) and byte offset of the data on
disk to be displayed. This address is entered in the form
ldev.byteoffset .

count MA, MC, MD, MDB, MS, MQ: The number of CM 16-bit words to be modified.

MC, MV, MZ: The number of NM 32-bit words to be modified.

If omitted, a single line of values is modified.

base The desired representation mode for output values:

% or OCTAL Octal representation

or DECIMAL Decimal representation

$ or HEXADECIMALHexadecimal representation

ASCII ASCII representation

This parameter can be abbreviated to as little as a single character.

If omitted, the current output base is used.

newvalue(s) The new values for the specified locations. Specified new values are
automatically assigned to the locations until the new values are
exhausted. If the new values are omitted, or if they run out, Debug
prompts for the remaining new values. To retain the original value, simply
press Return . The character dot "." can be entered to abort the modification
loop. All locations modified before the dot is encountered are permanently
changed.

Examples

 $nmdebug > mv sp-2c,,,4
 $ Virt 21.40050780 = '....' $e7 := 4

Modify value at SP-2c, replacing it with $4.

 %cmdebug > md 1.64,6,h
 $ DST 1.34 = "v4" $7634 := %111
 $ DST 1.35 = ".." $5 := (retain original value)
 $ DST 1.36 = ".." $fffa := $c0
 $ DST 1.37 = ".." $fff0 := 1234
 $ DST 1.38 = ".." $0 := .
 current/remaining modifications aborted at user request

Modify 6 words starting at DST 1.64. Display values (and addresses) in hex.

DST 1.34 is assigned a new value of %111.

DST 1.35 retains its original value of %5.

DST 1.36 is assigned a new value of $c0.

DST 1.37 is assigned a new value of 1234.
Chapter 6 203

System Debug Command Specifications M-X
MAC[RO]
Dot "." terminates modifications.

The modifications for DST 1.34 through 1.37 have been successfully completed.

 %cmdebug > mq-30,6
 % Q-30 = ".P" %27120 := "AB"
 % Q-27 = "UB" %52502 := 'CD'
 % Q-26 = ".S" %27123 := u16("EF")
 % Q-25 = "YS" %54523 :=
 % Q-24 = ".." %177772 := [q-2]
 % Q-23 = ".." %7 := !s + (1000-[db+22]/2)

Modify 6 words starting at Q-%30. The current values are displayed in ASCII and octal
(current output base).

Q-30 is assigned the (implicitly coerced) integer value of "AB".

Q-27 is assigned the implicitly coerced) integer value of 'CD'.

Q-26 is assigned the explicitly coerced unsigned 16-bit integer value of "EF".

Q-25 is left unchanged.

Q-24 is assigned the contents of Q-2.

Q-23 is assigned the value of the S register + (1000 - the contents of DB+22 divided by
2).

Limitations, Restrictions

When CM code has been translated, modification of the original object code has no effect.
The NM translated code must be modified.

MAC[RO]
Defines a macro.

Syntax

 MAC[RO] name { body }
 MAC[RO] name [(parameters)] { body }
 MAC[RO] name [(parameters)] [options] { body }

Macros are a body of commands that are executed (invoked) by name. Macros can have
optional parameters.

Macros can be executed as if they were commands.

Macros can also be invoked as functions within expressions to return a value.

Macro definitions can include three special options in order to specify a version number
204 Chapter 6

System Debug Command Specifications M-X
MAC[RO]
(MACVER), a help string (MACHELP), and a keyword string (MACKEY). See the MACLIST
command.

Reference counts are maintained for macros. Each time a macro is invoked, the reference
count for the macro is incremental. (Refer to the MACREF and MACLIST commands.)

Two special commands are provided to assist with the debugging and support of macros.
See the MACECHO and MACTRACE commands.

The entire set of currently defined macros can be saved into a binary file for later
restoration. (Refer to the STORE and RESTORE commands.)

Parameters

name The name of the macro that is being defined. Names must begin with an
alphabetic character and are restricted to thirty-two (32) characters, that
must be alphanumeric, or "_", or " ' ", or "$". Longer names are truncated
(with a warning). Names are case insensitive.

All macros are functions that can be used as operands within expressions
to return a single value of a specified type.

A default macro return value can optionally be specified directly following
the macro name. The return_type must be preceded by a colon. The
default return_value must be preceded by an equal sign, and can be
entered as an expression. Below is a syntax of a macro call, followed by
examples:

 macro name [: return_type] [= return_value]

For example:

 macro getnextptr:s16 = -1 {body}
 macro tblname = "UNDEF" {body}
 macro tblsize:u32 = max * entrylen {body}
 macro fmtstring:str {body}

If the default macro return_value is not specified, one is assigned
automatically, based on the type of the macro. The following table lists the
default return_values that are based on the macro's return_type :

Macro Return Type Default Return Value

BOOL FALSE

U16, S16, U32, S32, SPTR 0

LPTR 0.0

CPTR class 0.0 (based on type)

STR ' ' (null string)

By default, a macro is assigned the return value of 0 as a signed 32-bit
number.

(parameters) Macros can optionally have a maximum of five declared parameters.
Parameter definitions are declared within parentheses, separated by
blanks or commas.
Chapter 6 205

System Debug Command Specifications M-X
MAC[RO]
 (parm1def parm2def, parm3def, parm4def parm5def)

Parameter names have the same restrictions as macro names. Names
must begin with an alphabetic character and are restricted to thirty-two
(32) characters, that must be alphanumeric, or an underscore (_), a single
quotation (`or'), or a dollar sign ($). Longer names are truncated (with a
warning). Names are case insensitive.

Each parameter definition can include an optional parmtype declaration
that must follow after a colon. In addition, a default initial value for the
parameter can optionally be specified, preceded by an equal sign. The
initial value can be an expression. Below is a syntax of a parameter
description, followed by examples:

 (parmname1 [: parmtype1] [= parm_default_value1], ..

 (addr:sptr=c000104c, len=0, count=20)
 (p1:u32=$100, p2=40-!count p3:str="totals")

When a macro is invoked, a local variable is declared for each parameter,
just as if the following command(s) had been entered:

 LOC parmname1 :type1= default1
 LOC parmname2 :type2= default2 ... etc.

Parameters are referenced within the macro body in the same manner
that local variables are referenced. The parameter name can be preceded
by an optional exclamation mark (!) to avoid ambiguity.

When execution of the macro body is completed, the local variables
declared for the parameters are automatically deleted.

{body } The macro body is a single command, or a list of commands, entered
between curly braces. Multiple commands must be separated by
semicolons. The commands in this body are executed whenever the macro
is invoked. For example:

 { CMD }
 { CMD1; CMD2; CMD3; .. CMDn }

Unterminated command lists, introduced by the left curly brace, can span
multiple lines without the use of the continuation character (&) between
lines. Additional command lines are automatically digested as part of the
cmdlist until the closing right brace is detected.

 { CMD1;
CMD2;
CMD3;

 ...
CMDn }

The RETURN command is used within the macro body to return a specified
value and to exit the macro immediately. If a RETURN command is not
supplied within the macro body, the macro exits when all commands have
been executed, and the default return value is used.

options Special macro options can be specified following the parameter
206 Chapter 6

System Debug Command Specifications M-X
MAC[RO]
declarations that precede the macro body. Any number of these options can
be specified in any order. Each option is specified as a keyword, followed by
a (case sensitive) string value:

MACVER = version_string

MACKEY = keyword_string

MACHELP = help_string

The following are typical valid declarations for macro options:

MACVER = 'A.00.01'

MACKEY = "PROCESS PIN PARENT"

MACHELP = "Returns the pin number of the parent process"

By default, the null string (' ') is assigned for unspecified options.

Examples

 $nmdat > macro showtime {wl 'The current time is: ' time}
 $nmdat > showtime
 The current time is: 2:14 PM

This example demonstrates a simple macro that executes a single command. The new
macro, named showtime , is defined and then executed as if it were a command. The macro
body, in this case a simple write command, is executed, and the current time is displayed.
This macro has no parameters.

 $nmdat > macro starline (num:u16=#20) {
 {$1} multi > while num > 0 do {
 {$2} multi > w '*';
 {$2} multi > loc num num -1 };
 {$1} multi > wl }

 $nmdat > starline (5)

 $nmdat > starline (#60)|
 **

 $nmdat > starline

 $nmdat > starline (-3)
 Parameter type incompatibility. (error #4235)
 expected the parameter "num:U16" for "starline"
 starline (-3)
 ^
 Error during macro evaluation. (error #2115)

This example defines a macro named starline that prints a line of stars. The number of
stars is based on the macro parameter num that is typed (unsigned 16-bit), and has a
default value of decimal twenty.
Chapter 6 207

System Debug Command Specifications M-X
MAC[RO]
The macro is entered interactively across several lines. The unterminated left curly brace
causes the interpreter to enter multi-line mode . The prompt changes to indicate that the
interpreter is waiting for additional input. The nesting level, or depth of unterminated
curly braces, is displayed as part of the prompt.

The macro starline is called with the parameter 5, and a line of five stars is printed. The
macro is called again to print a line with sixty stars. In the third invocation no parameter
value is specified, so the default value of twenty stars is used.

The fourth and final call displays the parameter type checking, which is performed for
typed macro parameters. In this example a negative number of stars are requested, and
the interpreter indicates that the parameter is invalid.

 $nmdat > mac fancytime {starline(#30); showtime; starline(#30)}
 $nmdat > fancytime

 The current time is: 2:17 PM

In this example a new macro named fancytime is defined. This new macro calls the two
previously defined macros in order to produce a fancy display of the time.

Macros can include calls to other macros. The contents of macro bodies are not inspected
when macros are defined. Therefore one macro can include a call to another macro before it
is defined.

 %nmdebug > mac printsum (p1,p2=0) {wl "the sum is " p1+p2}
 %nmdebug > printsum (1 2)
 the sum is $3
 %nmdebug > printsum 3 4
 the sum is $7
 %nmdebug > printsum 5
 the sum is $5

Defines macro printsum that prints the sum of the two parameters p1 and p2. Note how
the parameters are referenced as simple local variables within the macro body. When a
macro is used as a command, parentheses around parameters are optional. Also note how
the default value (0) is used for the omitted optional parameter p2.

 %cmdebug > mac is (p1="DEBUG",p2:str="GNARLY") {wl p1 "is very" p2.}
 %cmdebug > is ("MPE" 'mysterious')
 MPE is very mysterious.
 %cmdebug > is ("mpe")
 mpe is very GNARLY.
 %cmdebug > is
 DEBUG is very GNARLY.

These examples demonstrate simple typed parameters with default values. The default
values are used whenever optional parameters are omitted.

 %nmdat > mac double (p1) { return p1*2 }
 %nmdat > wl double(2)
 $4
 %nmdat > wl double(1+2)+1
 $7

Defines macro double as a function with one parameter p1. The RETURN command is used
208 Chapter 6

System Debug Command Specifications M-X
MAC[RO]
to return the functional result of twice the input parameter. Note how the macro is used as
a function, as an operand in an expression.

 %nmdat > mac triple (p1:INT) { return p1*3 }
 %nmdat > wl triple(2)
 $6
 %nmdat > wl triple (double (1+2))
 $12

Macro function triple is similar to macro function double defined above. Note that
macros (used as functions) can be nested within expressions.

 $nmdebug > { macro factorial=1 (n)
 {$1} multi > machelp = 'Returns the factorial for parameter "n"'
 {$1} multi > mackey = 'FACTORIAL UTILITY ARITH TEST'
 {$1} multi > macver = 'A.01.00'
 {$1} multi > { if n <= 0
 {$2} multi > then return
 {$2} multi > else if n > 10
 {$2} multi > then { wl "TOO BIG"; return}
 {$2} multi > else return n * factorial(n-1)
 {$2} multi > }
 {$1} multi > }

 $nmdebug > wl factorial(0)
 $1
 $nmdebug > wl factorial(1)
 $1
 $nmdebug > wl factorial(2)
 $2
 $nmdebug > wl factorial(3)
 $6
 $nmdebug > wl factorial(123)
 TOO BIG
 $1

This example defines a macro function named factorial that has a default return value
of 1. A help string, keyword string, and version string are included in the macro definition.

Note that the macro definition was preceded by a left curly brace in order to enter
multi-line mode . This allowed the options to be specified on separate lines, before the left
curly brace for the macro body.

This macro calls itself recursively, but protects against runaway recursion by testing the
input parameter against an upper limit of ten.

Discussion - Macro Parameters

Assume that the following macro is defined.

 $nmdat > { macro double(num=$123, loud=TRUE)
 {$1} multi > { if loud
 {$2} multi > then wl 'the double of ', num, ' = ', num*2;
 {$2} multi > return num*2}
 {$1} multi > }
Chapter 6 209

System Debug Command Specifications M-X
MAC[RO]
 $nmdat >

This macro has two optional parameters: numthat defaults to the value 123, and loud that
defaults to TRUE.

The macro is written in a manner that allows it to be invoked as a function to return a
value that is the double of the input parameter. The second parameter controls the display
of an output line, and therefore this macro might also be used as a command to calculate a
value and display the result. When invoked as a command, the returned value is simply
ignored.

The following examples illustrate the rules governing the specification of macro
parameters for macros invoked as functions and for macros invoked as commands.

Macro Functions

For macros invoked as a function, parameters must be specified within parentheses as a
parameter list. The same convention applies to parameters passed to any of the System
Debug standard functions. Optional parameters can be implicitly omitted if a comma is
used as a parameter place holder. When all parameters are optional and are to be omitted,
the parentheses around the empty parameter list can be omitted.

 $nmdat > wl double(1,false)
 $2

 $nmdat > wl double(,false)
 $246

 $nmdat > wl double ()
 the double of $123 = $246
 $246

 $nmdat > wl double
 the double of $123 = $246
 $246

Macro Commands

For macros invoked as commands, parameter(s) can be specified without parentheses, in
the same manner that System Debug commands are normally used.

Unlike normal System Debug commands, however, parentheses can be used to surround a
parameter list for a macro command. If the first parameter to a macro command requires a
parenthesized expression, an ambiguity arises. In this case, parentheses should be used
around the entire parameter list.

Just as with macro functions, optional parameters can be implicitly omitted if a comma is
used as a parameter place holder.

 $nmdat > double 1
 the double of $1 = $2

 $nmdat > double (2)
 the double of $2 = $4
210 Chapter 6

System Debug Command Specifications M-X
MACD[EL]
 $nmdat > double 3 true
 the double of $3 = $6

 $nmdat > double ((1+2)*3)
 the double of $9 = $12

 $nmdat > double
 the double of $123 = $246

 $nmdat > double 6,false
 $nmdat >

Limitations, Restrictions

Refer to ENV MACROSand ENV MACROS_LIMIT. These environment variables determine the
number of macros that can be created.

Current limit of 32 characters in a macro name or macro parameter name.

Current limit of five parameters per macro.

Macro parameters are passed by value. Parameter values are not changed.

The total length of an entire macro definition is limited by the maximum supported string
length, that is currently 2048 characters. See the STRMAX function.

The System Debug interpreter maintains an internal command stack for general
command execution, including the execution of macros. The command stack is large
enough to support the useful nesting of macros, including simple recursive macros.
Command stack overflow is possible, however, and when detected, results in an error
message and the immediate termination of the current command line execution. Following
command stack overflow, the stack is reset, the prompt is displayed, and normal command
line interpretation resumes.

MACD[EL]
Macro delete. Deletes the specified macro definition(s).

Syntax

 MACD[EL] pattern

Parameters

pattern The name(s) of the macro(s) to be deleted.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
Chapter 6 211

System Debug Command Specifications M-X
MACECHO
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

Examples

 %cmdebug > macd test2

Delete the macro named test2 .

 %cmdebug > macd format@

Delete all macros that match the pattern "format@".

Limitations, Restrictions

none

MACECHO
Controls the "echoing" of each macro command line prior to its execution.

Syntax

 MACECHO pattern [level]

Parameters

pattern The name(s) of the macro(s) for which echoing is to be enabled/disabled.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.
212 Chapter 6

System Debug Command Specifications M-X
MACECHO
The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

level Echoing can be enabled or disabled (default). The following values are
valid:

0 Disabled (default).

1 Enabled.

Examples

 $nmdat > macl @ all
 macro driver
 machelp = 'This macro calls macros "triple", "min", and "inc" in
order' +

'to demonstrate the MACECHO, MACREF, and MACTRACE commands'
 { loc one 1;
 loc two 2;
 wl min (triple(two) inc(one))
 }
 macro inc
 (num : ANY)
 machelp = 'returns the increment of "num"'
 { loc temp num;
 loc temp temp + 1;
 return temp
 }
 macro min
 (parm1 : ANY ,
 parm2 : ANY)
 machelp = 'returns the min of "parm1" or "parm2"'
 { if parm1 < parm2
 then return parm1
 else return parm2
 }
 macro triple
 (input : ANY)
Chapter 6 213

System Debug Command Specifications M-X
MACECHO
 machelp = 'triples the parameter "input"'
 { return input *3
 }

Assume that the macros listed above have been defined. A few of the macros use local
variables inefficiently, for the purpose of demonstration.

 $nmdat > driver
 $2

When a macro is called, the commands in the macro body are typically executed silently.
They are not displayed as they are being executed. In this example, macro driver executes
silently, and only the expected macro output is displayed.

 $nmdat > macecho driver 1
 $nmdat > driver
 driver > loc one 1
 driver > loc two 2
 driver > wl min (triple(two) inc(one))
 $2

In this example, echoing is enabled for macro driver . Then, when the macro is executed,
each command line in the macro body is displayed just prior to the execution of that line.

 $nmdat > macecho min 1
 $nmdat > driver
 driver > loc one 1
 driver > loc two 2
 driver > wl min (triple(two) inc(one))
 min > if parm1 < parm2 then return parm1 else return parm2
 min > return parm2
 $2

In this example, echoing is enabled for macro min , in addition to macro driver which
remains enabled from above. Command lines are displayed for both macros. Notice that
the command lines for macro min are indented, since it is called by macro driver . At each
nested level of macro invocation, an additional three blanks are added as indentation.

 $nmdat > macecho @ 1
 $nmdat > driver
 driver > loc one 1
 driver > loc two 2
 driver > wl min (triple(two) inc(one))
 triple > return input *3
 inc > loc temp num
 inc > loc temp temp + 1
 inc > return temp
 min > if parm1 < parm2 then return parm1 else return parm2
 min > return parm2
 $2

In this example, echoing is enabled for all ("@") currently defined macros. Each command
line, for every macro, is displayed before the command line is executed.

 $nmdat > macecho @
 $nmdat > driver
 $2
214 Chapter 6

System Debug Command Specifications M-X
MACL[IST]
In this example, echoing is disabled for all macros. Since the level parameter is not
specified, the default of disabled is assumed. Execution of the macro driver is silent once
again.

 $nmdat > macecho min 1
 $nmdat > driver
 min > if parm1 < parm2 then return parm1 else return parm2
 min > return parm2
 $2
 $nmdat > macl @ echo
 macro min echo

In this example, echoing is enabled for macro min . The command lines for macro min are
displayed, indented. The MACLIST command is used to display all macros that currently
have ECHO enabled, and macro min is indicated.

Limitations, Restrictions

none

MACL[IST]
Macro list. Lists the specified macro definition(s).

Syntax

 MACL[IST] [pattern] [options]

Macros are always listed in alphabetical order.

Parameters

pattern The name(s) of the macro(s) to be listed.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".
Chapter 6 215

System Debug Command Specifications M-X
MACL[IST]
log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

By default, all macros are listed.

options Display Options

Special options can be specified to control the level of detail that is
presented for each macro definition.

Any number of the following options can be specified in any order,
separated by blanks:

NAME Display the macro name, type. (Default value)

PARMS Display parameter names, types, default values.

NOPARMS Skip parameter display.

BODY Display the macro body as a string.

FMTBODY Format the macro body command lines.

NOBODY Skip body display.

VER Display the MACVER string.

NOVER Skip version display.

KEY Display the MACKEY string.

NOKEY Skip keyword display.

HELP Display the MACHELP string.

NOHELP Skip help display.

ALL | @ Display all fields. Same as: NAME PARMS FMTBODY VER
KEY HELP.

PAGE Page eject after each macro definition. Useful for paged
(list file) output.

NOPAGE No special page ejects. (Default)

If none of the options above are specified, NAME is displayed by default. If
any options are specified, they are accumulated to describe which fields
are printed.

Filter Options

The following options can be used to further restrict which macro
definitions are printed, based on keyword and version matching:

KEY=keyword Display only those macros that contain the specified
keyword in their MACKEY keyword string.
216 Chapter 6

System Debug Command Specifications M-X
MACL[IST]
VER=version Display only those macros that contain the specified
version in their MACVER version string.

The parameters keyword and version are entered as a single word, or a
quoted text string. The interpreter will search for an exact occurrence of
the pattern within the specified string. Keyword and version comparisons
are case sensitive.

REF Display the macro reference counts.

ECHO Display only macros that have ECHO set.

TRACE Display only macros that have TRACE set.

These three special filter options are used to display macro reference
counts, and to display those macros that have special macro debugging
enabled. When any of these three options are specified, only the macro
names are displayed (that is, implicit NOPARMS, NOBODY, NOHELP, NOKEY,
NOVER). A special page of examples for these options is provided.

Refer to the MACECHO, MACTRACE, and MACREF commands.

Examples

 $nmdat > macl
 macro cmpin_db : PTR/LPTR = $0.0
 macro cmport_context : PTR/LPTR = $0.0
 macro cmport_dst : INT/U16 = $0
 macro cmport_name : INT/U16 = $0
 macro cmport_record : PTR/LPTR = $0.0
 macro config_device_ldev
 macro config_device_path
 macro config_memory
 macro console_ldev
 macro convert_string : STR/STR =
 macro delete_blanks : STR/STR =
 macro event_ci_history
 macro event_footprint
 macro event_io_trace
 macro event_process
 macro event_process_errors
 macro file_in_use
 macro first_entry : PTR/LPTR = $0.0

 control-Y encountered
 $nmdat >

The MACLIST command, when entered without parameters, lists all currently defined
macros in alphabetically sorted order. By default, only the macro names, and default
return value and type (if declared) are displayed.

Note that Control-Y can be used to interrupt any MACLIST command.

 $nmdat > macl fs_disc_alloc parms
 macro fs_disc_alloc : PTR/LPTR = $0.0
 ([pin_num : INT / U16 = $0] ,
Chapter 6 217

System Debug Command Specifications M-X
MACL[IST]

T'
 fnum : INT ,
 [detail : INT / U16 = $5] ,
 [error_parm : STR = 'pad'])

Display the PARMS (parameters) for macro fs_disc_alloc_parms

 $nmdat > macl fs_table all nobody
 macro fs_table : UNKN/U16 = $0
 (entry_ptr : PTR ,
 table : STR ,
 [detail : INT / U16 = $1] ,
 [field_name : STR =])
 machelp = 'Print the table and optionally returns the field value'

mackey = 'MXFS HP Q_FS_X_NM EL FS TABLE PLFD GDPD GUFD LACB PACB MV
+^S
 'FMAVT AFT FLAB'
 macver = 'A.00.01'

For the macro fs_table , display all macro attributes, except for the macro body (NOBODY).
The macro parameters, help string, keywords string, and version string are displayed.

 $nmdat > macl @sem@
 macro pm_semaphores : PTR/LPTR = $0.0
 macro rm_build_semaphore_wait_list : STR/STR =
 macro rm_sem_blocked_proc : STR/STR =
 macro rm_sem_deadlock : STR/STR =
 macro rm_sem_owner : INT/U16 = $0
 macro rm_semaphore
 macro rm_semaphore_info : UNKN/U16 = $0
 macro xm_semp

List all macros that match the pattern "@sem@". By default, only the names of the macros
are displayed. Note that default types and return values are displayed for those macros
that have specified defaults.

 $nmdat > macl `.*port_.*`
 macro cmport_context : PTR/LPTR = $0.0
 macro cmport_dst : INT/U16 = $0
 macro cmport_name : INT/U16 = $0
 macro cmport_record : PTR/LPTR = $0.0
 macro global_port_name : STR/STR =
 macro io_ioldm_port_fv
 macro io_port_data : UNKN/U16 = $0
 macro port_data : PTR/LPTR = $0.0
 macro port_global : INT/U16 = $0
 macro port_message : PTR/LPTR = $0.0
 macro port_record : PTR/LPTR = $0.0
 macro ui_job_port_msg : UNKN/U16 = $0
 macro ui_jsmain_port_msg : UNKN/U16 = $0

List all macros that match the regular expression pattern ".*port_.*". By default, only the
macro names (and default return values/types) are displayed.

 $nmdat > macl @timer@ help
 macro format_timer_msg
 machelp = 'Formats the timer request list entrys message.'
218 Chapter 6

System Debug Command Specifications M-X
MACL[IST]

'

 macro io_timer_list
 machelp = 'Formats the timer request list.'

 macro start_timer
machelp = 'Sets variable cpustart to current value of HPCPUSECS CI' +

 'variable.'

 macro stop_timer
 machelp = 'Sets variable cputime to current value of HPCPUSECS CI' +
 'variable - variable cpustart.'

 macro timer
 machelp = 'Times events and then prints elapsed cpu time.'

List all macros that match the pattern "@timer@", and display the MACHELPstring for each
macro.

 $nmdat > macl @ key=CHAIN
 macro io_data_chain : UNKN/U16 = $0
 macro io_getnext_data_chain : PTR/LPTR = $0.0

List all macros, but only if the pattern CHAIN can be located within the macro's keyword
string, defined with the MACKEY option. By default, only the names of the macros are
displayed.

 $nmdat > macl @ key=CHAIN help
 macro io_data_chain : UNKN/U16 = $0

machelp = 'Print or returns the specified field form the data chain' +
 'record.'

 macro io_getnext_data_chain : PTR/LPTR = $0.0
 machelp = 'Returns the address of the next data chain entry '+
 'associated with the specified I/O request'

List all macros, but only if the keyword CHAIN can be located within the macro's keyword
string, defined with the MACKEYoption. Display the macro name and the MACHELPstring for
those macros.

 $nmdat > macl @ key=GUFD key
 macro fs_addr : PTR/LPTR = $0.0
 mackey = 'MXFS HP Q_FS_X_NM EL FS FILENAME FILE ADDRESS GUFD'

 macro fs_fname_nm : STR/STR =
 mackey = 'MXFS HP Q_FS_X_NM EL FS FNAME GUFD'

 macro fs_fname_to_gufd : PTR/LPTR = $0.0
mackey = 'MXFS HP Q_FS_X_NM EL FS GUFD GLOBAL UNIQUE FILE DESCRIPTOR

 macro fs_gufd : PTR/LPTR = $0.0
 mackey = 'MXFS HP Q_FS_X_NM EL FS GUFD PLFD'

 macro fs_table : UNKN/U16 = $0
 mackey = 'MXFS HP Q_FS_X_NM EL FS PLFD GDPD GUFD LACB PACB MVT' +
 'FMAVT AFT FLAB'
Chapter 6 219

System Debug Command Specifications M-X
MACL[IST]

R

 macro fs_ufid_str : STR/STR =
 mackey = 'MXFS HP Q_FS_X_NM EL FS GUFD UFID STR'

 macro fs_ufid_to_gufd : PTR/LPTR = $0.0
 mackey = 'MXFS HP Q_FS_X_NM EL FS UFID TO GUFD'

List all macros, but only those that contain the keyword GUFD within the macro's keyword
string, defined with the MACKEY option. List the names and the keyword string for those
macros.

 $nmdat > macl fs_fname_to_gufd all
 macro fs_fname_to_gufd : PTR/LPTR = $0.0
 (filename : STR)

machelp = 'Returns the address of the GUFD for the specified filename'
mackey = 'MXFS HP Q_FS_X_NM EL FS GUFD GLOBAL UNIQUE FILE DESCRIPTO

FILE'
 macver = 'A.00.01'
 { loc save_error_action error_action;
 loc vsod_hdr = kso_pointer (kso_number
('kso_vs_od_gu_fd_header'));
 loc entry_size = symval (vsod_hdr, 'tbl_hdr.' +
'hdr_entry_size');
 loc vsod_rec_size = symlen ('!vs_som:vs_od_type');
 ignore quiet;
 loc first_entry_ptr = first_entry (vsod_hdr);
 if error <> 0
 then return NMNIL;

loc max_entry_ptr = first_entry_ptr + symval (vsod_hdr, 'tbl_hdr.' +
'hdr_rs^
 rc_block.body_current_size') - vsod_rec_size;
 loc filename = strup(filename);
 loc vsod_ptr = first_entry_ptr;
 var error_action = 'pa';
 while vsod_ptr < max_entry_ptr do
 { loc gufd_ptr = vsod_ptr + vsod_rec_size;
 loc fname = fs_fname_nm (gufd_ptr);
 if fname = filename
 then { var error_action = save_error_action;
 return gufd_ptr
 };
 loc vsod_ptr = vsod_ptr + entry_size
 };
 var error_action = save_error_action;
 stderr (HP_FILENAME_NOT_FOUND, 'fs_fname_to_gufd', filename);
 return NMNIL
 }

Display macro fs_fname_to_gufd . Since the ALL option is specified, all macros attributes
are displayed, including the name, parameters, help, version, and the full formatted body.

This is a typical macro from the DAT Macros package.

Examples of the ECHO, REF, and TRACE options
220 Chapter 6

System Debug Command Specifications M-X
MACL[IST]
 $nmdat > macl format@ ref
 macro format ref = 0
 macro format_job ref = 1
 macro format_raw_table ref = 0
 macro format_timer ref = 3

Display the REF(reference counts) for all macros that match the pattern "format@". Macro
format_job has been called one time, and macro format_timer has been called three
times.

 $nmdat > macl @ trace
 macro get_disp_wait_event trace = 3
 macro get_element trace = 1
 macro get_entry_ptr trace = 3
 macro get_sublist trace = 3
 macro get_table_info trace = 3
 macro kso_number trace = 1
 macro kso_pointer trace = 2

List all macros for which the MACTRACE command has been used to enable tracing of the
macro execution. The trace level number is displayed.

 $nmdat > maclist @ echo
 macro kso_number echo
 macro kso_pointer echo
 macro port_data echo

List all macros for which the MACECHO command has been used to enable the echoing of
each macro command line during macro execution.

 $nmdat > macl @ trace echo all
 macro kso_number echo trace = 1
 macro kso_pointer echo trace = 2

List all macros that have tracing and echoing enabled. Note that only the macro names,
and the echo and trace information is displayed, even though the ALL option was
requested.

The keywords ECHO, REF, and TRACE restrict the output display to macro names and the
selected option(s). Parameters, keywords, help strings, versions, and macro bodies are not
listed when any one of these three options are specified on the MACLIST command.

Listing Macros to a File

The following example demonstrates how to produce a paged listing of all currently
defined macros, formatted to a file, one macro per page. The example is explained
command by command, based on the command numbers that appear within the prompt
lines.

 %10 (%53) cmdat > list macros
 %11 (%53) cmdat > env term_loud false
 %12 (%53) cmdat > maclist @ all page
 %13 (%53) cmdat > list close
 %14 (%53) cmdat > set def

• Command %10 opens an offline list file, named MACROS. All System Debug input and
output is recorded into this file, including the code we intend to display.
Chapter 6 221

System Debug Command Specifications M-X
MACREF
• Command %11 sets the environment variable term_loud to FALSE. This prevents
subsequent System Debug output from being displayed on the terminal. We capture the
output in the list file (macros), but we do not want to watch all of the output on the
terminal.

• Command %12 contains the MACLIST command. All attributes of all currently defined
macros are displayed. The PAGE option causes each macro to start on a new page. The
list file contains CCTL (carriage control) information for the paging.

• Command %13 closes (and saves) the current list file (macros).

• Command %14 uses the SET DEFAULT command to effectively reset the environment
variable term_loud back to TRUE. System Debug output is once again displayed on
the terminal.

Limitations, Restrictions

Macros listed into a file are not currently formatted in a style that allows the macro to be
redefined by reading the file back in as a USE file.

The macro pretty printer attempts to format the macro body in a reasonable manner.
Occasionally, the formatting includes extra blank lines, usually as a result of unnecessary
semicolons within the original macro body.

When macros are defined, all comments are removed, and the macro body is stored in
compressed form. The MACLIST command does not display the original form of the macro
body.

MACREF
Resets the reference count to zero for the specified macro(s).

Syntax

 MACREF pattern

Reference counts are maintained for macros. Each time a macro is invoked, the reference
count for the macro is incremented.

Current reference counts can be displayed with the MACLIST command.

This MACREF command is used to reset macro reference counts.

Parameters

pattern The name(s) of the macro(s) for which the reference counts are to be reset
to zero.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
222 Chapter 6

System Debug Command Specifications M-X
MACREF
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

Examples

 $nmdat > macl @ all
 macro driver
 machelp = 'This macro calls macros "triple", "min", and "inc" in
order' +

'to demonstrate the MACECHO, MACREF, and MACTRACE commands'
 { loc one 1;
 loc two 2;
 wl min (triple(two) inc(one))
 }
 macro inc
 (num : ANY)
 machelp = 'returns the increment of "num"'
 { loc temp num;
 loc temp temp + 1;
 return temp
 }
 macro min
 (parm1 : ANY ,
 parm2 : ANY)
 machelp = 'returns the min of "parm1" or "parm2"'
 { if parm1 < parm2
 then return parm1
 else return parm2
 }
 macro triple
 (input : ANY)
 machelp = 'triples the parameter "input"'
 { return input *3
 }
Chapter 6 223

System Debug Command Specifications M-X
MACREF
Assume that the macros listed above have been defined. A few of the macros use local
variables inefficiently, for the purpose of demonstration.

 $nmdat > macl @ ref
 macro driver ref = #0
 macro inc ref = #0
 macro min ref = #0
 macro triple ref = #0

The MACLIST command is used to display the current reference counts for all macros. At
this point, the reference counts for all macros are zero.

 $nmdat > wl inc(4)
 $5
 $nmdat > wl min(inc(3) inc(0))
 $1
 $nmdat > macl @ ref
 macro driver ref = #0
 macro inc ref = #3
 macro min ref = #1
 macro triple ref = #0

A few macros are invoked, then the MACLISTcommand is used again to display the current
reference counts. Macro inc has been called three times, and macro min has been called
one time.

 $nmdat > macref inc
 $nmdat > macl @ ref
 macro driver ref = #0
 macro inc ref = #0
 macro min ref = #1
 macro triple ref = #0

The MACREF command is used to reset the reference count for macro inc. The MACLIST
command is used to verify that the count has been successfully reset.

 $nmdat > driver
 $2
 $nmdat > macl @ ref
 macro driver ref = #1
 macro inc ref = #1
 macro min ref = #2
 macro triple ref = #1

Macro driver is invoked, then the reference counts are checked again.

 $nmdat > macref @
 $nmdat > macl @ ref
 macro driver ref = #0
 macro inc ref = #0
 macro min ref = #0
 macro triple ref = #0

The reference counts for all macros are reset to zero.
224 Chapter 6

System Debug Command Specifications M-X
MACTRACE
Limitations, Restrictions

The macro reference count is incremental at macro entry, after parameter type checking,
but before actual execution of the macro body. The actual macro execution may result in
errors and be terminated. Reference counts, therefore, indicate the number of times the
macro has been called (not the number of times that the macro has been successfully
executed to completion).

MACTRACE
Controls the "tracing" of macro execution.

Syntax

 MACTRACE pattern [level]

It is possible to enable/disable the observation of entry/exit of macros, along with input
parameter values and functional return values.

Parameters

pattern The name(s) of the macro(s) that are to be traced.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

level The level of macro "tracing" detail.

Four increasing levels are supported:
Chapter 6 225

System Debug Command Specifications M-X
MACTRACE
1 All tracing is disabled. (Default)

2 Macro entry is displayed.

3 Macro entry and exit are displayed.

4 Macro entry, input parameter values, macro exit, and
functional return values are displayed.

Examples

 $nmdat > macl @ all
 macro driver
 machelp = 'This macro calls macros "triple", "min", and "inc" in
order' +

'to demonstrate the MACECHO, MACREF, and MACTRACE commands'
 { loc one 1;
 loc two 2;
 wl min (triple(two) inc(one))
 }
 macro inc
 (num : ANY)
 machelp = 'returns the increment of "num"'
 { loc temp num;
 loc temp temp + 1;
 return temp
 }
 macro min
 (parm1 : ANY ,
 parm2 : ANY)
 machelp = 'returns the min of "parm1" or "parm2"'
 { if parm1 < parm2
 then return parm1
 else return parm2
 }
 macro triple
 (input : ANY)
 machelp = 'triples the parameter "input"'
 { return input *3
 }

Assume that the macros listed above have been defined. A few of the macros use local
variables inefficiently, for the purpose of demonstration.

 $nmdat > driver
 $2

Macros normally execute silently, as they invoke commands, and often other macros. In
this example, macro driver is invoked, and this macro calls several other macros. Since
macro tracing is not enabled for any of these macros, execution proceeds silently.

 $nmdat > mactrace inc 3
 $nmdat > driver
 --> enter macro: inc
 --> parms macro: inc
226 Chapter 6

System Debug Command Specifications M-X
MAP
 (num : ANY = $1)
 <-- exit macro: inc : U16 = $2
 $2

The MACTRACE command is used to enable macro tracing for macro inc at trace level 3.
Now, every time macro inc is invoked, trace information is displayed. Since the trace level
for this macro is set to level 3, entry into the macro is displayed, along with the parameter
value(s) at entry, and exit from the macro is displayed, along with the function return
value.

 $nmdat > macl @ trace
 macro inc trace = 3

The MACLISTcommand is used to display all macros that have tracing enabled (level >= 1).
Macro inc is shown to have tracing enabled at level 3.

 $nmdat > mactrace @ 3
 $nmdat > driver
 --> enter macro: driver
 --> enter macro: min
 --> enter macro: triple
 --> parms macro: triple
 (input : ANY = $2)
 <-- exit macro: triple : U16 = $6
 --> enter macro: inc
 --> parms macro: inc
 (num : ANY = $1)
 <-- exit macro: inc : U16 = $2
 --> parms macro: min
 (parm1 : ANY = $6 ,
 parm2 : ANY = $2)
 <-- exit macro: min : U16 = $2
 $2
 <-- exit macro: driver

In this example, macro tracing is set to level 3 for all macros.

 $nmdat > mactrace @

Tracing is disabled for all macros.

Limitations, Restrictions

none

MAP
Opens a file and maps it into a usable virtual address space.
Chapter 6 227

System Debug Command Specifications M-X
MAP
Syntax

 MAP filename [option]

The MAP command allows a file to be accessed (displayed or modified) in virtual space by
other System Debug commands. This command is useful for analyzing dump files
generated by subsystems that are not part of the dump created by the DUMP utility.

Parameters

filename The file name of the file to map into usable address space.

option Read or read/write access can be explicitly requested, a filecode can be
specified, and a virtual offset set be specified. Multiple options can be
specified for a single MAP command.

READACCESS Open the file for read access only (default). Users with PM
capability can still write to the file (file system feature).

WRITEACCESSOpen the file for read/write access. Standard file system
security checking is performed while opening the file.

FILECODEvalue Privileged files cannot be accessed without providing
the numeric file code associated with the file. This
keyword/value pair allows privileged users to map in these
privileged files. Remember that file codes are thought of as
negative decimal numbers.

OFFSETvalue Map the file, starting at the specified virtual byte offset.
The default offset is 0.

Examples

 $nmdebug > map DTCDUMP
 1 DTCDUMP.DUMPUSER.SUPPORT 1000.0 Bytes = 43dc

Open the file DTCDUMPand assign it to the virtual object in space $1000. It is mapped to file
index number 1. Use this number to UNMAP the file.

 $nmdebug > map DATA2 off c0004c00
 2 DATA2.DUMPUSER.SUPPORT 1000.1c004c00. Bytes = 2340

Map the file DATA2 at a specified virtual offset of $c0004c00.

Related commands: MAPLIST, UNMAP.

Related functions: MAPINDEX, MAPVA, MAPSIZE .

Limitations, Restrictions

A maximum of ten files can be mapped in at any one time.

It is not currently possible to map a file if it is already open and loaded for execution. Refer
to the HPFOPEN intrinsic description in the MPE XL Intrinsic Reference Manual for
additional details.
228 Chapter 6

System Debug Command Specifications M-X
MAPL[IST]
MAPL[IST]
Lists the specified file(s) that have been opened with the MAP command.

Syntax

 MAPL[IST] [pattern]

Parameters

pattern The file name(s) of the mapped files to be listed.

If no file name is given, all currently mapped files are displayed.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

Examples

 $nmdebug > maplist
 1 DTCDUMP.DUMPUSER.SUPPORT 1000.0 Bytes = 43dc
 2 DTCDUMP2.DUMPUSER.SUPPORT 1001.0 Bytes = c84
 3 MYFILE.MYGROUP.MYACCT 1005.0 Bytes = 1004

 $nmdebug > mapl myfile
 3 MYFILE.MYGROUP.MYACCT 1005.0 Bytes = 1004

Limitations, Restrictions

none
Chapter 6 229

System Debug Command Specifications M-X
MODD
MODD
DAT ONLY

Modification delete. Deletes a modification entry specified by index number.

Syntax

 MODD [index
 @]

The MODD command is used to delete a modification which has been applied to an opened
dump.

Parameters

index The index number of the modification entry which is to be deleted.

@ @, the wildcard character, can be used to delete all currently defined
entries.

Examples

 $nmdat > modl
 Current TEMPORARY dump modification(s):
 1) VIRT $b.80b4f300
 REAL $a80300 $70ff4e74 "p.Nt" (orig: $8119e000
"....")
 2) REAL $1d654 $ffffffff "...." (orig: $0
"....")
 3) SEC $1.a552000 $20c0104 "...." (orig: $20b0104
"....")
 $nmdat > modd 1
 $nmdat > modl
 Current TEMPORARY dump modification(s):
 2) REAL $1d654 $ffffffff "...." (orig: $0
"....")
 3) SEC $1.a552000 $20c0104 "...." (orig: $20b0104
"...."

Deletes the temporary dump modification entry at index number 1.

MODL
DAT ONLY

Modification list. Lists current dump modifications.
230 Chapter 6

System Debug Command Specifications M-X
MODL
Syntax

 MODL [index
 @]

The MODL command is used to list all current modifications which have been applied to an
opened dump.

Parameters

index The index number of the modification entry to display.

@ The wildcard symbol "@" can be used to display all entries.

If no parameter is entered, the default is that all entries are displayed.

Examples

In the following examples, three different types of dump modifications are applied and
then all three modifications are listed.

 $nmdebug > bl

 $nmdat > mv 80b4f300
 VIRT $b.80b4f300 = "...." $8119e000 := 70ff4e74
 Added TEMPORARY dump modification. Use MODL to list, MODD to delete.
 1) VIRT $b.80b4f300
 REAL $a80300 $70ff4e74 "p.Nt" (orig: $8119e00 "....")

 $nmdat > mz 1d654
 REAL $0001d654 = "...." $0 := −1
 Added TEMPORARY dump modification. Use MODL to list, MODD to delete.
 2) REAL $1d654 $ffffffff "...." (orig: $0 "....")

 $nmdat > msec vtos(a.0)
 SEC $1.a552000 = "...." $20b0104 := 20c0104
 Added TEMPORARY dump modification. Use MODL to list, MODD to delete.
 3) SEC $1.a552000 $20c0104 "...." (orig: $20b0104 "....")

 $nmdat > modl
 Current TEMPORARY dump modification(s):
 1) VIRT $b.80b4f300
 REAL $a80300 $70ff4e74 "p.Nt" (orig: $8119e000 "....")
 2) REAL $1d654 $ffffffff "...." (orig: $0 "....")
 3) SEC $1.a552000 $20c0104 "...." (orig: $20b0104 "....")

Limitations, Restrictions

none
Chapter 6 231

System Debug Command Specifications M-X
MPSW
MPSW
Privileged Mode

Modifies the NM processor status word (PSW).

Exercise a bit of care with this command.

Syntax

 MPSW bit_string

Parameters

bit_string A string of characters that indicates which bits in the PSW are to be
modified. The letters listed below represent individual fields: lower case
implies turn the bit off, and uppercase implies turn the bit on. All
unreferenced bits remain unchanged. All named bits with the exception of
the "C/B" bits may be altered with this command. The IPSW has the
following format:

 1 1 1 1 1 1 1 2 2 2 2 3 3
 0 7 8 9 0 1 2 3 4 5 6 4 7 8 9 0 1

|J| |T|H|L|N|X|B|C|V|M| C/B | |R|Q|P|D|I|

J Joint instruction and data TLB misses/page faults pending

T Taken branch trap enabled

H Higher-privilege transfer trap enable

L Lower-privilege transfer trap enable

N Instruction whose address is at front of PC queue is
nullified

X Data memory break disable

B Taken branch in previous cycle

C Code address translation enable

V Divide step correction

M High-priority machine check disable

C/B Carry/Borrow bits

R Recovery counter enable

Q Interruption state collection enable

P Protection ID validation enable

D Data address translation enable
232 Chapter 6

System Debug Command Specifications M-X
MR
I External, power failure, & low-priority machine check
interruption enable

System Debug displays this register in two formats:

 IPSW=$6ff0b=jthlnxbCVmrQpDI

The first value is a full 32-bit integer representation of the register. The second format
shows the value of the special named bits. An uppercase letter means that the bit is on
while a lowercase letter indicates that the bit is off.

Examples

 %nmdebug > dr psw
 PSW=0006ff0f=jthlnxbCVmrQPDI
 %nmdebug > mpsw p
 %nmdebug > dr psw
 PSW=0006ff0b=jthlnxbCVmrQpDI

Turn OFF the protection ID validation enable bit in the IPSW.

 $nmdat > mpsw CD
 $nmdat >

Enable code and data translation. System Debug windows are affected by these two bits.

Limitations, Restrictions

Nmdebug alters the "R" bit while single stepping and the "T" bit when the TRAP BRANCH
command is used.

The system dispatcher enforces fixed settings for several key bits. For example, if the "I"
bit is turned off with this command, the dispatcher sets it back on when this process is
launched.

MR
Modifies the contents of the specified CM or NM register.

Syntax

 MR cm_register [newvalue]
 MR nm_register [newvalue]

By default, the current register value is displayed. The ENVvariable QUIET_MODIFYcan be
used to suppress the display of the current value.

Parameters

cm_register The CM register whose contents are to be modified. This can be:
Chapter 6 233

System Debug Command Specifications M-X
MR
DB The stack base relative word offset of DB.

DBDST The DB data segment number.

CIR The current instruction register.

CMPC The full logical CM program counter address.

• Only the offset part can be modified.

• CIR will also be modified.

Q The Q register word offset, DB relative.

S The S register word offset, DB relative.

SDST The stack data segment number.

STATUS The CM status register.

• The segment number portion cannot be modified.

X The X (index) register.

NOTE CM registers can not be modified when the user initially entered Debug in
NM (nmdebug).

nm_register The NM register whose contents are to be modified.

NOTE NM registers can not be modified when the user initially entered Debug in
CM (cmdebug).

Modifying PC modifies PCOF and PCSF. It sets PCOB to PCOF+4 and to
PCSF. The original priv bits are retained. That is, when PC is modified, the
priv bits are unaffected.

To fully understand the use and conventions for the various registers, refer
to the Precision Architecture and Instruction Reference Manual and
Procedure Calling Conventions Reference Manual. The procedure calling
conventions manual is of particular importance for understanding how the
language compilers utilize the registers to pass parameters, return values,
and hold temporary values. The following tables list the NM registers
available within System Debug. Many registers have aliases through
which they may be referenced. Alias names in italics are not available in
System Debug.

Access rights abbreviations are listed below. PM indicates that privileged
mode (PM) capability is required.

d Display access

D PM display access

m Modify access

M PM modify access
234 Chapter 6

System Debug Command Specifications M-X
MR
The following registers are known as the General Registers .

The following registers are pseudo registers. They are not defined in the
Precision Architecture, but are terms used in the Procedure Calling
Conventions document and by the language compilers. They are provided
for convenience. They are computed based on stack unwind information.
They may not be modified.

Table 6-1. General Registers

Name Alias Access Description

RO none d A constant 0

R1 none dm General register 1

R2 none dm Used to hold RP at times

R3 none dm General register 3

[vellip]

R22 none dm General register 22

R23 ARG3 dm Argument register 3

R24 ARG2 dm Argument register 2

R25 ARG1 dm Argument register 1

R26 ARG0 dm Argument register 0

R27 DP dM Global data pointer

R28 RET1 dm Return register 1

R29 RET0 dm Return register 0

SL dm Static link

R30 SP dM Current stack pointer

R31 MRP dm Millicode return pointer

Table 6-2. Pseudo Registers

Name Alias Access Description

RP none d Return pointer (not the same as R2)

PSP none d Previous stack pointer
Chapter 6 235

System Debug Command Specifications M-X
MR
The following registers are known as the Space Registers . They are used
for short pointer addressing:

The following registers are known as the Control Registers . They
contain system state information:

Table 6-3. Space Registers

Name Alias Access Description

SR0 none dm Space register 0

SR1 SARG dm Space register argument

SRET dm Space return register

SR2 none dm Space register 2

SR3 none dm Space register 3

SR4 none dM Process local code space(tracks PC space)

SR5 none dM Process local data space

SR6 none dM Operating system data space 1

SR7 none dM Operating system data space 2

Table 6-4. Control Registers

Name Alias Access Description

CR0 RCTR dM Recovery counter

CR8 PID1 dM Protection ID 1 (16 bits)

CR9 PID2 dM Protection ID 2 (16 bits)

CR10 CCR dM Coprocessor configuration (8 bits)

CR11 SAR dm Shift amount register (5 bits)

CR12 PID3 dM Protection ID 3 (16 bits)

CR13 PID4 dM Protection ID 4 (16 bits)

CR14 IVA dM Interrupt vector address

CR15 EIEM dM External interrupt enable mask

CR16 ITMR dM Interval timer

CR17 PCSF dM PC space queue front

none PCSB dM PC space queue back

CR18 PCOF dM PC offset queue front

none PCSB dM PC offset queue Back
236 Chapter 6

System Debug Command Specifications M-X
MR
NOTE the Precision Architecture and Instruction Reference Manual refers to the PC
(program counter) registers as the IA (instruction address) registers.
This manual will use the PC mnemonic when referring to the IA registers.

The following registers are floating-point registers. If a machine has a
floating-point coprocessor board, these values are from that board. If no
floating-point hardware is present, the operating system emulates the
function of the hardware, in which case these are the values from
floating-point emulation.

none PCQF dM PC queue (PCOF.PCSF) front

none PCQB dM PC queue (PCOB.PCSB) back

none PC dM PCQF with priv bits set to zero

none PRIV dM Low two order bits (30,31) of PCOF.

CR19 IIR dM Interrupt instruction register

CR20 ISR dM Interrupt space register

CR21 IOR dM Interrupt offset register

CR22 IPSW dM Interrupt processor status word

PSW dM Processor status word

CR23 EIRR dM External interrupt request register

CR24 TR0 dM Temporary register 0

[vellip]

CR31 TR7 dM Temporary register 7

Table 6-5. Floating Point Registers

Name Alias Access Description

FP0 none dm FP register 0

FP1 none dm FP register 1

FP2 none dm FP register 2

FP3 none dm FP register 3

FP4 FARG0 dm FP argument register 0

FRET dm FP return register

FP5 FARG1 dm FP argument register 1

Table 6-4. Control Registers

Name Alias Access Description
Chapter 6 237

System Debug Command Specifications M-X
MR
newvalue The new value for the register can optionally be supplied on the command
line. If the new value was omitted, Debug displays the old value, and
prompts for the new value. To retain the original value, just hit return.

When a register is modified, the actual machine registers are not changed
until the process is resumed. That is, the new value is recorded and takes
effect when Debug is exited using the CONTINUE or EXIT commands.
Furthermore the value is applied only to the PIN being debugged. This is
true of all but several special registers that are expected to remain
constant during the life of MPE XL. The list of these registers follows:

sR6

sR7

tr0-tr7 Alias for cr24 - cr31

cCr Alias for cr10

iVa Alias for cr14

eIem Alias for cr15

eIrr Alias for cr23

When one of these registers is modified, the new value takes effect
immediately . Since these registers are global across all processes, all
other users are affected by the change.

FP6 FARG2 dm FP argument register 2

FP7 FARG3 dm FP argument register 3

FP8 none dm FP register 8

[vellip]

FP15 none dm FP register 15

FPSTATUS none dm FP status reg (left half of FP0)

FPE1 none dm FP exception reg 1 (right half of FP0)

FPE2 none dm FP exception reg 2 (left half of FP1)

FPE3 none dm FP exception reg 3 (right half of FP1)

FPE4 none dm FP exception reg 4 (left half of FP2)

FPE5 none dm FP exception reg 5 (right half of FP2)

FPE6 none dm FP exception reg 6 (left half of FP3)

FPE7 none dm FP exception reg 7 (right half of FP3)

Table 6-5. Floating Point Registers

Name Alias Access Description
238 Chapter 6

System Debug Command Specifications M-X
NM
Examples

 %cmdebug > mr cmpc
 CMPC=PROG %0.01754 := prog(0.1762)

Modify the contents of the CM program counter. Only the offset portion of the CM logical
address can be modified. It is not possible to change the logical segment number portion.

Note that this also modifies CIR, the current instruction register.

 %cmdebug > mr x 0
 X=000123 := 0

Zero the X register.

 $nmdebug > mr pc pc + 4
 pc=0021d7b4 := 0021d7b8

Advance the PC (this changes pcq front and pcq back).

 $nmdebug > mr ret0 [psp-20]
 r28=00000001 := 00ef2340

Modify return register 0 (r28) to be the contents of the address specified by psp-20.

Limitations, Restrictions

The PC register can not be modified unless the user has privileged mode.

When CM code has been translated, and is executing translated, modification of the CM
registers may result in an undefined/undesirable state.

Refer to appendix C for a discussion of CM object code translation, node points, and
breakpoints in translated CM code.

NM
Enters native mode (nmdat / nmdebug). See the CM command.

Syntax

 NM

The command switches from CM (cmdat/cmdebug) to NM (nmdat/nmdebug). If the
windows are on, the screen is cleared and the set of windows enabled for nmdebug are
redrawn. The command also sets several environment variables. The variables affected
and their new values are shown below:

 ENV MODE "NM"
 ENV INBASE NM_INBASE
 ENV OUTBASE NM_OUTBASE
Chapter 6 239

System Debug Command Specifications M-X
OPENDUMP
Parameters

none

Examples

 %cmdebug > nm
 $nmdebug >

Switch from cmdebug to nmdebug.

Limitations, Restrictions

none

OPENDUMP
DAT only

Opens a dump file.

Syntax

 OPENDUMP file

This command opens the specified dump file previously restored to disk by the GETDUMP
command. An implicit DUMPINFO STATE command is then performed to show the user the
state of the dump. If another dump file is already open when this command is entered, it is
closed automatically first.

Parameters

file The name of the dump file to be opened. Dump file names are limited to a
maximum of five characters.

Examples

 $nmdat > opendump EXAMP

 Dump Title: SA 2559 on KC (8/29/88 9:40)
 Last Pin: 34

 $nmdat >

Opens the dump file EXAMP.
240 Chapter 6

System Debug Command Specifications M-X
PAUSE
Limitations, Restrictions

none

PAUSE
Pauses (puts to sleep) a process for the specified number of seconds.

Syntax

 PAUSE n

Parameters

n The number of seconds the process is to be suspended. Negative values are
treated the same as positive ones.

Examples

 $nmdebug > pause #10

Suspend the process for (decimal) 10 seconds.

Limitations, Restrictions

none

PIN
Privileged Mode

Switches the process-specific pointers and registers to allow the examination of process
related information.

Syntax

 PIN [pin] [ANYSTATE]

Parameters

pin The process identification number (PIN). If omitted, the current process
that was active at dump time is used. If no process was active at dump
Chapter 6 241

System Debug Command Specifications M-X
PROCLIST
time, a PIN of zero is used (A PIN of 0 refers to the dispatcher).

ANYSTATE If the keyword ANYSTATE is specified, the current state of the process for
pin is not verified before the process switch occurs. If this keyword is
absent, the current state of the process for pin must be "alive" for the
command to succeed.

Examples

 $nmdat > pin 8

Switches the process pointers and the registers to PIN 8.

Limitations, Restrictions

The current implementation of this command for Debug is to take the process state as last
stored in its task control block (TCB). The NM symbol names for the process will not be
known.

WARNING In Debug, switching to another PIN does not cause that process to
suspend execution. As a result, subsequent use of certain other
Debug commands, such as TRACE, may not work properly, and may
even cause the system to crash. In order to prevent the possibility of
a system failure, the PIN should first be suspended, as with the Break
key or the :BREAKJOB command, before using the PIN command in
debug.

PROCLIST
Lists the specified NM symbols in the specified NM executable library.

Syntax

 PROCLIST [pattern] [lstfile] [lookup_id] [detail] [outputfile]

The values printed by this command are the values found in the symbol table that is
searched. This command does not perform any form of symbol location fixups. The
addresses printed for most data symbols must be relocated relative to DP to be useful.

Parameters

pattern The symbol names(s) that are to be listed. The pattern match is performed
on the symbol name only. That is:

parent_name.symbol_name For nested procedures.

symbol_name For all other symbols.
242 Chapter 6

System Debug Command Specifications M-X
PROCLIST
For procedure symbols, only the procedure part is used (file name and
module are excluded from the pattern match).

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 log2[0-9][0-9]4`

By default, all symbols are listed.

lstfile The name of the executable library for which to list the symbols program
or library). If the parameter is not given, the program file being executed is
assumed. The address printed is the entry point of the procedure (not the
start of the procedure).

lookup_id Specifies which symbols to list. If lookup_id is not specified, PROCEDURES
is assumed. Refer to the "Procedure Name Symbols" section in chapter 2
for additional details.

PRESORTED List System Object Module symbols Debug sorted for use
in windows and TR.

UNIVERSAL List exported procedures in the System Object Module.

LOCAL List nonexported procedures in the System Object Module.

NESTED List nested procedures in the System Object Module.

PROCEDURES List local or exported procedures in the System Object
Module.

ALLPROC List local/exported/nested procedures in the System Object
Module.

EXPORTSTUB List export stubs in the System Object Module.

DATAANY List exported and local data in the System Object Module.

DATAUNIV List exported data in the System Object Module.
Chapter 6 243

System Debug Command Specifications M-X
PROCLIST
DATALOCAL List local data in the System Object Module.

LSTPROC List exported level 1 procedures in the LST.

LSTEXPORTSTUBList export stubs in the LST.

ANY List for any type of symbol in the System Object Module.

detail This parameter specifies the level of detail given when listing the symbols.
The default value is 0 which lists the address and name of the symbol.
Negative values are converted to positive ones. Any value larger than the
maximum defined detail level functions as if the actual maximum detail
level has been entered.

0 List symbol address and name.

1 Same as 0 but print symbol type, scope, residency bits.

2 Same as 1 but print address of symbol record.

The abbreviations used for the output are summarized below. Refer to the
Object Module Definition document for detailed descriptions and
definitions of the terms.

The following keywords determine the symbol type:

ABS Absolute constant.

DATA Normal initialized data.

CODE Unspecified code.

PRIPROG Primary program entry point.

SECPROG Secondary program entry point.

ENTRY Any code entry point.

STORAGE Storage. The value of the symbol is not known.

STUB Either an import or parameter relocation stub.

MODULE Source module name.

SYMEXT Symbol extension record.

ARGEXT Argument extension record.

MILLI Millicode subroutine.

DISOCT Disabled translated CM code.

MILXTRN External millicode subroutine.

The following terms determine the symbol scope:

UNSAT Unsatisfied, import request not satisfied.

EXTERN External, import request linked to symbol in another
module.

LOCAL Local, not exported for outside use.

UNIV Universal, exported for outside use.
244 Chapter 6

System Debug Command Specifications M-X
PROCLIST
The following values determine the parameter check level (CHECK):

0 No checking.

1 Check symbol type descriptor only.

2 Level 1, plus check number of arguments passed.

3 Level 2, plus check type of each argument.

The following values determine the execution level required to call this
entry point (XLEAST):

0,1,2,3 The minimum execution level needed.

The following letters indicate the value of various bits associated with
each symbol. An uppercase letter indicates the bit is "on", while a
lowercase letter means the bit is "off".

Q|q "Must qualify" bit.

F|f "Initially frozen" bit.

R|r "Memory resident" bit.

C|c "Is common" bit.

D|d "Duplicate common" bit.

outputfile If this parameter is given, the symbols are sent to the indicated file rather
than to the terminal screen.

Examples

 $nmdebug > proclist
 4d5.58db $START$
 4d5.6b58 $UNWIND_START
 4d5.6bc8 $UNWIND_END
 4d5.6be0 $RECOVER_START
 4d5.6be0 $RECOVER_END
 4d5.58bf ?$START$
 4d5.5b53 processstudent.highscore
 4d5.5c3f processstudent.lowscore
 4d5.5d27 processstudent
 4d5.6073 initstudentrecord
 4d5.681f PROGRAM
 4d5.681f _start
 4d5.5937 ?PROGRAM
 4d5.5957 ?_start
 4d5.5000 lr_na_unk
 4d5.5004 $find_alignment
 4d5.5084 $more_na
 4d5.5028 $bigger_but_still_small
 4d5.5024 $b_out
 4d5.5018 $b_loop
 4d5.5048 $wordloop

 control-Y encountered
Chapter 6 245

System Debug Command Specifications M-X
PROCLIST
 $nmdebug >

The above example lists all of the symbols for the current program file
(GRADES.DEMO.TELESUP). The file contains many symbols, including millicode routines
added to the program file by the Link Editor. The output was interrupted by striking the
Control-Y key.

 $nmdebug > proclist processstudent@,,allproc
 4d5.5b53 processstudent.highscore
 4d5.5c3f processstudent.lowscore
 4d5.5d27 processstudent

List all procedures that start with the string "processstudent".

 $nmdebug > procl ,,nested
 4d5.5b53 processstudent.highscore
 4d5.5c3f processstudent.lowscore

 $nmdebug > procl ,,nested,1
 CODE LOCAL check: 0 xl: 3 qfrcd 4d5.5b53
processstudent.highscore
 CODE LOCAL check: 0 xl: 3 qfrcd 4d5.5c3f
processstudent.lowscore

The above examples print only the nested procedures. A detail level value of 1 was
specified in the second example.

 $nmdebug > proclist `^a`,xl.demo
 4d8.15c8b average

Show all procedures in XL.DEMO that start with the letter "a". Notice the use of regular
expressions (see appendix A) for the pattern matching string.

 $nmdebug > procl ,,datauniv
 4d5.40000008 $global$
 4d5.40000008 dp
 4d5.40000160 $PFA_C_START
 4d5.40000160 $PFA_C_END
 4d5.40000160 output
 4d5.400003a8 input

 $nmdebug > proclist ,,data,1
 DATA UNIV check: 0 xl: 0 qfrcd 4d5.40000008 $global$
 DATA UNIV check: 0 xl: 0 qfrcd 4d5.40000008 dp
 DATA UNIV check: 0 xl: 0 qfrcd 4d5.40000160 $PFA_C_START
 DATA UNIV check: 0 xl: 0 qfrcd 4d5.40000160 $PFA_C_END
 DATA UNIV check: 1 xl: 0 qfrcd 4d5.40000160 output
 DATA UNIV check: 1 xl: 0 qfrcd 4d5.400003a8 input
 DATA LOCAL check: 0 xl: 3 qfrcd 4d5.5730 L$5
 DATA LOCAL check: 0 xl: 3 qfrcd 4d5.5780 L$8
 DATA LOCAL check: 0 xl: 0 qfrcd 4d5.40000008 M$1
 DATA LOCAL check: 0 xl: 3 qfrcd 4d5.5850 L$2

The PROCLIST command can also be used to list data symbols that are present in the
System Object Module directory.

 $nmdebug > proclist @FOPEN@,nl.pub.sys
246 Chapter 6

System Debug Command Specifications M-X
PSEUDOMAP
 a.3f8140 FOPEN
 a.374428 HPFOPEN
 a.2ea29b P__FOPENERR

The final example requests a list of all procedures in the system NL that have the
uppercase letters "FOPEN" in their name.

Limitations, Restrictions

Unless a file equation is used, the size of the output file defaults to 20000 records of 80
bytes each.

The LSTPROC and LSTEXPORTSTUB options are not implemented.

A PROCLIST for CM procedures and symbols is not implemented.

PSEUDOMAP
Logically maps a local file into virtual memory, utilizing symbol information in
library/program files.

Syntax

 PSEUDOMAP local_file space_id [loaded_fname] [offset]

The PSEUDOMAP command is used to fill in parts of virtual memory that are not accessible
in a dump. When a file is mapped using PSEUDOMAP, the file appears to be loaded in virtual
memory at the specified location. When portions of this virtual memory cannot be read
from the dump, corresponding locations from the PSEUDOMAPped file are read instead.

The PSEUDOMAP command is also used to provide access to procedure name symbol
information stored in local native mode program files or executable libraries. When one of
these files is mapped into memory its symbols are preprocessed. The file is then inserted
into the list of loaded files (see the LOADINFO command). If the specified space ID is not
already part of the list of loaded files, it is added at the end of the list, but before the entry
for NL.PUB.SYS. If the space ID is already present, the entry is inserted just before the
entry with the same space ID.

Any attempt to convert an address in the specified space ID to a symbol name uses the
symbol information in the PSEUDOMAPped file. The process of converting a symbol name to
an address involves scanning the list of loaded files, checking each one in turn for the
symbol name of interest. If the loaded file list contains more than one entry for a space ID
(as created by this command), only the first one in the list is searched.

Related commands: MAPLIST, UNMAP

Parameters

local_file The name of the local program/library file from which to obtain symbol
Chapter 6 247

System Debug Command Specifications M-X
PSEUDOMAP
information.

space_id Associate symbols from local_file with this space. Any attempt to
convert a symbol address in this space to an address uses the local file for
symbol name lookups.

loaded_fname Bind this file name to all symbols from space space_id . All of the
commands and functions that deal with file names (for example, the
NMPATH function and NM program window) use this file name any time a
file name is to be associated with a space ID.

offset Associate local_file with this offset within the space.

Examples

 $nmdebug > wl FOPEN
 SYS $a.3e1130

 $nmdebug > map nl.build
 1 NL.BUILD.CMDEBUG 4ef.0 Bytes = c5f600

 $nmdebug > xl nl.build 4ef nl.pub.sys
 Preprocessing NL.BUILD.CMDEBUG, please wait ... Done

 $nmdebug > dc FOPEN 3
 USER $4ef.4c5138
 004c5138 FOPEN 6bc23fd9 STW 2,-20(0,30)
 004c513c FOPEN+$4 37de00d0 LDO 104(30),30
 004c5140 FOPEN+$8 4bdf3f09 LDW -124(0,30),31

We start by seeing that the FOPENroutine is found in the SYSlibrary at $a.3e1130. Next we
use the map command to map a local copy of a new version of the NL into memory. (It gets
mapped at space $4ef.) We then use the PSEUDOMAP command to obtain access to the
symbols in the new copy of NL. Finally, we use the DC command to display the first few
words of the FOPEN procedure as found in the new NL (NL.BUILD.CMDEBUG).

Remember that the PSEUDOMAP command only provides access to symbol information. In
order to display data in a file, the MAP command must be used.

 ($22) nmdat > dptree 22
 22 (CI.PUB.SYS)

 ($22) nmdat > tr
 PC=a.000d87f8 enable_int+$20
 * 0) SP=40224ac8 RP=a.001cfda8
notify_dispatcher.block_current_process+$268
 1) SP=40224ac8 RP=a.001d0dcc notify_dispatcher+$2b0
 2) SP=40224a10 RP=a.00291b94 wait_for_active_port+$e0
 3) SP=40224828 RP=a.00292324 receive_from_port+$22c
 4) SP=402247c0 RP=a.002c51ec extend_receive+$41c
 5) SP=402246d0 RP=a.002b5d30 rendezvousio.get_specific+$11c
 6) SP=402245b0 RP=a.002b5fb4 rendezvousio+$19c
 7) SP=40224510 RP=a.002b2398 attachio+$5e0
 8) SP=40224308 RP=a.002ad690 ?attachio+$8
248 Chapter 6

System Debug Command Specifications M-X
PSEUDOMAP
 export stub: a.0061575c arg_regs+$28
 9) SP=40224050 RP=a.005984bc nm_switch_code+$9b4
 a) SP=40223f20 RP=a.0042a5bc SWT_RETURN
 (switch marker frame)
 b) SP=40223bc0 RP=a.00597274 switch_to_cm+$8c4
 c) SP=402239d0 RP=a.007499b8 tm_cms_type_mgr+$8bc
 d) SP=40223668 RP=a.0072ee44 FREAD+$3c8
 e) SP=40221780 RP=a.006ac858 readcmd+$1dc
 f) SP=40221560 RP=a.006abcc8 ?readcmd+$8
 export stub: 74.00006274
 10) SP=402211d8 RP=74.000068e0
 11) SP=40221178 RP=74.00007450
 12) SP=40221130 RP=74.00000000
 (end of NM stack)

The current PIN ($22) is the program CI.PUB.SYS . In DAT, we do a stack trace, but we
observe that the symbols for the program file are not part of the stack trace.

 ($22) nmdat > loadinfo
 nm SYS NL.PUB.SYS SID = $a
 cm SYS SL.PUB.SYS

 ($22) nmdat > xl ci.abuild00.official 74 ci.pub.sys
 Preprocessing CI.ABUILD00.OFFICIAL, please wait ... Done

 ($22) nmdat > loadinfo
 nm USER CI.PUB.SYS SID = $74
 nm SYS NL.PUB.SYS SID = $a
 cm SYS SL.PUB.SYS
 ($22) nmdat >

A quick check of our loaded files reveals that DAT does not know about the symbols for
CI.PUB.SYS . We now use the PSEUDOMAPcommand to open a local copy of the program file
from which symbol information can be gleaned. A final check of the loaded file information
shows that CI.PUB.SYS has successfully been added to the list.

Note that the stack trace code works because the unwind descriptors for CI.PUB.SYS
happen to be present in the dump. This is usually not the case (unless the file was loaded
as a "dumpworthy" file).

 ($22) nmdat > tr
 PC=a.000d87f8 enable_int+$20
 * 0) SP=40224ac8 RP=a.001cfda8
notify_dispatcher.block_current_process+$268
 1) SP=40224ac8 RP=a.001d0dcc notify_dispatcher+$2b0
 2) SP=40224a10 RP=a.00291b94 wait_for_active_port+$e0
 3) SP=40224828 RP=a.00292324 receive_from_port+$22c
 4) SP=402247c0 RP=a.002c51ec extend_receive+$41c
 5) SP=402246d0 RP=a.002b5d30 rendezvousio.get_specific+$11c
 6) SP=402245b0 RP=a.002b5fb4 rendezvousio+$19c
 7) SP=40224510 RP=a.002b2398 attachio+$5e0
 8) SP=40224308 RP=a.002ad690 ?attachio+$8
 export stub: a.0061575c arg_regs+$28
 9) SP=40224050 RP=a.005984bc nm_switch_code+$9b4
 a) SP=40223f20 RP=a.0042a5bc SWT_RETURN
Chapter 6 249

System Debug Command Specifications M-X
PURGEDUMP
 (switch marker frame)
 b) SP=40223bc0 RP=a.00597274 switch_to_cm+$8c4
 c) SP=402239d0 RP=a.007499b8 tm_cms_type_mgr+$8bc
 d) SP=40223668 RP=a.0072ee44 FREAD+$3c8
 e) SP=40221780 RP=a.006ac858 readcmd+$1dc
 f) SP=40221560 RP=a.006abcc8 ?readcmd+$8
 export stub: 74.00006274 ci_cmd_io+$34
 10) SP=402211d8 RP=74.000068e0 main_ci+$a0
 11) SP=40221178 RP=74.00007450 PROGRAM+$218
 12) SP=40221130 RP=74.00000000
 (end of NM stack)

We again do a stack trace; this time the symbols for the program file show up.

 $nmdat > loadinfo
 nm SYS NL.PUB.SYS SID = $a
 cm SYS SL.PUB.SYS

 $nmdat > xl nl.build a nl.pub.sys
 Preprocessing NL.BUILD.CMDEBUG, please wait ... Done

 $nmdat > loadinfo
 nm SYS NL.PUB.SYS SID = $a
 nm SYS NL.PUB.SYS SID = $a
 cm SYS SL.PUB.SYS
 $nmdat >

We start by looking at our list of loaded files in DAT. We then proceed to map in a local copy
of an NL. Notice that there are now two entries for NL.PUB.SYS in the loaded file list both
at space $a. Attempts to look up symbols in space $a use the first entry in the table (which
corresponds to the file mapped with the PSEUDOMAP command). Likewise, attempts to
perform a name to address lookup for a symbol searches only the first NL.PUB.SYS entry.

Limitations, Restrictions

Information required to perform stack traces (the unwind tables) are also part of program
files and executable libraries. When a file is opened with this command, we should be
utilizing the unwind tables found there. This functionality is not implemented.

PURGEDUMP
DAT only

Purges a dump file.

Syntax

 PURGEDUMP dumpfile
250 Chapter 6

System Debug Command Specifications M-X
REDO
Parameters

dumpfile The name of the dump file to be deleted.

Examples

 %cmdat > purgedump EXAMP

Purge dump file EXAMP.

Limitations, Restrictions

none

REDO
Reexecutes a command from the history command stack after optionally editing the
command.

Syntax

 REDO [cmd_string]
 REDO [history_index]

System Debug uses the same REDO editing commands as the REDO command supported by
the MPE XL Command Interpreter. Please refer to the MPE XL Commands Reference
Manual for specific details about editing commands.

Parameters

cmd_string Redo the most recent command in the history stack that commences with
cmd_string . For example, redo wh can be used to match the most recent
while statement.

history_index The history stack index of the command that is to be redone.

A negative index can be used to specify a command relative to the current
command. For example, -2 implies the command used two commands ago.

REDO, entered alone, redoes the most recent command.

Examples

 %cmdebug > redo dq
 dq-176,20
 r4
 dq-146,20

Redo the most recent command that started with "dq".
Chapter 6 251

System Debug Command Specifications M-X
REGLIST
Limitations, Restrictions

Upon initial entry into System Debug, the command stack is empty, since no prior
command has been executed. If the REDO command is entered as the command, a blank
command is provided for editing.

The MPE XL Command Interpreter allows an edit string to be specified on the REDO
command line. This feature is not supported in System Debug.

REGLIST
Lists the registers into a file in USE file format.

Syntax

 REGLIST [filename]

Parameters

filename The name of the file into which the registers are listed.

Examples

 $nmdebug > reglist rsave
 $nmdebug >

List the contents of the registers into the file rsave . You can use the USEcommand later to
restore the state of the registers.

Limitations, Restrictions

REGLIST dumps only the NM register set.

RESTORE
Restores macros or variables from a file that was previously created by the STORE
command.

Syntax

 RESTORE MACROS filename
 RESTORE VARIABLES filename

The RESTORE command quickly restores saved macros or variables from a binary file that
252 Chapter 6

System Debug Command Specifications M-X
RET[URN]
was created by the STORE command.

Based on the selector (MACROSor VARIABLES), all currently defined macros or variables are
immediately discarded, and are replaced entirely by the contents of the STORE file.

The current limits (as set by ENV MACROS or ENV VARS and ENV VARS_LOC) are
automatically changed to the limits that were in effect at the time the STOREfile was created.

After the RESTORE, macros or variables can be referenced, created, listed, or deleted in the
normal manner.

Parameters

MACROS Specifies that macros are to be restored. This keyword can be abbreviated
and entered in uppercase or lowercase.

VARIABLES Specifies that variables are to be restored. This keyword can be
abbreviated and entered in uppercase or lowercase.

filename The name of the file (previously built by the STORE command) from which
the macros or variables are to be restored.

Examples

 $nmdat > store var savevar
 $nmdat > vard @
 $nmdat > restore var savevar

Stores the currently defined variables into the file SAVEVAR. All variables are deleted, then
the RESTORE command is used to restore them all again.

Related command: STORE.

Related ENV variables: MACROS, VARS, VARS_LOC.

Limitations, Restrictions

STORE/RESTORE are currently very version dependent.

If the internal versions of macros, variables, or storage management change, it may not be
possible to RESTORE from a file that was stored with earlier versions of STORE. An error is
generated.

RET[URN]
Exits from a macro, optionally returning a specified value.

Syntax

 RET[URN] [value]

The RETURN command can be used only within a macro.
Chapter 6 253

System Debug Command Specifications M-X
SET
When the RETURN command is encountered, a value is returned, and the macro execution
is immediately terminated. Additional commands within the macro that follows an
executed RETURN command are never executed.

Parameters

value The value to be returned by the macro. If value is not specified, the
default macro return value is returned.

Examples

 $nmdebug > macro test=$123 (p1) {if p1 < 10 then return p1 else ret}
 $nmdebug > wl test(3)
 $3
 $nmdebug > wl test(45)
 $123

A macro named test is defined with a default return value of $123 .

When the macro is called with the parameter of 3, the parameter is less than $10, so the
parameter value is returned.

In the second call, because $45 is larger than 10, the default macro return value $123 is
returned.

 $nmdebug > return 33
 The RETURN command must be used within a macro body. (error #1449)

The RETURN command can be used only within a macro.

Limitations, Restrictions

none

SET
Sets new values for a select subset of all user configurable options.

Syntax

 SET

 SET [O[CT] | %
 D[EC] | #
 H[EX] | $] [IN
 OUT]

 SET [CRON
 CROFF]
254 Chapter 6

System Debug Command Specifications M-X
SET
 SET [MOREON
 MOREOFF]

 SET [DEF[AULT]]

The SET command allows a simplified method of setting a few of the many environment
variables. See the ENV command for more information.

The SET command entered alone, without parameters, displays all current settings.

Parameters

O[CT] | % Set the current default input conversion base and the current output
display base to octal.

D[EC] | # Set the current default input conversion base and the current output
display base to decimal.

H[EX] | $ Set the current default input conversion base and the current output
display base to hexadecimal.

IN | OUT The input conversion base and the output display base can be individually
set to different values. For example:

 SET OCT IN
 SET $ OUT

This sets octal for input, hex for output.

If IN and OUT are omitted, both input and output bases are set to the
specified base.

CRON | CROFF CRON (carriage return on) and CROFF (carriage return off) control the
automatic repetition of the last typed command whenever a lone carriage
control is entered. (This option is for compatibility with prior versions of
Debug; see the new ENV AUTOREPEAT.)

SET CRON is the same as ENV AUTOREPEAT TRUE.

SET CROFF is the same as ENV AUTOREPEAT FALSE.

MOREON | MOREOFF MOREON (terminal paging on) and MOREOFF (terminal paging off)
control the automatic paging of terminal output.

SET MOREON is the same as ENV TERM_PAGING TRUE.

SET MOREOFF is the same as ENV TERM_PAGING FALSE.

DEF[AULT] Resets the following ENV variables to their default values indicated below:

env autoignore FALSE

env changes "halfinv"

env cm_inbase %

env cm_outbase %

env cmdlinesubs TRUE

env echo_cmds FALSE
Chapter 6 255

System Debug Command Specifications M-X
SET
env echo_subs FALSE

env echo_use FALSE

env fill "zero"

env filter ' '

env hexupshift FALSE

env justify "right"

env list_paging TRUE

env list_pagelen #60

env list_title &

'"Page: " list_pagenum:"d" " " version " " date " "
time'

env list_width #80

env lookup_id "LSTPROC"

env markers "uline"

env multi_line_errs 2

env nm_inbase $

env nm_outbase $

env pstmt TRUE

env term_loud TRUE

env term_paging FALSE

env term_width #79

Examples

 $nmdat > SET

Display all current settings.

 %cmdebug > set hex out

Set output display base to hexadecimal.

 %cmdebug > set %

Set both input and output bases to octal.

 $nmdat > set def

Set default values.

Limitations, Restrictions

none
256 Chapter 6

System Debug Command Specifications M-X
SETxxx
SETxxx

The SETxxx commands are predefined aliases for other commands.

Syntax

 SETALIAS alias for ALIAS
 SETENV alias for ENV
 SETERR alias for ERR
 SETLOC alias for LOC
 SETMAC alias for MAC
 SETVAR alias for VAR

SHOWxxx

The SHOWxxx commands are predefined aliases for other commands.

Syntax

 SHOWALIAS alias for ALIASL
 SHOWB alias for BL
 SHOWCMD alias for CMDL
 SHOWDATAB alias for DATABL
 SHOWENV alias for ENVL
 SHOWERR alias for ERRL
 SHOWFUNC alias for FUNCL
 SHOWLOC alias for LOCL
 SHOWMAC alias for MACL
 SHOWMAP alias for MAPL
 SHOWSET alias for SET
 SHOWSYM alias for SYML
 SHOWVAR alias for VARL

S, SS
Single steps.

Syntax

 S[S] [num_instrs] [L[OUD] | Q[UIET]]

This command single steps the specified number of instructions. If the user attempts to
Chapter 6 257

System Debug Command Specifications M-X
STORE
single step into the system NL or SL (or any portion of code he/she does not have access to
view), Debug stops single stepping and free-runs the process (for example, proceed as if the
CONTINUE command had been issued). For native mode processes, Debug stops processing
as soon as it returns from the inaccessible code. For compatibility mode processes, the
process continues to run until it encounters a breakpoint.

Parameters

num_instrs The number of instructions to be executed. If omitted, a single instruction
is executed. Negative values are converted to positive values.

L[OUD] | Q[UIET] If LOUD is specified, the address where the process stopped is
printed. If QUIET is specified, no message is displayed. The default is
LOUD.

Examples

 %cmdebug > s
 %cmdebug >

Single step to the next instruction.

 %cmdebug > ss 5 l
 Step to: PROG %0.172
 %cmdebug >

Step 5 instructions "loudly", that is, print the ending address.

 $nmdebug > s #20 l
 Step to: 115.00005f0c processstudent+$1e8
 $nmdebug >

Step 20 instructions, and print the address when stopped.

Limitations, Restrictions

The single step command cannot be used within a macro that is invoked as a function.

STORE
Stores the currently defined macros or variables to a file.

Syntax

 STORE MACROS filename
 STORE VARIABLES filename

The STOREcommand quickly saves macros or variables to a binary file. At a later point, the
RESTORE command can be used to restore these saved macros or variables.

The current limits (as set by ENV MACROS or ENV VARS and ENV VARS_LOC) are
258 Chapter 6

System Debug Command Specifications M-X
SYMCLOSE
automatically saved in the STORE file, and is reestablished when this file is restored with
the RESTORE command.

Parameters

MACROS Specifies that macros are to be stored. This keyword can be abbreviated
and entered in uppercase or lowercase.

VARIABLES Specifies that variables are to be stored. This keyword can be abbreviated
and entered in uppercase or lowercase.

filename The file name where the macros or variables are to be stored.

Examples

 $nmdat > store mac savemac
 $nmdat > macd @
 $nmdat > restore mac savemac

Stores the currently defined macros into the file SAVEMAC. All macros are deleted, then the
RESTORE command is used to restore them all again.

Related command: RESTORE

Related ENV variables : MACROS, VARS and VARS_LOC

Limitations, Restrictions

STORE and RESTORE are currently very version dependent.

If the internal versions of macros, variables, or storage management changes, it may not
be possible to restore from a file that was stored with earlier versions of the STORE
command. An error is generated.

SYMCLOSE
Closes a symbolic data type file that was opened with the SYMOPEN command.

Syntax

 SYMCLOSE symname

Parameters

symname The symbolic name of the symbolic data type file that was assigned at open
time.
Chapter 6 259

System Debug Command Specifications M-X
SYMF[ILES]
Examples

 $ nmdat > symfiles
 OS SYMOS.PUB.SYS

 GRADTYP GRADTYPE.DEMO.TELESUP

 $nmdat > symclose SYMOS

 $nmdat >

Closes the file SYMOS.

Limitations, Restrictions

none

SYMF[ILES]
Lists all open symbolic data type files and their symbolic names.

Syntax

 SYMF[ILES]

Parameters

none

Examples

 $ nmdat > symf
 OS SYMOS.PUB.SYS
 GRADTYP GRADTYPE.DEMO.TELESUP

List all the symbolic data type files currently opened by the program.

Limitations, Restrictions

none

SYMINFO
Lists information/dump data for an opened symbolic data type file.
260 Chapter 6

System Debug Command Specifications M-X
SYMINFO
Syntax

 SYMINFO [symname] [option] [offset] [length]

This command is generally only useful to System Debug developers and people debugging
the contents of the symbolic data type files.

Parameters

symname The symbolic name under which the symbolic data type file is referenced.
If the symbolic name is omitted, then the last file which was opened with
SYMOPEN is selected.

option One of the following options can be specified. If none is specified, HEADERis
assumed.

HEADER Display info about the System Object Module header
within the symbolic data type file.

SOM Display data in the System Object Module portion of the
symbolic data type file at the indicated offset and length.

LST Display data in the LST portion of the symbolic data type
file at the indicated offset and length.

offset For the SOM and LST options, this parameter specifies the byte offset
within the System Object Module or LST area of the file where to begin
dumping data. The default value is 0.

length For the SOM and LST options, this parameter specifies how many bytes to
dump. The default value is 16. All length values are rounded to the next
highest multiple of 16.

Examples
 $nmdebug > syminfo

 Som file name: SYMOS.PUB.SYS Symname: SYMOS
 Som file length: 006735e0 Som offset: 00004000 Som length: 0066f5e0
 Sp dir loc: 00007000 Sp dir len: 00000003
 Sub sp dir loc: 00000138 Sub sp dir len: 00000019
 String loc: 0000706c String len: 00000298
 DEBUG space:2
 Header: 000150e0 00000010 Subsp_index: 14
 GNTT: 000150f0 00001280 Subsp_index: 15
 LNTT: 00016370 00101310 Subsp_index: 16
 SLT: 00117680 00014f38 Subsp_index: 17
 VT: 0012c5b8 00543028 Subsp_index: 18
 Debug header info: 0000004a 0000004a 00000000 00002a2f

 Const Lookup table: 0064b45c 0001c9f0
 Type Lookup table: 00667e4c 00007780

Show the header (default) information for the most recently accessed symbolic file.
Chapter 6 261

System Debug Command Specifications M-X
SYML[IST]
Limitations, Restrictions

none

SYML[IST]
Lists information for the specified symbol name in an opened symbolic data type file.

Syntax

 SYML[IST] [pattern] [symname] [option]

Parameters

pattern The symbol names that are to be listed.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

By default, all symbols are listed.

symname The symbolic name under which the symbolic data type file is referenced.
If the parameter is not given, the symfile last accessed is used.

option A keyword to further specify the operation:

CONST Display the constant names that match the given pattern.
If the constant is a simple type, display its value.

TYPES Display the type names that match the given pattern.
262 Chapter 6

System Debug Command Specifications M-X
SYMOPEN
ALL Display both type and constant names (default).

Examples

 $nmdebug > SYMLIST @,GRADTYP

 CLASS TYPE ENUMERATED TYPE
 GRADERANGE TYPE SUBRANGE
 GRADESARRAY TYPE ARRAY
 NAMESTR TYPE STRING
 STUDENTRECORD TYPE RECORD
 MAXGRADES CONST INTEGER $a
 MAXSTUDENTS CONST INTEGER $5
 MINGRADES CONST INTEGER $1
 MINSTUDENTS CONST INTEGER $1

Print out the all type and constant declarations for the symfile GRADTYP.

 $nmdebug > SYMLIST gr@
 GRADERANGE TYPE SUBRANGE
 GRADESARRAY TYPE ARRAY

 $nmdebug > SYML `GRADES`
 GRADESARRAY TYPE ARRAY
 MAXGRADES CONST INTEGER $a
 MINGRADES CONST INTEGER $1

 $nmdebug > SYML max@,,const
 MAXGRADES CONST INTEGER $a
 MAXSTUDENTS CONST INTEGER $5

Print out various subsets from the symfile 'GRADTYP'.

Limitations, Restrictions

none

SYMOPEN
Opens a symbolic data type file and sets up pointers to the symbolic debug records.

Syntax

 SYMOPEN filename [symname]

The SYMOPEN command must be used to open a symbolic data type file before the symbolic
formatting command and functions can be used.
Chapter 6 263

System Debug Command Specifications M-X
SYMPREP
Parameters

 filename The file name of the symbolic data type file. The file must contain symbolic
debug records.

 symname The symbolic name under which the symbolic data type file is referenced
in the formatter commands. If this parameter is omitted, the file name will
be used as the symbolic name.

Examples

 $nmdat > symopen SYMOS.PUB.SYS OS

 $nmdat >

Open the symbolic file SYMOS.PUB.SYS and assign the symbolic name OS to it.

Limitations, Restrictions

Before a symbolic data type file is ready to be opened with SYMOPEN, ensure that the
following steps have been followed:

1. The types must be compiled with the $SYMDEBUG 'xdb'$ option.

2. The program containing the types must have at least one statement.

3. The relocatable library generated by the compiler must be run through LINKEDIT .

4. The program file generated by LINKEDIT must be run through PXDB.

5. The modified program file generated by PXDB must be prepared with SYMPREPin DAT
or Debug.

6. The program file (symbolic data type file) is now ready to be opened with SYMOPEN.

SYMPREP
Prepares a program file containing symbolic debug information to be used by the symbolic
formatter/symbolic access facility. Files modified through the use of this command are
referred to as symbolic data type files.

Syntax

 SYMPREP { filename }

Parameters

filename The name of the program file name to be preprocessed. (Required)
264 Chapter 6

System Debug Command Specifications M-X
T (translate)
Limitations, Restrictions

Before a program file is ready to be prepared with SYMPREP, be sure that the following
steps have been followed:

1. The types must be compiled with the $SYMDEBUG 'xdb'$ option.

2. The program containing the types must have at least one statement.

3. The relocatable library generated by the compiler must be run through LINKEDIT .

The modified program file generated by PXDB is now ready to be SYMPREPed by DAT or
Debug, after which it may be opened with SYMOPEN.

To use this command, you must be logged on to the same account where the symbolic file
resides.

Example

The following example preprocesses the program file GRADTYP.DEMO.TELESUP.

 $nmdat > symprep gradtyp.demo.telesup
Preprocessing GRADTYP.DEMO.TELESUP

 Building constant symbol dictionary ...
 Sorting ...
 Build type symbol dictionary ...
 Sorting ...
 Constructing new SOM file ...
 GRADTYP.DEMO.TELESUP preprocessed.

 $nmdat >

T (translate)
Privileged Mode: TCA, TCS

Translates the specified CM address to a virtual address.

Syntax

 TA offset ABS - Bank0
 TD dst.off Data segment
 TDB offset DB relative
 TS offset S relative
 TQ offset Q relative

 TC cmlogaddr Program file
 TCG cmlogaddr Group library
 TCP cmlogaddr Account library
 TCLG cmlogaddr Logon group library
 TCLP cmlogaddr Logon account library
Chapter 6 265

System Debug Command Specifications M-X
T (translate)
 TCS cmlogaddr System library

 TCA cmabsaddr Absolute CST
 TCAX cmabsaddr Absolute CSTX

Parameters

offset TA, TDB, TQ, TS only. The CM word offset that specifies the relative CM
address to be translated.

dseg.off TC, TD only. The data segment and word offset to be translated.

cmlogaddr TC, TCG, TCP, TCLG, TCLP, TCS only. A full logical code address
(LCPTR) specifies three necessary items:

• The CM logical code file (PROG, GRP, SYS , and so on).

• The CM logical segment number.

• The CM word offset within the code segment.

Logical code addresses can be specified in various levels of detail:

• As a full logical code pointer (LCPTR):

TC procname+20 Procedure name lookups return LCPTRs.

TC pw+4 Predefined ENV variables of type LCPTR.

TC SYS(2.200) Explicit coercion to a LCPTR type.

• As a long pointer (LPTR):

TC 23.2644 seg.offset

The logical file is determined based on the command suffix. For
example:

TC implies PROG.

TCG implies GRP.

TCS implies SYS, and so on.

• As a short pointer (SPTR):

TC 1024 offset only

The currently executing logical segment number and the currently
executing logical file are used to build a LCPTR.

The search path used for procedure name lookups is based on the
command suffix letter:

TC Full search path:

CM: PROG, GRP, PUB, LGRP, LPUB, SYS .

TCG Search GRP, the group library.

TCP Search PUB, the account library.
266 Chapter 6

System Debug Command Specifications M-X
T (translate)
TCLG Search LGRP, the logon group library.

TCLP Search LPUB, the logon account library.

TCS Search SYS, the system library.

TCU Search USER, the user library.

For a full description of logical code addresses, refer to the section "Logical
Code Addresses", in chapter 2.

cmabsaddr TCA, TCAXonly. A full CM absolute code address specifies three necessary
items:

• Either the CST or the CSTX.

• The absolute code segment number.

• The CM word offset within the code segment.

Absolute code addresses can be specified in two ways:

• As a long pointer (LPTR):

TCA 23.2644 Implicit CST 23.2644

TCAX 5.3204 Implicit CSTX 5.3204

• As a full absolute code pointer (ACPTR):

TCA CST(2.200) Explicit CST coercion.

TCAX CSTX(2.200) Explicit CSTX coercion.

TCAX logtoabs(prog(1.20)) Explicit absolute conversion.

The search path used for procedure name lookups is based on the
command suffix letter:

TCA GRP, PUB, LGRP, LPUB, SYS

TCAX PROG

Examples

 %cmdebug > td 1.100
 % DST 1.100 VIRT $b.40011630

Translate data segment 1.100 to a virtual address.

 %cmdebug > ta 2000
 % ABS+2000 VIRT $a.80000800

Translate ABS+2000 to a virtual address.

 $nmdebug > tcs %22.%5007
 SYS % 22.5007 = CST % 23.5007 = VIRT $21.6ed0e
 FOPEN+%13 (XLSEG11)
 start: %4774 entry: %5000 proclen: %626 seglen: %31454
 Translator Node Addresses:
 CM prev: SYS %22.5006 NM prev: TRANS $21.6afd5c
 CM next: SYS %22.5010 NM next: TRANS $21.6afd74
Chapter 6 267

System Debug Command Specifications M-X
TERM
Translate CM logical address SYS %22.5007.

 %cmdebug > tc fgetkeyinfo+1146
 SYS % 32.2031 = CST % 33.2031 = VIRT $21.a4c32
 FGETKEYINFO+%1146 (KSAMSEG1)
 start: %663 entry: %702 proclen: %2145 seglen: %37204
 Translator Node Addresses:
 CM prev: SYS %32.2030 NM prev: TRANS $21.7da7a0
 CM next: SYS %32.2034 NM next: TRANS $21.7da7c4

Translate CM logical address fgetkeyinfo+1146.

Refer to appendix C for a discussion of CM object code translation, node points, and
breakpoints in translated CM code.

Limitations, Restrictions

All information that is displayed in a TC (translate code) display can be obtained
programmatically, except for the CM segment length.

There is no way to obtain the virtual address of ABS relative addresses programmatically.

TERM
Debug only

Controls the synchronization of several debug processes on a single terminal.

Syntax

 TERM
 TERM LIST
 TERM NEXT

Terminal locking allows multiple processes to use a single terminal for debugging without
confusion.

TERM LIST shows information about processes waiting for the terminal semaphore.

TERM NEXT grants the terminal to the process at the head of the waiting list.

Exiting, continuing, and stepping from the debugger perform an implicit TERM NEXT
command.

Parameters

TERM Lists information about processes waiting to enter the debugger for the
current session.

TERM LIST Lists information about processes waiting to enter the debugger for the
current session.
268 Chapter 6

System Debug Command Specifications M-X
TR[ACE]
TERM NEXT If we own the terminal semaphore, release it and allow the next process
waiting for it to enter the debugger. Our process is then queued at the end
of the list for the semaphore.

Related environment variables: TERM_LOCKING.

Examples

 $(3b) nmdebug > = 2 + 2
 $4

 PIN 4c is waiting to enter Debug

 $(3b) nmdebug > term list
 Current term owner: 3b Next pin: 1a # Waiting pins: 2

A processes has just notified us that it is waiting to enter Debug. We then list information
about the waiting PINS. We see that there are two PINs waiting and the first PIN in the
queue is 1a.

 $(3b) nmdebug > term next

 PIN 3b is waiting to enter Debug

 $(1a) nmdebug > term list
 Current term owner: 1a Next pin: 4c # Waiting pins: 2

We gave away the semaphore and let the next PIN into Debug (PIN 1a). This placed us
(PIN 3b) at the end of the queue. We next listed information about the waiting PINs and
see that PIN 4c has moved to the front of the queue.

Limitations, Restrictions

Due to the implementation of semaphores, Debug cannot list all of the PINs in the queue,
just the first one and a count.

TR[ACE]
Displays a stack trace.

Syntax

 TR[ACE] [level] [options]

The TRcommand produces a trace of the procedures active on the current PIN's stack. The
command is mode sensitive. If the user is in cmdebug, a trace of the compatibility mode
stack is produced, if in nmdebug, a trace of the native mode stack is printed. An
interleaved stack trace of both CM and NM stacks is produced by using the DUAL option.

If the current stack is the NM interrupt control stack (ICS), when the base of the ICS is
Chapter 6 269

System Debug Command Specifications M-X
TR[ACE]
reached, System Debug automatically switches to the stack of the last running process and
continues the stack trace. This feature in no way implies that the routines on the ICS were
invoked on behalf of the last running process. If the dispatcher is currently running, there
is no last running process, so the stack trace stops when the base of the ICS is found.

Parameters

level The desired maximum depth for the stack trace. If level is omitted, the
entire depth of the stack is traced.

options Any combination of the following options may be specified:

DUAL Display both NM and CM stack markers, interleaved
across switch markers.

SINGLE Display a single stack marker at the specified level.

UNWIND Display formatted stack unwind descriptor information.

FULL Display a fully detailed stack trace.

ISM Trace across interrupt markers.

NM Examples

 $nmdebug > tr
 PC=115.00005b50 processstudent.highscore
 * 0) SP=40221180 RP=115.00005f0c processstudent+$1e8
 1) SP=40221180 RP=115.00006b1c PROGRAM+$300
 2) SP=40221100 RP=115.00000000
 (end of NM stack)

Display an entire NM stack trace. The first line indicates the address the PC register
points to. Each stack level is formatted, starting from the top of stack and working down
the depth of the stack. Level numbers are indicated on the left; an asterisk marks the
current level. (Refer to the LEV command.)

 $nmdebug > tr
 PC=a.0074da24 FWRITE
 * 0) SP=40221260 RP=a.00748150 ?FWRITE+$8
 export stub: f4.0012d044 P_FLUSHLINE+$54
 1) SP=40221260 RP=f4.00139560 P_WRITELN+$20
 2) SP=40221200 RP=f4.00139630 P_WRITELN+$9c
 3) SP=402211c8 RP=f4.0013950c ?P_WRITELN+$8
 export stub: 115.00005e30 processstudent+$10c
 4) SP=40221180 RP=115.00006b1c PROGRAM+$300
 5) SP=40221100 RP=115.00000000
 (end of NM stack)

The above example shows a stack trace that contains a call from the program file to a user
library, and from the user library to the system NL. Transitions between libraries are
performed through the use of export stubs. (Refer to the Procedure Calling Conventions
Reference Manual (09740-90015) for a description of export stubs.)

 $nmdebug > tr,unw
 PC=115.00005b50 processstudent.highscore
270 Chapter 6

System Debug Command Specifications M-X
TR[ACE]
 * 0) SP=40221180 RP=115.00005f0c processstudent+$1e8

 Can't Unwind: 0 Entry-FR: 00 Call_FR: 00 Region: Normal
 Millicode: 0 Entry-GR: 00 Call_GR: 00 Frame-size: 6 (dbl words)
 Large-Frame-R3: 0 Save-SRs: 00 Save-SP: 0 Save-MRP: 0
 Save-SR0: 0 Cleanup: 0 Save-RP: 0 Args-stored: 1
 Interrupt-Mrkr: 0

 1) SP=40221180 RP=115.00006b1c PROGRAM+$300

 Can't Unwind: 0 Entry-FR: 00 Call_FR: 00 Region: Normal
 Millicode: 0 Entry-GR: 03 Call_GR: 00 Frame-size: 10 (dbl words)
 Large-Frame-R3: 0 Save-SRs: 00 Save-SP: 1 Save-MRP: 0
 Save-SR0: 0 Cleanup: 0 Save-RP: 1 Args-stored: 1
 Interrupt-Mrkr: 0

 2) SP=40221100 RP=115.00000000

 Can't Unwind: 0 Entry-FR: 00 Call_FR: 00 Region: Normal
 Millicode: 0 Entry-GR: 00 Call_GR: 00 Frame-size: c (dbl words)
 Large-Frame-R3: 0 Save-SRs: 00 Save-SP: 1 Save-MRP: 0
 Save-SR0: 0 Cleanup: 0 Save-RP: 1 Args-stored: 0
 Interrupt-Mrkr: 0

 (end of NM stack)

Native mode stack trace relies on the presence of unwind descriptors as produced by the
language compilers. Without these information blocks, a stack trace would not be possible.
The UNWIND option is used to display the unwind descriptor associated with each
procedure. (Refer to the Procedure Calling Conventions Reference Manual (09740-90015)
for a description of unwind descriptors.)

 $nmdebug > tr,f
 PC=a.0074da24 NL.PUB.SYS/FWRITE
 * 0) SP=40221260 RP=a.00748150 ?FWRITE+$8
 DP=c0200008 PSP=40221260 PCPRIV=0
 export stub:
 f4.0012d044 XL.PUB.SYS/P_FLUSHLINE+$54
 1) SP=40221260 RP=f4.00139560 P_WRITELN+$20
 DP=40200648 PSP=40221200 PCPRIV=3
 2) SP=40221200 RP=f4.00139630 P_WRITELN+$9c
 DP=40200648 PSP=402211c8 PCPRIV=3
 3) SP=402211c8 RP=f4.0013950c ?P_WRITELN+$8
 DP=40200648 PSP=40221180 PCPRIV=3

export stub: 115.00005e30 GRADES.DEMO.TELESUP/processstudent+$10c
 4) SP=40221180 RP=115.00006b1c PROGRAM+$300
 DP=40200008 PSP=40221100 PCPRIV=3
 5) SP=40221100 RP=115.00000000
 DP=40200008 PS
 P=402210a0 PCPRIV=3
 (end of NM stack)

A FULL stack trace displays the value of DP, PSPand the privilege level (0-3 for each level in
the stack).

 $nmdebug > tr 2,single
Chapter 6 271

System Debug Command Specifications M-X
TR[ACE]
 2) SP=40221200 RP=f4.00139630 P_WRITELN+$9c

Display only stack level 2.

 $nmdebug > tr
 PC=a.006777fc trap_handler
 * 0) SP=40221338 RP=a.002a1fec conditional+$ac
 1) SP=40221338 RP=a.000a5040 hpe_interrupt_marker_stub
 --- Interrupt Marker

 $nmdebug > tr,ism
 PC=a.006777fc trap_handler
 * 0) SP=40221338 RP=a.002a1fec conditional+$ac
 1) SP=40221338 RP=a.000a5040 hpe_interrupt_marker_stub
 --- Interrupt Marker
 2) SP=402211e8 RP=25d.00015134 small_divisor+$8
 --- End Interrupt Marker Frame ---

 PC=25d.00015134 small_divisor+$8
 0) SP=402211e8 RP=25d.00015d38 average+$b0
 1) SP=402211e8 RP=25d.00015c74 ?average+$8
 export stub: 25c.00005d98 processstudent+$74
 2) SP=40221180 RP=25c.00006b1c PROGRAM+$300
 3) SP=40221100 RP=25c.00000000
 (end of NM stack)
 $nmdebug >

In the above example, the first stack trace encounters an interrupt marker and stops
tracing. The second stack trace uses the ISM option to continue tracing past the interrupt
marker. The interrupt that caused the interrupt marker to be generated was caused by a
divide by zero in the small_divisor routine.

CM Examples
 %cmdebug > tr
 PROG % 0.1421 PROCESSSTUDENT+14 (mITroc CCG) SEG'
 * 0) PROG % 0.2004 PROCESSSTUDENT+377 (mITroc CCG) SEG'
 1) PROG % 0.253 OB'+253 (mITroc CCG) SEG'
 2) SYS % 25.0 ?TERMINATE (MItroc CCG) CMSWITCH

Display a CM stack trace. The first line indicates the address CMPC points to. Each stack
marker is formatted, starting from the top of stack and working down the depth of the
stack. Level numbers are indicated on the left; an asterisk marks the current level. (Refer
to the LEV command.)

 %cmdebug > tr,f
 PROG % 0.1421 PROCESSSTUDENT+14 (CSTX 1) SEG'
 X=22750 P=1421 Status=(mITroc CCG 301) DeltaQ=13670
 * 0) PROG % 0.2004 PROCESSSTUDENT+377 (CSTX 1) SEG'
 X=6 P=2004 Status=(mITroc CCG 301) DeltaQ=14
 1) PROG % 0.253 OB'+253 (CSTX 1) SEG'
 X=36 P=253 Status=(mITroc CCG 301) DeltaQ=10
 2) SYS % 25.0 ?TERMINATE (CST 26) CMSWITCH
 X=0 P=0 Status=(MItroc CCG 026) DeltaQ=4
272 Chapter 6

System Debug Command Specifications M-X
TR[ACE]
The above examples specifies the FULL option to display the value of the X, P, and status
registers, and the DELTA-Q value.

Translated Code Examples

 Break at: NM [1] TRANS 24.00854ea4 PASCAL'LIBRARY2:?P'WRITESTR
 $nmdebug > tr ,dual
 PC=24.00854ea4 PASCAL'LIBRARY2:?P'WRITESTR
 NM* 0) SP=40221290 RP=a.0067320c outer_block+$e8
 NM 1) SP=402210a0 RP=a.00000000 inx_A0000+$14
 (end of NM stack)

The above example shows Debug stopping at a breakpoint. The breakpoint was set in
SL.PUB.SYS at the entry point to the P'WRITESTR routine. Since the system SL is
translated, Debug set two breakpoints (one in the CM emulated code and one in the
translated NM code). The NM translated code breakpoint is encountered, and so Debug
stops.

A stack trace reveals that the process is indeed stopped at the entry point to P'WRITESTR,
but no other recognizable markers appear. This is because translated code does not
actually switch to CM mode, so no switch markers exist to enable the DUAL option to
function. However, the CM stack is maintained as if the code were being run by the
emulator. Switching to cmdebug and performing a stack trace reveals this.

 $nmdebug > cm
 %cmdebug > tr
 SYS % 36.15626 ?P'WRITESTR (mITroc CCG)
PASCAL'LIBRARY2
 * 0) PROG % 0.1737 PROCESSSTUDENT+%332 (mITroc CCG) SEG'
 1) PROG % 0.253 OB'+%253 (mITroc CCG) SEG'
 2) SYS % 25.0 ?TERMINATE (MItroc CCG) CMSWITCH

The above trace shows all of the CM procedures that are active on the stack. Remember,
the CM stack is maintained even if the code is running translated.

Dual Mode Examples
 $nmdat > tr,d
 PC=a.000a4838 enable_int+$20
 NM* 0) SP=40201ce0 RP=a.0013cdf0 notify_dispatcher.block_current_process+$294
 NM 1) SP=40201ce0 RP=a.0013deec notify_dispatcher+$34c
 NM 2) SP=40201c88 RP=a.001dc964 wait_for_active_port+$ec
 NM 3) SP=40201c10 RP=a.001dd680 receive_from_port+$450
 NM 4) SP=40201bc0 RP=a.00228514 extend_receive+$4d8
 NM 5) SP=40201b28 RP=a.00218bdc rendezvousio.get_specific+$194
 NM 6) SP=40201a78 RP=a.00218ec8 rendezvousio+$13c
 NM 7) SP=40201a08 RP=a.0020f274 attachio.perform_io+$f8
 NM 8) SP=402018c8 RP=a.00210414 attachio.terminal_functions+$fac
 NM 9) SP=40201838 RP=a.00214d40 attachio+$2e4
 NM a) SP=402017e0 RP=a.0020e3bc ?attachio+$8
 export stub: a.003e30e4 arg_regs+$28
 NM b) SP=402015c8 RP=a.0044db34 nm_switch_code+$f30
 NM c) SP=40201498 RP=a.000a09b0 cm_swtnm_call+$8
 (switch marker frame)
 CM SYS % 27.253 SWITCH'TO'NM'+%4 (Mitroc CCG) SUSER1
Chapter 6 273

System Debug Command Specifications M-X
TRAP
 CM * 0) SYS % 27.253 SWITCH'TO'NM'+%4 (Mitroc CCG) SUSER1
 CM 1) SYS % 25.7765 ATTACHIO+%325 (Mitroc CCG) CMSWITCH
 CM 2) SYS % 22.17700 DEALLOCATE+%30 (Mitroc CCG) XLSEG11
 CM 3) SYS % 3.5540 F'CLOSE'+%4321 (MitroC CCG) FSSEG3
 CM 4) switch marker (Mitroc CCG)
 NM d) SP=40201208 RP=a.000a07bc ?CM_SWITCH+$30
 export stub: a.0044c3e4 switch_to_cm+$c30
 NM e) SP=40201018 RP=a.006f3c84 fclose_nm+$74c
 NM f) SP=40200db0 RP=a.006e62a8 FCLOSE+$368
 NM 10) SP=40200aa8 RP=a.0036a0b0 fs_proc_term+$a4
 NM 11) SP=40200a00 RP=a.00197550 terminate_process+$318
 NM 12) SP=40200948 RP=a.00326fb0 TERMINATE+$28
 NM 13) SP=40200668 RP=a.00326a2c ?TERMINATE+$8
 export stub: a.003e30e4 arg_regs+$28
 NM 14) SP=40200638 RP=a.0044db34 nm_switch_code+$f30
 NM 15) SP=40200508 RP=a.000a09b0 cm_swtnm_call+$8
 (switch marker frame)
 CM 5) SYS % 27.253 SWITCH'TO'NM'+%4 (MITroc CCG) SUSER1
 CM 6) SYS % 25.5 TERMINATE+%5 (MITroc CCG) CMSWITCH
 CM 7) PROG % 0.244 (mITroc CCE)
 CM 10) SYS % 25.0 ?TERMINATE (MItroc CCG) CMSWITCH
 NM 16) SP=40200278 RP=a.0030d868 outer_block+$144
 NM 17) SP=40200088 RP=a.00000000
 (end of NM stack)
 $nmdat >

The above example shows an interleaved NM and CM stack trace.

Limitations, Restrictions

The DUAL option is ignored if the current mode is not the same as the original entry mode.
(Refer to the ENV ENTRY_MODE command.)

When CM code has been translated, it is not possible to obtain dual mode stack traces. The
NM and CM stacks may be traced individually, however.

People debugging the operating system need to be aware of the following limitation. If an
interrupt handler is running that has interrupted code running in CM mode, dual stack
trace is incorrect. In addition, not all of the CM stack may be shown.

Native mode stack trace depends on the presence and accuracy of unwind descriptors in
the program file and libraries to trace stacks. If these descriptors are not present,
corrupted, or not correctly sorted, System Debug may produce incorrect stack traces.

DAT is only able to trace the part of the NM stack that corresponds to code in NL.PUB.SYS.
If by chance the unwind descriptors of the code that called the NL routines are resident,
the stacked procedure calls are displayed all the way to the base of the stack. The names of
the procedures in other libraries and program files are not known to DAT.

TRAP
Debug only
274 Chapter 6

System Debug Command Specifications M-X
TRAP
Arms/disarms/lists various traps that are monitored by Debug.

Syntax

 TRAP [LIST]
 TRAP [trap-name] [option]

Parameters

trap-name Traps can be classified into several classes. The trap names for each class
are presented together. In general, this parameter specifies which trap to
arm, disarm, or list. Only enough characters to make the name
recognizable are required.

Hardware Traps

These are traps that are documented in the Precision Architecture Control
Document (ACD). They are trapped directly by the hardware.

BRANCH The BRANCH trap is the taken branch trap. Any time a
branch instruction is executed the debugger stops.

MPE/iX X-Traps

These traps correspond to the MPE/iX user intrinsics of similar name.
(Refer to the MPE/iX Intrinsics Reference Manual for descriptions of the
each of these traps.) By arming these traps, the debugger obtains control of
the process before the system trap mechanism. You may have the system
ignore the trap (pretend it never happened) or process it as if the debugger
had not been notified.

To have the trap ignored use the C[ontinue]IGNORE command.

Typing C[ontinue] or C[ontinue] NOIGNORE causes the trap subsystem
to process the trap as if Debug has not been notified.

XARITHMETIC The trap mask indicating the cause of the trap is
displayed.

XCODE The code trap number is displayed.

XLIBRARY Not implemented.

XSYSTEM Not implemented.

Refer to the MPE XL Intrinsics Reference Manual (32650-90028) for a
description of the format of the various trap masks and codes displayed by
Debug when one of the above traps is encountered.
Chapter 6 275

System Debug Command Specifications M-X
TRAP
Trace Traps

The currently defined trace events are based on compiler generated
breakpoints. These breakpoints are inserted into the code by the compilers
only if the symbolic debug compiler option is used. If the debugger arms
any of these events, it stops at the indicated event.

BEGIN_PROCEDUREStop at the entry to procedure.

END_PROCEDUREStop at the exit from procedure.

LABELS Stop at all labels.

STATEMENTS Stop at each source statement (requires compiler support).

EXIT_PROGRAMStop at the program exit point.

ENTER_PROGRAMStop at the program entry point.

TRACE_ALL All of the trace events.

option Three options are supported. If none is given, LIST is assumed.

LIST List the current setting of the trap(s).

ARM Arm the indicated trap(s).

DISARM Disarm the indicated trap(s).

Examples

 $nmdebug > trap list
 XLIBRARY DISABLED
 XARITHMETIC DISABLED
 XSYSTEM DISABLED
 XCODE DISABLED
 BRANCH DISABLED
 BEGIN_PROCEDURE DISABLED
 END_PROCEDURE DISABLED
 LABELS DISABLED
 STATEMENTS DISABLED
 ENTER_PROGRAM DISABLED
 EXIT_PROGRAM DISABLED

List the status of all the defined traps (initial status is disabled).

 $nmdebug > trap branch arm

Arm the branch taken trap and the arithmetic traps.
276 Chapter 6

System Debug Command Specifications M-X
TRAP
 $nmdebug > trap
 XLIBRARY DISABLED
 XARITHMETIC DISABLED
 XSYSTEM DISABLED
 XCODE DISABLED
 BRANCH DISABLED
 BEGIN_PROCEDURE DISABLED
 END_PROCEDURE ARMED
 LABELS DISABLED
 STATEMENTS DISABLED
 ENTER_PROGRAM DISABLED
 EXIT_PROGRAM DISABLED

Show the status of the traps.

 $nmdebug > c
 Branch Taken at: 6a8.00005d84 processstudent+$60
 to: 6a8.000056b8 lr_wa_10

 $nmdebug > c
 Branch Taken at: 6a8.00005708 lr_wa_1+$8
 to: 6a8.00005d88 processstudent+$64

 $nmdebug > c
 Branch Taken at: 6a8.00005d94 processstudent+$70
 to: 6a8.00005990 ?_start+$3c

 $nmdebug > c
 Branch Taken at: 6a8.000059ac ?_start+$58
 to: a.fff7b004

 $nmdebug > c
 Branch Taken at: a.fff7b024
 to: 730.00015c6c ?average

The above example shows the use of the branch taken trap. Every time any form of branch
instruction is executed, Debug stops just before the branch occurs.

 $nmdebug > trap xari arm
 $nmdebug > trap xari list
 XLIBRARY ARMED

 $nmdebug > c
 XARI Trap at: 730.00015d38 average+$b0
 trap mask = 00000002

 $nmdebug > wl pc,#13
 GRP $730.15d38
 $nmdebug > dc pc-20,#13
 GRP $730.15d18
 00015d18 average+$90 b6b60802 ADDIO 1,21,22
 00015d1c average+$94 6bd63f81 STW 22,-64(0,30)
 00015d20 average+$98 e81f1f77 B,N average+$58
 00015d24 average+$9c 20000009 ** Stmt 9
 00015d28 average+$a0 4bc13ee9 LDW -140(0,30),1
 00015d2c average+$a4 b4390fff ADDIO -1,1,25 /* Trap occurred in
Chapter 6 277

System Debug Command Specifications M-X
UF
 00015d30 average+$a8 ebff0595 BL divoI,31 /* <-- this routine.
 00015d34 average+$ac 4bda3f89 LDW -60(0,30),26
 00015d38 average+$b0 4bdf3ed9 LDW -148(0,30),31 /* <-- PC is here
 00015d3c average+$b4 6bfd0000 STW 29,0(0,31)
 00015d40 average+$b8 e840c000 BV 0(2)
 00015d44 average+$bc 37de3f31 LDO -104(30),30

 $nmdebug > dr r29
 R29=$0

 $nmdebug > mr r29 4
 R29=$0 := $4

 $nmdebug > c ignore

The above example starts by arming the XARI trap. The process is allowed to run. During
execution, an arithmetic trap was detected. Debug stops to allow the user to inspect the
state of the process. After viewing the code, it can be seen that the trap occurred in the
divoI millicode routine. By analyzing the trap mask it is determined that the trap was
caused by attempting to divide by zero. The millicode divide routine returns the result of
its operation in general register 29.

After looking at the source code, the bug in the program was discovered. It was determined
that at this point in process execution, the result of the divide should have been "4". The
millicode return register is updated with the correct value. The continue command with
the IGNORE option is issued to resume the process as if the trap never happened. (If the
IGNORE option had been specified, the process would have been terminated by the trap
subsystem.)

Limitations, Restrictions

The XLIBRARY and XSYSTEM trace traps are not implemented.

UF
Debug only

Unfreezes a code segment, data segment, or virtual address (range) in memory.

Syntax

 UFC logaddr [bytelength] Program file
 UFCG logaddr [bytelength] Group library
 UFCP logaddr [bytelength] Account library
 UFCLG logaddr Logon group library
 UFCLP logaddr Logon account library
 UFCS logaddr [bytelength] System library
 UFCU fname logaddr [bytelength] User library

 UFCA cmabsaddr Absolute CST
278 Chapter 6

System Debug Command Specifications M-X
UF
 UFCAX cmabsaddr Absolute CSTX

 UFDA dst.off CM data segment

 UFVA virtaddr [bytelength] Virtual address

These unfreeze commands actually decrement a system freeze count. The segment or
pages may remain frozen if their freeze count is still positive.

Parameters

logaddr A full logical code address (LCPTR) specifies three necessary items:

• The logical code file (PROG, GRP, SYS , and so on).

• NM: the virtual space ID number (SID).

CM: the logical segment number.

• NM: the virtual byte offset within the space.

CM: the word offset within the code segment.

Logical code addresses can be specified in various levels of detail:

• As a full logical code pointer (LCPTR):

UFC procname+20 Procedure name lookups return LCPTRs.

UFC pw+4 Predefined ENV variables of type LCPTR.

UFC SYS(2.200) Explicit coercion to a LCPTR type.

• As a long pointer (LPTR):

UFC 23.2644 sid.offset or seg.offset

The logical file is determined based on the command suffix. For
example:

UFC implies PROG.

UFCG implies GRP.

UFCS implies SYS, and so on.

• As a short pointer (SPTR):

UFC 1024 offset only

For NM, the short pointer offset is converted to a long pointer using the
function STOLOG, which looks up the SID of the loaded logical file. This is
different from the standard short to long pointer conversion, STOL, which
is based on the current space registers (SRs).

For CM, the current executing logical segment number and the current
executing logical file are used to build a LCPTR.

The search path used for procedure name lookups is based on the
command suffix letter:
Chapter 6 279

System Debug Command Specifications M-X
UF
UFC Full search path:

NM: PROG, GRP, PUB, USER(s), SYS .

CM: PROG, GRP, PUB, LGRP, LPUB, SYS .

UFCG Search GRP, the group library.

UFCP Search PUB, the account library.

UFCLG Search LGRP, the logon group library.

UFCLP Search LPUB, the logon account library.

UFCS Search SYS, the system library.

UFCU Search USER, the user library.

For a full description of logical code addresses, refer to the section "Logical
Code Addresses" in chapter 2.

fname The file name of the NM USER library. Multiple NM libraries can be
bound with the XL= option on a RUN command, for example:

 : run nmprog; xl=lib1,lib2.testgrp,lib3

In this case, it is necessary to specify the desired NM USER library, for
example:

 UFCU lib1 204c
 UFCU lib2.testgrp test20+1c0

If the file name is not fully qualified, the following defaults are used:

Default account: the account of the program file.

Default group: the group of the program file.

cmabsaddr A full CM absolute code address specifies three necessary items:

• Either the CST or the CSTX.

• The absolute code segment number.

• The CM word offset within the code segment.

Absolute code addresses can be specified in two ways:

• As a long pointer (LPTR):

UC 2644 Implicit CST 23.2644

UCAX 5.3204 Implicit CSTX 5.3204

• As a full absolute code pointer (ACPTR):

UCA CST(2.200) Explicit CST coercion.

UCAX CSTX(2.200) Explicit CSTX coercion.

UCAX logtoabs(prog(1.20)) Explicit absolute conversion.

The search path used for procedure name lookups is based on the
command suffix letter:
280 Chapter 6

System Debug Command Specifications M-X
UNMAP
UCA GRP, PUB, LGRP, LPUB, SYS

UCAX PROG

dst.off A data segment address (specified as dst.offset) of the data segment to
be unfrozen in memory (see the FDA command).

virtaddr The starting virtual address of the page(s) that are to be unfrozen in
memory. (Refer to the FVA command.) Virtaddr can be a short pointer, a
long pointer, or a full logical code pointer.

bytelength This parameter is valid only for nmdebug. It is the desired number of bytes
to be unfrozen. Based on the starting virtual address and the specified
bytelength , the appropriate number of virtual pages are unfrozen. If
omitted, four bytes is used as a default. The implementation of this
command dictates that the smallest unit that is actually frozen is one page
of virtual memory. That is, if you say one byte, the whole page on which
that byte resides is made resident.

Examples

 %cmdebug > ufc sys(12.0)

Unfreeze CM logical code segment SYS %12.

 $nmdebug > ufva 22.104, 1000

Unfreeze 1000 bytes starting at virtual address 22.104.

Limitations, Restrictions

none

UNMAP
Closes (unmaps) a file that was opened by the MAP command.

Syntax

 UNMAP index

Parameters

index The mapped file index number (displayed with the MAP and MAPLIST
commands).

Examples

 $nmdebug > mapl
 1 DTCDUMP.DUMPUSER.SUPPORT 1000.0 Bytes = 43dc
Chapter 6 281

System Debug Command Specifications M-X
UPD
 2 DTCDUMP2.DUMPUSER.SUPPORT 1001.0 Bytes = c84
 3 MYFILE.MYGROUP.MYACCT 1005.0 Bytes = 1004

 $nmdebug > unmap 2
 $nmdebug > unmap mapindex("dtcdump.dumpuser.support")

 $nmdebug > mapl
 1 DTCDUMP.DUMPUSER.SUPPORT 1000.0 Bytes = 43dc
 3 MYFILE.MYGROUP.MYACCT 1005.0 Bytes = 1004

Close the file DTCDUMP2.DUMPUSER.SUPPORT. Also, close the file
DTCDUMP.DUMPUSER.SUPPORT (by calling the MAPINDEX function that returns the file index
number 1).

Limitations, Restrictions

none

UPD
Updates the windows.

Syntax

 UPD

Parameters

none

Examples

 %cmdebug > UPD

Limitations, Restrictions

none

USE
System Debug commands can be executed from a file with the USE command.
282 Chapter 6

System Debug Command Specifications M-X
USE
Syntax

 USE
 USE [filename] [count]
 USENEXT count
 USE [CLOSE][ALL | @]

USE, entered alone, displays the current open command file(s) and the current line position
within the file (current-record/total records).

USEfilename opens the specified file, executes all commands from that file, and then
closes the file. An optional count parameter is used to read a particular number of lines
from the file before returning to interactive user input. If count is less than the total
number of lines in the file, the file remains open and pending.

USENEXT count reads the next count lines from the most recently opened file, and once
again returns to interactive input.

Up to five command files can be opened at one time; command files are maintained in a
stack, and each has its own remaining count .

USE CLOSE closes (saves) the most recently (still opened) command file. Since files are
automatically closed when completed, this is necessary only for partially executed
command files.

USE CLOSE ALL or CLOSE @ closes (saves) all (still opened) command files.

Command lines executed from USE files are not displayed, unless the user has explicitly
set the environment variable ECHO_USE. (Refer to the ENV ECHO_USE command.)

Parameters

filename The file name of the command file that is to be opened and executed.
Command files must be ASCII files. If omitted, the status of all open
command files is displayed.

count The number of lines to be executed from the command file. If omitted, all
lines in the file are executed, and the file is closed.

USENEXTcount

Executes the next count lines from the most recently opened command
file.

USE CLOSE Closes the most recently (still opened) command file. The keyword CLOSE
can be entered in uppercase or lowercase.

USE CLOSE ALL or CLOSE @ Closes all (still opened) command files. The keywords
CLOSE and ALL can be entered in uppercase or lowercase.

Examples

 %cmdebug > use macros

Opens the file macros , executes all commands from the file, and then closes the file (as is).

 %cmdebug > use macros 10
Chapter 6 283

System Debug Command Specifications M-X
VAR
Opens the file macros and executes the first 10 lines from the file, then returns to normal
interactive input.

 %cmdebug > usenext 5

Use the next five lines from the current USE file.

 %cmdebug > use
 USE file "macros" OPEN: 15/76

Displays the current status of open command files. The file macros is opened and
positioned at line 15 out of 76 lines.

 %cmdebug > use close

Closes the current open USE file. Note that other nested USE files may still be left open.

Limitations, Restrictions

Command files should be typical unnumbered editor files, ASCII, with a fixed record size
less than 256 bytes. Line numbers are not stripped.

There is currently a limit of five nested USE files.

Command lines that are executed from USE files are placed into the command history
stack. Long USE files often displace all of the current commands in the stack out of
accessible range.

VAR
Defines a user-defined variable.

Syntax

 VAR var_name [: var_type] [=] var_value

The entire set of currently defined variables can be saved into a binary file for later
restoration. (Refer to the STORE and RESTORE commands.)

Parameters

var_name The name of the variable that is being defined. Names must begin with an
alphabetic character and are restricted to thirty-two (32) characters,
(characters must be alphanumeric, "_", "'", or "$"). Longer names are
truncated with a warning. Names are case insensitive.

var_type The type of the variable. The following types are supported:

STR String

BOOL Unsigned 16-bit

U16 Unsigned 16-bit
284 Chapter 6

System Debug Command Specifications M-X
VAR
S16 Signed 16-bit

U32 Unsigned 32-bit

S32 Signed 32-bit

S64 Signed 64-bit

SPTR Short pointer

LPTR Long pointer

PROG Program logical address

GRP Group library logical address

PUB Account library logical address

LGRP Logon group library logical address

LPUB Logon account library logical address

SYS System library logical address

USER User library logical address

TRANS Translated CM code virtual address

EADDR Extended address

SADDR Secondary address

If the type specification is omitted, the type is assigned automatically,
based on var_value .

The optional var_type allows the user to explicitly specify the desired
internal representation for var_value (that is, signed or unsigned, 16 bit
or 32 bit) for this particular assignment only. It does not establish a fixed
type for the lifetime of this variable. A new value of a different type can be
assigned to the same variable (name) by a subsequent VAR command.

var_value The new value for the variable, which can be an expression. An optional
equal sign "=" can be inserted before the variable value.

Examples

 %cmdebug > var save 302.120

Define variable save to be the address 302.120. By default, this variable is of type LPTR
(long pointer) based on the value 302.120.

 $nmdebug > var count=1c

Define variable count to be the value 1c.

 $nmdebug > var s1:str="this is a string"

Define variable s1 to be of type STR (string) and assign the value "this is a string".

 $nmdebug > varlist
 var save:lptr %302.120
 var count:u32 $1c
Chapter 6 285

System Debug Command Specifications M-X
VARD[EL]
 var s1:str this is a string

Display all currently defined user variables.

Limitations, Restrictions

Refer to ENV VARS, ENV VARS_LOC, and ENV VARS_LIMIT . These environment variables
determine the maximum number of variables that can be defined.

VARD[EL]
Variable delete. Deletes the specified user-defined variable(s).

Syntax

 VARD[EL] pattern

Parameters

pattern The name of the variable(s) to be deleted.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

Examples

 %cmdebug > vardel count

Delete the variable count .
286 Chapter 6

System Debug Command Specifications M-X
VARL[IST]
Limitations, Restrictions

none

VARL[IST]
Variable list. Lists the value(s) for the specified user-defined variable(s).

Syntax

 VARL[IST] [pattern]

Variables are always listed in alphabetical order.

Parameters

pattern The name of the variable(s) to be listed.

This parameter can be specified with wildcards or with a full regular
expression. Refer to appendix A for additional information about pattern
matching and regular expressions.

The following wildcards are supported:

@ Matches any character(s).

? Matches any alphabetic character.

Matches any numeric character.

The following are valid name pattern specifications:

@ Matches everything; all names.

pib@ Matches all names that start with "pib".

log2##4 Matches "log2004", "log2754", and so on.

The following regular expressions are equivalent to the patterns with
wildcards that are listed above:

 `.*`
 `pib.*`
 l̀og2[0-9][0-9]4`

By default, all user-defined variables are listed.

Examples

 %cmdebug > varlist
 var count : u32 = $1c
 var save : 1ptr = %302.120
 var s1 : str = this is a string
Chapter 6 287

System Debug Command Specifications M-X
W (write)
Display all currently defined user variables.

 %nmdebug > varl sl@
 var save : 1ptr = %302.120
 var s1 : str = this is a string

Display all variables that begin with the letter "s".

Limitations, Restrictions

Variables are not currently listed in sorted alphabetical order.

W (write)
Writes a list of values, with optional formatting, to output.

Syntax

 W valuelist
 WL valuelist
 WP valuelist

 WCOL column
 WPAGE

W (Write), WL (Writeln), and WP (Prompt) write a list of values, with optional formatting, to
output.

WP (Prompt) appends the new formatted values to the output buffer, flushes the buffer to
output, and maintains the cursor on the same line.

W(Write) appends the new formatted values to the output buffer and advances the current
buffer position.

WL(Writeln) appends the new formatted values to the output buffer, then flushes the buffer
to output with a new line. The output buffer is reset.

WCOL advances the current output buffer position to the specified column position,
blank-filling as necessary if the new position effectively expands the buffer.

WPAGE forces all buffered output to be flushed, and a page eject is emitted. The output
buffer is reset.

Parameters

valuelist An arbitrary list of values to be written. Values can be separated by blanks
or with commas:

 value1, value2 value3 ...

An optional format specification can be appended to each value in the list
in order to select specific output base, left or right justification, blank or
288 Chapter 6

System Debug Command Specifications M-X
W (write)
zero fill, and field width for that value.

 value1[:fmtspec1] value2[:fmtspec2] ...

A format specification is a string list of selected format directives, with
individual directives separated by commas or blanks:

 "directive1,directive2 directive3 ..."

The following table lists the supported format directives; they can be
entered in uppercase or lowercase:

+ Current output base ($, # , or % prefix displayed).

-< Current output base (no prefix).

+< Current input base ($, # , or % prefix displayed).

-< Current input base (no prefix).

$ Hex output base ($ prefix displayed).

Decimal output base (# prefix displayed).

% Octal output base (% prefix displayed).

H Hex output base (no prefix).

D Decimal output base (no prefix).

O Octal output base (no prefix).

A ASCII base (use "." for nonprintable chars).

N ASCII base (loads actual nonprintable chars).

L Left-justified.

R Right-justified.

B Blank-filled.

Z Zero-filled.

M Minimum field width, based on value.

F Fixed field width, based on the type of value.

Wn User specified field width n.

Cn Position the output starting at column n.

T Typed (display the type of the value).

U Untyped (do not display the type of the value).

QS Quote single (surround w/ single quotes).

QD Quote double (surround w/ double quotes).

QO Quote original (surround w/ original quote character).

QN Quote none (no quotes).

The M directive (minimum field width) selects the minimum possible field
width necessary to format all significant digits (or characters in the case of
Chapter 6 289

System Debug Command Specifications M-X
W (write)
string inputs).

The F directive (fixed field width) selects a fixed field width based on type
of the value and the selected output base. Fixed field widths are listed in
the following table:

The Wn directive (variable field width) allows the user to specify the
desired field width. The W directive can be specified with an arbitrary
expression. If the specified width is less than the minimum necessary
width to display the value, the user width is ignored, and the minimum
width used instead. All significant digits are always printed. For example:

 number:"w6", or
 number:"w2*3"

The number of positions specified (either by Wn or F) does not include the
characters required for the radix indicator (if specified) or sign (if
negative). Also, the sign and radix indicator are always positioned just
preceding the first (leftmost) character.

Zero versus blank fill applies to leading spaces (for right justification) only.
Trailing spaces are always blank filled.

In specifications with quotes, the quotes do not count in the number of
positions specified. The string is built such that it appears inside the
quotes as it would without the quotes.

The T directive (typed) displays the type of the value, preceding the value.
The U directive (untyped) suppresses the display of the type. Types are
displayed in uppercase, with a single trailing blank. The width of the type
display string varies, based on the type, and it is independent of any
specified width (M, F , or Wn) for the value display.

For values of type LPTR (long pointer, sid.offset , or seg.offset) and
EADDR (extended address, sid.offset or ldev.offset), two separate
format directives can be specified. Each is separated by a dot, ".", to
indicate individual formatting choices for the "sid " portion and the
"offset " portion. This is true for all code pointers (ACPTR - absolute code
pointers: CST, CSTX; LCPTR- logical code pointers: PROG, GRP, PUB, LGRP,

Table 6-6. Fixed Field Widths

hex($,H) dec(#,D) oct(%,0) ascii(A,N)

S16,U16 4 6 6 2

$32,U32 8 10 11 4

S64 16 20 22 8

SPTR 8 10 11 4

LPTR Class 8.8 10.10 11.11 8

EADDR Class 8.16 10.20 11.22 12

STR field width = length of the string.
290 Chapter 6

System Debug Command Specifications M-X
W (write)
LPUB, SYS, USER,
TRANS). For example:

 pc:"+.-, w4.8, r.l, b.z"

The following default values are used for omitted format directives. Note
that the default format directives depend on the type of value to be
formatted:

 value type default format

 ---------- --------------

 STR, BOOL - R B M U
 U16,S16,U32,S32,S64 + R B M U
 SPTR + R Z F U
 LPTR +.- R.L B.Z M.F U
 ACPTR LCPTR +.- R.L B.Z M.F T
 CST PROG +.- R.L B.Z M.F T
 CSTX GRP +.- R.L B.Z M.F T
 PUB +.- R.L B.Z M.F T
 LGRP +.- R.L B.Z M.F T
 LPUB +.- R.L B.Z M.F T
 SYS +.- R.L B.Z M.F T
 USER +.- R.L B.Z M.F T
 TRANS +.- R.L B.Z M.F T
 EADDR +.- R.L B.Z M.F U
 SADDR +.- R.L B.Z M.F T

Note that absolute code pointers, logical code pointers and extended
addresses display their types (T) by default. All other types default to
untyped (U).

The Cn (column n) directive moves the current output buffer position to the
specified column position prior to the next write into the output buffer.
Column numbers start at column 1. For example:

 number:"c6"

NOTE The Cn directive is ignored by the ASC function but is honored by the W, WL
and WP commands.

Examples

 $nmdat > var cost 100

 $nmdat > w "the price is "
 $nmdat > w cost
 $nmdat > wl " for the goodies."
 the price is $100 for the goodies
 $nmdat > wl "the price is ", cost, " for the goodies."
 the price is $100 for the goodies

Two different methods of writing mixed text and formatted numbers.
Chapter 6 291

System Debug Command Specifications M-X
W (write)
 $nmdat > var number:u32=123

 $nmdat > wl number
 $123
 $nmdat > wl number:"-"
 123
 $nmdat > wl number:"#"
 #291
 $nmdat > wl number:"d"
 291
 $nmdat > wl number:"f,r"
 $123
 $nmdat > wl number:"r,w6,- z"
 $nmdat > wl number:"r,w6,- z t"
 U32 000123

Several examples of formatting an unsigned 32-bit value.

 $nmdat > var test='test'

 $nmdat > wl test
 test
 $nmdat > wl test:"t"
 STR test
 $nmdat > wl test:"+"
 $test
 $nmdat > wl test:"w2"
 test
 $nmdat > wl test:"w8,r"
 test
 $nmdat > wl test:"w8, r qd"
 " test"

Several examples of formatting a string.

 $nmdat > var long 2f.42c8

 $nmdat > wl long
 $2f.42c8
 $nmdat > wl long:"t"
 LPTR $2f.42c8
 $nmdat > wl long:"-.+"
 2f.$42c8
 $nmdat > wl long:"#.$,m.m"
 #47.$42c8
 $nmdat > wl long:"r.r f.m z"
 $2f.42c8
 $nmdat > wl long:"r.r,w6.6,z.z"
 $00002f.0042c8
 $nmdat > wl long:"r.r w6.6, z.z, qd"
 "$00002f.0042c8"
 $nmdat > wl long:"r.r w6.6, b.b, $.$"
 $2f. $42c8
 $nmdat > wl long:"r.l w6.6, b.b, $.$"
 $2f . $42c8
292 Chapter 6

System Debug Command Specifications M-X
WHELP
Several examples of formatting a long pointer.

 $nmdat > wcol 6
 $nmdat > wcol 3
 $nmdat > wcol 6; w 12345; wcol 2; wl 2
 2 $12345

 $nmdat > wl '2':'c2' '6':"c6" "4":'c4' "<-- column control":"c8"
 2 4 6 <-- column control

 $nmdat > w "123456 <-- column control";wl " ":"c1", " ":"c3", " ":"c5"
 2 4 6 <-- column control

These examples demonstrate how the output buffer can be positioned to a specific column
number. In the first sequence, the WCOLcommand is used to specify a new column position.
Note that the prompt forces the buffer to be output, and consequently may appear in an
unexpected position immediately after a WCOL command.

In the second sequence, the Cn column directive is used to specify a column position for
each formatted value. The third example demonstrates how portions of the output buffer
may be overwritten by new formatted values.

Limitations, Restrictions

none

WHELP
Displays online help messages for the window commands.

Syntax

 WHELP

Parameters

None

Limitations, Restrictions

An overview of the window commands is generated with this command. You may type HELP
windowcommand for specific details on any window command.
Chapter 6 293

System Debug Command Specifications M-X
WHILE
WHILE
While condition evaluates to TRUE, executes all commands in cmdlist .

Syntax

 WHILE condition DO cmdlist

Parameters

condition A logical expression to be evaluated.

cmdlist A command list (or a single command) executed while condition evaluates
to TRUE.

Examples

 $nmdebug > var n 7
 $nmdebug > while n > 0 do {wl n; var n n-1}
 7
 6
 5
 4
 3
 2
 1

A simple while loop example.

 $nmdebug > while [pc] >> $10 <> $2000 do ss

Single step until the next Pascal/XL statement number.

Limitations, Restrictions

none

XL
The XL command is a predefined alias for the PSEUDOMAP command.

Syntax

 XL alias for PSEUDOMAP
294 Chapter 6

System Debug Command Specifications M-X
XLD
XLD
Closes files opened with the PSEUDOMAP command.

Syntax

 XLD localfile

The XLD command removes the specified file previously mapped with the PSEUDOMAP
command. The file name given is that of the local disk file, not the loaded file name that
was associated with it. File names must be fully qualified.

Related commands: PSEUDOMAP, MAPLIST

Parameters

localfile The fully qualified name of the file to be unmapped.

Examples

 $nmdat> xld store.abuild00.official

Remove store.abuild00.official from the list of files

Limitations, Restrictions

None

XLL
The XLL command is a predefined alias for the MAPLIST command.

Syntax

 XLL alias for MAPLIST
Chapter 6 295

System Debug Command Specifications M-X
XLD
296 Chapter 6

Symbolic Formatting Symbolic Access
7 Symbolic Formatting Symbolic Access

Most of the time spent in the debugging of programs and the analysis of system dumps is
in the interpretation of data found in memory images. The symbolic formatter provides a
powerful and efficient way of referencing this data symbolically and displaying it using its
declared type(s). Regardless of the source language, all data are formatted using a
Pascal-style syntax.

Most examples used in this section are based upon the following types:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;

 TYPE Subjects = (ENGLISH, MATH, HISTORY, HEALTH, PHYSED, SCIENCE);
 SubjectSet = SET of subjects;

 TYPE MStype = (MARRIED, DIVORCED, SINGLE, WIDOWED);

 PersonPtr = ^Person;
 Person = RECORD
 Next : PersonPtr;
 Name : string[16];
 Sex : (MALE, FEMALE);
 CASE ms : MStype OF
 MARRIED : (NumKids : integer);
 DIVORCED : (HowLong : integer);
 SINGLE : (Looking : boolean);
 WIDOWED : ();
 END;

The following examples assume the System Debug variable addr1 contains the virtual
address of a data structure corresponding to the type StudentArray .

A hexadecimal display of that area of memory would be produced by the following:

 $nmdebug > dv addr1,10
 $ VIRT 7b8.40200010 $ 00000004 42696c6c 00000000 00000000
 $ VIRT 7b8.40200020 $ 00000001 00040000 0000002d 00000041
 $ VIRT 7b8.40200030 $ 0000004e 00000042 00000000 00000000
Chapter 7 297

Symbolic Formatting Symbolic Access
 $ VIRT 7b8.40200040 $ 00000000 00000000 00000000 00000000

 $nmdebug > dv addr1,6,a
 $ VIRT 7b8.40200010 A Bill

This leaves to the user the task of matching the displayed data to the declared types. When
more complicated data structures are involved, it is easy to see that the process of
matching the raw data to the corresponding high-level declarations could become
exceedingly cumbersome.

The symbolic formatting facility allows users to display data in terms of the declared
structures. In the case of the record StudentRecord in the above example, the symbolic
formatter produces the following output:

 $nmdebug > fv addr1 "StudentRecord"

 RECORD
 NAME : 'Bill'
 ID : 1
 YEAR : SENIOR
 NUMGRADES : 4
 GRADES :
 [1]: 2d
 [2]: 41
 [3]: 4e
 [4]: 42
 [5]: 0
 [6]: 0
 [7]: 0
 [8]: 0
 [9]: 0
 [a]: 0
 END

Just as you can display data symbolically, you can also use symbolic addressing to locate
and restrict the data to be displayed. The symbolic access facility allows users to extract
simple values from a data structure by name for use in expressions and macros. For
example, to test if year (year in school) is SENIOR, one could write:

 $nmdebug > VAR year = SYMVAL(addr1, "StudentRecord.Year")
 $nmdebug > IF year = "SENIOR" THEN WL "He is a SENIOR!!"

This is obviously more lucid than the corresponding bit-extraction sequence:

 $nmdebug > VAR year = BITX([addr1+$14], 0, #8)
 $nmdebug > IF (year = 0) THEN WL "He is a SENIOR!!"

In summary, the symbolic formatting and access facility allows the user to display and
reference data in a more natural way, namely through the use of the symbolic data type
names declared at the source level. Furthermore, it frees authors of macros and simple
formatted displays from worrying about the allocation of data within a data structure and
from tracking changes to these structures as they evolve.

The remaining subsections describe the symbolic formatting and access facility in more
detail.
298 Chapter 7

Symbolic Formatting Symbolic Access
Creating and Accessing Symbol Definitions
Creating and Accessing Symbol Definitions
Before data structures can be accessed symbolically, their definitions must be made known
to System Debug. This subsection describes how the symbolic definitions are generated
and how they are subsequently made known to System Debug. The final result is a
program file containing symbolic type information. Such files are referred to as symbolic
data type files or simply symbolic files.

Generate Symbolic Type Information

The generation of symbolic data type definitions begins at compile time through the use of
the $SYMDEBUG 'xdb'$ option in the Pascal compiler. This option causes symbolic debug
records to be emitted into the relocatable object modules contained in the relocatable
library produced by the compiler. These symbolic debug records fall into two basic
categories: those that define the code being generated and those that define the data type
shapes and sizes. System Debug at present uses only the data type definitions.

System Debug does not require that the complete program be compiled with the
$SYMDEBUG$option; instead, only the types and constants need be compiled. However, even
though only types and constants are compiled, the outer block MUST have at least one
statement (for example, x := 1) in order to generate any debug information, and the types
and constants must be declared at the level of the outer block. Also, note that symbolic
information is currently not emitted when code optimization is performed. The following
example shows a compilation of just a program's types for the purpose of obtaining, in
object file form, the symbolic information required to use the symbolic formatter.

 $SYMDEBUG 'xdb'$

 PROGRAM gradtyp;

 $include 'tgrades.demo.telesup'; { Include all types/constants }

 VAR x : integer;

 BEGIN { Outer block must have a stmt }
 x := 1;
 END.

 : COMMENT *** The above program is in the file OGRADTYP.DEMO.TELESUP
 :
 : PASXL OGRADTYP,YGRADTYP,$NULL
 :
 : COMMENT *** The above command generates the file "YGRADTYP"

Convert The Relocatable Library into a Program File

The relocatable object module(s) generated by the compiler must now be converted into an
executable object module (a program file). This step is performed by using the LINKEDIT
program.

 : LINKEDIT.PUB.SYS
Chapter 7 299

Symbolic Formatting Symbolic Access
Creating and Accessing Symbol Definitions
 HPLinkEditor/XL (HP32650-xx.yy.zz) (c) Hewlett-Packard Co 1986

 LinkEd> link from=ygradtyp.demo.telesup;to=gradtyp.demo.telesup
 LinkEd> exit

 :

Preprocess the Program File with PXDB

The program file produced by LINKEDIT must be run through a utility called PXDB. This
program preprocesses the symbolic debug information for more efficient access during
symbolic debugging.

 : PXDB.PUB.SYS gradtyp.demo.telesup
 Copying gradetyp.demo.telesup ... Done
 Procedures: 1
 Files: 1
 :

Prepare the Program File with SYMPREP

System Debug needs to perform additional preprocessing of the object module file after
PXDB. Quick data type lookup tables are built and symbols are sorted for fast access. The
results of this phase are saved in the program file so it need only be performed once.

Once this step is completed, the file is in a form usable by System Debug. Such a file is
called a symbolic data type file. This final task is performed from within DAT or DEBUG
by using the SYMPREP command:

 : DAT

 DAT XL A.00.00 Copyright Hewlett-Packard Co. 1987. All rights reserved.

 $1 ($0) $nmdebug > SYMPREP gradtyp
 Preprocessing GRADTYP.DEMO.TELESUP
 Copying file ...
 Building Constant lookup table ...
 Sorting ...
 Building Type lookup table ...
 Sorting ...
 Building lookup table header ...
 Fixing up SOM directory structure ...
 GRADTYP.DEMO.TELESUP preprocessed

 $2 ($0) $nmdebug >

Open the Symbolic Data Type File with SYMOPEN

The System Debug SYMOPEN command is used to access the symbols in a preprocessed
program file (symbolic data type file). The user may optionally assign each symbolic file a
symbolic name when it is opened. If no symbolic name is specified, the file name (minus
the .GROUP.ACCOUNT) is used as the symbolic name. In the following example, the file
gradtyp is opened and assigned the default symbolic name gradtyp .

 $nmdat > SYMOPEN GRADTYPE
300 Chapter 7

Symbolic Formatting Symbolic Access
The Path Specification
 $nmdat > SYMFILES
 GRADTYP GRADTYP.DEMO.TELESUP
 $nmdat >

In summary the following steps must be performed before a symbolic data type file is ready
for use by System Debug:

1. Construct a small program which contains all type declarations to be made available to
System Debug. The program must have at least one executable statement, and the type
declarations must all appear at the level of the outer block.

2. Compile data types with the $SYMDEBUG 'xdb'$ option.

3. Run the relocatable library generated by the compiler through the Link Editor.

4. Run the program file generated by the Link Editor through PXDB.

5. Prepare the modified program file generated by PXDB with System Debug SYMPREP
command.

6. Open the program file with System Debug SYMOPEN command.

The Path Specification
Path specifications are used to qualify data structure references to some desired level of
granularity.

Syntax
 [symname :] typename [selector ...][, variantinfo]

Parameters

symname A symbolic name assigned to a symbolic data type file in the SYMOPEN
command. This parameter specifies the file in which typename is to be
found. If omitted, the last symbolic file referenced is used.

typename The name of the data structure to be formatted.

selector ... The selectors used to dereference particular components of the data
structure identified by typename . Multiple selectors are permitted.

The following selectors, based on Pascal syntax, are recognized:

 [index]

Array selector specifies a component of an array.

 . field

Record selector specifies a field within a record.

 ^ Pointer selector specifies pointer dereferencing.

variantinfo A list of variant tag values to be used when formatting tagless variants, or
Chapter 7 301

Symbolic Formatting Symbolic Access
The Path Specification
to override the stored tag field if alternate variants are to be displayed.
Multiple tag values are specified as a simple list:

vartagvalue [,...]

For each variant after the typename [selector] specification, a
vartagvalue can be given to specify the desired variant. Multiple tag
values may be given, separated by commas, to specify tags for nested
variants. The order of the tags should match the order of the variants in
the type declaration. If tag value(s) are omitted and the tag is not stored as
part of the data structure, data are formatted according to the first
declared variant.

The variant descriptor can also be used to override stored tag values for
variant records. Normally, the symbolic formatter uses stored tags to
select the variants to be formatted. However, if the stored tags are corrupt
or the user wishes to have the data interpreted according to different
variants, vartagvalue s may be used to specify the desired variants.

Variable Substitution

System Debug variables may be used within a path specification. Since the path
specification is itself composed of a string, any variable substitution must be performed
with string variables. In order for a System Debug variable to be recognized in a path
specification, it must be preceded by an exclamation mark. For example:

 $nmdebug > VAR field "ID"
 $nmdebug > FT "StudentRecord.!field"

 INTEGER

The other area where System Debug variables may be used is in array subscripts. In fact,
array subscripts may consist of any valid System Debug expression. Exclamation marks
are not required to dereference variables in this case.

 $nmdebug > VAR type "StudentRecord"
 $nmdebug > VAR field "Grades"
 $nmdebug > VAR index 5

 $nmdebug > FV data "!type.!field[index - 1]"

 42

 $nmdebug >

Case Sensitivity

System Debug normally upshifts all characters in a path specification before searching for
names in a symbol file. This is desirable for languages such as Pascal, which emit
upshifted symbols. But for languages such as C, which emit symbols with lower-case
characters, this automatic upshifting must be disabled. The environmental variable
SYMPATH_UPSHIFT controls whether or not pathspec upshifting occurs. If your symbol file
contains lower-case symbols, set this environmental variable to FALSE as follows:

 $nmdebug > ENV SYMPATH_UPSHIFT FALSE
302 Chapter 7

Symbolic Formatting Symbolic Access
Using the Symbolic Formatter
The next two sections contain a variety of examples illustrating the use of path
specifications.

Using the Symbolic Formatter
This section gives several examples of how to use the symbolic formatting facility.

Formatting Types

Refer to the beginning of this chapter to review the type declarations used in this section.

After the source types are converted into a symbolic data type file, the file is SYMOPENed
and given a symbolic name of grades .

 $nmdebug > SYMOPEN gradtyp.demo grades

The symbolic formatter is now able to display type information and format actual data
using this symbolic data type file:

 $nmdebug > FT "grades:StudentRecord"

 RECORD
 NAME : NAMESTR ;
 ID : INTEGER ;
 YEAR : CLASS ;
 NUMGRADES: GRADERANGE ;
 GRADES : GRADESARRAY ;
 END

Display the structure of StudentRecord . The symname part of the path specification is
optional. If none is given, the last accessed symbolic file is assumed.

 $nmdebug > FT "studentrecord" MAP

 RECORD
 NAME : NAMESTR ; (0.0 @ 10.0)
 ID : INTEGER ; (10.0 @ 4.0)
 YEAR : CLASS ; (14.0 @ 1.0)
 NUMGRADES: GRADERANGE ; (15.0 @ 1.0)
 GRADES : GRADESARRAY ; (18.0 @ 28.0)
 END ;
 RECORD Size: 40 bytes

The MAP option of the FT command causes a location map to be printed for components of
complex data structures such as records or arrays. The format of the location map is
similar to the one generated by the $MAPINFO ON$ option of the Pascal compiler.

 $nmdebug > FT "studentrecord.grades"

 ARRAY [GRADERANGE] OF INTEGER

 $nmdebug > FT "graderange"

 1 .. 10
Chapter 7 303

Symbolic Formatting Symbolic Access
Using the Symbolic Formatter
 $nmdebug > FT "maxgrades"

 INTEGER

 $nmdebug > FT "class"

 (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN)

Display various types. Notice that path specification is not limited to a simple type or
constant name, but rather it may consist of any composite path specification.

The examples in the following pages include variant records and pointers. The following
set of type declarations is used:

 $nmdebug > ft "PersonPtr"

 ^ PERSON

 $nmdebug > ft "PersonPtr^"

 RECORD
 NEXT: PERSONPTR ;
 NAME: STRING[10];
 SEX : (MALE, FEMALE);
 CASE MS: MSTYPE OF
 MARRIED : (NUMKIDS: INTEGER);
 DIVORCED: (HOWLONG: INTEGER);
 SINGLE : (LOOKING: BOOLEAN);
 WIDOWED : ();
 END

 $nmdebug > ft "PersonPtr^.Sex"

 (MALE, FEMALE)

Notice that you can refer to a type with a pointer dereference. That is, "Show me the type
that this pointer points to."

Formatting Data

The FV command allows you to format data at any virtual address using a given data
structure:

 format at_any_virtual_address as_if_it_were_a_specific_type

Before proceeding to some examples, we must deal with the question, "How do I find the
virtual address of the data structure I want to format?" Most language compilers use the
following conventions (as detailed in the Procedure Calling Conventions Manual:

• Global data is stored relative to DP (data pointer). DP is an alias for R27.

• Procedure local variables are stored relative to SP (stack pointer). SP is an alias for
R30.

• Procedure parameters are stored in the argument registers (ARG0-ARG3) and in the
stack relative to PSP (previous stack pointer). PSP is not contained in a register but is a
pseudo-register that is computed by System Debug.
304 Chapter 7

Symbolic Formatting Symbolic Access
Using the Symbolic Formatter
A variable map is required to find the location of a variable at any given time. These maps
are generated as part of the program listing by the language compilers. Each compiler has
a unique compiler option, which must be specified in order for the variable map to be
included in the listing. For Pascal, the option is $TABLES ON$. For additional details on
generating and interpreting this information, refer to the appropriate language reference
manual. Each language also has a programmers manual which provides detailed
language-specific examples illustrating how to use Debug to debug a program.

CAUTION If code optimization is done by the compiler, the location of the variables at
any given time is indeterminable. Refer to the appropriate language manual
for other issues concerning optimized code.

In the following examples, we assume that the System Debug variable addr1 contains the
address of a data structure corresponding to the type StudentArray . In addition, located
at dp+8 is a data structure defined by the person record. For example,

 $nmdebug > fv addr1 "StudentRecord"
 RECORD
 NAME : 'Bill'
 ID : 1
 YEAR : SENIOR
 NUMGRADES : 4
 GRADES :
 [1]: 2d
 [2]: 41
 [3]: 4e
 [4]: 42
 [5]: 0
 [6]: 0
 [7]: 0
 [8]: 0
 [9]: 0
 [a]: 0
 END

 $nmdebug > fv dp+8 "person"
 RECORD
 NEXT : 40200024
 NAME : 'Mrs. Smith'
 SEX : FEMALE
 MS : MARRIED
 NUMKIDS : 3
 END

The above examples show complete formatted record structures. Note that for variants
with stored tags, the variants formatted are determined by the actual tag values.

When only a small portion of a large data structure needs to be examined, a path
specification may be used to specify an item of interest, either simple or composite:

 $nmdebug > fv addr1 "StudentRecord.Name"

 'Bill'
Chapter 7 305

Symbolic Formatting Symbolic Access
Using the Symbolic Formatter
 $nmdebug > fv addr1 "StudentRecord.Year"

 SENIOR

 $nmdebug > fv dp+8 "Person.sex"

 FEMALE

The above examples show how any field within a record may be formatted. Note that the
address supplied is always the address for the beginning of the record, not the address of
the field of interest.

As with field selection, array elements can also be selected. The command

 $nmdebug > fv addr1 "StudentRecord.Grades[3]"

 4e

displays only the third element of the field grades within the record StudentRecord .

As we saw in the person example above, if a data structure contains a pointer, its value
(that is, the address of the pointed-to structure) is displayed. If the target of the pointer is
desired, the caret (^) is used to indicate dereferencing. Consider the following examples:

 $nmdebug > fv dp+8 "person.next"
 40200024

 $nmdebug > fv dp+8 "person.next^"
 RECORD
 NEXT : 40200300
 NAME : 'Mr. Jones'
 SEX : MALE
 MS : SINGLE
 LOOKING : TRUE
 END

 $nmdebug > fv dp+8 "person.next^.next^.next^.next^.name"
 'Mrs. Robinson'

If you try to dereference a field which contains a nil or invalid pointer, an error message is
generated and the formatter stops formatting.

For variant records in which the tag fields are not stored, the variants to be used when
formatting them may be specified by including tag field values. If no field is supplied, the
first variant of the structure is assumed. The following examples are based on these types:

 bit8 = 0 .. 255;

 CoerceRec = RECORD
 CASE integer OF
 0 : (int : integer);
 1 : (ch : PACKED ARRAY [1..4] OF char);
 2 : (byte : PACKED ARRAY [1..4] OF bit8);
 3 : (bool : PACKED ARRAY [1..32] OF boolean);
 END;

Consider the following examples assuming that the System Debug variable addr contains
the address of some data corresponding to a CoerceRec data structure:

 $nmdat > FV addr2 "CoerceRec"
306 Chapter 7

Symbolic Formatting Symbolic Access
Using the Symbolic Formatter
 RECORD
 INT : 4a554e4b
 END

We assume the first variant for the CoerceRec and print out the data as an integer value.
We now ask for an explicit variant:

 $nmdat > FV addr2 "CoerceRec,1"

 RECORD
 CH : 'JUNK'
 END

We may explicitly ask for the data to be formatted in any of the possible variants. In the
above example we asked for variant 1 (as characters). Notice that since this is a packed
array of char (PAC), the formatter prints the data as a character string. To have PACs
printed as arrays, specify the NOPAC option:

 $nmdat > FV addr2 "CoerceRec,1" NOPAC

 RECORD
 CH : [1]: 'J'
 [2]: 'U'
 [3]: 'N'
 [4]: 'K'
 END

Also note that packed array of Boolean (PAB) are printed as a string of bits. To have such
structures printed as arrays, you can specify the NOPAB options.

 $nmdat > FV addr2 "CoerceRec,3"

 RECORD
 BOOL :
 [1]: 01001010010101010100111001001011
 END

 $nmdat > FV addr2 "CoerceRec,3" NOPAB

 RECORD
 BOOL :
 [1]: FALSE
 [2]: TRUE
 [3]: FALSE
 .
 . <etc for the rest of the array>
 .
 [32]: TRUE
 END
Chapter 7 307

Symbolic Formatting Symbolic Access
Using Symbolic Access
Using Symbolic Access
Symbolic access references data through the use of symbolic names declared at the source
code level, rather than through addresses and offsets to specific memory locations. This
facility allows users to access stored information in a more natural way, leaving the
drudgery of translating symbolic names to storage locations up to System Debug.

The chart below summarizes the symbolic functions currently available. These functions
allow programmatic access to the information provided by the FT and FV commands.

Each function takes a path specification as one of its parameters. The form of this
parameter is the same as that used by the FT and FV commands presented on the previous
pages.

Each of these functions are presented in detail (including examples) in chapter 8.

Table 7-1. Symbolic Functions Available

SYMVAL (virtaddress, pathspec) returns the value of the data structure specified by
pathspec .

SYMLEN (pathspec , [units]) returns the length of a data structure in bits or
bytes.

SYMADDR (pathspec , [units]) returns the bit or byte offset of an element specified
by pathspec , relative to the start of the path.

SYMINSET (virtaddress,
pathspec, element)

returns a boolean value of TRUE if the set member
element is in the set specified by address and
pathspec .

SYMTYPE (pathspec) Returns the type of a component described by
pathspec .

SYMCONST (pathspec) returns the value of the constant specified by
pathspec .

Parameters:

virtaddress the address of the actual data. (Required)

pathspec a path specification. (Required)

units specifies whether the return value for SYMLEN and
SYMADDR is in bits or bytes. (Optional)

element a set element. (Required)
308 Chapter 7

System Debug Windows
8 System Debug Windows

System Debug offers a powerful and efficient set of screen-oriented "windows," which allow
dynamic visual monitoring of the program environment.

The System Debug windows are initially disabled, but can be easily toggled on (WON) and
off (WOFF). Users can continue to use all normal interactive commands while the windows
are displayed.

The following windows are provided by System Debug:

• The register window (R) displays the current CM register values

• The general register window (GR) displays the current NM general register
values.

• The special register window (SR) displays the current values of a collection of
special NM registers (including the space registers).

• The program window (P) tracks the program counter in the current mode (NM or
CM). Current executing instructions are displayed and breakpoints are flagged. For
convenience, the program window for one mode can also be accessed from the other
mode with the fully qualified name (CMP or NMP).

• The frame window (Q) highlights the most recent CM stack marker. By default, this
window displays addresses as unsigned DB-relative values. The user may choose to
have addresses displayed relative to DB, Q, S, DL, or the DST base. Addresses may be
displayed as signed or unsigned values. For details on these options, see the QM
command. This window may also be aimed at any valid DST to which the user has
access.

• The stack window (S) tracks the current CM top of stack. By default, this window
displays addresses as unsigned DB relative values. The user may choose to have
addresses displayed relative to DB, Q, S, DL the DST base. Addresses may be displayed
as signed or unsigned values. For details on these options, see the SM command. This
window may also be aimed at any valid DST to which the user has access.

• A group window (G) is a special window within which the user can custom-define
individual user windows (UW). These user windows (subwindows) can be "aimed" at
parameters, variables, data blocks, and so on. Up to three group windows can be
defined.

• A virtual window (V) displays data at a native mode virtual address. Up to eight
virtual windows are available.

• The memory window (Z) displays data at a native mode real address.

• The ldev window (L) displays the contents of secondary storage at the specified disk
address expressed as a logical device (LDEV) and byte offset.

• A text window (TX) displays information in a text file. Up to three text windows are
available.
Chapter 8 309

System Debug Windows
A Typical Screen Display of CM Windows
• The command window provides space for the user to type interactive commands.

Each mode (CM and NM) may have a different set of windows enabled. When one switches
from mode to mode, the windows change to reflect the current mode. Note that there is
only one set of windows; the user may easily specify which windows are enabled in a given
mode. This means that virtual window #1 in CM is the same window as virtual window #1
in NM.

Each mode may have any combination of windows displayed together at one time. The only
restriction is the number of lines available on the screen. There are 24 lines available for
windows. The last two lines are reserved for the command window (where commands are
entered and output is displayed). This leaves a maximum of 22 lines for additional
windows. Any lines not used by other windows are automatically assigned to the command
window. If an attempt is made to expand an existing window, add a new window, or enable
an existing window for which there are insufficient free lines on the screen, System Debug
will display an error message.

A Typical Screen Display of CM Windows
The following is a typical System Debug screen display with activated CM windows:

R % Regs DB=001000 DBDST=000160 X=000132 STATUS=(mITroc CCG 301) PIN=061
SDST=000160 DL=177650 Q=000704 S=000710 CMPC=PROG 000000.001667
 CIR=170005 MAPFLAG=1 MAPDST=000000
cmP % PROG 0.1667 (E) SEG' CSTX 1 Level 0
001662: T|2| PROCESSSTUDENT+%255 031403 3. EXIT 3
001663: PROCESSSTUDENT+%256 077777 .. ADDM S-%77,I,X
001664: PROCESSSTUDENT+%257 177777 .. LRA S-%77,I,X
001665: [1] ?PROCESSSTUDENT 000700 .. DZRO, NOP
001666: PROCESSSTUDENT+%261 151605 .. LDD Q-5
001667: > PROCESSSTUDENT+%262 170005 .. LRA P+5
001670: PROCESSSTUDENT+%263 000733 .. DZRO, INCA
Q % (DB mode) QDST=000160 Level 0
000670: 000000 000000 000000 140026 000004 000000 000004 000000
000700: 000002 000132 000253 060301 Q>000010 000000 000000 000000
000710: 000002<S
S % (DB mode) SDST=000160 Level 0
000700: 000002 000132 000253 060301 Q>000010 000000 000000 000000
000710: 000002<S
G Group:1 %
U1 count DB+5 % 000004 000000 000000 000000
U2 students DB+2 A ".." "Bi" "ll" ".."
U3 *currnum Q-5 % 000002 000132 000253 060301
Commands
Break at: CM [1] PROG % 0.1665 ?PROCESSSTUDENT
%7 (%61) cmdebug > s 2
%8 (%61) cmdebug >
310 Chapter 8

System Debug Windows
A Typical Screen Display of NM Windows
A Typical Screen Display of NM Windows
The following is a typical System Debug screen display with activated NM windows:

GR$ ipsw=0004000f=jthlnxbCvmrQPDI priv=3 pc=000000f9.00005d24pin=00000029
r0 00000000 00000002 00006b1f 81fe0000 r4 c0615c60 00000001 c0000000 00000000
r8 00000000 00000000 00000000 00000000 r12 00000000 00000000 00000000 00000000
r16 00000000 00000000 00000000 40207df4 r20 00000004 00000001 00000001 402080f8
r24 00000029 00000005 00000002 40200008 r28 00000002 00000080 40205940 00000005
nmP$ PROG f9.5d18 GRADES.DEMO.TELESUP/processstudent.lowsco*+$dc Level 0,0
00005d18: lowscore+$dc 4.0 4bdc3fa1 LDW -48(0,30),28
00005d1c: T|2| lowscore+$e0 e840c000 BV 0(2)
00005d20: lowscore+$e4 37de3fa1 LDO -48(30),30
00005d24: [1]> processstudent 6bc23fd9 STW 2,-20(0,30)
00005d28: processstudent+$4 6fc30100 STWM 3,128(0,30)
00005d2c: processstudent+$8 6bc43f09 STW 4,-124(0,30)
00005d30: processstudent+$c 6bc53f11 STW 5,-120(0,30)
V0$ STUDENTS SID=109 HOME=109.40200010 Values in $
40200010:00000004 42696c6c 00000000 00000000 00000001 00040000 0000002d 00000041
40200030:0000004e 00000042 00000000 00000000 00000000 00000000 00000000 00000000
V1$ Virtual SID=109 HOME=109.40200010 Values in A
40200010: "...." "Bill" "...." "...." "...." "...." "...-" "...A"
V2$ NUM SID=109 HOME=109.40200154 Values in $
40200154:00000004 00000000 00000000 00000000 00000000 0000000b a5050000 00000000
Commands
$d ($29) nmdebug > vw dp+14c; vl 2;c
Break at: NM [1] PROG f9.00005d24 processstudent
$e ($29) nmdebug >

Window Operations
System Debug provides window commands which allow the user to customize individual
windows:

• The size (number of lines) of each window can be set individually by the user. This
allows the user to give up a few screen lines from one window in order to increase the
size of another window. When the size of a particular window is set to 0 lines, then that
window is effectively removed from the screen. The command window is the only
window that cannot be entirely removed. Banner lines (the first line of the window) are
included in the window line count. For example, a virtual window with a length of three
lines contains one banner line and two lines of data. (Refer to the wL command.)

• Windows can be individually enabled and disabled (wE and wD) or they be removed
(killed). (Refer to the wK command.)

• Windows can be scrolled forwards and backwards to display data in the proximity of the
current location. (Refer to the wF and wB commands.)

• Most windows can be jumped to a specified address other than the default current
address (which is based on program execution.) (Refer to the PJ, QJ, SJ, TJ,
Chapter 8 311

System Debug Windows
Window Updates
VJ, and UJ commands.)

• Windows can be returned to the "home" position. This is defined as the location
displayed in the window when it was created. Some windows (virtual, real, ldev) allow
the user to redefine the "home" location of the window. (Refer to the wH command.)

• Window values can be displayed in several output bases. Individual windows can be
displayed in any selected radix, such as octal, decimal, hex, or ASCII. (Refer to the wR
command.)

• The Q and S windows display addresses in one of several different modes (either DB,
DL, Q, S, or DST). The mode determines how the addresses shown in the left column of
the window will be displayed. The default is to display them relative to the current
value of the DB register. Addresses may be displayed as signed or unsigned values.
(Refer to wMcommand.) In addition, these windows may also be aimed at arbitrary data
segments.

• Virtual and user windows can be named or renamed. (Refer to the VN and UN
commands.)

• Virtual, text, and user windows can be used as "current" windows. Performing an
operation on a window makes it current. In addition, one may specify explicitly which
window to make current. (Refer to the VC and UC commands.)

• Text and virtual windows can have summary information about their shape and
location printed with the "info" (wI) command.

• Text windows may be scrolled horizontally to view text in files wider than 80 columns.
(Refer to the TXS command.)

Window Updates
System Debug automatically updates all displayed window values after the completion of
every interactive user command list. In addition, when the user single steps (SS) the
program, or continues (C) program execution until the next breakpoint is encountered,
System Debug automatically updates the windows.

System Debug knows the current value of each cell in each window on the screen, and is
therefore able to efficiently update only those cells that have changed since the last
update. Consequently, window updates are very quick and are not distracting to the user.
When major changes appear during window updates, these usually reflect a major change
in the program environment, such as a procedure call.

Values that have been modified between updates are automatically flagged by System
Debug by highlighting them in inverse video. This allows simple visual recognition of cells
that are changing. The top of stack area displayed in the frame and stack windows is
typically very dynamic.

The user can configure the terminal enhancement used to display these changing values
(refer to the ENV CHANGES command.) In addition, the user can configure the terminal
enhancement used to display the current stack marker (refer to the ENV MARKER
312 Chapter 8

System Debug Windows
Window Real/Virtual Modes
command.)

Window Real/Virtual Modes
System Debug automatically tracks the translation bits in the processor status word
(IPSW). There are two IPSW bits of interest, the C and D bits. These bits indicate if the
machine performs "code" and "data" translation, respectively. If the C bit is off, the
machine interprets all code addresses as REAL addresses rather than virtual addresses.
Likewise, if the D bit is off, any data address is interpreted as a REAL address rather than
a virtual address.

The windows honor this convention by examining the current settings of the bits in the
processor status word. This means that any virtual window displays data based on the
IPSW D bit. Likewise, the NM program window is affected by the C bit.

The NM program window is flagged as REAL when code translation is turned off (for
example, the C bit equals 0). Likewise, virtual windows and user windows aimed at virtual
address space are flagged as REAL when data translation is turned off (for example, the D
bit equals 0).

R - The CM Register Window
The CM register window displays the current values of the compatibility mode registers.

R % Regs DB=001000 DBDST=000160 X=000132 STATUS=(mITroc CCG% 301) PIN=061
SDST=000160 DL=177650 Q=000704 S=000710 CMPC=PROG 000000.001667
 CIR=170005 MAPFLAG=1 MAPDST=000000

window banner line

• R % Regs - Abbreviation for the window, the current output display radix, and the name
for the window.

• DB, DBDST - The current DB word offset (CM stack base relative) and DBDST data
segment number. If DBDST is different from SDST (the stack data segment number),
then DB and DBDST are displayed in half-inverse, indicating "split-stack mode."

• X - The current index register.

• STATUS - The current status register. (Refer to the conventions pages for a description
of the format of this value.)

• PIN - The process identification number (PIN) for the current process.

window body line(s)

• SDST - The CM stack data segment number.

• DL - The DB relative value of DL.
Chapter 8 313

System Debug Windows
Gr - The NM General Registers Window
• Q - The current Q value (stack frame), expressed in CM words, relative to DB.

• S - The current S value (TOS), expressed in CM words, relative to DB.

• CMPC - The current CM program location, expressed as a logical code address. This
includes the library (PROG, GRP, PUB, LGRP, LPUB, SYS), logical segment number,
and program counter in CM words, relative to the base of the current code segment.

• CIR - The current instruction register.

• MAPFLAG - If 0, the current CM segment is logically mapped. If 1, the current CM
segment is physically mapped. This is used for CM CST expansion.

• MAPDST - The mapping DST number for CM CST expansion.

Gr - The NM General Registers Window
The NM register window displays the current values of the Native Mode General
Registers.

GR$ ipsw=0004000f=jthlnxbCvmrQPDI priv=3 pc=000000f9.00005d24 pin=00000029
r0 00000000 00000002 00006b1f 81fe0000 r4 c0615c60 00000001 c0000000 00000000
r8 00000000 00000000 00000000 00000000 r12 00000000 00000000 00000000 00000000
r16 00000000 00000000 00000000 40207df4 r20 00000004 00000001 00000001 402080f8
r24 00000029 00000005 00000002 40200008 r28 00000002 00000080 40205940 00000005

window banner line

• GR$ - Abbreviation for the window and the current output display. This window is
always displayed in hexadecimal.

• ipsw - The current processor status word contents. The numeric value as well as the
decoded bits are displayed. (Refer to the conventions pages for a description of the
format for this value).

• priv - The current privilege level. This is based on the two low-order bits of the PCOF
register.

• pc - The current program counter. This is a combination of the PCSF and PCOF
registers. The offset part is always displayed word aligned.

• pin - The process identification number (PIN) for the current process.

window body line(s)

• r0 - r31 - The current values of the general registers.

Sr - The NM Special Registers Window
The special register window displays the current values of special NM registers.
314 Chapter 8

System Debug Windows
P (cmP) - The CM Program Window
SR$ isr=0000000a ior=00000000 iir=0000400e eiem=ffffffff rctr=00000000 sar=02
sr0=0000000a 0000000a 000000f8 00000000 sr4=00000101 000000f8 0000000b 0000000a
pcq=00000101.00005d27 00000101.00005d2b tr0=005e5200 00615200 eirr=00000000
pid1=0077(W) 007c(W) 007d(W) 0000(W) iva=00090000 itmr=5d801c34 ccr=80

window banner line

• SR$ - Abbreviation for the window and the current output display. This window is
always displayed in hexadecimal.

• isr - The interruption space register.

• ior - The interruption offset register.

• iir - The interruption instruction register.

• eiem - The external interrupt enable mask.

• rctr - The recovery counter.

• sar - The shift amount register. (This is a 5 bit register.)

window body line(s)

• sr0 - sr7 - The space registers.

• pcq - The program counter queue.

• tr0 -tr1 - Temporary registers 0 and 1.

• eirr - The external interrupt request register.

• pid1 - pid 4 - The protection ID registers. These are 16-bit registers. (Refer to the
conventions pages for a description of the format for this value.

• iva - The interrupt vector address.

• itmr - The interval timer.

• ccr - The coprocessor configuration register. (This is an 8-bit register.)

P (cmP) - The CM Program Window
The CM program window tracks the CM program counter (CMPC), displaying the
instructions that are being executed.

cmP % PROG 0.1667 (E) SEG' CSTX 1 Level 0
001662: T|2| PROCESSSTUDENT+%255 031403 3. EXIT 3
001663: PROCESSSTUDENT+%256 077777 .. ADDM S-%77,I,X
001664: PROCESSSTUDENT+%257 177777 .. LRA S-%77,I,X
001665: [1] ?PROCESSSTUDENT 000700 .. DZRO, NOP
001666: PROCESSSTUDENT+%261 151605 .. LDD Q-5
001667: > PROCESSSTUDENT+%262 170005 .. LRA P+5
001670: PROCESSSTUDENT+%263 000733 .. DZRO, INCA

window banner line

• cmP % - Abbreviation for the window and the current output display radix for the
Chapter 8 315

System Debug Windows
P (nmP) - The NM Program Window
window.

• PROG 0.1667 - The logical code address for the CM program counter. If the window does
not contain the CM program counter, then the value is the logical code address of the
first line in the window. In our example, the CM program counter is currently at a
program file, logical segment number 0, at an offset of 1667 words. Other possible
logical segment types are GRP, PUB, LPUB, LGRP, SYS .

• (E) - The segment is (E) emulated or (T) translated.

• SEG' - The segment name for the current segment being displayed.

• CSTX 1 - The CSTX (or CST) absolute segment number.

• Level 0 - The current stack level. (Refer to the LEV command.)

window body line(s)

• offset: - The CM word offset (segment relative) for the instruction line which is being
displayed.

• breakpoints - Breakpoints are displayed between the offset and instruction. Refer to the
conventions pages for a description of all possible breakpoint notations.

 [1] process local breakpoint, index number 1

 T|2| process local temporary breakpoint, count not exhausted yet, index
number 2.

• > - Flags the current program counter location.

• procedure-name+offset - The symbolic procedure name and the CM word offset
within the procedure.

• instruction (numeric, ASCII) - The instruction value is displayed formatted in the
current output base for the window, and then displayed as two ASCII characters (for
literals).

• instruction (disassembly) - The disassembled instruction value.

P (nmP) - The NM Program Window
The NM program window tracks the NM program counter (PC), displaying the
instructions that are being executed. The banner line gives information for the first
address displayed in the program window.

nmP$ PROG f9.5d18 GRADES.DEMO.TELESUP/processstudent.lowsco*+$dc Level 0,0
00005d18: lowscore+$dc 4bdc3fa1 LDW -48(0,30),28
00005d1c: T|2| lowscore+$e0 e840c000 BV 0(2)
00005d20: lowscore+$e4 37de3fa1 LDO -48(30),30
00005d24: [1]> processstudent 6bc23fd9 STW 2,-20(0,30)
00005d28: processstudent+$4 6fc30100 STWM 3,128(0,30)
00005d2c: processstudent+$8 6bc43f09 STW 4,-124(0,30)
00005d30: processstudent+$c 6bc53f11 STW 5,-120(0,30)
316 Chapter 8

System Debug Windows
Program Windows for Object Code Translation
window banner line

• nmP $ - Abbreviation for the window and the current output display radix for the
window.

• PROG f9.5d18 - The logical code address for the first line in the window. The program
window is aimed at the PROGram file, space: $f9, offset: $5d18.

• GRADES.DEMO.TELESUP/ - The name of the file which contains the displayed code.

• processstudent - The name of the level 1 procedure that appears in the first line of the
window.

• .lowsco* - The nested procedure that appears in the first line of the window. An asterisk
is used to flag the fact that the full name of the nested procedure does not fit in the
display. (See the DCcommand and the NMPATHand NMPROCfunctions for instructions on
displaying full procedure names).

• Level 0,0 - The current stack level, interrupt level (refer to the LEV command).

window body line(s)

• offset: - The virtual byte offset of the instruction line which is being displayed.

• breakpoints - Breakpoints are displayed between the offset and the instruction. Refer to
the Conventions pages for a description of all possible breakpoint notations.

 [1] process local breakpoint, index number 1

 T|2| process local temporary breakpoint, count not exhausted yet, index
number 2.

• > - Flags the current program counter location.

• procedurename+offset - The symbolic procedure name and the byte offset within the
procedure.

• instruction (numeric) - The instruction value is displayed formatted in the current
output base for the window.

• instruction (disassembly) - The disassembled instruction value.

Program Windows for Object Code Translation
A CM code segment (XLSEG11) has been translated by the Object Code Translator (OCT).
The CM program window (top) is aimed at the original CM object code. The NM program
window (middle) is aimed at the corresponding section of translated code. Fields within the
windows that are unique to translated code are described below. Refer to appendix C for a
discussion of CM object code translation, node points, and breakpoints in translated CM
code.

cmP % SYS 22.5206 (T) XLSEG11 CST 23 Level 0
005206:N @[1] ?FOPEN 170404 .. LRA P-4
005207: FOPEN+%5 030400 1. SCAL O
Chapter 8 317

System Debug Windows
Q - The CM Stack Frame Window
005210:N [2] FOPEN+%6 000600 .. ZERO, NOP
005211: [3] FOPEN+%7 051451 S) STOR Q+%51
005212:N FOPEN+%10 140060 .0 BR P+%60
005213: FOPEN+%11 140003 .. BR P+3
005214:N [1] ?FSOPEN 170412 .. LRA P-%12
nmP$ TRANS 24.6b7bb8 (translated CM Seg SYS %22 XLSEG11) Level 0,0
006b7bb8:N @[1] ?FOPEN 340c1504 LDO 2690(0),12
006b7bbc: 34191510 LDO 2696(0),25
006b7bc0: 0c991264 STHS,MA 25,2(0,4)
006b7bc4: d19adff0 EXTRS,>= 12,31,16,26
006b7bc8: e680e792 BLE,N 968(7,20)
006b7bcc: e566204e BLE,N 53284(4,11)
006b7bd0:N [2] FOPEN+%6 0800024c OR 0,0,12
006b7bd4:N 646c00a4 STH 12,82(0,3)
006b7bd8:N FOPEN+%10 e8000232 B,N $006b7cf8
Commands
%31 (%44) cmdebug >

window banner line

• (T) - The CM segment is currently running in translated mode.

• TRANS 24.6b7bb8 - The NM program window is aimed at translated code. The original
CM segment is identified as SYS %22 XLSEG11.

window body line(s)

• Node points are denoted by N.

• breakpoints - Breakpoints are displayed between the offset and the procedure name.
Refer to the conventions pages for a description of all possible breakpoint notations.

@[1] global breakpoint, index number 1

[2] process local breakpoint, index number 2

• procedurename+offset - The NM program window shows where each node point is in
the original CM object code. The "?" indicates an entry point for CM procedure names.
Refer to chapter 2, section "Procedure Name Symbols" for details on the conventions
used for procedure names.

Q - The CM Stack Frame Window
The frame window tracks Q, the most recent CM stack frame.

Q % (DB mode) QDST=000160 Level 0
000670: 000000 000000 000000 140026 000004 000000 000004 000000
000700: 000002 000132 000253 060301 Q>000010 000000 000000 000000
000710: 000002<S

window banner line

• Q % - Abbreviation for the window and the current output display radix.

• (DB mode) - The address mode for the window. This can be DB, DL, Q, S , or DST. The
318 Chapter 8

System Debug Windows
S - The CM Stack Window
address shown at the left side of the window is relative to the indicated base. (Refer to
the QM command.)

• QDST - QDST is the data segment for the Q window. In most cases, this is the same as
the stack DST. This window may be aimed away from the stack, in which case this value
indicates the DST being viewed.

• Level 0 - The current stack level. (Refer to the LEV command).

window body line(s)

• offset: - The starting CM word offset for the line of displayed values. The values may be
unsigned (default) or signed (relative to the address mode base). See the QM command
for details.

• values - The actual data values are displayed in the current output base of the window.

• Q> - Indicates the location of Q. The stack marker (at Q-3, Q-2, Q-1, Q) is typically
underlined. (Refer to the ENV MARKER command.)

• <S - Indicates the location of the current top of stack. The TOS value is typically
underlined. (Refer to the ENV MARKER command.) If the TOS value has changed, the
enhancement for the changed value will overwrite the enhancement for the TOS
indicator (as in our example).

S - The CM Stack Window
The stack window tracks S, the current top of the CM stack (TOS).

S % (DB mode) SDST=000160 Level 0
000700: 000002 000132 000253 060301 Q>000010 000000 000000 000000
000710: 000002<S

window banner line

• S % - Abbreviation for the window and the current output display radix.

• (DB mode) - The address mode for the window. This can be DB, DL, Q, S , or DST. The
address shown at the left side of the window is relative to the indicated base. (Refer to
the SM command.)

• SDST - SDST is the data segment for the S window. In most cases, this is the same as
the stack dst. This window may be aimed away from the stack, in which case this value
indicates the dst being viewed.

• Level 0 - The current stack level. (Refer to the LEV command.)

window body line(s)

• offset: - The starting CM word offset for the line of displayed values. The values may be
unsigned (default) or signed (relative to the address mode base). See the SM command
for details.

• values - The actual data values are displayed in the current output base of the window.
Chapter 8 319

System Debug Windows
G - The Group (of User) Window
• <S - Indicates the location of the current top of stack. The TOS value is typically
underlined. (Refer to the ENV MARKER command.) If the TOS value has changed, the
enhancement for the changed value will overwrite the enhancement for the TOS
indicator (as in our example).

• Q> - Indicates the location of Q. The stack marker (at Q-3, Q-2, Q-1, Q) is typically
underlined. (Refer to the ENV MARKER command.)

G - The Group (of User) Window
The group window is a special window which contains multiple individual user-defined
windows.

G Group:1 %
U1 count DB+5 % 000004 000000 000000 000000
U2 students DB+2 A ".." "Bi" "ll" ".."
U3 *currnum Q-5 % 000002 000132 000253 060301

window banner line

• G - Abbreviation for the group window.

• Group:1 - Displays the number of the group window that is currently being displayed.
Three separate group windows, numbered from 1 to 3, are available. (Refer to the WGRP
command).

• % - The current radix used to display addresses. The radix in that the addresses are
displayed may be altered. (Refer to the GR command.)

window body line(s)

• User-defined window lines appear under the group banner line. Refer to the U (User)
window discussion for details about user window lines.

The Command Window
The command window reserves space for the user to enter System Debug commands
interactively and for displaying the resulting command output.

Commands

Break at: NM [1] PROG f9.00005d24 processstudent
$d ($29) nmdebug >

window banner line

• Commands - The name of the commands window.

window body line(s)
320 Chapter 8

System Debug Windows
U - The User Windows
• $d ($29) nmdebug > - The System Debug prompt appears in the command window.

U - The User Windows
User-defined windows are custom named pointers.

G Group:1 %
U1 count DB+5 % 000004 000000 000000 000000
U2 students DB+2 A ".." "Bi" "ll" ".."
U3 *currnum Q-5 % 000002 000132 000253 060301

window banner line

• Refer to the G (Group) window discussion for a description of the banner line.

window body line(s)

• U# - The abbreviation for user window, followed by the number of the window. For
example, U2 is read "user window number 2."

• * - An asterisk is placed next to the "current" (most recently used) user window. Several
window commands are defined to operate on the current window, unless an optional
window number is supplied.

• name - The name of the user window; the name is supplied when the window is created.

• address - The address where the user window is located. The address is always
displayed based on the current output base of the group window that is displayed in the
GW banner. The output base for the group window may be altered (Refer to the GR
command.)

• %, A - The output display base for the data values in the user windows. The output base
for each user window can be individually selected. (Refer to the UR command.)

• values - The actual data values are displayed in the current output base for this
window.

V - The Virtual Windows
The virtual window displays blocks of Precision Architecture virtual memory.

V0$ STUDENTS SID=109 HOME=109.40200010 Values in $
40200010:00000004 42696c6c 00000000 00000000 00000001 00040000 0000002d 00000041
40200030:0000004e 00000042 00000000 00000000 00000000 00000000 00000000 00000000
V1$ Virtual SID=109 HOME=109.40200010 Values in A
40200010: " "Bill" "...." "...." "...." "...." "...-" "...A"
V2$ NUM SID=109 HOME=109.40200154 Values in $
40200154:00000004 00000000 00000000 00000000 00000000 0000000b a5050000 00000000

window banner line
Chapter 8 321

System Debug Windows
Z - The Memory Window
• V0, V1, V2 $ - Abbreviation for the virtual window, the virtual window number, and the
current output display radix for offsets. At present, up to eight virtual windows may be
defined. The current virtual window is indicated by flagging the window abbreviation in
half-bright inverse video. In this display, V2 is the current virtual window.

• STUDENTS, Virtual, NUM - The name which was supplied when the window was
created (or with the VNcommand). If no name is supplied, the name "Virtual" is used.

• SID - The virtual space ID at which the window is aimed.

• HOME - The home address which was originally specified in the VWcommand when the
window was defined. Note that a new home address can be specified with the VH
command.

• Values in $, A - The output display radix for data values. Note that virtual window
number 1 has values in ASCII.

window body line(s)

• offset - The starting virtual offset for the line of displayed values.

• values - The actual data values are displayed. Unprintable ASCII data is shown as dots.

Z - The Memory Window
The memory window displays a block of Precision Architecture real memory.

Z $ Memory Values in $
00000000:0004ffff ffff0000 007b434d 434d000f 0000fffc 00030037 0002000a 57697468
00000020:20612068 6579204e 656c6c69 0002003c cd02000c 012f000c fffd0063 28660000
00000040:0005ffff 534c2e50 55422e53 5953fffa 00070003 00010016 c1028014 05eb001b

window banner line

• Z $ Memory - Abbreviation for the window, the current output display radix for real
address, and the name for the window.

• Values in $ - The output display base for data values.

window body line(s)

• offset - The real address for the line of displayed values.

• values - The actual data values are displayed.

L - The LDEV Window
The LDEV window displays the contents of secondary storage (data on disk).

LDEV $ DISP=1.0 HOME=1.0 Values in $
00000000:80004850 45535953 00085be0 10000000 00000008 00000000 00000000 00000000
322 Chapter 8

System Debug Windows
TX- The Text Windows
00000020:00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

window banner line

• LDEV $ - Name of the LDEV window and the current output display radix.

• DISP - The full address of the current position of the LDEV window. (Byte offsets in the
window itself contain only the low-order 32 bits.)

• HOME - The home address which was originally specified in the LWcommand when the
window was defined. A new home address can be selected with the LH command. This
address is expressed as a logical device (LDEV) and byte offset (that is, ldev.offset)
relative to the start of the disk.

• Values in $ - The output display radix for data values.

window body line(s)

• offset - The starting disc offset (in bytes) for the line of displayed values.

• values - The actual data values from secondary storage are displayed.

TX- The Text Windows
The text window displays the contents of ASCII text files.

TX0$ COL=1 LINE=1e FNAME=TGRADES.DEMO.TELESUP
{--}
{ Globally used TYPES }
{--}

TYPE

 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
TX1$ COL=1 LINE=1 FNAME=UPOEM.DEMO.TELESUP
wl "Roses are red,"
wl "Violets are blue,"
wl "Some poems rhyme,"
wl "And this one does, too!"

Commands

window banner line

• TX0, TX1 - Abbreviation for the window, and the text window number. Currently, up to
three text windows may be defined. The current text window is indicated by flagging
the window abbreviation in half-bright inverse video. In this example, TX1 is the
current text window.

• COL - The column number at which the window is aimed. Text windows may be
Chapter 8 323

System Debug Windows
TX- The Text Windows
"shifted" to view data that would otherwise be off the end of the screen.

• LINE - The line number (file record number) at which the window is aimed.

• FNAME - The name of the file at which the text window is aimed.

window body line(s)

• text - The ASCII contents of the text file(s).

• "." - Dots signify lines past the end-of-file count.

• "x" - X's signify an error while reading the data for that line. This could be a protection
violation or some other cause (not shown above).
324 Chapter 8

System Debug Window Commands
9 System Debug Window Commands

System Debug window commands are most easily understood when they are grouped into
two types of commands. The commands in this chapter are ordered as follows:

• General Window Operations:

 RED Redraw the entire screen display.

 WDEF Restore default window sizes.

 WGRP Switch to the specified group of user windows.

 WOFF Turn the windows off.

 WON Turn the windows on.

• Window Operations:

 B Backwards - scroll window backwards.

 C Current - mark window as current window.

 D Disable - disable (turn off) a window.

 E Enable - enable (turn on) a window.

 F Forwards - scroll window forwards.

 H Home - return window to home position.

 I Info - give info about defined windows.

 J Jump - aim window to new address.

 K Kill - remove, deallocate a window.

 L Lines - change window size in lines.

 M Mode - set mode (DB, DL, Q, S, DST) for Q or S.

 N Name - name or rename a user or virtual window.

 R Radix - change window display radix/base.

 S Shift - shift window left or right.

UWm

User Window - allocate user window at specified address.

 W Where - aim window to location.

• Window Abbreviations:

 CMP CM program window (from NM).

 G Group window.

 GR NM general registers window.
Chapter 9 325

System Debug Window Commands
 L Ldev window.

 NMP NM program window (from CM).

 P Program window (current mode).

 Q CM frame window, Q relative.

 R CM registers window.

 S CM stack window, S relative.

 SR NM special registers window.

 TX Text file window.

 U User-defined window.

 V Virtual address window.

 Z Real memory window.

Put window abbreviations and window operations together to form the desired
command. For example:

 PB Program Backward - scroll program window backward.

 PF Program Forward - scroll program window forward.

 PL Program Lines - change the program window size.

 VH Virtual Home - return virtual window to the home position.

 VN Virtual Name - assign a name to a virtual window.

 VW Virtual Where - define a virtual window.

 ZR Z(R)eal Radix - change the radix for the real window.

• Defining User Windows:

Append the desired addressing mode to the UWm command:

 UWA User window, ABS relative

 UWCA User window, CST relative

 UWCAX User window, CSTX relative

 UWD User window, DST relative

 UWDB User window, DB relative

 UWQ User window, Q relative

 UWS User window, S relative

 UWV User window, Precision Architecture virtual address

 UWZ User window, Precision Architecture real memory address

The Debug window commands are described in detail in the remainder of this chapter. The
commands are listed in alphabetical order. Note that all individual window operation
commands are constructed by preceding the window operation with the abbreviation for
the desired window. To signify this, all window operation commands are listed as wX, where
326 Chapter 9

System Debug Window Commands
RED
w represents the window abbreviation and X represents the command or operation. For
example, the window forward command is wF. The syntax diagram for wF lists all the
window types for which the command is applicable. If a window abbreviation is omitted,
then the command does not apply to that window.

RED
Redraws the entire screen display of windows.

Syntax
 RED

Parameters

none

Examples
 %cmdebug > red

Redraws the screen.

Limitations, Restrictions

none

WDEF
Window defaults. Resets the default window sizes.

Syntax
 WDEF

Parameters

none

Examples
 %cmdebug > wdef
Chapter 9 327

System Debug Window Commands
WGRP
Limitations, Restrictions

Virtual and real window sizes default to 0 lines, so that they are effectively killed (VK, ZK)
by this command.

WGRP
Changes to the specified group of user-defined windows.

Syntax
 WGRP [group_number]

Parameters

 group_number The number of the group which is to be displayed in the group window.
If no value is entered, group 1 is assumed.

Examples
 %cmdebug > wgrp 2

Switch the group window to display group number 2.

Limitations, Restrictions

Current limit: 3 groups of 10 user-defined windows, each numbered from 1 to 10.

WOFF
Windows OFF. Turns off the windows.

Syntax
 WOFF

Parameters

none

Examples
 %cmdebug > woff
328 Chapter 9

System Debug Window Commands
WON
Limitations, Restrictions

none

WON
Windows ON. Turns on the windows. If windows are already on, redraws them.

Syntax
 WON

Parameters

none

Examples
 %cmdebug > won

Limitations, Restrictions

none

wB
Window back. Scrolls the specified window backwards.

Syntax
 PB [amount] Program, current mode
 CMPB [amount] CM program
 NMPB [amount] NM program

 QB [amount] CM frame, Q relative
 SB [amount] CM stack, S relative

 GB [amount] Group window
 UB [amount] [win_number] User window

 VB [amount] [win_number] Virtual window
 ZB [amount] Real memory window
 LB [amount] LDEV window
 TXB [amount] [win_number] Text window
Chapter 9 329

System Debug Window Commands
wB
Parameters

amount The number of words or lines to scroll backwards. If omitted, the window is
scrolled back the default amount based on the following table:

win_number The window number for a specific user window (U), virtual window (V), or
text window (TX). If win_number is omitted, then the current window is
used. The current user window is marked by an asterisk, and the current
virtual window and text window are marked in inverse video.

Examples
 %cmdebug > PB 6

Scroll the program window (PW) back 6 words.

 %cmdebug > VB 5 2

Scroll virtual window number 2 back by 5 words.

 %cmdebug > GB 2

Scroll the group window (GW) of user windows, back by two user windows.

Limitations, Restrictions

none

Table 9-1. Default Scrolling Parameters

Cmd Units Default

PB (CM/NM) words Previous full screen of instructions

CMPB CM words Previous full screen of instructions

NMPB NM words Previous full screen of instructions

QB CM words Previous full line of data

SB CM words Previous full line of data

GB User windows To start of the previous user window

UB (CM/NM) words 1 line

VB CM words Previous full screen of data

ZB CM words Previous full screen of data

LB CM words Previous full screen of data

TXB Lines Previous full screen of text
330 Chapter 9

System Debug Window Commands
wC
wC
Window current. Marks the specified window as the current window. Many user window
(U), text window (TX), and virtual window (V) commands operate on the current window.

Syntax
 UC [win_number]
 VC [win_number]
 TXC [win_number]

Parameters

 win_number The window number for a specific user window (U), text window (TX), or
virtual window (V). If win_number is omitted, then the current window
remains flagged as the current window. The current user window is
marked by an asterisk, and the current virtual and text windows are
marked in inverse video.

Examples
 %cmdebug > VC 2

Mark virtual window number 2 as the current virtual window.

 %cmdebug > UC 3

Mark user window number 3 as the current user window.

Limitations, Restrictions

none

wD
Window disable.

Syntax

 RD CM registers
 GRD NM general registers
 SRD NM special registers
 PD Program, current mode
 CMPD CM program
 NMPD NM program
 QD CM frame, Q relative
 SD CM stack, S relative
Chapter 9 331

System Debug Window Commands
wE
 GD Group window
 UD [win_number] User window
 VD [win_number] Virtual window
 ZD Real memory window
 LD LDEV window
 TXD [win_number] Text window

This command causes the window to be removed from the screen temporarily until the
window is enabled again (see the wE command). Current window attributes (such as size,
address, contents, and so on) are retained between disable/enable calls.

Parameters

 win_number The window number for a specific user window (U), text window (TX), or
virtual window (V). If win_number is omitted, then the current window is
used. The current user window is marked by an asterisk, and the current
virtual and text windows are marked in inverse video.

Examples
 %cmdebug > PD

Disable the (current mode) program window.

 %cmdebug > UD 3

Disable user window number 3.

Limitations, Restrictions

none

wE
Window enable.

Syntax

 RE CM registers
 GRE NM general registers
 SRE NM special registers
 PE Program, current mode
 CMPE CM program
 NMPE NM program
 QE CM Frame, Q relative
 SE CM Stack, S relative
 GE Group window
 UE [win_number] User window
 VE [win_number] Virtual window
332 Chapter 9

System Debug Window Commands
wF
 ZE Real memory window
 LE LDEV window
 TXE [win_number] Text window

This command enables a window that was previously disabled with the wD command. The
original attributes of the window are retained between disable/enable calls.

Parameters

 win_number The window number for a specific user window (U), text window (TX), or
virtual window (V). If win_number is omitted, then the current window is
used. The current user window is marked by an asterisk, and the current
virtual and text windows are marked in inverse video.

Examples
 %cmdebug > NMPE

Enable the NM program window. Both the CM and NM program window can appear
together.

 %cmdebug > VE 3

Enable virtual window number 3.

Limitations, Restrictions

none

wF
Window forward. Scrolls the specified window forward.

Syntax

 PF [amount] Program current mode
 CMPF [amount] CM program
 NMPF [amount] NM program

 QF [amount] CM frame, Q relative
 SF [amount] CM stack, S relative

 GF [amount] Group window
 UF [amount] [win_number] User window

 VF [amount] [win_number] Virtual window
 ZF [amount] Real memory window
 LF [amount] LDEV window
Chapter 9 333

System Debug Window Commands
wF
 TXF [amount] [win_number] Text window

Parameters

 amount The number of words or lines to scroll forward. If win_number is omitted,
then the window is scrolled forward the default amount based on the
following table:

 win_number The window number for a specific user window (U), virtual window (V), or
text window (TX). If win_number is omitted, then the current window is
used. The current user window is marked by an asterisk, and the current
virtual and text windows are marked in inverse video.

Examples
 %cmdebug > PF 6

Scroll the (current mode) program window forward six words.

 %cmdebug > VB 5 2

Scroll virtual window number 2 forward by five words.

 %cmdebug > GF 2

Scroll the group window (of user windows) forward by two user windows.

Table 9-2. Scrolling Amount

Cmd Units Default

PF (CM/NM) wordsa

a. *Based on mode of the window.

Next full screen of instructions

CMPF CM words Next full screen of instructions

NMPF NM words Next full screen of instructions

QF CM words Next full line of data

SF CM words Next full line of data

GF User windows To start of the next user
window

UF (CM/NM) words* 1 line

VF CM words Next full screen of data

ZF CM words Next full screen of data

LF CM words Next full screen of data

TXF CM words Next full screen of text
334 Chapter 9

System Debug Window Commands
wH
Limitations, Restrictions

none

wH
Window home. Returns a window to its original location.

Syntax
 RH CM registers window
 GRH NM general registers window
 SRH NM special registers window

 PH Program window, current mode
 CMPH CM program window
 NMPH NM program window
 QH CM frame window - Q relative
 SH CM stack window - S relative

 GH Group window
 UH [win_number] User window

 VH [virtaddr] [win_number] Virtual window
 ZH [realaddr] Real memory window
 LH [ldev.off] LDEV window
 TXH [win_number] Text window

This command returns the specified window to its original (home) location. (This is the
location specified when the window was created.) This command is useful when a window
has been scrolled (F,B) or jumped (J) away from its home location. The virtual (V), real (Z),
and LDEV (L) windows may have their home location respecified with this command by
supplying a new home location.

Parameters

 win_number The window number for a specific user window (U), text window (TX), or
virtual window (V). If win_number is omitted, then the current window is
used. The current user window is marked by an asterisk, and the current
virtual and text windows are marked in inverse video.

 virtaddr If this parameter is provided, the home address for the virtual window (V)
is set to the indicated address. Virtaddr can be a short pointer, a long
pointer, or a full logical code pointer.

 realaddr If this parameter is provided, the home address for the real window (Z) is
set to the indicated real address.

 ldev.off The disk LDEV and byte offset to which the home address is set.
Chapter 9 335

System Debug Window Commands
wI
Examples
 %cmdebug > PH

Home the program window.

 $nmdebug > VH PSP-40 4

Change the home address for virtual window 4 to be the value of PSP-40. Jump the
window to the new home address.

 %cmdebug > UH 3

Home user window 3.

Limitations, Restrictions

none

wI
Window information. Prints information about the indicated windows. This command is
defined for the virtual (V) and text (TX) windows.

Syntax
 VI [win_number]
 TXI [win_number]

Parameters

 win_number The window number for a specific text window (TX) or virtual window (V).
If win_number is omitted, then information for all of the text or virtual
windows is displayed.

The abbreviations used in the output are defined as follows:

COL Column number (1, unless window was "shifted").

LINE Line (record number) where window is aimed.

REC Record size of the file (in bytes).

EOF End of file record number.

FLIMIT File limit (maximum number of records in the file).

The following flags may also appear:

CCTL File has carriage control.

VAR File has variable length records (REC is undefined).

BIN File is binary file.
336 Chapter 9

System Debug Window Commands
wJ
Examples
 $nmdebug > vi 2

V2: HOME= a.00040017 CURR= a.00040017 Lines=3

Display information about virtual window number 2.

 $nmdebug > txi
TX0: TDEBUG.CMDEBUG.OFFICIAL COL=1 LINE=34c

 REC=50 EOF=534d FLIMIT=534d

 TX1: LIST.DEBUG.WORK COL=a1 LINE=1
 REC=85 CCTL EOF=1000 FLIMIT=1000

Display information about all of the text windows.

Limitations, Restrictions

The format of output may be changed without notice.

wJ
Window jump. Jumps window to the specified address.

Syntax
 PJ [logaddr] Program file
 PJG [logaddr] Group library
 PJP [logaddr] Account library
 PJLG [logaddr] Logon group library
 PJLP [logaddr] Logon account library
 PJS [logaddr] System library
 PJU [fname logaddr] User library
 PJV [virtaddr] Any virtual address
 PJA [absaddr] Absolute CST
 PJAX [absaddr] Absolute CSTX

 CMPJ [logaddr] Program file
 CMPJG [logaddr] Group library
 CMPJP [logaddr] Account library
 CMPJLG [logaddr] Logon group library
 CMPJLP [logaddr] Logon account library
 CMPJS [logaddr] System library
 CMPJA [absaddr] Absolute CST
 CMPJAX [absaddr] Absolute CSTX

 NMPJ [logaddr] Program file
 NMPJG [logaddr] Group library
 NMPJP [logaddr] Account library
 NMPJLG [logaddr] Logon group library
 NMPJLP [logaddr] Logon account library
 NMPJS [logaddr] System library
 NMPJU [fname logaddr] User library
Chapter 9 337

System Debug Window Commands
wJ
 QJ [dst.off] CM Frame, Q relative
 SJ [dst.off] CM Stack, S relative

 VJ [virtaddr] [win_number] Virtual window
 ZJ [realaddr] Real memory window
 LJ [Ldev.off] LDEV window
 TXJ [record_number] Text window

Parameters

 logaddr PJ, PJG, PJP, PJLG, PJLP, PJS, PJU, and PJV control the current
program window, which is based on the current mode (CM or NM).

CMPJ, CMPJG, CMPJP, CMPJLG, CMPJLP, and CMPJS control the CM
program window.

NMPJ, NMPJG, NMPJP, NMPJS, NMPJS, and NMPJU control the NM
program window.

A full logical code address (LCPTR) specifies three necessary items:

1. The logical code file (PROG, GRP, SYS , and so on).

2. NM: the virtual space ID number (SID).

CM: the logical segment number.

3. NM: the virtual byte offset within the space.

CM: the word offset within the code segment.

Logical code addresses can be specified in various levels of detail:

• As a full logical code pointer (LCPTR)

PJ procname+20 Procedure name lookups return LCPTRs.

PJ pw+4 Predefined ENV variables of type LCPTR.

PJ SYS(2.200) Explicit coercion to a LCPTR type.

• As a long pointer (LPTR)

PJ 23.2644 sid.offset or seg.offset

The logical file is determined based on the command suffix:

PJ implies PROG

PJG implies GRP

PJS implies SYS, and so on.

• As a short pointer (SPTR)

PJ 1024 offset only

For NM, the short pointer offset is converted to a long pointer using the
function STOLOG, which looks up the SID of the loaded logical file. This
is different from the standard short to long pointer conversion, STOL,
338 Chapter 9

System Debug Window Commands
wJ
which is based on the current space registers (SRs).

For CM, the current executing logical segment number and the current
executing logical file are used to build an LCPTR.

The search path used for procedure name lookups is based on the
command suffix letter:

PJ Full search path:

NM: PROG, GRP, PUB, USER(s), SYS

CM: PROG, GRP, PUB, LGRP, LPUB, SYS

PJG Search GRP, the group library.

PJP Search PUB, the account library.

PJLG Search LGRP, the logon group library.

PJLP Search LPUB, the logon account library.

PJS Search SYS, the system library.

PJU Search USER, the user library.

For a full description of logical code addresses, refer to the section "Logical
Code Addresses" in chapter 2.

 fname PJU, CMPJU , and NMPJU only. The file name of the NM USER library.
Multiple NM libraries can be bound with the XL= option on a RUN
command. For example:

:RUN NMPROG; XL=LIB1,LIB2.TESTGRP,LIB3

In this case it is necessary to specify the desired NM USER library. For
example:

 PJU lib1 204c
 PJU lib2.testgrp test20+1c0

If the file name is not fully qualified, then the following defaults are used:

Default account: the account of the program file.

Default group: the group of the program file.

 virtaddr The virtual window (V) can be aimed at any Precision Architecture space
and offset address. Virtaddr can be a short pointer, a long pointer, or a
full logical code pointer.

 absaddr PJA, PJAX, CMPJA, CMPJAX control the CM program window. A full CM
absolute code address specifies three necessary items:

Either the CST or the CSTX

The absolute code segment number

The CM word offset within the code segment

Absolute code addresses can be specified in two ways:

• As a long pointer (LPTR)
Chapter 9 339

System Debug Window Commands
wJ
PJA 23.2644 Implicit CST 23.2644

PJAX 5.3204 Implicit CSTX 5.3204

• As a full absolute code pointer (ACPTR)

PJA CST(2.200) Explicit CST coercion

PJAX CSTX(2.200) Explicit CSTX coercion

PJAX logtoabs(prog(1.20)) Explicit absolute conversion

The search path used for procedure name lookups is based on the
command suffix letter:

PJA GRP, PUB, LGRP, LPUB, SYS

PJAX PROG

 dst.off The stack frame (Q) and top of stack (S) windows can be aimed at any data
segment and offset.

 ldev.off The LDEV window can be aimed at a disk ldev.byte-offset .

 win_number You may specify which virtual window is the jump window, if there is
more than one window.

 realaddr The real memory window (Z) can be aimed at any real address. If no
address is given, the address used is the address to which the window
previously was pointed (if any).

 record_number The text file record number.

Examples
 $nmdebug > pj 200

Jump to the program file at offset 200. A logical address is expected as the value for this
command. Remember that when only an offset is specified as a logical address in the PJ
command, the space (SID) for the program is assumed. A STOLOG conversion (with the
"prog" selector) will be done to accomplish this.

 $nmdebug > pj r2

Jump to the program file at the offset indicated by register R2. As in the above example,
when only an offset is given for a logical address, the space (SID) for the program file is
assumed.

 $nmdebug > pjv r2

Jump to the offset indicated by register R2. The space is determined by using the
appropriate space register. A STOL conversion is performed to accomplish this.

 $nmdebug > pjs r2

Jump to the system library (NL.PUB.SYS) at the offset indicated by register R2.

 %cmdebug > pjg 2.200

Jump to the group library at logical segment 2 at an offset of 200.

 $nmdebug > cmpj cmaddr("?fopen")
340 Chapter 9

System Debug Window Commands
wK
Jump the CM program window to the entry point for the fopen procedure. Note that since
we are in native mode, the CMADDR function must be used to look up the address of CM
procedures.

 %cmdebug > nmpj cmtonmnode(?fopen)

Jump the NM program window to the nearest translated code node point associated with
the CM procedure fopen . Refer to appendix C for a discussion of CM object code
translation, node points, and breakpoints in translated CM code.

 %cmdebug > SJ 12.200

Jump the stack window to data segment 12 at an offset of 200.

$nmdebug > vw c0.100 /* Create a new virtual window at c0.100
 $nmdebug > vj c0.200 /* Jump the window to c0.200
 $nmdebug > vj c0.300 /* Jump the window to c0.300
 $nmdebug > vj /* Jump to previous location (c0.200)
 $nmdebug > vh /* Jump to home location (c0.100)

The end result is to place the current virtual window at 100 (its "home" location).

Limitations, Restrictions

none

wK
Window kill.

Syntax
 RK CM registers
 GRK NM general registers
 SRK NM special registers
 PK Program, current mode
 CMPK CM program
 NMPK NM program
 QK CM frame, Q relative
 SK CM stack, S relative
 GK Group window
 UK [win_number] User window
 VK [win_number] Virtual window
 ZK Real memory window
 LK LDEV window
 TXK [win_number] Text window

This command removes a window from the screen. It does this by setting the length of a
window to zero lines, which effectively makes it disappear. The command permanently
deallocates text, user, and virtual windows. (Attempts to set the lines to a value greater
than zero for these window results in an error since the window no longer exists.) If the
window is a text window, this command closes the file.
Chapter 9 341

System Debug Window Commands
wL
Parameters

 win_number The window number for a specific user window (U), text window (TX), or
virtual window (V). If win_number is omitted, then the current window is
used. The current user window is marked by an asterisk, and the current
virtual and text windows are marked in inverse video.

Examples
 %cmdebug > PK

Kill the (current mode) program window.

 %cmdebug > PL 6

Bring back the program window. Remember, killing a window sets its length to zero.

 %cmdebug > VK 3

Deallocate virtual window number 3. This window cannot be brought back by changing the
window length as in the above example. Once a virtual window is killed, it is gone until a
new VW command is used to create a new one.

Limitations, Restrictions

none

wL
Window lines. Sets the number of lines in a window.

Syntax
 RL [numlines] CM registers
 GRL [numlines] NM general registers
 SRL [numlines] NM special registers

 PL [numlines] Program, current mode
 CMPL [numlines] CM program
 NMPL [numlines] NM program
 QL [numlines] CM frame, Q relative
 SL [numlines] CM stack, S relative

 GL [numlines] Group window
 UL [numlines] [win_number] User window

 VL [numlines] [win_number] Virtual window
 ZL [numlines] Real memory window
 LL [numlines] LDEV window
 TXL [numlines] [win_number] Text window
342 Chapter 9

System Debug Window Commands
wL
Parameters

 numlines Set the window size to this number of lines. If no value is given, the default
is the initial size for the specified window.

 win_number The window number for a specific user window (U), text window (TX), or
virtual window (V). If win_number is omitted, then the current window is
used. The current user window is marked by an asterisk, and the current
virtual and text windows are marked in inverse video.

Examples
 %cmdebug > pl 7

Set the (current mode) program window to 7 lines.

 %cmdebug > gl 0; vl 5

Turn off the group window and set the current virtual window to 5 lines.

Limitations, Restrictions

none
Chapter 9 343

System Debug Window Commands
wM
wM
Window mode. Changes the mode for the Q or S window.

Syntax
 QM [addressmode] [signed]
 SM [addressmode] [signed]

Parameters

 addressmode This parameter specifies the mode in which addresses are to be
displayed. If no value is specified, DB is the default. The following values
are allowed:

DB Display address as DB-relative values (initial mode).

DL Display address as DL-relative values.

DST Display address as DST-base-relative values.

Q Display address as Q-relative values.

S Display address as S-relative values.

If the window is jumped to a data segment other than the stack data
segment (SDST), only DST mode is allowed.

Addresses entered with the QJ and SJ commands are interpreted based on
the mode of the respective window.

 signed This parameter indicates if addresses are to be displayed as signed or
unsigned values. If no value is specified, UNSIGNED is the default.

The following values are allowed:

UNSIGNED Display address as unsigned values (initial setting).

SIGNED Display address as signed values (+/- present in address).

Examples
 $nmdebug > qm dst

Set the Q window to display addresses as DST-relative (stack-base relative) values.

 $nmdebug > sm ,signed

Set the S window to have addresses displayed as signed values.

Limitations, Restrictions

none
344 Chapter 9

System Debug Window Commands
wN
wN
Renames a virtual window or a user-defined window.

Syntax
 UN [name] [win_number] User window
 VN [name] [win_number] Virtual window

Parameters

 name The name for this user window. Names are restricted to eight
alphanumeric characters.

If the name is omitted, the following default names are used:

Window Default Name

USER (U) <user>

VIRTUAL (V) Virtual

 win_number The window number for a specific user window (U) or virtual window (V).
If win_number is omitted, then the current window is used. The current
user window is marked by an asterisk, and the current virtual window is
marked in inverse video.

Examples
 %cmdebug > un datablk

Rename the current user window to "datablk."

 %cmdebug > vn parms 4

Rename virtual window number four to "parms."

Limitations, Restrictions

none

wR
Sets the radix (output base) for the specified window.

Syntax
 RR base CM registers

 PR base Program, current mode
Chapter 9 345

System Debug Window Commands
wS
 CMPR base CM program
 NMPR base NM program
 QR base CM frame, Q relative
 SR base CM stack, S relative

GR base Group window
 UR base [win_number] User window

VR base [win_number] Virtual window
 ZR base Real memory window
 LR base Ldev window

Parameters

 base The desired representation mode for output values:

% or OCTAL Octal representation

or DECIMAL Decimal representation

$ or HEXADECIMAL Hexadecimal representation

ASCII ASCII representation

This parameter can be abbreviated to as little as a single character.

 win_number The window number for a specific user window (U) or virtual window (V).
If win_number is omitted, then the current window is used. The current
user window is marked by an asterisk, and the current virtual window is
marked in inverse video.

Examples
 %cmdebug > qr a

Display the values in the stack frame window in ASCII.

 %cmdebug > ur d 3

Display user window number 3 in decimal.

Limitations, Restrictions

The R, GR, SR, and CMP windows cannot be set to an ASCII base. The radix for the NMP,
SR, and GR windows cannot be altered from its initial hexadecimal value.

wS
Window shift. Shifts a window to the left or right. This command is defined for text
windows (TX).

Syntax
 TXS [amount] [win_number]
346 Chapter 9

System Debug Window Commands
UWm
Parameters

 amount This is the number of columns to shift the window. A positive value shifts
the window right (view data past the right end of the screen). A negative
value shifts the window left (view data past the left end of the screen). If
no value is given, the window is shifted to column 1.

 win_number The window number for a specific text window (TX). If win_number is
omitted, then the current window is used.

Examples
 $nmdebug > TXS #20

Shift the window 20 columns to the right.

 $nmdebug > TXS -9999

Shift the window to the left. Any column number less than 1 is automatically converted to
column 1.

Limitations, Restrictions

none

UWm

Allocates a named user window at the specified address. The command name specifies
which type of window to define. User windows are displayed within the group window.

Syntax
 UWA offset [name] Absolute memory relative (ABS)
 UWDB offset [name] DB relative
 UWS offset [name] S relative
 UWQ offset [name] Q relative

 UWD dst.off [name] Data segment and offset

 UWCA cmabsaddr [name] Code (CST) segment and offset
 UWCAX cmabsaddr [name] Code (CSTX) segment and offset

 UWV virtaddr [name] Virtual address
 UWZ realaddr [name] Real address

Parameters

 offset UWA, UWDB, UWQ, UWS only. The CM word offset which specifies the
relative starting location.

 dst.off UWD only. The data segment and offset where to aim the window.
Chapter 9 347

System Debug Window Commands
UWm
cmabsaddr UWCA, UWCAX only. A full CM absolute code address. This code address
specifies three necessary items:

Either the CST or the CSTX

The absolute code segment number

The CM word offset within the code segment

Absolute code addresses can be specified in two ways:

• As a long pointer (LPTR):

UWCA 23.2644 Implicit CST 23.2644

UWCAX 5.3204 Implicit CSTX 5.3204

• As a full absolute code pointer (ACPTR):

UWCA CST(2.200) Explicit CST coercion

UWCAX CSTX(2.200) Explicit CSTX coercion

UWCAX logtoabs(prog(1.20)) Explicit absolute conversion
348 Chapter 9

System Debug Window Commands
wW
The search path used for procedure name lookups is based on the
command suffix letter:

UWCA GRP, PUB, LGRP, LPUB, SYS

UWCAX PROG

 virtaddr UWV only. A Precision Architecture virtual address. Virtaddr can be a
short pointer, a long pointer, or a full logical code pointer.

 realaddr UWZ only. A Precision Architecture real memory address.

 name The name for this user window. Names are restricted to eight
alphanumeric characters. If name is omitted, the window is named "user".

Examples
 %cmdebug > UWQ-30 parms

Create a user window at Q-30 and name it "parms".

 %cmdebug > UWDB+112, globvar

Create a user window at DB+112 and name it "globvar".

 $nmdebug > UWV SP-30, count

Create a user window at SP-30 (stack pointer - 30) and name it "count".

Limitations, Restrictions

Current limit: 10 user-defined windows per group.

wW
Defines (enables) new windows.

Syntax
 VW virtaddr [name] Virtual window
 ZW realaddr Real Memory
 LW Ldev.off LDEV (Secondary Storage) window
 TXW filename Text window

 UW m User window (see UW m command)

The VWand TXWcommands allocate the next available virtual (V) or text (TX) window. The
window is aimed at the specified address (V) or file (TX). Finally, the window is marked as
the "current window."

The LW and ZW commands aim/enable the real memory window (ZW) and the LDEV
window (LW) respectively. There is only one of each of these windows.

By default these windows are created with an initial length of three lines (one banner line
Chapter 9 349

System Debug Window Commands
wW
and two data lines). The size of the windows may be changed once they are created (Refer
to the wL command.)

Parameters

 virtaddr The virtual window can be aimed at any Precision Architecture space and
offset address. Virtaddr can be a short pointer, a long pointer, or a full
logical code pointer.

 name This is the name with which to label the virtual window being defined. If
no name is specified, "Virtual " is used as a default.

 realaddr The real memory window can be aimed at any real address.

 Ldev.off The LDEV window can be aimed at any valid disk LDEV number at a
specified byte offset.

 filename The file name to which the text window is aimed.

Examples
 %cmdebug > VW a.c0000000 SYSGLOB

Allocate a new virtual window and aim it at a.c0000000. Label the window with the name
SYSGLOB.

 %cmdebug > ZW 1800

Aim the real memory window to physical address 1800.

 $nmdebug > TXW TGRADES.DEMO.TELESUP

Create and aim a text window at the file TGRADES.DEMO.TELESUP.

Limitations, Restrictions

A total of seven virtual windows and three text windows are available. There is only one
LDEV and one real window.
350 Chapter 9

System Debug Standard Functions
10 System Debug Standard Functions

This chapter presents the full formal declaration for each of the standard functions which
are defined in System Debug.

All functions are callable from both DAT and Debug. All functions can be called from both
Native Mode (NM) and Compatibility Mode (CM). Some functions, however, deal
specifically with NM or CM attributes. Input parameters are always interpreted based on
the current mode, so care must be exercised when specifying procedure names and
numeric literals.

Functions are logically divided into groups and can be listed with the FUNCL[IST]
command, filtered by the group name.

The following table lists all functions, sorted by group name. For each function, the name,
type, and a brief description is presented.

COERCION Functions

Name Type Description

ASCC : STR Coerces an expression to ASCII

BOOL : BOOL Coerces an expression to Boolean

CST : CST Coerces an expression to CST ACPTR

CSTX : CSTX Coerces an expression to CSTX ACPTR

EADDR : EADDR Coerces an expression to extended address.

GRP : GRP Coerces an expression to GRP LCPTR

LGRP : LGRP Coerces an expression to LGRP LCPTR

LPTR : LPTR Coerces an expression to long pointer.

LPUB : LPUB Coerces an expression to LPUB LCPTR

PUB : PUB Coerces an expression to PUB LCPTR

S16 : S16 Coerces an expression to signed 16-bit INT

S32 : S32 Coerces an expression to signed 32-bit INT

S64 : S64 Coerces an expression to signed 64-bit INT

SADDR : SADDR Coerces an expression to secondary address.

SPTR : SPTR Coerces an expression to short pointer

SYS : SYS Coerces an expression to SYS LCPTR

TRANS : TRANS Coerces an expression to TRANS LCPTR

USER : USER Coerces an expression to USER LCPTR
Chapter 10 351

System Debug Standard Functions
UTILITY Functions

ADDRESS Functions

U16 : U16 Coerces an expression to unsigned 16-bit INT

U32 : U32 Coerces an expression to unsigned 32-bit INT

Name Type Description

ASC : STR Converts an expression to an ASCII string

BIN : INT Converts an ASCII string to binary value

BITD : ANY Bit deposit

BITX : ANY Bit extract

BOUND : STR Tests for current definition of an operand

CISETVAR : BOOL Sets a new value for a CI variable

CIVAR : ANY Returns the current value of a CI variable

ERRMSG : STR Returns an error message string

MACBODY : STR Returns the macro body of a specified macro

TYPEOF : STR Returns the type of an expression

MAPINDEX : U16 Returns the index number of a mapped file

MAPSIZE : U32 Returns the size of a mapped file

MAPVA : LPTR Returns the virtual address of a mapped file

Name Type Description

ABSTOLOG : LCPTR CM absolute address to logical code address

BTOW : U16 Converts a CM byte offset to a word offset

CMNODE : LCPTR CM address of closest CM node point

CMTONMNODE : TRANS NM address of closest CM node point

CMVA : LPTR Converts CM code address to a virtual address

DSTVA : LPTR Converts CM dst.off to virtual address

HASH : S32 Hashes a virtual address

LOGTOABS : ACPTR CM logical code address to absolute address

LTOLOG : LCPTR Long pointer to logical code address

LTOS : SPTR Long pointer to short pointer

Name Type Description
352 Chapter 10

System Debug Standard Functions
PROCESS Functions

PROCEDURE Functions

NMNODE : TRANS NM Address of closest NM node point

NMTOCMNODE : LCPTR CM address of closest NM node point

OFF : U32 Extracts offset part of a virtual address

PHYSTOLOG : LCPTR CM physical segment/map bit to logical

RTOV : LPTR real to virtual

SID : U32 Extracts the SID (space) part of a long pointer

STOL : LPTR Short pointer to long pointer

STOLOG : LCPTR Short pointer to logical code address

VTOR : U32 Virtual to real

VTOS : SADDR Virtual to secondary store address

Name Type Description

CMG : SPTR Short pointer address of CMGLOBALS
record

CMSTACKBASE : LPTR Virtual address of the CM stack base

CMSTACKDST : U16 Data segment number of the CM stack

CMSTACKLIMIT : LPTR Virtual address of the CM stack limit

NMSTACKBASE : LPTR Virtual address of the NM stack base

NMSTACKLIMIT : LPTR Virtual address of the NM stack limit

PCB : SPTR Address of process control block

PCBX : SPTR Address of process control block extension

PIB : SPTR Address of process information block

PIBX : SPTR Address process information block extension

PSTATE : STR Returns the process state for specified PIN

TCB : U32 Real address of the task control block

VAINFO : ANY Returns virtual object information

Name Type Description

CMADDR : LCPTR Logical address of a CM procedure name

Name Type Description
Chapter 10 353

System Debug Standard Functions
STRING Functions

CMBPADDR : LCPTR Logical address of a CM breakpoint index

CMBPINDEX : S16 Index number of a CM breakpoint address

CMBPINSTR : S16CM Instruction at a CM breakpoint address

CMENTRY : LCPTR Logical entry address of a CM procedure

CMPROC : STR Returns the name of a CM procedure

CMPROCLEN : U16 Returns the length of CM procedure

CMSEG : STR Returns the CM segment name at logical address

CMSTART : LCPTR Logical start address of CM procedure

NMADDR : LCPTR Logical address of NM procedure name

NMBPADDR : LCPTR Logical address of NM breakpoint index

NMBPINDEX : S16 Index number of a NM breakpoint address

NMBPINSTR : S32NM Instruction at a NM breakpoint address

NMCALL : S32NM Dynamically invokes the specified NM routine

NMENTRY : LCPTR Logical entry address of NM procedure

NMFILE : STR Name of file containing NM logical address

NMMOD : STR Name of NM module at NM logical address

NMPATH : STR Returns the full code path of a NM procedure

NMPROC : STR Name of NM procedure at NM logical address

Name Type Description

STR : STR Extracts a substring from a string

STRAPP : STR String append

STRDEL : STR String delete

STRDOWN : STR Downshifts a string

STREXTRACT : STR Extracts a string at a virtual address

STRINPUT : STR Prompts for and reads string input

STRINS : STR String insert

STRLEN : U16 Returns the current length of a string

STRLTRIM : STR Removes leading blanks from a string

STRMAX : U16 Returns the maximum length of a string

Name Type Description
354 Chapter 10

System Debug Standard Functions
func abstolog
SYMBOLIC Functions

The formal declaration of functions are presented with the following format:

function_name : function_return_type (function_ parameters)

The function parameters are presented as follows:

parm_name : parm_type [= default_parm_value]

func abstolog
Converts a CM absolute code address (ACPTR) to a CM logical code (LCPTR) address.

Syntax

 abstolog (cmabsaddr)

Formal Declaration

 abstolog:lcptr (cmabsaddr :acptr)

Parameters

cmabsaddr The CM absolute code address which is to be converted to a CM logical
code address.

STRPOS : U16 Locates a substring within a string

STRRPT : STR String repeat

STRRTRIM : STR Removes trailing blanks from a string

STRUP : STR Upshifts a string

STRWRITE : STR Builds a string from a value list

Name Type Description

SYMADDR : U32 Returns the offset within a type to the specified symbolic field

SYMCONST : ANY Returns the value of a declared constant

SYMINSET : BOOL Tests for set inclusion

SYMLEN : U32 Returns the length of the field based on a symbolic path

SYMTYPE : STR Returns the symbolic type based on a symbolic path

SYMVAL : ANY Returns the value found at a virtual address based on a symbolic path

Name Type Description
Chapter 10 355

System Debug Standard Functions
func asc
Cmabsaddr must be a full CM absolute code address (ACPTR). For Example:

CST(2.102) CST segment 2 offset 102

CSTX(1.330) CSTX segment 1 offset 330

LOGTOABS(cmpc) Explicit absolute conversion

Examples

 %cmdebug > wl cmpc
 PROG %0.1273
 %cmdebug > wl logtoabs(cmpc)
 CSTX %1.1273

 %cmdebug > wl abstolog(cstx(1.1273))
 PROG %0.1273

Absolute CM address CSTX 1.1273 is converted into logical address PROG %0.1273.

 %cmdebug > wl abstolog(cst(43.304))
 SYS %32.304

Absolute CM address CST 43.304 is converted into logical address SYS %32.304.

 %cmdebug > wl abstolog(cst(103.4274))
 GRP %4.4274

Absolute CM address CST 103.4274 is converted into group library logical address GRP
4.4274 .

Limitations, Restrictions

none

func asc
Evaluates an expression and converts the result to an ASCII string.

Syntax

 asc (value [formatspec])

Formal Declaration

 asc:str (value :any [formatspec :str = ''])

Parameters

value The expression to be formatted.

 formatspec An optional format specification string can be specified in order to select
356 Chapter 10

System Debug Standard Functions
func asc
specific output base, left or right justification, blank or zero fill, and field
width.

A format specification string is a list of selected format directives,
optionally separated by blanks or commas in order to avoid ambiguity.

"directive1 directive2, directive3 directive4 ... "

The following table lists the supported format directives which can be
entered in upper- or lower-case:

+ Current output base ($, #, or % prefix displayed)

- Current output base (no prefix)

+< Current input base ($, #, or % prefix displayed)

-< Current input base (no prefix)

$ Hex output base ($ prefix displayed)

Decimal output base (# prefix displayed)

% Octal output base (% prefix displayed)

H Hex output base (no prefix)

D Decimal output base (no prefix)

O Octal output base (no prefix)

A ASCII base (use "." for non-printable chars)

N ASCII base (loads actual non-printable chars)

L Left justified

R Right justified

B Blank filled

Z Zero filled

M Minimum field width, based on value

F Fixed field width, based on the type of value

Wn User specified field width n

T Typed (display the type of the value)

U Untyped (do not display the type of the value)

QS Quote single (surround w/ single quotes)

QD Quote double (surround w/ double quotes)

QO Quote original (surround w/ original quote character)

QN Quote none (no quotes)

The M directive (minimum field width) selects the minimum possible field
width necessary to format all significant digits (or characters in the case of
string inputs).
Chapter 10 357

System Debug Standard Functions
func asc
The F directive (fixed field width) selects a fixed field width based on the
type of the value and the selected output base. Fixed field widths are listed
in the following table:

The Wn directive (variable field width) allows the user to specify the
desired field width. The W directive can be specified with an arbitrary
expression. If the specified width is less than the minimum necessary
width to display the value, then the user width is ignored, and the
minimum width is used instead. All significant digits are always printed.
For example:

 number:"w6"
 number:"w2*3"

The number of positions specified (either by Wn or F) does not include the
characters required for the radix indicator (if specified) or sign (if
negative). Also, the sign and radix indicator is always positioned just
preceding the first (leftmost) character.

Zero versus blank fill applies to leading spaces (for right justification) only.
Trailing spaces are always blank filled.

In specifications with quotes, the quotes do not count in the number of
positions specified. The string is built such that it appears inside the
quotes as it would without the quotes.

The T directive (typed) displays the type of the value, preceding the value.
The U directive (untyped) suppresses the display of the type. Types are
displayed in uppercase, with a single trailing blank. The width of the type
display string varies, based on the type, and it is independent of any
specified width (M, F, or Wn) for the value display.

For values of type LPTR (long pointer, sid.offset , or seg.offset) and
EADDR (extended address, sid.offset or ldev.offset), two separate
format directives can be specified. Each is separated by a dot, ".", to
indicate individual formatting choices for the "sid " portion and the
"offset " portion. This is true for all code pointers (ACPTR - Absolute Code
pointers: CST,
CSTX; LCPTR - Logical Code Pointers: PROG, GRP, PUB, LGRP, LPUB,

Types hex($,H) dec(#,D) oct(%,O) ascii(A,N)

S16,U16 4 6 6 2

S32,U32 8 10 11 4

S64 16 20 22 8

SPTR 8 10 11 4

LPTR Class 8.8 10.10 11.11 8

EADDR Class 8.16 10.20 11.22 12

STR field width = length of the string
358 Chapter 10

System Debug Standard Functions
func asc
SYS, USER, TRANS). For example:

 pc:"+.-, w4.8, r.l, b.z"

The following default values are used for omitted format directives. Note
that the default format directives depend on the type of value to be
formatted:

 value type default format
 ---------- --------------

 STR, BOOL - R B M U
 U16,S16,U32,S32,S64 + R B M U
 SPTR + R Z F U
 LPTR +.- R.L B.Z M.F U
 ACPTR LCPTR +.- R.L B.Z M.F T
 CST PROG +.- R.L B.Z M.F T
 CSTX GRP +.- R.L B.Z M.F T
 PUB +.- R.L B.Z M.F T
 LGRP +.- R.L B.Z M.F T
 LPUB +.- R.L B.Z M.F T
 SYS +.- R.L B.Z M.F T
 USER +.- R.L B.Z M.F T
 TRANS +.- R.L B.Z M.F T
 EADDR +.- R.L B.Z M.F U
 SADDR +.- R.L B.Z M.F T

Note that absolute code pointers, logical code pointers and extended
addresses display their types (T) by default. All other types default to (U)
untyped.

The Cn (column n) directive moves the current output buffer position to the
specified column position prior to the next write into the output buffer.
Column numbers start at column 1. For example:

 number:"c6"

Note: The Cn directive is ignored by the ASCfunction but is honored by the
W, WL and WP commands.

Examples

 $nmdat > var number u32(123)
 $nmdat > wl asc(number)
 $123
 $nmdat > wl asc(number,"-")
 123
 $nmdat > wl asc(number,"t")
 U32 $123
 $nmdat > wl asc(number "#")
 #291
 $nmdat > wl asc(number, 'd')
 291
 $nmdat > wl asc(number 'fr')
 $123
Chapter 10 359

System Debug Standard Functions
func asc
 $nmdat > wl asc(number, "r,w6,-,z")
 000123

Several examples of formatting an unsigned 32-bit value.

 $nmdat > var s1="test"
 $nmdat > wl asc(s1)
 test
 $nmdat > wl asc(s1, "QS")
 'test'
 $nmdat > wl asc(s1 "QO")
 "test"
 $nmdat > wl asc(s1 "t")
 STR test
 $nmdat > wl asc(s1 "w2")
 test
 $nmdat > wl asc(s1, "w2*4,r")
 test
 $nmdat > var curwidth 8
 $nmdat > wl asc(s1 'wcurwidth, r QD')
 " test"

Several examples of formatting a string.

 $nmdat > var long 2f.42c8
$nmdat > wl asc(long)

 $2f.000042c8
 $nmdat > wl asc(long, "t")
 LPTR $2f.000042c8
 $nmdat > wl asc(long, "-.+")
 2f.$000042c8
 $nmdat > wl asc(long, "#.$ m.m")
 #47.$42c8
 $nmdat > wl asc(long, "r.r, f.m z")
 0000002f.42c8
 $nmdat > wl asc(long, "r.r w6.6 z.z")
 00002f.0042c8
 $nmdat > wl asc(long, 'r.r w6.2*3 z.z qd')
 "00002f.0042c8"
 $nmdat > wl asc(long, 'r.r,w(2*3).(4+2),b.b,$.$')
 $2f. $42c8

$nmdat > var width 6.6
 $nmdat > wl asc(long, 'r.l Wwidth, b.b, $.$')
 $2f . $42c8

Several examples of formatting a long pointer.

Limitations, Restrictions

none
360 Chapter 10

System Debug Standard Functions
func ascc
func ascc
Coerces an expression into a string value.

Syntax

 ascc (value)

Formal Declaration

 ascc:str (value :any)

Parameters

value An expression to be coerced. Its type can be anything except BOOL.

This function takes the internal bit pattern for value and treats it as a
sequence of ASCII characters. The function value returned is a string
made up of these characters, the length of which is determined by the
natural size of value according to the following table:

Examples

 $nmdebug > = ascc(%100+%1)
 'A'
 $nmdebug > wl strlen (ascc(%100+%1))
 $2

The expression %100+%1 is evaluated and coerced into a string value. Since the parameter
type is effectively U16, the string contains two characters, a NULL (0) followed by a capital
"A".

 $nmdebug > var bell strdel(ascc(7),1,1)
 $nmdebug > wl bell
 <beep>

This example builds a single-character string and assigns the result to the variable named
bell . The STRDELfunction is used to delete the leading NULL character, which is returned
in the two-character string returned by the function ASCC.

Table 10-1. Length of Coerced Strings

Parameter Type String Length

U16, S16 2

U32, S32, SPTR 4

S64, LONG class 8

EADDR, SADDR 12

STR Parameter string length
Chapter 10 361

System Debug Standard Functions
func bin
Limitations, Restrictions

none

func bin
Converts a string expression to return a binary value.

Syntax

 bin (strexp)

Formal Declaration

 bin:any (strexp :str)

Parameters

strexp A string expression to be converted from ASCII into binary.

Examples

 %cmdebug > wl bin("1+2")
 %3

The contents of the string "1+2" are evaluated as an expression, and the result (3) is
converted into a binary value.

Limitations, Restrictions

If the string parameter strexp contains an expression that, when evaluated, results in a
string, the resulting string is returned. It is not converted into a binary value. For
example:

 $nmdat > wl bin ('"A"+"B"')
 AB
 $nmdat > wl typeof(bin('"A"+"B"'))
 STR

func bitd
Bit deposit. Deposits a value into a specified range of bits.
362 Chapter 10

System Debug Standard Functions
func bitd
Syntax

 bitd (value position length target)

Formal Declaration

 bitd:any (value :any position :s16 length :u16 target :any)

Parameters

value The value to deposit into the target. Its type is restricted to the INT and
PTR classes.

position This parameter specifies the starting bit position (positive value) or the
ending bit position (negative value) of the deposit. Regardless of the size of
the target, bit positions are always numbered from left to right. The
leftmost bit of the target is bit 0.

length The number of bits to deposit. This value may not exceed 64.

target The expression in which to deposit the specified bit pattern. Its type is
restricted to the INT and PTR classes.

This function is sensitive to the type of the target parameter. As examples, if a S32 or U32
value is passed, the format of the word (start/end positions) is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | |
 +---+

If a S16 or U16 value is passed, the format of the word (start/end positions) is as follows:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-------------------------------+
 | |
 +-------------------------------+

Examples

For our example, we use a 32-bit word containing the bit pattern for the hex value
4015381f:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 |0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1|
 +---+

 $nmdebug > var xx:u32 4015381f
 $nmdebug > wl bitd(0,#30,2,xx)
 $4015381c
Chapter 10 363

System Debug Standard Functions
func bitx
Deposit the value 0 into the last two bits of XX.

 $nmdebug > wl bitd(3,-#1,2,xx)
 $c015381f

Deposit the value 3 (11) into XX, ENDING at bit position 1.

 $nmdebug > wl bitd(2d,-#9,6,xx)
 $4b55381f

Deposit the value 2d (101101) into XX, ending at bit position 9 with a length of 6 (start
position would be 4).

Limitations, Restrictions

The value to be deposited is truncated as necessary on the left to fit within the field width
of length .

If an extended address target is passed, the deposit location must fall entirely within the
64-bit offset part. Since EADDR types have a total of 96 bits, the valid bit positions are 32
through 95.

func bitx
Bit extract. Extracts a range of bits from an expression.

Syntax

 bitx (source position length)

Formal Declaration

 bitx:any (source :any position :s16 length :u16)

Parameters

source The value from which to extract a range of bits. Its type is restricted to the
INT and PTR classes.

position This parameter specifies the starting bit position (positive value), or the
ending bit position (negative value) of the extraction. Regardless of the
size of the source value, bit positions are always numbered from left to
right. The leftmost bit of the source is bit 0.

length The number of bits to extract. This value may not exceed 64.

This function is sensitive to the type of the source parameter. If a S32 or U32 value is
passed, the format of the word (start/end positions) is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
364 Chapter 10

System Debug Standard Functions
func bool
 +---+
 | |
 +---+

If a S16 or U16 value is passed, the format of the word (start/end positions) is as follows:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-------------------------------+
 | |
 +-------------------------------+

Examples

This is a 32-bit word containing the bit pattern for the hex value 4015381c:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 |0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0|
 +---+

 $nmdebug > var xx:u32 4015381c
 $nmdebug > wl bitx(xx,#10,5)
 $a

Extract five bits starting at position 10 (this yields the bit pattern 01010).

 $nmdebug > wl bitx(xx,-#14,5)
 $a

Extract five bits ending at position 14 (this yields the bit pattern 01010). This is the same
field of bits as in the previous example.

Limitations, Restrictions

If an extended address source is passed, the extraction location must fall entirely within
the 64-bit offset part. Since EADDR types have a total of 96 bits, the valid bit positions are
32 through 95.

func bool
Coerces an expression into a Boolean value.

Syntax

 bool (value)

Formal Declaration

 bool:bool (value :any)
Chapter 10 365

System Debug Standard Functions
func bound
Parameters

value An expression to be coerced. Its type can be anything except STR. The
coercion will evaluate to FALSE if the value of the expression is 0;
otherwise, the value of the coercion will be TRUE.

Examples

 $nmdebug > wl bool(0)
 FALSE

 $nmdebug > wl bool(1)
 TRUE

 $nmdebug > wl bool(123)
 TRUE

 $nmdebug > wl bool(a.c00023c4)
 TRUE

 $nmdebug > wl bool(0.0)
 FALSE

Limitations, Restrictions

none

func bound
Checks for an existing definition of an operand and returns its definition type.

Syntax

 bound (operand)

The BOUND function uses the name in operand to check for an existing definition for that
name. The type of the definition is returned in a string. The following table lists all
possible types:

NUMBER A valid numeric expression (in current input base)

ENV A predefined environment variable

VAR A user defined variable

FUNC A predefined function

MACRO A user defined macro

PROCEDURE A valid procedure name (in current mode)

ALIAS An alias definition
366 Chapter 10

System Debug Standard Functions
func bound
COMMAND A command name

WINDOW_COMMANDA window command name

UNDEFINED No definition is currently bound

The table is searched in order from top to bottom. The first type which matches is
returned. Additional matches may be possible but are not tested.

Formal Declaration

 bound:str (operand :str)

Parameters

operand A string expression naming the operand for which the definition type is
returned.

Examples

 $nmdebug > if bound('list') <> 'VAR' then var list slowbuildlist('ALL')

BOUNDis often used to determine if a particular variable has been defined. In this example,
which might typically be found in a macro, BOUND is used to test for the prior definition of
the variable named "list" . If the variable has not yet been defined, then it is created and
assigned the return value from the macro named slowbuildlist .

 $nmdebug > wl bound('123')
 NUMBER
 $nmdebug > wl bound('add')
 NUMBER

123 and ADD are both numbers (in the current input base).

 $nmdebug > wl bound('s')
 ENV

S is an environment variable (the CM S register). Note that S is also a command name
(Single Step), but only the first match is returned.

 $nmdebug > wl bound('BOUND')
 FUNC

BOUND is a function (in fact, the one this page is describing).

 $nmdebug > wl bound('slowbuildlist')
 MACRO

SLOWBUILDLIST is a user defined macro.

 $nmdebug > wl bound('12w')
 UNDEFINED

12w is undefined. No existing definition for 12w could be located.

Limitations, Restrictions

none
Chapter 10 367

System Debug Standard Functions
func btow
func btow
Byte to word. Converts a CM DB-relative byte address to a CM DB-relative word address.

Syntax

 btow (byteaddress [splitstack])

Formal Declaration

 btow:I16 (byteaddress :I16 [splitstack :bool=FALSE])

Parameters

byteaddress The CM DB-relative byte address which is to be converted into a CM
DB-relative word address.

 splitstack If splitstack is FALSE, then byteaddress is assumed to be within the
current process's CM stack. The byte address is logically shifted right by
one bit. If the result is greater than the current S location, then %100000
is added. This effectively turns on the sign bit. By default, splitstack is
FALSE.

If splitstack is TRUE, then byteaddress is assumed to be a data segment
(DST) relative offset. The byte address is logically shifted right by one bit.
No special test for the current location of S is performed.

Examples
 %cmdebug > dr
 DBDST=%204 DB=%1000 X=%0 STATUS=%100030=(Mitroc CCG 030) PIN=%40
 SDST=%204 DL=%177650 Q=%726 S=%41767 CMPC=SYS %27.253
 CIR=%041601 MAPFLAG=%1 MAPDST=%0

 %cmdebug > wl btow (100002)
 %40001

 %cmdebug > wl btow (177776)
 %177777

These examples assume the current CM registers which are displayed above. Note the
large stack usage above DB.

 %cmdebug > dr
 DBDST=%204 DB=%70000 X=%0 STATUS=%100030=(Mitroc CCG 030) PIN=%40
 SDST=%204 DL=%110650 Q=%726 S=%1204 CMPC=SYS %27.253
 CIR=%041601 MAPFLAG=%1 MAPDST=%0

 %cmdebug > wl btow (177776)
 %177777

 %cmdebug > wl btow (100002)
 %140001
368 Chapter 10

System Debug Standard Functions
func cisetvar
 %cmdebug > wl btow (40002)
 %120001

These examples assume the current CM registers displayed above. Note the huge DL area.

Limitations, Restrictions

none

func cisetvar
Sets a new value for the specified CI (MPE XL Command Interpreter) variable.

Syntax

 cisetvar (civarname newvalue)

This function is implemented by calling the HPCIPUTVAR intrinsic. String variables are
stored as strings. They are not interpreted numerically.

Formal Declaration

 cisetvar:bool (civarname :str newvalue :any)

Parameters

 civarname The name of the CI variable to be assigned a new value.

 newvalue The new value to be assigned to the specified CI variable.

Examples

 $nmdebug > wl cisetvar ("testvar", #123);
 TRUE

Assign the value decimal 123 to the CI variable named testvar . The result, TRUE, implies
that the assignment was successful.

 $nmdebug > wl civar ("testvar"):"d"
 123
 $nmdebug > :showvar testvar
 TESTVAR = 123

Confirm that the value was set by retrieving the value using the CIVAR function and by
executing a CI command to display the variable's value.

Limitations, Restrictions

none
Chapter 10 369

System Debug Standard Functions
func civar
func civar
Returns the current value of a CI (MPE XL Command Interpreter) variable.

Syntax

 civar (civarname [stropt])

This function is implemented by calling the HPCIGETVAR intrinsic.

Formal Declaration

 civar:any (civarname :str [stropt :str="NOEV"])

Parameters

 civarname The name of the CI variable.

 stropt A string that determines whether the CI should attempt to evaluate the
named variable.

EVALUATE Evaluate the CI variable

NOEVALUATE Do not evaluate the CI variable (Default)

This string parameter can be abbreviated.

Examples

 $nmdebug > wl civar ("hpgroup");
 DEMO

 $nmdebug > wl civar ("hpaccount");
 TELESUP

Display the current value of the CI variables named HPGROUP and HPACCOUNT.

 $nmdebug > wl civar("hpusercapf")
 SM,AM,AL,GL,DI,OP,CU,UV,LG,PS,NA,NM,CS,ND,SF,BA,IA,PM,MR,DS,PH

Display the current value of the CI variable HPUSERCAPF.

$nmdat >: :showvar one
 ONE = !TWO
 $nmdat > :showvar two
 TWO = 2

 $nmdat > wl civar("one")
 !TWO
 $nmdat > wl civar("one" "EVAL")
 2

Two CI variables have already been defined. Variable one references variable two which is
assigned the value of 2.
370 Chapter 10

System Debug Standard Functions
func cmaddr
The first use of the function CIVAR defaults to NOEVALUATE, and as a result the value of one
is returned as !TWO.

In the second use of the function CIVAR, the stropt is explicitly specified as EVALUATE, and
so the MPE XL CI evaluates the value of one , which indirectly references the variable two ,
and the final result of 2 is returned.

Limitations, Restrictions

none

func cmaddr
Converts a CM procedure name (or primary/secondary entry point) to a CM logical code
address.

Syntax

 cmaddr (procname [lib])

The CMADDR function is especially useful for locating CM procedures when the current
mode is NM, since procedure name lookups are based on the current mode. CMADDR
explicitly requests a CM procedure name lookup.

Compatibility Mode code may be emulated, or translated into NM. This function always
returns addresses based on emulated CM object code.

Another function (CMTONMNODE) can be used to locate the nearest corresponding NM node
point address if the CM object code has been translated into NM.

Refer to Appendix C for discussion of CM Object Code Translation, node points, and
breakpoints in translated CM mode.

Formal Declaration

 cmaddr:lcptr (procname :str [lib :str=''])

Parameters

 procname The CM procedure name to be located and converted to a CM logical code
address. Primary and secondary entry points can be located by preceding
the procedure name with a question mark.

 lib An optional string which indicates where the search for the named
procedure should begin. By default, the program and then all currently
loaded libraries will be searched.

PROG Search the program file

GRP Search the group library
Chapter 10 371

System Debug Standard Functions
func cmbpaddr
PUB Search the account library

LGRP Search the logon group library

LPUB Search the logon account library

SYS Search the system library

Examples

 $nmdebug > wl cmaddr("my'lib'proc" "pub")
 PUB $2.124

Look up the start address of my'lib'proc in the CM group library.

 $nmdebug > wl cmaddr("?fopen"):"%.o"
 SYS %22.5000

Look up the entry point address of fopen and display the address in octal.

Limitations, Restrictions

none

func cmbpaddr
Returns the address corresponding to the indicated CM breakpoint index.

Syntax

 cmbpaddr (bpindex [pin])

This function accepts an index for an existing CM breakpoint and returns the address
where the breakpoint is located. The default action is to look for breakpoints set by the
current PIN. Breakpoint addresses for other pins (including the global PIN) may be
retrieved by utilizing the optional pin parameter.

Formal Declaration

 cmbpaddr:lcptr (bpindex :u16 [pin :s16=0])

Parameters

bpindex The breakpoint index to look for.

pin Look for breakpoints set by this PIN. Default is the caller's PIN (a pin of 0
implies this). To specify system (global) breakpoints, use a -1 (or 32762) as
the PIN.
372 Chapter 10

System Debug Standard Functions
func cmbpindex
Examples

 %cmdebug > bl
 CM [1] PROG % 2.3401 TEST'SCREEN+%26
 CM [2] PROG % 0.347 TEST'FILES+%0
 CM @[1] SYS % 161.5274 FOPEN+%0

First, list the existing breakpoints.

 %cmdebug > wl cmbpaddr(1)
 PROG %2.3401

 %cmdebug > wl cmbpaddr(1, -1)
 SYS %161.5274

Now use the function to return the address associated with process local breakpoint
number one and then with system breakpoint number one.

Limitations, Restrictions

none

func cmbpindex
Returns the CM breakpoint index associated with the indicated CM code address.

Syntax

 cmbpindex (cmaddr [pin])

This function accepts the address (either logical or absolute) of an existing CM breakpoint
and returns the logical index number associated with that breakpoint. The default action
is to look for breakpoints set by the current PIN. Breakpoint indices for other PINs
(including the global PIN) may be retrieved by utilizing the optional pin parameter.

Formal Declaration

cmbpindex:u16 (cmaddr :cptr [pin :s16=0])

Parameters

cmaddr Look for this address in the CM breakpoint table. Both logical and
absolute code addresses are supported.

pin Look for breakpoints set by this PIN. Default is the caller's PIN (a pin of 0
implies this). To specify system (global) breakpoints, use a -1 (or 32762) as
the PIN.
Chapter 10 373

System Debug Standard Functions
func cmbpinstr
Examples

 %cmdebug > bl
 CM [1] PROG % 2.3401 TEST'SCREEN+%26
 CM [2] PROG % 0.347 TEST'FILES+%0
 CM @[1] SYS % 161.5274 FOPEN+%0

First, list the existing breakpoints.

%cmdebug > wl cmbpindex(TEST'FILES)
%2

Go find the CM breakpoint index associated with the address TEST'FILES .

 %cmdebug > wl cmbpindex(FOPEN)
No breakpoint exists in the breakpoint tables with that address. (error

 #1080)

 Error evaluating a predefined function. (error #4240)
 function is"cmbpindex"
 wl cmbpindex(FOPEN)

Now, go find the breakpoint index for the breakpoint at FOPEN. In this example we get an
error. This is because we did not specify a PIN and thus searched only for process local
breakpoints. We do not have a process local breakpoint at FOPEN.

 %cmdebug > wl cmbpindex(FOPEN, -1)
 %1

Go find the breakpoint index for the breakpoint at FOPEN. This time we specify a -1 to tell
the function to search the list of system breakpoints.

Limitations, Restrictions

none

func cmbpinstr
Returns the original CM instruction at a specified CM code address where a CM
breakpoint has been set.

Syntax

 cmbpinstr (cmaddr [pin])

This function accepts the address (either logical or absolute) of an existing CM breakpoint
and returns the instruction associated with that breakpoint. The default action is to look
for breakpoints set by the current PIN. Breakpoint indices for other PINs (including the
global pin) may be retrieved by utilizing the optional pin parameter.
374 Chapter 10

System Debug Standard Functions
func cmentry
Formal Declaration

cmbpinstr:s16 (cmaddr :cptr [pin :s16=0])

Parameters

cmaddr Look for this address in the CM breakpoint table. Both logical and
absolute code addresses are supported.

pin Look for breakpoints set by this PIN. Default is the caller's PIN (a pin of 0
implies this). To specify system (global) breakpoints, use a -1 (or 32762) as
the PIN.

Examples

 %cmdebug > dc FOPEN,1
 %005274: FOPEN+%0 004300 .. STAX, NOP

Display code at the address of FOPEN so we can see what the current instruction at that
address is.

 %cmdebug > b FOPEN
 added: CM [1] SYS % 161.5274 FOPEN+%0

 %cmdebug > dc FOPEN,1
 %005274: FOPEN+%0 003600 <. BRKP

Now set a breakpoint at FOPEN and display the code there. The old instruction has been
replaced with a breakpoint instruction.

 %cmdebug > wl cmbpinstr(FOPEN)
 %4300

Use the function to look up the actual instruction. The instruction that is stored in the
system breakpoint table is returned by the function.

Limitations, Restrictions

none

func cmentry
Returns the CM (primary) entry point address of the CM procedure containing the
specified CM logical code address.

Syntax

 cmentry (cmlogaddr)

Entry point addresses correspond to the ENTRY column in the PMAP generated by the
Segmenter. See the CM program example below.
Chapter 10 375

System Debug Standard Functions
func cmentry
Formal Declaration

 cmentry:lcptr (cmlogaddr :lcptr)

Parameters

cmlogaddr A CM logical code address. The entry point of the surrounding level one
CM procedure is returned as a CM logical code address.

Cmlogaddr must be a full CM logical code address (LCPTR). For example:

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102

fopen+102 CM procedure fopen + %102 (assumes CM mode)

cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM
mode)

Examples

Assume that the following single segment CM program has been compiled, linked with the
PMAP`` and ``FPMAP options, and is now being executed:

 PROGRAM test (input,output);

 PROCEDURE one;
 begin {one}
 writeln('ONE');
 end; {one}

 PROCEDURE two;

 PROCEDURE three;
 begin {three}
 writeln('THREE');
 end; {three}

 begin {two}
 writeln('TWO');
 three;
 end; {two}

 begin {main body} { Outer block is named "ob'" by the compiler }
 one;
 two;
 end. {main body}

 PROGRAM FILE PTEST.DEMO.TELESUP

 SEG' 0
 NAME STT CODE ENTRY SEG
 OB' 1 0 13
 TERMINATE' 5 ?
376 Chapter 10

System Debug Standard Functions
func cmg
 P'RESET 6 ?
 P'REWRITE 7 ?
 P'CLOSEIO 10 ?
 P'INITHEAP'3000 11 ?
 TWO 2 71 123
 P'WRITELN 12 ?
 P'WRITESTR 13 ?
 ONE 3 142 155
 SEGMENT LENGTH 210

 PRIMARY DB 2 INITIAL STACK 10240 CAPABILITY 600
 SECONDARY DB 430 INITIAL DL 0 TOTAL CODE 210
 TOTAL DB 432 MAXIMUM DATA ? TOTAL RECORDS 11
 ELAPSED TIME 00:00:01.365 PROCESSOR TIME 00:00.740

 END OF PREPARE

 %cmdebug > wl ob'
 PROG %0.0
 %cmdebug > wl cmstart(ob')
 PROG %0.0

Two methods of displaying the start address of the procedure ob'.

 %cmdebug > wl ?ob'
 PROG %0.13
 %cmdebug > wl cmentry(ob')
 PROG %0.13

Two methods of displaying the entry address of the procedure ob'.

 %cmdebug > wl cmstart(one)
 PROG %0.142

 %cmdebug > wl cmentry(one)
 PROG %0.155

 %cmdebug > wl cmstart(two)
 PROG %0.71

 %cmdebug > wl cmentry(two)
 PROG %0.123

Limitations, Restrictions

The names and addresses of nested CM procedures, such as procedure three , are not
available within the CM FPMAP records. Addresses that fall within nested procedures
(three) are returned as offsets relative to the parent procedure (two).

func cmg
Returns the virtual address (SPTR) of a process's CMGLOBALS record.
Chapter 10 377

System Debug Standard Functions
func cmnode
Syntax

 cmg (pin)

Formal Declaration

 cmg:sptr (pin :u16)

Parameters

pin The process identification number (PIN) for which the address of the
CMGLOBALS record is to be returned.

Examples

 $nmdebug > wl cmg($8)
 $c4680000

Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.

func cmnode
Returns the address of the closest CM node point corresponding to the specified CM logical
code address.

Syntax

 cmnode (cmlogaddr [node])

Refer to appendix C for a discussion of CM Object Code Translation (OCT), node points,
and breakpoints in translated CM code.

Formal Declaration

 cmnode:lcptr (cmlogaddr :lcptr [node :str="PREV"])

Parameters

cmlogaddr The CM logical code address within a translated code segment for which
the closest CM node point is desired.

Cmlogaddr must be a full CM logical code address (LCPTR). For example:

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102
378 Chapter 10

System Debug Standard Functions
func cmproc
fopen+102 CM procedure fopen + %102 (assumes CM mode)

cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM
mode)

node The desired node point, either PREV (closest previous node) or NEXT
(closest next node). If unspecified, then PREV is assumed.

Examples

 %cmdebug > wl cmnode(sys(2.226))
 SYS %2.224

Print the CM address of the closest CM previous (by default) node point.

 %cnmdebug > wl cmnode(sys(2.226), "next")
 SYS %2.232

Print the CM address of the closest CM next node point.

Limitations, Restrictions

none

func cmproc
Returns the CM procedure name and offset corresponding to a CM logical code address.

Syntax

 cmproc (cmlogaddr)

The string returned by CMPROC can be either of the two following formats :

?entrypoint_name

or

procedure_name + base offset

Detailed descriptions of each of the above return strings follow:

entrypoint_name The name of the CM entry point (primary/secondary).

procedure_name The name of the CM procedure.

base The output radix used to represent offset , which depends on the current
output base.

 % Octal
 $ Hexadecimal
 # Decimal

offset If the offset is nonzero, then it is returned, appended to the procedure
Chapter 10 379

System Debug Standard Functions
func cmproc
name. The offset is formatted based on the current fill, justification, and
output base values.

Formal Declaration

 cmproc:str (cmlogaddr :lcptr)

Parameters

 cmlogaddr The CM logical code address for which the CM symbolic procedure
name/offset is to be returned.

Cmlogaddr must be a full CM logical code address (LCPTR). For example:

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102

fopen+102 CM procedure fopen + %102 (assumes CM mode)

cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM
mode)

Examples

Assume that the following single-segment CM program has been compiled, linked with the
PMAP and FPMAP options, and is now being executed:

 PROGRAM test (input,output);

 PROCEDURE one;
 begin {one}
 writeln('ONE');
 end; {one}

 PROCEDURE two;

 PROCEDURE three;
 begin {three}
 writeln('THREE');
 end; {three}

 begin {two}
 writeln('TWO');
 three;
 end; {two}

begin {main body} { Outer block is named "ob'" by the compiler }
 one;
 two;
 end. {main body}
380 Chapter 10

System Debug Standard Functions
func cmproc

11
 PROGRAM FILE PTEST.DEMO.TELESUP

 SEG' 0
 NAME STT CODE ENTRY SEG
 OB' 1 0 13
 TERMINATE' 5 ?
 P'RESET 6 ?
 P'REWRITE 7 ?
 P'CLOSEIO 10 ?
 P'INITHEAP'3000 11 ?
 TWO 2 71 123
 P'WRITELN 12 ?
 P'WRITESTR 13 ?
 ONE 3 142 155
 SEGMENT LENGTH 210

PRIMARY DB 2 INITIAL STACK 10240 CAPABILITY 600
SECONDARY DB 430 INITIAL DL 0 TOTAL CODE 210
TOTAL DB 432 MAXIMUM DATA ? TOTAL RECORDS
ELAPSED TIME 00:00:01.365 PROCESSOR TIME 00:00.740

 END OF PREPARE

 %cmdebug > wl cmproc(prog(0.142))
 ONE+%0

 %cmdebug > wl cmproc(prog(0.155))
 ?ONE

 %cmdebug > wl cmproc(prog(0.147))
 ONE+%5

 %cmdebug > wl cmproc(prog(0.66))
 OB'+%66

 %cmdebug > wl cmproc(prog(0.101))
 TWO+%10

 %cmdebug > wl cmproc(sys(22.5000))
 ?FOPEN

 %cmdebug > wl cmproc(sys(22.5035))
 FOPEN+%41

 %cmdebug > wl cmproc(sys(22.5036))
 ?MUSTOPEN

 %cmdebug > wl cmproc(sys(22.5037))
 FOPEN+%43

The primary entry point ?FOPEN, and the secondary entry point ?MUSTOPEN are located,
along with two other offsets within system SL procedure FOPEN.
Chapter 10 381

System Debug Standard Functions
func cmproclen
Limitations, Restrictions

The names and addresses of nested CM procedures, such as procedure three , are not
available within the CM FPMAP records. Addresses which fall within nested procedures
(three) are returned as offsets relative to the parent procedure (two).

func cmproclen
Returns the length of the CM procedure which contains the specified CM logical code
address.

Syntax

 cmproclen (cmlogaddr)

The procedure length (from procedure start to procedure end) is returned in CM (16-bit)
words.

Formal Declaration

 cmproclen:u16 (cmlogaddr :lcptr)

Parameters

cmlogaddr The CM logical code address of a procedure whose length is desired.

Cmlogaddr must be a full CM logical code address (LCPTR). For example:

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102

fopen+102 CM procedure fopen + %102 (assumes CM mode)

cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM
mode)

Examples
 %cmdebug > wl cmproclen(cmpc)
 %843

Print the length of the current CM procedure located at the CM program counter CMPC.

 %cmdebug > wl cmproclen(fopen)
 %1642

Print the length of the CM procedure fopen .

Assume that the following single segment CM program has been compiled, linked with the
PMAP and FPMAP options, and is now being executed:
382 Chapter 10

System Debug Standard Functions
func cmproclen
 PROGRAM test (input,output);

 PROCEDURE one;
 begin {one}
 writeln('ONE');
 end; {one}

 PROCEDURE two;

 PROCEDURE three;
 begin {three}
 writeln('THREE');
 end; {three}

 begin {two}
 writeln('TWO');
 three;
 end; {two}

 begin {main body} { Outer block is named "ob'" by the compiler }
 one;
 two;
 end. {main body}

 PROGRAM FILE PTEST.DEMO.TELESUP

 SEG' 0
 NAME STT CODE ENTRY SEG
 OB' 1 0 13
 TERMINATE' 5 ?
 P'RESET 6 ?
 P'REWRITE 7 ?
 P'CLOSEIO 10 ?
 P'INITHEAP'3000 11 ?
 TWO 2 71 123
 P'WRITELN 12 ?
 P'WRITESTR 13 ?
 ONE 3 142 155
 SEGMENT LENGTH 210

 PRIMARY DB 2 INITIAL STACK 10240 CAPABILITY 600
 SECONDARY DB 430 INITIAL DL 0 TOTAL CODE 210
 TOTAL DB 432 MAXIMUM DATA ? TOTAL RECORDS 11
 ELAPSED TIME 00:00:01.365 PROCESSOR TIME 00:00.740

 END OF PREPARE
Chapter 10 383

System Debug Standard Functions
func cmseg
 %cmdebug > wl cmstart(ob')
 PROG %0.0
 %cmdebug > wl cmstart(two)
 PROG %0.71
 %cmdebug > wl cmstart(one)
 PROG %0.142

 %cmdebug > wl cmproclen(ob')
 %71
 %cmdebug > wl cmstart(two) - cmstart(ob')
 %71

 %cmdebug > wl cmproclen(two)
 %51
 %cmdebug > wl cmstart(one)-cmstart(two)
 %51

 %cmdebug > wl cmproclen(one)
 %30

Limitations, Restrictions

The names and addresses of nested CM procedures, such as procedure three , are not
available within the CM FPMAP records. Addresses that fall within nested procedures
(three) are returned as offsets relative to the parent procedure (two).

func cmseg
Returns the CM segment name for the specified CM logical code address.

Syntax

 cmseg (cmlogaddr)

Formal Declaration

 cmseg:str (cmlogaddr :lcptr)

Parameters

 cmlogaddr The CM logical code address for which the segment name is desired.

Cmlogaddr must be a full CM logical code address (LCPTR). For example:

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102
384 Chapter 10

System Debug Standard Functions
func cmstackbase
fopen+102 CM procedure fopen + %102 (assumes CM mode)

cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM
mode)

Note that the offset portion of the LCPTR address is required, but ignored.

Examples

 $cmdebug > wl cmseg(prog(0.0))
 SEG'

 $cmdebug > wl cmseg(fopen)
 XLSEG11

Limitations, Restrictions

none

func cmstackbase
Returns the starting virtual address of a process's compatibility mode stack.

Syntax

 cmstackbase (pin)

Formal Declaration

 cmstackbase:lptr (pin :u16)

Parameters

pin The process identification number (PIN) for which the starting virtual
address of the CM stack is to be returned.

Examples
 $nmdebug > wl cmstackbase(%10)
 $2c4.40011cb0

Display the virtual address of the CM stack base for PIN %10.

 $nmdat > wl "CM stack size = ", cmstacklimit(pin) - cmstackbase(pin) + 1
 CM stack size = $4350

Calculate and display the CM stack length (in bytes) for the current PIN.
Chapter 10 385

System Debug Standard Functions
func cmstackdst
Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.

func cmstackdst
Returns the DST number for a process's compatibility mode stack.

Syntax

 cmstackdst (pin)

Formal Declaration

 cmstackdst:u16 (pin :u16)

Parameters

pin The process identification number (PIN) for which the DST number of the
CM stack is to be returned.

Examples

 $nmdebug > wl cmstackdst(8)
 $4f

Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.

func cmstacklimit
Returns the virtual address for the limit of a process's compatibility mode stack.

Syntax

 cmstacklimit (pin)

The virtual address of the last usable byte in the CM stack is returned.

Formal Declaration

 cmstacklimit:lptr (pin :u16)
386 Chapter 10

System Debug Standard Functions
func cmstart
Parameters

pin The process identification number (PIN) for which the virtual address of
the CM stack limit is to be returned.

Examples

 $nmdebug > wl cmstacklimit(%10)
 $2c4.40015fff

Display the virtual address of the CM stack limit for pin %10.

 $nmdat > wl "CM stack size = ", cmstacklimit(pin) - cmstackbase(PIN) +1
 CM stack size = $4350

Calculate and display the CM stack length (in bytes) for the current PIN.

Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.

func cmstart
Returns the starting point of the procedure containing the indicated CM logical code
address.

Syntax

 cmstart (cmlogaddr)

Start addresses correspond to the CODE column in the PMAP generated by the Segmenter.
Refer to the CM program example below.

Formal Declaration

 cmstart:lcptr (cmlogaddr :lcptr)

Parameters

 cmlogaddr A CM logical code pointer address for which the starting address of the
containing level one procedure is to be returned.

Cmlogaddr must be a full CM logical code address (LCPTR). For example:

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102

fopen+102 CM procedure fopen + %102 (assumes CM mode)
Chapter 10 387

System Debug Standard Functions
func cmstart
cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM mode

Examples

Assume that the following single segment CM program has been compiled, linked with the
PMAP and FPMAP options, and is now being executed:

 PROGRAM test (input,output);

 PROCEDURE one;
 begin {one}
 writeln('ONE');
 end; {one}

 PROCEDURE two;

 PROCEDURE three;
 begin {three}
 writeln('THREE');
 end; {three}

 begin {two}
 writeln('TWO');
 three;
 end; {two}

 begin {main body} { Outer block is named "ob'" by the compiler }
 one;
 two;
 end. {main body}

 PROGRAM FILE PTEST.DEMO.TELESUP

 SEG' 0
 NAME STT CODE ENTRY SEG
 OB' 1 0 13
 TERMINATE' 5 ?
 P'RESET 6 ?
 P'REWRITE 7 ?
 P'CLOSEIO 10 ?
 P'INITHEAP'3000 11 ?
 TWO 2 71 123
 P'WRITELN 12 ?
 P'WRITESTR 13 ?
 ONE 3 142 155
 SEGMENT LENGTH 210

 PRIMARY DB 2 INITIAL STACK 10240 CAPABILITY 600
 SECONDARY DB 430 INITIAL DL 0 TOTAL CODE 210
 TOTAL DB 432 MAXIMUM DATA ? TOTAL RECORDS 11
 ELAPSED TIME 00:00:01.365 PROCESSOR TIME 00:00.740

 END OF PREPARE

 %cmdebug > wl ob'
 PROG %0.0
 %cmdebug > wl cmstart(ob')
388 Chapter 10

System Debug Standard Functions
func cmtonmnode
 PROG %0.0

Two methods of displaying the start address of the procedure ob'.

 %cmdebug > wl ?ob'
 PROG %0.13
 %cmdebug > wl cmentry(ob')
 PROG %0.13

Two methods of displaying the entry address of the procedure ob'.

 %cmdebug > wl cmstart(one)
 PROG %0.142

 %cmdebug > wl cmentry(one)
 PROG %0.155

 %cmdebug > wl cmentry(one+10)
 PROG %0.155

 %cmdebug > wl cmstart(two)
 PROG %0.71

 %cmdebug > wl cmstart(two+5)
 PROG %0.71

 %cmdebug > wl cmentry(two)
 PROG %0.123

Limitations, Restrictions

The names and addresses of nested CM procedures, such as procedure three , are not
available within the CM FPMAP records. Addresses that fall within nested procedures
(three) are returned as offsets relative to the parent procedure (two).

func cmtonmnode
Returns the address of the closest NM node point corresponding to the specified CM logical
code address.

Syntax

 cmtonmnode (cmlogaddr [node])

Refer to Appendix C for a discussion of CM Object Code Translation (OCT) node points,
and breakpoints in translated CM code.

Formal Declaration

 cmtonmnode:trans (cmlogaddr :lcptr [node :str=PREV])
Chapter 10 389

System Debug Standard Functions
func cmva
Parameters

 cmlogaddr The CM logical code address of translated code for which the closest NM
node point is desired.

Cmlogaddr must be a full CM logical code address (LCPTR). For example:

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102

fopen+102 CM procedure fopen + %102 (assumes CM mode)

cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM
mode)

node The desired node point, either PREV (closest previous node) or NEXT
(closest next node). If unspecified, then PREV is assumed.

Examples

 $nmdebug > wl cmtonmnode(sys(2.%226))
 TRANS $21.24024

Print the NM address of the closest CM previous (by default) node point.

 $nmdebug > wl cmtonmnode(sys(2.%226), "next")
 TRANS $21.2404c

Print the NM address of the closest CM next node point.

Limitations, Restrictions

none

func cmva
Returns the virtual address of a specified CM code address.

Syntax

 cmva (cmaddr [pin])

Compatibility mode code may be emulated or translated into NM. This function always
returns addresses based on emulated CM object code.

Another function (CMTONMNODE) can be used to locate the nearest corresponding NM node
point address if the CM object code has been translated into NM.

Refer to appendix C for a discussion of CM object code translation, node points, and
breakpoints in translated CM code. See the T(ranslate) commands in Chapter 4 for
390 Chapter 10

System Debug Standard Functions
func cst
additional information.

Formal Declaration

 cmva:lptr (cmaddr :cptr [pin :u16 = 0])

Parameters

cmaddr A CM code address to be converted to a virtual address. Both logical and
absolute code addresses are supported.

pin The process identification number (PIN) to which the code segment
belongs. If pin is not specified, it defaults to 0, which is defined to be the
current PIN.

Examples

 $nmdebug > wl cmva(cmpc)
 $26.0000124c

Convert the current CM logical address pointer, for the current PIN, to a NM virtual
address and display the result.

 $nmdebug > wl cmva(SYS(%23.%250,$24))
 $3f.00000250

Convert CM logical address SYS %23.%250, for the process associated with PIN $24, to a
NM virtual address and display the result.

 $nmdebug > wl cmva(CST(3.0))
 $21.000034c4

Convert absolute CM address CST 3.0, for the current PIN, to a NM virtual address and
display the result.

Limitations, Restrictions

none

func cst
Coerces an expression into a CST absolute code pointer (ACPTR).

Syntax

 cst (value)

CM program segments are loaded into the CSTX. CM library segments are loaded into the
CST.

During the evaluation of the parameter to the CST function, the following CM search path
Chapter 10 391

System Debug Standard Functions
func cst
is used for procedure name lookups:

 GRP, PUB, LGRP, LPUB, SYS

Formal Declaration

 cst:cst (value :any)

Parameters

value An expression to be coerced. All types are valid.

Examples

 %cmdebug > wl cst(12.304)
 CST %12.304

Coerce the simple long pointer into a CST absolute code pointer.

 %cmdebug > wl sort
 PROG %4.3302

 %cmdebug > wl grp (sort)
 GRP %2.1364

 %cmdebug > wl cst (sort)
 CST %73.1364

Print the address of the procedure named sort . The first lookup uses the standard
procedure name lookup search path and finds the procedure sort in the program file. The
second lookup restricts the search path to the group library, and another sort procedure is
located. The third lookup restricts the search path to all of the currently loaded libraries,

Table 10-2. Derivation of the CST Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
S16

Set the high-order 32 bits (SID or segment part) to zero. Right justify the
original 16-bit value in the low-order 32 bits (offset part) with zero fill.

U32
S32
SPTR

Set the high-order 32 bits (SID or segment part) to zero. Transfer the
original bit pattern into the low-order 32 bits (offset part) unchanged.

LPTR SYS
PROG USER
GRP TRANS
PUB CST
LGRP CSTX
LPUB

Transfer both parts of the address unchanged.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
392 Chapter 10

System Debug Standard Functions
func cstx
and the second procedure is located again (within the group library).

 %cmdebug > wl cst(sys(24.630))
 CST %24.630

The coercion simply changes the associated absolute file. Note that no complicated
conversion or range checking is performed.

Limitations, Restrictions

none

func cstx
Coerces an expression into a CSTX absolute code pointer (ACPTR).

Syntax
 cstx (value)

CM program segments are loaded into the CSTX. CM library segments are loaded into the
CST.

During the evaluation of the parameter to the CSTXfunction, the CM search path is limited
to the program file (PROG).

Formal Declaration

 cstx:cstx (value :any)

Parameters

 value An expression to be coerced. All types are valid.

Table 10-3. Derivation of the CSTX Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
S16

Set the high-order 32 bits (SID or segment part) to zero. Right justify the
original 16-bit value in the low-order 32 bits (offset part) with zero fill.

U32
S32
SPTR

Set the high-order 32 bits (SID or segment part) to zero. Transfer the
original bit pattern into the low-order 32 bits (offset part) unchanged.
Chapter 10 393

System Debug Standard Functions
func dstva
Examples

 %cmdebug > wl cstx(12.304)
 CSTX %12.304

Coerce the simple long pointer into a CSTX absolute code pointer.

 %cmdebug > wl cstx(sort)
 CSTX %4.3302

Print the address of the procedure named sort . Note that the search path used for
procedure name lookups is restricted to the program file (PROG).

 %cmdebug > wl cstx(sys(24.630))
 CSTX %24.630

The coercion simply changes the associated absolute file. Note that no complicated
conversion or range checking is performed.

Limitations, Restrictions

none

func dstva
Converts a CM data segment address to a virtual address.

Syntax

 dsvta (dstoff)

LPTR SYS
PROG USER
GRP TRANS
PUB CST
LGRP CSTX
LPUB

Transfer both parts of the address unchanged.

EADDR
SADDR

Transfer both parts of the address, truncating the 32 high-order bits of the
offset.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.

Table 10-3. Derivation of the CSTX Bit Pattern

Parameter Type Action
394 Chapter 10

System Debug Standard Functions
func eaddr
Formal Declaration

 dstva:lptr (dstoff :lptr)

Parameters

dstoff The CM data segment address which is to be converted to a virtual
address. This is specified as dst.offset .

Examples

 $nmdebug > = dstva(%20.0)
 $38.00000000

Convert the data segment address %20.0 to a virtual address and display the result.

Limitations, Restrictions

none

func eaddr
Coerces an expression into an extended address.

Syntax

 eaddr (value)

Formal Declaration

 eaddr:eaddr (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 10-4. Derivation of the EADDR Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original value in the low-order
64 bits of the offset part with zero fill.

S16
S32
S64

Set the SID part to zero. Right justify the original value in the low-order
64 bits of the offset part with sign extension.
Chapter 10 395

System Debug Standard Functions
func errmsg
Examples

 $nmdat > wl eaddr(1)
 $0.1

 $nmdat > wl eaddr(ffff)
 $0.ffff

 $nmdat > wl eaddr(1234abcd)
 $0.1234abcd

 $nmdat > wl eaddr(-1)
 $0.ffffffffffffffff

 $nmdat > wl eaddr(1234.5678)
 $1234.5678

 $nmdat > wl eaddr(true)
 $0.1

 $nmdat > wl eaddr(prog(1.2))
 $1.2

Limitations, Restrictions

none

func errmsg
Returns an error message string, based on error number and an optional subsystem
number.

Syntax

 errmsg (errnum [subsys])

LONG Class Transfer the SID part unchanged. Right justify the original offset part in
the low-order 64 bits of the offset part with zero fill.

EADDR
SADDR

Transfer both parts of the address unchanged.

STR Transfer the ASCII bit pattern for the last twelve characters in the string.
Strings shorter than twelve characters are treated as if they were
extended on the left with nulls.

Table 10-4. Derivation of the EADDR Bit Pattern

Parameter Type Action
396 Chapter 10

System Debug Standard Functions
func grp
Formal Declaration

 errmsg:str (errnum :s16 [subsys :u16=$a9])

Parameters

errnum The error number, typically negative for errors, positive for warnings.

subsys The subsystem number. By default, the Debug subsystem number ($a9) is
used.

Examples

 $nmdebug > wl errmsg (-#1055)
 Expected a string for a pattern name (error #1105)

Display the System Debug error message string for error number 1105.

 $nmdebug > wl errmsg (-#52, #10)
 NONEXISTENT PERMANENT FILE (FSERR #52)

Display the error message string for error number -#52, for subsys #10.

 $nmdat > wl errmsg(-#37,#36)
 External error - subsys: #36 info: #37

If the error message is not found in the system message catalog, this form of message is
returned.

Limitations, Restrictions

none

func grp
Coerces an expression into a GRP logical code pointer (LCPTR).

Syntax

 grp (value)

During the evaluation of the parameter to this function, the search path used for
procedure name lookups is limited to the group library file (GRP).

Formal Declaration

 grp:grp (value :any)
Chapter 10 397

System Debug Standard Functions
func grp
Parameters

value An expression to be coerced. All types are valid.

Examples

 %cmdebug > wl grp(12.304)
 GRP %12.304

Coerce the simple long pointer into a GRP logical code pointer.

 %cmdebug > wl grp(sort)
 GRP %2.1364

Print the address of the procedure named sort . Note that the search path used for
procedure name lookups is restricted to the group library (GRP).

 %cmdebug > wl grp(sys(24.630))
 GRP %24.630

The coercion simply changes the associated logical file. Note that no complicated
conversion or range checking is performed.

 $nmdat > wl grp(1)
 GRP $0.1

 $nmdat > wl grp(ffff)
 GRP $0.ffff

 $nmdat > wl grp(1234abcd)
 GRP $0.1234abcd

 $nmdat > wl grp(-1)
 GRP $0.ffffffff

Table 10-5. Derivation of the GRP Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16
S32
S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR
SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
398 Chapter 10

System Debug Standard Functions
func hash
 $nmdat > wl grp(1234.5678)
 GRP $1234.5678

 $nmdat > wl grp(true)
 GRP $0.1

 $nmdat > wl grp("ABCDEFG")
 GRP $414243.44454647

Limitations, Restrictions

none

func hash
Hashes a virtual address into a hash table (real) offset.

Syntax

 hash (virtaddr)

The hash value can be added to the Hash table base real address (TR1) to determine the
real offset to the first PDIR entry.

Formal Declaration

 hash:s32 (virtaddr :ptr)

Parameters

virtaddr The virtual address that is to be hashed.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

Examples

 nmdat > wl pc
 SYS $a.d87f8

 nmdat > wl hash(pc)
 $103c4

 nmdat > dz tr1+hash(pc)
 REAL $103c4 $ 00001b00

 nmdat > dz tr0+1b00,4
 REAL $0061dd00 $ 80000000 0000000a 000d8000 82800000
Chapter 10 399

System Debug Standard Functions
func lgrp
Hash the virtual address for PC ($a.d87f8) to get real address $103c4. Add the hash value
($103c4) to the base of the Hash table (TR1) to get the offset of the first PDIR entry
($1b00). Add this offset to the base of the PDIR table (TR0), and display the four-word
PDIR entry.

Limitations, Restrictions

none

func lgrp
Coerces an expression into a LGRP logical code pointer (LCPTR).

Syntax

 lgrp (value)

During the evaluation of the parameter to this function, the search path used for
procedure name lookups is limited to the logon group library file (LGRP).

Formal Declaration

 lgrp:lgrp (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 10-6. Derivation of the LGRP Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16
S32
S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR
SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
400 Chapter 10

System Debug Standard Functions
func logtoabs
Examples

 %cmdebug > wl lgrp(12.304)
 LGRP %12.304

Coerce the simple long pointer into a LGRP logical code pointer.

 %cmdebug > wl lgrp(sort)
 LGRP %0.6412

Print the address of the procedure named sort . Note that the search path used for
procedure name lookups is restricted to the logon group library (LGRP).

 %cmdebug > wl lgrp(sys(24.630))
 LGRP %24.630

The coercion simply changes the associated logical file. The pointer's bit pattern remains
unchanged.

 $nmdat > wl lgrp(1)
 LGRP $0.1

 $nmdat > wl lgrp(ffff)
 LGRP $0.ffff

 $nmdat > wl lgrp(1234abcd)
 LGRP $0.1234abcd

 $nmdat > wl lgrp(-1)
 LGRP $0.ffffffff

 $nmdat > wl lgrp(1234.5678)
 LGRP $1234.5678

 $nmdat > wl lgrp(true)
 LGRP $0.1

 $nmdat > wl lgrp("ABCDEFG")
 LGRP $414243.44454647

 $nmdat > wl lgrp(prog(1.2))
 LGRP $1.2

Limitations, Restrictions

none

func logtoabs
Logical to absolute. Converts a CM logical code address (LCPTR) into a CM absolute code
address (ACPTR).
Chapter 10 401

System Debug Standard Functions
func lptr
Syntax

 logtoabs (cmlogaddr)

Formal Declaration

 logtoabs:acptr (cmlogaddr :lcptr)

Parameters

cmlogaddr The CM logical code address to be converted into an absolute code pointer.

Cmlogaddr must be a full CM logical code address (LCPTR). For example:

CMPC Current CM program counter

CMPW+4 Top of CM program window + 4

PROG(2.102) Program file logical seg 2 offset 102

fopen+102 CM procedure fopen + %102 (assumes CM mode)

cmaddr('fopen')+%102 CM procedure fopen + %102 (NM or CM
mode)

Examples

 %cmdebug > wl logtoabs(prog(0.1273))
 CSTX %1.1273

Logical CM address PROG 0.1273 is converted into absolute address CSTX 1.1273 .

 %cmdebug > wl logtoabs(sys(32.304))
 CST %43.304

Logical CM address SYS 32.304 is converted into absolute address CST 43.304 .

 %cmdebug > wl logtoabs(grp(4.4274))
 CST %103.4274

Logical group library address GRP 4.4274 is converted into absolute address CST
103.4274 .

Limitations, Restrictions

none

func lptr
Coerces an expression into a long pointer.
402 Chapter 10

System Debug Standard Functions
func lptr
Syntax

 lptr (value)

Formal Declaration

 lptr:lptr (value :any)

Parameters

value An expression to be coerced. All types are valid.

Examples

 $nmdat > wl lptr(1)
 $0.1

 $nmdat > wl lptr(ffff)
 $0.ffff

 $nmdat > wl lptr(1234abcd)
 $0.1234abcd

 $nmdat > wl lptr(-1)
 $0.ffffffff

 $nmdat > wl lptr(1234.5678)
 $1234.5678

 $nmdat > wl lptr(true)
 $0.1

Table 10-7. Derivation of the LPTR Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16
S32
S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR
SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
Chapter 10 403

System Debug Standard Functions
func lpub
 $nmdat > wl lptr("ABCDEFG")
 $414243.44454647

 $nmdat > wl lptr(prog(1.2))
 $1.2

Limitations, Restrictions

none

func lpub
Coerces an expression into a LPUB logical code pointer (LCPTR).

Syntax

 lpub (value)

During the evaluation of the parameter to this function, the search path used for
procedure name lookups is restricted to the logon account library file (LPUB).

Formal Declaration

 lpub:lpub (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 10-8. Derivation of the LPUB Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16
S32
S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR
SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
404 Chapter 10

System Debug Standard Functions
func ltolog
Examples

 %cmdebug > wl lpub(12.304)
 LPUB %12.304

Coerce the simple long pointer 12.304 into a LPUB logical code pointer.

 %cmdebug > wl lpub(sort)
 LPUB %2.6632

Print the address of the procedure named sort . Note that the search path used for
procedure name lookups is restricted to the logon account library (LPUB).

 %cmdebug > wl lpub(sys(24.630))
 LPUB %24.630

The coercion simply changes the associated logical file. The pointer's bit pattern remains
unchanged.

 $nmdat > wl lpub(1)
 LPUB $0.1

 $nmdat > wl lpub(ffff)
 LPUB $0.ffff

 $nmdat > wl lpub(1234abcd)
 LPUB $0.1234abcd

 $nmdat > wl lpub(-1)
 LPUB $0.ffffffff

 $nmdat > wl lpub(1234.5678)
 LPUB $1234.5678

 $nmdat > wl lpub(true)
 LPUB $0.1

 $nmdat > wl lpub("ABCDEFG")
 LPUB $414243.44454647

 $nmdat > wl lpub(prog(1.2))
 LPUB $1.2

Limitations, Restrictions

none

func ltolog
Long to logical. Converts a long pointer into a NM logical code pointer (LCPTR).
Chapter 10 405

System Debug Standard Functions
func ltolog
Syntax

 ltolog (longptr)

The SID of the long pointer (input parameter) is compared with the SID of each of the
loaded NM executable libraries for a match. If a SID match is found, then the appropriate
logical code pointer is returned.

If the SID does not match any of the loaded NM files, then the long pointer is tested to see
if it points to a NM section of translated CM code produced by the Object Code Translator
(OCT). If the long pointer is found to be translated code, then a special TRANS logical code
pointer is returned.

Refer to appendix C for a discussion of CM object code translation, node points, and
breakpoints in translated CM code.

If both of the previous tests fail, then a special unknown type (UNKN) is returned.

Formal Declaration

 ltolog:lcptr (longptr :lptr)

Parameters

longptr The long pointer to be converted into a NM logical code pointer.

Examples

 $nmdebug > wl ltolog (a.2034c)
 SYS $a.2034

The SID $a matches the SID for the system library (SYS) NL.PUB.SYS. The long pointer is
converted into the logical code pointer SYS a.2034 .

 $nmdebug > wl ltolog (3c.3208)
 PROG $3c.3208

The SID $3c matches the SID of the program file.

 $nmdebug > wl ltolog (20.10264)
 TRANS $20.10264

The SID $20 does not match any of the loaded NM files. A final test is applied, in case the
virtual address is in translated CM code. In this example, the address does point to a NM
section of translated CM object code (translated by the Object Code Translator).

 $nmdebug > wl ltolog (123.45678)
 UNKN $123.45678

The SID $123 does not match any of the loaded NM files and does not point to translated
code. The special unknown logical code pointer is returned.

Limitations, Restrictions

none
406 Chapter 10

System Debug Standard Functions
func ltos
func ltos
Long to short. Converts a virtual address to a short pointer.

Syntax

 ltos (virtaddr)

The LTOS function converts a virtual address to a short pointer.

If the parameter virtaddr is already a short pointer, it is simply returned.

If the parameter virtaddr is a long pointer, or a full logical code address, a special
additional test is performed to ensure that the offset portion can be returned as the short
pointer value. The SID (space) portion must match the current value of the associated
space register. This ensures that the returned short pointer value can be successfully
converted back into the long pointer argument.

Formal Declaration

 ltos:sptr (virtaddr :ptr)

Parameters

virtaddr The virtual address to be converted to a short pointer.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

Examples

 $nmdebug > wl pc
 PROG $3c.12004
 $nmdebug > wl ltos(pc)
 $12004

 $nmdebug > var save 42.40151025
 $nmdebug > wl ltos(save)
 $40151025

 $nmdat > dr sr4
 SR4=$a
 $nmdat > wl ltos(22.200)
 SID in LPTR for LTOS conversion does not match corresponding space reg.
 Error evaluating a predefined function. (error #4240)
 function is"ltos"

In this example SR4 contains $a. The function LTOS detects that the SID portion of the
long pointer ($22) does not match the value of the associated space register (SR4=$a), and
the conversion fails.
Chapter 10 407

System Debug Standard Functions
func macbody
Limitations, Restrictions

none

func macbody
Returns a string that is the macro body for the specified macro name.

Syntax

 macbody (macroname)

Formal Declaration

 macbody:str (macroname:str)

Parameters

 macroname The name of the macro whose body is to be returned.

Examples

 $nmdebug > wl macbody("showtime")
 wl time

Display the macro body for the macro command named showtime .

 $nmdebug > wl macbody("min")
 if p1 <= p2 then return p1 else return p2

Display the macro body for the macro function named min .

Limitations, Restrictions

none

func mapindex
Returns the map index number of the specified file name which has been previously
mapped into virtual space with the MAP command.

Syntax

 mapindex (filename)
408 Chapter 10

System Debug Standard Functions
func mapsize
Formal Declaration

 pindex:u16 (filename :str)

Parameters

filename The name of the previously mapped file whose index number is to be
returned.

Examples

 $nmdebug > maplist
 1 DTCDUMP.DUMPUSER.SUPPORT 1000.0 Bytes = 43dc
 2 DTCDUMP2.DUMPUSER.SUPPORT 1001.0 Bytes = c84
 3 MYFILE.MYGROUP.MYACCT 1005.0 Bytes = 1004

 $nmdebug > wl mapindex("DTCDUMP")
 $1

Limitations, Restrictions

none

func mapsize
Returns the size in bytes of the specified mapped file.

Syntax

 mapsize (filename)

Formal Declaration

 mapsize:u32 (filename :str)

Parameters

filename The name of the previously mapped file whose size is to be returned.

Examples

 $nmdebug > maplist
 1 DTCDUMP.DUMPUSER.SUPPORT 1000.0 Bytes = 43dc
 2 DTCDUMP2.DUMPUSER.SUPPORT 1001.0 Bytes = c84
 3 MYFILE.MYGROUP.MYACCT 1005.0 Bytes = 1004

 $nmdebug > = mapsize("DTCDUMP2.DUMPUSER")
 c84
Chapter 10 409

System Debug Standard Functions
func mapva
Limitations, Restrictions

none

func mapva
Returns the virtual address of the specified mapped file.

Syntax

 mapva (filename)

Formal Declaration

 mapva:lptr (filename :str)

Parameters

filename The name of the mapped file whose virtual address is to be returned.

Examples

 $nmdebug > maplist
 1 DTCDUMP.DUMPUSER.SUPPORT 1000.0 Bytes = 43dc
 2 DTCDUMP2.DUMPUSER.SUPPORT 1001.0 Bytes = c84
 3 MYFILE.MYGROUP.MYACCT 1005.0 Bytes = 1004

 $nmdebug > = mapva("DTCDUMP")
 1000.0

Limitations, Restrictions

none

func nmaddr
Returns the virtual address of the specified NM procedure/data path.

Syntax

 nmaddr (path [lookupid])

The values returned by this function are the values as found in the symbol table that is
searched. This function does not perform any form of symbol location fixups. The address
410 Chapter 10

System Debug Standard Functions
func nmaddr
returned for most data symbols must be relocated relative to DP to be useful.

Formal Declaration

 nmaddr:long (path :str [lookupid :str="PROCEDURE"])

Parameters

path The path specification for the NM procedure or data specified in the form:

file_name / module_name : procedure / dataname

or, for nested procedures:

file_name / module_name : parent_procedure . procedure

lookupid A keyword indicating where to look for the code path specification given
above. Refer to the "Procedure Name Symbols" section in chapter 2 for
additional details. Valid keywords and their meanings are as follows:

Keyword Meaning

UNIVERSAL Search exported procedures in the SOM symbols.

LOCAL Search nonexported procedures in the SOM symbols.

NESTED Search nested procedures in the SOM symbols.

PROCEDURES Search local or exported procedures in the SOM symbols.

ALLPROC Search local/exported/nested procedures in the SOM
symbols.

EXPORTSTUB Search export stubs in the SOM symbols.

DATAANY Search exported and local data SOM symbols.

DATAUNIV Search exported data SOM symbols.

DATALOCAL Search local data SOM symbols.

LSTPROC Search exported level 1 procedures in the LST.

LSTEXPORTSTUBSearch export stubs in the LST.

ANY Search for any type of symbol in the SOM symbols.

If a keyword is not given, the default PROCEDURES is used. In all cases, if
the path contains a procedure name that appears as a nested procedure
(for example: name.name), the function assumes the caller meant to use the
NESTED keyword.

The keyword may be abbreviated. The table of keywords (above) is
searched from top to bottom. Thus DATA is resolved as DATAANY.

NOTE Searching the SOM symbols is noticeably slower than searching the LST
symbols.
Chapter 10 411

System Debug Standard Functions
func nmaddr
Examples

 $nmdebug > wl processstudent
 PROG $4d5.5d24

$nmdebug > wl nmaddr("processstudent")
 PROG $4d5.5d24

Write the address for the processstudent procedure. The expression evaluator can locate
the procedure since it is an exported universal procedure. The procedure may also be
located by using the NMADDR function. The default lookupid PROCEDURES is used.

 $nmdebug > wl processstudent.highscore
 Expected a number, variable, function, or procedure (error #3720)
 undefined operand is: "processstudent"
 wl processstudent.highscore

The above example attempts to locate the nested procedure highscore . The expression
evaluator fails. This is due to the fact that a dot "." is used to separate parts of a long
pointer by the expression evaluator. The correct method of locating a nested procedure is
demonstrated in the following example.

 $nmdebug > wl nmaddr("processstudent.highscore")
 PROG $4d5.5b50

The NMADDR function parses the dot in the nested procedure name and finds it's location.

 $nmdebug > wl nmaddr("highscore")
 Couldn't translate path to an address. (error #1612)
 Error evaluating a predefined function. (error #4240)
 function is"nmaddr"
 wl nmaddr("highscore")

 $nmdebug > wl nmaddr("highscore" "nested")
 PROG $4d5.5b50

In the above example an error occurs because the default lookupid of PROCEDURESis used.
Since highscore is a nested procedure, NMADDR fails to locate it. When the NESTED
lookupid parameter is specified, the search succeeds.

 $nmdebug > wl nmaddr("input" "data")
 PROG $4d5.400003a8

The NMADDR function is also able to look up data symbols. The above example locates the
address for the symbol input . The value returned is the value found in the SOM symbol
table. This function does not perform data symbol location fixups. Only those data symbols
placed into the SOM symbol table by the language compilers are locatable. Most language
compilers do not place the program's variables into this data structure.

 $nmdebug > wl average
 GRP $4d8.15c88

 $nmdebug > wl nmaddr("average")
 GRP $4d8.15c88

The above example locates the address for the average procedure. Note that this
procedure resides in the group library.

 $nmdebug > wl nmaddr('p heap:P NEW HEAP')
412 Chapter 10

System Debug Standard Functions
func nmbpaddr
 USER $10d.12f3dc

The above example prints out the address of one of the Pascal library routines. Notice the
module qualifier.

 $nmdebug > wl FOPEN
 SYS $a.3f8140

 $nmdebug > wl nmaddr("FOPEN")
 SYS $a.3f8140

 $nmdebug > wl nmaddr("nl.pub.sys/FOPEN")
 SYS $a.3f8140

 $nmdebug > wl nmaddr("FOPEN" "LST")
 SYS $a.3f8140

 $nmdebug > wl ?FOPEN
 SYS $a.3f80e4

 $nmdebug > wl nmaddr("FOPEN" "EXPORTSTUB")
 SYS $a.3f80e4

The last set of examples show various methods of locating the entry point and export stub
for the FOPEN intrinsic. Notice that the question mark is not used in the NMADDR function
when referring to stubs.

Limitations, Restrictions

Only addresses corresponding to the process's loaded file set (program file and libraries)
succeed.

System Debug displays stubs by preceding the symbol name with a question mark. For
example, the export stub for FOPEN would appear as ?FOPEN. This form is not honored by
this function (see the last example above).

The addresses for data symbols are not relocated.

func nmbpaddr
Returns the address corresponding to the indicated NM breakpoint index.

Syntax

 %nmbpaddr (bpindex [pin])

This function accepts an index for an existing NM breakpoint and returns the address
where the breakpoint is located. The default action is to look for breakpoints set by the
current PIN. Breakpoint addresses for other PINs (including the global PIN) may be
retrieved by using the optional pin parameter.
Chapter 10 413

System Debug Standard Functions
func nmbpindex
Formal Declaration

 nmbpaddr:lptr (bpindex :u32 [pin :s16=0])

Parameters

bpindex The index of the breakpoint whose address is to be returned.

pin Look for breakpoints set by this PIN. Default is the caller's PIN (a pin of 0
implies this). To specify system (global) breakpoints, use a -1 (or 32762) as
the PIN.

Examples

 $nmdebug > bl
 NM [1] PROG $ c3.56d80 test_screen+$ab3
 NM [2] PROG $ c3.4cf18 test_file^
 NM @[1] SYS $ a.004b9130 FOPEN

First, list the existing breakpoints.

 $nmdebug > wl nmbpaddr(1)
 PROG $c3.56d80

 $nmdebug > l nmbpaddr(1, -1)
 SYS $a.4b9130

Now use the function to return the address associated with process local breakpoint
number one and then with system breakpoint number one.

Limitations, Restrictions

none

func nmbpindex
Returns the NM breakpoint index for the NM breakpoint that has been set at the specified
NM code address.

Syntax

 nmbpindex (virtaddr [pin])

This function accepts the address of an existing NM breakpoint and returns the logical
index number associated with that breakpoint. The default action is to look for
breakpoints set by the current PIN. Breakpoint indices for other PINs (including the global
PIN) may be retrieved by using the optional pin parameter.
414 Chapter 10

System Debug Standard Functions
func nmbpinstr
Formal Declaration

 nmbpindex:u32 (virtaddr :ptr [pin :s16=0])

Parameters

virtaddr The address of an NM breakpoint whose index is to be returned.

Virtaddr can be a short or long pointer.

pin Look for breakpoints set by this PIN. Default is the caller's PIN (a pin of 0
implies this). To specify system (global) breakpoints, use a -1 (or 32762) as
the PIN.

Examples

 $nmdebug > bl
 NM [1] PROG $ c3.56d80 test_screen+$ab3
 NM [2] PROG $ c3.4cf18 test_files
 NM @[1] SYS $ a.004b9130 FOPEN

First, list the existing breakpoints.

 $nmdebug > wl nmbpindex(test_files)
 $2

Find the NM breakpoint index associated with the address test_files .

 $nmdebug > wl nmbpindex(FOPEN)
 No breakpoint exists in the breakpoint tables with that address.
 (error #1080)
 Error evaluating a predefined function. (error #4240)
 function is"nmbpindex"
 wl nmbpindex(FOPEN)

Now, go find the breakpoint index for the breakpoint at FOPEN . In this example we get an
error. This is because we did not specify pin and thus searched only for process local
breakpoints. We do not have a process local breakpoint at FOPEN.

 $nmdebug > wl nmbpindex(FOPEN, -1)
 $1

Find the breakpoint index for the breakpoint at FOPEN. This time we specify a -1 to tell the
function to search the list of system breakpoints.

Limitations, Restrictions

none

func nmbpinstr
Returns the original NM instruction at a specified NM code address where a NM
Chapter 10 415

System Debug Standard Functions
func nmbpinstr
breakpoint has been set.

Syntax

 nmbpinstr (virtaddr [pin])

This function accepts the address of an existing NM breakpoint and returns the
instruction associated with that breakpoint. The default action is to look for breakpoints
set by the current PIN. Breakpoint indices for other PINs (including the global PIN) may
be retrieved by using the optional pin parameter.

Formal Declaration

 nmbpinstr:s32 (virtaddr :ptr [pin :s16=0])

Parameters

virtaddr The address of an NM breakpoint at which the stored instruction is to be
returned.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

pin Look for breakpoints set by this PIN. Default is the caller's PIN (a pin of 0
implies this). To specify system (global) breakpoints, use a -1 (or 32762) as
the PIN.

Examples

 $nmdebug > dc FOPEN,1
 SYS $a.4b9130
 004b9130 FOPEN 6bc23fd9 STW 2,-20(0,30)

Display code at the address of FOPEN so we can see what the current instruction is at that
address.

 $nmdebug > b FOPEN
 added: NM [1] SYS $a.004b9130 FOPEN

 $nmdebug > dc FOPEN,1
 SYS $a.4b9130
 004b9130 FOPEN 0000400e BREAK (nmdebug bp)

Now set a breakpoint at FOPEN and display the code there. The old instruction has been
replaced with a breakpoint instruction.

 $nmdebug > wl nmbpinstr(FOPEN)
 $6bc23fd09

Use the function to look up the actual instruction. The instruction that is stored in the
system breakpoint table is returned by the function.

Limitations, Restrictions

none
416 Chapter 10

System Debug Standard Functions
func nmcall
func nmcall
Dynamically calls a procedure/function, passing up to four parameters.

Syntax

 nmcall (path) [parm1] [parm2] [parm3] [parm4]

This function is used to perform a dynamic procedure call. It is implemented by calling the
HPGETPROCPLABEL intrinsic to ensure the desired routine is loaded, and then uses the
FCALL routine in the Pascal/XL compiler to invoke the routine. The called code is invoked
at the same privilege level as the routine that invoked Debug (for example, the privilege
level contained in the PRIV environment variable). DAT invokes the routine from privilege
level 2. This function is not available from SAT. Four parameters are always passed to the
indicated routine. These values are placed in the argument registers (arg0..arg3). It is up
to the called code to correctly define its parameter list and interpret the parameters
appropriately.

If you are not familiar with the procedure calling conventions as used by the language
compilers, please refer to the Procedure Calling Conventions Reference Manual

The value returned by the called routine (if any) in the function return register (R28), is
used as the result of the NMCALL function. Because this register contains only a 32-bit
value, code that returns data larger than 32 bits should not be invoked. If the called
routine does not return a value, whatever value that happens to be in R28 is used as the
value of this function (for example, the function is undefined).

Formal Declaration

nmcall:s32 (path :str [parm1:sptr=0][parm2:sptr=0] [parm3:sptr=0]
[parm4:sptr=0]

Parameters

path The code path specification for the NM procedure/function to be called. The
format of this parameter is:

file_name / procname

The file_name part specifies the library to be searched for procname . The
file_name part is optional. If it is not provided, the current list of loaded
files for the process (see the LOADINFOcommand) will be searched. Refer to
the HPGETPROCPLABEL intrinsic for additional details, assumptions, and
restrictions involving searching libraries.

NOTE Unlike the other forms of procedure PATH specifications (for example, the
NMADDRfunction), module names and nested procedures are not supported by
this function.

parm1,2,3,4 These parameters are used to pass values to the routine being called. They
Chapter 10 417

System Debug Standard Functions
func nmentry
are passed in arg0 (r26), arg1 (r25), arg2 (r24), and arg3 (r23). Each may
contain any value up to 32 bits in length. The called code must know how
to interpret these values. If the called routine has fewer parameters, the
zeros passed in the remaining argument registers are harmless. If the
called routine has additional parameters, their values are undefined. Be
sure you understand the procedure calling conventions and the
parameter type alignment restrictions imposed by the various language
compilers before trying to pass complicated parameters.

Examples

 $nmdat > wl nmcall("nl.pub.sys/CLOCK")
 $d1f3709

 $ nmdat > wl nmcall("CLOCK")
 $d1f3b00

Call the CLOCK intrinsic which is in the system library. Since that library is part of every
process's loaded file list, the library name is optional.

Limitations, Restrictions

This function is not supported in SAT.

Debug only is affected by the following restrictions. Currently, you must have privileged
mode (PM) to call this function. Furthermore, only code that has been running at privilege
level 0, 1, or 2 (see the PRIV environment variable) is able to use this function. This is due
to security problems that would occur due to the internal implementation of the function.

CAUTION Because the called code runs on the stack above the debugger, it is possible
for the called code to write into the stack space where the debugger currently
exists. It is conceivable that a process abort or even system abort could result
when returning from the called code due to modification of the debugger's
portion of the stack.

func nmentry
Returns the entry point of the NM procedure containing the indicated address.

Syntax

 nmentry (virtaddr)

Formal Declaration

 nmentry:lptr (virtaddr :ptr)
418 Chapter 10

System Debug Standard Functions
func nmfile
Parameters

virtaddr The virtual address for which the entry point of the surrounding (level
one) NM procedure is to be returned.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

Examples

 $nmdebug > wl average
 GRP $4d8.15c88

 $nmdebug > wl nmentry(average+20)
 GRP $4d8.15c88

Print the address for the procedure average . Given any offset within the procedure, the
NMENTRY function returns the address of the procedure's entry point.

 $nmdebug > wl nmaddr("processstudent.highscore")
 PROG $4d5.5b50

 $nmdebug > wl nmentry (nmaddr("highscore" "nested") + 40)
 PROG $4d5.5b50

Print the address for the nested procedure highscore . Given any offset within the nested
procedure, the NMENTRY function will return the address of the nested procedure's entry
point.

Limitations, Restrictions

none

func nmfile
Returns the file name corresponding to the indicated NM (code) address.

Syntax

 nmfile (virtaddr [length])

Formal Declaration

 nmfile:str (virtaddr :ptr [length :u16=$20])

Parameters

virtaddr The virtual address (of NM code) for which the file name is to be returned.

Virtaddr can be a short pointer, a long pointer, or a full logical code
Chapter 10 419

System Debug Standard Functions
func nmmod
pointer.

length The maximum length of the file name string to be returned. If the name
does not fully fit into the space specified, it is truncated and followed by an
asterisk (*) to indicate the truncation.

Examples

 $nmdebug > loadinfo
 nm PROG GRADES.DEMO.TELESUP SID=$4d5
 parm=0 info=""
 nm GRP XL.DEMO.TELESUP SID=$4d8
 nm USER XL.PUB.SYS SID=$10d
 nm SYS NL.PUB.SYS SID=$a
 cm SYS SL.PUB.SYS

Show the files loaded by the current process.

 $nmdebug > wl nmfile(average)
 XL.DEMO.TELESUP

 $nmdebug > wl nmfile (FOPEN)
 NL.PUB.SYS

 $nmdebug > wl nmfile (P_NEW_HEAP)
 XL.PUB.SYS

 $nmdebug > wl nmfile(processstudent)
 GRADES.DEMO.TELESUP

 $nmdebug > wl nmfile(processstudent 7)
 GRADES*

The above examples show how the NMFILE function, given various addresses (all specified
as symbolic procedure names), returns the name of the loaded file that contains each
address.

Limitations, Restrictions

Only addresses corresponding to the process's loaded file set (program file and libraries)
succeed.

func nmmod
Returns the NM module name corresponding to the indicated address.

Syntax

 nmmod (virtaddr [length])
420 Chapter 10

System Debug Standard Functions
func nmnode
Formal Declaration

 nmmod:str (virtaddr :ptr [length :u16=$20])

Parameters

virtaddr The virtual address for which the symbolic module name is to be returned.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

length The maximum length of the module name string to be returned. If the
name does not fully fit into the space specified, it will be truncated and
followed by an asterisk (*) to indicate the truncation.

If the indicated address is not contained in a named module, an empty string is returned.

Examples

 $nmdebug > wl nmpath(P_NEW_HEAP)
 XL.PUB.SYS/p_heap:P_NEW_HEAP

 $nmdebug > wl nmmod (P_NEW_HEAP)
 p_heap

This example shows a Pascal library routine called P_NEW_HEAP which is contained in the
module named p_heap .

Limitations, Restrictions

none

func nmnode
Returns the NM logical code address (TRANS) of the closest NM node point corresponding to
the specified NM address.

Syntax

 nmnode (virtaddr [node])

Refer to appendix C for a discussion of CM object code translation, node points, and
breakpoints in translated CM code.

Formal Declaration

 nmnode:trans (virtaddr :ptr [node :str="PREV"])
Chapter 10 421

System Debug Standard Functions
func nmpath
Parameters

virtaddr The NM address of translated code for which the closest NM node point is
to be returned.

virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

node The desired node point, either PREV (closest previous node) or NEXT
(closest next node). The default is PREV.

Examples

 $nmdebug > wl nmnode(21.24030)
 TRANS $21.24024

Print the NM address of the closest previous (by default) NM node point.

 $nmdebug > wl nmnode(21.24030,"next")
 TRANS $21.2404c

Print the NM address of the next NM node point.

Limitations, Restrictions

none

func nmpath
Returns the full NM code path name corresponding to the indicated address.

Syntax

 nmpath (virtaddr [length])

The string returned by NMPATH is one of the following two formats:

file_name /module_name :parent_procname .procname

or

file_name /module_name :procname

Detailed descriptions of each of the above return strings follow:

file_name The name of the file containing the procedure.

module_name The name of the module containing the procedure.

parent_procname The name of the level one procedure containing the nested procedure
at the specified address.

procname The name of the procedure.
422 Chapter 10

System Debug Standard Functions
func nmpath
Formal Declaration

 nmpath:str (virtaddr :ptr [length :u16=$50])

Parameters

virtaddr The address for which the symbolic procedure path name is to be returned.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

length The maximum length of the path name string to be returned. If the path
name does not fully fit into the space specified, it is truncated and
terminated with an asterisk (*) to indicate the truncation.

Examples

 $nmdebug > wl nmpath(processstudent)
 GRADES.DEMO.TELESUP/processstudent

 $nmdebug > wl nmpath(processstudent+30)
 GRADES.DEMO.TELESUP/processstudent+$30

 $nmdebug > wl nmpath(processstudent+30, #30)
 GRADES.DEMO.TELESUP/processst*

The above examples show how NMPATH is used to print out the full path for the procedure
processstudent . Notice in the last example that a maximum length of 30 characters is
specified, so the full path is truncated and terminated with an asterisk.

 $nmdebug > wl nmpath (average)
 XL.DEMO.TELESUP/average
 $nmdebug > wl nmpath(P_NEW_HEAP)
 XL.PUB.SYS/p_heap:P_NEW_HEAP

 $nmdebug > wl nmpath(FOPEN)
 NL.PUB.SYS/FOPEN

 $nmdebug > wl nmpath (nmaddr("highscore" "nested") + 40))
 GRADES.DEMO.TELESUP/processstudent.highscore+$40

 $nmdebug > wl nmpath (nmentry (nmaddr("highscore" "nested") + 40))
 GRADES.DEMO.TELESUP/processstudent.highscore

The above examples show how NMPATH is used to print out path names for routines in
various libraries and how it may combined with other functions.

Limitations, Restrictions

none
Chapter 10 423

System Debug Standard Functions
func nmproc
func nmproc
Returns the NM procedure name and offset corresponding to the specified virtual address.

Syntax

 nmproc (virtaddr [length])

The string returned by NMPROC is one of the following two formats:

parent_procname .procedure_name +base offset

or

procedure_name +base offset

Detailed descriptions of each of the above return strings follow:

parent_procname The name of the level one procedure containing the nested procedure
at the specified address.

procedure_name The name of the procedure. If the name is longer than length
characters, it is truncated with an asterisk (*).

base The output base used to represent offset .

 $ Hexadecimal
 % Octal
 # Decimal

offset If the offset is nonzero, then it is returned, appended to the procedure
name. The offset is formatted based on the current fill, justification, and
output base values.

Formal Declaration

 nmproc:str (virtaddr :ptr [length :u16=$40])

Parameters

virtaddr The address for which the symbolic procedure name/offset is to be
returned.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

length The maximum length of the procedure name and offset string to be
returned. If the name does not fully fit into the space specified, the
procedure name is truncated and is followed by an asterisk (*) to indicate
the truncation.

Examples

 $nmdebug > wl FOPEN
424 Chapter 10

System Debug Standard Functions
func nmstackbase
 SYS $a.3f8140

 $nmdebug > wl nmproc(a.3f8140)
 OPEN

 $nmdebug > wl FOPEN+40
 SYS $a.3f8180

 $nmdebug > wl nmproc(a.3f8180)
 FOPEN+$40

 $nmdebug > wl nmproc(pc)
 PROGRAM+4c

Limitations, Restrictions

none

func nmstackbase
Returns the virtual address of the start of the process's NM stack.

Syntax

 nmstackbase (pin)

Formal Declaration

 nmstackbase:lptr (pin :u16)

Parameters

pin The process identification number (PIN) for which the starting virtual
address of the NM stack is to be returned.

Examples

 $nmdebug > wl nmstackbase(8)
 $5e4.4020ea00

Display the virtual address of the NM stack base for PIN 8.

 $nmdat > wl "NM stack size = ", nmstacklimit(pin) - nmstackbase(pin)
 NM stack size = $60000

Calculate and display the NM stack length (in bytes) for the current PIN.
Chapter 10 425

System Debug Standard Functions
func nmstacklimit
Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.

func nmstacklimit
Returns the virtual address of the limit of a process's NM stack.

Syntax

 nmstacklimit (pin)

Formal Declaration

 nmstacklimit:lptr (pin :u16)

Parameters

pin The process identification number (PIN) for which the virtual address of
the NM stack limit is to be returned.

Examples

 $nmdebug > wl nmstacklimit (8)
 $5e4.4026ea00

Display the virtual address of the NM stack limit for PIN 8.

 $nmdat > wl "NM stack size = ", nmstacklimit(pin) - nmstackbase(pin)
 NM stack size = $60000

Calculate and display the NM stack length (in bytes) for the current PIN.

Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.

func nmtocmnode
Returns the CM logical code address of the closest CM node point corresponding to the
specified NM address.

Syntax

 nmtocmnode (virtaddr [node])
426 Chapter 10

System Debug Standard Functions
func off
Refer to appendix C for a discussion of CM object code translation, node points, and
breakpoints in translated CM code.

Formal Declaration

 nmtocmnode:lcptr (virtaddr :lptr [node :str="PREV"])

Parameters

virtaddr The virtual address of NM translated code for which the closest CM node
point is to be returned.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

node The desired node point, either PREV (closest previous node) or NEXT
(closest next node). If unspecified, then PREV is assumed.

Examples

 $nmdebug > wl nmtocmnode(21.24030):"%"
 SYS %12.224

Print the CM address of the closest NM previous (by default) node point.

 $nmdebug > wl nmtocmnode(21.24030, "next"):"%"
 SYS %12.232

Print the CM address of the closest NM next node point.

Limitations, Restrictions

none

func off
Returns the offset portion of a virtual or extended address.

Syntax

 off (virtaddr)

Formal Declaration

 off:u32 (virtaddr :ptr)

Parameters

 virtaddr The virtual address whose offset portion is to be returned.
Chapter 10 427

System Debug Standard Functions
func pcb
Virtaddr can be a short pointer, a long pointer, or an extended address.

Examples

 $nmdebug > wl pc
 PROG $2e.213403

 $nmdebug > wl off(pc)
 $213403

 $nmdebug > wl off(a.1234)
 $1234

Limitations, Restrictions

none

func pcb
Returns the virtual address (SPTR) of a process's process control block (PCB).

Syntax

 pcb (pin)

Formal Declaration

 pcb:sptr (pin :u16)

Parameters

pin The process identification number (PIN) for which the address of the PCB
is to be returned. Note that this is a CM data structure.

Examples

 $nmdebug > wl pcb(8)
 $80001750

Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.
428 Chapter 10

System Debug Standard Functions
func pcbx
func pcbx
Returns the virtual address (SPTR) of a process's process control block extension (PCBX).

Syntax

 pcbx (pin)

Formal Declaration

 pcbx:sptr (pin :u16)

Parameters

pin The process identification number (PIN) for which the address of the
PCBX is to be returned. Note that this is a CM data structure.

Examples

 $nmdebug > wl pcbx(8)
 $40010db0

Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.

func phystolog
Converts a CM physical segment number and mapping bit to a CM logical code address.

Syntax

 phystolog (physsegnum [mappingbit])

This function is typically used to manually examine CM stack markers, and CM external
plabels.

The offset part of the returned CM logical code address is always set to zero.

Formal Declaration

 phystolog:lcptr (physsegnum :u16 [mappingbit :bool=FALSE])

Parameters

physsegnum The CM physical segment number to be converted to a CM logical address.
Chapter 10 429

System Debug Standard Functions
func pib
mappingbit A Boolean that implies that the segment is physically mapped (TRUE = 1)
or logically mapped (FALSE = 0). By default, mappingbit is FALSE.

Examples

 %cmdebug > wl phystolog(303)
 PROG %2.0

Physical segment number %303 is converted into logical code segment PROG 2.

 %cmdebug > wl phystolog(122)
 GRP %2.0

Physical segment number %122 is converted into logical code segment GRP %2.

Limitations, Restrictions

none

func pib
Returns the virtual address (SPTR) of a process's process information block (PIB).

Syntax

 pib (pin)

Formal Declaration

 pib:sptr (pin :u16)

Parameters

pin The process identification number (PIN) for which the address of the PIB
is to be returned.

Examples

 $nmdebug > wl pib(8)
 $c3583a20

Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.
430 Chapter 10

System Debug Standard Functions
func pibx
func pibx
Returns the virtual address (SPTR) of a process's process information block extension
(PIBX).

Syntax

 pibx (pin)

Formal Declaration

 pibx:sptr (pin :u16)

Parameters

pin The process identification number (PIN) for which the address of the PIBX
is to be returned.

Examples

 $nmdebug > wl pibx(8)
 $c4680000

Limitations, Restrictions

If the PIN does not exist, the function result is undefined and an error status is set.

func prog
Coerce an expression into a PROG logical code pointer (LCPTR).

Syntax

 prog (value)

During the evaluation of the parameter to this function, the search path used for
procedure name lookups is restricted to the program file (PROG).

Formal Declaration

 prog:prog (value :any)
Chapter 10 431

System Debug Standard Functions
func prog
Parameters

value An expression to be coerced. All types are valid.

Examples

 %cmdebug > wl prog(12.304)
 PROG %12.304

Coerce the simple long pointer into a PROG logical code pointer.

 %cmdebug > wl prog(sort)
 PROG %2.346

Print the address of the procedure named sort . Note that the search path used for
procedure name lookups is restricted to the program file (PROG).

 %cmdebug > wl prog(pub(24.630))
 PROG %24.630

The coercion simply changes the associated logical file. The pointer's bit pattern remains
unchanged.

 $nmdat > wl prog(1)
 PROG $0.1

 $nmdat > wl prog(ffff)
 PROG $0.ffff

 $nmdat > wl prog(1234abcd)
 PROG $0.1234abcd

 $nmdat > wl prog(-1)
 PROG $0.ffffffff

Table 10-9. Derivation of PROG LGRP Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16
S32
S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR
SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
432 Chapter 10

System Debug Standard Functions
func pstate
 $nmdat > wl prog(1234.5678)
 PROG $1234.5678

 $nmdat > wl prog(true)
 PROG $0.1

 $nmdat > wl prog("ABCDEFG")
 PROG $414243.44454647

 $nmdat > wl prog(grp(1.2))
 PROG $1.2

Limitations, Restrictions

none

func pstate
Returns the process state for the specified PIN as a string.

Syntax

 pstate (pin)

The following table lists all possible returned process state strings:

UNBORN

INITIATE

ALIVE

DYING

DEAD

UNKNOWN

Note that the process state string is always returned in capital letters.

Formal Declaration

 pstate:str (pin :u16)

Parameters

pin The process identification number (PIN) of the process whose process state
is to be returned.
Chapter 10 433

System Debug Standard Functions
func pub
Examples

 $nmdebug > wl pstate(8)
 INITIATE

 $nmdebug > wl pstate(f)
 DYING

 $nmdebug > if pstate(16) = "ALIVE" then formatprocess(16)

Limitations, Restrictions

none

func pub
Coerces an expression into a PUB logical code pointer (LCPTR).

Syntax

 pub (value)

During the evaluation of the parameter to this function, the search path used for
procedure name lookups is limited to the account library file (PUB).

Formal Declaration

 pub:pub (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 10-10. Derivation of the PUB Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16
S32
S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.
434 Chapter 10

System Debug Standard Functions
func pub
Examples

 %cmdebug > wl pub(12.304)
 PUB %12.304

Coerce the simple long pointer into a PUB logical code pointer.

 %cmdebug > wl pub(sort)
 PUB %3.2632

Print the address of the procedure named sort . Note that the search path used for
procedure name lookups is restricted to the account library (PUB).

 %cmdebug > wl pub(sys(24.630))
 PUB %24.630

The coercion simply changes the associated logical file. The pointer's bit pattern remains
unchanged.

 $nmdat > wl pub(1)
 PUB $0.1

 $nmdat > wl pub(ffff)
 PUB $0.ffff

 $nmdat > wl pub(1234abcd)
 PUB $0.1234abcd

 $nmdat > wl pub(-1)
 PUB $0.ffffffff

 $nmdat > wl pub(1234.5678)
 PUB $1234.5678

 $nmdat > wl pub(true)
 PUB $0.1

 $nmdat > wl pub("ABCDEFG")
 PUB $414243.44454647

 $nmdat > wl pub(prog(1.2))
 PUB $1.2

EADDR
SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.

Table 10-10. Derivation of the PUB Bit Pattern

Parameter Type Action
Chapter 10 435

System Debug Standard Functions
func rtov
Limitations, Restrictions

none

func rtov
Real to virtual. Converts a real address to a virtual address.

Syntax

 rtov (realaddr)

Formal Declaration

 rtov:lptr (realaddr :u32)

Parameters

 realaddr The real address to be converted to a virtual address.

Examples

 $nmdebug > wl pc
 PROG $741.5934

Display the current logical code address (LCPTR) of the NM program counter.

 $nmdebug > wl vtor(pc)
 $1827934

Translate the logical code address (LCPTR) into the corresponding real address.

 $nmdebug > wl rtov(1827934)
 $741.5934

Convert the real address back into a virtual address (LPTR).

Limitations, Restrictions

none

func s16
Coerces an expression into a signed 16-bit value.
436 Chapter 10

System Debug Standard Functions
func s16
Syntax

 s16 (value)

Formal Declaration

 s16:s16 (value :any)

Parameters

value An expression to be coerced. All types are valid.

Examples

 $nmdat > wl s16(1)
 $1

 $nmdat > wl s16(ffff)
 $ffff

 $nmdat > wl s16(ffff):"#"
 #-1

 $nmdat > wl s16(1234abcd)
 $abcd

 $nmdat > wl s16(-1)
 $ffff

 $nmdat > wl s16(1234.5678)
 $5678

Table 10-11. Derivation of the S16 Bit Pattern

Parameter Type Action

BOOL 1 if TRUE, 0 if FALSE.

U16
S16

Transfer the original bit pattern unchanged.

U32
S32
S64
SPTR

Transfer the low-order 16 bits.

LONG Class
EADDR
SADDR

Transfer the low-order 16 bits of the offset part.

STR Transfer the ASCII bit pattern for the last two characters in the string.
Strings shorter than two characters are treated as if they were extended
on the left with nulls.
Chapter 10 437

System Debug Standard Functions
func s32
 $nmdat > wl s16(true)
 $1

 $nmdat > wl s16("ABCDEFG")
 $4647

 $nmdat > wl s16(prog(1.2))
 $2

Limitations, Restrictions

none

func s32
Coerces an expression into a signed 32-bit value.

Syntax

 s32 (value)

Formal Declaration

 s32:s32 (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 10-12. Derivation of the S32 Bit Pattern

Parameter Type Action

BOOL 1 if TRUE, 0 if FALSE.

U16 Right justify the original 16-bit value in 32 bits with zero fill.

S16 Right justify the original 16-bit value in 32 bits with sign extension.

U32
S32
SPTR

Transfer the original bit pattern unchanged.

S64 Transfer the low-order 32 bits.

LONG Class
EADDR
SADDR

Transfer the low-order 32 bits of the offset part.
438 Chapter 10

System Debug Standard Functions
func s64
Examples

 $nmdat > wl s32(1)
 $1

 $nmdat > wl s32(ffff)
 $ffff

 $nmdat > wl s32(ffff):"#"
 #65535

 $nmdat > wl s32(1234abcd)
 $1234abcd

 $nmdat > wl s32(-1)
 $ffffffff

 $nmdat > wl s32(ffffffff):"#"
 $#-1

 $nmdat > wl s32(1234.5678)
 $5678

 $nmdat > wl s32(true)
 $1

 $nmdat > wl s32("ABCDEFG")
 $44454647

 $nmdat > wl s32(prog(1.2))
 $2

Limitations, Restrictions

none

func s64
Coerces an expression into a signed 64-bit value.

STR Transfer the ASCII bit pattern for the last four characters in the string.
Strings shorter than four characters are treated as if they were extended
on the left with nulls.

Table 10-12. Derivation of the S32 Bit Pattern

Parameter Type Action
Chapter 10 439

System Debug Standard Functions
func saddr
Syntax

 s64 (value)

Formal Declaration

 s64:s64 (value :any)

Parameters

value An arbitrary expression to be coerced.

Examples

 $nmdebug > wl s64(1.2):"ZF"
 $0000000100000002

The long pointer value (1.2) is coerced into a signed 64-bit value and displayed zero-filled
("Z") in a fixed field width ("F") format.

Limitations, Restrictions

none

func saddr
Coerces an expression into a secondary address.

Table 10-13. Derivation of the S64 Bit Pattern

Parameter Type Action

BOOL 1 if TRUE, 0 if FALSE.

U16
U32
SPTR

Right justify the original value in 64 bits with zero fill.

S16
S32
S64

Right justify the original value in 64 bits with sign extension.

LONG Class Transfer the concatenation of the SID and offset parts.

EADDR
SADDR

Transfer the offset part unchanged.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
440 Chapter 10

System Debug Standard Functions
func saddr
Syntax

 saddr (value)

Formal Declaration

 saddr:saddr (value :any)

Parameters

value An expression to be coerced. All types are valid.

Examples

 $nmdat > wl saddr(1)
 SADDR $0.1

 $nmdat > wl saddr(ffff)
 SADDR $0.ffff

 $nmdat > wl saddr(1234abcd)
 SADDR $0.1234abcd

 $nmdat > wl saddr(-1)
 SADDR $0.ffffffffffffffff

 $nmdat > wl saddr(1234.5678)
 SADDR $1234.5678

 $nmdat > wl saddr(true)
 SADDR $0.1

Table 10-14. Derivation of the EADDR Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID (LDEV) part to zero. Right justify the original value in the
low-order 64 bits of the offset part with zero fill.

S16
S32
S64

Set the SID (LDEV) part to zero. Right justify the original value in the
low-order 64 bits of the offset part with sign extension.

LONG Class Transfer the SID part unchanged. Right justify the original offset part in
the low-order 64 bits of the offset part with zero fill.

EADDR
SADDR

Transfer both parts of the address unchanged.

STR Transfer the ASCII bit pattern for the last twelve characters in the string.
Strings shorter than twelve characters are treated as if they were
extended on the left with nulls.
Chapter 10 441

System Debug Standard Functions
func sid
 $nmdat > wl saddr(prog(1.2))
 SADDR $1.2

Limitations, Restrictions

none

func sid
Returns the space ID (SID) portion of a virtual or extended address.

Syntax

 sid (virtaddr)

The SID function returns the space ID portion of a virtual address.

If the parameter virtaddr is a short pointer (SPTR) it is internally converted to a long
pointer by the STOL function, and the resulting SID portion is returned.

If the parameter virtaddr is a long pointer or an extended address, the SID portion is
simply extracted and returned.

Formal Declaration

 sid:u32 (virtaddr :ptr)

Parameters

virtaddr The virtual address from which the space ID (SID) portion is returned.

Virtaddr can be a short pointer, a long pointer, or an extended address.

Examples

 $nmdebug > wl pc
 PROG $2e.213403

 $nmdebug > wl sid(pc)
 $2e

 $nmdebug > wl sid(213403)
 $2e

 $nmdebug > wl sid(a.1234)
 $a
442 Chapter 10

System Debug Standard Functions
func sptr
Limitations, Restrictions

none

func sptr
Coerces an expression into a short pointer.

Syntax

 sptr (value)

Formal Declaration

 sptr:sptr (value :any)

Parameters

value An expression to be coerced. All types are valid.

Examples

 $nmdat > wl sptr(1)
 $1

 $nmdat > wl sptr(ffff)
 $ffff

Table 10-15. Derivation of the SPTR Bit Pattern

Parameter Type Action

BOOL 1 if TRUE, 0 if FALSE.

U16
S16

Right justify the original 16-bit value in 32 bits with zero fill.

U32
S32
SPTR

Transfer the original bit pattern unchanged.

LONG Class Transfer the low-order 32 bits of the address (offset part) unchanged. The
segment number or SID part of the address is discarded.

EADDR
SADDR

Transfer the low-order 32 bits of the address (offset part). All other parts
of the address are discarded.

STR Transfer the ASCII bit pattern for the last four characters in the string.
Strings shorter than four characters are treated as if they were extended
on the left with nulls.
Chapter 10 443

System Debug Standard Functions
func stol
 $nmdat > wl sptr(1234abcd)
 $1234abcd

 $nmdat > wl sptr(-1)
 $ffffffff

 $nmdat > wl sptr(1234.5678)
 $5678

 $nmdat > wl sptr(true)
 $1

 $nmdat > wl sptr("ABCDEFG")
 $44454647

 $nmdat > wl sptr(prog(1.2))
 $2

Limitations, Restrictions

none

func stol
Short to long. Converts a virtual address to a long pointer.

Syntax

 stol (virtaddr)

If the parameter virtaddr is a short pointer (SPTR), then it is converted based on the space
registers for the current PIN.

If the parameter virtaddr is a already a long pointer (LPTR) or a code pointer (ACPTR or
LCPTR), then the long pointer (portion) is simply returned.

Formal Declaration

 stol:lptr (virtaddr :ptr)

Parameters

virtaddr The virtual address to be converted to a long pointer.

Virtaddr can be either a short or long pointer.
444 Chapter 10

System Debug Standard Functions
func stolog
Examples

 $nmdebug > dr sr4; dr sr5
 sr4=$41
 sr5=$53

 $nmdebug > wl sp
 $40163088

 $nmdebug > wl stol(sp)
 $53.40163088

 $nmdebug > wl stol(1cbb8c)
 $41.1cbb8c

 $nmdebug > wl stol(15f.1cbb8c)
 $15f.1cbb8c

Limitations, Restrictions

none

func stolog
Short to logical. Converts a NM short pointer (SPTR) to a NM logical code address (LCPTR).

Syntax

 stolog (shortptr [logsel] [userfname])

Based on a logical file selector, logsel , the SID of a loaded NM executable library is used
to build a logical code pointer.

This conversion is very different from the STOL conversion, which uses the current space
registers SR4 - SR7 to determine the SID.

Formal Declaration

 stolog:lcptr (shortptr :sptr [logsel :str="PROG"] [userfname :str])

Parameters

shortptr The short pointer to be converted into a logical code pointer.

logsel A string which selects a particular logical file. The SID portion of the
resulting logical pointer are based on the SID of the specified logical file
selector. Valid selector strings are:

'PROG' Program file
Chapter 10 445

System Debug Standard Functions
func str
'GRP' Group library

'PUB ' Account library

'SYS ' System library

'USER' User library

By default, the selector 'PROG' will be used.

userfname The file name of a user library file. Since multiple NM user libraries can be
in use simultaneously, the userfname parameter is required when the
logical file selector logsel is 'USER' .

If userfname is not fully qualified, the program file's group and account
are used to fully qualify the file name.

Examples

 $nmdebug > wl stolog(104c)
 PROG $42.104c

By default, the logical selector 'PROG' is used to convert short pointer 104c to the logical
code pointer PROG 42.104c .

 $nmdebug > wl stolog(20b34, 'sys')
 SYS $a.20b34

The logical selector 'SYS ' is used to look up the SID for NL.PUB.SYS, and the resulting
logical code pointer is SYS a.20b34 .

 $nmdebug > wl stolog(1c68, 'user')
 Missing required user library filename for USER logical selector.

When the logical selector 'USER' is specified, the parameter userfname is required to
specify which user library file, since several may be loaded simultaneously.

 $nmdebug > wl stolog(1c68, 'user', 'LIB3')
 USER $3c.1c68

The SID for user library is determined to be $3c . The short pointer is converted into logical
code pointer USER 3c.1c68 .

Limitations, Restrictions

none

func str
Returns a substring of a source string.
446 Chapter 10

System Debug Standard Functions
func strapp
Syntax

 str (source position length)

Formal Declaration

 str:str (source :str position :u16 length :u16)

Parameters

source The string from which to extract the substring.

position The index of the first character to extract. String indices are 1-based.
(That is, indices are 1, 2, 3, ... rather than 0, 1, 2, ...)

length The number of characters to extract. If this value is larger than the actual
number of characters in the string, the string is returned from the starting
position to the end without an error indication.

Examples

 $nmdebug > = str("I am sincere.", 6, 3)
 "sin"

Starting at position 6, extract the next three characters.

 $nmdebug > = str("Hello mom! I don't know how long this is", 7, 1000)
 "mom! I don't know how long this is"

Extract the remainder of the string starting at position 7.

Limitations, Restrictions

none

func strapp
String append. Returns the result of concatenating two strings.

Syntax

 strapp (source tail)

Formal Declaration

 strapp:str (source :str tail :str)
Chapter 10 447

System Debug Standard Functions
func strdel
Parameters

source The string to which tail is appended.

tail The string to append to the tail of source .

Examples

 $nmdebug > var stuff "Cream"
 $nmdebug > wl strapp("Ice ", stuff)
 Ice Cream

Append the string contained in the variable stuff to the string "Ice ".

 $nmdebug > = strapp("Hello, ", strapp("How", " Are You?"))
 "Hello, How Are You?"

Print the result of concatenating the string literals.

Limitations, Restrictions

If the resultant string is larger than the maximum supported string length (see the STRMAX
function), it is truncated.

func strdel
String delete. Returns a string with a substring deleted from the source string.

Syntax

 strdel (source position length)

Formal Declaration

 strdel:str (source :str position :u16 length :u16)

Parameters

source The string from which to delete the substring.

position The index of the starting character to delete. String indices are 1-based.
(That is, indices are 1, 2, 3, ... rather than 0, 1, 2,)

length The number of characters to delete. If this value is larger than the actual
number of characters in the string, the string is deleted from the starting
position to the end without an error indication.
448 Chapter 10

System Debug Standard Functions
func strdown
Examples

 $nmdebug > = strdel("This is NOT fun", 9, 4)
 "This is fun"

Starting at position 9, delete the next four characters.

 $nmdebug > wl strdel("Fishy, fishy, in the brook.", 13, 1000)
 Fishy, fishy

Delete characters from position 13 to the end of the string.

Limitations, Restrictions

none

func strdown
String downshift. Returns a string that is the result of downshifting all alphabetic
characters in the source string.

Syntax

 strdown (source)

Formal Declaration

 strdown:str (source :str)

Parameters

source The string for which to downshift all alphabetic characters.

Examples

 $nmdebug > var list '"CHRIS" "WICKY" "PAT" "HOFMANN" "HELMUT"'
 $nmdebug > foreach j list wl strdown (j)
 chris
 wicky
 pat
 hofmann
 helmut

Downshift and print each name in the string variable list .

 $nmdebug > if strdown(strinput("continue? ")) = "n" then abort

Prompt the user to continue and, if the response is N or n, then abort.
Chapter 10 449

System Debug Standard Functions
func strextract
Limitations, Restrictions

none

func strextract
String extract. Returns a string (extracted) from the specified virtual address.

Syntax

 strextract (virtaddr [length])

Formal Declaration

 strextract:str (virtaddr :ptr [length :u16=$4])

Parameters

virtaddr The virtual address of the start of the string.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

length The number of characters to retrieve starting at virtaddr . If this
parameter is not specified, the string returned will be four characters long.
If the value given in length is greater than the maximum string size, the
string returned is truncated to the maximum size.

Examples

 $nmdebug > dv r28, 4, a
 VIRT $12f.4000d638 ASCII EXCL USIV E VI OLAT
 $nmdebug > wl strextract (r28, 9)
 EXCLUSIVE

Register R28 is used as the virtual address at which a nine-character string is extracted.

 $nmdebug > var tblname strextract(b0002c40)

The variable tblname is assigned a four-character string which is extracted from the
virtual address defined by the short pointer (b0002c40).

Limitations, Restrictions

If length is greater than the maximum supported string length (see the STRMAX function),
only up to STRMAX characters are returned.
450 Chapter 10

System Debug Standard Functions
func strinput
func strinput
Prompts on the input device for user input and returns the user input line as a string.

Syntax

 strinput (prompt)

Formal Declaration

 strinput:str (prompt :str)

Parameters

prompt The prompt string to be displayed.

Examples

 $nmdebug > wl strinput("input a number>")
 input a number > 1234
 1234

Prompt the user for a number and write it back.

 $nmdebug > var n bin(strinput("input a number>"))
 input a number > 1+3

Prompt the user for a number, convert the input string to a number, and assign it to the
variable named n.

Limitations, Restrictions

If STRINPUT is issued in a job (for example, through the HPDEBUG intrinsic command
string), an error is displayed, and Debug returns to the caller.

func strins
String insert. Returns a string after inserting another string into the source string.

Syntax

 strins (insert source position)

Formal Declaration

 strins:str (insert :str source :str position :u16)
Chapter 10 451

System Debug Standard Functions
func strlen
Parameters

insert The string to be inserted into source .

source The source string into which insert is to be inserted.

position The position where insert is to be inserted in source . String indices are
1-based. (That is, indices are 1, 2, 3, ... rather than 0, 1, 2, ...) If position
is greater than the string length of source , insert is appended to
source .

Examples

 $nmdebug > var name "Smith, "
 $nmdebug > wl strins(name, "Dear Ms. How are You?", 10)
 Dear Ms. Smith, How are You?

Insert the string variable NAME into a literal string at position 10.

 $nmdebug > wl strins(" NOW!", "Go Home", 100):"qo"
 "Go Home NOW!"

Insert "NOW!" into the source at position 100. Since the source is only seven characters
long, "NOW!" is appended at the end of the source string.

Limitations, Restrictions

If the resultant string is larger than the maximum supported string length (see the STRMAX
function), it is truncated.

func strlen
String length. Returns the current size of a string.

Syntax

 strlen (source)

Formal Declaration

 strlen:u32 (source :str)

Parameters

source Any string literal or variable.

Examples

 $nmdebug > wl strlen("")
 $0
452 Chapter 10

System Debug Standard Functions
func strltrim
Print the length (number of characters) in the empty string.

 $nmdebug > var company "Hewlett-Packard Co."
 $nmdebug > = strlen(company),d
 #19

Limitations, Restrictions

none

func strltrim
String left trim. Deletes leading blanks from the source string.

Syntax

 strltrim (source)

Formal Declaration

 strltrim:str (source :str)

Parameters

source The string from which all leading blanks are to be deleted.

Examples

 $nmdebug > wl strltrim(" A string with extra blanks. "):"qo"
 "A string with extra blanks. "

 %cmdebug > = strltrim(strrtrim(" ABCD "))
 "ABCD"

Delete both leading and trailing blanks.

Limitations, Restrictions

none

func strmax
String maximum. Returns the (constant) maximum size of a string.
Chapter 10 453

System Debug Standard Functions
func strpos
Syntax

 strmax (source)

Formal Declaration

 strmax:u32 (source :str)

Parameters

source Any string literal or variable. The result of this function is a constant. All
strings have the same maximum length.

Examples

 $nmdebug > wl strmax("date"):"#"
 #2048

 $cmdat > = strmax(""),d
 #2048

Limitations, Restrictions

The maximum number of characters in a string currently is 2048.

func strpos
String position. Returns the index of the first occurrence of one string in another.

Syntax

 strpos (source searchstring [position])

If searchstring is not found in source then zero (0) is returned.

Formal Declaration

 strpos:u32 (source :str searchstring :str [position :u32=1])

Parameters

source The string in which searchstring is to be found.

searchstring The string to be found in source . It may be either a single- or
double-quoted string literal, or a back-quoted regular expression.

position The character position in source where the search is to begin. If this
parameter is not specified, the search starts at the first character. If this
454 Chapter 10

System Debug Standard Functions
func strrpt
value is greater than the size of the source string, a zero result is returned.

Examples

 $nmdebug > var source "Oh where oh where has my little dog gone"
 $nmdebug > var searchstring "where"
 $nmdebug > var first = strpos(source, searchstring)
 $nmdebug > wl first
 $4

Look for the string "where " in the source string and print the position where it was found.

 $nmdebug > first = first + strlen(searchstring)
 $nmdebug > var second = strpos(source, searchstring, first)
 $nmdebug > wl second
 $d

Look for the next occurrence of "where " in the source string and print the position where it
was found.

 $nmdebug > second = second + strlen(searchstring)
 $nmdebug > var third = strpos(source, searchstring, second)
 $nmdebug > wl third
 #0

Look for another occurrence of "where " in the source string. Since the search string is not
found, the value of zero (0) is returned.

Limitations, Restrictions

none

func strrpt
String repeat. Returns a string composed of repeated occurrences of a source string.

Syntax

 strrpt (source count)

Formal Declaration

 strrpt:str (source :str count :u32)

Parameters

source The source string to repeat.

count The number of times to repeat source .
Chapter 10 455

System Debug Standard Functions
func strrtrim
Examples

 $nmdebug > var digits:str "0123456789"
 $nmdebug > wl strrpt(digits, 7)
 0123456789012345678901234567890123456789012345678901234567890123456789

Print out the string of digits "0 .. 9" repeated seven times.

Limitations, Restrictions

If the resultant string is larger than the maximum supported string length (see the STRMAX
function), it is truncated at the maximum length.

func strrtrim
String right trim. Deletes trailing blanks from the source string.

Syntax

 strrtrim (source)

Formal Declaration

 strrtrim:str (source :str)

Parameters

source The string from which all trailing blanks are to be deleted.

Examples

 $nmdebug > wl strrtrim(" A string with extra blanks. "):"qo"
 " A string with extra blanks."

 %cmdebug > = strltrim(strrtrim(" ABCD "))
 "ABCD"

Delete both leading and trailing blanks.

Limitations, Restrictions

none
456 Chapter 10

System Debug Standard Functions
func strup
func strup
String upshift. Returns a string which is the result of upshifting all alphabetic characters
in the source string.

Syntax

 strup (source)

Formal Declaration

 strup:str (source :str)

Parameters

source The string whose alphabetic characters are to be upshifted.

Examples

 $nmdebug > var cows "brindle and bessie. jenny and boss."
 $nmdebug > wl strup(cows)
 BRINDLE AND BESSIE. JENNY AND BOSS.

Upshift the string variable and display the results.

 $nmdebug > if strup(strinput("continue? ")) = "N" then abort

Prompt the user to continue and if the response is N or n then abort.

Limitations, Restrictions

none

func strwrite
Returns a string which is the result of formatting one or more expressions in a manner
equivalent to that of the W (WRITE) command.

Syntax

 strwrite (valuelist)

Formal Declaration

 strwrite:str (valuelist :str)
Chapter 10 457

System Debug Standard Functions
func strwrite
Parameters

valuelist A list of expressions, in the form of a single string, to be formatted. The
expressions can be separated by blanks or commas:

value1, value2 value3 ...

An optional format specification can be appended to each expression,
introduced with a required colon, in order to select one of the following: a
specific output base, left or right justification, blank or zero fill, and a field
width for the value.

value1 [: fmtspec1] value2 [: fmtspec2] ...

A format specification string is a list of selected format directives, with
each directive separated by blanks, commas or nothing at all:

 " directive1 directive2 , directive3directive4 ..."

The following table lists the supported format directives that can be
entered in upper- or lower-case:

+ Current output base ($, #, or % prefix displayed)

- Current output base (no prefix)

+< Current input base ($, #, or % prefix displayed)

-< Current input base (no prefix)

$ Hex output base ($ prefix displayed)

Decimal output base (# prefix displayed)

% Octal output base (% prefix displayed)

H Hex output base (no prefix)

D Decimal output base (no prefix)

O Octal output base (no prefix)

A ASCII base (use "." for non-printable chars)

N ASCII base (loads actual non-printable chars)

L Left justified

R Right justified

B Blank filled

Z Zero filled

M Minimum field width, based on value

F Fixed field width, based on the type of value

Wn User specified field width n

T Typed (display the type of the value)

U Untyped (do not display the type of the value)

QS Quote single (surround w/ single quotes)
458 Chapter 10

System Debug Standard Functions
func strwrite
QD Quote double (surround w/ double quotes)

QO Quote original (surround w/ original quote character)

QN Quote none (no quotes)

The M directive (minimum field width) selects the minimum possible field
width necessary to format all significant digits (or characters in the case of
string inputs).

The F directive (fixed field width) selects a fixed field width based on type
of the value and the selected output base. Fixed field widths are listed in
the following table:

The Wn directive (variable field width) allows the user to specify the
desired field width. The W directive can be specified with an arbitrary
expression. If the specified width is less than the minimum necessary
width to display the value, then the user width is ignored, and the
minimum width used instead. All significant digits are always printed. For
example:

number:"w6"

or

number:"w2*3"

The number of positions specified (either by Wn or F) does not include the
characters required for the radix indicator (if specified) or sign (if
negative). Also, the sign and radix indicator will always be positioned just
preceding the first (leftmost) character.

Zero versus blank fill applies to leading spaces (for right justification)
Trailing spaces are always blank filled.

In specifications with quotes, the quotes do not count in the number of
positions specified. The string is built such that it appears inside the
quotes as it would without the quotes.

The T directive (typed) displays the type of the value, preceding the value.

The U directive (untyped) suppresses the display of the type. Types are

Types hex($,H) dec(#,D) oct(%,O) ascii(A,N)

S16,U16 4 6 6 2

S32,U32 8 10 11 4

S64 16 20 22 8

SPTR 8 10 11 4

LPTR Class 8.8 10.10 11.11 8

EADDR Class 8.16 10.20 11.22 12

STR field width = length of the string
Chapter 10 459

System Debug Standard Functions
func strwrite
displayed in upper case, with a single trailing blank. The width of the type
display string varies, based on the type, and it is independent of any
specified width (M, F, or Wn) for the value display.

For values of type LPTR (long pointer, sid.offset , or seg.offset) and
EADDR (extended address, sid.offset or ldev.offset), two separate
format directives can be specified. Each is separated by a dot, ".", to
indicate individual formatting choices for the "sid " portion and the
"offset " portion. This is true for all code pointers (ACPTR - absolute code
pointers: CST,
CSTX; LCPTR - Logical Code Pointers: PROG, GRP, PUB, LGRP, LPUB,
SYS, User, TRANS). For example:

 pc:"+.-, w4.8, r.l, b.z"

The following default values are used for omitted format directives. Note
that the default format directives depend on the type of value to be
formatted:

 value type default format
 ---------- --------------
 STR, BOOL - R B M U
 U16,S16,U32,S32,S64 + R B M U
 SPTR + R Z F U
 LPTR +.- R.L B.Z M.F U
 ACPTR LCPTR +.- R.L B.Z M.F T
 CST PROG +.- R.L B.Z M.F T
 CSTX GRP +.- R.L B.Z M.F T
 PUB +.- R.L B.Z M.F T
 LGRP +.- R.L B.Z M.F T
 LPUB +.- R.L B.Z M.F T
 SYS +.- R.L B.Z M.F T
 USER +.- R.L B.Z M.F T
 TRANS +.- R.L B.Z M.F T
 EADDR +.- R.L B.Z M.F U
 SADDR +.- R.L B.Z M.F T

Note that absolute code pointers, logical code pointers and secondary
addresses display their types (T) by default. All other types default to (U)
untyped.

The Cn (Column n) directive moves the current output buffer position to
the specified column position prior to the next write into the output buffer.
Column numbers start at column 1. For example:

 number:"c6"

NOTE The Cn directive is ignored by the ASC function but is honored by the W, WL
and WP commands.

Examples

 $nmdat > var save = strwrite('1 2 3 "-->" 4:"z w4 r z" 5')
460 Chapter 10

System Debug Standard Functions
func symaddr
 $nmdat > wl save
 $1$2$3-->0004$5

The string variable save is used to store the function return value. STRWRITEis equivalent
to the W(WRITE) command, but the formatted output is returned in a string.

Note the single quotes which surround the value list. These turn the value list into a
string. Double quotes are then used to form individual string values and format
specifications.

STRWRITE is similar to the ASC function. The major difference is that ASC accepts a single
expression with an optional format specification:

 wl ASC(1+2, "w4")

while STRWRITE accepts a list of expressions, each with optional formatting:

 var title = strwrite('"Current Pin:" pin:"w4", " PC:", pc')

Limitations, Restrictions

none

func symaddr
Returns the bit- or byte-relative offset of a component specified through the path
specification, relative to the outer structure.

Syntax

 symaddr (pathspec [units])

Formal Declaration

 symaddr:u32 (pathspec :str [units :u16=8])

Parameters

pathspec A path specification, as described in chapter 5, "Symbolic
Formatting/Symbolic Access."

units Specifies the units (that is, bit width) in which the result is given. 1 means
bits, 8 means bytes, 32 means words. The default is bytes.

Symbolic offsets are rounded down to the nearest whole unit.

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
Chapter 10 461

System Debug Standard Functions
func symconst
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;

 $nmdebug > wl SYMADDR("StudentRecord.Name")
 $0

Print the byte offset of the name field for StudentRecord . Since it is the first item in the
record, its offset is zero.

 $nmdebug > wl SYMADDR("StudentRecord.NumGrades" 1)
 $a8

Print the bit offset of the NumGrades field for StudentRecord .

 $nmdebug > wl SYMADDR("StudentRecord.Grades[4]" #32)
 $9

Print the word offset of the fourth element of the grades field for StudentRecord .

Limitations, Restrictions

none

func symconst
Returns the value of a declared constant.

Syntax

 symconst (pathspec)
462 Chapter 10

System Debug Standard Functions
func syminset
Formal Declaration

 symconst:any (pathspec :str)

Parameters

pathspec A path specification, as described in chapter 5, "Symbolic Formatting/
Symbolic Access."

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;
 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;

 $nmdebug > wl "Max Number of students = " SYMCONST("MAXSTUDENTS")
 Max Number of students = $5

Returns the value of the constant MaxStudents .

Limitations, Restrictions

none

func syminset
Returns a Boolean value of TRUE if the set member specified by the member parameter is
in the set specified by the virtual address and the path specification.
Chapter 10 463

System Debug Standard Functions
func symlen
Syntax

 syminset (virtaddr pathspec member)

Formal Declaration

 syminset:bool (virtaddr :ptr pathspec :str member:str)

Parameters

virtaddr The virtual address of the start of the set.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

pathspec The path specification as described in chapter 5, "Symbolic
Formatting/Symbolic Access."

member The string value of the member to test for.

Examples

The following examples assume the following types exist. We also assume that a variable
of type SubjectSet is located at the virtual address SP-34.

 VAR myset : SubjectSet;

 BEGIN
 myset := [HISTORY, HEALTH, PHYSED];
 END;

 $nmdat > wl syminset(sp-34, 'subjectset', 'math')
 FALSE

 $nmdat > wl syminset(sp-34, 'subjectset', 'physed')
 TRUE

In the example above, the symbolic file name is not specified. The last symbolic file
accessed is, therefore, used by default.

Limitations, Restrictions

none

func symlen
Returns the length of a data structure in bits or bytes.
464 Chapter 10

System Debug Standard Functions
func symlen
Syntax

 symlen (pathspec [units])

Formal Declaration

 symlen:u32 (pathspec :str [units :u32=$8])

Parameters

pathspec A path specification, as described in chapter 5, "Symbolic
Formatting/Symbolic Access."

units Specifies the units (that is, bit width) in which the result is given. 1 means
bits, 8 means bytes, 32 means words. The default is bytes.

The symbolic length is rounded up to the nearest whole unit.

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;
Chapter 10 465

System Debug Standard Functions
func symtype
 $nmdebug > wl SYMLEN("StudentRecord")
 $40

Returns the size of a complete StudentRecord in bytes.

 $nmdebug > wl SYMLEN("StudentRecord" 1)
 $200

Returns the size of a complete StudentRecord in bits.

 $nmdebug > wl SYMLEN("StudentRecord.Grades" #32)
 $a

Returns the size of grades field in a StudentRecord in words.

Limitations, Restrictions

none

func symtype
Returns the type of a component described by the path specification.

Syntax

 symtype (pathspec)

Formal Declaration

 symtype:int (pathspec :str)

Parameters

pathspec The path specification as described in chapter 5, "Symbolic
Formatting/Symbolic Access." The last element of the path must
correspond to a user-defined type with a name. Elements of type integer ,
array , or subrange result in an error. Any value returned by this
function may be used successfully in the FT command.

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
466 Chapter 10

System Debug Standard Functions
func symval
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;

 $nmdebug > wl symtype("StudentRecord.NumGrades")
 GRADERANGE

Print out the type name of the NumGrades field of a StudentRecord .

Limitations, Restrictions

None.

func symval
Returns the value of a simple data type specified by a virtual address and a path.

Syntax

 symval (virtaddr pathspec)

Formal Declaration

 symval:any (virtaddr :ptr pathspec :str)

Parameters

virtaddr The virtual address of the data structure.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

pathspec A path specification, as described in chapter 5, "Symbolic
Formatting/Symbolic Access."

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
Chapter 10 467

System Debug Standard Functions
func sys
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;

 $nmdebug > wl symval(addr "StudentRecord.Name")
 Bill

 $nmdebug > wl symval(addr, "StudentRecord.Year")
 SENIOR

 $nmdebug > IF symval(addr "StudentRecord.Year") = "SENIOR" THEN wl
"GRAD!"
 GRAD!

Refer to the section "Using the Symbolic Formatter" in chapter 5 for more examples
including pointers, arrays, and variant/invariant record structures.

Limitations, Restrictions

The path specification used by the SYMVAL function must evaluate to a simple type or a
string. In particular, SYMVAL does not return an array, a record, or a set data structure.

func sys
Coerces an expression into a SYS logical code pointer (LCPTR).

Syntax

 sys (value)

During the evaluation of the parameter to this function, the search path used for
procedure name lookups is limited to the system library file (SYS).
468 Chapter 10

System Debug Standard Functions
func sys
Formal Declaration

 sys:sys (value :any)

Parameters

value An expression to be coerced. All types are valid.

Examples

 %cmdebug > wl sys(12.304)
 SYS %12.304

Coerce the simple long pointer into a SYS logical code pointer.

 %cmdebug > wl sys(pub(24.630))
 SYS %24.630

The coercion simply changes the associated logical file. Note that no complicated
conversion or range checking is performed.

 $nmdat > wl sys(1)
 SYS $0.1

 $nmdat > wl sys(ffff)
 SYS $0.ffff

 $nmdat > wl sys(1234abcd)
 SYS $0.1234abcd

 $nmdat > wl sys(-1)
 SYS $0.ffffffff

 $nmdat > wl sys(1234.5678)

Table 10-16. Derivation of the SYS Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16
S32
S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR
SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
Chapter 10 469

System Debug Standard Functions
func tcb
 SYS $1234.5678

 $nmdat > wl sys(true)
 SYS $0.1

 $nmdat > wl sys("ABCDEFG")
 SYS $414243.44454647

 $nmdat > wl sys(prog(1.2))
 SYS $1.2

Limitations, Restrictions

none

func tcb
Returns the real address of a process' TCB (task control block).

Syntax

 tcb (pin)

Formal Declaration

 tcb:u32 (pin :u16)

Parameters

pin The process identification number (PIN) for which the real address of the
TCB is to be returned.

Examples

 $nmdebug > wl tcb(8)
 $8b5480

Display the real address of the task control block for process 8.

 $nmdebug > dz tcb(8),4
 REAL $008b5480 $ 40200000 40260000 000000000 00000000

Display real memory for four words at the real address of the task control block.

 $nmdebug > dv 0.tcb(8),4
 VIRT $0.8b5480 $ 40200000 40260000 000000000 00000000

The real address can also be used as virtual address by using the space ID (SID) of zero (0),
and the real address as the virtual offset.
470 Chapter 10

System Debug Standard Functions
func trans
Limitations, Restrictions

none

func trans
Coerces an expression into a TRANS logical code pointer (LCPTR).

Syntax

 trans (value)

Formal Declaration

 trans:trans (value :any)

Parameters

value An expression to be coerced. All types are acceptable.

Examples

 %cmdebug > wl trans(12.304)
 TRANS %12.304

Table 10-17. Derivation of the TRANS Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16

U32

SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16

S32

S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR

SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
Chapter 10 471

System Debug Standard Functions
func typeof
Coerce the simple long pointer into a TRANS logical code pointer.

 %cmdebug > wl trans(sys(24.630))
 TRANS %24.630

The coercion simply changes the type. Note that no complicated conversion or range
checking is performed.

Limitations, Restrictions

none

func typeof
Returns the type of an evaluated expression as a string.

Syntax

 typeof (expr)

Formal Declaration

 typeof:str (expr :any)

Parameters

expr Any expression for which the resultant type is desired.

Examples

 $nmdebug > wl typeof(1+2+3)
 U16

 $nmdebug > wl typeof(#65535)
 U16

 $nmdebug > wl typeof(#65535+1)
 U32

 $nmdebug > wl typeof (-1)
 S16

 $nmdebug > wl typeof ($1ffff)
 S32

 $nmdebug > wl typeof(true)
 BOOL
472 Chapter 10

System Debug Standard Functions
func typeof
 $nmdebug > wl typeof("Nellie of Meadow Farm")
 STR

 $nmdebug > wl typeof(typeof(123))
 STR

 $nmdebug > wl typeof(pc)
 SYS
Chapter 10 473

System Debug Standard Functions
func u16
 $nmdebug > wl typeof(cmpc)
 GRP

 $nmdebug > wl typeof(cmtonmnode(cmpc))
 TRANS

 $nmdebug > wl typeof(a.c00024c8)
 LPTR

 $nmdebug > wl typeof(pib(pin))
 SPTR

Limitations, Restrictions

none

func u16
Coerces an expression into an unsigned 16-bit value.

Syntax

 u16 (value)

Formal Declaration

 u16:u16 (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 10-18. Derivation of the U16 Bit Pattern

Parameter Type Action

BOOL 1 if TRUE, 0 if FALSE.

U16

S16

Transfer the original bit pattern unchanged.

U32

S32

S64

SPTR

Transfer the low-order 16 bits.
474 Chapter 10

System Debug Standard Functions
func u16
Examples

 $nmdat > wl u16(1)
 $1

 $nmdat > wl u16(ffff)
 $ffff

 $nmdat > wl u16(ffff):"#"
 $65535

 $nmdat > wl u16(1234abcd)
 $abcd

 $nmdat > wl u16(-1)
 $ffff

 $nmdat > wl u16(ffffffff):"#"
 #65535

 $nmdat > wl u16(1234.5678)
 $5678

 $nmdat > wl u16(true)
 $1

 $nmdat > wl u16("ABCDEFG")
 $4647

 $nmdat > wl u16(prog(1.2))
 $2

Limitations, Restrictions

none

LONG Class

EADDR

SADDR

Transfer the low-order 16 bits of the offset part.

STR Transfer the ASCII bit pattern for the last two
characters in the string. Strings shorter than two
characters are treated as if they were extended on
the left with nulls.

Table 10-18. Derivation of the U16 Bit Pattern

Parameter Type Action
Chapter 10 475

System Debug Standard Functions
func u32
func u32
Coerces an expression into an unsigned 32-bit value.

Syntax

 u32 (value)

Formal Declaration

 u32:u32 (value :any)

Parameters

value An expression to be coerced. All types are valid.

Examples

 $nmdat > wl u32(1)
 $1

 $nmdat > wl u32(ffff)
 $ffff

 $nmdat > wl u32(ffff):"#"
 #65535

Table 10-19. Derivation of the U32 Bit Pattern

Parameter Type Action

BOOL 1 if TRUE, 0 if FALSE.

U16

S16

Right justify the original 16-bit value in 32 bits
with zero fill.

U32

S32

SPTR

Transfer the original bit pattern unchanged.

S64 Transfer the low-order 32 bits.

LONG Class

EADDR

SADDR

Transfer the low-order 32 bits of the offset part.

STR Transfer the ASCII bit pattern for the last four
characters in the string. Strings shorter than four
characters are treated as if they were extended on
the left with nulls.
476 Chapter 10

System Debug Standard Functions
func user
 $nmdat > wl u32(1234abcd)
 $1234abcd

 $nmdat > wl u32(-1)
 $ffff

 $nmdat > wl u32(ffffffff):"#"
 #4294967295

 $nmdat > wl u32(1234.5678)
 $5678

 $nmdat > wl u32(true)
 $1

 $nmdat > wl u32("ABCDEFG")
 $44454647

 $nmdat > wl u32(prog(1.2))
 $2

Limitations, Restrictions

none

func user
Coerces an expression into a USER library logical code pointer (LCPTR).

Syntax

 user ([library] value)

Formal Declaration

 user:user ([library :str=''] value :any)

Parameters

library If this value is provided, System Debug restricts procedure name searches
to the indicated executable library. This restriction remains in effect until
the function's parameters have been completely evaluated. The program
file's group and account are used to fully qualify the library file name if
needed. The library must have been loaded by the process. If this
parameter is omitted, procedure name searches begin at the first user
library as specified in the LIBLIST= option of the RUN command (if any).
Strings longer than valid file names are truncated to the maximum file
Chapter 10 477

System Debug Standard Functions
func user
name string length.

value An expression to be coerced. All types are valid.

Examples

 $nmdebug > wl user(,1c.304c)
 USER $1c.304c

Coerce the simple long pointer into a USER logical code pointer.

 $nmdebug > wl user(,sys(24.630))
 USER $24.630

The coercion simply changes the associated logical file. Note that no complicated
conversion or range checking is performed.

 $nmdebug > wl user("mylib.test" myproc)
 USER $3f.4c04

We asked for the address of the procedure myproc . By providing a library name, we
restricted the search for the procedure to the executable library named mylib.test .

Limitations, Restrictions

none

Table 10-20. Derivation of the USER Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16

U32

SPTR

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with zero fill.

S16

S32

S64

Set the SID part to zero. Right justify the original value in the low-order
32 bits of the offset part with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR

SADDR

Transfer the SID part unchanged. Transfer the low-order 32 bits of the
offset part.

STR Transfer the ASCII bit pattern for the last eight characters in the string.
Strings shorter than eight characters are treated as if they were extended
on the left with nulls.
478 Chapter 10

System Debug Standard Functions
func vainfo
func vainfo
Returns selected information for the specified virtual address.

Syntax

 vainfo (virtaddr selector)

Formal Declaration

 vainfo:any (virtaddr :ptr selector :str)

Parameters

virtaddr The virtual address of the object for which the information is desired.
Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

selector Selects the process information which is to be returned:

 Selector DEBUG DAT SAT
 ------------------------ ----- ----- -----
 ACCESS_RIGHTS Yes No No
 ACCESS_RIGHTS_FMT Yes No No
 BASE_VA Yes Yes Yes
 BYTES_TO_END Yes Yes Yes
 CURRENT_SEC_SPACE Yes Yes Yes
 CURRENT_SIZE Yes Yes Yes
 DFLT_ACCESS_RIGHTS Yes No No
 DFLT_ACCESS_RIGHTS_FMT Yes No No
 DIS_EXP_ID Yes No No
 ENDING_VBA No Yes Yes
 HELP Yes Yes Yes
 MAX_SEC_SPACE Yes Yes Yes
 MAX_SIZE Yes Yes Yes
 OBJECT_CLASS Yes Yes Yes
 OPTIONS Yes Yes Yes
 PAGES_IN_MEM Yes No No
 PDIR_HASH No Yes Yes
 PID Yes Yes Yes
 VS_OD_PTR No Yes Yes
 VPN_CACHE_ENTRY_PTR No Yes Yes
 VS_BTREE_HASH No Yes Yes
 VS_VPN_CACHE_HASH No Yes Yes

Examples

 $nmdat > var pibva pib(1)
 $nmdat > wl vainfo (pibva, "vs_od_ptr")
Chapter 10 479

System Debug Standard Functions
func vtor
 $a.c1002ec0
 $nmdat > dv c1002ec0,58/4
 $ VIRT a.c1002ec0 $ 00000001 08010000 7ffd7ffd 7ffd0000
 $ VIRT a.c1002ed0 $ 00000000 0000000a c3580000 c35f4806
 $ VIRT a.c1002ee0 $ 00074807 50000000 032a0000 00000056
 $ VIRT a.c1002ef0 $ 00000000 00000000 00000000 00000000
 $ VIRT a.c1002f00 $ 00000000 00000000 00000000 02000000
 $ VIRT a.c1002f10 $ 00000000 ffff0000

Define a variable pibva to be the address of the PIB (process information block) for PIN 1.
Get the address of its vs_od_ptr , then display its vs_od_ptr in hex.

 $nmdat > wl vainfo(pibva base_va)
 $a.c3580000
 $nmdat > wl vainfo(pibva "ending_vba")
 $c35f4806
 $nmdat > wl vainfo(pibva "current_size")
 $74807
 $nmdat > wl vainfo(pibva "object_class")
 $56
 $nmdat > wl vainfo(pibva "vs_btree_hash")
 $0
 $nmdat > wl vainfo(pibva "vs_vpn_cache_hash")
 $0
 $nmdat > wl vainfo(pibva "pdir_hash")
 $0

Shows more of the object information for the PIB for PIN 1.

Limitations, Restrictions

none

func vtor
Virtual to real. Converts a virtual address to a real address.

Syntax

 vtor (virtaddr)

In Debug, if the virtual address is not resident, it is brought into memory.

In DAT, if the virtual address is not resident, an error is generated.

Formal Declaration

 vtor:u32 (virtaddr :ptr)
480 Chapter 10

System Debug Standard Functions
func vtos
Parameters

virtaddr The virtual address to be converted to a real address.

Virtaddr can be either a short or long pointer.

Examples

 $nmdebug > wl pc
 PROG $741.5934

Display the current logical code address (LCPTR) of the NM program counter.

 $nmdebug > wl vtor(pc)
 $1827934

Translate the logical code address (LCPTR) into the corresponding real address.

 $nmdebug > wl rtov(1827934)
 $741.5934

Converts the real address back into a virtual address (LPTR).

Limitations, Restrictions

none

func vtos
Virtual to secondary. Converts a virtual address to a secondary storage address.

Syntax

 vtos (virtaddr)

The function VTOSreturns a secondary storage address as an SADDR, whose SID part is the
secondary storage LDEV number and whose offset part is the disk byte address.

Formal Declaration

 vtos:saddr (virtaddr :ptr)

Parameters

virtaddr The virtual address to be converted to a secondary storage address.

Virtaddr can be either a short or long pointer.
Chapter 10 481

System Debug Standard Functions
func vtos
Examples

 $nmdebug > wl vtos(b.40040200)
 SADDR $14.e0200

Convert the virtual address b.40040200 to a secondary storage address and display the
result. The secondary storage address is LDEV $14 at byte offset $e0200.

Limitations, Restrictions

none
482 Chapter 10

System Debug Standard Functions
11 System Debug Standard Functions

This chapter presents the full formal declaration for each of the standard functions which
are defined in System Debug.

All functions are callable from both DAT and Debug. All functions can be called from both
Native Mode (NM) and Compatibility Mode (CM). Some functions, however, deal
specifically with NM or CM attributes. Input parameters are always interpreted based on
the current mode, so care must be exercised when specifying procedure names and
numeric literals.

Functions are logically divided into groups and can be listed with the FUNCL[IST]
command, filtered by the group name.

The following table lists all functions, sorted by group name. For each function, the name,
type, and a brief description is presented.

COERCION Functions

Name Type Description

ASCC : STR Coerces an expression to ASCII

BOOL : BOOL Coerces an expression to Boolean

CST : CST Coerces an expression to CST ACPTR

CSTX : CSTX Coerces an expression to CSTX ACPTR

EADDR : EADDR Coerces an expression to extended address.

GRP : GRP Coerces an expression to GRP LCPTR

LGRP : LGRP Coerces an expression to LGRP LCPTR

LPTR : LPTR Coerces an expression to long pointer.

LPUB : LPUB Coerces an expression to LPUB LCPTR

PUB : PUB Coerces an expression to PUB LCPTR

S16 : S16 Coerces an expression to signed 16-bit INT

S32 : S32 Coerces an expression to signed 32-bit INT

S64 : S64 Coerces an expression to signed 64-bit INT

SADDR : SADDR Coerces an expression to secondary address.

SPTR : SPTR Coerces an expression to short pointer

SYS : SYS Coerces an expression to SYS LCPTR

TRANS : TRANS Coerces an expression to TRANS LCPTR

USER : USER Coerces an expression to USER LCPTR
Chapter 11 483

System Debug Standard Functions
UTILITY Functions

ADDRESS Functions

U16 : U16 Coerces an expression to unsigned 16-bit INT

U32 : U32 Coerces an expression to unsigned 32-bit INT

Name Type Description

ASC : STR Converts an expression to an ASCII string

BIN : INT Converts an ASCII string to binary value

BITD : ANY Bit deposit

BITX : ANY Bit extract

BOUND : STR Tests for current definition of an operand

CISETVAR : BOOL Sets a new value for a CI variable

CIVAR : ANY Returns the current value of a CI variable

ERRMSG : STR Returns an error message string

MACBODY : STR Returns the macro body of a specified macro

TYPEOF : STR Returns the type of an expression

MAPINDEX : U16 Returns the index number of a mapped file

MAPSIZE : U32 Returns the size of a mapped file

MAPVA : LPTR Returns the virtual address of a mapped file

Name Type Description

ABSTOLOG : LCPTR CM absolute address to logical code address

BTOW : U16 Converts a CM byte offset to a word offset

CMNODE : LCPTR CM address of closest CM node point

CMTONMNODE : TRANS NM address of closest CM node point

CMVA : LPTR Converts CM code address to a virtual address

DSTVA : LPTR Converts CM dst.off to virtual address

HASH : S32 Hashes a virtual address

LOGTOABS : ACPTR CM logical code address to absolute address

LTOLOG : LCPTR Long pointer to logical code address

LTOS : SPTR Long pointer to short pointer

Name Type Description
484 Chapter 11

System Debug Standard Functions
PROCESS Functions

PROCEDURE Functions

NMNODE : TRANS NM Address of closest NM node point

NMTOCMNODE : LCPTR CM address of closest NM node point

OFF : U32 Extracts offset part of a virtual address

PHYSTOLOG : LCPTR CM physical segment/map bit to logical

RTOV : LPTR real to virtual

SID : U32 Extracts the SID (space) part of a long pointer

STOL : LPTR Short pointer to long pointer

STOLOG : LCPTR Short pointer to logical code address

VTOR : U32 Virtual to real

VTOS : SADDR Virtual to secondary store address

Name Type Description

CMG : SPTR Short pointer address of CMGLOBALS
record

CMSTACKBASE : LPTR Virtual address of the CM stack base

CMSTACKDST : U16 Data segment number of the CM stack

CMSTACKLIMIT : LPTR Virtual address of the CM stack limit

NMSTACKBASE : LPTR Virtual address of the NM stack base

NMSTACKLIMIT : LPTR Virtual address of the NM stack limit

PCB : SPTR Address of process control block

PCBX : SPTR Address of process control block extension

PIB : SPTR Address of process information block

PIBX : SPTR Address process information block extension

PSTATE : STR Returns the process state for specified PIN

TCB : U32 Real address of the task control block

VAINFO : ANY Returns virtual object information

Name Type Description

CMADDR : LCPTR Logical address of a CM procedure name

Name Type Description
Chapter 11 485

System Debug Standard Functions
STRING Functions

CMBPADDR : LCPTR Logical address of a CM breakpoint index

CMBPINDEX : S16 Index number of a CM breakpoint address

CMBPINSTR : S16CM Instruction at a CM breakpoint address

CMENTRY : LCPTR Logical entry address of a CM procedure

CMPROC : STR Returns the name of a CM procedure

CMPROCLEN : U16 Returns the length of CM procedure

CMSEG : STR Returns the CM segment name at logical address

CMSTART : LCPTR Logical start address of CM procedure

NMADDR : LCPTR Logical address of NM procedure name

NMBPADDR : LCPTR Logical address of NM breakpoint index

NMBPINDEX : S16 Index number of a NM breakpoint address

NMBPINSTR : S32NM Instruction at a NM breakpoint address

NMCALL : S32NM Dynamically invokes the specified NM routine

NMENTRY : LCPTR Logical entry address of NM procedure

NMFILE : STR Name of file containing NM logical address

NMMOD : STR Name of NM module at NM logical address

NMPATH : STR Returns the full code path of a NM procedure

NMPROC : STR Name of NM procedure at NM logical address

Name Type Description

STR : STR Extracts a substring from a string

STRAPP : STR String append

STRDEL : STR String delete

STRDOWN : STR Downshifts a string

STREXTRACT : STR Extracts a string at a virtual address

STRINPUT : STR Prompts for and reads string input

STRINS : STR String insert

STRLEN : U16 Returns the current length of a string

STRLTRIM : STR Removes leading blanks from a string

STRMAX : U16 Returns the maximum length of a string

Name Type Description
486 Chapter 11

System Debug Standard Functions
func civar
SYMBOLIC Functions

The formal declaration of functions are presented with the following format:

function_name : function_return_type (function_ parameters)

The function parameters are presented as follows:

parm_name : parm_type [= default_parm_value]

func civar
Returns the current value of a CI (MPE XL Command Interpreter) variable.

Syntax

 civar (civarname [stropt])

This function is implemented by calling the HPCIGETVAR intrinsic.

Formal Declaration

 civar:any (civarname :str [stropt :str="NOEV"])

STRPOS : U16 Locates a substring within a string

STRRPT : STR String repeat

STRRTRIM : STR Removes trailing blanks from a string

STRUP : STR Upshifts a string

STRWRITE : STR Builds a string from a value list

Name Type Description

SYMADDR : U32 Returns the offset within a type to the specified symbolic field

SYMCONST : ANY Returns the value of a declared constant

SYMINSET : BOOL Tests for set inclusion

SYMLEN : U32 Returns the length of the field based on a symbolic path

SYMTYPE : STR Returns the symbolic type based on a symbolic path

SYMVAL : ANY Returns the value found at a virtual address based on a symbolic path

Name Type Description
Chapter 11 487

System Debug Standard Functions
func civar
Parameters

 civarname The name of the CI variable.

 stropt A string that determines whether the CI should attempt to evaluate the
named variable.

EVALUATE Evaluate the CI variable

NOEVALUATE Do not evaluate the CI variable (Default)

This string parameter can be abbreviated.

Examples

 $nmdebug > wl civar ("hpgroup");
 DEMO

 $nmdebug > wl civar ("hpaccount");
 TELESUP

Display the current value of the CI variables named HPGROUP and HPACCOUNT.

 $nmdebug > wl civar("hpusercapf")
 SM,AM,AL,GL,DI,OP,CU,UV,LG,PS,NA,NM,CS,ND,SF,BA,IA,PM,MR,DS,PH

Display the current value of the CI variable HPUSERCAPF.

$nmdat >: :showvar one
 ONE = !TWO
 $nmdat > :showvar two
 TWO = 2

 $nmdat > wl civar("one")
 !TWO
 $nmdat > wl civar("one" "EVAL")
 2

Two CI variables have already been defined. Variable one references variable two which is
assigned the value of 2.

The first use of the function CIVAR defaults to NOEVALUATE, and as a result the value of one
is returned as !TWO.

In the second use of the function CIVAR, the stropt is explicitly specified as EVALUATE, and
so the MPE XL CI evaluates the value of one , which indirectly references the variable two ,
and the final result of 2 is returned.

Limitations, Restrictions

none
488 Chapter 11

System Debug Standard Functions
func strrtrim
func strrtrim
String right trim. Deletes trailing blanks from the source string.

Syntax

 strrtrim (source)

Formal Declaration

 strrtrim:str (source :str)

Parameters

source The string from which all trailing blanks are to be deleted.

Examples

 $nmdebug > wl strrtrim(" A string with extra blanks. "):"qo"
 " A string with extra blanks."

 %cmdebug > = strltrim(strrtrim(" ABCD "))
 "ABCD"

Delete both leading and trailing blanks.

Limitations, Restrictions

none

func strwrite
Returns a string which is the result of formatting one or more expressions in a manner
equivalent to that of the W (WRITE) command.

Syntax

 strwrite (valuelist)

Formal Declaration

 strwrite:str (valuelist :str)
Chapter 11 489

System Debug Standard Functions
func strwrite
Parameters

valuelist A list of expressions, in the form of a single string, to be formatted. The
expressions can be separated by blanks or commas:

value1, value2 value3 ...

An optional format specification can be appended to each expression,
introduced with a required colon, in order to select one of the following: a
specific output base, left or right justification, blank or zero fill, and a field
width for the value.

value1 [: fmtspec1] value2 [: fmtspec2] ...

A format specification string is a list of selected format directives, with
each directive separated by blanks, commas or nothing at all:

 " directive1 directive2 , directive3directive4 ..."

The following table lists the supported format directives that can be
entered in upper- or lower-case:

+ Current output base ($, #, or % prefix displayed)

- Current output base (no prefix)

+< Current input base ($, #, or % prefix displayed)

-< Current input base (no prefix)

$ Hex output base ($ prefix displayed)

Decimal output base (# prefix displayed)

% Octal output base (% prefix displayed)

H Hex output base (no prefix)

D Decimal output base (no prefix)

O Octal output base (no prefix)

A ASCII base (use "." for non-printable chars)

N ASCII base (loads actual non-printable chars)

L Left justified

R Right justified

B Blank filled

Z Zero filled

M Minimum field width, based on value

F Fixed field width, based on the type of value

Wn User specified field width n

T Typed (display the type of the value)

U Untyped (do not display the type of the value)
490 Chapter 11

System Debug Standard Functions
func strwrite
QS Quote single (surround w/ single quotes)

QD Quote double (surround w/ double quotes)

QO Quote original (surround w/ original quote character)

QN Quote none (no quotes)

The M directive (minimum field width) selects the minimum possible field
width necessary to format all significant digits (or characters in the case of
string inputs).

The F directive (fixed field width) selects a fixed field width based on type
of the value and the selected output base. Fixed field widths are listed in
the following table:

The Wn directive (variable field width) allows the user to specify the
desired field width. The W directive can be specified with an arbitrary
expression. If the specified width is less than the minimum necessary
width to display the value, then the user width is ignored, and the
minimum width used instead. All significant digits are always printed. For
example:

number:"w6"

or

number:"w2*3"

The number of positions specified (either by Wn or F) does not include the
characters required for the radix indicator (if specified) or sign (if
negative). Also, the sign and radix indicator will always be positioned just
preceding the first (leftmost) character.

Zero versus blank fill applies to leading spaces (for right justification)
Trailing spaces are always blank filled.

In specifications with quotes, the quotes do not count in the number of
positions specified. The string is built such that it appears inside the
quotes as it would without the quotes.

The T directive (typed) displays the type of the value, preceding the value.

Types hex($,H) dec(#,D) oct(%,O) ascii(A,N)

S16,U16 4 6 6 2

S32,U32 8 10 11 4

S64 16 20 22 8

SPTR 8 10 11 4

LPTR Class 8.8 10.10 11.11 8

EADDR Class 8.16 10.20 11.22 12

STR field width = length of the string
Chapter 11 491

System Debug Standard Functions
func strwrite
The U directive (untyped) suppresses the display of the type. Types are
displayed in upper case, with a single trailing blank. The width of the type
display string varies, based on the type, and it is independent of any
specified width (M, F, or Wn) for the value display.

For values of type LPTR (long pointer, sid.offset , or seg.offset) and
EADDR (extended address, sid.offset or ldev.offset), two separate
format directives can be specified. Each is separated by a dot, ".", to
indicate individual formatting choices for the "sid " portion and the
"offset " portion. This is true for all code pointers (ACPTR - absolute code
pointers: CST,
CSTX; LCPTR - Logical Code Pointers: PROG, GRP, PUB, LGRP, LPUB,
SYS, User, TRANS). For example:

 pc:"+.-, w4.8, r.l, b.z"

The following default values are used for omitted format directives. Note
that the default format directives depend on the type of value to be
formatted:

 value type default format
 ---------- --------------
 STR, BOOL - R B M U
 U16,S16,U32,S32,S64 + R B M U
 SPTR + R Z F U
 LPTR +.- R.L B.Z M.F U
 ACPTR LCPTR +.- R.L B.Z M.F T
 CST PROG +.- R.L B.Z M.F T
 CSTX GRP +.- R.L B.Z M.F T
 PUB +.- R.L B.Z M.F T
 LGRP +.- R.L B.Z M.F T
 LPUB +.- R.L B.Z M.F T
 SYS +.- R.L B.Z M.F T
 USER +.- R.L B.Z M.F T
 TRANS +.- R.L B.Z M.F T
 EADDR +.- R.L B.Z M.F U
 SADDR +.- R.L B.Z M.F T

Note that absolute code pointers, logical code pointers and secondary
addresses display their types (T) by default. All other types default to (U)
untyped.

The Cn (Column n) directive moves the current output buffer position to
the specified column position prior to the next write into the output buffer.
Column numbers start at column 1. For example:

 number:"c6"

NOTE The Cn directive is ignored by the ASC function but is honored by the W, WL
and WP commands.
492 Chapter 11

System Debug Standard Functions
func symaddr
Examples

 $nmdat > var save = strwrite('1 2 3 "-->" 4:"z w4 r z" 5')
 $nmdat > wl save
 $1$2$3-->0004$5

The string variable save is used to store the function return value. STRWRITEis equivalent
to the W(WRITE) command, but the formatted output is returned in a string.

Note the single quotes which surround the value list. These turn the value list into a
string. Double quotes are then used to form individual string values and format
specifications.

STRWRITE is similar to the ASC function. The major difference is that ASC accepts a single
expression with an optional format specification:

 wl ASC(1+2, "w4")

while STRWRITE accepts a list of expressions, each with optional formatting:

 var title = strwrite('"Current Pin:" pin:"w4", " PC:", pc')

Limitations, Restrictions

none

func symaddr
Returns the bit- or byte-relative offset of a component specified through the path
specification, relative to the outer structure.

Syntax

 symaddr (pathspec [units])

Formal Declaration

 symaddr:u32 (pathspec :str [units :u16=8])

Parameters

pathspec A path specification, as described in chapter 5, "Symbolic
Formatting/Symbolic Access."

units Specifies the units (that is, bit width) in which the result is given. 1 means
bits, 8 means bytes, 32 means words. The default is bytes.

Symbolic offsets are rounded down to the nearest whole unit.
Chapter 11 493

System Debug Standard Functions
func symconst
Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;

 $nmdebug > wl SYMADDR("StudentRecord.Name")
 $0

Print the byte offset of the name field for StudentRecord . Since it is the first item in the
record, its offset is zero.

 $nmdebug > wl SYMADDR("StudentRecord.NumGrades" 1)
 $a8

Print the bit offset of the NumGrades field for StudentRecord .

 $nmdebug > wl SYMADDR("StudentRecord.Grades[4]" #32)
 $9

Print the word offset of the fourth element of the grades field for StudentRecord .

Limitations, Restrictions

none

func symconst
Returns the value of a declared constant.
494 Chapter 11

System Debug Standard Functions
func symconst
Syntax

 symconst (pathspec)

Formal Declaration

 symconst:any (pathspec :str)

Parameters

pathspec A path specification, as described in chapter 5, "Symbolic Formatting/
Symbolic Access."

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;
 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;

$nmdebug > wl "Max Number of students = " SYMCONST("MAXSTUDENTS")
 Max Number of students = $5

Returns the value of the constant MaxStudents .

Limitations, Restrictions

none
Chapter 11 495

System Debug Standard Functions
func syminset
func syminset
Returns a Boolean value of TRUE if the set member specified by the member parameter is
in the set specified by the virtual address and the path specification.

Syntax

 syminset (virtaddr pathspec member)

Formal Declaration

 syminset:bool (virtaddr :ptr pathspec :str member:str)

Parameters

virtaddr The virtual address of the start of the set.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

pathspec The path specification as described in chapter 5, "Symbolic
Formatting/Symbolic Access."

member The string value of the member to test for.

Examples

The following examples assume the following types exist. We also assume that a variable
of type SubjectSet is located at the virtual address SP-34.

 VAR myset : SubjectSet;

 BEGIN
 myset := [HISTORY, HEALTH, PHYSED];
 END;

 $nmdat > wl syminset(sp-34, 'subjectset', 'math')
 FALSE

 $nmdat > wl syminset(sp-34, 'subjectset', 'physed')
 TRUE

In the example above, the symbolic file name is not specified. The last symbolic file
accessed is, therefore, used by default.

Limitations, Restrictions

none
496 Chapter 11

System Debug Standard Functions
func symlen
func symlen
Returns the length of a data structure in bits or bytes.

Syntax

 symlen (pathspec [units])

Formal Declaration

 symlen:u32 (pathspec :str [units :u32=$8])

Parameters

pathspec A path specification, as described in chapter 5, "Symbolic
Formatting/Symbolic Access."

units Specifies the units (that is, bit width) in which the result is given. 1 means
bits, 8 means bytes, 32 means words. The default is bytes.

The symbolic length is rounded up to the nearest whole unit.

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;
Chapter 11 497

System Debug Standard Functions
func symtype
 $nmdebug > wl SYMLEN("StudentRecord")
 $40

Returns the size of a complete StudentRecord in bytes.

 $nmdebug > wl SYMLEN("StudentRecord" 1)
 $200

Returns the size of a complete StudentRecord in bits.

 $nmdebug > wl SYMLEN("StudentRecord.Grades" #32)
 $a

Returns the size of grades field in a StudentRecord in words.

Limitations, Restrictions

none

func symtype
Returns the type of a component described by the path specification.

Syntax

 symtype (pathspec)

Formal Declaration

 symtype:int (pathspec :str)

Parameters

pathspec The path specification as described in chapter 5, "Symbolic
Formatting/Symbolic Access." The last element of the path must
correspond to a user-defined type with a name. Elements of type integer ,
array , or subrange result in an error. Any value returned by this
function may be used successfully in the FT command.

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;
498 Chapter 11

System Debug Standard Functions
func symtype
 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];

 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;
Chapter 11 499

System Debug Standard Functions
func symval
 $nmdebug > wl symtype("StudentRecord.NumGrades")
 GRADERANGE

Print out the type name of the NumGrades field of a StudentRecord .

Limitations, Restrictions

None.

func symval
Returns the value of a simple data type specified by a virtual address and a path.

Syntax

 symval (virtaddr pathspec)

Formal Declaration

 symval:any (virtaddr :ptr pathspec :str)

Parameters

virtaddr The virtual address of the data structure.

Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

pathspec A path specification, as described in chapter 5, "Symbolic
Formatting/Symbolic Access."

Examples

 $nmdebug > symopen gradtyp.demo

Opens the symbolic data type file gradtyp.demo . It is assumed that the Debug variable
addr contains the address of a StudentRecord data structure in virtual memory. The
following code fragment is from this file:

 CONST MINGRADES = 1; MAXGRADES = 10;
 MINSTUDENTS = 1; MAXSTUDENTS = 5;

 TYPE
 GradeRange = MINGRADES .. MAXGRADES;
 GradesArray = ARRAY [GradeRange] OF integer;

 Class = (SENIOR, JUNIOR, SOPHOMORE, FRESHMAN);
 NameStr = string[8];
500 Chapter 11

System Debug Standard Functions
func symval
 StudentRecord = RECORD
 Name : NameStr;
 Id : Integer;
 Year : Class;
 NumGrades : GradeRange;
 Grades : GradesArray;
 END;
Chapter 11 501

System Debug Standard Functions
func sys
 $nmdebug > wl symval(addr "StudentRecord.Name")
 Bill

 $nmdebug > wl symval(addr, "StudentRecord.Year")
 SENIOR

$nmdebug > IF symval(addr "StudentRecord.Year") = "SENIOR" THEN wl
"GRAD!"
 GRAD!

Refer to the section "Using the Symbolic Formatter" in chapter 5 for more examples
including pointers, arrays, and variant/invariant record structures.

Limitations, Restrictions

The path specification used by the SYMVAL function must evaluate to a simple type or a
string. In particular, SYMVAL does not return an array, a record, or a set data structure.

func sys
Coerces an expression into a SYS logical code pointer (LCPTR).

Syntax

 sys (value)

During the evaluation of the parameter to this function, the search path used for
procedure name lookups is limited to the system library file (SYS).

Formal Declaration

 sys:sys (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 11-1. Derivation of the SYS Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16
U32
SPTR

Set the SID part to zero. Right justify the original
value in the low-order 32 bits of the offset part
with zero fill.
502 Chapter 11

System Debug Standard Functions
func sys
Examples

 %cmdebug > wl sys(12.304)
 SYS %12.304

Coerce the simple long pointer into a SYS logical code pointer.

 %cmdebug > wl sys(pub(24.630))
 SYS %24.630

The coercion simply changes the associated logical file. Note that no complicated
conversion or range checking is performed.

 $nmdat > wl sys(1)
 SYS $0.1

 $nmdat > wl sys(ffff)
 SYS $0.ffff

 $nmdat > wl sys(1234abcd)
 SYS $0.1234abcd

 $nmdat > wl sys(-1)
 SYS $0.ffffffff

 $nmdat > wl sys(1234.5678)
 SYS $1234.5678

 $nmdat > wl sys(true)
 SYS $0.1

 $nmdat > wl sys("ABCDEFG")
 SYS $414243.44454647

 $nmdat > wl sys(prog(1.2))

S16
S32
S64

Set the SID part to zero. Right justify the original
value in the low-order 32 bits of the offset part
with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR
SADDR

Transfer the SID part unchanged. Transfer the
low-order 32 bits of the offset part.

STR Transfer the ASCII bit pattern for the last eight
characters in the string. Strings shorter than eight
characters are treated as if they were extended on
the left with nulls.

Table 11-1. Derivation of the SYS Bit Pattern

Parameter Type Action
Chapter 11 503

System Debug Standard Functions
func tcb
 SYS $1.2

Limitations, Restrictions

none

func tcb
Returns the real address of a process' TCB (task control block).

Syntax

 tcb (pin)

Formal Declaration

 tcb:u32 (pin :u16)

Parameters

pin The process identification number (PIN) for which the real address of the
TCB is to be returned.

Examples

 $nmdebug > wl tcb(8)
 $8b5480

Display the real address of the task control block for process 8.

 $nmdebug > dz tcb(8),4
 REAL $008b5480 $ 40200000 40260000 000000000 00000000

Display real memory for four words at the real address of the task control block.

 $nmdebug > dv 0.tcb(8),4
 VIRT $0.8b5480 $ 40200000 40260000 000000000 00000000

The real address can also be used as virtual address by using the space ID (SID) of zero (0),
and the real address as the virtual offset.

Limitations, Restrictions

none
504 Chapter 11

System Debug Standard Functions
func trans
func trans
Coerces an expression into a TRANS logical code pointer (LCPTR).

Syntax

 trans (value)

Formal Declaration

 trans:trans (value :any)

Parameters

value An expression to be coerced. All types are acceptable.

Examples

 %cmdebug > wl trans(12.304)
 TRANS %12.304

Coerce the simple long pointer into a TRANS logical code pointer.

 %cmdebug > wl trans(sys(24.630))

Table 11-2. Derivation of the TRANS Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16

U32

SPTR

Set the SID part to zero. Right justify the original
value in the low-order 32 bits of the offset part
with zero fill.

S16

S32

S64

Set the SID part to zero. Right justify the original
value in the low-order 32 bits of the offset part
with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR

SADDR

Transfer the SID part unchanged. Transfer the
low-order 32 bits of the offset part.

STR Transfer the ASCII bit pattern for the last eight
characters in the string. Strings shorter than eight
characters are treated as if they were extended on
the left with nulls.
Chapter 11 505

System Debug Standard Functions
func typeof
 TRANS %24.630

The coercion simply changes the type. Note that no complicated conversion or range
checking is performed.

Limitations, Restrictions

none

func typeof
Returns the type of an evaluated expression as a string.

Syntax

 typeof (expr)

Formal Declaration

 typeof:str (expr :any)

Parameters

expr Any expression for which the resultant type is desired.

Examples

 $nmdebug > wl typeof(1+2+3)
 U16

 $nmdebug > wl typeof(#65535)
 U16

 $nmdebug > wl typeof(#65535+1)
 U32

 $nmdebug > wl typeof (-1)
 S16

 $nmdebug > wl typeof ($1ffff)
 S32

 $nmdebug > wl typeof(true)
 BOOL
506 Chapter 11

System Debug Standard Functions
func typeof
 $nmdebug > wl typeof("Nellie of Meadow Farm")
 STR

 $nmdebug > wl typeof(typeof(123))
 STR

 $nmdebug > wl typeof(pc)
 SYS
Chapter 11 507

System Debug Standard Functions
func u16
 $nmdebug > wl typeof(cmpc)
 GRP

 $nmdebug > wl typeof(cmtonmnode(cmpc))
 TRANS

 $nmdebug > wl typeof(a.c00024c8)
 LPTR

 $nmdebug > wl typeof(pib(pin))
 SPTR

Limitations, Restrictions

none

func u16
Coerces an expression into an unsigned 16-bit value.

Syntax

 u16 (value)

Formal Declaration

 u16:u16 (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 11-3. Derivation of the U16 Bit Pattern

Parameter Type Action

BOOL 1 if TRUE, 0 if FALSE.

U16

S16

Transfer the original bit pattern unchanged.
508 Chapter 11

System Debug Standard Functions
func u16
Examples

 $nmdat > wl u16(1)
 $1

 $nmdat > wl u16(ffff)
 $ffff

 $nmdat > wl u16(ffff):"#"
 $65535

 $nmdat > wl u16(1234abcd)
 $abcd

 $nmdat > wl u16(-1)
 $ffff

 $nmdat > wl u16(ffffffff):"#"
 #65535

 $nmdat > wl u16(1234.5678)
 $5678

 $nmdat > wl u16(true)
 $1

 $nmdat > wl u16("ABCDEFG")
 $4647

 $nmdat > wl u16(prog(1.2))
 $2

U32

S32

S64

SPTR

Transfer the low-order 16 bits.

LONG Class

EADDR

SADDR

Transfer the low-order 16 bits of the offset part.

STR Transfer the ASCII bit pattern for the last two
characters in the string. Strings shorter than two
characters are treated as if they were extended on
the left with nulls.

Table 11-3. Derivation of the U16 Bit Pattern

Parameter Type Action
Chapter 11 509

System Debug Standard Functions
func u32
Limitations, Restrictions

none

func u32
Coerces an expression into an unsigned 32-bit value.

Syntax

 u32 (value)

Formal Declaration

 u32:u32 (value :any)

Parameters

value An expression to be coerced. All types are valid.

Table 11-4. Derivation of the U32 Bit Pattern

Parameter Type Action

BOOL 1 if TRUE, 0 if FALSE.

U16

S16

Right justify the original 16-bit value in 32 bits
with zero fill.

U32

S32

SPTR

Transfer the original bit pattern unchanged.

S64 Transfer the low-order 32 bits.

LONG Class

EADDR

SADDR

Transfer the low-order 32 bits of the offset part.

STR Transfer the ASCII bit pattern for the last four
characters in the string. Strings shorter than four
characters are treated as if they were extended on
the left with nulls.
510 Chapter 11

System Debug Standard Functions
func user
Examples

 $nmdat > wl u32(1)
 $1

 $nmdat > wl u32(ffff)
 $ffff

 $nmdat > wl u32(ffff):"#"
 #65535

 $nmdat > wl u32(1234abcd)
 $1234abcd

 $nmdat > wl u32(-1)
 $ffff

 $nmdat > wl u32(ffffffff):"#"
 #4294967295

 $nmdat > wl u32(1234.5678)
 $5678

 $nmdat > wl u32(true)
 $1

 $nmdat > wl u32("ABCDEFG")
 $44454647

 $nmdat > wl u32(prog(1.2))
 $2

Limitations, Restrictions

none

func user
Coerces an expression into a USER library logical code pointer (LCPTR).

Syntax

 user ([library] value)
Chapter 11 511

System Debug Standard Functions
func user
Formal Declaration

 user:user ([library :str=''] value :any)

Parameters

library If this value is provided, System Debug restricts procedure name searches
to the indicated executable library. This restriction remains in effect until
the function's parameters have been completely evaluated. The program
file's group and account are used to fully qualify the library file name if
needed. The library must have been loaded by the process. If this
parameter is omitted, procedure name searches begin at the first user
library as specified in the LIBLIST= option of the RUN command (if any).
Strings longer than valid file names are truncated to the maximum file
name string length.

value An expression to be coerced. All types are valid.

Examples

 $nmdebug > wl user(,1c.304c)
 USER $1c.304c

Coerce the simple long pointer into a USER logical code pointer.

 $nmdebug > wl user(,sys(24.630))
 USER $24.630

The coercion simply changes the associated logical file. Note that no complicated

Table 11-5. Derivation of the USER Bit Pattern

Parameter Type Action

BOOL 0.1 if TRUE, 0.0 if FALSE.

U16

U32

SPTR

Set the SID part to zero. Right justify the original
value in the low-order 32 bits of the offset part
with zero fill.

S16

S32

S64

Set the SID part to zero. Right justify the original
value in the low-order 32 bits of the offset part
with sign extension.

LONG Class Transfer both parts of the address unchanged.

EADDR

SADDR

Transfer the SID part unchanged. Transfer the
low-order 32 bits of the offset part.

STR Transfer the ASCII bit pattern for the last eight
characters in the string. Strings shorter than eight
characters are treated as if they were extended on
the left with nulls.
512 Chapter 11

System Debug Standard Functions
func vainfo
conversion or range checking is performed.

 $nmdebug > wl user("mylib.test" myproc)
 USER $3f.4c04

We asked for the address of the procedure myproc . By providing a library name, we
restricted the search for the procedure to the executable library named mylib.test .

Limitations, Restrictions

none

func vainfo
Returns selected information for the specified virtual address.

Syntax

 vainfo (virtaddr selector)

Formal Declaration

 vainfo:any (virtaddr :ptr selector :str)

Parameters

virtaddr The virtual address of the object for which the information is desired.
Virtaddr can be a short pointer, a long pointer, or a full logical code
pointer.

selector Selects the process information which is to be returned:

 Selector DEBUG DAT SAT
 ------------------------ ----- ----- -----
 ACCESS_RIGHTS Yes No No
 ACCESS_RIGHTS_FMT Yes No No
 BASE_VA Yes Yes Yes
 BYTES_TO_END Yes Yes Yes
 CURRENT_SEC_SPACE Yes Yes Yes
 CURRENT_SIZE Yes Yes Yes
 DFLT_ACCESS_RIGHTS Yes No No
 DFLT_ACCESS_RIGHTS_FMT Yes No No
 DIS_EXP_ID Yes No No
 ENDING_VBA No Yes Yes
 HELP Yes Yes Yes
 MAX_SEC_SPACE Yes Yes Yes
Chapter 11 513

System Debug Standard Functions
func vainfo
 MAX_SIZE Yes Yes Yes
 OBJECT_CLASS Yes Yes Yes
 OPTIONS Yes Yes Yes
 PAGES_IN_MEM Yes No No
 PDIR_HASH No Yes Yes
 PID Yes Yes Yes
 VS_OD_PTR No Yes Yes
 VPN_CACHE_ENTRY_PTR No Yes Yes
 VS_BTREE_HASH No Yes Yes
 VS_VPN_CACHE_HASH No Yes Yes

Examples

 $nmdat > var pibva pib(1)
 $nmdat > wl vainfo (pibva, "vs_od_ptr")
 $a.c1002ec0
 $nmdat > dv c1002ec0,58/4
 $ VIRT a.c1002ec0 $ 00000001 08010000 7ffd7ffd 7ffd0000
 $ VIRT a.c1002ed0 $ 00000000 0000000a c3580000 c35f4806
 $ VIRT a.c1002ee0 $ 00074807 50000000 032a0000 00000056
 $ VIRT a.c1002ef0 $ 00000000 00000000 00000000 00000000
 $ VIRT a.c1002f00 $ 00000000 00000000 00000000 02000000
 $ VIRT a.c1002f10 $ 00000000 ffff0000

Define a variable pibva to be the address of the PIB (process information block) for PIN 1.
Get the address of its vs_od_ptr , then display its vs_od_ptr in hex.

 $nmdat > wl vainfo(pibva base_va)
 $a.c3580000
 $nmdat > wl vainfo(pibva "ending_vba")
 $c35f4806
 $nmdat > wl vainfo(pibva "current_size")
 $74807
 $nmdat > wl vainfo(pibva "object_class")
 $56
 $nmdat > wl vainfo(pibva "vs_btree_hash")
 $0
 $nmdat > wl vainfo(pibva "vs_vpn_cache_hash")
 $0
 $nmdat > wl vainfo(pibva "pdir_hash")
 $0

Shows more of the object information for the PIB for PIN 1.

Limitations, Restrictions

none
514 Chapter 11

System Debug Standard Functions
func vtor
func vtor
Virtual to real. Converts a virtual address to a real address.

Syntax

 vtor (virtaddr)

In Debug, if the virtual address is not resident, it is brought into memory.

In DAT, if the virtual address is not resident, an error is generated.

Formal Declaration

 vtor:u32 (virtaddr :ptr)

Parameters

virtaddr The virtual address to be converted to a real address.

Virtaddr can be either a short or long pointer.

Examples

 $nmdebug > wl pc
 PROG $741.5934

Display the current logical code address (LCPTR) of the NM program counter.

 $nmdebug > wl vtor(pc)
 $1827934

Translate the logical code address (LCPTR) into the corresponding real address.

 $nmdebug > wl rtov(1827934)
 $741.5934

Converts the real address back into a virtual address (LPTR).

Limitations, Restrictions

none
Chapter 11 515

System Debug Standard Functions
func vtor
516 Chapter 11

Dump Analysis Tool (DAT)
How DAT Works
12 Dump Analysis Tool (DAT)

The Dump Analysis Tool (DAT) is a program you can use interactively to analyze MPE XL
system events such as process hangs, operating system failures, or hardware failures. DAT
is used primarily by Hewlett-Packard support and lab personnel.

How DAT Works
As input the DAT program accepts a snapshot dump generated by the DUMP utility. For
output, DAT reads the dump tape into one or more disk files, called the dump file set.

GETDUMP is the DAT command that reads the DUMP utility tape into the dump file set so
that the information can be analyzed interactively.

DAT commands allow the user to display data in the main memory dump as well as
secondary store data provided by DUMP. The OPENDUMP command opens a dump for
analysis; PURGEDUMP deletes a dump.

Physical, secondary, and virtual addressing modes are supported. Physical and secondary
addressing can be performed regardless of the accuracy of the dump contents. However,
virtual addressing requires that certain data structures involved in the address
translation process not be corrupt. Most System Debug symbolic formatting commands
and functions may be used to symbolically format data within a dump.

Operating DAT

Follow these steps to use DAT:

1. Take a snapshot dump of the system that failed, using the DUMP utility. Refer to
System Startup, Configuration, and Shutdown Reference Manual for information about
making a DUMP tape.

2. Invoke the DAT utility; the command interpreter prompt (usually a colon) is replaced
by the DAT program prompt:

 : DAT
 $nmdat>

OR:

 : RUN DAT.DAT.TELESUP
 $nmdat>
Chapter 12 517

Dump Analysis Tool (DAT)
Operating DAT
3. Create the dump. A request will appear on the system console to mount the dump tape.
The following example creates the dump EXAMP.

 $nmdat> GETDUMP examp

 Please mount dump volume #1.

4. Mount the dump tape when prompted by the message on the system console. Press
RETURN. As the dump is being loaded, DAT will display a series of messages about the
dump indicating GETDUMP progress:

 Tape created by SOFTDUMP 99999X A.00.00
 MPE-XL B.05.09 dumped on SAT, OCT 20, 1990, 1:44 AM

 Dump Tape Contents

 PIM00 4.0 Kbytes
 MEMDUMP 32.0 Mbytes
 VM001 59.5 Mbytes

 This dump will require approximately 32.1 Mbytes (#131387
sectors) of disc
 space.

 Please stand by for disc space allocation.

 0 100%
 Loading tape file PIM00 : +....+....+
 Loading tape file MEMDUMP : +....+....+
 Loading tape file VM001 : +....+....+

 Please stand by while dump pages are posted to disk.

 Dump disc file space reduced by 59% due to LZ data compression.
 $nmdat>

5. Open the dump. The following example opens the dump EXAMP.

 $nmdat> OPENDUMP examp

 Dump Title: System failure during performance testing.
 Last PIN : 7 On ICS stack -- Dispatcher running

 $nmdat>

6. Analyze the dump, using the commands and DAT macros described later in this
chapter. If the dump file set was opened successfully, you can display the machine
registers, any data locations (using physical, secondary and virtual addressing modes),
and the basic tables used in the virtual address translation process.

7. When finished with a dump file set, you can exit the utility or open another file set. All
dump file sets remain in the system until you explicitly purge them with the
518 Chapter 12

Dump Analysis Tool (DAT)
Operating DAT
PURGEDUMP command.

 $nmdat> PURGEDUMP examp
 $nmdat> EXIT
 :

NOTE When you use the EXIT command in DAT, the DAT program terminates
immediately.

Using the info= String

DAT automatically executes any commands specified within the info= string on a
RUN DAT command. These commands are executed before any commands found in the
optional DATINIT file(s).

 run dat; info='{cmd1, cmd2, cmd3}'

Automatic DATINIT Files

DAT supports the automatic execution of commands with special initialization files named
DATINIT , if any exist. These files must be standard USE files (see the USE command).

DAT first tests for an initialization file (DATINIT) in the same group and account as the
DAT program file that is being executed. Secondly, DAT looks for an initialization file in
the logon group and account (if different from the program file's group and account).

Based on the existence of these special files, it is possible to execute initialization
command files from the program's group and account, from the user's group and account,
or from both.

The following initialization sequence is possible for DAT:

1. run dat; info="{cmdlist}" INFO string command list

2. DATINIT.ProgGrp.ProgAcnt program file group/account

3. DATINIT.UserGrp.UserAcnt user's group/account

To prevent use of the DATINIT files, use the following RUN command with info= string:

 run dat;info="use close; use close"

Since the info= string has precedence over the DATINIT files, the use close commands
are the first commands that DAT executes. In this case, any open DATINIT files are closed
before any commands are read from them.

Operating Restrictions

The following limitations exist in DAT:

• The only symbols that are accessible in CM are the SL.PUB.SYS symbols. This is
because SL.PUB.SYS is the only CM library/program file that is dumped by the DUMP
utility.
Chapter 12 519

Dump Analysis Tool (DAT)
The DAT Macros
• Typically, only NL.PUB.SYS symbols are accessible in NM. This is because
NL.PUB.SYS is treated as a special file by the DUMP utility. The complete NL is
dumped along with a pre-built symbol table which enables DAT to quickly map back
and forth between addresses and symbol names. Additional executable libraries may
also be accessible, if they have been marked to be dumped.

• NM stack traces will only trace procedures in NL.PUB.SYS. An exception to this is
when the unwind descriptors for the code which called NL.PUB.SYS are
memory-resident.

• For the standard functions nmaddr and nmfile , only addresses contained in the
system library are valid.

• You cannot use the following DEBUG commands in DAT:

The following is a summary of DAT commands.

CLOSEDUMP closes a dump file set

DEBUG gives access to restricted debugging mode

DPIB displays data from PIB for a block

DPTREE prints the process tree

DUMPINFO displays dump file set information

GETDUMP reads in dump tape, creates dump file set

INIT xx

initializes DAT registers from specified location

OPENDUMP opens a dump file set

PURGEDUMP deletes a dump file set

The DAT Macros
The commands provided by DAT presuppose a solid background in MPE XL internals. To
help reduce the need for every dump analysis engineer to possess detailed knowledge of
MPE XL, a group of dump analysis macros have been developed to assist field and lab
support personnel in the task of dump analysis.

This group of macros (MPEXL OS DAT MACROS, HP30357 A) is referred to as "The DAT
Macros." An external specification document and quick reference guide is available from
HP support organizations. The DAT program, supported macros, (MOS), and symbolic

• B (set a breakpoint)

• BD

• BL

• C (continue)

• DATAB

• DATABD

• DATABL

• F (freeze)

• M (modify)

• S,SS

• TRAP

• U (unfreeze)
520 Chapter 12

Dump Analysis Tool (DAT)
The DAT Macros
data type files (SYMOS, VAMOS)are distributed in the TELESUP account.

How to Get Started with the DAT Macros

Using the DAT macro package is the simplest way to analyze a dump. Additional
documentation is required to make use of the macros. Contact your Response Center for
further information.

To use this package, log on to the TELESUPaccount in the USERgroup. The TELESUPaccount
is where the DAT program, the macro files, and the symbolic data type files are located.
The first step is to start the DAT program and invoke the DAT Macros startup macro.
Entering "macstart" loads Macros and symbols.

Examples

Some examples of DAT macros follow. Please note that these macros are dynamic. They
will change and be improved. The output from these examples may differ from what future
macros produce.

 : DAT

 DAT XL A.00.00 Copyright Hewlett-Packard Co. 1987. All rights reserved.

 $e ($0) nmdat > macstart

 Welcome to the DAT Macro facility.

 Enter the dump file set name to process: d7850.dumps

 Dump Title: System abort 1019 subsys 101 System Halt 7, $03FB
 Last PIN : 77

 MPE XL HP31900a.21.19 USER VERSION: X.13.20

 (UNWIND - Unwinding Out Of Lockup Loop)
 (UWLOCKUP - HALT $7,$3fb = #7,#1019)

 OS Symbol file SYMOS.OSA20.TELESUP is now open.

 Next line maps VAMOS.OSA20.TELESUP
 1 VAMOS.OSA20.TELESUP 10000.0 Bytes = 1bd0
 WARNING! OS Build ID Timestamps in System Globals and SYMOS do NOT match.
 OS Build ID Timestamp in System Globals = 1989050816
 OS Build ID Timestamp in SYMOS File = 1989040717

 OS Macros restored from file MOS.OSA20.TELESUP.
 OS DAT MACROS HP30357 A.00.27 Copyright Hewlett-Packard Co. 1987

At this point, the dump has been opened and all of the DAT macros have been loaded.

This example displays the basic state of the machine at the time it was dumped.

 $11e ($77) nmdat > machine_state
 (UNWIND - Unwinding Out Of Lockup Loop)
 (UWLOCKUP - HALT $7,$3fb = #7,#1019)

 HP3000 Series 930 With Processor Revision 0.
Chapter 12 521

Dump Analysis Tool (DAT)
The DAT Macros
 SYSTEM ABORT #1019 FROM SUBSYSTEM #101 (Memory Manager)
 The MEMORY MANAGER was unable to access the I/O notification port.

 MPE/XL VERSION: A21.19 CPU: PROCESS_RUNNING

 SYSTEM CONSOLE AT LDEV #20

 CURRENT REGISTERS:

RO =00000000 c0000000 002d5838 c0000000 R4 =00000002 4027637c 00000001 40276310
R8 =40276370 20000000 ffffffff 00000001 R12=00000001 00000b3a fffffd88 00000000
R16=0000000a ffffffff 00000000 809766bc R20=00000001 00000e00 ffffffff 00000000
R24=00000000 00000000 03fb0065 c0202008 R28=00000001 40276370 40276600 002d5838

 IPSW=0004ff0b=jthlnxbCvmrQpDI PRIV=0 SAR=0002 PCQF=a.196eb8 a.196ebc

SRT=0000000a 000002e4 0000000a 00000000 SR4=0000000a 000002e4 0000000b 0000000a
TRO=00814200 00844200 00000000 40276600 TR4=c0000000 00002058 0000002e 00000000

 PID1=0280=0140(W) PID2=07de=03ef(W) PID3=0000=0000(W) PID4=0000=0000(W)

RCTR=00000000 ISR=0000000a IOR=00000000 IIR=00020005 IVA=00169800 ITMR=c931977a
 EIEM=ffffffff EIRR=80000000 CCR=0080

 (UNWIND - Unwinding Out Of Lockup Loop)
 (UWLOCKUP - HALT $7,$3fb=#7,#1019)

The following example shows the dispatcher's state and queues:

 $11f ($77) nmdat > process_dispatcher

 Processes on the Dispatch Queue

===== DISPATCHER INFORMATION FOR A PROCESS =====

Sysproc PIN # State Wait Event Pri Class Blocked Reason
 - ----- ----- ---------- --- ----- --------------
 $77 EXECUTING Not Waiting $1aff DS NOT_BLOCKED
 $2d READY Not Waiting $1aff DS MEM_MGR_PREFETCH
 $6f READY Not Waiting $1aff DS MEM_MGR_PREFETCH
 $72 READY Not Waiting $1aff DS MEM_MGR_PREFETCH
 $40 READY Not Waiting $1aff DS MEM_MGR_PREFETCH
 $39 READY Not Waiting $1aff DS NM_CODE_PAGE_FAULT
 $47 READY Not Waiting $1aff DS USER_TO_DEBUG_MSG
 $8B READY Not Waiting $1aff DS NOT_BLOCKED

 AS BASEPRI= $70ff LIMPRI= $4e7f
 BS BASEPRI= $4dff LIMPRI= $34ff
 CS BASEPRI= $33ff LIMPRI= $1bff MINQUANTUM= $186a00 MAXQUANTUM= $f42400
 DS BASEPRI= $1aff LIMPRI= $8ff
 ES BASEPRI= $7ff LIMPRI= $17f

 Processor State : PROCESS_RUNNING
 Disp Disable PIN : $7ffd Disp Disable Count : $0
 Active PIN : $77 Active Pri : $1aff
 Pending PIN : $7ffd Pending Pri : $0
522 Chapter 12

Dump Analysis Tool (DAT)
The DAT Macros
 Total of #8 processes

The following example shows all the configured devices on the system. This macro was
terminated with a Control Y before it reached normal completion.

 $121 ($77) nmdat > config_device_ldev

 LDEV# TYPE LDM Port LDM PDA DM Port DM PDA
 ---- ---- -------- ------- ------- ------
 1 IO-DISC ffffffca b.80429b00 ffffffcb b.80140240
 2 IO-DISC ffffffa2 b.8042b180 ffffffa3 b.801409c0
 3 IO-DISC ffffffa0 b.8042c800 ffffffa1 b.80141140
 4 IO-DISC ffffff9e b.8042de80 ffffff9f b.801418c0
 5 IO_TERMINAL fffffec6 b.80446e80 0 0.0
 6 IO_PRINTER ffffff88 b.8043a900 ffffff89 0.0
 7 IO_TAPE ffffff91 b.80436580 ffffff92 b.80fe8780
 8 IO_TAPE ffffff93 b.80434f00 ffffff94 b.80fe8140
 9 IO_TERMINAL fffffec5 b.80447dc0 0 0.0
 10 IO_TAPE ffffff8f b.80437c00 ffffff90 b.80fe8dc0
 11 IO_TERMINAL fffffec4 b.80448d00 0 0.0
 12 IO_TERMINAL fffffec3 b.80449c40 0 0.0
 13 IO_TERMINAL fffffec2 b.8044ab80 0 0.0
 14 IO_DISC ffffff9c b.8042f500 ffffff9d b.80142040
 15 IO_DISC ffffff9a b.80430b80 ffffff9b b.801427c0
 16 IO_DISC ffffff98 b.80432200 ffffff99 b.80142f40
 17 IO_DISC ffffff96 b.80433880 ffffff97 b.801436c0
 18 IO_TERMINAL fffffec1 b.8044bac0 0 0.0
 19 IO_SERIAL_PRINTER ffffff8d b.80439280 ffffff8e a.c0c38140
 20 IO_TERMINAL ffffffcd b.80428480 ffffffce b.80080240
 21 IO_TERMINAL fffffec0 b.8044ca00 0 0.0
 22 IO_TERMINAL fffffebf b.8044d940 0 0.0
 23 IO_TERMINAL fffffebe b.8044e880 0 0.0
 24 IO_TERMINAL fffffebd b.8044f7c0 0 0.0
 100 IO_TERMINAL ffffff50 b.8043bf80 ffffff51 a.cc810240
 101 IO_TERMINAL ffffff4b b.8043c5c0 ffffff4c a.cc810cc0
 102 IO_TERMINAL ffffff46 b.8043cc00 ffffff47 a.cc811740
 103 IO_TERMINAL ffffff41 b.8043d240 ffffff42 a.cc8121c0
 104 IO_TERMINAL ffffff3c b.8043d880 ffffff3d a.cc812c40
 105 IO_TERMINAL ffffff37 b.8043dec0 ffffff38 a.cc8136c0
 108 IO_TERMINAL ffffff32 b.8043e500 ffffff33 a.cc814140
 109 IO_TERMINAL ffffff2d b.8043eb40 ffffff2e a.cc814bc0
 110 IO_TERMINAL ffffff28 b.8043f180 ffffff29 a.cc815640
 Control-Y encountered

The following example shows all of the jobs and sessions on the system.

 JSMAIN
 JOBNUM STATE IPRI JIN JLIST INTRODUCED JOB NAME PIN

 #S20 EXEC 8 108 108 135 15:47 DAVE,MANAGER.SYS,PUB $23
 #s17 EXEC 8 20 20 135 14:37 DAVE,MANAAGER.SYS,PUB $20
 #J7 EXEC 8 10S 12 135 13:43 PEGASUS,SMGR.TEST,PEGASUS $21
 #J147 EXEC 8 10S 12 135 16:19 TPXRI16J,MGR.FVSTEST,TP $4c
 #J10 EXEC 8 10S 12 135 13:43 PEGASUS,SMGR.TEST,PEGASUS $35
 #J34 EXEC 8 10S 12 135 13:48 PEGASUS,SMGR.TEST,PEGASUS $42
 #J22 EXEC 8 10S 12 135 13:46 PEGASUS,SMGR.TEST,PEGASUS $27
 #J52 EXEC 8 10S 12 135 13:52 PEGASUS,SMGR.TEST,PEGASUS $67
Chapter 12 523

Dump Analysis Tool (DAT)
The DAT Macros
 #J28 EXEC 8 10S 12 135 13:47 PEGASUS,SMGR.TEST,PEGASUS $48
 #J31 EXEC 8 10S 12 135 13:47 PEGASUS,SMGR.TEST,PEGASUS $4e
 #J37 EXEC 8 10S 12 135 13:49 PEGASUS,SMGR.TEST,PEGASUS $34
 #J40 EXEC 8 10S 12 135 13:49 PEGASUS,SMGR.TEST,PEGASUS $53
 #J43 EXEC 8 10S 12 135 13:50 PEGASUS,SMGR.TEST,PEGASUS $4d
 #J154 EXEC 8 10S 12 135 16:19 PHCRP13J,MGR.FVSTEST,PH $61
 #J155 EXEC 8 10S 12 135 16:20 CICAL20J,MGR.FVSTEST,CI $8c
 #J61 EXEC 8 10S 12 135 13:54 PEGASUS,SMGR.TEST,PEGASUS $65
 #J55 EXEC 8 10S 12 135 13:53 PEGASUS,SMGR.TEST,PEGASUS $6c
 #58 EXEC 8 10S 12 135 13:54 PEGASUS,SMGR.TEST,PEGASUS $5c
 #J157 EXEC 8 10S 12 135 16:20 ACALG12J,MGR.FVSTEST,AC $44
 #S8 EXEC 8 122 122 35 13:55 MGR.FVSTEST,PUB $6d

 20 JOBS:
 0 INITIALIZING; 0 INTRODUCED
 0 WAIT
 20 EXEC; INCL 3 SESSIONS
 0 SCHEDULED; 0 SUSPENDED
 0 TERMINATING; 0 ERROR STATE
 JOBFENCE= 7; JLIMIT= 60; SLIMIT= 60

The above examples give a hint of the power and convenience of using the DAT macros
package for dump analysis. There are many more macros; they format an operating system
table, print process information, display resource allocation, help find deadlocks, and so on.
524 Chapter 12

Standalone Analysis Tool (SAT)
How SAT Works
13 Standalone Analysis Tool (SAT)

The Standalone Analysis Tool (SAT) aids support and lab personnel in analyzing MPE/iX
system events such as process hangs, operating system failures, and hardware failures.

How SAT Works
SAT is implemented as a standalone image. You can boot it from ISL. This means you can
analyze system failures as soon as they occur without taking a dump.

Being a bootable utility, SAT runs in the area of memory saved by MMSAVE during the
boot from the primary boot path. SAT directly accesses main memory, the memory save
area on LDEV 1 and virtual storage on the system disks. Like DAT, SAT requires that the
data structures involved in virtual address translation be intact in order to support virtual
addressing.

SAT lets you analyze a failure quickly without going through the dump process. Then, if
you do decide to make a dump tape, exit to ISL and invoke the DUMP utility. The main
memory contents and the data on disk are not altered by SAT.

Operating SAT
Follow these steps to use SAT:

1. First, be sure the system has failed.

2. Use the TC command to restart the failed or hung system through the access port. This
preserves memory.

Do not use the RS command -- it erases memory!

NOTE If SAT is not present on disk and must be booted from tape, ISL must first be
booted from disk so that the MMSAVE utility has a chance to save main
memory to disk. If this step is skipped, SAT is loaded into memory, overlaying
the state of the machine.

The following example shows what a user might see entering TC to transfer control,
then CO to return to console mode.

TIP CM> TC Transfer Control
Chapter 13 525

Standalone Analysis Tool (SAT)
Operating SAT
 CM> CO Return to Console mode
 Processor Dependent Code (PDC) Revision 3

 Console Path = 8.1.0.0.0.0.0
 Primary boot Path = 8.0.0.0.0.0.0
 Alternate boot path = 8.2.3.0.0.0.0

 Autoboot from primary path enabled.
 To override, press any key within 10 seconds.

 10 seconds expired -- proceeding with autoboot.

 Booting from primary boot path = 8.0.0.0.0.0.0

 Console IO Dependent Code (IODC) revision 3
 Boot IO Dependent Code (IODC) revision 3

 Soft Booted.

 MMSAVE Version 9.60
 DUMPAREA found, save main memory to disk

 ISL loaded

 ISL Revision 2634 August, 1986

3. Invoke SAT from the ISL interface.The following output is a sample SAT session:

TIP ISL> SAT
 MPE/XL launch facility
 Initialize_genesis - Version : <<870204.1552>>
 TUE, MAY 16, 1989, 3:35:13 PM (y/n)? y
 [TMUX_DAM] 19 7 8 2
 Initialize memory manager completed.
 SAT/XL A.00.13 Copyright Hewlett-Packard Co. 1987. All rights
reserved.

 Locating LIF file: DUMPAREA
 LIF file: DUMPAREA Ldev: 1 Sector: 477744 Length: 65536
 Configuring disk drives
 Configuring Path 8.0.1 as Ldev 2
 Configuring complete
 Initialize system related information

 Hardware Model: Series 930

 Last CPU PIM:

 PC = a.ad8ac

 General Registers

 R 0/00000000 fd3c336b 00160d20 c7400380 c7400380 c7400380 00007ffd
40000000
 R 8/00000002 c7400380 c7400380 c7400380 c7400380 00000001 80000000
526 Chapter 13

Standalone Analysis Tool (SAT)
Operating Restrictions
00000007
 R16/00000000 0000000e 00000003 00678000 8118a000 00000014 c6809880
00000000
 R24/00000000 00000000 0004007b c0200008 fba8b500 0000000e 8118a6e0
00d84200

 Space Registers

 S 0/0000000a 0000010d 00000000 00000000 0000000a 0000000a 0000000b
0000000a

 Control Registers

 C 0/00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000
 C 8/00000102 00000000 00000080 00000002 00000000 00000000 0008d000
ffffffff
 C16/fd3c3e64 0000000a 000ad8a8 b7e07000 0000000a 00000000 0004ff0a
00000000
 C24/005e4200 00634200 c0000000 001efb98 ffffffff 000888d0 fc8a711d
00007ffd

Current CPU: 0 Original CUP: 0 Monarch CPU: 0 MP array at:
720000

 Main memory: 27fffff
 Hash table: 634200.40000 Pdir table: 5e4200.50000
 RGLOB: 678000 ICS: 8a9000 TCB_BASE: 8d1000 TCB: 8d6900
 Last Pin: 25 DISP running

 $1 ($0) nmsat >

4. Analyze the failure. Most of the System Debug commands are available to you;
restrictions are listed below. If you want to make a dump tape, return control to ISL
with the EXIT command, then invoke the DUMP utility.

CAUTION If you chose not to make a dump tape, but rather to restart your system, and
the failure was ah HPMC. It is recommended that an RS command be
executed prior to restarteng.

Operating Restrictions

The following limitations exist in SAT:

• The symbolic access functions are not available.

• The only symbols that are accessible in CM are the SL.PUB.SYS symbols.

• No operation that involves the file system, such as use files, list, or log files is allowed,
since the file system is not available in a standalone environment.
Chapter 13 527

Standalone Analysis Tool (SAT)
Operating Restrictions
• Some commands and functions are different in SAT:

— The EXIT and C[ONTINUE] commands return control to ISL. The EXIT command
has two additional parameters, ISL_Command and ABORT. An example follows in
"SAT Commands" in this chapter.

— The FPMAP command is automatic and is executed at boot time. When the most
recent process is executing in REAL mode, it may be necessary to switch to another
PIN and issue the FPMAP command explicitly. Since only SL.PUB.SYS CM symbols
are accessible, no parameters are need with FPMAP.

— For standard functions nmaddr and nmfile , only addresses contained in the system
library will succeed.

— For standard function strmax , SAT strings are limited to 1024 characters.

• The following System Debug commands cannot be used in SAT:

: Call the MPE XL command interpreter.

ABORT Abort the process.

B All forms of the Break command.

BD Breakpoint Delete.

BL Breakpoint List.

CLOSEDUMP Close a dump file.

C[ONTINUE] Continue.

DATAB Data Breakpoint.

DATABD Data Breakpoint Delete.

DATABL Data Breakpoint List.

DEBUG Enter the debugger.

DUMPINFO Display dump file information.

F All forms of the Freeze command.

FINDPROC Dynamically load NL library procedure.

FT Format type.

FV Format virtual.

GETDUMP Read in a dump tape to create a dump file.

KILL Kill a process.

LIST Create list files.

LOADINFO Display currently loaded program/libraries.

LOADPROC Dynamically load CM library procedure.

LOG Create log files.
528 Chapter 13

Standalone Analysis Tool (SAT)
SAT Functions and Commands
SAT Functions and Commands
Some functions are different in SAT. Three MODIFYcommands are enabled for SAT, and the
FPMAP and EXIT commands are changed. SAT is a standalone environment, so the file
system is not available. This means that no operation which involves the file system, such
as USE files, List or Log files is allowed.

For standard functions nmaddr and nmfile , only addresses contained in the system library
succeed. For standard function strmax , strings are limited to 1024 characters.

There are no additional commands for SAT, but three DEBUG MODIFY commands have
been enabled for it so that repairs may be made to the machine state, system tables or

M Most forms of the Modify command.

(MSEC, MV, MZ, are supported).

MAP Map a file into virtual memory.

MAPL List mapped files.

MODD Delete temporary dump modification(s) in DAT.

MODL List temporary dump modification(s) in DAT.

NMCALL Dynamically invoke the specified routine.

OPENDUMP Open a dump file.

PAUSE Sleep for a bit.

PSEUDOMAP Maps in a local copy of a code file to a virtual address.

PURGEDUMP Purge a dump file.

REGLIST List registers to a file.

RESTORE Restore macros/variables from a binary file.

S[S] Single Step.

STORE Store macros/variables to a binary file.

SYMOPEN Symbolic type files cannot be accessed in SAT

TERM Terminal Semaphore control.

TRAP Arm/Disarm/List Traps.

TX@ All text window commands.

UF All forms of the UnFreeze command.

USE Read command from a file.

XLD Remove an alternate file of procedure names.
Chapter 13 529

Standalone Analysis Tool (SAT)
SAT Functions and Commands
other data structures. These commands are summarized below. For more information, see
the M (MODIFY) command description in Chapter 4.

MV modifies a virtual address

MZ modifies a real address

MSEC modifies addresses in secondary (disk drive) storage

NOTE Take care when using these commands; modifications can be permanent, such
as disk changes.

The FPMAP command is automatic and is executed at boot time. When the most recent
process is executing in REAL mode, it may be necessary to switch to another PIN and issue
the FPMAP command explicitly. Only SL.PUB.SYS CM symbols are accessible, so FPMAP
alone (no parameters) is sufficient.

The exit and c[ontinue] commands return control to ISL. However, the exit command
has two additional parameters, as shown in the following syntax example:

 EXIT [ISL_Command] [,ABORT]

Parameters:

ISL_Command Allows you to directly pass a command to ISL. For example, enter the
following to tell ISL to load the START PME: exit start .

ABORT This option tells ISL to abort the AUTOBOOT sequence if it is enabled.
530 Chapter 13

Patterns and Regular Expressions
Literal Expressions (Match Exactly These Characters)
A Patterns and Regular Expressions

Several System Debug commands apply the concept of pattern matching. Commands such
as CMDLIST, ENVLIST, FUNCLIST, MACLIST, PROCLIST, SYMLIST, and VARLIST
support pattern matching in order to select which commands, functions, macro names,
procedure names, symbol names, or variables are to be displayed.

Regular expressions are used to find or match some specified text within a large amount of
surrounding text. A typical example is to find all lines in a file that contain the word
"computer."

In a similar manner, the FILTER environment variable is used to selectively filter all
System Debug output, displaying only those lines that match the pattern or regular
expression.

A regular expression can be a single character, like the letter "c" or a more elaborate
construct built up from simple things like the string "computer".

Literal Expressions (Match Exactly These Characters)
Any literal character, such as "c", is a regular expression and matches that same character
in the text being scanned. Regular expressions may be concatenated: a regular expression
followed by another regular expression forms a new regular expression that matches
anything matched by the first followed immediately by anything matched by the second. A
sequence of literal characters is an example of concatenated expressions. For example,
"c0000000" or "computer" is a pattern that matches any occurrence of that sequence of
characters in the line it is being compared against.

A regular expression is said to match part of a text line if the text line contains an
occurrence of the regular expression. For example, the pattern "aa" matches the line "aabc"
once at position 1, and the line "aabcaabc" in two places, and the line "aaaaaa" in five
(overlapping) places. Matching is done on a line-by-line basis; no regular expression can
match across a line boundary.

Metacharacters
In order to express more general patterns than just literals, some specific characters have
been defined. For example, the character "." as a regular expression matches any single
character. The regular expression "a.b" matches "a+b", "aZb", and similar strings.
Appendix A 531

Patterns and Regular Expressions
Character Classes (Match Any One of the Following Characters)
The "." and other reserved characters are called metacharacters. The special meaning of
any metacharacter can be turned off by preceding it with the escape character "\" . Thus,
"\." matches the literal period character and "\\" matches the literal backslash.

Two positional metacharacters exist. "^" matches the beginning of a line: "^HP" is a
regular expression that matches "HP" only if it occurs as the first two characters of the
line. Similarly, "$" matches the end of a line: "HP$" matches "HP" only if it is the last thing
on a line. Of course, these can work together: "^HP$" matches a line that contains only
"HP".

Character Classes (Match Any One of the Following
Characters)
The metacharacter "[" signals that the characters following, up to the next "]", form a
character class, that is, a regular expression that matches any single character from the
bracketed list. The character class "[aA]" matches "a" or "A". A dash "-" is used to signify a
range of characters in the ASCII collating sequence. For example, "[a-zA-Z]" matches any
alphabetic character, while "[0-9]" matches any numeric character. If the first character in
a character class is an "^", then any character not in the class constitutes a match; for
example, [^a] matches any character except an "a".

Expression Closure (Match Zero or More of the Previous
Expressions)
Any regular expression that matches a single character (that is, everything but "^" and
"$") can be followed by the character "*" to make a regular expression that matches zero or
more successive occurrences of the single character pattern. The resulting expression is
called a closure. For example, "x*" matches zero or more x's; "xx*" matches one or more
"x's"; "[a-z]*" matches any string of zero or more lowercase letters. If there is a choice of the
number of characters to be matched, the longest possible string is used even when a match
with the null string is equally valid. "[a-zA-Z]*" matches an entire word (which may be a
null string); "[a-zA-Z][a-zA-Z]*" matches at least an entire word (one or more letters but
not a null string); and ".*" matches a whole line (which may be a null string). Any
ambiguity in deciding which part of a line matches an expression is resolved by choosing
the match beginning with the leftmost character, then choosing the longest possible match
at the point. So "[a-zA-Z][a-zA-Z0-9_]*" matches the leftmost Pascal identifier on a line,
"(.*)" matches anything between parentheses (not necessarily balanced), and "..*" matches
an entire line of one or more characters but not a null string.
532 Appendix A

Patterns and Regular Expressions
Technical Summary
Technical Summary
The following list summarizes the expressions discussed above:

c Literal character

. Any character except newline

^ Beginning of line

$ End of line (null string before newline)

[xyz] Character class (any one of these characters)

[^xyz] Negated character class (all but these characters)

* Closure (zero or more instances of previous pattern)

\c Escaped literal character (for example, \^, \[, *)

Any special meaning of metacharacters in a regular expression is lost when 1) escaped, 2)
inside [...] , or 3) for the following characters:

^ When not at the beginning of an expression

$ When not at end of an expression

* When beginning an expression

A character class consists of zero or more of the following elements, surrounded by ``[``
and ``]" :

c Literal characters, including [

a-b Range of characters (digits, lowercase or uppercase)

^ Negated character class if at beginning

\c Escaped character (for example, \^ \- \\ \])

Special meaning of characters in a character class is lost when 1) escaped or 2) for the
following characters:

^ When not at beginning of a character class

- When at beginning or end of a character class

An escape sequence consists of the character \ followed by a single character:

\t tab

\\ \

\c c

System Debug expects regular expressions to be enclosed in back quotes "`" .

System Debug commands support MPE XL style wildcard patterns. These are converted
into regular expressions for evaluation.

@ Matches any character (same as `.*`)
Appendix A 533

Patterns and Regular Expressions
Technical Summary
? Matches any alphabetic character (same as `[a-zA-Z]`)

Matches a numeric character (same as `[0-9]`)
534 Appendix A

Expression Diagrams
B Expression Diagrams

The following diagrams depict valid expressions for DAT/Debug:

expression := ---+--> simpexpr ---+-->
 | |
 +<-- simpexpr relop --+

simpexpr := [+-] --+--> term --+-->
 | |
 +<---- + - -----+ add, subtract
 | |
 +<---- OR -----+ logical OR

term := --+--> factor --+-->
 | |
 +<---- * / -----+ multiply, divide
 | |
 +<------- MOD -------+ modulus
 | |
 +<------- AND -------+ logical AND

factor := --+--> addrvalue -----+-->
 | |
 +<---- << -----+ left shift bits
 +<---- >> -----+ right shift bits
 | |
 +<-------- BAND ---------+ bit AND
 +<-------- BOR ---------+ bit OR

addrvalue := --+--> value --->
 |
 +--> value.value ---> a.cooo2c40
 pc, cmpc, pw
Appendix B 535

Expression Diagrams
value := --+--> numeric-literal ---+--> 224
 | |

+--> string-literal -->+ "AB", 'ab', `ab`
 | |
 +--> variable -->+ sdst
 | |
 +--> [indirect_addr] -->+ contents of
 | |
 +--> (simpexpr) -->+ (25/3 + 1)
 | |
 +--> NOT expression -->+ NOT (n < 6)
 +--> BNOT expression -->+ BNOT $FF0F

numeric-literal := 123 | %123 | #123 | $123 default, oct, dec, hex

string-literal := "ABCD" | 'ABCD' | `abcd`

relop := < <= = > >= <>

indirect-addr := CST seg.offset
CSTX seg.offset
DST seg.offset
ABS [offset]
DB [offset]
S [offset]
Q [offset]
P [offset]
REAL offset

[VIRT] offset
[VIRT] sid.offset
[VIRT] nmlogaddr

CMLOG cmlogaddr

SEC ldev.offset
536 Appendix B

Emulated/Translated CM Code
C Emulated/Translated CM Code

Compatibility mode code segments are executed in emulation mode , unless they have
been translated by the Object Code Translator (OCT).

Emulation of an instruction can be described in the following way:

1. Fetch the instruction at the current program counter (CMPC).

2. Emulate that instruction with NM precision architecture instructions.

3. Update the program counter to point at the next instruction.

Note that multiple NM Precision Architecture instructions must be executed during the
emulation of every single CM instruction. Besides the obvious cost of fetching and
emulating the instruction, there is usually additional, less obvious overhead, such as
indirection and indexing, and updating STATUS register bits (that is, condition code,
carry).

 CM Object Code

 CM Instructions

 +-------------+
 | PROC+%0 |
 | PROC+%1 |
 | PROC+%2 |
 | PROC+%3 |
 P > | PROC+%4 | ----> Fetch PUSH S-2,X
 | PROC+%5 |
 | PROC+%6 |
 | PROC+%7 |
 | PROC+%10 |
 | PROC+%11 |
 | PROC+%12 |
 | PROC+%13 |
 | PROC+%14 |
 | PROC+%15 |
 | PROC+%16 |
 +-------------+
Appendix C 537

Emulated/Translated CM Code
Debugging Emulated CM Code
Debugging Emulated CM Code
Debugging emulated CM code is relatively straightforward. Since each CM instruction is
fetched and emulated, it is necessary to know only where you wish to set a breakpoint.

For emulated CM code you can break at any instruction:

 $ cmdebug > B PROC+%6
 $ cmdebug > B PROC+%10
 $ cmdebug > B PROC+%15

The debugger places a special BRKP instruction at the specified addresses. When an
emulated breakpoint is encountered, the emulator traps it into Debug before the original
instruction is emulated. The environment variable entry_mode is set to "cm", and the user
enters CMDebug.

 CM Object Code

 CM Instructions

 +-------------+
 | PROC+%0 |
 | PROC+%1 |
 | PROC+%2 |
 | PROC+%3 |
 P > | PROC+%4 |
 | PROC+%5 |
 [1] | PROC+%6 | <- Breakpoints are set in the object code
 | PROC+%7 | at the specified addresses
 [2] | PROC+%10 |
 | PROC+%11 |
 | PROC+%12 |
 | PROC+%13 |
 | PROC+%14 |
 [3] | PROC+%15 |
 | PROC+%16 |
 +-------------+
538 Appendix C

Emulated/Translated CM Code
Object Code Translation
Object Code Translation
The Object Code Translator (OCT) can be used to analyze CM object code and to translate
the CM object code instructions into NM precision architecture instructions. Please refer to
MPE V to MPE XL: Getting Started.

Translated object code executes significantly faster than the original CM code can be
emulated.

The object code translator looks at small object code instruction sequences and translates
these individual "sections" of code into a corresponding NM section of code.

 Original CM
 Object Code
 Translated
 Into
 CM Instructions NM Instructions
 | | | |
 +-------------+ ---------> +-------------+
Orig		
CM		Translated
Section		NM
 +-------------+ ----+ | Section |
 | | |
 | | |
 +----> +-------------+
 | |

Each CM object code instruction may expand to several NM instructions during
translation, but the total translated section requires fewer NM instructions than would be
used to emulate the original object code.

The CM emulator updates CM registers (such as STATUS) during the emulation of every
single instruction. The OCT may recognize that the STATUS register is not accessed by a
sequence of object code, and so ignore updating the STATUS register until later, when it is
actually referenced. Performance is improved because unnecessary emulator cycles are
saved.

It is important to understand, however, that during the execution of the resulting NM
section of code, the actual MITROC bit values in the CM STATUS register may be
undefined or incorrect in the middle of the section.

Only at the beginning of each section is the CM state known to be correct. These "safe"
boundaries, between sections, are called node points .
Appendix C 539

Emulated/Translated CM Code
Node Points in Translated Code
Node Points in Translated Code
The following diagram shows adjacent sections of CM object code that have been
translated into new sections of NM code. The first instruction of each section is marked as
a node point. Each CM node point has a corresponding NM node point.

 Original CM Translated
 Object Code Object Code
 Translated
 Into
 CM Instructions NM Instructions

 +-------------+ ---------> +-------------+
 CM node 1 | Section 1 | | Section 1 | NM node 1
 | | | |
 | ----------- | ----+ | |
 CM node 2 | Section 2 | | | |
 | | +----> | ----------- |
 | | | Section 2 | NM node 2
 | | | |
 | ----------- | ----+ | |
 CM node 3 | Section 3 | | | |
 | | | | |
 | | +----> | ----------- |
 | | | Section 3 | NM node 3
 | | | |
 | ----------- | ----+ | |
 CM node 4 | Section 4 | | | |
 | | +----> | ----------- |
 | | | Section 4 | NM node 4
 | | | |
 +-------------+ ----+ | |
 | | |
 | | |
 | | |
 | | |
 | | |
 +----> +-------------+
540 Appendix C

Emulated/Translated CM Code
Executing a Translated Section
Executing a Translated Section
The following diagram indicates that the NM program counter (pc >) is located at the start
(node point) of a NM translated section of code.

When all of the instructions in this section are executed, (that is, when pc advances to the
next node point at PROC+%6), then the state of the machine is exactly the same as if the
four original CM object code instructions had been executed (PROC+%2 through PROC+%6).

 Original CM Translated
 Object Code Object Code
 Translated
 Into
 CM Instructions NM Instructions

 +-------------+
 | PROC+%0 | N
 | |
 | ----------- | ----+ | |
 N | PROC+%2 | | | |
 | PROC+%3 | +---- | ----------- |
 | PROC+%4 | pc > | PROC+%2 | N
 | PROC+%5 | | |
 | ----------- | ----+ | Translated |
 | | Section |
 | | |
 +---- | ----------- |
 | PROC+%6 | N
 | |
 | |
 | |
 | ----------- |
 | PROC+%13 | N
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 +-------------+

Note that if, for example, only half of the NM translated section has been executed, it is not
equivalent to emulating the first half of the original CM object code instructions.

NOTE There may not be any correspondence between the relative position and sizes
of emulated versus translated code sections.
Appendix C 541

Emulated/Translated CM Code
The Node Functions
The Node Functions
Four special functions (CMNODE, CMTONMNODE, NMNODE, NMTOCMNODE) are provided to
locate the nearest "previous" and "next" nodes for translated code.

The following diagram shows CM object code loaded at %12.0 with its corresponding NM
translated code loaded at $1c.34b0. Node points are flagged with an "N".

 Original CM Translated
 Object Code Object Code

 CM Instructions NM Instructions
Seg.Off Sid.Off
 +-------------+ +-------------+
%12.0 N | PROC+%0 | $1c.34b0 N | PROC+%0 |
%12.1 | PROC+%1 | $1c.34b4 | |
%12.2 N | PROC+%2 | ---+ $1c.34b8 | |
%12.3 | PROC+%3 | | $1c.34bc | |
%12.4 | PROC+%4 | +--> $1c.34c0 N | PROC+%2 |
%12.5 | PROC+%5 | $1c.34c4 | |
%12.7 N | PROC+%6 | <--+ $1c.34c8 | |
%12.10 | PROC+%7 | | $1c.34cc | |
%12.11 | PROC+%10 | | $1c.34d0 | |
%12.12 | PROC+%11 | +--- $1c.34d4 N | PROC+%6 |
%12.13 | PROC+%12 | $1c.34d8 | |
%12.14 N | PROC+%13 | $1c.34dc | |
%12.15 | PROC+%14 | $1c.34e0 | |
%12.16 | PROC+%15 | $1c.34e4 N | PROC+%13 |
%12.17 | PROC+%16 | $1c.34e8 | |
 +-------------+ $1c.34ec | |
 $1c.34f0 | |
 $1c.34f4 | |
 $1c.34f8 | |
 $1c.34fc | |
 $1c.3500 +-------------+

CMNODE(%12.4) = %12.2 NMNODE($1c.34dc) = $1c.34d4
CMNODE(%12.4,"prev") = %12.2 NMNODE($1c.34dc,"prev") = $1c.34d4
CMNODE(%12.4,"next") = %12.7 NMNODE($1c.34dc,"next") = $1c.34e4

CMTONMNODE(%12.4) = $1c.34c0 NMTOCMNODE($1c.34dc) = %12.7
CMTONMNODE(%12.4,"prev") = $1c.34c0 NMTOCMNODE($1c.34dc,"prev") = %12.7
CMTONMNODE(%12.4,"next") = $1c.34d4 NMTOCMNODE($1c.34dc,"next") = %12.14
542 Appendix C

Emulated/Translated CM Code
CM Breakpoints in Translated Code
CM Breakpoints in Translated Code
The following discussion assumes that the current Debug mode is CM (prompt is:
%cmdebug >).

When a CM breakpoint is set at a CM address of a segment that has been translated,
Debug actually sets two breakpoints simultaneously:

1. A CM breakpoint at the specified CM address in the emulated object code, in case the
code runs emulated.

2. An NM breakpoint at CMTONMNODE (CM address), that is, at the closest
corresponding previous node in the NM translated code.

For example, with the following command, the two breakpoints marked as [1] are set
simultaneously:

 %cmdebug > B 12.4

 Original CM Translated
 Object Code Object Code

 CM Instructions NM Instructions
 Seg.Off Sid.Off
 +-------------+ +-------------+
 %12.0 N | PROC+%0 | $1c.34b0 N | PROC+%0 |
 %12.1 | PROC+%1 | $1c.34b4 | |
 %12.2 N | PROC+%2 | $1c.34b8 | |
 %12.3 | PROC+%3 | $1c.34bc | |
 %12.4 [1] | PROC+%4 | $1c.34c0 [1] N | PROC+%2 |
 %12.5 | PROC+%5 | $1c.34c4 | |
 %12.7 N | PROC+%6 | $1c.34c8 | |
 %12.10 | PROC+%7 | $1c.34cc | |
 %12.11 [2] | PROC+%10 | $1c.34d0 | |
 %12.12 | PROC+%11 | $1c.34d4 [2] N | PROC+%6 |
 %12.13 [3] | PROC+%12 | $1c.34d8 | |
 %12.14 N | PROC+%13 | $1c.34dc | |
 %12.15 | PROC+%14 | $1c.34e0 | |
 %12.16 | PROC+%15 | $1c.34e4 N | PROC+%13 |
 +-------------+ +-------------+

Note that multiple CM address breakpoints may map to the same NM previous node
breakpoint. For example:

 %cmdebug > B PROC+10

brkpt # 2 maps to NM $1c.34d4

 %cmdebug > BPROC+12

brkpt # 3 maps to NM $1c.34d4 also

Only one NM breakpoint is needed at $1c.34d4.
Appendix C 543

Emulated/Translated CM Code
NM Breakpoints in Translated Code
NM Breakpoints in Translated Code
The following discussion assumes that the current Debug mode is NM (prompt is:
$nmdebug >).

NM breakpoints can be set at every instruction within translated code even if the
instruction is not at a node point.

This allows careful inspection of the actual sections of NM translated code.

NOTE Portions of the CM state may be undefined or incorrect when a NM
breakpoint is encountered between node points.

For example, the following commands set two breakpoints. The first is at a node point, and
the second is not at a node point:

 $nmdebug > B $1c.34d4
 $nmdebug > B $1c.34ec

 Translated
 Object Code

 NM Instructions
 Sid.Off
 +-------------+
 1c.34b0 N | PROC+%0 |
 1c.34b4 | |
 1c.34b8 | |
 1c.34bc | |
 1c.34c0 N | PROC+%2 |
 1c.34c4 | |
 1c.34c8 | |
 1c.34cc | |
 1c.34d0 | |
 1c.34d4 [1] N | PROC+%6 |
 1c.34d8 | |
 1c.34dc | |
 1c.34e0 | |
 1c.34e4 N | PROC+%13 |
 1c.34e8 | |
 1c.34ec [2] | |
 1c.34f0 | |
 +-------------+

The single step command (S) can be used to step through individual NM Instructions
within translated code.
544 Appendix C

Emulated/Translated CM Code
Examples: CM Breakpoints in Translated Code
Examples: CM Breakpoints in Translated Code
The following examples show CM breakpoints being set in a segment that has been
translated, and is executing translated:

 %cmdebug > bs ?LSEARCH
 added: CM [1] SYS 12.20251 LSEARCH+%0
 NM [1] TRAN 21.00530994 XLSEG3:LSEARCH+%0

 %cmdebug > bs ?LSEARCH+3
 added: CM [2] SYS 12.20254 LSEARCH+%2
 NM [2] TRAN 21.0053099c XLSEG3:LSEARCH+%1

 %cmdebug > bs 12.20256
 added: CM [3] SYS 12.20256 LSEARCH+%5
 NM [3] TRAN 21.005309ac XLSEG3:LSEARCH+%4

 %cmdebug > bs 12.20260
 added: CM [4] SYS 12.20260 LSEARCH+%7
 NM [3] TRAN 21.005309ac XLSEG3:LSEARCH+%4

 %cmdebug > bl
 CM [1] SYS 12.20251 LSEARCH+%0 XLSEG3 (CST 13)
 Corresponding NM bp = 1
 CM [2] SYS 12.20254 LSEARCH+%2 XLSEG3 (CST 13)
 Corresponding NM bp = 2
 CM [3] SYS 12.20256 LSEARCH+%5 XLSEG3 (CST 13)
 Corresponding NM bp = 3
 CM [4] SYS 12.20260 LSEARCH+%7 XLSEG3 (CST 13)
 Corresponding NM bp = 3

Examples showing breakpoints in translated code.
Appendix C 545

Emulated/Translated CM Code
Examples: Program Windows for Translated Code
Examples: Program Windows for Translated Code
The following window commands allow inspection of the breakpoints that were just set on
the previous page:

TIP %cmdebug > rd;qd;sd /* clear some room for NM
%cmdebug > nmpe /* enable the NM program window

 %cmdebug > cmpj ?LSEARCH /* jump CM to ?LSEARCH
 %cmdebug > nmpj cmtonmnode(?LSEARCH) /* jump NM to nearest node

{{cmP % SYS 12.20251 (T) XLSEG3 CST 13
Level 0}}
 020251:N [1] LSEARCH+%0 035001 :. ADDS 1
 020252:N LSEARCH+%1 041604 C. LOAD Q-4
 020253: [2] LSEARCH+%2 022007 $. CMPI 7
 020254: LSEARCH+%3 141535 .] BNE P+%35
 020255:N LSEARCH+%4 000600 .. ZERO, NOP
 020256: [3] LSEARCH+%5 040020 @. LOAD P+%20
 020257: LSEARCH+%6 004300 .. STAX, NOP
 020260: [4] LSEARCH+%7 020320 . PLDA

020261: LSEARCH+%10 031063 23 PCAL EXCHANGEDB
{{nmP $ TRANS 21.530994 (Translated CM Seg SYS %12 XLSEG3)

Level 0,0}}
 00530994:N [1] LSEARCH+%0 b4840004 ADDI 2,4,4

00530998: 64800000 STH 0,0(0,4)
0053099c:N [2] LSEARCH+%1 446c3ff1 LDH -8(0,3),12

 005309a0: 3407000e LDO 7(0),7
005309a4: d1861ff0 EXTRS 12,31,16,6

 005309a8: 88e621fa
COMBF,=,N6,7,$00530aac
 005309ac:N [3] LSEARCH+%4 0800024c OR 0,0,12

005309b0: 340d052c LDO 662(0),13
005309b4: d1a91ff0 EXTRS 13,31,16,9
546 Appendix C

Reserved Variables/Functions
D Reserved Variables/Functions

The following lists the reserved names for the predefined environment variables (env) and
functions (func).

Table D-1. Predefined Environment Variables and Functions

Name Type Description

abstolog func : lcptr CM absolute address to logical address

arg0..arg3 env : u32 argument registers

asc func : str converts an expression to an ASCII string

ascc func : str coerces an expression to an ASCII string

autoignore env : bool ignores errors on every command

autorepeat env : bool repeat last command with carriage return

bin func : u32 converts an ASCII string to a number

bitd func : u32 bit deposit

bitx func : u32 bit extract

bool func : bool coerces an expression to BOOL type

bound func : str tests for current definition of an operand

btow func : s16 converts a CM byte offset to a word offset

ccode env : str condition code

ccr env : u32 coprocessor configuration register

changes env : str video enhancements for changed window values

checkpstate env : bool controls process state verification

cir env : u16 current instruction register

cisetvar func : bool sets a new value for a CI variable

civar func : any returns current value of a CI variable

cmaddr func : lcptr logical address of a specified CM procedure

cmbpaddr func : lcptr logical address of a CM breakpoint index

cmbpindex func : u16 index number of CM breakpoint at address

cmbpinstr func : s16 CM instruction at CM breakpoint address

cmdlinesubs env : bool enables/disables command line substitutions

cmdnum env : u32 current command number
Appendix D 547

Reserved Variables/Functions
cmentry func : lptr entry address of CM procedure

cmg func : sptr short pointer address of CMGLOBALS record

cmnode func : lptr closest CM node point

cmpc env : lcptr full CM program counter logical address

cmpw env : lcptr current CM program window logical address

cmproc func : str returns the name of CM procedure

cmproclen func : u16 returns the length of CM procedure

cmseg func : str returns the name of CM segment

cmstackbase func : lptr virtual address of the CM stack base

cmstackdst func : u16 data segment number of the CM stack

cmstacklimit func : lptr virtual address of the CM stack limit

cmstart func : lptr start address of CM procedure

cmtonmnode func : trans closest NM node to a CM logical address

cmva func : lptr converts CM code address to virtual address

cm_inbase env : str current CM input base

cm_outbase env : str current CM output base

column env : u16 current output column position

console_debug env : u16 use system console for I/O

cpu env : u16 cpu number of the current processor

cr0, cr8..cr31 env : u32 control registers

cst func : cst coerces an expression to CST type

cstbase env : lptr virtual address of the CM Code Segment Table

ccstx func : cstx coerces an expression to CSTX type

cst_expansion env : bool CM CST Expansion is supported on MPE XL

date env : str current date

db env : u16 CM DB register

dbdst env : u16 CM DB data segment number

disp env : bool dispatcher is running

dl env : u16 CM DL register

Table D-1. Predefined Environment Variables and Functions

Name Type Description
548 Appendix D

Reserved Variables/Functions
dp env : sptr data pointer (alias for R27)

dstbase env : lptr virtual address of the CM Data Segment Table

dstva func : lptr converts CM dst.off to virtual address

dumpalloc_lz env : u16 sets disk preallocation for LZ compression

dumpalloc_rle env : u16 sets disk preallocation for RLE compression

dump_comp_algo env : str returns compression algo for current dump

eaddr func : eaddr coerces an expression to EADDR type

echo_cmds env : bool echo commands before execution

echo_subs env : bool echo command line substitutions

echo_use env : bool echo use file commands before execution

eiem env : u32 external interrupt enable mask

eirr env : u32 external interrupt request register

entry_mode env : str mode at entry ("cm" or "nm")

errmsg func : str error message string for error number/subsys

error env : s32 most recent error number

exec_mode env : str process execution mode from TCB ("cm" or "nm")

escapecode env : u32 last escapecode value

false env : bool the constant FALSE

fill env : str fill character for data display

filter env : str filter pattern for output

fp0..fp15 env : lptr floating point registers

fpe1..fpe7 env : s32 floating point exception registers

fpstatus env : u32 floating point status register

getdump_comp_al
go

env : str sets compression algo for next GETDUMP

grp func : grp coerces an expression to a GRP LCPTR type

hash addr : ptr hash a virtual address

hexupshift env : bool upshifts all HEX output to upper case

icsnest env : u16 number of nested pending ICS interrupts

icsva env : lptr interrupt control stack virtual address

Table D-1. Predefined Environment Variables and Functions

Name Type Description
Appendix D 549

Reserved Variables/Functions
iir env : u32 interrupt instruction register

inbase env : str current input base

ior env : u32 interrupt offset register

ipsw env : u32 interrupt processor status word

isr env : u32 interrupt space register

itmr env : u32 interval timer

iva env : u32 interrupt vector address

job_debug env : u16 enables/disables job debugging

justify env : str controls justification for data display

lastpin env : u16 pin number of process at entry

lgrp func : lgrp coerces an expression to a LGRP type

list_input env : u16 echo user input to list file

list_pagelen env : u16 page length (in lines) of list file

list_pagenum env : u16 current page number of list file

list_paging env : bool enables/disables paging of list file

list_title env : str title for each page of list file

list_width env : u16 width (in characters) of list file

logtoabs func : acptr CM logical address to absolute address

lookup_id env : str NM procedure name lookup mechanism

lptr func : lptr coerces an expression to LPTR type

lpub func : lpub coerces an expression to LPUB type

ltolog func : lcptr converts long pointer to logical code pointer

ltos func : sptr converts long pointer to short pointer

lw env : saddr current LW address in form ldev.offset

macbody func : str returns macro body string

macros env : u16 the number of macros that can be defined

macros_limit env : u16 absolute maximum limit for "macros" (above)

macro_depth env : u16 current nested call level for macros

mapdst env : s16 current CST Expansion mapping dst number

Table D-1. Predefined Environment Variables and Functions

Name Type Description
550 Appendix D

Reserved Variables/Functions
mapflag env : s16 CM segment is logically or physically mapped

mapindex func : u32 index number of a MAPPED file

mapsize func : u32 size in bytes of a MAPPED file

mapva func : lptr virtual address of a MAPPED file

markers env : str video enhancement for windowed stack markers

mode env : str current mode ("cm" or "nm")

monarchcpu env : u16 cpu number of the monarch processor

mpexl_table_va env : lptr address of the table for the MPEXL command

multi_line_errs env : u16 controls quantity of lines to display forerrors in a
multiple line command

nmaddr func : ptr address of a NM procedure or global data

nmbpaddr func : lptr address of a NM breakpoint index

nmbpindex func : u32 index number of NM breakpoint at address

nmbpinstr func : s32 NM instruction at NM breakpoint address

nmcall func : s32 dynamically invokes the specified routine

nmentry func : lptr entry address of NM procedure

nmfile func : str name of file containing mapped vaddr

nmmod func : str name of NM module

nmnode func : trans closest NM node

nmpath func : str code path for a virtual address

nmproc func : str name of NM procedure

nmpw env : lcptr current NM program window logical address

nmstackbase func : lptr virtual address of the NM stack base

nmstacklimit func : lptr virtual address of the NM stack limit

nmtocmnode func : lptr closest CM node to NM translated code

nm_inbase env : str NM input base

nm_outbase env : str NM output base

nonlocalvars env : bool enables/disables access to variables which are not local
during macro execution

off func : u32 extract OFFset part of a long pointer

Table D-1. Predefined Environment Variables and Functions

Name Type Description
Appendix D 551

Reserved Variables/Functions
outbase env : str current output base

pc env : lptr NM program counter (sid.off)

pcb func : sptr process control block

pcbx func : sptr process control block extension

pcob env : sptr program counter offset back (off)

pcof env : sptr program counter offset front (off)

pcqb env : lptr program counter queue back (sid.off)

pcqf env : lptr program counter queue front (sid.off)

pcsb env : u32 program counter space back (sid)

pcsf env : u32 program counter space front (sid)

phystolog func : lcptr CM physical seg/map bit to logical code ptr

pib func : sptr process info block

pibx func : sptr process info block ext.

pid1..pid4 env : u32 protection ID registers

pin env : u16 current PIN number

priv env : u16 current privilege level (based on PC)

priv_user env : u16 user has PM (privileged mode) capability

prog func : prog coerces an expression to PROG type

progname env : str either "dat" or "debug"

prompt env : str current user prompt

pseudovirtread misc: bool last access came from pseudomapped file

psp env : u32 previous stack pointer

pstate func : str process state

pstmt env : u16 enables/disables the display of statement numbers in
NM program window

psw env : u32 an alias for "ipsw"

pub func : pub coerces an expression to PUB type

pw env : lptr current program window logical address

pwo env : sptr current program window (offset part)

pws env : u32 current program window (SID/seg part)

Table D-1. Predefined Environment Variables and Functions

Name Type Description
552 Appendix D

Reserved Variables/Functions
q env : u16 CM Q register

quiet_modify env : bool skip display of current values for modifies

r0 .. r31 env : u32 general registers r0, r1, r2, .. r31

rctr env : u32 recovery counter

ret0 .. ret1 env : u32 return registers 0 and 1

rp env : sptr return pointer

rtov func : lptr real to virtual

s env : u16 CM S register

s16 func : s16 coerces an expression to S16 type

s32 func : s32 coerces an expression to S32 type

s64 func : s64 coerces an expression to S64 type

saddr func : saddr coerces an expression to SADDR type

sar env : u32 shift amount register

sdst env : u16 CM stack data segment number

sid func : u32 extracts SID part of a long pointer

sl env : sptr static link register

sp env : sptr stack pointer register

sptr func : sptr coerces an expression to SPTR type

sr0 .. sr7 env : u32 space registers sr0, sr1, sr2, ... sr7

status env : u16 CM STATUS register

stol func : lptr converts a short pointer to long pointer

stolog func : lcptr converts short pointer to logical code pointer

str func : str extracts a sub-string from a string

strapp func : str string append

strdel func : str string delete

strdown func : str downshifts a string

strextract func : str returns a string from memory

strinput func : str prompts for a string input

strins func : str string insert

Table D-1. Predefined Environment Variables and Functions

Name Type Description
Appendix D 553

Reserved Variables/Functions
strlen func : u32 returns the current length of a string

strltrim func : str removes leading blanks from a string

strmax func : u32 maximum length of a string (constant)

strpos func : u32 position of a substring within a string

strrpt func : str string repeat

strrtrim func : str removes trailing blanks from a string

strup func : str upshifts a string

strwrite func : str string write (ala Pascal strwrite)

symaddr func : u32 returns the offset to a symbol in a structure

symconst func : any returns the value of a symbolic constant

syminset func : bool test for membership of a symbol in a set

symlen func : u32 returns the length of a symbolic data structure

sympath_upshift env : bool controls upshifting of path specs

symtype func : str returns the symbolic type of a specified path

symval func : any returns the value at a virtual address based on a
specified symbolic path

sys func : sys coerces an expression to a SYS LCPTR type

tcb func : u32 task control block

term_keeplock env : bool retain the terminal locking semaphore

term_ldev env : u16 the ldev used for I/O

term_locking env : bool enables_disables terminal process queueing

term_loud env : bool enables/disables output echoing to screen

term_paging env : bool enables/disables =terminal screen paging

term_width env : u16 width (in characters) of terminal output

time env : str current time of day

tr0 .. tr7 env : u32 temp registers tr0, tr1, tr2, ..tr7

trace_func env : u16 trace function entry, exit and parameters

trans func : trans coerces an expression to a TRANS LCPTR type

true env : bool the constant TRUE

Table D-1. Predefined Environment Variables and Functions

Name Type Description
554 Appendix D

Reserved Variables/Functions
typeof func : str returns type of an expression

u16 func : u16 coerces an expression to U16 type

u32 func : u32 coerces an expression to U32 type

unwind env : u16 automatic unwinding enabled

user func : user coerces an expression to a USER LCPTR type

vainfo func : any information about a virtual object

vars env : u16 number of variables that can be defined

vars_limit env : u16 absolute sum limit of "vars" and "vars_loc"

vars_loc env : u16 number of local variables that can be defined

vars_table env : u16 current sum of "vars" and "vars_loc"

version env : str version ID for DAT/DEBUG

vtor func : u32 virtual to real

vtos func : lptr virtual to secondary storage address

vw env : lptr current virtual window address (lptr)

vwo env : sptr current virtual window address (offset part)

vws env : u32 current virtual window space

win_length env : u32 number of lines on display terminal

win_width env : u32 number of columns on display terminal

x env : u16 CM X register (Index Register)

zw env : u32 current real memory window address

Table D-1. Predefined Environment Variables and Functions

Name Type Description
Appendix D 555

Reserved Variables/Functions
556 Appendix D

Command Summary
E Command Summary

 Standard Commands
 Window Commands

 : access to the command interpreter
 = calculator, expression evaluation
 ABORT terminate dat/debug session
 ALIAS define a user alias
 ALIASD[EL] delete a command alias
 ALIASINIT restore the pre-defined aliases
 ALIASL[IST] list current command alias
 B set breakpoint
 BA set breakpoint at an absolute CST address
 BAX set breakpoint at an absolute CSTX address
 BD delete breakpoint(s)
 BG set breakpoint in group library
 BL list breakpoint(s)
 BLG set breakpoint in logon group library
 BLP set breakpoint in logon account library
 BP set breakpoint in account library
 BS set breakpoint in system library
 BU set breakpoint in any NM (user) library
 BV set breakpoint at a virtual (code) address
 C[ONTINUE] continue program execution
 CLOSEDUMP close a dump file set
 CM enter Compatibility Mode (cmdat/cmdebug)
 CMDL[IST] list commands

CMG display cmglobals for a process
 CMPB scroll the CM program window backwards
 CMPD disable the CM program window
 CMPE enable the CM program window
 CMPF scroll the CM program window forwards
 CMPH home the CM program window
 CMPJ jump the CM program window
 CMPJA jump the CM program window to a CST segement
 CMPJAX jump the CM program window to a CSTX segement
 CMPJG jump the CM program window to the group library
 CMPJLG jump the CM program window to the logon group library
 CMPJLP jump the CM program window to the logon account library
 CMPJP jump the CM program window to the account library
 CMPJS jump the CM program window to the system library
 CMPK kill the CM program window
 CMPL change the size of the CM program window
 CMPR change the radix of the CM program window

 DA display absolute memory relative
 DATAB set a data breakpoint
 DATABD delete a data breakpoint
 DATABL list data breakpoints
 DC display code
 DCA display code in a CST segement
 DCAX display code in a CSTX segement
 DCG display code in the group library
Appendix E 557

Command Summary
 DCLG display code in the logon group library
 DCLP display code in the logon account library
 DCP display code in the account library
 DCS display code in the system library
 DCU display code in any (user) NM library
 DD display data segment
 DDB display CM DB-relative
 DELETEALIAS predefined alias for ALIASD
 DELETEB predefined alias for BD
 DELETEERR predefined alias for ERRD
 DELETEMAC predefined alias for MACD
 DELETEVAR predefined alias for VARD
 DEMO select terminal ldevs for DAT/DEBUG demonstrations
 DIS disassemble code
 DO redo a command from history
 DPIB display a process's information block
 DPTREE display the process tree
 DQ display CM Q-relative
 DR display registers
 DS display CM S-relative
 DSEC display secondary storage relative
 DUMPINFO display information about the open dump
 DV display virtual memory
 DZ display real memory
 E[XIT] exit (predefined alias for C[ONTINUE])

 ENV set an environmental variable value
 ENVL[IST] display environmental variable values
 ERR push an error string onto the error stack
 ERRD[EL] reset the error stack
 ERRL[IST] list the contents of the error stack
 FC freeze code
 FCA freeze code in a CST segement
 FCAX freeze code in a CSTX segement
 FCG freeze code in the group library
 FCLG freeze code in the logon group library
 FCLP freeze code in the logon account library
 FCP freeze code in the account library
 FCS freeze code in the system library
 FCU freeze code in any (user) NM library
 FDA freeze a data segment into memory
 FINDPROC dynamically load a procedure from a NM library
 FOREACH execute a command(list) FOREACH value in a valuelist
 FPMAP Re-initializes CM symbolic procedure names
 FT format a type declaration
 FUNCL[IST] list all the DEBUG/DAT functions
 FV format virtual as a type
 FVA freeze virtual address (range) in memory
 GB scroll group window back
 GD disable the group window
 GE enable the group window

 GETDUMP read a dump tape into disc files
 GF scroll group window forward
 GH home the group window
 GK kill the group window
 GL change the size of the group window
 GR change the radix for the group window
 GRD disable the NM general registers window
558 Appendix E

Command Summary
 GRE enable the NM general registers window
 GRK kill the NM general registers window
 GRL change the size of the NM general registers window
 H[ELP] print help
 HIST[ORY] print history of command stack
 IF IF <condition> THEN {cmdlist} ELSE {cmdlist}
 IGNORE ignore error test after the following command
 INITCM initialize CM registers from any address
 INITNM initialize NM registers from any address
 KILL kill the indicated PIN
 LB scroll the Ldev window back
 LD disable the Ldev window
 LE enable the Ldev window

 LEV set environment to stack level
 LF scroll the Ldev window forward
 LH home the Ldev window
 LIST controls the recording of input and output to a listfile
 LISTREDO predefined alias for HIST[ORY]
 LJ jump the Ldev window
 LK kill the Ldev window
 LL change the size of the window program
 LOADINFO give info on loaded NM and CM program/libraries
 LOADPROC dynamically load a procedure from a CM library
 LOC declare a local variable
 LOCL[IST] list the local variables
 LOG controls the recording of input to a logfile
 LR change the radix of the Ldev window
 LW allocate a new virtual window

 MA modify absolute
 MAC[RO] define a macro
 MACD[EL] delete macro definition(s)
 MACECHO enable echoing of each line of macro(s)
 MACL[IST] list the macro definition(s)
 MACREF reset macro reference counts
 MACTRACE enable tracing for macro(s)
 MAP open and map a file into virtual space
 MAPL[IST] list files opened by the MAP command
 MC modify code
 MCA modify code in a CST segement
 MCAX modify code in a CSTX segement
 MCG modify code in the group library
 MCLG modify code in the logon group library
 MCLP modify code in the logon account library
 MCP modify code in the account library
 MCS modify code in the system library
 MCU modify code in any (user) NM library
 MD modify CM data segment
 MDB modify CM DB-relative
 MODD delete temporary dump modification(s) in DAT
 MODL list temporary dump modification(s) in DAT
 MPEXL display version info about MPEXL files in the OS SOM in NL
 MPSW modify the PSW
 MQ modify CM Q-relative
 MR modify registers
 MS modify CM S-relative
 MSEC modify secondary store
 MV modify virtual memory
Appendix E 559

Command Summary
 MZ modify real memory

 NM enter Native Mode (nmdat/nmdebug)
 NMPB scroll the NM program window backwards
 NMPD disable the NM program window
 NMPE enable the NM program window
 NMPF scroll the NM program window forwards
 NMPH home the NM program window
 NMPJ jump the NM program window
 NMPJG jump the NM program window to the group library
 NMPJP jump the NM program window to the account library
 NMPJS jump the NM program window to the system library
 NMPJU jump the NM program window to any (user) NM library
 NMPK kill the NM program window
 NMPL change the size of the CM program window
 NMPR change the radix of the CM program window

 OPENDUMP open dump disc files for analysis
 PAUSE pause (sleep) for <n> seconds
 PB scroll the program window backwards
 PD disable the program window
 PE enable the program window
 PF scroll the program window forwards
 PH home the program window
 PIN switch context to a specified process
 PJ jump the current program window
 PJA jump the current program window to a CST segement
 PJAX jump the current program window to a CSTX segement
 PJG jump the current program window to the group library
 PJLG jump the current program window to the logon group library
 PJLP jump the current program window to the logon account library
 PJP jump the current program window to the account library
 PJS jump the current program window to the system library
 PJU jump the current program window to any (user) NM library
 PJV jump the current program window to a virtual address
 PK kill the program window
 PL change the size of the program window
 PR change the radix of the program window
 PROCLIST list NM procedures/dat symbols in a NM executable file
 PSEUDOMAP fill in virtual memory holes from mapped file
 PURGEDUMP delete all disc files in a dump set
 QB scroll CM frame window back
 QD disable the CM frame window
 QE enable the CM frame window
 QF scroll CM frame window forward
 QH home the CM frame window
 QJ jump the CM frame window
 QK kill the CM frame window
 QL change the size of the CM frame window
 QR change the radix of the CM frame window
 RD disable the CM register window
 RE enable the CM register window
 RED redraw the screen

 REDO redo a command after (optionally) editing it
 REGLIST writes NM register values to a file in USE format
 RESTORE restore macros or variables from a file
 RET[URN] return an optional value from a macro
 RH home the CM register window
560 Appendix E

Command Summary
 RK kill the CM register window
 RL change the size of the CM register window
 RR change the radix of the CM register window

 S[S] single step, same as SS
 SB scroll CM stack window back
 SD disable the CM stack window
 SE enable the CM stack window
 SET set user configurable options
 SETALIAS predefined alias for ALIAS
 SETENV predefined alias for ENV
 SETERR predefined alias for ERR
 SETLOC predefined alias for LOC
 SETMAC predefined alias for MAC
 SETVAR predefined alias for VAR
 SF scroll stack window forward
 SH home the stack window
 SHOWALIAS predefined alias for ALIASL
 SHOWB predefined alias for BL
 SHOWCMD predefined alias for CMDL
 SHOWDATAB predefined alias for DATABL
 SHOWENV predefined alias for ENVL
 SHOWERR predefined alias for ERRL
 SHOWFUNC predefined alias for FUNCL
 SHOWLOC predefined alias for LOCL
 SHOWMAC predefined alias for MACL
 SHOWSET predefined alias for SET (no parms)
 SHOWSYM predefined alias for SYML
 SHOWVAR predefined alias for VARL
 SJ jump the CM stack window to a new location
 SK kill the CM stack window
 SL change the size of the CM stack window
 STORE store macros or variables to a file
 SR change the radix of the CM stack window
 SRE enable the NM special registers window
 SRD disable the NM special registers window
 SRH home the NM special registers window
 SRK kill the NM special registers window
 SRL change the size of the NM special registers window
 SYMCLOSE close a symbolic data file
 SYMF[ILES] list the currently opened symbolic files
 SYMINFO display info about opened symbolic files
 SYML[IST] display symbolic file information
 SYMOPEN open a symbolic file with data types in debug records
 SYMPREP preprocesses a symbolic data file with SYMDEBUG information

 TA translate CM ABS-relative address to virtual
 TC translate CM program file code address to virtual
 TCA translate CM CST code address to virtual
 TCAX translate CM CSTX code address to virtual
 TCG translate CM group library code address to virtual
 TCLG translate CM logon group library code address to virtual
 TCLP translate CM logon account library code address to virtual
 TCP translate CM account library code address to virtual
 TCS translate CM system library code address to virtual
 TD translate CM data segment to virtual
 TDB translate CM DB-relative address to virtual
 TERM control terminal semephore ownership
 TQ translate CM Q-relative address to virtual
Appendix E 561

Command Summary
 TR[ACE] stack trace
 TRAP arm/disarm/list various catchable traps

 TS translate CM S-relative address to virtual
 TXB scroll text window backward
 TXC mark the text window as current
 TXD disable the text window
 TXE enable the text window
 TXF scroll text window forward
 TXH home the text window
 TXI information about the text window
 TXJ jump the text window
 TXK kill the text window
 TXL change the size of the text window
 TXS shift text window to left or right
 TXW allocate a new text window
 UB scroll user window backward
 UC mark the user window as current
 UFC un-freeze code in the program file
 UFCA un-freeze code in a CST segement
 UFCAX un-freeze code in a CSTX segement
 UFCG un-freeze code in the group library
 UFCLG un-freeze code in the logon group library
 UFCLP un-freeze code in the logon account library
 UFCP un-freeze code in the account library
 UFCS un-freeze code in the system library
 UFCU un-freeze code in any (user) NM library
 UFDA un-freeze a data segment in memory
 UFVA unfreeze a virtual address (range)
 UD disable a user window
 UE enable a user window
 UF scroll user window forward
 UH home the user window
 UK kill a user window
 UL change the size of a user window
 UN rename a user window
 UNMAP close file opened by MAP command
 UNWIND restore processor to known state
 UPD update windows
 UR change the radix of a user window
 USE execute commands from a file
 USENEXT execute a specified number of lines from a command file
 UWA define a user window absolute relative
 UWCA define a user window CST segment relative
 UWCAX define a user window CSTX segment relative
 UWD define a user window data segment relative
 UWDB define a user window CM DB-relative
 UWL define a user window LDEV relative
 UWS define a user window CM S-relative
 UWQ define a user window CM Q-relative
 UWV define a user window Precision Architecture virtual address
 UWZ define a user window Precision Architecture real address

 VAR define/list a user variable
 VARD[EL] delete a user variable
 VARL[IST] list user variables
 VB scroll virtual window backward
 VC mark virtual window as current
 VD disable the virtual window
562 Appendix E

Command Summary
 VE enable the virtual window
 VF scroll virtual window forward
 VH home the virtual window
 VJ jump the virtual window to a new location
 VI information about indicated or all windows
 VK kill the virtual window
 VL change the size of the virtual window
 VN rename the virtual window
 VR change the radix of the virtual window
 VW allocate a new virtual window
 W write formatted value list
 WCOL set output position to column
 WDEF set default window sizes
 WGRP select a group of windows
 WHELP window help
 WHILE WHILE <condition> DO
 WL write line formatted value list
 WOFF turn windows off
 WON turn windows on
 WP write prompt
 WPAGE write page eject

 XL open a program/library file to access symbol information.
 XLD close a file previously opened via the XL command
 XLL list files opened via the XL command
 ZB scroll real memory window backward
 ZD disable real memory window
 ZE enable real memory window
 ZF scroll real memory window forward
 ZH home the real memory window
 ZJ jump the real memory window
 ZK kill the real memory window
 ZL change the size of the real memory window
 ZR change the radix of the real memory window
 ZW aim the real memory window
Appendix E 563

Command Summary
564 Appendix E

Index
Symbols
!:in variable names, 39
!:use, 43, 44
$SYMDEBUG Option, 299
(CI)Commands, 72
: (CI) Command (access to command

interpreter, 72
:DEBUG

entry from CI, 55
:SETDUMP Command, 57
= (Calculator) Command, 73
>> Operator, 33
? for entry address, 42
? Use, 43
?:use, 44
{ }:use, 22

A
Abbreviated Stack Trace, 53
Abort Current Process, 75
Absolute Code Pointers, 24
Absolute Code Segment Numbers

relation to logical, 25
Absolute CST Segments, 25
Absolute CSTX Segments, 25
Absolute Memory Addressing, 35
abstolog Function, 355
Access to DEBUG XL, 116
ACPTR, 393

coerce to, 391
Address

conversion, 368
of closest NM node point for an NM address,

421
starting, 42

Address Conversion Function, 355
address of MPEXL table, 147
Address Translation Tables, 129
Addresses

converting logical to absolute, 401
converting virtual to real, 480, 515
real to virtual conversion, 436
virtual to short pointer, 407

addressing modes available, 517
Aliases, 46

CR0, 151
CR12, 149
CR13, 149
CR14, 144
CR15, 140
CR16, 144

CR17, 148
CR18, 148
CR19, 142
CR20, 144
CR21, 143
CR22, 143, 150
CR23, 140
CR24, 154
CR31, 154
CR8, 149
CR9, 149
defining, 75
deleting, 77
IPSW, 150
list current, 80
maximum number of, 80
predefined, restoring, 79
PSW, 150
R28, 151
R29, 151
R30, 151
RCTR, 151
recursive, 76
RET0, 151
RET1, 151
SR11, 151

Analyzing the dump, 518
AND Operator, 32
ARGn Environment Variable, 135
Argument Registers

Native Mode, 135
Arithmetic Operands, 31

pointers, 31
Arithmetic Operators

operands, 31
Arming Calls to Debug, 53, 57, 62, 64
Array Subscripts, 302
asc Function, 356
ascc Function, 361
ASCII

conversion to, 356
ASCII Text File Display, 323
Assembly Instructions

disassembly of, 118
Assign Environment Variable, 131
AUTOIGNORE Environment Variable, 47, 135
Automatic Command Execution

at initialization, 49
Automatic Repetition

commands, 135
AUTOREPEAT Environment Variable, 135
Index 565

Index
B
B (Break) Command, 82
BAND Operator, 33
Bank 0 Addresses, 35
Base

output display, CM, 136
BD Command, 92
Beginning the DAT program, 517
bin Function, 362
Binary Conversion

of string, 362
Bit Deposit Function, 362
Bit Extract Function, 364
bitd Function, 362
bitx Function, 364
BL Command, 95
BNOT Operator, 33
bool Function, 365
Boolean Comparisons, 33
Boolean Data Type, 23
Boolean Operators

AND, 32
examples, 32
NOT, 32
OR, 32

Boolean Value Coercion, 365
BOR Operator, 33
bound Function, 366
Breakpoints

address at CM breakpoint, 372
address of NM, 413
cases where ignored, 91
CM breakpoint index, 373
CM in translated code, 543
CM instruction at breakpoint, 374
CM, examples, 545
data, deleting, 114
data, list, 115
data, on process stacks, 113
data, setting, 111
data, warning, 113
deleting, 92
global, 82
ignored, cases where, 113
listing, 95
NM breakpoint index, 414
NM in translated code, 544
NM instruction at breakpoint, 416
process-local, 82
setting, 82

btow Function, 368
Building the dump, 518

Byte to Word Conversion
address, 368

C
C Data Types, 297
Cache Statistics, 129
Calculator Command, 73
CCODE Environment Variable, 135
CCR Environment Variable, 135
CHANGES Environment Variable, 135
Changing Window Groups, 328
CHECKPSTATE Environment Variable, 136
Child Processes, 53
CIR Environment Variable, 136
cisetvar Function, 369
civar Function, 370, 487
Closing a Dump File, 97
CM Breakpoints

address at breakpoint, 372
index of CM address, 373
instruction at breakpoint, 374

CM library files, 519
CM Register Window, 313
CM symbols in DAT, 519
CM_INBASE Environment Variable, 136
CM_OUTBASE Environment Variable, 136
cmaddr Function, 371
cmbpaddr Function, 372
cmbpindex Function, 373
cmbpinstr Function, 374
CMDLINESUBS Environment Variable, 136
CMDNUM Environment Variable, 136
cmentry Function, 375
cmg Function, 377
CMGLOBALS Record

virtual address of, 377
CMGLOBALS Record Display, 102
CMLOG Description, 35
cmlogaddr, 35
cmnode Function, 378, 542
CMPC (CM Program Counter), 315
CMPC Environment Variable, 136
cmproc Function, 379
cmproclen Function, 382
CMPW Environment Variable, 136
cmseg Function, 384
cmstackbase Function, 385
cmstackdst Function, 386
cmstacklimit Function, 386
cmstart Function, 387
cmtonmnode Function, 389, 542
cmva Function, 390
566 Index

Index
Code Address
virtual address of, 390

Code Path Name
for address, 422

Code Segment
unfreeze, 278

Coerce Expression
to extended address, 395
to GRP pointer, 397
to LGRP pointer, 400
to Long pointer, 402
to LPUB pointer, 404
to PROG pointer, 431
to PUB pointer, 434
to secondary address, 440
to short pointer, 443
to Signed 16-Bit, 436
to Signed 32-Bit, 438
to Signed 64-Bit, 439
to string, 361
to SYS pointer, 468, 502
to TRANS pointer, 471, 505
to unsigned 16-Bit, 474, 508
to unsigned 32-Bit, 476, 510

Coerce to CST, 391
Coerce to CSTX Code Pointer, 393
COLUMN Environment Variable, 137
Command, 47
command, 98
Command Files, 21
Command History, 48
Command Interpreter, 21, 51, 369

access to, 72
entering Debug, 55
invoking Debug, 52
returning variable value, 370, 487
setting variable value, 369

Command Line
preprocessing, 44
scanning, 44, 46
substitution examples, 45
substitution termination, 45
substitutions, 44, 136

Command List, 22
continuation of, 22

Command Lookup Precedence, 46
Command Name Format, 22
Command Names

aliases, 46
Command Stack

re-executing commands, 121
Command Window, 320

Commands, 42, 52, 54
automatic repetition of, 135
defining an alias for, 75
ERR, 47
list of DAT-only commands, 164, 200
list of Debug-only commands, 163, 199
listing valid, 98
overview, 51
re-executing, 251
summary of, 557
SYMOPEN, 300
SYMPREP, 300
T (Translate), 265
UF, 278

commands not used in DAT, 520
Commands to invoke DAT, 517
commands, DAT, 520
Comments

on command lines, 22
Comparing Operands, 33
Compatibility Mode

address conversion, 355
bank 0 addresses, 35
breakpoints in translated code, 543
code address, virtual address of, 390
converting addresses, 401
CST Expansion, 146
current instruction register, 136
data segment address conversion, 394
DB register, 138
debugging a CM program, 19
emulated/translated code, 537
entry point address, 375
full stack trace to file, 69
input conversion base, 136
logical code address, 136
mapping bit, 429
mapping CM segments, 146
mapping DST number, 146
nearest NM node point, 389
node point address, 378
node point nearest to NM address, 426
node points in translation, 540
OCT, 539
physical segment number, 429
pointers, 24
procedure entry point address, 375
procedure name conversion, 371
procedure name, for an address, 379
procedure starting point, 387
procedure, length of, 382
program counter, 315
Index 567

Index
program window, 136
register window, 313
registers, displaying, 123
search order, 42
segment name, 384
segments, 25
stack frame window, 318
stack limit, 386
stack starting address, 385
stack, DST number, 386
STACKDUMP' intrinsic, 69
status register, 151
to enter, 98
top of stack window, 319
translated code, executing, 541
windows, 310

Component Offset, 461, 493
Component Type, 466, 498
Concatenation Function, 447
Concatenation Operator, 37
Condition Code, 135
CONSOLE_DEBUG Environment Variable, 48,

137
CONSOLE_IO Environment Variable, 48, 137,

144
Constant

value of, 462, 494
Continuation Character (&), 22
Continuation Prompt, 22
CONTINUE command in SAT, 528, 529
Continue Execution, 103
Control Registers, 126, 236

NM, 137
Control-Y Handler, 72
Conversion Base

Native Mode, 147
Conversions

logical to absolute, 401
Converting Real to Virtual Addresses, 436
Coprocessor Configuration Register

NM, 135
CPU Environment Variable, 137
Create a dump file, 176
Creating dump file set, 517
Critical Processes, 75
CRn Environment Variable, 137
CST Defined, 24
cst Function, 391
CST Table

virtual address of, 138
CSTBASE Environment Variable, 138
CSTX Defined, 24

cstx Function, 393
Curly Braces, 22
Current Date String, 138
Current Instruction Register

CM, 136
Custom Named Pointers, 321
Custom Stackdump, 52

D
D (Display) Command, 104
DAT

command line overview, 21
commands for DAT only, 72, 200
developers of, 116
dump file set, 517
initialization sequence, 519
initializing, 185
limitations, 519
MODE variable, 140
operation, 517
output, 21
prompt, 21
restrictions, 519
running, 519
user interfaces, 21
valid expressions, 535
version ID of, 155

DAT (Dump Analysis Tool), 18, 517
DAT commands, 520
DAT Macros, 520
DAT Program

where stored, 520
DAT, finishing, 518
DAT, getting started, 517
Data Breakpoints

deleting, 114
ignored, cases where, 113
list by index number, 115
on process stacks, 113
setting, 111
warning, 113

Data Pointer Register, 139
Data Segment

unfreeze, 278
Data Segment Address

convert to virtual address, 394
Data Structure Length, 464, 497
Data Types, 23

boolean, 23
integer, 23
literals, 28
pointers, 23
568 Index

Index
string, 23
type classes, 26

DATAB Command, 111
DATE Environment Variable, 138
DATINIT Files, 519
DB DST Number, 139
DB Environment Variable, 138
DB Register

DM, 138
DBDST Environment Variable, 139
DBUGINIT Initialization Files, 49
DEBUG

DEBUG CI Command, 52
Debug

access to, 116
arming a call to, 53
arming calls, 62, 64
bootstrap process, 48
command line overview, 21
command summary, 557
commands and intrinsics, 55
commands for Debug only, 71, 199
direct calls from command interpreter, 52
disarming a call, 53
disarming calls, 61, 64
entry to, 58, 59
execution from a file, 282
exit, 161
Help messages, 179
how to debug a CM program, 19
how to debug a NM program, 19
interactive command entry, 320
invocation of, 51
mode of, 147
output, 21
prompt, 21
synchronizing multiple processes, 268
valid expressions, 535
version ID of, 155
windows, 309

DEBUG commands in DAT, 520
Debug commands in DAT, 517
DEBUG_AT_LDEV Environment Variable, 48
Decimal Literals, 28
Declared Constant

value of, 462, 494
Defining

a macro, 204
an alias, 75
local variables, 193

Definition of Operand, 366
Delete Data Breakpoint, 114

delete modification, 230
Delete User Defined Variables, 286
Deleting an Alias, 77
Deleting Breakpoints, 92
deleting dump file set, 518
Deleting Items, 117
Deleting modifications, 230
Demonstration Command, 117
Demonstrations of Debug, 117
differences in DAT, 519
Direct Calls, 52
Disarming a Debug Call, 53, 56, 61, 64
Disassemble Assembly Instructions, 118
Disassembled Code

listing to a file, 110
Disassembler

NM, 150
Disc Data Display, 322
DISP Environment Variable, 139
Dispatcher, 144

status of, 139
Display Address Contents, 104
Display CMGLOBALS Record, 102
Display Dump File Information, 129
Display Environment Variables, 156
display locations, 517
Display Register Contents, 123
Display Stack Trace, 269
DL Environment Variable, 139
DL Register (CM), 139
DO Command, 48
Dotted Pair, 23, 29
DP Environment Variable, 139
DST Number, 386
DST Number of CM Stack, 151
DST Table

virtual address of, 139
DSTBASE Environment Variable, 139
dstva Function, 394
Dual Stack Trace, 54
Dump

analyzing, 518
corrupted, 185
snapshot, 517

Dump Analysis Tool, see DAT, 517
Dump File

closing, 97
creating, 176
directory, 129
display information, 129
opening, 240
purging, 250
Index 569

Index
Dump file set
building, 518
creating, 517
in DAT, 517
opening, 518
opening additional, 518
purging, 518

Dump tape, 517
making, 517

DUMP_COMP_ALGO Environment Variable,
139

DUMPALLOC_LZ Environment Variable, 139
DUMPALLOC_RLE Environment Variable, 139
DYING_DEBUG Environment Variable, 139
Dynamic Loads, 193
Dynamic Procedure Calling, 417

E
EADDR (Extended Address), 26
eaddr Function, 395
ECHO_CMDS Environment Variable, 139
ECHO_SUBS Environment Variable, 140
ECHO_USE Environment Variable, 140
Echoing of Macros, 212
ERRD, 47
Emulated Code, 537

debugging, 538
Emulation Mode, 537
ending DAT, 518
Entering Compatibility Mode, 98
Entering Debug, 58, 59
Entering Debug from CI, 55
Entering the DAT program, 517
Entry Address, 42
Entry Mode, 140
Entry Point

NM procedure, 418
Entry Point Address, 375
Environment Variables, 40, 131

ARGn, 135
AUTOIGNORE, 135
AUTOREPEAT, 135
CCODE, 135
CCR, 135
CHANGES, 135
CHECKPSTATE, 136
CIR, 136
CM_INBASE, 136
CM_OUTBASE, 136
CMDLINESUBS, 136
CMDNUM, 136
CMPC, 136

CMPW, 136
COLUMN, 137
CONSOLE_DEBUG, 137
CONSOLE_IO, 137
CPU, 137
CRn, 137
CSTBASE, 138
DATE, 138
DB, 138
DBDST, 139
DISP, 139
displaying, 156
DL, 139
DP, 139
DSTBASE, 139
DUMP_COMP_ALGO, 139
DUMPALLOC_LZ, 139
DUMPALLOC_RLE, 139
DYING_DEBUG, 139
ECHO_CMDS, 139
ECHO_SUBS, 140
ECHO_USE, 140
EIEM, 140
EIRR, 140
ENTRY_MODE, 140
ERROR, 140
ESCAPECODE, 140
EXEC_MODE, 140
FALSE, 141
FILL, 141
FILTER, 141
FPn, 141
FPSTATUS, 142
GETDUMP_COMP_ALGO, 142
HEXUPSHIFT, 142
ICSNEST, 142
ICSVA, 142
IIR, 142
list of, 132
MODE, 147
PIN, 149
RCTR, 151
RET0, 151
RET1, 151
Rn, 151
RP, 151
S, 151
SAR, 151
VPEn, 142

ERR Command, 47
ERRLIST Command, 47
errmsg Function, 396
570 Index

Index
Error Bailout, 184
Error Command Stack, 158
ERROR Environment Variable, 47, 140
Error Handling, 47
Error Message String, 396
Error Messages

IGNORE, 135
Error Number

most recent, 140
obtaining error message for, 396

Error Output
restricting quantity of, 147

Error Stack, 47
delete errors on, 159
list errors on, 159
resetting, 47

Escape Character, 45
ESCAPECODE Environment Variable, 140
Evaluated Expression

type of, 472, 506
Exclamation Point, 39, 43, 44
EXEC_MODE Environment Variable, 140
executable libraries, 519
Executable Library

list symbols, 242
Executing Debug From File, 282
Execution

continuing, 103
Execution Mode, 140
Exit a Macro, 253
EXIT command, 519
EXIT command in SAT, 528, 529
exit DAT, 518
Export Stubs, 87
Expression Diagrams, 535
Expression Evaluator

LOOKUP_ID, 145
Expression Matching, 531
Expressions

coerce to absolute code pointer, 391
coerce to Boolean, 365
coerce to CSTX code pointer, 393
coerce to extended address, 395
coerce to GRP pointer, 397
coerce to LGRP logical pointer, 400
coerce to long pointer, 402
coerce to LPUB pointer, 404
coerce to PROG pointer, 431
coerce to PUB pointer, 434
coerce to secondary address, 440
coerce to short pointer, 443
coerce to signed 16-bit, 436

coerce to signed 32-bit, 438
coerce to signed 64-bit, 439
coerce to string, 361
coerce to SYS pointer, 468, 502
coerce to TRANS pointer, 471, 505
coerce to unsigned 16-bit, 474, 508
coerce to unsigned 32-bit, 476, 510
coerce to USER library pointer, 477, 511
conversion to ASCII, 356
evaluated, type of, 472, 506
examples, 38
extract bits from, 364

Extended Address
coerce expression to, 395

External Interrupt Enable Mask, 140
External Interrupt Request Register, 140
Extract Bits, 364

F
Failures

analysing with DAT, 517
analysing with SAT, 525

FALSE Environment Variable, 141
FC Freeze Command, 168
File Name

corresponding to NM (code) address, 419
file system calls in SAT, 529
Files

mapped, size in bytes, 409
mapping in virtual space, 227
unmap (close), 281

FILL Environment Variable, 141
FILTER Environment Variable, 141
Filtering Process, 141
finishing DAT, 518
Flag Enabling Debugging of Jobs, 144
Floating Point Exception Registers, 142
Floating Point Registers, 127, 141, 237
Floating Point Status Register, 142
Fmm (Freeze) Command, 168
Form Justification, 144
Format Data Structure, 164
Formatting Data, 304
Formatting Types, 303
FPEn Environment Variable, 142
FPMAP command in SAT, 529
FPn Environment Variable, 141
FPSTATUS Environment Variable, 142
Freeze Memory, 168
Full Search Path, 42
Full Stack Trace

producing, 66
Index 571

Index
Function Calls
tracing, 154

Functions, 351, 483
abstolog, 355
address, 352, 484
asc, 356
ascc, 361
bin, 362
cmnode, 542
cmtonmnode, 542
coercion, 351, 483
displaying, 174
for nodes, 542
listing, 174
nmnode, 542
nmtocmnode, 542
procedure, 353, 485
process, 353, 485
reserved, 547
string, 354, 486
symbolic, 355, 487
table of, 351, 483
utility, 352, 484

functions in SAT, 529
Fx (Format) Command, 164

G
G Window, 320
Gateway Page, 91
General Registers, 124, 234

NM, 151
window, 314

GETDUMP_COMP_ALGO Environment
Variable, 142

Global Breakpoints, 82
Global Values

changing, 39
Global Variables, 39
Group (of User) Window, 320
GRP Defined, 24
grp Function, 397

H
Hardware Failures

analysis of, 517, 525
Hardware Traps, 275
hash Function, 399
Hashing Virtual Addresses, 399
Help

window commands, 293
Help Messages, 179

Hexadecimal Constants
ambiguous cases, 39

Hexadecimal Literals, 28
Hexadecimal Output Display, 142
HEXUPSHIFT Environment Variable, 142
HIST Command, 48
History Command Stack, 48, 182, 191, 251
History Stack Index, 121
How to Debug a CM Program, 19
How to Debug a NM Program, 19
How to use DAT, 517
HPGETPROCPLABEL Intrinsic, 171
HPSTACKDUMP Intrinsic, 52

I
IA Register, 126, 236
ICS Base Virtual Address, 142
ICS Nest Count, 142
ICSNEST Environment Variable, 142
ICSVA Environment Variable, 142
IGNORE Command, 47

QUIET option, 47
IGNORE LOUD, 135
IIR Environment Variable, 142
Index Register (CM), 155
Inheriting Setdump Attribute, 53
Initialization Files, 49
Initialization Sequence

DAT, 519
Initialize Registers, 185
Input Conversion Base

CM, 136
Native Mode, 147

Input Conversion Radix, 142
Input Prompts, 451
Input/Output, 48
Inserting String, 451
Instruction Address Register, 126, 236
Integer Arithmetic, 31
Integer Comparisons, 33
Integer Types, 23
Internal Cache Statistics, 129
Interrupt Instruction Register, 142
Interrupt Offset Register, 143
Interrupt Processor Status Word, 143
Interrupt Space Register, 144
Interrupt Vector Address, 144
Interval Timer Register, 144
Intrinsics

HPGETPROCPLABEL, 171
LOADPROC, 24
overview, 51
572 Index

Index
SETDUMP, 54
XARITRAP, 55
XCODETRAP, 55

Invocation of Debug, 51
Invoking DAT, 517
ISL, 525
Help Function, see CMDL, 98
ITMR Environment Variable, 144
IVA Environment Variable, 144

J
Job Debugging, 48
JOB_DEBUG Environment Variable, 48, 144
Justification

windows and display, 144

L
LCPTR Type Class, 41
LDEV

for I/O, 153
LDEV Window, 322

address where aimed, 146
ldev.offset, 35
LDIL Instruction Interpretation, 150
Leading Zeros, 141
leaving DAT, 518
Left Shift Operator, 33
Length of Data Structure, 464, 497
Length of Output Line, 154
LGRP Defined, 24
lgrp Function, 400
LIB= Parameter, 42
LIBLIST= Parameter, 42
Libraries

currently loaded, 192
libraries, 519
limitations

DAT, 519
SAT, 527

LINKEDIT Program, 299
List Current Aliases, 80
List Current Programs, 192
List Data Breakpoints, 115
List File

current page number, 145
default title, 145
input, 144
page length, 144
paging, 145
recording, 190
title, 145

width of, 145
List files in SAT, 529
List Local Variables, 195
List NM Symbols, 242
List Registers Into File, 252
List Valid Commands, 98
Listed Output, 21
Listing Breakpoints, 95
Listing Disassembled Code, 110
LISTREDO Command, 48
Literal Data Types, 28
Loader Symbol Table, 42
LOADINFO Command, 26
Loading dump tapes, 518
Loading Libraries, 24
Loading Procedures (NM), 171
LOADPROC Intrinsic, 24
LOC Command, 39
Local Variables, 39

list, 195
macros, 193
referencing from macros, 148

Locating NM Breakpoints, 413
Log files in SAT, 529
Logfile Control, 196
Logical AND, 32
Logical Code Address for CM, 136
Logical Code Pointer Types, 24
Logical Code Pointers

differences between CM and NM, 26
Logical Code Segment Numbers

relation to absolute, 25
Logical Code Segments, 24
Logical Device Number

for I/O, 153
Logical Group Library Segments, 25
Logical NOT, 32
Logical OR, 32
Logical Program Segments, 25
Logical System Library Segments, 25
Logical to Absolute Conversion, 401
Logon Group Libraries

loading, 24
logtoabs Function, 401
Long Commands (Continuation), 22
Long Pointer

convert virtual address to, 444
Long Pointer Comparisons, 33
Long Pointers

coerce expression to, 402
LOOKUP_ID, 42
Lowercase Function, 449
Index 573

Index
Lowercase Hexadecimal Output, 142
LPTR

in compatibility mode, 24
LPTR (Long Pointer), 23
lptr Function, 402
LPUB Defined, 24
lpub Function, 404
LST (Loader Symbol Table), 42
ltolog Function, 405
ltos Function, 407

M
MAC Command, 40
macbody Function, 408
Machine Characteristics, 129
Macro Bodies, 39

referencing local variables, 148
Macro Body

for macro name, 408
Macro Name

macro body for, 408
Macro Parameters, 41
Macro Table

absolute size of, 146
controlling size of, 146

Macros, 40
aliases, 46
as commands, 210
as functions, 210
current nested call level, 146
define local variable, 193
defining, 204
defining an alias for, 75
deleting, 211
echoing of, 212
examples, 207
exit from, 253
limitations, 211
list local variables, 195
listing, 215
listing to a file, 221
macro body for name, 408
parameters, 209
referencing variables, 39, 148
reset reference count, 222
restoring from a file, 252, 258
tracing execution of, 225

main memory, 517
Map index number, 408
mapindex Function, 408
Mapped Files

size in bytes, 409

virtual address of, 410
Mapping Bit, 429
Mapping CM Segments, 146
Mapping DST Number

CM CST Expansion, 146
Mapping Files, 227
mapsize Function, 409
mapva Function, 410
Maximum number of aliases, 80
Memory Size, 129
Memory Window, 322
Metacharacters, 531
Minus Sign, 28
MMSAVE, 525
MOD Operator, 30
MODE Environment Variable, 147
modification delete, 230
Modify command in SAT, 529
Modify Data, 200
Modify Register Contents, 233
Modify Status Word (NM), 232
Module Name

corresponding to address, 420
Monarch processor number, 147
Mount dump tape, 517
MPE/iX X-Traps, 275
MPEXL table

finding address of, 147
multi Prompt, 22
Multiple Commands on Same Line, 22
Multiple Debug Processes, 268

N
Native Mode

argument registers, 135
breakpoints in translated code, 544
code path for an address, 422
control registers, 137
coprocessor configuration register, 135
debugging a NM program, 19
file name for (code) address, 419
floating point exception registers, 142
floating point registers, 141
floating point status register, 142
general registers, 151
general registers, window, 314
interrupt instruction register, 142
interrupt offset register, 143
interrupt space register, 144
interrupt vector address, 144
module name for address, 420
node point, address of closest, 421
574 Index

Index
pointers, 26
procedure entry point, 418
procedure name for virtual address, 424
procedure/data path address, 410
procedures names, looking up, 145
process's stack limit address, 426
process's stack starting address, 425
program counter window, 316
program window, where aimed, 147
registers, displaying, 123
return pointer, 151
search order, 42
short pointer to LCPTR, 445
special registers, 314
to enter, 239
windows, 311

Nearest NM Node Point, 389
Nested Call Level

macros, 146
Nested IF Commands, 183
NL.PUB.SYS, 519
NM Breakpoint index, 414
NM Breakpoints

address of, 413
NM instruction at breakpoint, 416

NM library files, 519
NM stack traces, 520
NM symbols in DAT, 519
NM TRANS Address Conversion, 26
nmaddr addresses, 520
nmaddr Function, 410
nmaddr in SAT, 529
nmbpaddr Function, 413
nmbpindex Function, 414
nmbpinstr Function, 416
nmcall Function, 417
nmentry Function, 418
nmfile addresses, 520
nmfile Function, 419
nmfile in SAT, 529
nmmod Function, 420
nmnode Function, 421, 542
nmpath Function, 422
nmproc Function, 424
nmstackbase Function, 425
nmstacklimit Function, 426
NMTOCMNODE Conversion Function, 26
nmtocmnode Function, 426, 542
Node Functions, 542
Node Points

closest NM, corresponding to NM address, 421
CM, nearest to NM address, 426

in Translated Code, 540
nearest, 389

NONLOCALVARS Environment Variable, 39
NOT Operator, 32
Numeric Literals, 28

O
Object Code Translation, 317, 539
OCT, 539
OCT (Object Code Translator), 317
Octal Literals, 28
off Function, 427
Offset

bit or byte-relative, 461, 493
Offset Portion of Virtual Address, 427
Online Help Messages, 179
Opening a Dump File, 240
Opening the dump, 518
Operand

definition check, 366
Operand Modifiers, 44
Operand Token Interpretation, 44
Operating DAT, 517
operating restrictions, 519
Operating SAT, 525
Operating System Failures

analysis of, 517, 525
Operating System Version, 152
Operators, 29
OR Operator, 32
OUTBASE Environment Variable, 148
Output

paging, 154
terminal, suppressing, 153

Output Conversion Base
Native Mode, 147

Output Display, 21
Output Display Base, 136
Output Filtering, 141
Output Line

length of, 154

P
Page Length

list file, 144
Page Number of List File, 145
Paging for List File, 145
Paging Output, 154
Pascal Data Types, 297
Path Specification, 301

case sensitivity, 302
Index 575

Index
Pattern Matching, 531
PC Register, 126, 236
PCB (Process Control Block), 428
pcb Function, 428
PCBX, 429
pcbx Function, 429
PCOF

low two bits of, 149
priv level, 149

PCSF Environment Variable, 149
PDIRidx

determining first entry, 399
physical memory addressing, 517
Physical Segment Number, 429
phystolog Function, 429
PIB

virtual address, 430
pib Function, 430
PIBX

virtual address, 431
pibx Function, 431
PIN

display last active, 129
identifying current, 149
last running at dump, 144
process state of, 433

PIN Environment Variable, 149
Pipeline Queue

first in, 148
next in, 148

Pointer
coerce expression to USER library, 477, 511

Pointer Arithmetic, 31
Pointer Comparisons, 33
Pointer Data Types, 23

logical code, 24
Pointer Literals, 28

examples, 29
Pointers

absolute code, 24
coerce expression to long, 402
coerce expression to LPUB, 404
coerce expression to PROG pointer, 431
coerce expression to PUB pointer, 434
coerce expression to SYS, 468, 502
coerce expression to TRANS, 471, 505
compatibility mode, 24
convert virtual address to short, 407
custom named, 321
long to NM logical address, 405
native mode, 26
short, conversion to LCPTR, 445

Precedence
operand lookup, 44

Precedence of Operators, 38
Predefined Aliases

full listing of, 79
restoring, 79

Predefined Environment Variables, 131, 547
Predefined Functions, 40, 547

listing, 174
Print Process Tree, 122
Priv Level, 149
Privileged Mode Indicator, 149
Procedure Loading, 171
Procedure Name

and offset, for address, 424
convert to address, 371
for an address, 379

Procedure Name Symbols, 41
Procedure Names

looking up, 145
symbol information, 247, 295

Procedure Starting Point, 387
Procedures

dynamic loads, 193
Process

address of stack limit, 426
kill, 187
PCB virtual address, 428
PCBX virtual address, 429
stack starting address (NM), 425

Process Abort Calls, 53
Process Control Block Extension

virtual address, 429
Process Execution Mode, 140
Process Hangs

analysis of, 517, 525
Process Identification Number, 21

process state, 433
Process Information Block

virtual address, 430
Process Information Block Extension

virtual address, 431
Process Related Information, 241
Process Stacks

breakpoints on, 113
Process State

for PIN, 433
Process Termination

Abort, 75
Process Tree

printing, 122
Processes
576 Index

Index
dying, 139
pausing, 241

Processor CPU number, 137
Processor Status Register, 150
Processor Status Word

modify, 232
PROG Defined, 24
prog Function, 431
Program Counter

CM, 315
NM, 316

Program Counter Offset
NM, 148

Program Counter Register, 126, 236
as logical code address, 148

Program Counter SID
NM, 149

Program Counter sid.offset
NM, 148

Program Execution
continuing, 103

Program File
from relocatable library, 299

Program Window, 315, 316
CM, 136
OCT, 317

Program Window Address, 150
Program Window Examples, 546
Program Window Offset, 150
Program Window SEG, 150
Program Window SID, 150
Programs

currently loaded, 192
Prompt, 21

changing, 22
current user, 150
multiline command list, 22

Prompting for User Input, 451
Protection ID Registers

NM, format, 149
Pseudo Registers

PSP, 124, 235
RP, 124, 235

PSP Pseudo Register, 124, 235
pstate Function, 433
PSW (Processor Status Word), 232
PSW Alias, 143
PUB Defined, 24
pub Function, 434
Public Libraries

loading, 24
Purge Dump File, 250

purging dump file sets, 518
PXDB Preprocessor, 300

Q
Q Register (CM), 150
Q Window, 318
QM Window Address Mode Command, 344
Question Mark, 43, 44

for entry address, 42
QUIET Environment Variable, 150
Quote Marks, 29

within quoted strings, 29

R
R Window, 313
Radix

abbreviations, 21
input conversion, 142

RCTR Environment Variable, 151
Real Address

converting to virtual, 436
converting virtual to, 480, 515

Real Memory Display Window, 322
Real to Virtual Conversion, 436
Recovery Counter Register (NM), 151
Recursive Aliases, 76
RED Window Redraw Command, 327
REDO Command, 48
Redraw Window Display, 327
Redraw Windows, 329
Re-executing Commands, 121, 251
Register Dump, 54
Registers

Compatibility Mode, window, 313
control, 126, 236
control, NM, 137
coprocessor configuration, 135
current instruction register, 136
displaying contents of, 123
DL (CM), 139
DP (NM), 139
floating point, 127, 237
general, 124, 234
general, NM, 151
IA (instruction address), 126, 236
index (CM), 155
initialize, 185
interval timer, 144
list into a file, 252
modify contents of, 233
PC (program counter), 126, 236
Index 577

Index
processor status, 150
pseudo, 124, 235
Q (CM), 150
recovery counter (NM), 151
return register 1 (NM), 151
return register zero (NM), 151
S (Stack) for CM, 151
shift amount register (NM), 151
space, 125, 236
space registers (NM), 151
stack pointer (NM), 151
static link (NM), 151
status (CM), 151
temp (NM), 154
X (index, CM), 155
Zero (NM), 150

Regular Expressions, 29
Relocatable Library

conversion, 299
Renaming Windows, 345
Repetition of Commands, 135
Reserved Functions, 547
Reserved Variables, 547
Reset Default Window Sizes, 327
Reset Reference Count, 222
RESETDUMP CI Command, 56
Resetting the Error Stack, 47
RESTORE Command, 49
Restore Predefined Aliases, 79
Restoring saved macros and variables, 252
Restricting Search Path, 42
restrictions

SAT, 527
Resume User Program, 161
RET0 Environment Variable, 151
RET1 Environment Variable, 151
Return Pointer (NM), 151
Return Register 1 (NM), 151
Return Register Zero (NM), 151
Right-Justified Data, 141
Rn Environment Variable, 151
RP Environment Variable, 151
RP Pseudo Register, 124, 235
rtov Function, 436
RUN

RUN CI Command, 42
Run DAT.DAT.TELESUP, 517
Running Counter, 136

S
S (Stack) Register (CM), 151
S Environment Variable, 151

S Window, 319
S16 Defined, 23
s16 Function, 436
S32 Defined, 23
s32 Function, 438
S64

Defined, 23
s64 Function, 439
SADDR, 26
saddr Function, 440
SAR Environment Variable, 151
SAT, 525

DEBUG commands enabled for, 531
getting started, 526
invoking, 525
limitations, 527
restrictions, 527, 528
sample session, 526

SAT (Standalone Analysis Tool), 18
SAT and file function calls, 529
SAT commands, 529
SAT functions, 529
SAT, debug commands in, 528
Search Order

Compatibility Mode, 42
Native Mode, 42

Search Path, 42
restricting, 42

SEC Description, 35
Secondary Address

coerce expression to, 440
secondary memory addressing, 517
Secondary Storage Window, 322
secondary store data, 517
segment.offset, 24
Segmenter

ADDSL command, 24
PREP command, 24

Segments in Compatibility Mode, 25
Semaphore

for terminal locking, 153
Semicolons, 22

to separate commands, 72
Set a Breakpoint, 82
Set Membership, 463, 496
Set Values

user options, 254
Setdump Attribute

inheriting, 53
SETDUMP Intrinsic, 54
SETUP

SETDUMP CI Command, 54
578 Index

Index
Shift Amount Register (NM), 151
Short Pointer

coerce expression to, 443
comparisons to other pointers, 33
conversion to LCPTR, 445

SID, 442
defined, 26

sid Function, 442
sid.offset, 26
Sign of Literals, 28
Simple Data Type

value of, 467, 500
Single Step Command, 257
Single Stepping, 137
SIR (System Internal Resource), 75
SL.PUB.SYS, 519
Snapshot dump, 517
SOM (System Object Module) Symbol Table, 42
Space IDs, see SID, 26
Space Registers, 125, 236
Space Registers (NM), 151
Special Registers, 314
Special Registers Window, 314
SPTR, 23, 28
sptr Function, 443
Stack Frame Window, 318
Stack Limit

CM, 386
Stack Marker Level, 188
Stack Pointer Register (NM), 151
Stack Starting Address (NM), 425
Stack Starting Virtual Address

CM, 385
Stack Trace

abbreviated, 53
display, 269
full dual, 54
producing a full, 66
writing to a file, 69

stack traces in NM, 520
Stack Unwind Information

for return pointer, 151
Stack Window, 319
Stackdump, 52
Standalone Analysis Tool, 525
Standard Functions, 351, 483
Starting Address, 42
Starting DAT, 517
Static Link Register (NM), 151
Status Register (CM), 151
Status Word (NM)

modify, 232

Steps to use DAT, 517
stol Function, 444
stolog Function, 445
Storing macros and variables, 258
str Function, 446
strapp Function, 447
strdel Function, 448
strdown Function, 449
strextract Function, 450
String

convert to binary, 362
converting to lowercase, 449
delete leading blanks, 453
delete trailing blanks, 456, 489
extracting from address, 450
formatting like WRITE, 457, 489
inserting into, 451
length of, 452
maximum size of, 453
position of occurrence, 454
repeat string, 455
uppercase shift, 457

String Append, 447
String Comparisons, 34
String Data Types, 23
String Delete Function, 448
String Downshift Function, 449
String Extract Function, 450
String Insert Function, 451
String Left Trim, 453
String Length Function, 452
String Literals, 29

regular expressions, 29
String Operands

concatenation of, 37
String Position Function, 454
String Repeat Function, 455
String Right Trim, 456, 489
String Upshift Function, 457
String Write Function, 457, 489
strinput Function, 451
strins Function, 451
strlen Function, 452
strltrim Function, 453
strmax Function, 453
strmax in SAT, 529
strpos Function, 454
strrpt Function, 455
strrtrim Function, 456, 489
strup Function, 457
strwrite Function, 457, 489
Substitutions
Index 579

Index
command line, 44, 136
Substring Delete, 448
Substring of Source String, 446
Suppressing Terminal Output, 153
Switch Pointers/Registers, 241
symaddr Function, 461, 493
symbol access in DAT, 519
Symbol Definitions

accessing, 299
creating, 299

Symbol information, 247, 295
Symbolic Access, 297, 308

examples, 297
Symbolic Access Facility, 264
Symbolic Data Type File

close, 259
debugging, 260
dump data, 260
opening, 263
symbol name, 262

Symbolic Data Type Files, 264, 299
listing, 260

Symbolic Debug Information, 264
Symbolic Debug Records

pointers to, 263
Symbolic Debug/XL, 17
Symbolic Files, 299
Symbolic Formatter, 264

using, 303
Symbolic Formatting

examples, 297
Symbolic Names, 308
Symbolic Procedure Names, 41
Symbolic Type Information, 299
symconst Function, 462, 494
syminset Function, 463, 496
symlen Function, 464, 497
SYMOPEN Command, 300
SYMPATH_UPSHIFT Environment Variable,

152
SYMPREP Command, 300
symtype Function, 466, 498
symval Function, 467, 500
Synchronizing Debug Processes, 268
SYS Defined, 24
sys Function, 468, 502
sysglob, 144

operating system version, 152
System Console, 48, 137
System Debug commands in SAT, 528
System Debugging, 137
System Failures

analysing with DAT, 517
analysing with SAT, 525

System Object Module Symbol Table, 42
System Process Debugging, 48

T
Tape

making a dump tape, 517
Task Control Block

real address of, 470, 504
TCB, 140
TCB (Task Control Block), 241

real address of, 470, 504
tcb Function, 470, 504
TELESUP Account, 520
Temporary Registers (NM), 154
TERM_KEEPLOCK Environment Variable, 152
TERM_LDEV Environment Variable, 48, 144
Terminal Display Features, 135
Terminal Locking

via semaphore, 153
Terminal Output, 48

paging, 154
suppressing, 153

Terminals
for demonstrations, 117

Terminate Current Process, 75
Text Windows, 323
Tilde Character, 45
Time of Day, 154
Title of List File, 145
TOOLSET/XL, 17
Tracing Functions, 154
Tracing Macro Execution, 225
TRANS Defined, 26
trans Function, 471, 505
Translate CM Address, 265
Translated Code

breakpoints in, 543
CM breakpoint examples, 545
executing, 541
NM breakpoints in, 544
node functions, 542
node points in, 540
program window examples, 546

TRAP BRANCH ARM Command, 143
Traps

arming, disarming, 275
hardware, 275
listing, 275
MPE/iX X-Traps, 275

Turning off Windows, 328
580 Index

Index
Turning on Windows, 329
TX Window, 323
TXI Window Information Command, 336
TXS Window Shift Command, 346
Type Classes for Data Types, 26
Type of Component, 466, 498
Type of Evaluated Expression, 472, 506
Type of Variables, 39
typeof Function, 472, 506

U
U Window, 321
U16 Defined, 23
u16 Function, 474, 508
U32 Defined, 23
u32 Function, 476, 510
Unary Operator, 28
Unfreeze

code segment, 278
data segment, 278
virtual address range, 278

Unmap a File, 281
Update Windows, 282
Uppercase Hexadecimal Output, 142
Uppercase String Function, 457
Use Files, 21, 48
USE files in SAT, 529
User Configurable Options

set values, 254
USER Defined, 26
User Defined Variables, 284

delete, 286
listing, 287

user Function, 477, 511
User Input Lines

listfile, 144
User Interface, 21
USER Library Pointer, 477, 511
User Prompt, 150
User Window

allocate, 347
User Windows, 321

defining, 326
User-Defined Windows, 320, 321

change group, 328
Utilities

DUMP, 517

V
V Window, 321
vainfo Function, 479, 513

VAR Command, 39
VARD Command, 39
Variable Delete, 286
Variable List, 287
Variable Substitution, 302
Variable Table

maximum size of, 155
tracking size of, 155

Variables
global, 39
local, 39
names, 39
reserved, 547
scope, 39
type, 39

Version ID of DAT or Debug, 155
Version of Operating System, 152
VI Window Information Command, 336
Video Enhancements, 135

for stack markers, 146
Virtual Address

convert to long pointer, 444
convert to short pointer, 407
converting real to, 436
converting to real, 480, 515
corresponding procedure name, 424
for ICS base, 142
hashing into a hash table, 399
information for, 479, 513
NM procedure/data path, 410
of mapped file, 410
of PIB, 430
of process's PCB, 428
offset portion of, 427
PCBX of process, 429
SID of, 442
translate CM to, 265

Virtual Address Range
unfreeze, 278

virtual memory addressing, 517
Virtual Memory Window, 321
Virtual Space

file map index number, 408
Virtual to Real Conversion, 480, 515
Virtual Window Address, 155

offset portion, 155
sid portion, 155

vtor Function, 480, 515

W
WCOL, 288
WDEF Window Default Size Command, 327
Index 581

Index
WGRP Window Change Group Command, 328
While Loop, 294
Width of List File, 145
Window

defaults, 327
reset default sizes, 327

Window Abbreviations, 325
Window Back Command, 329
Window Commands, 325

on-line help, 293
TXC, 331
UC, 331
VC, 331

Window Define New Command, 349
Window Disable Command, 331
Window Enable Command, 332
Window Home Command, 335
Window Jump Command, 337
Window Kill Command, 341
Window Lines Command, 342
Window Modes, 313
Window Operations, 311, 325
Window Radix Command, 345
Window Shift Command, 346
Window Updates, 312

and Control-Y, 48
Windows, 309

address mode change, 344
allocate user-defined, 347
command, 309
current window, 331
defining new, 349
defining user, 326
disable, 331
enable, 332
enabling new, 349
example, CM, 310
example, NM, 311
form justification, 144
frame (Q), 309
general register, 314
general register (GR), 309
group (G), 309
home, return to, 335
information, 336
jump to address, 337
kill window, 341
ldev (L), 309
LDEV, address where aimed, 146
lines, setting, 342
memory (Z), 309
NM program, address where aimed, 147

program (P), 309
radix set, 345
real, 313
redraw, 329
register, 313
register (R), 309
rename, 345
scroll back, 329
scroll forward, 333
shift left/right, 346
special register (SR), 309
special registers, 314
stack (S), 309
stack frame, 318
stack markers, video enhancement for, 146
text (TX), 309
turn on, 329
turning off, 328
updating, 282
user-defined, 320, 328
video enhancements, 135
virtual, 313
virtual (V), 309

Windows Off Command, 328
Windows On Command, 329
WL, 288
WM Window Address Mode Command, 344
WP, 288
WPAGE, 288
Write List of Values, 288

X
X (Index) Register (CM), 155
XARITRAP Intrinsic, 55
XCODETRAP Intrinsic, 55
XLIBRARY Trace Trap, 278
XSYSTEM Trace Trap, 278

Z
Z Window, 322
Z Window Address, 155
Zero Register (NM), 150
582 Index

	Preface
	1� INTRODUCTION
	What Is Debug?
	What Is the Dump Analysis Tool (DAT)?
	What Is the Standalone Analysis Tool (SAT)?
	How to Debug

	2� User Interface
	Command Line Overview
	Data Types
	Integer Types
	Boolean Type
	String Types
	Pointer Types
	Extended Address Types
	Type Classes

	Literals
	Numeric Literals
	Pointer Literals
	String Literals
	Regular Expression String Literals

	Operators
	Arithmetic Operators
	Boolean Operators
	Bit Operators
	Relational Operators
	Indirection Operator
	Concatenation Operator

	Expressions
	Operator Precedence
	Variables
	Environment Variables
	Predefined Functions
	Macros
	Procedure Name: Symbols
	Operand Lookup Precedence
	Command Line Substitutions
	Aliases
	Command Lookup Precedence
	Error Handling
	Control-Y
	Command History, REDO
	Debug Input/Output: The System Console
	Automatic DBUGINIT Files

	3� System Debug Interface Commands and Intrinsics
	Debug Interfaces
	Direct Calls
	Process Abort Calls

	Debug Command and Intrinsic Descriptions
	:DEBUG Command
	Syntax
	Parameters
	Discussion
	Example

	:RESETDUMP Command
	Syntax
	Discussion
	Example

	:SETDUMP Command
	Syntax
	Parameters
	Discussion
	Examples

	DEBUG Intrinsic
	Syntax
	Discussion
	Condition Codes
	Example

	HPDEBUG Intrinsic
	Syntax
	Parameters
	Discussion
	Condition Codes
	Example

	HPRESETDUMP Intrinsic
	Syntax
	Parameters
	Discussion
	Condition Codes
	Example

	HPSETDUMP Intrinsic
	Syntax
	Parameters
	Discussion
	Condition Codes
	Example

	RESETDUMP Intrinsic
	Syntax
	Discussion
	Condition Codes
	Example

	SETDUMP Intrinsic
	Syntax
	Parameters
	Discussion
	Condition Codes
	Examples

	STACKDUMP Intrinsic
	Syntax
	Parameters
	Discussion
	Condition Codes
	Examples

	STACKDUMP' Intrinsic
	Syntax
	Parameters
	Discussion
	Condition Codes
	Example

	4� System Debug Command Specifications :-Exit
	:
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	=
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ABORT
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ALIAS
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ALIASD[EL]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ALIASINIT
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ALIASL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	B (break)
	Syntax
	Parameters
	NM Code Examples
	CM Code Examples
	Translated Code Examples
	Limitations, Restrictions

	BD
	Syntax
	Parameters
	Examples
	Translated Code Examples
	Limitations, Restrictions

	BL
	Syntax
	Parameters
	Examples
	Translated Code Examples
	Limitations, Restrictions

	CLOSEDUMP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	CM
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	CMDL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	CMG
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	C[ONTINUE]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	D (display)
	Syntax
	Parameters
	Examples
	Examples of Code Displays
	Listing Disassembled Code to a File
	Limitations, Restrictions

	DATAB
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DATABD
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DATABL
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DEBUG
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DELETE
	Syntax

	DEMO
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DIS
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DO
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DPIB
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DPTREE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DR
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	DUMPINFO
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ENV
	Syntax
	Parameters
	The Environment Variables - Sorted by Group
	The Environment Variables - Sorted Alphabetically
	Examples
	Limitations, Restrictions

	ENVL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ERR
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ERRD[EL]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	ERRL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	E[XIT]
	Syntax

	5� System Debug Command Specifications Fx-LOG
	F
	Syntax
	Parameters
	Examples
	FT (Format Type) Examples
	FV (Format Virtual) Examples
	MPE XL Operating System Examples
	Limitations, Restrictions

	F
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	FINDPROC
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	FOREACH
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	FPMAP
	Syntax
	Examples
	Limitations, Restrictions

	FUNCL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	GETDUMP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	H[ELP]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	HIST[ORY]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	IF
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	IGNORE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	INIT
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	KILL
	Syntax
	Parameters
	Examples
	Limitations, Restrictions.

	LEV
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	LIST
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	LISTREDO
	Syntax

	LOADINFO
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	LOADPROC
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	LOC
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	LOCL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	LOG
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	6� System Debug Command Specifications M-X
	M (modify)
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MAC[RO]
	Syntax
	Parameters
	Examples
	Discussion - Macro Parameters
	Macro Functions
	Macro Commands
	Limitations, Restrictions

	MACD[EL]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MACECHO
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MACL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MACREF
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MACTRACE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MAP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MAPL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MODD
	Syntax
	Parameters
	Examples

	MODL
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MPSW
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	MR
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	NM
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	OPENDUMP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	PAUSE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	PIN
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	PROCLIST
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	PSEUDOMAP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	PURGEDUMP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	REDO
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	REGLIST
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	RESTORE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	RET[URN]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	SET
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	SET
	Syntax

	SHOW
	Syntax

	S, SS
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	STORE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	SYMCLOSE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	SYMF[ILES]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	SYMINFO
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	SYML[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	SYMOPEN
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	SYMPREP
	Syntax
	Parameters
	Limitations, Restrictions
	Example

	T (translate)
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	TERM
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	TR[ACE]
	Syntax
	Parameters
	NM Examples
	CM Examples
	Translated Code Examples
	Dual Mode Examples
	Limitations, Restrictions

	TRAP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	UF
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	UNMAP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	UPD
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	USE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	VAR
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	VARD[EL]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	VARL[IST]
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	W (write)
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	WHELP
	Syntax
	Parameters
	Limitations, Restrictions

	WHILE
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	XL
	Syntax

	XLD
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	XLL
	Syntax

	7� Symbolic Formatting Symbolic Access
	Creating and Accessing Symbol Definitions
	Generate Symbolic Type Information
	Convert The Relocatable Library into a Program File
	Preprocess the Program File with PXDB
	Prepare the Program File with SYMPREP
	Open the Symbolic Data Type File with SYMOPEN

	The Path Specification
	Syntax
	Parameters
	Variable Substitution
	Case Sensitivity

	Using the Symbolic Formatter
	Formatting Types
	Formatting Data

	Using Symbolic Access

	8� System Debug Windows
	A Typical Screen Display of CM Windows
	A Typical Screen Display of NM Windows
	Window Operations
	Window Updates
	Window Real/Virtual Modes
	R - The CM Register Window
	Gr - The NM General Registers Window
	Sr - The NM Special Registers Window
	P (cmP) - The CM Program Window
	P (nmP) - The NM Program Window
	Program Windows for Object Code Translation
	Q - The CM Stack Frame Window
	S - The CM Stack Window
	G - The Group (of User) Window
	The Command Window
	U - The User Windows
	V - The Virtual Windows
	Z - The Memory Window
	L - The LDEV Window
	TX- The Text Windows

	9� System Debug Window Commands
	RED
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	WDEF
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	WGRP
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	WOFF
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	WON
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	UW
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	w
	Syntax
	Parameters
	Examples
	Limitations, Restrictions

	10� System Debug Standard Functions
	func abstolog
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func asc
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func ascc
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func bin
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func bitd
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func bitx
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func bool
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func bound
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func btow
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cisetvar
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func civar
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmaddr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmbpaddr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmbpindex
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmbpinstr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmentry
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmg
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmnode
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmproc
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmproclen
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmseg
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmstackbase
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmstackdst
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmstacklimit
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmstart
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmtonmnode
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cmva
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cst
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func cstx
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func dstva
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func eaddr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func errmsg
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func grp
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func hash
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func lgrp
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func logtoabs
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func lptr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func lpub
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func ltolog
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func ltos
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func macbody
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func mapindex
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func mapsize
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func mapva
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmaddr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmbpaddr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmbpindex
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmbpinstr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmcall
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmentry
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmfile
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmmod
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmnode
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmpath
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmproc
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmstackbase
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmstacklimit
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func nmtocmnode
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func off
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func pcb
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func pcbx
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func phystolog
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func pib
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func pibx
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func prog
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func pstate
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func pub
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func rtov
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func s16
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func s32
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func s64
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func saddr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func sid
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func sptr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func stol
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func stolog
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func str
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strapp
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strdel
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strdown
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strextract
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strinput
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strins
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strlen
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strltrim
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strmax
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strpos
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strrpt
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strrtrim
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strup
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strwrite
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symaddr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symconst
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func syminset
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symlen
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symtype
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symval
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func sys
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func tcb
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func trans
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func typeof
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func u16
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func u32
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func user
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func vainfo
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func vtor
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func vtos
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	11� System Debug Standard Functions
	func civar
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strrtrim
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func strwrite
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symaddr
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symconst
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func syminset
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symlen
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symtype
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func symval
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func sys
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func tcb
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func trans
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func typeof
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func u16
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func u32
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func user
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func vainfo
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	func vtor
	Syntax
	Formal Declaration
	Parameters
	Examples
	Limitations, Restrictions

	12� Dump Analysis Tool (DAT)
	How DAT Works
	Operating DAT
	Using the info= String
	Automatic
	Operating Restrictions

	The DAT Macros
	How to Get Started with the DAT Macros
	Examples

	13� Standalone Analysis Tool (SAT)
	How SAT Works
	Operating SAT
	Operating Restrictions
	SAT Functions and Commands

	A� Patterns and Regular Expressions
	Literal Expressions (Match Exactly These Characters)
	Metacharacters
	Character Classes (Match Any One of the Following Characters)
	Expression Closure (Match Zero or More of the Previous Expressions)
	Technical Summary

	B� Expression Diagrams
	C� Emulated/Translated CM Code
	Debugging Emulated CM Code
	Object Code Translation
	Node Points in Translated Code
	Executing a Translated Section
	The Node Functions
	CM Breakpoints in Translated Code
	NM Breakpoints in Translated Code
	Examples: CM Breakpoints in Translated Code
	Examples: Program Windows for Translated Code

	D� Reserved Variables/Functions
	E� Command Summary

