
900 Series HP 3000 Computers

HP Link Editor/XL Reference

Manual

ABCDE

HP Part No. 32650-90030

Printed in U.S.A. 19901201

Fourth

E1290

DRAFT 11/7/97 02:46

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages
in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced or translated
to another language without the prior written consent of
Hewlett-Packard Company.

copyright c1987, 1988, 1989, 1990 by Hewlett-Packard Company

Print History The following table lists the printings of this document, together
with the respective release dates for each edition. The software
code printed alongside the current edition date indicates the version
level at the time the manual was issued. Many product releases do
not require changes to the document. Therefore, do not expect a
one-to-one correspondence between product releases and document
editions.

First Edition November 1987

Second Edition October 1988

Third Edition October 1989

Fourth Edition December 1990 HP30315A.04.00

DRAFT

11/7/97 02:46

iii

Preface This manual describes the HP Link Editor/XL subsystem and how
you use it with 900 Series HP 3000 computer systems. The manual
assumes that you are an experienced programmer, but not necessarily
familiar with \linkers" and \loaders".

This manual contains the following chapters:

Chapter 1 Gives an overview of HP Link Editor/XL - what it is,
when to use it and how it works. This chapter also
summarizes the di�erences between Link Editor/XL
and its MPE counterpart, the MPE V Segmenter.

Chapter 2 Contains a simple tutorial to help you become
familiar with the primary functions of HP Link
Editor/XL. Since HP Link Editor/XL di�ers
substantially from the MPE V Segmenter, this
chapter helps those familiar with MPE V to quickly
understand the di�erence.

Chapter 3 Describes the �les used by HP Link Editor/XL
and gives the rules for entering Link Editor/XL
commands.

Chapter 4 Discusses the HP Link Editor/XL commands that
create and display executable program �les.

Chapter 5 Discusses the HP Link Editor/XL commands that
create and maintain relocatable libraries.

Chapter 6 Discusses the HP Link Editor/XL commands that
create and maintain executable libraries.

Chapter 7 Discusses advanced ways to use HP Link Editor/XL.

Appendix A Lists warning and error messages, along with their
remedial actions.

Appendix B Explains how HP COBOL II/XL programs interface
with HP Link Editor/XL.

Appendix C Explains how HP FORTRAN 77/XL programs
interface with HP Link Editor/XL.

Appendix D Explains how HP Pascal/XL programs interface with
HP Link Editor/XL.

Appendix E Explains how HP C/XL programs interface with HP
Link Editor/XL.

Appendix F Compares HP Link Editor/XL to the MPE V
Segmenter.

Appendix G Contains the HP Link Editor/XL command
summary.

DRAFT

11/7/97 02:46

v

Additional
Documentation

This manual does not discuss the MPE XL operating system in
detail. Only those aspects relevant to HP Link Editor/XL are
mentioned. Similarly, details about compiling a program using
HP COBOL II, HP FORTRAN 77, HP Pascal, and HP C are
only discussed to the extent that they a�ect how you use HP Link
Editor/XL. See the appropriate operating system or language manual
for complete information about those subjects. The following is a
partial list of the operating system and language manuals:

Manual Title Manual
Part Number

Number to Use to
Order Manual

MPE XL Commands Reference Manual 32650-90003 32650-60002

MPE XL Intrinsics Reference Manual 32650-90028 32650-60013

HP COBOL II/XL Reference Manual 31500-90001 31500-60001

HP COBOL II/XL Reference Manual Supplement 31500-90005 31500-60001

HP COBOL II/XL Programmer's Guide 31500-90002 31500-60002

HP FORTRAN 77/XL Reference Manual 31501-90010 31501-60002

HP FORTRAN 77/XL Programmer's Guide 31501-90011 31501-60004

HP Pascal Reference Manual 31502-90001 31502-60005

HP Pascal Programmer's Guide 31502-90002 31502-60006

HP C/XL Reference Manual 92434-90001 31506-60001

HP C/XL Library Reference Manual 30026-90001 31506-60001

HP C Programmer's Guide 92434-90002 31506-60002

HP Symbolic Debugger/XL User's Guide 31508-90003 31508-60003

HP Symbolic Debugger/XL Quick Reference Guide 31508-90005 31508-60004

DRAFT

11/7/97 02:46

vii

Conventions CASE In a syntax statement, commands and
keywords must be entered in exactly the
order shown, though you can enter them in
either uppercase or lowercase. For example:

SHOWJOB

can be entered as any of the following:

showjob ShowJob SHOWJOB

It cannot, however, be entered as any of the
following:

shojwob Shojob SHOW_JOB

italics In a syntax statement, a word in italics
represents a parameter or argument that you
must replace with an actual value. In the
following example, you must replace �lename
with the name of the �le:

RELEASE �lename

punctuation In a syntax statement, punctuation characters
(other than brackets, braces, vertical bars,
and ellipses) must be entered exactly as
shown. In the following example, the
parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive
dialog, user input and user responses to
prompts are indicated by underlining. In
the following example, \yes" is the user's
response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required
elements. When several elements are stacked
within braces, you must select one. In the
following example, you must select either ON
or OFF:

SETMSG

�
ON

OFF

�

Commands listed in braces are called
command lists throughout this manual.

[] In a syntax statement, brackets enclose
optional elements. In the following example,
,TEMP can be omitted:

DRAFT

11/7/97 02:46

ix

PURGE �lename[,TEMP]

When several elements are stacked within
brackets, you can select one or none of the
elements. In the following example, you can
select devicename or deviceclass or neither.
The elements cannot be repeated.

SHOWDEV

�
devicename

deviceclass

�

x DRAFT

11/7/97 02:46

[. . .] In a syntax statement, horizontal ellipses
enclosed in brackets indicate that you can
repeatedly select the element(s) that appear
within the immediately preceding pair of
brackets or braces. In the example below,
you can select itemname zero or more times.
Each instance of itemname must be preceded
by a comma:

[, itemname] [...]

In the example below, you only use the
comma as a delimiter if itemname is
repeated; no comma is used before the �rst
occurrence of itemname:

[itemname] [,...]

| . . . | In a syntax statement, horizontal ellipses
enclosed in vertical bars indicate that you
can select more than one element within the
immediately preceding pair of brackets or
braces. However, each particular element
can only be selected once. In the following
example, you must select A, AB, BA or B. The
elements cannot be repeated.

�
A

B

�
| . . . |

. . .
... In an example, horizontal or vertical ellipses

indicate where portions of the example have
been omitted.

t In a syntax statement, the space symbol t
shows a required blank. In the following
example, modi�er and variable must be
separated with a blank:

SET [(modi�er)]t(variable);

� � The symbol � �indicates a key on the
keyboard. For example, �RETURN� represents
the carriage return key.

�CNTL� char �CNTL� char indicates a control character. For
example, �CNTL�Y means you press the control
key and the Y key simultaneously.

DRAFT

11/7/97 02:46

xi

base pre�xes The pre�xes %, #, and $ specify the
numerical base of the value that follows:

%num speci�es an octal number
num speci�es a decimal number
$ num speci�es a hexadecimal number

If no base is speci�ed, decimal is assumed.

Bits (bit:length) When a parameter contains more than one
piece of data within its bit �eld, the di�erent
data �elds are described in the format Bits (
bit:length) bit is the �rst bit in the �eld and
length is the number of consecutive bits in
the �eld. For example, Bits (13:3) indicates
bits 13, 14, and 15:

xii DRAFT

11/7/97 02:46

Contents

1. Introduction to HP Link Editor/XL
When To Use HP Link Editor/XL 1-2
If You're Familiar with MPE V Segmenter 1-3
How HP Link Editor/XL Works 1-4
Creating Executable Program Files 1-4
Using Relocatable Libraries 1-8
Using Executable Libraries 1-8

Where To Go from Here 1-9

2. Getting Started with HP Link Editor/XL
Linking One Relocatable Object File 2-2
Linking Several Relocatable Object Files 2-3
Using a Relocatable Library 2-4
Creating a Relocatable Library 2-4
Searching a Relocatable Library 2-5
Updating a Relocatable Library 2-5

Using an Executable Library 2-6
Creating an Executable Library 2-6
Searching an Executable Library 2-7
Updating an Executable Library 2-8

Using Both Relocatable and Executable Libraries
within a Program 2-9
Creating the Relocatable Library 2-9
Creating the Executable Library 2-9
Linking with Libraries and Relocatable Object Files 2-10

Sample Programs 2-12

3. Using HP Link Editor/XL Files and Commands
The Files Used By HP Link Editor/XL 3-2
The Relocatable Object File 3-3
The $STDINX File 3-3
The Relocatable Library File 3-3
The $STDLIST File 3-5
The LINKLIST File 3-5
The Executable Program File 3-6
The Executable Library File 3-6

Starting HP Link Editor/XL 3-7
Ending HP Link Editor/XL 3-8
Entering HP Link Editor/XL Commands 3-9
Using Upper and Lower Case Characters 3-9
Using Keyword or Positional Parameters 3-9
Continuing Commands from One Line to Another 3-11

DRAFT

11/7/97 02:46

Contents-1

Using Indirect Files 3-11
Re-executing HP Link Editor/XL Commands . . . 3-13
Checking the Execution Status of Commands . . . 3-14
Executing MPE XL Commands 3-15
Getting Help 3-16

4. Creating Executable Program Files
The Executable Program File Commands 4-3
The Executable Program Commands Reference . . 4-4
ALTPROG 4-5
LINK . 4-8
LISTOBJ 4-14
LISTPROG 4-20

5. Maintaining Relocatable Libraries
Relocatable Libraries 5-2
The Relocatable Library Commands 5-4
The Relocatable Library Commands Reference . . . 5-5
ADDRL 5-6
BUILDRL 5-10
CLEANRL 5-11
COPYRL 5-12
EXTRACTRL 5-15
HIDERL 5-18
LISTRL 5-19
PURGERL 5-27
REVEALRL 5-30
RL . 5-31
SHOWRL 5-32

6. Maintaining Executable Libraries
Executable Libraries 6-2
The Executable Library Commands 6-3
The Executable Library Commands Reference . . . 6-4
ADDXL 6-5
BUILDXL 6-13
CLEANXL 6-14
COPYXL 6-15
LISTXL 6-18
PURGEXL 6-26
SHOWXL 6-28
XL . 6-29

Contents-2 DRAFT

11/7/97 02:46

7. Advanced Topics
The MPE XL Programming Environment 7-2
Virtual Memory 7-2
External Calls 7-3
Privilege Levels 7-4
Long Branch Stubs for Procedure Calls 7-5
Procedure Labels 7-5
HP Link Editor/XL Environment Files 7-6
Stack Unwinding 7-6

Millicode 7-7
Improving Performance with Locality Sets 7-8

A. Messages
User Errors (1000-1499) A-2
Warning Messages (1500-1999) A-37
System Errors (2000-2999) A-42
Language Subsystem Errors (3000-3999) A-48
Internal Errors (4000-4999) A-73

B. Using HP Link Editor/XL with HP COBOL II/XL

C. Using HP Link Editor/XL with HP FORTRAN 77/XL

D. Using HP Link Editor/XL with HP Pascal/XL

E. Using HP Link Editor/XL with HP C/XL

F. Di�erences Between HP Link Editor/XL and MPE V
Segmenter
Di�erences in the Programming Environment . . . F-2
USL Files and Relocatable Object Files F-3
Relocatable Libraries F-4
Segmented and Executable Libraries F-5

G. HP Link Editor/XL Command Summary

Index

DRAFT

11/7/97 02:46

Contents-3

Figures

1-1. Creating an Executable Program File 1-5
1-2. Creating an Executable Program File from Three

Relocatable Object Files 1-6
2-1. Linking One HP COBOL II Relocatable Object File 2-2
2-2. Linking Two HP FORTRAN 77 Relocatable Object

Files 2-3
2-3. Relinking Two HP FORTRAN 77 Relocatable Object

Files 2-3
2-4. Creating a Relocatable Library and Adding Modules

to It 2-4
2-5. Searching a Relocatable Library 2-5
2-6. Updating a Relocatable Object Module in a

Relocatable Library 2-5
2-7. Creating an Executable Library and Adding a

Module To It 2-6
2-8. Creating an Executable Module From Several

Relocatable Object Files 2-7
2-9. Naming an Executable Library To Search 2-7
2-10. Updating an Executable Module in an Executable

Library 2-8
2-11. Creating a Relocatable Library and Adding a Module 2-9
2-12. Creating an Executable Library and Adding a

Module 2-9
2-13. Linking Libraries and Relocatable Object Files . . 2-10
2-14. Alternative Speci�cation for Executable Libraries . 2-11
2-15. The HP COBOL II Source File, EX1SRC 2-13
2-15. The HP COBOL II Source File, EX1SRC

(Continued) 2-14
2-16. The HP FORTRAN 77 Source File, EX2ASRC . . 2-15
2-16. The HP FORTRAN 77 Source File, EX2ASRC

(Continued) 2-16
2-17. The HP FORTRAN 77 Source File, EX2BSRC . . 2-17
2-17. The HP FORTRAN 77 Source File, EX2BSRC

(Continued) 2-18
2-17. The HP FORTRAN 77 Source File, EX2BSRC

(Continued) 2-19
2-18. The HP FORTRAN 77 Source File, LIB1SRC . . 2-20
2-19. The HP FORTRAN 77 Source File, LIB2SRC . . 2-21
2-20. The HP FORTRAN 77 Source File, LIB3SRC . . 2-22
2-21. The HP FORTRAN 77 Source File, LIB4SRC . . 2-23
2-22. The HP FORTRAN 77 Source File, LIB5SRC . . 2-24
2-23. The HP Pascal Source File, EX3ASRC 2-25

Contents-4 DRAFT

11/7/97 02:46

2-24. The HP Pascal Source File, EX3BSRC 2-26
2-25. The HP Pascal Source File, EX3CSRC 2-27
2-26. The HP Pascal Source File, EX3DSRC 2-28
3-1. The Files Used by HP Link Editor/XL 3-2
4-1. Executable Program File Commands 4-3
5-1. Files Used for Creating and Maintaining a

Relocatable Library File 5-1
5-2. The Structure of a Relocatable Library 5-2
5-3. Relocatable Library Commands 5-4
5-4. The ADDRL Command without the MERGE Option 5-8
5-5. The ADDRL Command with the MERGE Option 5-9
6-1. Creating an Executable Library File 6-1
6-2. The Structure of an Executable Library 6-2
6-3. Executable Library Commands 6-3
6-4. The ADDXL Command without the MERGE Option 6-11
6-5. The ADDXL Command with the MERGE Option 6-12
7-1. Code and Data Quadrants 7-2

DRAFT

11/7/97 02:46

Contents-5

Tables

4-1. Symbol Types and Scopes (LISTOBJ) 4-18
4-2. Symbol Types and Scopes (LISTPROG) 4-24
5-1. Symbol Types and Scopes (LISTRL) 5-25
6-1. Symbol Types and Scopes (LISTXL) 6-25

Contents-6 DRAFT

11/7/97 02:46

1

Introduction to HP Link Editor/XL

HP Link Editor/XL is a software tool that prepares compiled
programs for execution on HP 3000 Series 900 computers. HP Link
Editor/XL also lets you create and maintain libraries containing
subprograms that you frequently use.

This chapter explains when to use HP Link Editor/XL and gives
an overview of how it works. It also compares it to its MPE V
counterpart, the MPE V Segmenter.

DRAFT

11/7/97 02:46

Introduction to HP Link Editor/XL 1-1

When To Use HP
Link Editor/XL

Most HP compilers (for example, HP COBOL II) let you compile,
link, and execute a program in one step. Or you can compile and link
in one step. In these cases, you do not execute HP Link Editor/XL
directly to perform the linking function. It is executed automatically.

There are occasions, however, when you may want to compile and
link a program yourself in separate steps. You may need to directly
execute HP Link Editor/XL when:

You need to create an executable program �le (the executable form
of a program) which includes several di�erent modules that have
been compiled separately.

You need to change one or more of the default parameters
associated with the program. For example, you may need to
change the execution stack size.

You want to use one or more library routines in your program.
HP Link Editor/XL creates and maintains two kinds of libraries
- relocatable libraries and executable libraries . Routines in
relocatable libraries are in their compiled format. Routines in
executable libraries are in executable form. Libraries minimize
duplication of programming e�ort while promoting consistency and
standardization within a programming organization. They also
help to produce easily-maintained programs.

1-2 Introduction to HP Link Editor/XL DRAFT

11/7/97 02:46

If You're Familiar
with MPE V
Segmenter . . .

If you've used the MPE V Segmenter, the following list should
quickly familiarize you with how it di�ers from HP Link Editor/XL
(for a complete discussion of the di�erences between MPE V
Segmenter and HP Link Editor/XL, see appendix F):

HP Link Editor/XL processes relocatable object �les and
relocatable libraries. Relocatable libraries are functionally
indistinguishable from user subprogram library (USL) �les; they
contain one or more relocatable object modules for each program.
To simulate the creation of USL �les under MPE V (to create a
relocatable library), you must compile a program using the RLFILE
compiler directive.

HP Link Editor/XL allows more exibility in the use of relocatable
libraries. It searches as many libraries as you need when you create
a program.

Normally, each module in a relocatable library comes from a
separate source �le. This makes most e�cient use of library space
and allows each module to be manipulated and linked individually.
However, with certain languages, you can create a separate module
in the library for each procedure or subprogram in the source �le.
You do this at compile time by using the RLFILE option. (See your
compiler manuals for details on RLFILE.) This feature simulates the
use of relocatable binary modules (RBMs) and may be the most
convenient way to place existing source �les in a relocatable library.

HP Link Editor/XL can handle modules of any size. You do not
have to segment large modules or a large library.

DRAFT

11/7/97 02:46

Introduction to HP Link Editor/XL 1-3

How HP Link
Editor/XL Works

HP Link Editor/XL (the \link editor") processes object code
produced by high-level language compilers, such as HP COBOL II.
Object code is saved in relocatable object �les . The link editor links
relocatable object �les for execution by assigning memory locations
to them and any external routines that they use.

In addition to creating executable program �les, you can use HP
Link Editor/XL to create and maintain relocatable and executable
libraries.

The next three sections discuss the tasks of creating executable
program �les, and using relocatable and executable libraries in more
detail.

Creating Executable
Program Files

Source �les can contain one or more programs, procedures or
subprograms. If you compile the program using the RLFILE option,
each program, procedure or subprogram in the source �le is a
separate compilation unit and produces a separate relocatable object
module in a relocatable library. If you compile without using the
RLFILE option, the source �le (no matter how many programs,
procedures or subprograms it contains) is one compilation unit and
produces one relocatable object module. After compilation, HP Link
Editor/XL transforms the relocatable object �le or modules into an
executable program �le. Figure 1-1 depicts this process.

1-4 Introduction to HP Link Editor/XL DRAFT

11/7/97 02:46

Figure 1-1. Creating an Executable Program File

When the link editor links separately compiled relocatable object
�les or relocatable modules from a relocatable library, it must be
able to �nd procedure and variable name references (symbols) used
in the modules. Since compilers process only one compilation unit at
a time, they cannot resolve references outside the compilation unit.
The unresolved references are called external references. Compilers
generate a symbol table in each relocatable object module which
allows the link editor to resolve external references. The symbol table
lists all subroutine and variable names that are de�ned (or exported)
by that object module. It also lists all subroutine and variable names
that are referenced (imported) but not de�ned by that module. The
compiler then assigns relative (relocatable) addresses to the exported
symbols in the module.

DRAFT

11/7/97 02:46

Introduction to HP Link Editor/XL 1-5

HP Link Editor/XL begins by merging relocatable object modules
so that the executable program contains all the code and data in
the input �les. Figure 1-2 shows how an executable program �le is
created from three relocatable object �les.

Figure 1-2.

Creating an Executable Program File from Three Relocatable Object

Files

1-6 Introduction to HP Link Editor/XL DRAFT

11/7/97 02:46

If a relocatable library is searched during linking, only those modules
that export unresolved symbols are included in the executable
program �le. When relocatable object modules are merged, many
external references are resolved. References that are still unresolved
are external calls and are resolved when the program is loaded
for execution. (The loader subsystem of the MPE XL operating
system resolves external calls. It searches executable libraries and
the MPE XL System Library.) Finally, the link editor assigns
virtual addresses to each symbol, assuring that there are no address
overlaps. Although the addresses are \�nal" addresses, they can still
be relocated when the program is loaded for execution.

Chapters 3 and 4 give more information about executable program
�les.

DRAFT

11/7/97 02:46

Introduction to HP Link Editor/XL 1-7

Using Relocatable
Libraries

A relocatable library (RL) is a �le containing one or more relocatable
object modules which can be incorporated into executable program
�les during linking. Use relocatable libraries for routines that
you want to become integral parts of executable program �les.
When a relocatable object module is linked into a program, the
program contains its own unique copy of the module. Changes to
the relocatable object module in the library are not reected in the
linked program unless the program is relinked. Routines linked from
relocatable libraries can share global data.

Each relocatable library contains a Library Symbol Table (LST) at
the beginning of the �le. The LST lists each exported symbol in each
module of the library.

You can create as many relocatable libraries as you need. You can
add modules to a relocatable library from relocatable object �les.
You can also copy modules from one relocatable library to another or
to a relocatable object �le, and you can purge and list modules in a
relocatable library. For more information on relocatable libraries, see
chapters 3 and 5.

Using Executable
Libraries

An executable library �le contains one or more executable modules
that you can load into memory and use at run time. Although the
loader searches the executable libraries at run time, you can use the
link editor to identify the ones to search in an executable program
�le. Put routines in executable libraries when the routines are used
by programs that are run concurrently. The programs can then use
the same physical copy of code.

Note Routines in executable libraries cannot share global data with the
calling program and cannot have outer blocks.

Each executable library contains a Library Symbol Table (LST)
at the beginning of the �le. During linking, the link editor places
unresolved references in an import list in each executable program
�le. At run time, the loader resolves the symbols in the import
list by searching Library Symbol Tables in one or more executable
libraries. It builds an External Reference Table (XRT) that tracks
externally-called procedures and allows them to be shared.

You can search as many executable libraries as you need. You can
add relocatable object modules to an existing library, merging them
when necessary. You can copy executable modules from one library
to another, purge executable modules from a library, and list the
contents of an executable library. For more information about
executable libraries, see chapters 3 and 6.

1-8 Introduction to HP Link Editor/XL DRAFT

11/7/97 02:46

Where To Go from
Here

Now that you have read this chapter, you should have a general idea
of how HP Link Editor works and the �les that it uses.

Continue reading chapters 2 and 3. Chapter 2 gives short examples
of common ways to use HP Link Editor/XL and chapter 3 gives
details about the �les that HP Link Editor/XL uses and how to enter
commands.

Use chapters 4, 5 and 6 as reference chapters.

See chapter 7 for information about some of the more advanced ways
to use HP Link Editor/XL.

For speci�c information about how the HP COBOL II, HP
FORTRAN 77, HP Pascal and HP C compilers interface with HP
Link Editor/XL, see appendices B, C, D, and E respectively.

DRAFT

11/7/97 02:46

Introduction to HP Link Editor/XL 1-9

2

Getting Started with HP Link Editor/XL

This chapter presents simple examples of the basic ways to use HP
Link Editor/XL.

The link editor commands are not discussed in detail. Rather,
the intent is to give you a quick overview of how to use them
to accomplish some common tasks. Chapters 3 through 6 give
additional information about the commands that appear in this
chapter.

The examples in this chapter show how to do the following:

Link one relocatable object �le.

Link several relocatable object �les.

Use relocatable libraries.

Use executable libraries.

Use both relocatable and executable libraries within a program.

Note All of the source �les used in the examples in this chapter are listed
in the last section of the chapter titled \Sample Programs".

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-1

Linking One
Relocatable Object
File

Link a relocatable object �le yourself, rather than have it linked
automatically, when you want to use �le names or execution-time
defaults that vary from the defaults supplied by the compiler.
(Execution-time defaults include type checking levels, capability-class
attributes, stack size, and heap size).

For example, you can compile, link and execute the HP COBOL II
program, EX1SRC, using one command:

:COB85XLG EX1SRC

This command is identical to using the following three commands:

:COB85XL EX1SRC

:LINK

:RUN $OLDPASS

Both of the above methods use $OLDPASS for the relocatable object
�le and for the executable program �le.

Figure 2-1 shows how to compile and link an HP COBOL II source
�le while explicitly naming the relocatable object �le and the
executable program �le to be used. The COB85XL command compiles
the source �le, EX1SRC, producing the relocatable object �le, EX1OBJ.
The MPE XL LINK command on the second line in �gure 2-1 creates
the executable program �le, EX1PROG.

:COB85XL EX1SRC,EX1OBJ

:LINK FROM=EX1OBJ;TO=EX1PROG

Figure 2-1. Linking One HP COBOL II Relocatable Object File

2-2 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

Linking Several
Relocatable Object
Files

When compiling large programs that consist of several separately
compiled modules, you must execute HP Link Editor/XL directly. It
is a good idea to split a large program into modules because each
module can be modi�ed and recompiled independently. You can use
the link editor at any time to relink the modules, creating a new
executable program �le.

Figure 2-2 shows the commands that compile and link two HP
FORTRAN 77 source �les, EX2ASRC and EX2BSRC. The HP
FORTRAN 77 compiler produces the relocatable object �les,
EX2AOBJ and EX2BOBJ. The :LINK command creates a new executable
program �le, EX2PROG, consisting of both relocatable object �les.

:FTNXL EX2ASRC,EX2AOBJ

:FTNXL EX2BSRC,EX2BOBJ

:LINK FROM=EX2AOBJ,EX2BOBJ;TO=EX2PROG

Figure 2-2. Linking Two HP FORTRAN 77 Relocatable Object Files

If, after creating the executable program �le, you need to update one
or more modules, you must modify and recompile those modules,
then relink all of them. For example, �gure 2-3 shows how to
recompile the HP FORTRAN 77 source �le, EX2BSRC (which
was linked in �gure 2-2), and to recreate the executable program
�le, EX2PROG. The compile command (:FTNXL) overwrites the
previous contents of EX2BOBJ. EX2AOBJ remains unchanged from the
previous compilation. (Normally it is a good idea during program
development to save relocatable object �les. This avoids having to
recompile source �les that have not changed.)

:FTNXL EX2BSRC,EX2BOBJ

:LINK FROM=EX2AOBJ,EX2BOBJ;TO=EX2PROG

Figure 2-3. Relinking Two HP FORTRAN 77 Relocatable Object Files

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-3

Using a Relocatable
Library

Relocatable libraries enable you to share procedures (subprograms)
with other subprograms while letting you modify and compile them
independently.

The next three sections explain the primary ways to use relocatable
libraries. They show how to place the subroutines and functions
contained in a source �le into a relocatable library and how to use
them once they are placed there. To see the relationships of the
source �les used in the following �gures, see the listings for them in
the last section of this chapter titled, \Sample Programs".

Creating a Relocatable
Library

Figure 2-4 shows how to create a relocatable library and how to add
modules to it at the same time. This example also shows how to
e�ciently organize source �les to be added to a relocatable library.

In order to independently compile the subroutines and functions
in the HP FORTRAN 77 source �le, EX2BSRC, it is split into �ve
separate source �les: LIB1SRC, LIB2SRC, LIB3SRC, LIB4SRC, and
LIB5SRC. These modules are compiled producing �ve separate
relocatable object �les: LIB1OBJ, LIB2OBJ, LIB3OBJ, LIB4OBJ, and
LIB5OBJ. (The modules are placed in di�erent source �les because
each source �le will become one relocatable object module.) After
entering HP Link EditornXL by entering LINKEDIT command at the
MPE XL prompt, �gure 2-4 shows using the link editor BUILDRL
command to create the relocatable library, LIBRL. Then the ADDRL
command is used to add the relocatable object �les to the relocatable
library. Finally, use the EXIT command to terminate HP Link
EditornXL.

:FTNXL LIB1SRC,LIB1OBJ

:FTNXL LIB2SRC,LIB2OBJ

:FTNXL LIB3SRC,LIB3OBJ

:FTNXL LIB4SRC,LIB4OBJ

:FTNXL LIB5SRC,LIB5OBJ

:LINKEDIT

LinkEd> BUILDRL RL=LIBRL

LinkEd> ADDRL FROM=LIB1OBJ,LIB2OBJ,LIB3OBJ,LIB4OBJ,LIB5OBJ

LinkEd> EXIT

Figure 2-4. Creating a Relocatable Library and Adding Modules to It

Alternatively, you can have the compiler (rather than the link editor)
create the relocatable library and add modules to it. This may be
the fastest and easiest choice if you're compiling MPE V source �les
that contain several subroutines and functions. To do this, use the
$RLFILE compiler directive (see the HP FORTRAN 77/XL Reference
Manual).

2-4 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

Searching a
Relocatable Library

Figure 2-5 shows how to link the relocatable object �le, EX2AOBJ,
using the relocatable library, LIBRL, to resolve external references.
(This library was created in �gure 2-4.) The :LINK command
produces the executable program �le, EX2PROG.

:LINK FROM=EX2AOBJ;RL=LIBRL;TO=EX2PROG

Figure 2-5. Searching a Relocatable Library

Updating a Relocatable
Library

Figure 2-6 shows how to replace a relocatable object module in a
relocatable library. The relocatable module, LIB4OBJ, is replaced by
a newly-compiled version. The �rst command in �gure 2-6 compiles
the HP FORTRAN 77 source �le, LIB4SRC. Then, after entering
the link editor, the RL command in the third line sets the default
relocatable library to LIBRL. To update the existing relocatable
module, the old version is purged and a new one added. The
PURGERL command purges the existing relocatable module, LIB4SRC,
from the library. (The name of the module in the relocatable library
is its source �le name, LIB4SRC, unless the $RLFILE compiler option
is used.) The ADDRL command then adds the updated relocatable
object �le, LIB4OBJ, to the library.

:FTNXL LIB4SRC,LIB4OBJ

:LINKEDIT

LinkEd> RL RL=LIBRL

LinkEd> PURGERL MODULE=LIB4SRC

LinkEd> ADDRL FROM=LIB4OBJ

LinkEd> EXIT

Figure 2-6.

Updating a Relocatable Object Module in a Relocatable Library

Alternatively, you can have the compiler (rather than the link editor)
update the relocatable library. This may be the fastest and easiest
choice if you're compiling MPE V source �les that contain several
subroutines and functions. To do this, use:

:FTNXL LIB4SRC, RL

(See the HP FORTRAN 77/XL Reference Manual for more
information.)

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-5

Using an Executable
Library

Routines in executable libraries can be shared by many programs;
each program uses the same physical copy of code. Though you name
executable libraries using the link editor, these libraries are not
searched until the executable program �le is loaded for execution.
(The loader searches the executable libraries, resolving external
references, much like the link editor searches relocatable libraries.)

The next three sections show how to create and maintain executable
libraries and how to name an executable library to be searched at run
time. See the last section in this chapter, \Sample Programs", for
listings of the source �les used in the examples.

Creating an Executable
Library

Figure 2-7 shows how to build an executable library and how to add
a module to it at the same time. The link editor BUILDXL command
creates the executable library, LIBXL. The ADDXL command adds the
relocatable object �le, EX2BOBJ, to LIBXL.

:FTNXL EX2BSRC,EX2BOBJ

:LINKEDIT

LinkEd> BUILDXL XL=LIBXL

LinkEd> ADDXL FROM=EX2BOBJ

LinkEd> EXIT

Figure 2-7.

Creating an Executable Library and Adding a Module To It

2-6 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

Alternatively, when you add relocatable object modules to an
executable library, you can merge several of them into one module.
Figure 2-8 shows how to merge �ve relocatable object �les (LIB10BJ,
LIB2OBJ, LIB3OBJ, LIB4OBJ, and LIB5OBJ) into one executable
module in the library. (The name of the new executable module
is the source �le name of the �rst relocatable object �le added,
LIB1SRC.)

:FTNXL LIB1SRC,LIB1OBJ

:FTNXL LIB2SRC,LIB2OBJ

:FTNXL LIB3SRC,LIB3OBJ

:FTNXL LIB4SRC,LIB4OBJ

:FTNXL LIB5SRC,LIB5OBJ

:LINKEDIT

LinkEd> BUILDXL XL=LIBXL

LinkEd> ADDXL FROM=LIB1OBJ,LIB2OBJ,LIB3OBJ,LIB4OBJ,LIB5OBJ;MERGE

LinkEd> EXIT

Figure 2-8.

Creating an Executable Module From Several Relocatable Object

Files

Searching an
Executable Library

Figure 2-9 shows how to name an executable library to be searched
at run time. The :LINK command links the relocatable object �le,
EX2AOBJ, producing the executable program �le, EX2PROG. The XL=
option names the executable library, LIBXL, to search at run time.

:LINK FROM=EX2AOBJ;TO=EX2PROG;XL=LIBXL

Figure 2-9. Naming an Executable Library To Search

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-7

Updating an Executable
Library

Figure 2-10 shows how to replace an executable module in an
executable library. The executable module, EX2BOBJ (created in
�gure 2-7), is replaced by a newly-compiled version. Once the HP
FORTRAN 77 source �le, EX2BSRC, is recompiled (line 1), the link
editor XL command on the third line sets the default executable
library to LIBXL. To update the existing executable module, the old
version is purged and a new one added. The PURGEXL command
purges the existing module, EX2BSRC, from the library. (The name
of the module in an executable library is the same as its source
�le name, EX2BSRC, unless the $RLFILE compiler option is used.)
The ADDXL command then adds the updated relocatable object �le,
EX2BOBJ, to the library.

:FTNXL EX2BSRC,EX2BOBJ

:LINKEDIT

LinkEd> XL XL=LIBXL

LinkEd> PURGEXL MODULE=EX2BSRC

LinkEd> ADDXL FROM=EX2BOBJ

LinkEd> EXIT

Figure 2-10.

Updating an Executable Module in an Executable Library

2-8 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

Using Both
Relocatable and
Executable Libraries
within a Program

A complex program may use a combination of several types of
libraries, and additionally, might also require certain calls to system
intrinsic routines to complete its tasks.

The next three sections show how to link a program that
incorporates both a relocatable library and an executable library, as
well as calls to speci�c system intrinsics.

Creating the
Relocatable Library

Figure 2-11 shows how to create a relocatable library using the HP
Pascal source �le, EX3CSRC. The relocatable object �le created is
named EX3COBJ. The commands entered are identical to those shown
in �gure 2-4 with the exception that :PASXL is used as the compile
command.

:PASXL EX3CSRC,EX3COBJ

:LINKEDIT

LinkEd> BUILDRL RL=EX3LIBRL

LinkEd> ADDRL FROM=EX3COBJ
LinkEd> EXIT

Figure 2-11. Creating a Relocatable Library and Adding a Module

Creating the Executable
Library

Figure 2-12 shows how to create an executable library using the HP
Pascal source �le, EX3DSRC. First, a relocatable object �le is created
named EX3DOBJ. Next, the BUILDXL command creates the executable
library EX3LIBXL. Finally, ADDXL adds the relocatable object �le
EX3DOBJ to the executable library. The commands entered are
identical to those shown in �gure 2-7 with the exception that :PASXL
is used as the compile command.

:PASXL EX3DSRC,EX3DOBJ

:LINKEDIT

LinkEd> BUILDXL XL=EX3LIBXL

LinkEd> ADDXL FROM=EX3DOBJ

LinkEd> EXIT

Figure 2-12. Creating an Executable Library and Adding a Module

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-9

Linking with Libraries
and Relocatable Object

Files

Figure 2-13 shows how to link object �les with a relocatable library
using the link editor LINK command while specifying a needed
executable library with a parameter to the :RUN command. First,
the :PASXL compile command is used to create a relocatable object
named EX3AOBJ from the source �le EX3ASRC. EX3ASRC represents the
main program; see �gure 2-23 in the \Sample Programs". Next, a
subprogram EX3BSRC is compiled, producing the relocatable object
�le EX3BOBJ; see �gure 2-24 for the source. Its code includes a
procedure call to the system intrinsic who; who is used to determine
the device number of the current user.

In order to link the above two relocatable object �les with the
relocatable library module created in �gure 2-11, the link editor LINK
command is used. After exiting the link editor, the :RUN command
executes the program. Note that EX3AOBJ and EX3BOBJ as well as
any modules needed from the relocatable library, EX3LIBRL, will
be included in the resulting program �le. The program �le created
will still have unsatis�ed symbols because the modules on the
command line use but do not de�ne those symbols. These symbols
will be resolved with the EX3LIBXL or the system libraries; the XL=
parameter of the :RUN command is used to resolve these symbols at
run time.

Speci�cally, the procedures and system intrinsics referenced in �gures
2-23 through 2-26 are de�ned as follows:

p1 is de�ned in EX3BOBJ.

p2 is de�ned in EX3LIBRL.

p3 is de�ned in EX3LIBXL.

who and dateline are de�ned in NL.PUB.SYS or XL.PUB.SYS.

Both p1 and p2 are resolved in the program �le whereas p3, who, and
dateline are left as unsatis�ed symbols in the program �le which are
resolved at run time.

:PASXL EX3ASRC,EX3AOBJ

:PASXL EX3BSRC,EX3BOBJ

:LINKEDIT

LinkEd> LINK FROM=EX3AOBJ,EX3BOBJ;RL=EX3LIBRL

LinkEd> EXIT

:RUN $OLDPASS;XL="EX3LIBXL"

Figure 2-13. Linking Libraries and Relocatable Object Files

2-10 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

As an alternative to specifying the executable libraries needed on the
:RUN command, it might be useful to specify them at the time of
linking. This allows you to simply invoke the :RUN command with no
knowledge of the executable libraries needed at run time.

:LINKEDIT

LinkEd> LINK FROM=EX3AOBJ,EX3BOBJ;RL=EX3LIBRL;XL="EX3LIBXL"

LinkEd> EXIT

:RUN $OLDPASS

Figure 2-14. Alternative Specification for Executable Libraries

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-11

Sample Programs This section lists the HP COBOL II, HP FORTRAN 77, and HP
Pascal source �les used in the examples in the previous sections of
this chapter.

These source �les: are listed in:

EX1SRC Figure 2-15
EX2ASRC Figure 2-16
EX2BSRC Figure 2-17
LIB1SRC Figure 2-18
LIB2SRC Figure 2-19
LIB3SRC Figure 2-20
LIB4SRC Figure 2-21
LIB5SRC Figure 2-22
EX3ASRC Figure 2-23
EX3BSRC Figure 2-24
EX3CSRC Figure 2-25
EX3DSRC Figure 2-26

2-12 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

IDENTIFICATION DIVISION.

PROGRAM-ID. EX1.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IFILE ASSIGN "IFILE".

SELECT PFILE ASSIGN "PFILE".

DATA DIVISION.

FILE SECTION.

FD IFILE.

01 IREC.

05 NAME PIC X(30).

05 SOC-SEC PIC X(9).

05 HIRE-DATE.

10 MO PIC XX.

10 DA PIC XX.

10 YR PIC XX.

05 SALARY PIC S9(6).
05 PIC X(29).

FD PFILE.

01 PREC.

05 SOC-SEC PIC X(9).

05 PIC XX.

05 NAME PIC X(30).

05 PIC XX.

05 HIRE-DATE.

10 MO PIC XX.

10 PIC X.

10 DA PIC XX.

10 PIC X.

10 YR PIC XX.

05 PIC X(81).

01 HREC.

05 HSOC-SEC PIC X(11).

05 HNAME PIC X(32).

05 HHIRE-DATE PIC X(89).

Figure 2-15. The HP COBOL II Source File, EX1SRC

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-13

WORKING-STORAGE SECTION.

01 LNCNT PIC S9(4) BINARY VALUE 60.

01 W-DATE.

05 WYR PIC XX.

05 PIC X(4).

PROCEDURE DIVISION.

P1.

ACCEPT W-DATE FROM DATE.

OPEN INPUT IFILE OUTPUT PFILE.

PERFORM WITH TEST AFTER UNTIL SOC-SEC OF IREC = ALL "9"

READ IFILE

AT END MOVE ALL "9" TO SOC-SEC OF IREC

NOT AT END

IF WYR = YR OF IREC THEN

ADD 1 TO LNCNT

IF LNCNT > 50 PERFORM HEADINGS END-IF

MOVE SPACES TO PREC

MOVE CORR IREC TO PREC
WRITE PREC AFTER ADVANCING 1 LINE

END-IF

END-READ

END-PERFORM

CLOSE IFILE PFILE

STOP RUN.

HEADINGS.

MOVE "SOC SEC NO" TO HSOC-SEC.

MOVE "NAME" TO HNAME.

MOVE "HIRE DATE" TO HHIRE-DATE.

WRITE PREC AFTER ADVANCING PAGE.

MOVE 0 TO LNCNT.

Figure 2-15. The HP COBOL II Source File, EX1SRC (Continued)

2-14 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

C This program prints an amortization table for a loan

C with regular payments on the first of each month.

C It calculates prepaid interest from the current

C date until the end of the current month, and begins

C the amortization at the beginning of the next month.

C Input to the program is the current date (in month,

C day, year form), the principal amount, annual interest

C rate, and the term of the loan in years.

PROGRAM EX2

INTEGER TODAY, NXTMON, TERM

DOUBLE PRECISION PRIN, RATE, PREPD, PAYMNT, PCT

INTEGER JULIAN

DOUBLE PRECISION AMORT

COMMON MONTH, DAY, YEAR

INTEGER MONTH, DAY, YEAR

READ (5,*) MONTH, DAY, YEAR
READ (5,*) PRIN, RATE, TERM

C Determine the number of days remaining in the current

C month. The Julian dates for today and the first of the

C next month are used for this calculation.

TODAY = JULIAN(MONTH, DAY, YEAR)

DAY = 1

CALL ADDDAT(MONTH, DAY, YEAR, 1, 0, 0)

NXTMON = JULIAN(MONTH, DAY, YEAR)

C Calculate the prepaid interest and the monthly payments.

C The prepaid interest is calculated as simple interest.

PREPD = PRIN * (NXTMON-TODAY) * (RATE/365.0D0)

PAYMNT = AMORT(PRIN, RATE/12.0D0, TERM*12)

PCT = RATE * 100.0D0

WRITE (6, 100) PREPD, PRIN, PCT, TERM, PAYMNT

100 FORMAT ('1', 'Prepaid Interest: ', F10.2/

* '0', 'Principal: ', F10.2/

* ' ', 'Interest Rate: ', F10.2, '%'/

* ' ', 'Number of Years: ', I7/

* ' ', 'Monthly Payment: ', F10.2)

CALL PRTTAB(PRIN, RATE/12.0D0, TERM*12, PAYMNT)

STOP

END

Figure 2-16. The HP FORTRAN 77 Source File, EX2ASRC

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-15

C Print the amortization table

SUBROUTINE PRTTAB(PRIN, RATE, TERM, PAYMNT)

DOUBLE PRECISION PRIN, RATE, PAYMNT

INTEGER TERM

DOUBLE PRECISION ACCINT, PPRIN, PINT, RPRIN

CHARACTER*3 DW, WKDAY

COMMON MONTH, DAY, YEAR

INTEGER MONTH, DAY, YEAR

ACCINT = 0.0

WRITE (6, 101)

101 FORMAT ('0', ' Beginning Payment to ',

* 'Payment to Accumulated Remaining'/

* ' ', ' Due Date Principal Principal ',

* ' Interest Interest Principal')

DO 1 I = 1, TERM

CALL ADDDAT(MONTH, DAY, YEAR, 1, 0, 0)

PINT = PRIN * RATE
PPRIN = PAYMNT - PINT

ACCINT = ACCINT + PINT

RPRIN = PRIN - PPRIN

DW = WKDAY(MONTH, DAY, YEAR)

WRITE (6, 102) DW, MONTH, DAY, YEAR, PRIN, PPRIN, PINT,

* ACCINT, RPRIN

102 FORMAT (' ', A3, ' ', I2, '/', I2, '/', I4, 2X, F10.2,

* 4X, F8.2, 4X, F8.2, 4X, F10.2, 4X, F10.2)

PRIN = RPRIN

1 CONTINUE

RETURN

END

Figure 2-16.

The HP FORTRAN 77 Source File, EX2ASRC (Continued)

2-16 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

C JULIAN returns the Julian date for the given month, day,

C and year. The Julian date calculated here is valid from

C Mar 1, 1900 to Feb 28, 2100. It is the astronomical date

C for noon on that day.

INTEGER FUNCTION JULIAN(MONTH, DAY, YEAR)

INTEGER MONTH, DAY, YEAR

PARAMETER (J1900 = 2415020)

INTEGER JAN1, MON1

INTEGER MTABLE(12)

DATA MTABLE /0,31,59,90,120,151,181,212,243,273,304,334/

C Find Julian date for Jan 1 of given year.

JAN1 = J1900 + INT(365.25D0 * (YEAR-1900) + 0.75)

C Find number of days to 1st of given month.

MON1 = MTABLE(MONTH)

IF (MOD(YEAR,4) .EQ. 0 .AND. MONTH .GE. 3) MON1 = MON1 + 1

JULIAN = JAN1 + MON1 + DAY - 1

RETURN

END

C MDY converts a Julian date to month, day, year format.

SUBROUTINE MDY(JDATE, MONTH, DAY, YEAR)

INTEGER JDATE, MONTH, DAY, YEAR, YDATE

PARAMETER (J1900 = 2415020)

INTEGER MTABLE(12)

DATA MTABLE /31,28,31,30,31,30,31,31,30,31,30,31/

YEAR = 1900 + INT((JDATE-J1900) / 365.25D0)

DAY = JDATE - JULIAN(1, 1, YEAR) + 1

MTABLE(2) = 28

IF (MOD(YEAR,4) .EQ. 0) MTABLE(2) = 29

MONTH = 1

1 IF (DAY .LE. MTABLE(MONTH) .OR. MONTH .GE. 12) GOTO 2

DAY = DAY - MTABLE(MONTH)

MONTH = MONTH + 1

Figure 2-17. The HP FORTRAN 77 Source File, EX2BSRC

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-17

GOTO 1

2 RETURN

END

C WKDAY returns a 3-letter name of the day of the week

C given the month, day, and year.

CHARACTER*3 FUNCTION WKDAY(MONTH, DAY, YEAR)

INTEGER MONTH, DAY, YEAR, JDATE, DW

INTEGER JULIAN

CHARACTER*3 DAYTAB(7)

DATA DAYTAB /'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'/

JDATE = JULIAN(MONTH, DAY, YEAR)

DW = MOD(JDATE+1, 7)

WKDAY = DAYTAB(DW+1)

RETURN

END

C ADDDAT adds the given number of months, days, and years

C to the date supplied in the first three arguments.

SUBROUTINE ADDDAT(MONTH, DAY, YEAR, NMONS, NDAYS, NYRS)

INTEGER MONTH, DAY, YEAR, NMONS, NDAYS, NYRS

INTEGER JDATE, JULIAN

YEAR = YEAR + NYRS

MONTH = MONTH + NMONS

IF (MONTH .GT. 12) THEN

YEAR = YEAR + (MONTH-1)/12

MONTH = MOD(MONTH-1,12) + 1

END IF

IF (NDAYS .GT. 0) THEN

JDATE = JULIAN(MONTH, DAY, YEAR) + NDAYS

CALL MDY(JDATE, MONTH, DAY, YEAR)

END IF

RETURN

END

Figure 2-17.

The HP FORTRAN 77 Source File, EX2BSRC (Continued)

2-18 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

C AMORT returns the periodic payment for an amortized loan

C given principal, periodic interest rate, and term.

DOUBLE PRECISION FUNCTION AMORT(PRIN, RATE, TERM)

DOUBLE PRECISION PRIN, RATE

INTEGER TERM

AMORT = PRIN * RATE / (1.0 - (1.0+RATE) ** (-TERM))

RETURN

END

Figure 2-17.

The HP FORTRAN 77 Source File, EX2BSRC (Continued)

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-19

C JULIAN returns the Julian date for the given month, day,

C and year. The Julian date calculated here is valid from

C Mar 1, 1900 to Feb 28, 2100. It is the astronomical date

C for noon on that day.

INTEGER FUNCTION JULIAN(MONTH, DAY, YEAR)

INTEGER MONTH, DAY, YEAR

PARAMETER (J1900 = 2415020)

INTEGER JAN1, MON1

INTEGER MTABLE(12)

DATA MTABLE /0,31,59,90,120,151,181,212,243,273,304,334/

C Find Julian date for Jan 1 of given year.

JAN1 = J1900 + INT(365.25D0 * (YEAR-1900) + 0.75)

C Find number of days to 1st of given month.

MON1 = MTABLE(MONTH)

IF (MOD(YEAR,4) .EQ. 0 .AND. MONTH .GE. 3) MON1 = MON1 + 1

JULIAN = JAN1 + MON1 + DAY - 1

RETURN

END

Figure 2-18. The HP FORTRAN 77 Source File, LIB1SRC

2-20 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

C MDY converts a Julian date to month, day, year format.

SUBROUTINE MDY(JDATE, MONTH, DAY, YEAR)

INTEGER JDATE, MONTH, DAY, YEAR, YDATE

PARAMETER (J1900 = 2415020)

INTEGER MTABLE(12)

DATA MTABLE /31,28,31,30,31,30,31,31,30,31,30,31/

YEAR = 1900 + INT((JDATE-J1900) / 365.25D0)

DAY = JDATE - JULIAN(1, 1, YEAR) + 1

MTABLE(2) = 28

IF (MOD(YEAR,4) .EQ. 0) MTABLE(2) = 29

MONTH = 1

1 IF (DAY .LE. MTABLE(MONTH) .OR. MONTH .GE. 12) GOTO 2

DAY = DAY - MTABLE(MONTH)

MONTH = MONTH + 1

GOTO 1

2 RETURN

END

Figure 2-19. The HP FORTRAN 77 Source File, LIB2SRC

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-21

C WKDAY returns a 3-letter name of the day of the week

C given the month, day, and year.

CHARACTER*3 FUNCTION WKDAY(MONTH, DAY, YEAR)

INTEGER MONTH, DAY, YEAR, JDATE, DW

INTEGER JULIAN

CHARACTER*3 DAYTAB(7)

DATA DAYTAB /'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'/

JDATE = JULIAN(MONTH, DAY, YEAR)

DW = MOD(JDATE+1, 7)

WKDAY = DAYTAB(DW+1)

RETURN

END

Figure 2-20. The HP FORTRAN 77 Source File, LIB3SRC

2-22 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

C ADDDAT adds the given number of months, days, and years

C to the date supplied in the first three arguments.

SUBROUTINE ADDDAT(MONTH, DAY, YEAR, NMONS, NDAYS, NYRS)

INTEGER MONTH, DAY, YEAR, NMONS, NDAYS, NYRS

INTEGER JDATE, JULIAN

YEAR = YEAR + NYRS

MONTH = MONTH + NMONS

IF (MONTH .GT. 12) THEN

YEAR = YEAR + (MONTH-1)/12

MONTH = MOD(MONTH-1,12) + 1

END IF

IF (NDAYS .GT. 0) THEN

JDATE = JULIAN(MONTH, DAY, YEAR) + NDAYS

CALL MDY(JDATE, MONTH, DAY, YEAR)

END IF

RETURN

END

Figure 2-21. The HP FORTRAN 77 Source File, LIB4SRC

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-23

C AMORT returns the periodic payment for an amortized loan

C given principal, periodic interest rate, and term.

DOUBLE PRECISION FUNCTION AMORT(PRIN, RATE, TERM)

DOUBLE PRECISION PRIN, RATE

INTEGER TERM

AMORT = PRIN * RATE / (1.0 - (1.0+RATE) ** (-TERM))

RETURN

END

Figure 2-22. The HP FORTRAN 77 Source File, LIB5SRC

2-24 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

{This program queries the system using defined system

intrinsics in order to print the device number, the user,

group, and account name, and the current date and time.}

program myprog (input, output);

type

pac1 = packed array [1..10] of char;

pac2 = packed array [1..30] of char;

var

user, group, acct: pac1;

date : pac2;

dev : shortint;

{"external" signifies these routines will be

found in other modules.}

procedure p1(var dev: shortint); external;

procedure p2(var user, group, acct: pac1); external;

procedure p3(var date: pac2); external;

begin

p1(dev);

p2(user, group, account);

p3(date);

{output the required information}

write('Device number', dev, 'is logged on as ');

write(user, '.', group, '.', acct);

writeln('on', date);

end.

Figure 2-23. The HP Pascal Source File, EX3ASRC

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-25

$subprogram$

program sub1;

{Here, who is specified as an intrinsic.}

procedure who; intrinsic;

{This procedure calls the system intrinsic who

to return the device the current user is logged

on to. who command defaults are used for the

1st 7 parameters, as documented in the MPE XL

Intrinsics Reference Manual.}

procedure p1(var dev: shortint);

begin

who(,,,,,,,dev);

end;

{The main program is defined elsewhere.}

begin

end.

Figure 2-24. The HP Pascal Source File, EX3BSRC

2-26 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

$subprogram$

program sub2;

type

pac1 = packed array [1..10] of char;

procedure who; intrinsic;

{This procedure calls the system intrinsic who to

return the name of the current user, group, and account.

who command defaults are used for the 1st 3 parameters,

as documented in the MPE XL Intrinsics Reference Manual.}

procedure p2(var user, group, acct: pac1);

begin

who(,,,user, group, acct);

end;

{The main program is defined elsewhere.}

begin

end.

Figure 2-25. The HP Pascal Source File, EX3CSRC

DRAFT

11/7/97 02:46

Getting Started with HP Link Editor/XL 2-27

$subprogram$

program sub3;

type

pac2 = packed array [1..30] of char;

{dateline is specified as an intrinsic}

procedure dateline; intrinsic;

{This procedure calls the system intrinsic dateline

to return the current date and time. dateline is

documented in the MPE XL System Intrinsics Manual.}

procedure p3(var date: pac2);

begin

dateline(date);

end;

{The main program is defined elsewhere.}

begin

end.

Figure 2-26. The HP Pascal Source File, EX3DSRC

2-28 Getting Started with HP Link Editor/XL DRAFT

11/7/97 02:46

3

Using HP Link Editor/XL Files and Commands

This chapter discusses the �les that HP Link Editor/XL uses when
it links a program, with or without libraries, and when it builds and
maintains relocatable and executable libraries.

The chapter also explains how to start and end HP Link Editor/XL
and the rules for entering commands.

DRAFT

11/7/97 02:46

Using HP Link Editor/XL Files and Commands 3-1

The Files Used By
HP Link Editor/XL

Figure 3-1 shows the �les that the link editor uses. The next seven
sections in this chapter discuss them in detail.

Figure 3-1. The Files Used by HP Link Editor/XL

3-2 Using HP Link Editor/XL Files and Commands DRAFT

11/7/97 02:46

The Relocatable Object
File

A relocatable object �le is output from compilation. It can also be
created by the link editor EXTRACTRL command. When it is produced
by a compiler, it consists of one relocatable object module regardless
of the number of procedures or subprograms the source �le contains.
When it is produced by the EXTRACTRL command, it can consist of
many relocatable object modules; however, these modules cannot be
accessed individually with the LINK command. Relocatable object
�les are binary �les having the �lecode NMOBJ (1461).

Relocatable object �les are input to the LINK, LISTOBJ, ADDRL, and
ADDXL commands and are created by the EXTRACTRL command.
These commands are discussed in chapters 4, 5 and 6.

To use a relocatable object �le as input, you must have read access to
it. To create a relocatable object �le, you must have save access to
the group where the �le is located.

The $STDINX File HP Link Editor/XL reads its commands from the standard input �le,
$STDINX. For an interactive session, this is the terminal keyboard.
For a batch job, it is the job stream �le.

If you wish, you can change the standard assignment for $STDINX.
Enter a :RUN command with the STDIN option, naming an
unnumbered ASCII �le. The �le must contain valid HP Link
Editor/XL commands. For example, to use the �le SCRIPT as the
standard input �le, enter the command:

:RUN LINKEDIT.PUB.SYS;STDIN=SCRIPT

If you start the link editor using the :LINK command or if you
execute the link editor by passing a command in the INFO string
of the :RUN command, $STDINX is not used. Instead, the single
command is executed and the link editor terminates. (See the section
in this chapter titled, \Starting HP Link Editor/XL", for information
on using :LINK and :RUN to execute the link editor.)

The Relocatable Library
File

A relocatable library is a collection of relocatable object modules and
a Library Symbol Table. The Library Symbol Table maps exported
symbols in each relocatable module. Relocatable library �les are
binary �les, and have the �lecode NMRL (1033).

You create a relocatable library using the BUILDRL command and you
add modules to it with the ADDRL command (or you can have the
compiler create and add modules to a library by using the RLFILE
or RLINIT compiler directives). To copy relocatable modules from
one relocatable library to another, use the COPYRL command. The
PURGERL command deletes modules and the EXTRACTRL command
copies selected modules to a relocatable object �le. The CLEANRL,
HIDERL and REVEALRL commands modify relocatable libraries and the
LISTRL command lists the contents of them. All of these relocatable
library commands are discussed in chapter 5.

DRAFT

11/7/97 02:46

Using HP Link Editor/XL Files and Commands 3-3

To create a relocatable library �le, you must have save access to
the group where the �le will be located. To modify an existing
relocatable library, you must have write access to the �le. To list the
contents of a library or to copy modules out of it, you must have read
access to it.

3-4 Using HP Link Editor/XL Files and Commands DRAFT

11/7/97 02:46

The $STDLIST File HP Link Editor/XL writes all prompts, errors, and informational
messages to the standard list �le, $STDLIST. When running in an
interactive session, your terminal is the device used for $STDLIST.
When running a batch job, the output spool�le is used.

If you wish, you can change the standard assignment for $STDLIST.
Enter a :RUN command with the STDLIST option to name the �le or
device to use. (Note that when you do this and run interactively,
command prompts do not appear on the screen.) For example, the
following command sends link editor output to the printer:

:FILE LINKOUT;DEV=LP

:RUN LINKEDIT.PUB.SYS;STDLIST=*LINKOUT

The LINKLIST File HP Link Editor/XL listings and maps are sent to the �le, LINKLIST,
instead of to the standard list �le, $STDLIST. The following listings
and maps are sent to LINKLIST:

The symbol map produced by the MAP option of the LINK command
(see chapter 4).

The listing produced by the LISTPROG command (see chapter 4).

The listing produced by the LISTOBJ command (see chapter 4).

The listing produced by the LISTRL command (see chapter 5).

The listing produced by the MAP option of the ADDXL command (see
chapter 6).

The listing produced by the LISTXL command (see chapter 6).

LINKLIST output is normally sent to the $STDLIST device. You can
redirect LINKLIST to another �le or device by using the MPE XL
:FILE command. For example, the following commands send the
listing of the relocatable library, LIBRL, to the line printer:

:FILE LINKLIST;DEV=LP

:LINKEDIT

LinkEd> LISTRL RL=LIBRL

LinkEd> EXIT

DRAFT

11/7/97 02:46

Using HP Link Editor/XL Files and Commands 3-5

The Executable
Program File

Executable program �les are created by the LINK command. They
are in binary format - ready to be loaded into memory and executed
by the MPE XL :RUN command. Executable program �les have the
�lecode NMPRG (1030).

You can use the LISTPROG command (see chapter 4) to list the
symbol table of an executable program �le.

To use LINK to create an executable program �le, you must have save
access to the group where the �le is located. To list an executable
program �le, you must have read access to the �le.

The Executable Library
File

An executable library is a collection of executable modules and a
Library Symbol Table. The Library Symbol Table maps exported
and imported symbols in each executable module. Executable library
�les are binary �les having the �lecode NMXL (1032).

You use the BUILDXL command to create an executable library.
Executable modules are added to a library with the ADDXL command.
Modules are copied from library to library with the COPYXL command
and deleted using the PURGEXL command. The CLEANXL command
compacts executable libraries, and the LISTXL command lists the
contents of them. All of these executable library commands are
discussed in chapter 6.

To create an executable library, you must have save access to the
group where the �le is located. To modify an existing library, you
must have write access to the �le. To list the contents of a library or
to copy modules from it, you must have read access to the �le.

3-6 Using HP Link Editor/XL Files and Commands DRAFT

11/7/97 02:46

Starting HP Link
Editor/XL

There are three ways to start HP Link Editor/XL:

Enter the :LINKEDIT command at the MPE XL prompt:

:LINKEDIT

HP Link Editor/XL displays its command line prompt, LinkEd>,
and waits for you to enter a command. Each time you enter a
command, it is executed and you are prompted to enter another.
This continues until you end the link editor with the EXIT
command (see the next section).

Enter a LINK command at the MPE XL prompt:

:LINK FROM=EX1OBJ;TO=EX1PROG;RL=LIBRL

The link editor performs the link operation, then ends. The LINK
command is discussed in chapter 4 and has the same syntax when
used at the MPE XL command level as when entered at the link
editor prompt.

Enter a :RUN or a :LINKEDIT command, with an INFO string, at
the MPE XL prompt. The INFO string may contain one link editor
command:

:RUN LINKEDIT.PUB.SYS;INFO="LISTRL RL=LIBRL"

Or you can use the short form:

:LINKEDIT "LISTRL RL=LIBRL"

The command in the INFO string is executed and the link editor
ends. You can execute any link editor command in this manner.

For complete information on the :RUN command, see the MPE XL
Commands Reference Manual .

DRAFT

11/7/97 02:46

Using HP Link Editor/XL Files and Commands 3-7

Ending HP Link
Editor/XL

Three events terminate HP Link Editor/XL:

When you explicitly end HP Link Editor/XL, by entering the EXIT
command:

LinkEd> EXIT

You can abbreviate the EXIT command as E, EX, or EXI. (The
commands QUIT, Q and BYE also terminate HP Link Editor/XL.)

When end-of-�le in $STDINX is encountered.

End-of-�le can occur when $STDINX is redirected to a disc �le or
when an :EOD command is encountered in it.

When an error occurs in a batch job.

An error message is printed, the system Job Control Word (JCW)
is set to indicate a fatal error and the link editor ends.

3-8 Using HP Link Editor/XL Files and Commands DRAFT

11/7/97 02:46

Entering HP Link
Editor/XL
Commands

The following sections discuss the rules for entering HP Link
Editor/XL commands. (The link editor reads commands from the
standard input �le, $STDINX. For more information on $STDINX see
\The $STDINX File" section in this chapter.)

Using Upper and Lower
Case Characters

When entering HP Link Editor/XL commands, you can enter them
in either upper case or lower case, or a mixture of the two.

There is one instance when case is signi�cant. You must enter entry
point (procedure) names exactly as they are found in the relocatable
object modules. You specify entry point names using the ENTRY
parameter of the following commands: LINK, COPYRL, EXTRACTRL,
HIDERL, LISTRL, PURGERL, REVEALRL, ADDXL, COPYXL, LISTXL and
PURGEXL. In general, case insensitive languages (including HP
FORTRAN 77 and HP Pascal) convert procedure names to lower
case. For those languages, specify entry point names in lower case.

Using Keyword or
Positional Parameters

HP Link Editor/XL commands described in chapters 4, 5, and 6
are shown in \keyword" form. That is, command parameters are
preceded by a keyword followed by an equal sign (=). For example,
the relocatable object �le used by the LINK command is preceded
by the FROM= keyword. You can enter commands using keywords or
without them (see the next paragraph). When you use command
keywords, you can enter command parameters in any order. Separate
keyword parameters by semicolons.

Under certain conditions, you can omit parameter keywords (and the
equal sign), and enter them in \positional" form. When you do this,
you must enter the parameters in the same order as shown in the
command description in this manual. Separate positional parameters
by commas or spaces.

You cannot use positional parameters:

To specify a list of �le names, unless the list is in an indirect �le.
(See the section which follows in this chapter titled \Using Indirect
Files" for more information on indirect �les.)

After keyword parameters (keyword parameters must follow all
positional parameters).

The following three LINK commands use keywords and positional
parameters and are all equivalent:

LinkEd> LINK FROM=^OBJLIST; TO=PROGFILE; RL=LIBRL; MAP

LinkEd> LINK FROM=^OBJLIST; RL=LIBRL; MAP; TO=PROGFILE

LinkEd> LINK ^OBJLIST,PROGFILE,LIBRL; MAP

You can use a positional parameter without preceding it by previous
parameters for the command. You must supply the appropriate
number of commas to show that the parameters are omitted. The

DRAFT

11/7/97 02:46

Using HP Link Editor/XL Files and Commands 3-9

following command uses default values for the �rst two parameters of
the LINK command, but speci�es a value (LIBRL) for the third:

:LINK ,,LIBRL

3-10 Using HP Link Editor/XL Files and Commands DRAFT

11/7/97 02:46

Continuing Commands
from One Line to

Another

If you need more than one line to enter a command, end all lines
except the last with an ampersand (&).

This example shows how to enter a LINK command on three lines:

LinkEd> LINK FROM=SAMPOBJ1, SAMPOBJ2, SAMPOBJ3, SAMPOBJ4, SAMPOBJ5, &

SAMPOBJ6, SAMPOBJ7; TO=SAMPPROG; RL=LIBRL1, LIBRL2; &

XL=MYXL; MAP

Do not use ampersands in indirect �les. (See the next section for
information about indirect �les.)

Using Indirect Files An indirect �le is an ASCII �le containing a list of names. You
use indirect �le names in link editor commands instead of entering
each name contained in the �le individually. (You can also mix
indirect and regular �le names in commands.) Indirect �les are a
convenient way to enter a long list of names for commands that you
use frequently. You can use indirect �les only with the commands
and their parameters shown below (the parameters are shown in
parentheses):

LINK (FROM=, RL=, and XL=)

ADDRL (FROM= and RL=)

COPYRL (ENTRY=, MODULE=, BLOCKDATA= and LSET=)

EXTRACTRL (ENTRY=, MODULE=, BLOCKDATA= and LSET=)

LISTRL (ENTRY=, MODULE=, BLOCKDATA= and LSET=)

PURGERL (ENTRY=, MODULE=, BLOCKDATA= and LSET=)

ADDXL (FROM=, RL=, ENTRY=, MODULE=, BLOCKDATA= and
LSET=)

COPYXL (ENTRY=, MODULE=, BLOCKDATA= and LSET=)

LISTXL (ENTRY=, MODULE=, BLOCKDATA= and LSET=)

PURGEXL (ENTRY=, MODULE=, BLOCKDATA= and LSET=)

ALTPROG (PROG=)

When you create an indirect �le, enter one or more names on each
line (you can use as many lines as necessary). Separate the names on
each line by spaces or commas. Make sure that the link editor has
read access to the �le.

You can use comments in an indirect �le. Use a pound sign (#) at
the beginning of a line or after a space to denote that the following
characters are part of a comment. Comments are ignored by the link
editor. If you want to use a pound sign as a character rather than to
denote the beginning of a comment, use double pound signs (##).

DRAFT

11/7/97 02:46

Using HP Link Editor/XL Files and Commands 3-11

To use an indirect �le in a command, precede its name by a caret (^).
For example, assume that the ASCII �le, OBJLIST, contains these
lines:

LIB1OBJ

LIB2OBJ

LIB3OBJ

LIB4OBJ

LIB5OBJ

The following commands use the indirect �le, OBJLIST, to add the
�ve relocatable object �les shown above to the relocatable library,
LIBRL:

:LINKEDIT

LinkEd> BUILDRL RL=LIBRL

LinkEd> ADDRL FROM=^OBJLIST

LinkEd> EXIT

3-12 Using HP Link Editor/XL Files and Commands DRAFT

11/7/97 02:46

Re-executing HP
Link Editor/XL
Commands

Similar to the MPE XL Command Interpreter, HP Link Editor/XL
keeps a list of the last 20 commands you entered. You can view this
list by entering the LISTREDO command. Then, you can enter the DO
or REDO command to execute a command from the list. You use DO
and REDO the same way you do as an operating system command
except you cannot use the EDIT= parameter.

The following example shows how you can use the REDO command to
correct a simple typing mistake.

LinkEd> LISTRL XL=Linedraw �RETURN�
^

This is your initial entry.

This is not a valid keyword for this command.

(parserr 07)

HP Link Editor/XL reports an error.

LinkEd> REDO You decide to edit the last
command.

LISTRL XL=Linedraw HP Link Editor/XL displays last
command.

RR �RETURN� You correct the letter X.

LISTRL RL=Linedraw HP Link Editor/XL displays the
corrected command.

�RETURN� You execute the command.

LinkEd> LISTRL RL=Linedraw

The MPE XL Commands Reference Manual contains a complete
description of the DO, REDO, and LISTREDO commands.

DRAFT

11/7/97 02:46

Using HP Link Editor/XL Files and Commands 3-13

Checking the
Execution Status of
Commands

When you're running a batch job and an error occurs, HP Link
Editor/XL sets the system Job Control Word (JCW) to FATAL (octal
100000, hexadecimal 8000, decimal 32768). This causes MPE XL to
ush the remainder of the job. By entering an MPE XL :CONTINUE

command in the job �le, you can continue the job and then test the
JCW.

The link editor sets two other Job Control Words when it �nishes.
Since these Job Control Words are set in session and batch mode,
you can test them in command �les and UDCs. The job control
words are:

LKEDCMD

LKEDCMD shows the status of the last command executed. If
there is an error, it contains the actual error number. If there is no
error, LKEDCMD is set to zero.

LKEDSTAT

LKEDSTAT is set to FATAL (octal 100000, hexadecimal 8000,
decimal 32768) when there is an error. If there is a warning,
LKEDSTAT contains WARN (octal 40000, hexadecimal 4000, decimal
16384). If there are no errors or warnings, LKEDSTAT is set to
zero.

3-14 Using HP Link Editor/XL Files and Commands DRAFT

11/7/97 02:46

Executing MPE XL
Commands

While you're using HP Link Editor/XL, you can enter a
programmatically executable MPE XL operating system command.
To do this, precede the MPE XL command with a colon (:). For
example, to execute the LISTF command, type:

LinkEd> :LISTF

See the MPE XL Commands Reference Manual for a complete
description of all the MPE XL commands.

DRAFT

11/7/97 02:46

Using HP Link Editor/XL Files and Commands 3-15

Getting Help HP Link Editor/XL provides an online Help facility similar to
that used by the MPE XL Command Interpreter and other MPE
XL subsystems. Request Help to clarify the syntax of an HP Link
Editor/XL command or to list an example of how to use it.

Request Help by entering the HELP command in this format:

LinkEd> HELP
�
keyword

�
2
4 , ALL

, PARMS

, EXAMPLES

3
5

The keyword parameter can be any of following commands:

ADDRL COPYRL LISTOBJ QUIT

ADDXL COPYXL LISTPROG REDO

ALTPROG DO LISTREDO REVEALRL

BUILDRL EXTRACTRL LISTRL RL

BUILDXL HELP LISTXL SHOWRL

CLEANRL HIDERL PURGERL SHOWXL

CLEANXL LINK PURGEXL XL

The keyword parameter can also be one of the following words,
LINKWARN or LINKERR, followed by a four-digit number. If you enter
one of these words, do not use an option (ALL, PARMS, EXAMPLES)
with it:

LINKWARN

nnnn
Displays a description of the link editor warning
whose number (nnnn) you enter.

LINKERR nnnn Displays a description of the link editor error whose
number (nnnn) you enter.

When you ask for Help, you can enter an option that determines the
type of information to display. If you do not specify an option, the
link editor displays the syntax diagram for the command. The Help
options are:

ALL Provides a full description of the command, including
syntax, parameters and an example of how it is used.

PARMS Describes the parameter(s) for the command.

EXAMPLES Gives examples of typical ways to use the command.

Valid examples of Help requests are:

LinkEd> HELP
LinkEd> HELP BUILDRL, parms

LinkEd> HELP addrl, examples

LinkEd> help LINKERR1001

3-16 Using HP Link Editor/XL Files and Commands DRAFT

11/7/97 02:46

4

Creating Executable Program Files

This chapter discusses executable program �les and how HP Link
Editor/XL creates and displays them. It also explains how to display
symbols in a relocatable object �le.

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-1

The link editor creates executable program �les from relocatable
object �les and relocatable libraries as follows. First, it merges the
speci�ed relocatable object �les and libraries into one module and
resolves inter-module references. Then, it searches the speci�ed
relocatable libraries resolving external references to symbols
unde�ned after the merge operation. When a relocatable object
module in the library resolves an external reference, the module is
merged into the executable program �le that is being built. In the
last step, the link editor assigns virtual addresses to all symbols,
binds references to the known symbols within each relocatable object
module, and puts the resulting executable program in a form that the
loader can process.

4-2 Creating Executable Program Files DRAFT

11/7/97 02:46

The Executable
Program File
Commands

Figure 4-1 shows the link editor commands that are discussed in this
chapter along with the �les that they use.

Figure 4-1. Executable Program File Commands

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-3

The Executable
Program Commands
Reference

The link editor commands that create and display executable
program �les and that display symbols in a relocatable object �le are
listed below. Each command is discussed in detail in the sections
which follow in this chapter.

ALTPROG Alters the user-de�nable �elds of a program �le
a�ecting the behavior of the program at run time.

LINK Creates an executable program �le.

LISTOBJ Displays symbols in a relocatable object �le.

LISTPROG Displays symbols in an executable program �le.

4-4 Creating Executable Program Files DRAFT

11/7/97 02:46

ALTPROG

ALTPROG This command allows the user to manipulate those �elds of a
program �le which dictate the behavior of the program at run time.
It is especially useful in that programs may be adjusted without
having to link them a second time. Most of the options and keywords
available can be overridden by the :RUN command.

If a keyword is speci�ed but no argument is given, then the
corresponding �eld in the �le speci�ed will be reset to its default
value.

Syntax ALTPROG [PROG= �le] [, �le]...

[;XL= xl �le [, xl �le]...]

[;CAP= cap list]

[;NMSTACK= max stack size]

[;NMHEAP= max heap size]

[;UNSAT= unsat name]

[;ENTRY= entry name]

[;PRI= priority level]

[;MAXPRI= max priority level]

Parameters �le Speci�es the name of a program �le which
is to be altered. If no �le is given, the �le
$OLDPASS is assumed.

xl �le Speci�es a default executable library to be
searched at run time.

If xl �le was not previously speci�ed, or has
more characters than the previous xl �le
speci�ed, the link editor will attempt to
allocate enough space for the new string.
Since this xl �le name can be of arbitrary
length, it is possible to get an error message
from the link editor when not enough space is
available. In this case, you may specify the
XL list on the :RUN command, or else link the
program again using the longer xl �le name.

To specify the default xl �le , use XL="".

cap list The capability attribute that the link editor
assigns to the executable program �le. Enter
one or more of the following attributes
separated by commas:

PH - Process Handling

DS - Extra Data Segments

MR - Multiple Resources

PS - Programmatic Creation of Session

PM - Privileged Mode

IA - Interactive Access

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-5

ALTPROG

BA - Local Batch Access

Default: If no capabilities are speci�ed, the
executable �le's capability set will default to
BA and IA.

max stack size Sets the maximum stack size, in bytes, for the
resulting executable program. The program
uses the stack to store a procedure's local
variables and for control purposes. You
can override this value using the NMSTACK
parameter of the :RUN command. Default: the
system-con�gured value.

max heap size Sets the maximum heap size, in bytes, for the
resulting executable program. The program
uses the heap for dynamic storage allocation.
You can override this value using the NMHEAP
parameter of the :RUN command. Default: the
system-con�gured value.

unsat name Names the procedure which the loader
uses to satisfy unresolved externals. Since
unsat name is a procedure, it is case
sensitive. You can override the parameter
by using the UNSAT parameter of the :RUN
command. When the loader cannot resolve
external references, it reports an error.

If unsat name was not previously speci�ed,
or has more characters than the previous
unsat name speci�ed, the link editor will
attempt to allocate enough space for the
new string. Since this unsat name can be
of arbitrary length, it is possible to get an
error message from the link editor when not
enough space is available. In this case you
may specify the unsat name on the :RUN
command, or else link the program again
using the longer unsat name.

To specify the default unsat name, use
UNSAT="".

entry name Names the point within a program where
execution begins. ENTRY= lets you override
the primary program entry point. If the
symbol that matches entry name is not
found, an error occurs. Entry name is case
sensitive. You can override this parameter
using the ENTRYPOINT parameter of the :RUN
command. Default: starts execution from the
primary program entry point (corresponding
to a program's main procedure or outer

4-6 Creating Executable Program Files DRAFT

11/7/97 02:46

ALTPROG

block). Entry names must be primary or
secondary entry types.

If entry name was not previously speci�ed,
or has more characters than the previous
entry name speci�ed, the link editor will
attempt to allocate enough space for the
new string. Since this entry name can be
of arbitrary length, it is possible to get an
error message from the link editor when not
enough space is available. In this case you
may specify the entry name on the :RUN
command, or else link the program again
using the longer entry name.

priority level Speci�es the execution priority that the
program will have at run time. The
priority level has to be either BS, CS, DS, ES,
or a number between 100 and 255 inclusive.
This value can be overridden by the PRI=
keyword on the :RUN command.

max priority level Speci�es the maximum execution priority
that the program can have at run time. The
max priority level has to be either BS, CS,
DS, ES, or a number between 100 and 255
inclusive. See the PRI= keyword of the :RUN
command for more information.

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-7

LINK This command creates an executable program �le. It does this by
merging the relocatable object modules from all the �les in the FROM=
parameter. (These �les can be relocatable object �les, relocatable
library �les, or a combination of both.) The link editor also searches
the relocatable libraries speci�ed by the RL= parameter and includes
the modules in those libraries containing de�nitions that resolve
external references.

Syntax LINK [FROM= source �le [, source �le...]

[;TO= dest �le]

[;RL= rl �le [, rl �le]...]

[;XL= xl �le [, xl �le]...]

[;CAP= cap list]

[;NMSTACK= max stack size]

[;NMHEAP= max heap size]

[;UNSAT= unsat name]

[;PARMCHECK= check level]

[;PRIVLEV= priv level]

[;PRI= priority level]

[;MAXPRI= max priority level]

[;ENTRY= entry name]

[;NODEBUG]

[;MAP]

[;SHOW]

Parameters source �le Names a relocatable object �le or a
relocatable library �le. The �le must be
a binary �le of type NMOBJ or NMRL.
The link editor merges all the relocatable
object modules in the FROM= �les to form
the executable program �le named by the
TO= parameter. You can use an indirect �le
name for this parameter. Default: merge the
relocatable object modules in the system �le
$OLDPASS.

dest �le Names the �le where the resulting executable
module is placed. If you include the TO=
parameter and the link editor �nds no �le
with that name, it creates a new executable
program �le for you. If the �le already exists,
it replaces the current contents of the �le
with the executable module. When dest �le
is an existing �le, it must have �lecode
NMPRG. Default: place the executable
module in the system �le $NEWPASS.

4-8 Creating Executable Program Files DRAFT

11/7/97 02:46

LINK

rl �le Names a relocatable library �le that resolves
external reference(s) contained in the
source �le or in another rl �le . The �le must
have a �lecode of NMRL. The link editor
searches the relocatable libraries in the RL list
according to the order in which you list them.
Therefore, if a module from one library calls a
routine in another library and that routine
refers to a module in the �rst library, you
must name the �rst library a second time to
resolve this circular reference. You can enter
an indirect �le for this parameter.

xl �le Names an executable library that resolves
external references remaining in the
executable program �le. The �le must have
�lecode NMXL. You can override the XL=
list by using the XL= parameter of the :RUN
command. You can enter an indirect �le for
this parameter.

Since xl �le is passed to the system, if xl �le
is not fully quali�ed, it will be quali�ed with
a name that is consistent with the program
�le being loaded. For further information,
refer to the :RUN command in the MPE XL
Commands Reference Manual .

cap list The capability attribute that the link editor
assigns to the executable program �le. Enter
one or more of the following attributes
separated by commas:

PH - Process Handling

DS - Extra Data Segments

MR - Multiple Resources

PS - Programmatic Creation of Session

PM - Privileged Mode

IA - Interactive Access

BA - Local Batch Access

Default: If no capabilities are speci�ed, the
executable �le's capability set will default to
BA and IA.

max stack size Sets the maximum stack size, in bytes, for the
resulting executable program. The program
uses the stack to store a procedure's local
variables and for control purposes. You
can override this value using the NMSTACK

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-9

LINK

parameter of the :RUN command. Default: the
system-con�gured value.

max heap size Sets the maximum heap size, in bytes, for the
resulting executable program. The program
uses the heap for dynamic storage allocation.
You can override this value using the NMHEAP
parameter of the :RUN command. Default: the
system-con�gured value.

unsat name Names the procedure which the loader uses to
satisfy unresolved externals. This procedure
must reside in an executable library that is
speci�ed at run time. Refer to the MPE XL
Commands Reference Manual for further
information.

Since unsat name is a procedure, it is case
sensitive. You can override the parameter
by using the UNSAT parameter of the :RUN
command. Default: when the loader cannot
resolve external references, it reports an error.

4-10 Creating Executable Program Files DRAFT

11/7/97 02:46

LINK

check level Determines the type checking error level that
the link editor uses while binding external
references to procedures and global variables.
All relocatable object modules indicate a
checking level for each reference and each
de�nition of a procedure or a global variable.
When binding an external reference to a
de�nition, the link editor compares the
type information at the lower of the two
checking levels speci�ed by the reference
and the de�nition. If a type mismatch is
found, it is either a warning or an error. This
option determines which type mismatches
are warnings and which are errors. The
check level entries are:

0 - All type mismatches are
warnings.

1 - Mismatches of the procedure,
function or variable type are
errors. All other mismatches
are warnings.

2 - Mismatches of the procedure,
function or variable type and
mismatches of the number of
arguments for procedures
or functions are errors. All
other mismatches (parameter
types, for example) are
warnings.

3 - All type mismatches are
errors. Default: 3.

priv level Determines the privilege level used by the
executable program �le. This parameter
changes the privilege level of all procedures
in the symbol and export tables (of the
relocatable object �le) that were set during
compilation.

The priv level entries are:

0 - System level access

1 - Unused

2 - Privileged level access

3 - User level access

Default: the privilege levels set during
compilation by compiler directives.

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-11

LINK

priority level Speci�es the execution priority that the
program will have at run time. The
priority level has to be either BS, CS, DS, ES,
or a number between 100 and 255 inclusive.
This value can be overridden by the PRI=
keyword on the :RUN command.

max priority level Speci�es the maximum execution priority
that the program can have at run time. The
priority level has to be either BS, CS, DS, ES,
or a number between 100 and 255 inclusive.
See the PRI= keyword of the :RUN command
for more information.

4-12 Creating Executable Program Files DRAFT

11/7/97 02:46

LINK

entry name Names the point within a program where
execution begins. ENTRY= lets you override
the primary program entry point. If the
symbol that matches entry name is not
found, an error occurs. Entry name is case
sensitive. You can override this parameter
using the ENTRYPOINT parameter of the :RUN
command. Default: starts execution from the
primary program entry point (corresponding
to a program's main procedure or outer
block). Entry names must be primary or
secondary entry types.

NODEBUG Strips all symbolic debugging information
from the resulting executable program �le.
Debugging information is generated when
you use the compiler debug option. Default:
debugging information is not stripped from
the executable program �le.

MAP Prints a symbol map to the list �le,
LINKLIST. The symbol map is identical to
that produced by the LISTPROG command.
Default: do not print a symbol map.

SHOW Displays on $STDLIST the name of each
relocatable object module as it is being
merged into the executable program �le.
You can use this parameter to verify the
order in which the link editor processes each
module. Default: do not display the names of
relocatable object modules.

Examples

LinkEd> LINK FROM=OBJCODE;TO=EXECPROG;NMSTACK=30000;MAP;SHOW

This command merges the relocatable object module(s) from the �le
OBJCODE and places them into the executable program �le EXECPROG.
It assigns a program stack size of 30000 bytes and generates a map of
the resulting executable program �le. The name of each relocatable
object module is also displayed as the executable program �le is
being built.

LinkEd> LINK FROM=^OBJCDE;TO=EXECPROG;RL=LINEDRAW,ARCDRAW;CAP=BA

This command merges the relocatable object modules named in the
indirect �le, OBJCDE, into the executable program �le EXECPROG. It
searches the relocatable libraries LINEDRAW and ARCDRAW to resolve
external references. The resulting executable program �le can be
executed only in batch mode.

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-13

LISTOBJ This command displays (on LINKLIST) the symbols in a relocatable
object �le.

If you do not specify which symbols to display using the parameters
listed below, the following types of symbols are displayed:

Procedure and program entry points.

Imported code symbols.

HP COBOL II chunk symbols.

Exported data symbols, except compiler-generated symbols
beginning with $, S$, or C$.

Certain compiler-generated static data symbols, beginning with M$,
which appear in HP COBOL II listings.

Storage requests (for example, HP FORTRAN 77 COMMON).

Module symbols.

Syntax LISTOBJ OBJFILE= relocatable object �le

[;ALL]

[;CODE]

[;DATA]

[;ENTRYSYM]

[;MILLICODE]

Parameters relocatable object �le Names the relocatable object �le to
display.

ALL Displays the symbols in the
relocatable object �le, including
compiler-generated local symbols.

CODE Displays all imported and exported
(not local) code symbols.

DATA Displays all exported data symbols
and storage requests.

ENTRYSYM Displays all procedure and program
entry points.

MILLICODE Displays all millicode symbols.

4-14 Creating Executable Program Files DRAFT

11/7/97 02:46

LISTOBJ

Example LinkEd> LISTOBJ EX1OBJ

This command displays symbols in the relocatable object �le,
EX1OBJ. (The source program for EX1OBJ is EX1SRC and is shown in
�gure 2-11.)

The �rst part of the listing is a header that gives general information
about the relocatable object module. MODULE NAME shows the name
of the relocatable object module and VERSION gives its format
version. LENGTH shows the number of bytes (in hexadecimal) in the
relocatable object module. Symbols in the relocatable object module
are listed after the header. See the next section \Understanding the
Symbol Listing" for an explanation of the symbols and columns in
the symbol portion of the listing. If there are other relocatable object
modules in the relocatable object �le, they follow and are listed in
the same format as the �rst.

MODULE NAME : EX1SRC

VERSION : 85082112

LENGTH : 00000CD4

Sym C H X P Sym Sym Lset

Name Type Scope Name

---- - - - - ---- ----- ----

_start 0 3 3 sec_p univ

ex1 0 3 3 pri_p univ

M$1 0 data local

COB_ACCEPT 0 code unsat

COB_CLOSE 0 code unsat

COB_CLOSE_FILES 0 code unsat

COB_OPEN 0 code unsat

COB_READSEQ 0 code unsat

COB_WRITE 0 code unsat

TERMINATE 0 code unsat

U_EXIT 0 code unsat

coboltrap 0 code unsat

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-15

LISTOBJ

Understanding the
Symbol Listing

This section describes the �elds that appear in the symbol listing
produced by this command.

Column Description

Sym Name Contains the name of the symbol. If the name
exceeds 25 characters, it is truncated and an asterisk
appears in the �rst truncated position.

C Contains the type checking level of the symbol. See
the PARMCHECK= check level parameter of the ADDXL
and LINK commands for a de�nition of the values
that appear in this column.

H Speci�es whether the symbol is hidden or not. If an
H appears in this column, the symbol was hidden by
the HIDERL command. If the column is blank, the
symbol is not hidden.

X Speci�es the xleast level of the symbol. See the
XLEAST= xleast level parameter of the ADDXL
command for a de�nition of the values that appear in
this column.

P Speci�es the privilege or execution level at which this
symbol runs. See the PRIVLEV= priv level parameter
of the ADDXL and LINK commands for a de�nition of
the values that appear in this column.

Sym Type Contains the symbol type. The symbol types are
shown below (see Table 4-1 for the relationship of
Sym Type values to Sym Scope values).

abs - Absolute

code - Code

data - Data

entry - Entry

milli - Millicode

mod - HP Pascal module name

null - Null

plab - Procedure label

pri_p - Primary program entry point

s_req - Storage request

sec_p - Secondary program entry point

Sym Scope Speci�es the symbol's scope. The symbol scopes are
shown below (see Table 4-1 for the relationship of
Sym Scope values to Sym Type values).

local - Local

univ - Universal

unsat - Unsatis�ed

4-16 Creating Executable Program Files DRAFT

11/7/97 02:46

LISTOBJ

Lset Name Speci�es the name of the locality set to which this
symbol belongs. Only user-de�ned locality sets are
listed.

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-17

LISTOBJ

Table 4-1. Symbol Types and Scopes (LISTOBJ)

Sym Type Sym Scope Description

abs univ A symbol that de�nes a non-relocatable
symbol or value and is visible to other
object modules.

abs local A symbol that de�nes a non-relocatable
symbol or value and is invisible to other
object modules.

abs unsat A symbol that references a non-relocatable
symbol.

code local A local label generated by the compiler, a
user label or a local label within a millicode
routine.

code univ The actual starting point of the code of a
level one procedure or function. An entry

univ symbol must exist for this symbol in
order for other object modules to reference
the procedure or function. (This symbol
appears most frequently in LISTPROG and
LISTXL listings.)

code unsat A symbol which is referenced by an object
module, but not de�ned by it.

data local A data symbol which is visible inside an
object module, but invisible to other object
modules.

data univ A data symbol de�ned in an object module
that is visible to other object modules.

data unsat A data symbol that is referenced by an
object module but not de�ned in it.

entry univ The export stub for a level one procedure or
function. It is visible to other object
modules.

entry local The entry point to a nested procedure or
program, referenceable only within the
module.

milli univ A millicode routine linked into an object
module.

milli unsat A reference to a millicode routine that will
be linked into a relocatable object module.

4-18 Creating Executable Program Files DRAFT

11/7/97 02:46

LISTOBJ

Table 4-1.

Symbol Types and Scopes (LISTOBJ) (continued)

Sym Type Sym Scope Description

mod local An HP Pascal module name.

null univ Internal symbol.

null local Internal symbol.

null unsat Internal symbol.

plab local An export stub created for a procedure or
function (declared in a relocatable object
module) whose address has been taken.

pri_p univ The main entry point into an outer block of
a program �le.

s_req unsat A symbol created when an uninitialized HP
FORTRAN 77 common block is declared.
This symbol is also created for Pascal global
data and C globals.

sec_p univ The secondary entry point into an outer
block of a program �le.

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-19

LISTPROG This command displays (on LINKLIST) the symbols in an executable
program �le. This command produces the same output as the MAP
option of the LINK command.

If you do not specify which symbols to display using the parameters
listed below, the following types of symbols are displayed:

Procedure and program entry points.

Unresolved external symbols.

Imported code symbols.

HP COBOL II chunk symbols.

Exported data symbols, except compiler-generated symbols
beginning with $, S$, or C$.

Certain compiler-generated static data symbols, beginning with M$,
which appear in HP COBOL II listings.

Storage requests (for example, HP FORTRAN 77 COMMON).

Module symbols.

Syntax LISTPROG PROG= executable prog �le

[;ALL]

[;CODE]

[;DATA]

[;ENTRYSYM]

[;MILLICODE]

[;STUB]

[;VALUE]

Parameters executable prog �le Names the executable program �le to
display.

ALL Displays the symbols in the
executable program �le, including
compiler-generated local symbols.

CODE Displays all imported and exported
(not local) code symbols.

DATA Displays all exported data symbols
and storage requests.

ENTRYSYM Displays all procedure and program
entry points.

MILLICODE Displays all millicode symbols.

STUB Displays all stub and plabel symbols.

VALUE Displays the symbols (within symbol
type) by their value rather than
alphabetically by their name.

4-20 Creating Executable Program Files DRAFT

11/7/97 02:46

LISTPROG

Example LinkEd> LISTPROG EX1PROG

This command displays symbols in the executable program �le,
EX1PROG. (The source program for EX1PROG is EX1SRC and is shown in
�gure 2-11.)

The �rst part is the header which gives general information about
the executable program �le. PROGRAM names the executable program
�le. XL LIST shows the names of executable libraries speci�ed in
the XL parameter of the LINK command. CAPABILITIES shows
the capabilities assigned to the program via the CAP parameter of
the LINK command. NMHEAP SIZE gives the value speci�ed by the
NMHEAP parameter of the LINK command. NMSTACK SIZE shows the
value speci�ed for the NMSTACK parameter of the LINK command.
And �nally, VERSION gives the format version of the executable
program �le. The symbols in the executable program �le are listed
next. See the next section \Understanding the Symbol Listing" for
explanations of the symbols and columns appearing in the symbol
portion of the listing.

PROGRAM : EX1PROG

XL LIST :

CAPABILITIES : BA, IA

NMHEAP SIZE :

NMSTACK SIZE :

VERSION : 85082112

Sym C H X P Sym Sym Sym Lset

Name Type Scope Value Name

---- - - - - ---- ----- ----- ----

$START$ 0 3 3 sec_p univ 000059B4

_start 0 3 3 sec_p univ 00005A04

ex1 0 3 3 pri_p univ 000059E8

M$1 0 data local dp+00000000

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-21

LISTPROG

Understanding the
Symbol Listing

This section describes the �elds that appear in the symbol listing
produced by this command.

Column Description

Sym Name Contains the name of the symbol. If the name
exceeds 25 characters, it is truncated and an asterisk
appears in the �rst truncated position.

C Contains the type checking level of the symbol. See
the PARMCHECK= check level parameter of the ADDXL
and LINK commands for a de�nition of the values
that appear in this column.

H Speci�es whether the symbol is hidden or not. If an
H appears in this column, the symbol was hidden by
the HIDERL command. If the column is blank, the
symbol is not hidden.

X Speci�es the xleast level of the symbol. See the
XLEAST= xleast level parameter of the ADDXL
command for a de�nition of the values that appear in
this column.

P Speci�es the privilege or execution level at which this
symbol runs. See the PRIVLEV= priv level parameter
of the ADDXL and LINK commands for a de�nition of
the values that appear in this column.

Sym Type Contains the symbol type. The symbol types are
shown below (see Table 4-2 for the relationship of
Sym Type values to Sym Scope values).

abs - Absolute

code - Code

data - Data

entry - Entry

milli - Millicode

mod - HP Pascal module name

plab - Procedure label

pri_p - Primary program entry point

sec_p - Secondary program entry point

stub - Stub

Sym Scope Speci�es the symbol's scope. The symbol scopes are
shown below (see Table 4-2 for the relationship of
Sym Scope values to Sym Type values).

ext - External

local - Local

univ - Universal

Sym Value Speci�es the value of the symbol. For pri_p, sec_p
and entry univ symbols, this column contains the
address of an export stub. For stub ext and plab

4-22 Creating Executable Program Files DRAFT

11/7/97 02:46

LISTPROG

local symbols (values displayed in the lp+ format),
this column shows the address of the XRT entry
for this import stub. For stub local symbols, this
column contains the address of the stub (a promotion
stub or an import stub). For all data univ symbols,
this column contains the address of a literal (if not
represented in dp+ format) or the o�set from the
dp (data pointer) register. For all other symbols, it
shows the address of the symbol.

Lset Name Speci�es the name of the locality set to which this
symbol belongs. Only user-de�ned locality sets are
listed.

DRAFT

11/7/97 02:46

Creating Executable Program Files 4-23

LISTPROG

Table 4-2. Symbol Types and Scopes (LISTPROG)

Sym Type Sym Scope Description

abs univ A symbol that de�nes a non-relocatable
symbol or value and is visible to other
object modules.

abs local A symbol that de�nes a non-relocatable
symbol or value and is invisible to other
object modules.

code local A local label generated by the compiler, a
user label or a local label within a millicode
routine.

code univ The actual starting point of the code of a
level one procedure or function. An entry

univ symbol must exist for this symbol in
order for other object modules to reference
the procedure or function.

data local A data symbol which is visible inside an
object module, but invisible to other object
modules.

data univ A data symbol de�ned in an object module
that is visible to other object modules.

entry univ The export stub for a level one procedure or
function. It is visible to other object
modules.

entry local The entry point to a nested procedure or
program, referenceable only within the
module.

milli univ A millicode routine linked into an object
module.

mod local An HP Pascal module name.

plab local An export stub created for a procedure or
function (declared in a relocatable object
module) whose address has been taken.

pri_p univ The main entry point into an outer block of
a program �le.

sec_p univ The secondary entry point into an outer
block of a program �le.

stub ext A procedure or function which is referenced
by an object module but not de�ned by it.
The loader resolves this reference at run
time.

stub local A promotion or an import stub.

4-24 Creating Executable Program Files DRAFT

11/7/97 02:46

5

Maintaining Relocatable Libraries

This chapter describes how HP Link Editor/XL creates and
maintains relocatable libraries. It begins by describing relocatable
libraries and how they are used. The rest of the chapter discusses the
link editor commands for manipulating relocatable libraries.

Figure 5-1 shows the �les that the link editor uses when creating and
maintaining relocatable libraries.

Figure 5-1.

Files Used for Creating and Maintaining a Relocatable Library File

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-1

Relocatable
Libraries

A relocatable library contains relocatable object modules and a
Library Symbol Table. Figure 5-2 illustrates the structure of a
relocatable library.

Figure 5-2. The Structure of a Relocatable Library

5-2 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

Relocatable libraries are useful for storing subprograms since
subprograms contain common routines that are used frequently. As
an example, if several programs use the same routine, you can place
it in a relocatable library. Then, to incorporate the routine in each
program, name the library when you link the program using LINK.
The link editor merges the relocatable object module containing the
routine into each program �le.

Storing routines in relocatable libraries helps eliminate duplication
of programming e�ort and encourages consistency and adherence
to local programming standards. Furthermore, since the link
editor can search a series of relocatable libraries, you can create
di�erent libraries for distinct purposes and then reference only those
relocatable libraries that a particular program needs.

The library routine becomes part of the program �le when the link
editor merges the relocatable object module containing the referenced
code into the program �le. Once the executable program �le is
created, the program is insulated from changes made to the library
routines. To incorporate library changes into a program, you must
relink the program using the modi�ed library.

When the link editor �nds a routine in a relocatable library that
resolves an external reference, it merges the entire relocatable
object module containing that routine into the calling program. If
the module contains code that pertains to a single procedure, the
link editor adds that procedure to the program �le. If the called
procedure is one of several procedures in a module, the entire module
is added to the program �le.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-3

The Relocatable
Library Commands

HP Link Editor/XL provides a full set of commands to manipulate
relocatable object modules within relocatable libraries. All
relocatable libraries start as compiled relocatable object code.
Use the ADDRL command to place the relocatable object modules
produced by a compiler into a relocatable library. You can extract
selected modules from a relocatable library and put them into a
new relocatable object �le with the EXTRACTRL command. You can
also copy relocatable modules between relocatable libraries or purge
selected modules from a speci�c library. Figure 5-3 shows how these
commands relate to relocatable object �les and relocatable libraries,
as well as the other relocatable library commands that the link editor
provides.

Figure 5-3. Relocatable Library Commands

5-4 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

The Relocatable
Library Commands
Reference

The following HP Link Editor/XL commands manage relocatable
libraries. Each command is discussed in detail in the sections which
follow in this chapter.

ADDRL Adds relocatable object modules from a relocatable
object �le to a relocatable library.

BUILDRL Builds and initializes a �le as a new relocatable
library. This library becomes the current relocatable
library for subsequent interactive commands.

CLEANRL Rebuilds a relocatable library by removing any
fragmentation and leaving room for expansion.

COPYRL Copies selected relocatable object modules from one
relocatable library to another.

EXTRACTRL Copies selected relocatable object modules from
a relocatable library, placing them into a new
relocatable object �le.

HIDERL Hides a symbol so the loader can no longer use
this symbol to resolve external references between
executable modules.

LISTRL Lists the symbols that are imported and exported by
each relocatable object module within a relocatable
library. This directory also shows the module name
and entry point of each relocatable object module.

PURGERL Deletes selected relocatable object modules from a
relocatable library.

REVEALRL Reveals a symbol that was previously hidden by the
HIDERL command. This command allows the loader
to resolve external references between executable
modules.

RL Selects an existing relocatable library to be the
current relocatable library.

SHOWRL Displays the name of the current relocatable library.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-5

ADDRL This command takes relocatable object modules, which are compiled
from one or more source �les, and puts them into a relocatable
library. To add a relocatable object module from another relocatable
library, use the COPYRL command.

Syntax ADDRL FROM= source �le [, source �le]...

[;TO= dest �le]

[;MERGE [;RL= rl �le [, rl �le]...]]

[;SHOW]

[;REPLACE]

Parameters source �le Names the relocatable object �le containing
the module(s) to add to the relocatable
library. The �le must be a binary �le with
the �lecode NMOBJ. When you want to
include several relocatable object �les, you
can name each �le individually, or you can
provide an indirect �le name containing a list
of object �les by preceding that �le name
with a caret symbol (^).

dest �le Names the relocatable library where the
relocatable object modules are placed. When
dest �le is an existing �le, it must have
the �lecode NMRL. Default: the current
relocatable library established by the last
BUILDRL or RL command.

MERGE Directs the link editor to merge the
relocatable object modules into a single
object module and then add that module
to the relocatable library. The link editor
takes the name of the �rst object module it
encounters in the list of relocatable object
�les and assigns that name to the relocatable
object module being built. The examples,
which follow, give more details on how MERGE

works. Default: create a separate relocatable
object module in the library for each module
in the relocatable object �le.

rl �le Names the relocatable library to use during
MERGE operations to resolve external
references. The �le must have a �lecode of
NMRL. When you want to include several
relocatable library �les, you can name each
library individually, or you can provide an
indirect �le name by preceding that �le name
with the caret symbol (^). Default: do not

5-6 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

ADDRL

use a relocatable library to resolve external
references.

SHOW Displays (on $STDLIST) the name of each
relocatable object module added to the
relocatable library. All �les speci�ed in the
FROM= and RL= parameters are displayed.
Default: do not display the names of
relocatable object modules.

REPLACE Speci�es that when symbols in the module
being added are duplicates of symbols in any
module in the destination library, then the
modules with duplicate symbols residing in
the library are removed. The new module
is added before any of the modules in the
library are removed.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-7

ADDRL

Examples LinkEd> ADDRL FROM=ARC,LINE,TANGENT

This command adds each of the relocatable object modules within
the relocatable object �les ARC, LINE, and TANGENT as distinct
relocatable object modules to the current relocatable library.

When using ADDRL, you normally omit the MERGE parameter. By
omitting MERGE, you create a separate relocatable object module
in the relocatable library corresponding to each relocatable object
module in the object �le. Figure 5-4 illustrates this.

Figure 5-4. The ADDRL Command without the MERGE Option

5-8 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

ADDRL

LinkEd> ADDRL FROM=LINEDRAW;TO=BOXDRAW;MERGE;RL=ARC,LINE;SHOW

This command merges the relocatable object modules in the
relocatable object �le LINEDRAW, with the modules from the
relocatable libraries ARC and LINE that resolve external references,
then adds a single relocatable object module containing this code to
the relocatable library BOXDRAW. The link editor also displays the
name of each relocatable object module it processes during the MERGE
operation.

The MERGE parameter directs the link editor to combine all the
relocatable object modules into a single module as shown in
Figure 5-5.

Figure 5-5. The ADDRL Command with the MERGE Option

During a MERGE operation, you can also provide a list of relocatable
libraries for the link editor to search to resolve external references.
For example, if a relocatable object �le contains three relocatable
object modules and these modules refer to two relocatable object
modules within a relocatable library, the link editor combines all �ve
relocatable object modules into one.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-9

BUILDRL This command creates a new relocatable library �le. The directory of
the relocatable library �le is initialized and symbol space is reserved.
This command also makes the new library the current relocatable
library for subsequent interactive commands.

Syntax BUILDRL RL= rl �le

[;LIMIT= max modules]

Parameters rl �le Names the new relocatable library (it is
created with the �lecode NMRL). The name
must conform to the conventions established
for all MPE XL �le names. The �le must not
already exist in the account. If it does, an
error message is printed.

max modules Speci�es the maximum number of relocatable
object modules that the relocatable library
can contain by setting the size of the
directory. The maximum number you can
enter for this parameter is 400000. Default:
2000.

Examples LinkEd> BUILDRL RL=LINEDRAW;LIMIT=50

This command builds a new relocatable �le called LINEDRAW. The
command also sets the maximum number of relocatable object
modules that this library can contain at 50.

LinkEd> BUILDRL BOXDRAW

This command builds a new relocatable library called BOXDRAW that
can contain a maximum of 2000 relocatable object modules.

5-10 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

CLEANRL

CLEANRL This command eliminates fragmentation that may exist in a
relocatable library �le.

Although relocatable libraries can expand in size, expansion beyond
a certain point fragments the Library Symbol Table (so access to
that library is slower). The CLEANRL command rebuilds the library,
while allocating su�cient space in the library's internal tables for
expansion. Thus, you can use this command to allocate more space
for a full relocatable library or to conserve disc space by reducing the
size of a partially-�lled library.

Syntax CLEANRL [RL= rl �le]

[;COMPACT]

[;LIMIT= max modules]

Parameters rl �le Names an existing relocatable library. The
�le must have an NMRL �lecode. If the
relocatable library does not exist, an error
results. Default: the current relocatable
library established by the last BUILDRL or RL
command.

COMPACT Removes fragmentation and reduces the
internal tables of the relocatable library to
the minimum size that will accommodate
the current contents of the library. Using
this parameter does not restrict future use of
the library. Default: fragmentation of the
internal tables is removed. A pre-determined
amount of space is allocated for future
expansion.

max modules Speci�es a new limit for the maximum
number of relocatable object modules within
the library.

Example LinkEd> CLEANRL BOXDRAW

This command rebuilds the relocatable library BOXDRAW and
restructures its library symbol table so the table can hold more
symbols than it currently stores.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-11

COPYRL This command copies relocatable object modules from one
relocatable library to another. You can copy speci�c modules by
their entry point, module, and block data name (HP FORTRAN 77)
or by their locality set name.

Syntax

COPYRL [ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [, blockdata name]...]

[;LSET= lset name [,lset name]...]

[;FROM= source �le]

[;TO= dest �le]

[;REPLACE]

Parameters The �rst four parameters (ENTRY, MODULE, BLOCKDATA, and LSET)
identify speci�c modules to copy. You can use any one by itself, or
you can use them in combination. If you omit these parameters, the
entire relocatable library is copied.

entry name Copies the module(s) that de�ne (export) the
symbolic
entry name. You can enter an indirect �le
for this parameter. Entry name is case
sensitive.

module name Copies only those modules having the name,
module name. If you do not use the RLFILE
compiler directive, this is the name of the
source �le from which the relocatable object
module was compiled. If you use the RLFILE
compiler directive, see the appropriate
language appendix (appendix B, C, D, or E)
for the de�nition of this name. You can enter
an indirect �le for this parameter.

blockdata name Copies only those modules having the name,
blockdata name. Use this parameter only for
HP FORTRAN 77 block data subprograms.
You can use an indirect �le name for
blockdata name.

lset name Copies those modules that contain code
belonging to the locality set (lset name)
that you enter. A module can contain several
locality sets, or there can be several modules
within a locality set. Each compiler provides
its own directives for placing procedures into
locality sets (check your language manual to
see if locality sets are available). You can
enter an indirect �le for this parameter.

5-12 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

COPYRL

source �le Names the relocatable library containing
the modules to copy. The �le must have
an NMRL �lecode. Default: the current
relocatable library established by the last
BUILDRL or RL command. (If you use the
default, you must enter the TO= dest �le
parameter.)

dest �le Names the relocatable library where the
modules are placed. When dest �le is
an existing �le, it must have the �lecode
NMRL. Default: the current relocatable
library established by the last BUILDRL or RL
command. (If you use the default, you must
enter the FROM= source �le parameter.)

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-13

COPYRL

REPLACE Speci�es that when symbols in the module(s)
being copied are duplicates of symbols in any
module in the destination library, then the
modules with duplicate symbols residing in
the destination library are removed. The new
module is added before any of the modules in
the library are removed.

Examples LinkEd> COPYRL LSET=CLIP;TO=WINDOWS

This command copies all relocatable object modules which are
associated with the CLIP locality set from the current relocatable
library and places them into the WINDOWS relocatable library.

LinkEd> COPYRL FROM=LINEDRAW

This command copies all the relocatable object modules from the
relocatable library LINEDRAW and places them into the current
relocatable library.

5-14 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

EXTRACTRL

EXTRACTRL This command extracts selected relocatable object modules from a
relocatable library and places them into a new relocatable object �le.
You can extract speci�c modules by their entry point, module and
block data name (HP FORTRAN 77) or by their locality set name.

This command does not delete the extracted modules from the
relocatable library.

Syntax

EXTRACTRL [ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [, blockdata name]...]

[;LSET= lset name [,lset name]...]

[;FROM= source �le]

[;TO= object �le]

Parameters The �rst four parameters (ENTRY, MODULE, BLOCKDATA, and LSET)
identify speci�c modules to extract. You can use any one by itself, or
you can use them in combination. If you omit these parameters, the
entire relocatable library is extracted.

entry name Extracts the module(s) that de�ne (export)
the symbolic
entry name. You can enter an indirect �le
for this parameter. Entry name is case
sensitive.

module name Extracts only those modules having the
name, module name. If you do not use the
RLFILE compiler directive, this is the name
of the source �le from which the relocatable
object module was compiled. If you use the
RLFILE compiler directive, see the appropriate
language appendix (appendix B, C, D or E)
for the de�nition of this name. You can enter
an indirect �le for this parameter.

blockdata name Extracts only those modules having the
name, blockdata name. Use this parameter
only for HP FORTRAN 77 block data
subprograms. You can use an indirect �le
name for blockdata name.

lset name Extracts those modules that contain code
belonging to the locality set (lset name)
that you enter. A module can contain several
locality sets, or there can be several modules
within a locality set. Each compiler provides
its own directives for placing procedures into
locality sets (check your language manual to

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-15

EXTRACTRL

see if locality sets are available). You can
enter an indirect �le for this parameter.

source �le Names the relocatable library containing
the modules to extract. The �le must have
the �lecode NMRL. Default: the current
relocatable library established by the last
BUILDRL or RL command.

5-16 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

EXTRACTRL

object �le Names the relocatable object �le to be
created (it is created with the �lecode
NMOBJ). The name must conform to the
conventions established for MPE XL �le
names. The �le must not already exist in the
speci�ed group. If it does, an error message is
printed. Default: the system �le, $NEWPASS.

Examples LinkEd> EXTRACTRL LSET=CLIP;TO=WINDOWS

This command extracts all relocatable object modules which are
associated with the CLIP locality set from the current relocatable
library and places them into the new relocatable object �le, WINDOWS.

LinkEd> EXTRACTRL

This command extracts all the relocatable object modules from the
current relocatable library and places them into the relocatable
object �le $NEWPASS.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-17

HIDERL This command hides one or more procedure entry points contained in
the relocatable object modules of a relocatable library.

HIDERL takes e�ect when the relocatable object module containing
the hidden entry points is added (using ADDXL) to an executable
library. The entry points are hidden from the loader at run time.
Thus, HIDERL lets you keep procedure entry points private within a
module and avoid name conicts among procedures.

Syntax HIDERL

�
ENTRY= entry name

;ALL

�

[;RL= rl �le]

Parameters The �rst parameter (ENTRY or ALL), which identi�es the entry points
to hide, is required.

entry name Names a symbol to conceal in the relocatable
library. If the entry name does not exist, an
error results. Entry name is case sensitive.

ALL Hides all entry points in the relocatable
library.

rl �le Names the relocatable library containing
the symbol. The �le must have an NMRL
�lecode. Default: the current relocatable
library established by the last BUILDRL or RL
command.

Example LinkEd> HIDERL ENTRY=LineTo;RL=LINEDRAW

This command hides the LineTo symbol within the LINEDRAW
relocatable library. If a module from this library is added to an
executable library, the loader cannot use this symbol when resolving
external references.

5-18 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

LISTRL

LISTRL This command displays (on LINKLIST) the symbols contained in
relocatable object modules of a relocatable library. (You may need
this information for the COPYRL, EXTRACTRL and PURGERL commands.)

If you do not specify which symbols to display using the parameters
listed below, the following types of symbols are displayed:

Procedure and program entry points.

Imported code symbols.

HP COBOL II chunk symbols.

Exported data symbols, except compiler-generated symbols
beginning with $, S$, or C$.

Certain compiler-generated static data symbols, beginning with M$,
which appear in HP COBOL II listings.

Storage requests (for example, HP FORTRAN 77 COMMON).

Module symbols.

Syntax

LISTRL [RL= rl �le]

[;ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [, blockdata name]...]

[;LSET= lset name [,lset name]...]

[;ALL]

[;CODE]

[;DATA]

[;ENTRYSYM]

[;MILLICODE]

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-19

LISTRL

Parameters rl �le Names the relocatable library to list. The �le
must have an NMRL �lecode. Default: the
current relocatable library established by the
last BUILDRL or RL command.

The next four parameters (ENTRY, MODULE, BLOCKDATA, and LSET)
identify speci�c modules to list. You can use any one by itself, or
you can use them in combination. If you omit these parameters, the
entire relocatable library is listed.

entry name Lists the module(s) that de�ne (export) the
symbolic entry name. You can enter an
indirect �le for this parameter. Entry name
is case sensitive.

module name Lists only those modules having the name,
module name. If you do not use the RLFILE
compiler directive, this is the name of the
source �le from which the relocatable object
module was compiled. If you use the RLFILE
compiler directive, see the appropriate
language appendix (appendix B, C, D, or E)
for the de�nition of this name. You can enter
an indirect �le for this parameter.

blockdata name Lists only those modules having the name,
blockdata name. Use this parameter only for
HP FORTRAN 77 block data subprograms.
You can use an indirect �le name for
blockdata name.

lset name Lists those modules that contain code
belonging to the locality set (lset name)
that you enter. A module can contain several
locality sets, or there can be several modules
within a locality set. Each compiler provides
its own directives for placing procedures into
locality sets (check your language manual to
see if locality sets are available). You can
enter an indirect �le for this parameter.

ALL Displays the symbols in the relocatable
library, including compiler-generated local
symbols.

CODE Displays all imported and exported (not
local) code symbols.

DATA Displays all exported data symbols and
storage requests.

ENTRYSYM Displays all procedure and program entry
points.

MILLICODE Displays all millicode symbols.

5-20 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

LISTRL

Example LinkEd> LISTRL RL=LIBRL;CODE;ENTRYSYM

This command displays symbols in the LIBRL relocatable library. It
also displays all procedure and program entry points. (The library is
the one that is created in �gure 2-4.)

The �rst part of the listing is the relocatable library header. LIBRARY
NAME gives the �le name of the relocatable library and VERSION is
its format version. MODULE COUNT shows the number of relocatable
modules in the library and MODULE LIMIT gives the maximum number
of modules that it holds.

After the relocatable library header is the �rst relocatable module
header. MODULE NAME gives the name of the relocatable object module
and VERSION is its format version. LENGTH gives the number of bytes
(in hexadecimal) in the relocatable object module. Symbols in the
relocatable object module are listed after the header. See the next
section \Understanding the Symbol Listing" for an explanation of the
symbols and columns in the symbol portion of the listing. If there
are additional relocatable object modules in the relocatable library to
list, they appear next and are listed in the same format as the �rst
module.

LIBRARY NAME : LIBRL

VERSION : 85082112

MODULE COUNT : 5

MODULE LIMIT : 2000

MODULE NAME : LIB1SRC

VERSION : 85082112

LENGTH : 00000508

Sym C H X P Sym Sym Lset

Name Type Scope Name

---- - - - - ---- ----- ----

julian 3 3 3 entry univ

MODULE NAME : LIB2SRC

VERSION : 85082112
LENGTH : 00000620

Sym C H X P Sym Sym Lset

Name Type Scope Name

---- - - - - ---- ----- ----

mdy 3 3 3 entry univ

julian 3 code unsat

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-21

LISTRL

MODULE NAME : LIB3SRC

VERSION : 85082112

LENGTH : 000004B8

Sym C H X P Sym Sym Lset

Name Type Scope Name

---- - - - - ---- ----- ----

wkday 3 3 3 entry univ

julian 3 code unsat

MODULE NAME : LIB4SRC

VERSION : 85082112

LENGTH : 00000530

Sym C H X P Sym Sym Lset

Name Type Scope Name

---- - - - - ---- ----- ----

adddat 3 3 3 entry univ

julian 3 code unsat

mdy 3 code unsat

MODULE NAME : LIB5SRC

VERSION : 85082112

LENGTH : 00000484

Sym C H X P Sym Sym Lset

Name Type Scope Name

---- - - - - ---- ----- ----

amort 3 3 3 entry univ

FTN_DTOI 0 code unsat

5-22 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

LISTRL

Understanding the
Symbol Listing

This section describes the �elds that appear in the symbol listing
produced by this command.

Column Description

Sym Name Contains the name of the symbol. If the name
exceeds 25 characters, it is truncated and an asterisk
appears in the �rst truncated position.

C Contains the type checking level of the symbol. See
the
PARMCHECK= check level parameter of the ADDXL and
LINK commands for a de�nition of the values that
appear in this column.

H Speci�es whether the symbol is hidden or not. If an
H appears in this column, the symbol was hidden by
the HIDERL command. If the column is blank, the
symbol is not hidden.

X Speci�es the xleast level of the symbol. See the
XLEAST= xleast level parameter of the ADDXL
command for a de�nition of the values that appear in
this column.

P Speci�es the privilege or execution level at which this
symbol runs. See the PRIVLEV= priv level parameter
of the ADDXL and LINK commands for a de�nition of
the values that appear in this column.

Sym Type Contains the symbol type. The symbol types are
shown below (see Table 5-1 for the relationship of
Sym Type values to Sym Scope values).

abs - Absolute

code - Code

data - Data

entry - Entry

milli - Millicode

mod - HP Pascal module name

null - Null

plab - Procedure label

pri_p - Primary program entry point

s_req - Storage request

sec_p - Secondary program entry point

Sym Scope Speci�es the symbol's scope. The symbol scopes are
shown below (see Table 5-1 for the relationship of
Sym Scope values to Sym Type values).

local - Local

univ - Universal

unsat - Unsatis�ed

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-23

LISTRL

Lset Name Speci�es the name of the locality set to which this
symbol belongs. Only user-de�ned locality sets are
listed.

5-24 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

LISTRL

Table 5-1. Symbol Types and Scopes (LISTRL)

Sym Type Sym Scope Description

abs univ A symbol that de�nes a non-relocatable
symbol or value and is visible to other
object modules.

abs local A symbol that de�nes a non-relocatable
symbol or value and is invisible to other
object modules.

abs unsat A symbol that references a non-relocatable
symbol.

code local A local label generated by the compiler, a
user label or a local label within a millicode
routine.

code univ The actual starting point of the code of a
level one procedure or function. An entry

univ symbol must exist for this symbol in
order for other object modules to reference
the procedure or function. (This symbol
appears most frequently in LISTPROG and
LISTXL listings.)

code unsat A symbol which is referenced by an object
module, but not de�ned by it.

data local A data symbol which is visible inside an
object module, but invisible to other object
modules.

data univ A data symbol de�ned in an object module
that is visible to other object modules.

data unsat A data symbol that is referenced by an
object module but not de�ned in it.

entry univ The export stub for a level one procedure or
function. It is visible to other object
modules.

entry local The entry point to a nested procedure or
program, referenceable only within the
module.

milli univ A millicode routine linked into an object
module.

milli unsat A reference to a millicode routine that will
be linked into a relocatable object module.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-25

LISTRL

Table 5-1.

Symbol Types and Scopes (LISTRL) (continued)

Sym Type Sym Scope Description

mod local An HP Pascal module name.

null univ Internal symbol.

null local Internal symbol.

null unsat Internal symbol.

plab local An export stub created for a procedure or
function (declared in a relocatable object
module) whose address has been taken.

pri_p univ The main entry point into an outer block of
a program �le.

s_req unsat A symbol created when an uninitialized HP
FORTRAN 77 common block is declared.
This symbol is also created for Pascal global
data and C globals.

sec_p univ The secondary entry point into an outer
block of a program �le.

5-26 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

PURGERL

PURGERL This command deletes selected modules from a relocatable library.
You can purge speci�c modules by their entry point, module, and
block data name (HP FORTRAN 77) or by their locality set name.

Syntax
PURGERL8>><
>>:

ENTRY= entry name
�
,entry name

�
. . .

;MODULE= module name
�
,module name

�
. . .

;BLOCKDATA= blockdata name
�
, blockdata name

�
. . .

;LSET= lset name
�
,lset name

�
. . .

9>>=
>>;

[;RL= rl �le]

Parameters The �rst four parameters (ENTRY, MODULE, BLOCKDATA, and LSET)
identify speci�c modules to purge. You can use any one by itself,
or you can use them in combination. Modules matching any of the
criteria that you enter are purged.

entry name Purges the module(s) that de�ne (export) the
symbolic
entry name. You can enter an indirect �le
for this parameter. Entry name is case
sensitive.

module name Purges only those modules having the
name, module name. If you do not use the
RLFILE compiler directive, this is the name
of the source �le from which the relocatable
object module was compiled. If you use the
RLFILE compiler directive, see the appropriate
language appendix (appendix B, C, D, or E)
for the de�nition of this name. You can enter
an indirect �le for this parameter.

blockdata name Purges only those modules having the name,
blockdata name. Use this parameter only for
HP FORTRAN 77 block data subprograms.
You can use an indirect �le name for
blockdata name.

lset name Purges those modules that contain code
belonging to the locality set (lset name)
that you enter. A module can contain several
locality sets, or there can be several modules
within a locality set. Each compiler provides
its own directives for placing procedures into
locality sets (check your language manual to
see if locality sets are available). You can
enter an indirect �le for this parameter.

rl �le Names the relocatable library containing
the modules to purge. The �le must have
an NMRL �lecode. Default: the current

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-27

PURGERL

relocatable library established by the last
BUILDRL or RL command.

5-28 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

PURGERL

Examples LinkEd> PURGERL LSET=CLIP;RL=WINDOWS

This command deletes all relocatable object modules that belong to
the CLIP locality set from the WINDOWS relocatable library.

LinkEd> PURGERL MODULE=GRAPH

This command deletes the relocatable object module named GRAPH

from the current relocatable library.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-29

REVEALRL This command reveals hidden symbols in the relocatable object
modules of a relocatable library. (REVEALRL reverses the e�ect of the
HIDERL command.)

This command takes e�ect when the module containing the symbol
is added to an executable library. The symbol can be used by the
loader to resolve external references between executable modules.
Thus, the e�ect of REVEALRL is to reveal the symbol to the loader at
run time.

Syntax REVEALRL

�
ENTRY= entry name

;ALL

�

[;RL= rl �le]

Parameters entry name Names a symbol to reveal in the relocatable
Library Symbol Table. If the symbol does not
exist, an error results. Entry name is case
sensitive.

ALL Reveals all symbols in the relocatable library.

rl �le Names the relocatable library in which the
symbol currently resides. The �le must have
an NMRL �lecode. Default: the current
relocatable library established by the last
BUILDRL or RL command.

Example LinkEd> REVEALRL ENTRY=LineTo;RL=LINEDRAW

This command reveals the symbol LineTo within the LINEDRAW
relocatable library. When the relocatable object modules containing
references to LineTo are added to an executable library, the loader
can use the symbol to resolve external references between executable
modules.

5-30 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

RL

RL This command makes an existing relocatable library the current
(working) relocatable library. This relocatable library becomes the
default library in subsequent command operations.

You must have read and write access to the relocatable library.

Syntax RL RL= rl �le

Parameters rl �le Names an existing relocatable library. The
�le must have an NMRL �lecode.

Example LinkEd> RL RL=BOXDRAW

This command makes BOXDRAW the current relocatable library.

DRAFT

11/7/97 02:46

Maintaining Relocatable Libraries 5-31

SHOWRL This command displays (on $STDLIST) the name of the current
(working) relocatable library.

To change the current relocatable library, use the RL command.
To create a relocatable library and make that library the current
relocatable library, use the BUILDRL command.

Syntax SHOWRL

Example LinkEd> SHOWRL

This command displays the name of the current relocatable library.

5-32 Maintaining Relocatable Libraries DRAFT

11/7/97 02:46

6

Maintaining Executable Libraries

This chapter explains how to build and maintain executable libraries.
The chapter begins by describing executable libraries and comparing
them to relocatable libraries. The remainder of the chapter provides
a detailed description of each of the executable library commands.
Since the task of building and maintaining executable libraries
resembles the task of building and maintaining relocatable libraries,
much of this chapter parallels the information in chapter 5.

Figure 6-1 shows the input and output �les that HP Link Editor uses
to create and maintain executable libraries.

Figure 6-1. Creating an Executable Library File

Executable libraries are composed of one or more executable modules
that come from relocatable object modules created by compilers. The
executable modules can also come from relocatable object modules in
a relocatable library.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-1

Executable Libraries An executable library contains executable modules and a Library
Symbol Table. Figure 6-2 illustrates the structure of an executable
library.

Figure 6-2. The Structure of an Executable Library

Executable libraries contain executable modules having the following
characteristics:

Executable modules are in a form that can be executed directly.

Executable modules are shared - only one copy of the code need
exist on the system. Programs that use an executable module
share the same physical copy of code.

Executable modules have their own global data, separate from the
program's global data.

External references between executable modules and calling
programs are resolved at run time.

Executable modules cannot have outer blocks.

You can store executable libraries in any group and account. At run
time, the loader searches the executable libraries that you name
in the XL list of the LINK command or that you specify by the RUN
command. Besides searching your executable libraries, the loader
automatically searches the executable libraries maintained by the
system. These libraries are NL.PUB.SYS, which contains system
routines such as MPE XL intrinsics, and XL.PUB.SYS, which contains
subsystem support routines.

6-2 Maintaining Executable Libraries DRAFT

11/7/97 02:46

The Executable
Library Commands

Several of the executable library commands resemble relocatable
library commands. For example, the XL, LISTXL, and SHOWXL

commands (corresponding to the RL, LISTRL, and SHOWRL commands)
let you specify the current executable library or display information
about an executable library. As you use the BUILDRL, CLEANRL,
ADDRL, COPYRL, and PURGERL commands to manipulate relocatable
libraries, you can perform similar operations on executable libraries
with the BUILDXL, CLEANXL, ADDXL, COPYXL, and PURGEXL commands.

Figure 6-3 shows the executable library commands that are discussed
in this chapter along with the �les that they use.

Figure 6-3. Executable Library Commands

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-3

The Executable
Library Commands
Reference

The remainder of this chapter discusses in detail each of the link
editor commands that manage executable libraries. The executable
library commands are:

ADDXL Adds relocatable object modules from a relocatable
object �le or from a relocatable library to an
executable library.

BUILDXL Builds and initializes a new executable library. This
library becomes the current executable library for
subsequent interactive commands.

CLEANXL Rebuilds an executable library by removing any
fragmentation and leaving room for expansion within
that library's internal tables.

COPYXL Copies speci�ed executable modules from one
executable library to another.

LISTXL Lists the symbols that are imported and exported
by each executable module in an executable library.
This listing also includes the module name and
procedure entry points for each executable module.

PURGEXL Purges speci�ed executable modules from an
executable library.

SHOWXL Displays the name of the current executable library.
If you want to select another executable library as
the current library, enter an XL or BUILDXL command
using that library's name.

XL Makes an existing executable library the current
executable library.

6-4 Maintaining Executable Libraries DRAFT

11/7/97 02:46

ADDXL

ADDXL This command adds relocatable object modules to an executable
library from either a relocatable object �le or a relocatable library.

Syntax

ADDXL FROM= source �le [,source �le]...

[;TO= dest �le]

[;MERGE [;RL= rl �le [, rl �le]...]]

[;SHOW]

[;PARMCHECK= check level]

[;PRIVLEV= priv level]

[;XLEAST= xleast level]

[;MAP]

[;REPLACE]

[;ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [, blockdata name]...]

[;LSET= lset name [,lset name]...]

[;NODEBUG]

Parameters source �le Names either a relocatable object �le (from a
compiled source �le) or a relocatable library
�le that contains the relocatable object
modules you want to add to the executable
library. The �le must have a �lecode of
NMOBJ or NMRL. When you want to
include several �les, you can name each �le
individually, or you can use an indirect �le
name containing a list of the �le names you
want to include. Precede the indirect �le
name with a caret symbol (^). Note that you
must supply at least one �le name since the
FROM= parameter is required.

dest �le Names the executable library where the link
editor places the executable modules. When
dest �le is an existing �le, it must have the
�lecode NMXL. Default: the modules are
placed in the executable library used in the
last XL or BUILDXL command.

MERGE Directs the link editor to merge all the
relocatable object modules together
producing a single executable module in the
executable library. The link editor uses the
�rst relocatable object module name that
it merges as the name for the new module
in the library. The examples, which follow,

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-5

ADDXL

explain MERGE in more detail. Default: do not
merge relocatable object modules.

rl �le Names a relocatable library that the link
editor searches during a MERGE operation to
resolve external references. The �le must
have an NMRL �lecode. When you want to
include several relocatable library �les, you
can name each library individually, or you
can provide an indirect �le name containing
a list of �le names. Precede the indirect �le
name with a caret symbol (^). Default: no
relocatable library is used.

6-6 Maintaining Executable Libraries DRAFT

11/7/97 02:46

ADDXL

SHOW Displays (on $STDLIST) the name of each
relocatable object module as it is merged into
the executable library. Use this parameter
to verify the order in which the link editor
processes each module. Default: do not
display relocatable object modules.

check level Determines the type checking error level that
the link editor uses while binding external
references to procedures and global variables.
All relocatable object modules indicate a
checking level for each reference and each
de�nition of a procedure or a global variable.
When binding an external reference to a
de�nition, the link editor compares the
type information at the lower of the two
checking levels speci�ed by the reference
and the de�nition. If a type mismatch is
found, it is either a warning or an error. This
option determines which type mismatches
are warnings and which are errors. The
check level entries are:

0 - All type mismatches are
warnings.

1 - Mismatches of the procedure,
function or variable type are
errors. All other mismatches
are warnings.

2 - Mismatches of the procedure,
function or variable type and
mismatches of the number of
arguments for procedures
or functions are errors. All
other mismatches (parameter
types, for example) are
warnings.

3 - All type mismatches are
errors.

Default: 3.

priv level Determines the privilege level of all entry
points in the executable module. This
parameter changes the privilege level of all
procedures in the symbol and export tables
(of the relocatable object �le) that were set
during compilation.

The priv level entries are:

0 - System level access

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-7

ADDXL

1 - Unused

2 - Privileged level access

3 - User level access

Default: the privilege levels set during
compilation by compiler directives.

xleast level Determines the privilege level at which calling
procedures must be executing to use the
executable module. Enter a value from zero
to three (see the values for the priv level
parameter, above). Default: use the existing
privilege levels of the executable module.

MAP Prints a symbol map to the list �le,
LINKLIST, using the same format as the
LISTXL command. Default: Do not print a
symbol map.

6-8 Maintaining Executable Libraries DRAFT

11/7/97 02:46

ADDXL

REPLACE Speci�es that when symbols in the module
being added are duplicates of symbols in any
module in the destination library, then the
modules with duplicate symbols residing in
the library are removed. The new module
is added before any of the modules in the
library are removed.

The next four parameters (ENTRY, MODULE, BLOCKDATA, and LSET)
identify the modules to add from the relocatable library. (Do not use
these parameters when the source �le is a relocatable object �le.)
You can use any of the parameters alone, or you can use them in
combination. If you omit these parameters, the entire relocatable
library is added.

entry name Adds the module(s) that de�ne (export) the
symbolic entry name. You can enter an
indirect �le for this parameter. Entry name
is case sensitive.

module name Adds only those modules having the name,
module name. If you do not use the RLFILE
compiler directive, this is the name of the
source �le from which the relocatable object
module was compiled. If you use the RLFILE
compiler directive, see the appropriate
language appendix (appendix B, C, D, or E)
for the de�nition of this name. You can enter
an indirect �le for this parameter.

blockdata name Adds only those modules having the name,
blockdata name. Use this parameter only for
HP FORTRAN 77 block data subprograms.
You can use an indirect �le name for
blockdata name.

lset name Adds those modules that contain code
belonging to the locality set (lset name)
that you enter. A module can contain several
locality sets, or there can be several modules
within a locality set. Each compiler provides
its own directives for placing procedures into
locality sets (check your language manual to
see if locality sets are available). You can
enter an indirect �le for this parameter.

NODEBUG Speci�es that all debugging information
should be stripped from the output object
module before being added to the executable
library.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-9

ADDXL

Examples LinkEd> ADDXL FROM=FILEOPEN;TO=FILEREAD

This command takes the relocatable object modules from the
relocatable object �le FILEOPEN and adds them to the FILEREAD
executable library.

6-10 Maintaining Executable Libraries DRAFT

11/7/97 02:46

ADDXL

When you omit the MERGE parameter, the link editor links each
relocatable object module independently, then adds that module
to the executable library. It doesn't attempt to resolve references
between modules or library routines. Thus, each relocatable object
module in the object �le has its counterpart in the executable library.
Figure 6-4 illustrates this process.

Figure 6-4. The ADDXL Command without the MERGE Option

In this process, the ADDXL command duplicates the operation of
the LINK command as the link editor binds the relocatable object
module to make it executable. That is, the link editor assigns virtual
addresses to all symbols, binds references to the known symbols
within each relocatable object module, and puts the resulting
executable module in a form that the loader can process.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-11

ADDXL

LinkEd> ADDXL FROM=FILEI0,FILEREAD,FILEWRIT;MERGE;RL=FILEUTIL

This command merges the relocatable object modules from the
relocatable object �les FILEIO, FILEREAD and FILEWRIT, as well
as using those modules from the FILEUTIL relocatable library that
resolve external references, and then places a single executable
module (called FILEIO) into the current executable library.

By specifying the MERGE parameter, you can direct the link editor to
merge the relocatable modules into one executable module, resolving
references between them. (See Figure 6-5.) In the same command,
you can also list the relocatable libraries to be searched to resolve
external references to library routines.

Figure 6-5. The ADDXL Command with the MERGE Option

6-12 Maintaining Executable Libraries DRAFT

11/7/97 02:46

BUILDXL

BUILDXL This command builds and initializes a new executable library. The
new library becomes the current (working) executable library for
subsequent interactive commands.

Syntax BUILDXL XL= xl �le

[;LIMIT= max modules]

Parameters xl �le Names the executable library to be created
(it is created with �lecode NMXL). The name
must conform to the MPE XL �le naming
conventions. If the �le already exists, the link
editor ignores the command and prints an
error message.

max modules Speci�es the maximum number of relocatable
object modules that the executable library
can contain. The maximum number that you
can enter is 400000. Default: 500.

Examples LinkEd> BUILDXL XL=FILEREAD;LIMIT=200

This command creates an executable library called FILEREAD that
can contain a maximum of 200 executable modules.

LinkEd> BUILDXL XL=FILEIO

This command creates an executable library called FILEIO that can
contain a maximum of 500 executable modules.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-13

CLEANXL This command eliminates fragmentation which may exist in an
executable library.

Although executable libraries can expand in size, expansion beyond a
certain point fragments the Library Symbol Table so access to that
library becomes slower. The CLEANXL command takes a fragmented
library and rebuilds that library, while allocating su�cient space in
the library's internal tables to allow for expansion. You can use this
command to allocate more space for an executable library, or to
conserve disc space by reducing the size of a partially-�lled library.

Syntax CLEANXL [XL= xl �le]

[;COMPACT]

[;LIMIT= max modules]

Parameters xl �le Names an existing executable library (the
�le must have an NMXL �lecode). If the
executable library does not exist, the link
editor reports an error. Default: condense the
current executable library (established by the
last BUILDXL or XL command).

COMPACT Removes fragmentation and reduces the
internal tables of the relocatable library to
the minimum size that will accommodate
the current contents of the library. Using
this parameter does not restrict future use of
the library. Default: fragmentation of the
internal tables is removed. A pre-determined
amount of space is allocated for future
expansion.

max modules Speci�es a new limit for the maximum
number of relocatable object modules that
the library can contain.

Example LinkEd> CLEANXL XL=FILEIO

This command rebuilds the executable library FILEIO and
restructures its Library Symbol Table so the table can hold more
symbols than it currently stores.

6-14 Maintaining Executable Libraries DRAFT

11/7/97 02:46

COPYXL

COPYXL This command copies executable modules from one executable library
to another. You can copy individual modules by their module, block
data subprogram, procedure entry point, or locality set name.

Syntax

COPYXL [ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [, blockdata name]...]

[;LSET= lset name [,lset name]...]

[;FROM= source �le]

[;TO= dest �le]

[;REPLACE]

Parameters The �rst four parameters (ENTRY, MODULE, BLOCKDATA, and LSET)
identify speci�c modules to copy. You can use any one by itself, or
you can use them in combination. If you omit these parameters, the
entire relocatable library is copied.

entry name Copies the module(s) that de�ne (export) the
symbolic
entry name. You can enter an indirect �le
for this parameter. Entry name is case
sensitive.

module name Copies only those modules having the name,
module name. If you do not use the RLFILE
compiler directive, this is the name of the
source �le from which the relocatable object
module was compiled. If you use the RLFILE
compiler directive, see the appropriate
language appendix (appendix B, C, D, or E)
for the de�nition of this name. You can enter
an indirect �le for this parameter.

blockdata name Copies only those modules having the name,
blockdata name. Use this parameter only for
HP FORTRAN 77 block data subprograms.
You can use an indirect �le name for
blockdata name.

lset name Copies those modules that contain code
belonging to the locality set (lset name)
that you enter. A module can contain several
locality sets, or there can be several modules
within a locality set. Each compiler provides
its own directives for placing procedures into
locality sets (check your language manual to
see if locality sets are available). You can
enter an indirect �le for this parameter.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-15

COPYXL

source �le Names the executable library that the
link editor searches to �nd the speci�ed
modules. The �le must have an NMXL
�lecode. Default: the current executable
library established by the last BUILDXL or XL
command. (If you use the default, you must
enter the TO= dest �le parameter.)

6-16 Maintaining Executable Libraries DRAFT

11/7/97 02:46

COPYXL

dest �le Names the executable library where the
modules are placed. When dest �le is
an existing �le, it must have the �lecode
NMXL. Default: the current executable
library established by the last BUILDXL or XL
command. (If you use the default, you must
enter the FROM= source �le parameter.)

REPLACE Speci�es that when symbols in the module(s)
being copied are duplicates of symbols in any
module in the destination library, then the
modules with duplicate symbols residing in
the destination library are removed. The new
module is added before any of the modules in
the library are removed.

Examples LinkEd> COPYXL LSET=FILEINTRINS;TO=FILEIO

This command copies all executable modules which are associated
with the FILEINTRINS locality set from the current executable library
and places them into the FILEIO executable library.

LinkEd> COPYXL FROM=FILEREAD

This command copies all executable modules from the executable
library FILEREAD and places them into the current executable library.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-17

LISTXL This command lists (on LINKLIST) symbols contained in selected
executable modules of an executable library. (You may need this
information for the COPYXL and PURGEXL commands.)

If you do not specify which symbols to display using the parameters
listed below, the following types of symbols are displayed:

Procedure and program entry points.

Imported code symbols.

HP COBOL II chunk symbols.

Exported data symbols, except compiler-generated symbols
beginning with $, S$, or C$.

Certain compiler-generated static data symbols, beginning with M$,
which appear in HP COBOL II listings.

Storage requests (for example, HP FORTRAN 77 COMMON).

Module symbols.

Syntax

LISTXL [XL= xl �le]

[;ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [, blockdata name]...]

[;LSET= lset name [,lset name]...]

[;ALL]

[;CODE]

[;DATA]

[;ENTRYSYM]

[;MILLICODE]

[;STUB]

[;VALUE]

Parameters xl �le Names the executable library to list. The �le
must have an NMXL �lecode. Default: the
current executable library established by the
last BUILDXL or XL command.

6-18 Maintaining Executable Libraries DRAFT

11/7/97 02:46

LISTXL

The next four parameters (ENTRY, MODULE, BLOCKDATA, and LSET)
identify speci�c modules to list. You can use any one by itself, or
you can use them in combination. If you omit these parameters, the
entire executable library is listed.

entry name Lists the modules that de�ne (export) the
symbolic entry name. You can enter an
indirect �le for this parameter. Entry name
is case sensitive.

module name If you do not use the RLFILE compiler
directive, this is the name of the source �le
from which the relocatable object module was
compiled. If you use the RLFILE compiler
directive, see the appropriate language
appendix (appendix B, C, D, or E) for the
de�nition of this name. You can enter an
indirect �le for this parameter.

blockdata name Lists only those modules having the name,
blockdata name. Use this parameter only for
HP FORTRAN 77 block data subprograms.
You can use an indirect �le name for
blockdata name.

lset name Lists those modules that contain code
belonging to the locality set
(lset name) that you enter. A module can
contain several locality sets, or there can be
several modules within a locality set. Each
compiler provides its own directives for
placing procedures into locality sets (check
your language manual to see if locality sets
are available). You can enter an indirect �le
for this parameter.

ALL Displays all symbols in the executable library,
including compiler-generated local symbols.

CODE Displays all imported and exported (not
local) code symbols.

DATA Displays all exported data symbols and
storage requests.

ENTRYSYM Displays all procedure and program entry
points.

MILLICODE Displays all millicode symbols.

STUB Displays all stub and plabel symbols.

VALUE Displays all symbols by symbol value rather
than alphabetically by symbol name.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-19

LISTXL

Example LinkEd> LISTXL XL=LIBXL;ALL;VALUE

This command displays all symbols in the LIBXL executable library,
including compiler-generated local symbols. Symbols are sorted and
displayed by their value. The executable library is the one created in
�gure 2-7. The source program (EX2BSRC) is listed in �gure 2-13.

The �rst part of the listing is the executable library header. LIBRARY
NAME is the �le name of the executable library. VERSION is the format
version of the library. MODULE COUNT shows the number of executable
modules in the library and MODULE LIMIT is the maximum number
that it holds.

After the executable library header, the �rst executable module
header is listed. MODULE NAME shows the name of the executable
module and VERSION shows its format version. LENGTH shows the
number of bytes (in hexadecimal) in the executable module. Symbols
in the executable module are listed after the header. See the next
section \Understanding the Symbol Listing" for an explanation of the
symbols and columns in the symbol portion of the listing. If there
are other executable modules to list in the executable library, they
appear next and are listed in the same format as the �rst module.

6-20 Maintaining Executable Libraries DRAFT

11/7/97 02:46

LISTXL

LIBRARY NAME : LIBXL

VERSION : 85082112

MODULE COUNT : 1
MODULE LIMIT : 500

MODULE NAME START LENGTH

----------- ----- ------

EX2BSRC 00129000 00004078

MODULE NAME : EX2BSRC

VERSION : 85082112

LENGTH : 00004078

Sym C H X P Sym Sym Sym Lset

Name Type Scope Value Name

---- - - - - ---- ----- ----- ----

julian 3 3 3 entry univ 0012B4EC

mdy 3 3 3 entry univ 0012B508

wkday 3 3 3 entry univ 0012B524

adddat 3 3 3 entry univ 0012B543

amort 3 3 3 entry univ 0012B55C

$neg3 0 code local 0012B058

$neg5 0 code local 0012B098

$neg6 0 code local 0012B0E0

$pos 0 code local 0012B120

$pos_for_17 0 code local 0012B130

$neg10 0 code local 0012B168

$neg 0 code local 0012B174

$neg_for_17 0 code local 0012B184

$neg12 0 code local 0012B1C0

$neg15 0 code local 0012B1F4
$neg17 0 code local 0012B224

$u17 0 code local 0012B248

$7 0 code local 0012B25C

$pos7 0 code local 0012B26C

$1 0 code local 0012B294

$2 0 code local 0012B2A0

$neg7 0 code local 0012B2A8

$8 0 code local 0012B2AC

$neg7_shift 0 code local 0012B2B8

$3 0 code local 0012B2E0

$4 0 code local 0012B2F0

$neg9 0 code local 0012B32C

$neg14 0 code local 0012B36C

t1 0 code local 0012B39C

finish 0 code local 0012B4A4

div_ovfl 0 code local 0012B4B4

julian 3 code univ 0012B598

mdy 3 code univ 0012B688

wkday 3 code univ 0012B7F0

adddat 3 code univ 0012B878

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-21

LISTXL

amort 3 code univ 0012B96C

$UNWIND_START 0 code univ 0012BA38

$UNWIND_END 0 code univ 0012BAA8
$RECOVER_END 0 code univ 0012BAB8

$RECOVER_START 0 code univ 0012BAB8

L$2 0 data local 0012B4C0

L$3 0 data local 0012B4D0

L$6 0 data local 0012B4D8

$global$ 0 data univ dp+00000000

julian.M$2 0 data local dp+00000000

dp 0 data univ dp+00000000

mdy.M$3 0 data local dp+00000030

wkday.M$4 0 data local dp+00000060

$PFA_C_END 0 data univ dp+00000078

$PFA_C_START 0 data univ dp+00000078

FTN_DTOI 0 stub ext lp+00000020

$$divide_by_constant 0 milli univ 0012B000

$$divI_2 0 milli univ 0012B000

$$divI_4 0 milli univ 0012B010

$$divI_8 0 milli univ 0012B020

$$divI_16 0 milli univ 0012B030

$$divI_3 0 milli univ 0012B040

$$divU_3 0 milli univ 0012B06C

$$divI_5 0 milli univ 0012B084

$$divU_5 0 milli univ 0012B0B0

$$divI_6 0 milli univ 0012B0C8

$$divU_6 0 milli univ 0012B0F8

$$divU_10 0 milli univ 0012B110

$$divI_10 0 milli univ 0012B154

$$divI_12 0 milli univ 0012B1AC

$$divU_12 0 milli univ 0012B1D0
$$divI_15 0 milli univ 0012B1E4

$$divU_15 0 milli univ 0012B1FC

$$divI_17 0 milli univ 0012B208

$$divU_17 0 milli univ 0012B23C

$$divI_7 0 milli univ 0012B258

$$divU_7 0 milli univ 0012B2F8

$$divI_9 0 milli univ 0012B310

$$divU_9 0 milli univ 0012B344

$$divI_14 0 milli univ 0012B360

$$divU_14 0 milli univ 0012B364

$$remoI 0 milli univ 0012B378

6-22 Maintaining Executable Libraries DRAFT

11/7/97 02:46

LISTXL

Understanding the
Symbol Listing

This section describes the �elds that appear in the symbol listing
produced by this command.

Column Description

Sym Name Contains the name of the symbol. If the name
exceeds 25 characters, it is truncated and an asterisk
appears in the �rst truncated position.

C Contains the type checking level of the symbol. See
the
PARMCHECK= check level parameter of the ADDXL and
LINK commands for a de�nition of the values that
appear in this column.

H Speci�es whether the symbol is hidden or not. If an
H appears in this column, the symbol was hidden by
the HIDERL command. If the column is blank, the
symbol is not hidden.

X Speci�es the xleast level of the symbol. See the
XLEAST= xleast level parameter of the ADDXL
command for a de�nition of the values that appear in
this column.

P Speci�es the privilege or execution level at which this
symbol runs. See the PRIVLEV= priv level parameter
of the ADDXL and LINK commands for a de�nition of
the values that appear in this column.

Sym Type Contains the symbol type. The symbol types are
shown below (see Table 6-1 for the relationship of
Sym Type values to Sym Scope values).

abs - Absolute

code - Code

data - Data

entry - Entry

milli - Millicode

mod - HP Pascal module name

plab - Procedure label

stub - Stub

Sym Scope Speci�es the symbol's scope. The symbol scopes are
shown below (see Table 6-1 for the relationship of
Sym Scope values to Sym Type values).

ext - External

local - Local

univ - Universal

Sym Value Speci�es the value of the symbol. For pri_p, sec_p
and entry univ symbols, this column contains the
address of an export stub. For stub ext and plab
local symbols (values displayed in the lp+ format),

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-23

LISTXL

this column shows the address of the XRT entry
for this import stub. For stub local symbols, this
column contains the address of the stub (a promotion
stub or an import stub). For all data univ symbols,
this column contains the address of a literal (if not
represented in dp+ format) or the o�set from the
dp (data pointer) register. For all other symbols, it
shows the address of the symbol.

Lset Name Speci�es the name of the locality set to which this
symbol belongs. Only user-de�ned locality sets are
listed.

6-24 Maintaining Executable Libraries DRAFT

11/7/97 02:46

LISTXL

Table 6-1. Symbol Types and Scopes (LISTXL)

Sym Type Sym Scope Description

abs univ A symbol that de�nes a non-relocatable
symbol or value and is visible to other
object modules.

abs local A symbol that de�nes a non-relocatable
symbol or value and is invisible to other
object modules.

code local A local label generated by the compiler, a
user label or a local label within a millicode
routine.

code univ The actual starting point of the code of a
level one procedure or function. An entry

univ symbol must exist for this symbol in
order for other object modules to reference
the procedure or function.

data local A data symbol which is visible inside an
object module, but invisible to other object
modules.

data univ A data symbol de�ned in an object module
that is visible to other object modules.

entry univ The export stub for a level one procedure or
function. It is visible to other object
modules.

entry local The entry point to a nested procedure or
program, referenceable only within the
module.

milli univ A millicode routine linked into an object
module.

mod local An HP Pascal module name.

plab local An export stub created for a procedure or
function (declared in a relocatable object
module) whose address has been taken.

stub ext A procedure or function which is referenced
by an object module but not de�ned by it.
The loader resolves this reference at run
time.

stub local A promotion or an import stub.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-25

PURGEXL This command purges selected modules from an executable library.
You can purge individual modules by their entry point, module, and
block data name (HP FORTRAN 77) or by locality set name.

Syntax
PURGEXL8>><
>>:

ENTRY= entry name
�
,entry name

�
. . .

;MODULE= module name
�
,module name

�
. . .

;BLOCKDATA= blockdata name
�
, blockdata name

�
. . .

;LSET= lset name
�
,lset name

�
. . .

9>>=
>>;

[;XL= xl �le]

Parameters The �rst four parameters (ENTRY, MODULE, BLOCKDATA, and LSET)
identify speci�c modules to purge. You can use any one by itself,
or you can use them in combination. Modules matching any of the
criteria that you enter are purged.

entry name Purges the modules that de�ne (export) the
symbolic entry name. You can enter an
indirect �le for this parameter. Entry name
is case sensitive.

module name Purges only those modules having the
name, module name. If you do not use the
RLFILE compiler directive, this is the name
of the source �le from which the relocatable
object module was compiled. If you use the
RLFILE compiler directive, see the appropriate
language appendix (appendix B, C, D, or E)
for the de�nition of this name. You can enter
an indirect �le for this parameter.

blockdata name Purges only those modules having the name,
blockdata name. Use this parameter only for
HP FORTRAN 77 block data subprograms.
You can use an indirect �le name for
blockdata name.

lset name Purges those modules that contain code
belonging to the locality set
(lset name) that you enter. A module can
contain several locality sets, or there can be
several modules within a locality set. Each
compiler provides its own directives for
placing procedures into locality sets (check
your language manual to see if locality sets
are available). You can enter an indirect �le
for this parameter.

xl �le Names the executable library containing
the modules to purge. This �le must have
an NMXL �lecode. Default: the current

6-26 Maintaining Executable Libraries DRAFT

11/7/97 02:46

PURGEXL

executable library established by the last
BUILDXL or XL command.

Examples LinkEd> PURGEXL LSET=FILEINTRINS;XL=FILEIO

This command deletes every executable module that belongs to the
FILEINTRINS locality set in the FILEIO executable library.

LinkEd> PURGEXL MODULE=SEEK

This command deletes the executable module named SEEK from the
current executable library.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-27

SHOWXL This command displays (on $STDLIST) the name of the current
executable library established by the last XL or BUILDXL command.

Syntax SHOWXL

Example LinkEd> SHOWXL

This command displays the name of the executable library
established by the last BUILDXL or XL command.

6-28 Maintaining Executable Libraries DRAFT

11/7/97 02:46

XL

XL This command selects an existing �le as the current executable
library. This library is used as the default library for subsequent
command operations.

Syntax XL XL= xl �le

Parameters xl �le Names an existing executable library. The �le
must have an NMXL �lecode.

Example LinkEd> XL XL=FILEIO

This command makes FILEIO the current executable library.

DRAFT

11/7/97 02:46

Maintaining Executable Libraries 6-29

7

Advanced Topics

In the MPE XL environment, you can program e�ectively without
an explicit knowledge of HP Link Editor/XL and how it works.
However, when working on complex applications, you may need to
take advantage of certain advanced features of the link editor. This
requires that you explicitly run the link editor to override its default
values.

The topics discussed in this chapter include:

A description of the MPE XL programming environment.

A brief description of the millicode library, MILLI.LIB.SYS.

How to use locality sets to improve program performance.

DRAFT

11/7/97 02:46

Advanced Topics 7-1

The MPE XL
Programming
Environment

The paragraphs which follow in this section cover the aspects of the
MPE XL environment that a�ect HP Link Editor/XL and how it
links programs.

Virtual Memory A program running under MPE XL has at least two spaces , where
a space is a �xed-length block of virtual memory. One is a code
space and the other is a data space. A virtual address is composed
of a space identi�er and a space o�set, both of which are 32 bits
long. Thus, virtual memory consists of over 4 billion spaces, each
of which can contain over 4 billion bytes (four gigabytes). (Some
implementations of HP Precision Architecture restrict space
identi�ers to 16 bits, allowing only 65,536 spaces.)

Even though a virtual memory address is 64 bits long, most
addressing can be done with 32-bit addresses. There are eight space
registers that hold space identi�ers. When loading or storing a word
in memory using a 32-bit address, one of the last four space registers
is selected automatically. Its selection is based on the high-order two
bits of the address. This method of addressing allows one gigabyte
(or quadrant) of each space selected by the space registers to be
addressed: the �rst quadrant of the �rst space, the second quadrant
of the second space, the third quadrant of the third space, and the
fourth quadrant of the fourth space. Figure 7-1 shows the code and
data spaces divided into quadrants:

Figure 7-1. Code and Data Quadrants

7-2 Advanced Topics DRAFT

11/7/97 02:46

The link editor places all code and literals in the �rst quadrant of the
code space, and all data in the second quadrant of the data space.
Thus, every executable module, whether in a executable program
�le or in an executable library, consists of one code space and one
data space. When the program is loaded, a new code space is created
for the code in the executable program �le and for each executable
library that is loaded to satisfy external references. Only one data
space is created. The data spaces in each executable module are
loaded one after another into a single data space.

If you run a program that is already loaded (someone else is also
running it), the code spaces already loaded can be reused. Only a
data space must be created for the second program (process). The
code and literals can be shared because they cannot be modi�ed by a
process.

External Calls An external call is a procedure call that transfers control from one
executable module to another. These calls are not resolved during
the link operation for two reasons. First, the link editor builds (using
LINK or ADDXL) one executable module at a time. Therefore, it does
not know where the called procedure is located. Second, since space
identi�ers are assigned at run time, there is no way to predict what
the space identi�er for either code space will be.

Because the link editor cannot resolve external calls, it builds an
import stub during linking for each procedure that is called but not
de�ned in the executable module. It also allocates an entry in the
External Reference Table (XRT) for the unresolved procedure. The
import stub contains a short sequence of code that is used at run
time to transfer to the procedure's entry point. The import stub uses
the XRT entry to �nd both the space identi�er and the space o�set
of the target procedure. The import stub then saves the current
value of space register 4 (which corresponds to the �rst quadrant
of the code space), and copies the new space identi�er into space
register 4. This ensures that the space register always contains the
space identi�er of the current code space. The loader locates each
procedure referenced in the XRT and initializes each XRT entry with
the appropriate values.

When a procedure is called externally, it must restore the space
identi�er of the calling procedure before returning to it. To do this,
the link editor builds an export stub for every procedure that can be
called externally. The export stub gives an alternate entry point to
the procedure that is executed by an external call. All internal calls
(that is, calls to procedures in the same executable module) use the
ordinary procedure entry point. External calls use the export stub
as the entry point. On LISTPROG and LISTXL symbol listings, export
stubs are shown as entry symbols, while the ordinary entry points
are shown as code symbols.

DRAFT

11/7/97 02:46

Advanced Topics 7-3

Privilege Levels The HP Precision Architecture provides four levels of privilege. Level
0 is the most privileged and allows complete access to all system
resources. Level 3 is the least privileged. MPE XL establishes the
following meanings for the privilege levels:

0 Restricted to the MPE/XL kernel.

1 Reserved for future use.

2 Privileged Mode. Programs with PM capability execute
at this level. This privilege level provides access to
most operating system features and security checks are
streamlined.

3 User Mode. Most programs run at this level. Programs
access operating system features only through
documented intrinsics, and access is subject to full
security checking.

All procedures have two privilege levels: the privilege level at which
it runs, the execution privilege level; and the privilege level at which
callers must be running in order for the call to succeed, the call or
xleast privilege level. When a procedure call occurs, the execution
privilege level of the calling procedure must have the same or a
higher (numerically lower) privilege level than the call privilege level
of the procedure being called. (If not, the calling program is aborted
with a privilege violation.) The execution privilege level of the called
procedure is promoted to the execution privilege level of the calling
procedure, when the calling level is more privileged; otherwise the
called procedure's execution privilege level remains unchanged. The
execution and call privilege levels for procedure entry points are
shown in the symbol listings produced by the link editor commands,
LISTOBJ, LISTPROG, LISTRL, and LISTXL.

Privilege level promotion and security checking are performed by the
operating system during an external procedure call. Internal calls
cannot perform promotion. When internal procedure calls require a
promotion, the link editor builds a promotion stub that turns the
internal call into an external call. A promotion stub is a combination
of an import stub and an export stub.

7-4 Advanced Topics DRAFT

11/7/97 02:46

Long Branch Stubs for
Procedure Calls

Compilers generate a single branch-and-link instruction for all
procedure calls. The instruction has a limited addressing range -
256K bytes in either direction from the call. If the call is external,
the link editor places the import stub within this range. If the call is
internal, the target may be out of range. In this case, the link editor
builds a long branch stub within reach of the call. A long branch stub
consists of two instructions that reach the target anywhere in the
code space.

Long branch stubs are also used for millicode calls and interchunk
branching for HP COBOL II programs.

Procedure Labels The address of a procedure is a data item called a procedure label, or
plabel . A plabel can be passed as a parameter from one procedure to
another, so that an indirect call through the plabel might not be an
internal call. To accommodate this possibility, all indirect procedure
calls are external calls, even if the call happens to be in the same
code space as the procedure being called. A plabel is therefore the
address of an XRT entry, not the address of the procedure itself. The
indirect procedure call obtains the space identi�er and o�set from the
XRT entry just like an import stub.

If you obtain a plabel through the HPGETPROCPLABEL intrinsic, the
intrinsic creates an XRT entry and returns its address. If you obtain
a plabel by taking the address of a procedure in your source program
(for example, by passing a subprogram or function name by reference
in HP FORTRAN 77) the link editor automatically allocates an XRT
entry and creates a plabel stub that instructs the loader to initialize
the XRT entry appropriately. The code in the plabel stub is identical
to an export stub. Plabel stubs are shown in LISTPROG and LISTXL

symbol listings as plab symbols.

Note that if a routine resides in an executable library, and its address
is taken (as in HP C), it will not necessarily be the same as the
address that is taken from the user's program. The addresses will be
the same if they are being compared in the same program or library.

In other words, if your program compares the addresses of routines
within the program, it will work as you expect. Likewise, comparing
the addresses of two routines which reside in the same executable
library will work as you expect. But, if your program compares the
address of a routine taken from within the program code with the
address of a routine taken from within the library, those addressses
will not be the same. You will be comparing the address of an
import stub with the address of an export stub.

DRAFT

11/7/97 02:46

Advanced Topics 7-5

HP Link Editor/XL
Environment Files

When you use the LINK and ADDXL commands, the link editor
includes two �les, NRT0.LIB.SYS and XL0.LIB.SYS, into the
executable modules that are produced. These �les de�ne:

The standard subspaces that control how the link editor arranges
the code and data spaces.

Since MPE XL compilers group the various parts of a relocatable
object �le into separate subspaces, the link editor can combine
like subspaces together within each space. Standard subspaces
are de�ned for millicode, literals, code, stack unwind descriptors,
Pascal outer block global variables, static initialized data and static
uninitialized data. Compilers also de�ne an additional subspace for
each locality set.

The standard symbols that are used by the compiler libraries and
system debuggers.

For example, the symbols $UNWIND_START and $UNWIND_END

declare the beginning and end of the region containing stack
unwind descriptors.

Stack Unwinding Whenever a traceback of procedure calls is made, the process is
referred to as unwinding the stack. The traceback can occur as a
result of a multi-level procedure return in languages that support it
(for example, non-local GOTO or escape in Pascal), or from a program
abort or a debugging request. Regardless of the cause, each stack
frame must be examined to determine the procedure that created it
and its size. Given the size of the current stack frame, the previous
stack frame can be located.

All MPE XL compilers create static tables of unwind descriptors that
make stack unwinding possible. The tables are placed in pre-de�ned
subspaces so that the link editor can build one combined stack
unwind table during a LINK or ADDXL operation. Each descriptor
describes the stack frame for a procedure, which is identi�ed as a
range of addresses in the code space. Thus, given any code address
as a starting point, the appropriate descriptor can be located.
The descriptor, in turn, identi�es the size and type of the current
stack frame. From this information, the address of the caller of
that procedure and the address of the caller's stack frame can be
determined, and the unwinding can continue until the bottom of the
stack is reached.

7-6 Advanced Topics DRAFT

11/7/97 02:46

Millicode HP Link Editor/XL automatically searches the standard system
relocatable library, MILLI.LIB.SYS, when you execute the LINK and
ADDXL commands. This library contains millicode routines that
supplement common low-level operations in programs. It is searched
after user relocatable libraries.

DRAFT

11/7/97 02:46

Advanced Topics 7-7

Improving
Performance with
Locality Sets

You can improve the performance of large programs by arranging the
code so that sets of procedures that call one another frequently are
located in one contiguous area of virtual memory. You do this by
using compiler directives to assign procedures to a locality set . The
compilers place locality set information in relocatable object modules,
and HP Link Editor/XL uses this information (during linking) to
arrange the code.

Dividing a program into locality sets a�ects performance in two ways:

It minimizes the number of \long branches" in the program.

The HP Precision Architecture instruction set has a
single-instruction branch with an addressing range of 256K bytes
from the point of call. This instruction is used for procedure calls
whenever the branch instruction is close enough to its target. If
the short branch does not reach the target, the link editor must
insert additional instructions (called a \long branch stub"), which
degrade program performance slightly. Locality sets, by grouping
frequently-called procedures together, help to keep the majority of
branches within reach of their targets.

It reduces paging during program execution.

The MPE XL operating system divides memory into pages of 4096
bytes each. When a program does not �t into physical memory, the
operating system swaps portions (or pages) of it onto disc. When
a program references a page that is not in physical memory, the
operating system reads the page from disc into physical memory so
that the program can continue. Since swapping can slow program
execution, you can use locality sets to reduce the number of page
swaps. If execution remains in a locality set for a reasonable time,
the number of page swaps is reduced and the operating system can
better predict the behavior of the program.

To utilize locality sets e�ectively, study the program's behavior
carefully. Assign procedures to locality sets using the following
guidelines:

Keep locality sets small.

Put procedures that are used seldomly into one locality set, and
those that execute for a long period of time into another.

Keep locality sets tightly coupled.

Try to design a locality set so there is a high probability that
the procedures in it are used together or that they execute for a
signi�cant period of time. Put low-level utility routines, used by
several other locality sets, in separate locality sets.

Put only the most frequently-used code in locality sets.

Place code that is executed infrequently or just once, in the default
(none) locality set.

7-8 Advanced Topics DRAFT

11/7/97 02:46

A

Messages

This appendix lists messages that you may encounter while using HP
Link Editor/XL. Self-explanatory messages and those which relate to
syntax errors, such as missing or extraneous characters in commands,
are not listed in this appendix.

To assist you in �nding the solution to a problem, several messages
may be displayed. Look up each message in this appendix to get
complete information about the action to take.

Messages are preceded by unique reference numbers that indicate
the error type. Messages, with their message reference numbers, are
listed in this order:

1000-1499 User Errors
1500-1999 Warning messages
2000-2999 System errors
3000-3999 Language subsystem errors
4000-4999 Internal errors

As an example, the following message has a reference number of 1002
and is listed below as it appears in this appendix:

1002 MESSAGE ATTEMPT TO OPEN FILE "!" FAILED

The symbol !, used in a message, indicates replaceable character
positions. For this message, ! is a place-holder for a �le name.

DRAFT

11/7/97 02:46

Messages A-1

User Errors
(1000-1499)

User errors result from entering incorrect commands or from using
the commands incorrectly. User errors cause the command that you
entered to fail. You must correct the cause of the error and re-enter
the command.

||||||||||||||||||||||||||||||
|||

1001 MESSAGE PROGRAM ENTRY POINT "!" NOT FOUND

CAUSE HP Link Editor/XL could not �nd an
entry point for the procedure.

ACTION Check to make sure an outer block
is present in the link or check that
the NRT0.LIB.SYS �le is present on
your system and that it has not been
overwritten with some other �le. Also
ensure that you do not have a �le equate
for NRT0.LIB.SYS.

||||||||||||||||||||||||||||||
|||

1002 MESSAGE ATTEMPT TO OPEN FILE "!" FAILED

CAUSE HP Link Editor/XL cannot open the
named �le for reading.

ACTION Be sure that you typed the �le's name
(and group and account) correctly. If
the �le exists, be sure you have the
required capabilities to read this �le. If
the named �le is either NRT0.LIB.SYS,
XL0.LIB.SYS, or MILLI.LIB.SYS, one
of these required �les is missing from
your system. In this case, contact your
System Manager.

||||||||||||||||||||||||||||||
|||

1003 MESSAGE ATTEMPT TO CREATE FILE "!" FAILED

CAUSE HP Link Editor/XL cannot create the
named �le for writing.

ACTION Be sure that you have the required
capabilities for creating �les in the group
and account.

||||||||||||||||||||||||||||||
|||

1004

A-2 Messages DRAFT

11/7/97 02:46

MESSAGE DUPLICATE SYMBOL "!" IN "!"

CAUSE HP Link Editor/XL found two
relocatable object modules that de�ne
the same symbol. (The error message
names the �le that contains the second
de�nition.)

ACTION Be sure that you have not linked the
same module twice. Also ensure that
two source �les have not declared
the same procedure name, outer
block, global variable or BLOCK DATA

subprogram. If two �les have declared
the same symbol, go back to one of the
source �les, change the name of the
symbol, then recompile.

DRAFT

11/7/97 02:46

Messages A-3

||||||||||||||||||||||||||||||
|||

1005 MESSAGE FOUND ! DUPLICATE SYMBOL(S)

CAUSE This message summarizes the number
of duplicate symbols originally detected
and listed by error message 1004.

ACTION Take the appropriate \action" for each
duplicate symbol that was identi�ed by
error message 1004.

||||||||||||||||||||||||||||||
|||

1006 MESSAGE UNSATISFIED SYMBOLS:

CAUSE A relocatable object module that
is being linked has referenced an
unde�ned symbol. This may simply be
a misspelled name, or it may indicate
that an object module was mistakenly
omitted from the LINK command. A
list of the unsatis�ed symbols follows
this message. A missing outer block
causes the symbol _start to be listed
as unresolved. Symbols followed by
\(DATA)" indicate a global variable
that was not de�ned; other symbols
indicate unde�ned millicode or absolute
symbols. Unde�ned \code" symbols are
not reported as an error, but are passed
to the loader for run-time binding to
executable libraries.

ACTION Either correct the use of the symbol
in the source program or include the
missing module in the list of modules
to be linked together. An unde�ned
millicode symbol probably indicates that
the library MILLI.LIB.SYS is either
missing or incompatible with your
system release or that you have used a
�le equate for this �le.

||||||||||||||||||||||||||||||
|||

1010 MESSAGE FOUND ! TYPE CHECKING ERROR(S)

CAUSE One or more type checking mismatches
are errors. (Depending on the value

A-4 Messages DRAFT

11/7/97 02:46

of the PARMCHECK option of the LINK
and ADDXL commands, type checking
mismatches are either warnings or
errors.) Not all of the type mismatches
(warning numbers 1502-1507) may
actually be errors; this message indicates
the number that are errors.

ACTION Check your source code and recompile,
or request a lower type checking level
using the PARMCHECK option.

DRAFT

11/7/97 02:46

Messages A-5

||||||||||||||||||||||||||||||
|||

1021 MESSAGE INDIRECT FILES NESTED TOO DEEPLY

(MAXIMUM DEPTH IS 10)

CAUSE An indirect �le may contain a reference
to another indirect �le. You can use up
to ten levels of indirect �les.

ACTION Check for an indirect �le that references
itself, or for a set of indirect �les that
contains a chain of circular references.

||||||||||||||||||||||||||||||
|||

1022 MESSAGE RL FILE "!" MUST HAVE FILECODE NMRL

CAUSE A �le that was included in the RL= list
as part of a LINK command has an
incorrect �lecode. This usually indicates
that the wrong �le was named in the
LINK command.

ACTION Enter the correct �le name.

||||||||||||||||||||||||||||||
|||

1023 MESSAGE OBJECT FILE "!" MUST HAVE FILECODE

NMOBJ OR NMRL

CAUSE A �le that was included in the FROM=
list as part of a LINK command has an
incorrect �lecode. This usually indicates
that the wrong relocatable object �le
was named in the LINK command.

ACTION Enter the correct �le name.

||||||||||||||||||||||||||||||
|||

1024 MESSAGE INDIRECT FILE "!" MUST BE AN ASCII

FILE

CAUSE A �le that you are using as an indirect
�le is a binary �le rather than an ASCII
�le.

ACTION Check that you have spelled the name of
the indirect �le correctly.

A-6 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

1025 MESSAGE EXPECTED FILECODE NMPRG OR NMXL FOR

TO= FILE

CAUSE You tried to LINK into an existing
translated �le.

ACTION Use a di�erent �lename for the TO=
keyword of the LINK command, or, purge
the existing output �le and try the LINK
command again.

DRAFT

11/7/97 02:46

Messages A-7

||||||||||||||||||||||||||||||
|||

1042 MESSAGE INCOMPATIBLE NUMBER OF ARGUMENTS: !

(!, !)

CAUSE The named procedure is referenced in
one source �le and de�ned in another
source �le, but the type checking
information indicates that the two
declarations are incompatible.

ACTION Check the source code and correct the
incompatibility, or request a lower type
checking level through the PARMCHECK
parameter of the LINK or ADDXL
command (so this error is reported as a
warning).

||||||||||||||||||||||||||||||
|||

1043 MESSAGE INCOMPATIBLE PACKING: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or request a lower type
checking level through the PARMCHECK
parameter of the LINK or ADDXL
command (so this error is reported as a
warning).

||||||||||||||||||||||||||||||
|||

1044 MESSAGE INCOMPATIBLE ALIGNMENT: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,

A-8 Messages DRAFT

11/7/97 02:46

the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or request a lower type
checking level through the PARMCHECK
parameter of the LINK or ADDXL
command (so this error is reported as a
warning).

DRAFT

11/7/97 02:46

Messages A-9

||||||||||||||||||||||||||||||
|||

1045 MESSAGE INCOMPATIBLE MODE: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or request a lower type
checking level through the PARMCHECK
parameter of the LINK or ADDXL
command (so this error is reported as a
warning).

||||||||||||||||||||||||||||||
|||

1046 MESSAGE INCOMPATIBLE STRUCTURE: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or request a lower type
checking level through the PARMCHECK
parameter of the LINK or ADDXL
command (so this error is reported as a
warning).

||||||||||||||||||||||||||||||
|||

1047 MESSAGE INCOMPATIBLE TYPE: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that

A-10 Messages DRAFT

11/7/97 02:46

the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or request a lower type
checking level through the PARMCHECK
parameter of the LINK or ADDXL
command (so this error is reported as a
warning).

DRAFT

11/7/97 02:46

Messages A-11

||||||||||||||||||||||||||||||
|||

1100 MESSAGE "ENTRY=" NAME IS LONGER THAN 132

CHARACTERS

CAUSE HP Link Editor/XL restricts the names
for symbols in library symbol tables to
132 characters, but you entered an entry
point name that exceeds this limit.

ACTION Give the entry point a name that
contains 132 characters or less.

||||||||||||||||||||||||||||||
|||

1101 MESSAGE "LSET=" NAME IS LONGER THAN 132

CHARACTERS

CAUSE HP Link Editor/XL restricts the names
for symbols in library symbol tables
to 132 characters, but you entered a
locality set name that exceeds this limit.

ACTION Give the locality set a name that
contains 132 characters or less.

||||||||||||||||||||||||||||||
|||

1102 MESSAGE "MODULE=" NAME IS LONGER THAN 132

CHARACTERS

CAUSE HP Link Editor/XL restricts the names
for symbols in library symbol tables to
132 characters. You entered a module
name that exceeds this limit.

ACTION Give the module a name that contains
132 characters or less.

||||||||||||||||||||||||||||||
|||

1103 MESSAGE NO CURRENT ! IS OPEN; YOU MUST

SPECIFY A "FROM" FILE

CAUSE Certain library maintenance commands
let you omit the FROM= �le and use a
currently active �le instead. In this
case, you omitted the FROM= �le, but no
default �le is established.

A-12 Messages DRAFT

11/7/97 02:46

ACTION Either open a default �le and enter
the same command, or re-enter the
command using the FROM= parameter.

DRAFT

11/7/97 02:46

Messages A-13

||||||||||||||||||||||||||||||
|||

1104 MESSAGE NO CURRENT RELOCATABLE LIBRARY IS

OPEN; YOU MUST SPECIFY AN RL FILE

CAUSE Certain library maintenance commands
let you omit the RL= �le and use a
currently active relocatable library
instead. In this case, you omitted the
RL= parameter, but no relocatable
library �le was selected as the currently
active relocatable library.

ACTION Either use the RL or BUILDRL command
to establish a currently active relocatable
library, or re-enter the command using
the RL= parameter.

||||||||||||||||||||||||||||||
|||

1105 MESSAGE NO CURRENT ! IS OPEN; YOU MUST

SPECIFY A "TO" FILE

CAUSE Certain library maintenance commands
let you omit the TO= �le and use a
currently active �le instead. In this case,
you omitted the TO= �le, but no default
�le is established.

ACTION Either open a default �le and enter
the same command, or re-enter the
command using the TO= parameter.

||||||||||||||||||||||||||||||
|||

1106 MESSAGE NO CURRENT EXECUTABLE LIBRARY IS

OPEN; YOU MUST SPECIFY AN XL FILE

CAUSE Certain library maintenance commands
let you omit the XL= �le and use a
currently active executable library
instead. In this case, you omitted the
XL= parameter, but no executable library
�le was selected to be the currently
active executable library.

ACTION Either use the XL or BUILDXL command
to establish a currently active executable
library, or re-enter the command using
the XL= parameter.

A-14 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

1107 MESSAGE "RL=" FILES MAY NOT BE SPECIFIED

WITHOUT ALSO SPECIFYING THE MERGE

OPTION

CAUSE The ADDRL and ADDXL commands allow
you to specify relocatable libraries to
resolve external references only when you
request the MERGE option.

ACTION Re-enter the command using the MERGE
option.

DRAFT

11/7/97 02:46

Messages A-15

||||||||||||||||||||||||||||||
|||

1108 MESSAGE "UNSAT=" NAME IS LONGER THAN 132

CHARACTERS

CAUSE HP Link Editor/XL restricts the names
for entries in library symbol tables to
132 characters. You have given an UNSAT

procedure a name that exceeds this
limit.

ACTION Give the UNSAT procedure a name that
contains 132 characters or less.

||||||||||||||||||||||||||||||
|||

1109 MESSAGE ! IS NOT A LEGAL VALUE FOR PARMCHECK.

IT MUST BE IN THE RANGE [0..3]

CAUSE You have used an illegal value for the
PARMCHECK parameter to the LINK or
ADDXL command.

ACTION Re-enter the command using a value
between 0 and 3 for the PARMCHECK
parameter.

||||||||||||||||||||||||||||||
|||

1110 MESSAGE ATTEMPT TO ADD MODULE(S) BEYOND

LIBRARY LIMIT (!)

CAUSE You have exceeded the limit for object
modules in a relocatable or executable
library. (HP Link Editor/XL sets the
limit to 2000 for relocatable libraries and
500 for executable libraries if you do
not specify a limit when you build the
library.)

ACTION Build a new library �le using a larger
limit, copy the contents of the old library
into the new library, then add the object
modules that produced this \overow"
condition.

||||||||||||||||||||||||||||||
|||

1111

A-16 Messages DRAFT

11/7/97 02:46

MESSAGE SYMBOL "!", ENCOUNTERED IN "!", WAS

PREVIOUSLY DEFINED

CAUSE When adding modules to a library,
HP Link Editor/XL encountered a
new de�nition for a previously de�ned
symbol.

ACTION Check that you have not added the
same module twice. Also ensure that
two source �les have not declared the
same procedure name or BLOCK DATA

subprogram.

DRAFT

11/7/97 02:46

Messages A-17

||||||||||||||||||||||||||||||
|||

1112 MESSAGE ATTEMPT TO OPEN/CREATE FILE "!"

FAILED

CAUSE Certain HP Link Editor/XL commands
attempt to open or create a �le to
serve as an input source or an output
destination. In this case, HP Link
Editor/XL either tried to open a �le
that doesn't exist, or tried to create a
new �le but found a �le with that name
already exists.

ACTION Consult the section of the manual that
describes the command you are using
and determine whether or not the named
�le should exist.

||||||||||||||||||||||||||||||
|||

1113 MESSAGE "TO=" FILE "!" IS THE SAME AS "FROM="

FILE "!". THEY MUST BE UNIQUE

CAUSE Certain HP Link Editor/XL commands
accept both FROM= and TO= �les. In this
case, you have named the same �le for
both parameters.

ACTION Determine which �le you want to be
your FROM= �le and which �le you want
to be your TO= �le. Then ensure that
their names are distinct.

||||||||||||||||||||||||||||||
|||

1114 MESSAGE "! IS NOT A LEGAL VALUE FOR PRIVLEV.

IT MUST BE IN THE RANGE [0..3]"

CAUSE You have used an illegal value for the
PRIVLEV parameter of the LINK or ADDXL
commands.

ACTION Re-enter the command using a value
between 0 and 3 for the PRIVLEV
parameter.

||||||||||||||||||||||||||||||
|||

1115

A-18 Messages DRAFT

11/7/97 02:46

MESSAGE "! IS NOT A LEGAL VALUE FOR XLEAST.

IT MUST BE IN THE RANGE [0..3]"

CAUSE You have used an illegal value for the
XLEAST parameter of the LINK or ADDXL
commands.

ACTION Re-enter the command using a value
between 0 and 3 for the XLEAST
parameter.

DRAFT

11/7/97 02:46

Messages A-19

||||||||||||||||||||||||||||||
|||

1116 MESSAGE LINK FAILED

CAUSE When HP Link Editor/XL encounters
an error during the linking process, it
prints this \summary" message as its
last message before terminating.

ACTION Refer to the \action" description for the
previously listed error messages. Once
you have resolved those problems, this
message goes away.

||||||||||||||||||||||||||||||
|||

1117 MESSAGE LIMIT FOR A LIBRARY MUST BE IN THE

RANGE [1..400000]

CAUSE When you build a relocatable or
executable library, you must specify how
many object modules that library can
contain. In this case, you have speci�ed
a number outside of this range.

ACTION Re-enter the BUILDRL or BUILDXL
command and use a number between 1
and 400000 for the maximum number of
object modules.

||||||||||||||||||||||||||||||
|||

1118 MESSAGE ! IS NOT A LEGAL VALUE FOR THE

NMSTACK PARAMETER. IT MUST BE A

POSITIVE INTEGER

CAUSE An option to the LINK command lets you
specify a NMSTACK value. This number
must be a positive integer.

ACTION Re-enter the LINK command using a
valid number for the NMSTACK parameter.

||||||||||||||||||||||||||||||
|||

1119 MESSAGE ! IS NOT A LEGAL VALUE FOR THE NMHEAP

PARAMETER. IT MUST BE A POSITIVE

INTEGER

A-20 Messages DRAFT

11/7/97 02:46

CAUSE An option to the LINK command lets you
specify a NMHEAP value. This number
must be a positive integer.

ACTION Re-enter the LINK command using a
valid number for the NMHEAP parameter.

DRAFT

11/7/97 02:46

Messages A-21

||||||||||||||||||||||||||||||
|||

1120 MESSAGE ONE OF { ENTRY, LSET, MODULE } MUST

BE SPECIFIED

CAUSE The syntax for the PURGERL and
PURGEXL commands requires that you
specify which object modules you want
to delete by either their entry point
name, their module name, or their
locality set name. You have omitted this
parameter.

ACTION Re-enter the PURGERL or PURGEXL
command and specify which modules
you want to delete.

||||||||||||||||||||||||||||||
|||

1121 MESSAGE FILE "!" IS NOT A VALID "FROM=" FILE

FOR ADDXL. LEGAL INPUT IS EITHER

A RELOCATABLE OBJECT FILE OR A

RELOCATABLE LIBRARY

CAUSE The ADDXL command adds relocatable
object modules and relocatable libraries
to an executable library. You entered
a �le that does not have the correct
�lecode (NMOBJ or NMRL) for one of
these �les.

ACTION Re-enter the command and provide the
name of a relocatable object �le or a
relocatable library �le for the FROM= �le.

||||||||||||||||||||||||||||||
|||

1122 MESSAGE SPECIFIED ENTRY WAS NOT FOUND IN THE

RELOCATABLE LIBRARY

CAUSE You used a HIDERL or a REVEALRL

command and the symbol cannot be
found in the relocatable library.

ACTION Be sure you have linked together all the
relocatable libraries that the program
�le requires. Also verify that you have
spelled the name correctly (entries in
symbol tables are case sensitive).

A-22 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

1123 MESSAGE INDIRECT INPUT FILE "!" MUST BE AN

ASCII FILE

CAUSE A �le that you used as an indirect �le is
a binary �le rather than an ASCII �le.

ACTION Create your indirect �les using a text
editor and save them as ASCII �les. If
you have followed this procedure, check
that you have spelled the name of the
indirect �le correctly.

DRAFT

11/7/97 02:46

Messages A-23

||||||||||||||||||||||||||||||
|||

1124 MESSAGE EXPECTED FILECODE ! FOR FILE "!"

CAUSE The input or output �le you used with
the link editor command does not have
the correct �lecode.

ACTION Be sure you have spelled the �le's
name correctly. If you have, check the
description for the command you are
using to be sure you are using the
correct �le as your input source or
output destination.

||||||||||||||||||||||||||||||
|||

1125 MESSAGE MISSING OPEN QUOTE FOR REDO/DO

STRING

CAUSE You speci�ed a search string for the
REDO/DO command that included a
closing quote (either ' or ") but omitted
the corresponding opening quote.

ACTION Re-enter the REDO/DO command, placing
quotes at both ends of the search string.

||||||||||||||||||||||||||||||
|||

1126 MESSAGE MISSING CLOSE QUOTE FOR REDO/DO

STRING

CAUSE You speci�ed a search string for the
REDO/DO command that included an
opening quote (either ' or ") but omitted
the corresponding closing quote.

ACTION Re-enter the REDO/DO command, placing
quotes at both ends of the search string.

||||||||||||||||||||||||||||||
|||

1127 MESSAGE SEARCH STRING SPECIFIED FOR REDO/DO

IS INVALID

CAUSE A search string for a DO or REDO
command must be enclosed between
a matching set of opening and closing
quotes. You may use either a single

A-24 Messages DRAFT

11/7/97 02:46

quote mark (') or double quotes ("), but
you can't mix the two.

ACTION Re-enter the REDO/DO command, using
the same quotation marks at both ends
of the search string.

DRAFT

11/7/97 02:46

Messages A-25

||||||||||||||||||||||||||||||
|||

1128 MESSAGE REDO/DO NUMBER IS OUT OF RANGE OF

REDO STACK

CAUSE The DO and REDO commands accept
either a search string or an integer
parameter that identi�es an entry on the
redo stack. In this case, the number you
supplied does not correspond to any of
the values on the redo stack.

ACTION Use the LISTREDO command to verify the
command number you wish to repeat.

||||||||||||||||||||||||||||||
|||

1129 MESSAGE NO MATCH ENCOUNTERED FOR REDO/DO

SEARCH STRING

CAUSE The string pattern that you attempted
to match on the redo stack does not
exist.

ACTION Use the LISTREDO command to help you
select the command you want to repeat.

||||||||||||||||||||||||||||||
|||

1130 MESSAGE REDO/DO CANNOT BE THE FIRST COMMAND

ENTERED

CAUSE You entered a DO or REDO command as
the �rst command within a HP Link
Editor/XL session. As no commands
currently exist on the redo stack, the DO
and REDO commands are illegal.

ACTION Enter another HP Link Editor/XL
command to initiate the current session.

||||||||||||||||||||||||||||||
|||

1131 MESSAGE NO HELP FOUND FOR COMMAND "!"

CAUSE You requested help with a command
that does not exist.

ACTION Verify that you have spelled the
command correctly and that the

A-26 Messages DRAFT

11/7/97 02:46

command is a valid HP Link Editor/XL
command (or the word \help").

DRAFT

11/7/97 02:46

Messages A-27

||||||||||||||||||||||||||||||
|||

1132 MESSAGE ATTEMPT TO REDO FAILED

CAUSE You have edited the response from
a REDO command, but the resulting
command is invalid. The link editor
ignores the edited command.

ACTION Refer to the description of the REDO
command in the MPE XL Commands
Reference Manual , then use the
supported conventions for editing
commands.

||||||||||||||||||||||||||||||
|||

1133 MESSAGE ENTRY NAME SPECIFIED BUT NOT FOUND

CAUSE You have used the ENTRY= option with
the LINK command to request an
alternate entry point, but HP Link
Editor/XL failed to �nd the requested
symbol.

ACTION Check that the speci�ed symbol is
spelled correctly (case sensitive) and
that the module that de�nes this symbol
is included in the �les you are linking
together. Current compilers can't
generate secondary entry points.

||||||||||||||||||||||||||||||
|||

1134 MESSAGE "!" IS NOT A VALID "XL=" FILENAME

CAUSE You have supplied a �lename for the
XL= option of the LINK command which
does not conform to the syntax of a valid
�lename.

ACTION Check that the speci�ed �lename is of
the right form. The account, group, and
�le names must all be valid lengths, and
they must contain legal characters.

||||||||||||||||||||||||||||||
|||

1135

A-28 Messages DRAFT

11/7/97 02:46

MESSAGE ATTEMPT TO WRITE TO FILE LINKLIST

FAILED. FILE MAY BE FULL

CAUSE When attempting to write to a �le
speci�ed as the LINKLIST �le in
a �le equation, the end of �le was
encountered.

ACTION Exit HP Link Editor/XL and increase
the size of the LINKLIST �le.

DRAFT

11/7/97 02:46

Messages A-29

||||||||||||||||||||||||||||||
|||

1137 MESSAGE FILE "!" HAS A CORRUPT FILE END

CAUSE The named �le has the correct �lecode
but contains a corrupted �eld in its
header record. This usually indicates
that the �le has been corrupted, or that
an invalid �le has been created with a
�lecode which the HP Link Editor/XL
recognizes.

ACTION Verify that you have entered the correct
�le and that you have spelled the name
correctly. If the �le name is correct,
replace or rebuild the �le.

||||||||||||||||||||||||||||||
|||

1138 MESSAGE FILE "!" HAS A CORRUPT STRING AREA

CAUSE The named �le has the correct �lecode
but contains a corrupted �eld in its
header record. This usually indicates
that the �le has been corrupted, or that
an invalid �le has been created with
a �lecode which HP Link Editor/XL
recognizes.

ACTION Verify that you have entered the correct
�le and that you have spelled the name
correctly. If the �le name is correct,
replace or rebuild the �le.

||||||||||||||||||||||||||||||
|||

1139 MESSAGE FILE "!" HAS A CORRUPT SYMBOL TABLE

CAUSE The named �le has the correct �lecode
but contains a corrupted �eld in its
header record. This usually indicates
that the �le has been corrupted, or that
an invalid �le has been created with
a �lecode which HP Link Editor/XL
recognizes.

ACTION Verify that you have entered the correct
�le and that you have spelled the name
correctly. If the �le name is correct,
replace or rebuild the �le.

A-30 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

1140 MESSAGE FILE "!" HAS A CORRUPT IMPORT TABLE

CAUSE The named �le has the correct �lecode
but contains a corrupted �eld in its
header record. This usually indicates
that the �le has been corrupted, or that
an invalid �le has been created with
a �lecode which HP Link Editor/XL
recognizes.

ACTION Verify that you have entered the correct
�le and that you have spelled the name
correctly. If the �le name is correct,
replace or rebuild the �le.

DRAFT

11/7/97 02:46

Messages A-31

||||||||||||||||||||||||||||||
|||

1141 MESSAGE FILE "!" HAS A CORRUPT MODULE

CAUSE The named �le has the correct �lecode
but contains a corrupted �eld in its
module directory. This usually indicates
that the �le has been corrupted, or that
an invalid �le has been created with
a �lecode which HP Link Editor/XL
recognizes.

ACTION Verify that you have entered the correct
�le and that you have spelled the name
correctly. If the �le name is correct,
replace or rebuild the �le.

||||||||||||||||||||||||||||||
|||

1142 MESSAGE THE OUTPUT FILE IS FULL

CAUSE A listing �le, to which HP Link
Editor/XL tried to write, is full.

ACTION Exit HP Link Editor/XL and check
the limit of the listing �le. If it is full,
recreate the �le with a larger limit.

||||||||||||||||||||||||||||||
|||

1143 MESSAGE ILLEGAL CAPABILITY SPECIFICATION

CAUSE You do not have the capability you
speci�ed on the CAP= keyword of the
LINK command. (USER capabilities are
not su�cient.)

ACTION Either have your System Manager give
you the capability you need, or do not
specify that capability on the CAP=
keyword.

||||||||||||||||||||||||||||||
|||

1144 MESSAGE ATTEMPT TO OPEN LKEDCAT.PUB.SYS

FAILED

CAUSE HP Link Editor/XL cannot
open its error message catalog,

A-32 Messages DRAFT

11/7/97 02:46

LKEDCAT.PUB.SYS.

ACTION Check to be sure LKEDCAT.PUB.SYS
exists. If not, contact your System
Manager.

DRAFT

11/7/97 02:46

Messages A-33

||||||||||||||||||||||||||||||
|||

1145 MESSAGE LIBRARY "!" IS CORRUPT. USE EITHER

A CLEANRL OR A CLEANXL COMMAND TO

CLEAN THE LIBRARY

CAUSE The library contains errors.

ACTION If this is a relocatable library, use the
CLEANRL command to clean it. If it is
an executable library, use the CLEANXL
command.

||||||||||||||||||||||||||||||
|||

1146 MESSAGE LIBRARY "!" IS CORRUPT

CAUSE The library contains errors.

ACTION Re-create the library.

||||||||||||||||||||||||||||||
|||

1147 MESSAGE OPERATION ON THIS OBJECT MODULE (!)
REQUIRES SM CAPABILITY

CAUSE The relocatable object module executes
at privilege level 0.

ACTION You must have SM capability to use
ADDXL or to link this module.

||||||||||||||||||||||||||||||
|||

1148 MESSAGE THIS LIMIT HAS TO BE >= THE CURRENT

NUMBER OF MODULES (!) OR <= MAX

MODULE LIMIT (400000)

CAUSE You have used an illegal value for the
LIMIT parameter of the CLEANRL or
CLEANXL command.

ACTION Re-enter the command using a value
which is greater than or equal to the
number of modules already existing in
the library, and less than or equal to the
maximum modules allowed (400000)

A-34 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

1149 MESSAGE THE STRING TABLE IN FILE ! DOES NOT

HAVE ENOUGH SPACE FOR THE STRING !

CAUSE While doing an ALTPROG command using
the XL=, ENTRY=, or UNSAT= keywords,
the �le you tried to alter does not have
enough room in its string table to hold
the new string.

ACTION Use the :RUN command to override the
attributes stored in the program �le.
Or, link the program �le again with the
desired keyword speci�ed on the LINK
command.

||||||||||||||||||||||||||||||
|||

1150 MESSAGE ! IS NOT A LEGAL VALUE FOR THE PRI

PARAMETER. IT MUST BE IN THE RANGE

100-255 OR ONE OF [AS, BS, CS, DS,

ES]

CAUSE While doing an ALTPROG or LINK
command you speci�ed an invalid value
for the PRI= keyword.

ACTION Redo the LINK or ALTPROG command
this time specifying a value for the PRI=
keyword which is between 100 and 255
inclusive, or the values AS, BS, CS, DS,
ES.

||||||||||||||||||||||||||||||
|||

1151 MESSAGE ! IS NOT A LEGAL VALUE FOR THE MAXPRI

PARAMETER. IT MUST BE IN THE RANGE

100-255 OR ONE OF [AS, BS, CS, DS,

ES]

CAUSE While doing an ALTPROG or LINK
command you speci�ed an invalid value
for the MAXPRI= keyword.

ACTION Redo the LINK or ALTPROG command
this time specifying a value for the
MAXPRI= keyword which is between 100
and 255 inclusive, or the values AS, BS,
CS, DS, ES.

DRAFT

11/7/97 02:46

Messages A-35

||||||||||||||||||||||||||||||
|||

1154 MESSAGE THE ! FIELD DOES NOT EXIST IN PROGRAM

FILE !. THE FIELD WAS NOT CHANGED.

CAUSE While doing an ALTPROG command you
speci�ed a keyword which changes a
�eld in the program �le which does not
exist in the program �le you speci�ed.
This can only happen if you are trying
to alter the PRI or MAXPRI �elds in a
program �le built with an older link
editor.

ACTION If the �elds are necessary for your
application, you must link the
application with this link editor.
Otherwise, if the �elds are not relevant
to you do not specify them on the
ALTPROG command line.

||||||||||||||||||||||||||||||
|||

A-36 Messages DRAFT

11/7/97 02:46

Warning Messages
(1500-1999)

Warning messages signal potential error situations. HP Link
Editor/XL produces an executable program �le, but erroneous results
may occur at run time.

||||||||||||||||||||||||||||||
|||

1502 MESSAGE INCOMPATIBLE NUMBER OF ARGUMENTS: !

(!, !)

CAUSE The named procedure is referenced in
one source �le and de�ned in another
source �le, but the type checking
information indicates that the two
declarations are incompatible.

ACTION Check the source code and correct the
incompatibility, or ignore the warning.

||||||||||||||||||||||||||||||
|||

1503 MESSAGE INCOMPATIBLE PACKING: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or ignore the warning.

||||||||||||||||||||||||||||||
|||

1504 MESSAGE INCOMPATIBLE ALIGNMENT: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

DRAFT

11/7/97 02:46

Messages A-37

ACTION Check the source code and correct the
incompatibility, or ignore the warning.

A-38 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

1505 MESSAGE INCOMPATIBLE MODE: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or ignore the warning.

||||||||||||||||||||||||||||||
|||

1506 MESSAGE INCOMPATIBLE STRUCTURE: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or ignore the warning.

||||||||||||||||||||||||||||||
|||

1507 MESSAGE INCOMPATIBLE TYPE: ! (!, !)

CAUSE The named procedure or global variable
is referenced in one source �le and
de�ned in another source �le, but the
type checking information indicates that
the two declarations are incompatible. If
the symbol refers to a procedure and the
incompatibility is with its parameters,
the parameter number is listed on the
following line.

ACTION Check the source code and correct the
incompatibility, or ignore the warning.

DRAFT

11/7/97 02:46

Messages A-39

||||||||||||||||||||||||||||||
|||

1509 MESSAGE COMMON BLOCK REQUESTS FOR "!" HAVE

DIFFERENT LENGTHS

CAUSE The named common block was de�ned
in one subprogram with a longer length
than its initialization length.

ACTION Since this is a warning, no action is
required. HP Link Editor/XL allocates
enough space for the common block
with the larger size, but only the part
declared in the BLOCK DATA subprogram
is initialized.

A-40 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

1510 MESSAGE INVALID SYMBOL TYPE FOR PLABEL (!,

!)

CAUSE HP Link Editor/XL was asked to create
a procedure label for the named symbol
in the given source �le, but the symbol is
not a procedure name.

ACTION This message usually indicates a
compiler error. Record the steps that
produced this error then report the
problem to your System Manager.

||||||||||||||||||||||||||||||
|||

1511 MESSAGE INNER-QUADRANT BRANCH IN "!"

CAUSE A branch in the code must cross a
quandrant boundary. Usually, this is
caused by a reference from code to data.

ACTION Avoid using branches into data.

||||||||||||||||||||||||||||||
|||

1512 MESSAGE QUADRANT CHANGE IN RELOCATABLE

EXPRESSION

CAUSE A relocatable expression uses symbols
from di�erent quadrants.

ACTION Avoid expressions which use both code
and data symbols.

||||||||||||||||||||||||||||||
|||

DRAFT

11/7/97 02:46

Messages A-41

System Errors
(2000-2999)

System errors are �le and system resource errors. They cause the
command that you entered to fail. Contact your System Manager to
resolve the problem.

||||||||||||||||||||||||||||||
|||

2001 MESSAGE ATTEMPT TO SEEK IN "!" FAILED

CAUSE This message usually indicates that an
input �le has been corrupted, or that an
output �le cannot be written because of
system resource limitations. An MPE
XL �le system error message is usually
printed to help clarify the problem.

ACTION If the problem pertains to a relocatable
object �le, try recompiling the source
�le that produced that object module.
If you have exceeded the �le space limit
for your group, either purge unwanted
�les or ask your System Manager to
extend your �le space limit. If the
problem persists, document the steps
that produced this error and report the
problem to your System Manager.

||||||||||||||||||||||||||||||
|||

2002 MESSAGE ENCOUNTERED UNEXPECTED END OF FILE

IN "!"

CAUSE This message usually indicates that an
input �le has been corrupted. An MPE
XL �le system error message is usually
printed to help clarify the problem.

ACTION If the problem pertains to a relocatable
object �le, try recompiling the source
�le that produced that object module.
If you have exceeded the �le space limit
for your group, either purge unwanted
�les or ask your System Manager to
extend your �le space limit. If the
problem persists, document the steps
that produced this error and report the
problem to your System Manager.

A-42 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

2003 MESSAGE ATTEMPT TO READ FROM "!" FAILED

CAUSE This message usually indicates that an
input �le has been corrupted. An MPE
XL �le system error message is usually
printed to help clarify the problem.

ACTION If the problem pertains to a relocatable
object �le, try recompiling the source
�le that produced that object module.
If you have exceeded the �le space limit
for your group, either purge unwanted
�les or ask your System Manager to
extend your �le space limit. If the
problem persists, document the steps
that produced this error and report the
problem to your System Manager.

||||||||||||||||||||||||||||||
|||

2004 MESSAGE ATTEMPT TO WRITE TO "!" FAILED

CAUSE This message usually indicates that the
�le cannot be written because of system
resource limitations. An MPE XL �le
system error message is usually printed
to help clarify the problem.

ACTION If you have exceeded the �le space limit
for your group, either purge unwanted
�les or ask your System Manager to
extend your �le space limit. If the
problem persists, document the steps
that produced this error and report the
problem to your System Manager.

||||||||||||||||||||||||||||||
|||

2005 MESSAGE OUT OF MEMORY

CAUSE HP Link Editor/XL has run out of
virtual memory while trying to link
a program. This can occur if your
system is extremely low on disc space (so
insu�cient room exists for swapping), or
if the program you're linking attempts to
declare a very large array.

DRAFT

11/7/97 02:46

Messages A-43

ACTION Check with your System Manager to
verify that the system has enough free
disc space for swapping. If the program
declares a very large array, try to revise
the program so that the data is allocated
dynamically rather than by a static
array declaration; otherwise, try to
reduce the size of the array.

A-44 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

2100 MESSAGE ATTEMPT TO CLOSE FILE "!" FAILED

CAUSE A �le system error has occurred while
HP Link Editor/XL was trying to closed
the indicated �le.

ACTION Using the accompanying �le system error
message, correct the problem and try the
command again. If the problem persists,
document the steps that produced the
error and report the problem to your
System Manager.

||||||||||||||||||||||||||||||
|||

2101 MESSAGE ATTEMPT TO OPEN LINKLIST FILE FAILED

CAUSE A �le system error occurred when the
link editor attempted to open LINKLIST.

ACTION Using the accompanying �le system error
message, correct the problem and try the
command again. If the problem persists,
document the steps that produced the
error and report the problem to your
System Manager.

||||||||||||||||||||||||||||||
|||

2102 MESSAGE ATTEMPT TO GET FILEINFO FOR LINKLIST

FILE FAILED

CAUSE A �le system error occurred when the
link editor attempted this operation.

ACTION Using the accompanying �le system error
message, correct the problem and try the
command again. If the problem persists,
document the steps that produced the
error and report the problem to your
System Manager.

||||||||||||||||||||||||||||||
|||

2103 MESSAGE ATTEMPT TO CLOSE LINKLIST FILE

FAILED

DRAFT

11/7/97 02:46

Messages A-45

CAUSE A �le system error occurred when HP
Link Editor/XL tried to close the
LINKLIST �le.

ACTION Using the accompanying �le system error
message, correct the problem and try the
command again. If the problem persists,
document the steps that produced the
error and report the problem to your
System Manager.

A-46 Messages DRAFT

11/7/97 02:46

||||||||||||||||||||||||||||||
|||

2105 MESSAGE ATTEMPT TO OPEN LKEDHELP.PUB.SYS

FAILED

CAUSE HP Link Editor/XL failed to �nd the
LKEDHELP.PUB.SYS �le.

ACTION Check that the LKEDHELP.PUB.SYS �le is
present on your system and that it has
not been overwritten by some other �le.
Also ensure that you do not have a �le
equate for LKEDHELP.PUB.SYS.

||||||||||||||||||||||||||||||
|||

2106 MESSAGE OUT OF DISK SPACE

CAUSE HP Link Editor/XL has run out of
disk space. This usually results when
insu�cient room exists for swapping.

ACTION Check with your System Manager to
verify that the system has enough free
disk space.

||||||||||||||||||||||||||||||
|||

DRAFT

11/7/97 02:46

Messages A-47

Language
Subsystem Errors
(3000-3999)

Language subsystem errors usually indicate errors in an input
relocatable object �le. The relocatable object �le may have been
corrupted after compilation, or there may be a compiler error. Save
the corrupt version of the �le in case you need it when reporting
the error. Recreate the �le and retry the command. If the error
recurs, document the steps that produced it and contact your System
Manager.

||||||||||||||||||||||||||||||
|||

3001 MESSAGE ILLEGAL SYMBOL INDEX IN FIXUP RECORD

CAUSE A \�xup request" record in a relocatable
object �le indicates a reference to a
symbol, but the symbol index is outside
the range of indices for the symbol
table in that relocatable object �le.
(This problem can arise if a source �le
compiles with errors and the compiler
does not purge the resulting relocatable
object �le.) This message is followed
by another line that indicates the
relocatable object �le and subspace
o�set which require the �xup.

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3002 MESSAGE !: SYMBOL ! HAS INVALID STRING INDEX

CAUSE An entry in the symbol table of the
named relocatable object �le contains an
invalid pointer to the symbol name.

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3003 MESSAGE NO BSS SUBSPACE DEFINED

CAUSE HP Link Editor/XL allocates space
for all uninitialized common blocks
in a subspace named BSS. This
subspace must be de�ned in one of the
input �les, and is normally de�ned in

A-48 Messages DRAFT

11/7/97 02:46

NRT0.LIB.SYS.

ACTION Check that the NRT0.LIB.SYS �le is
present on your system and that it has
not been overwritten with some other
�le. Also ensure that you do not have
a �le equate for NRT0.LIB.SYS. If the
problem persists, document the steps
that produced this error and report the
problem to your System Manager.

DRAFT

11/7/97 02:46

Messages A-49

||||||||||||||||||||||||||||||
|||

3004 MESSAGE CAN'T FIND SUBSPACE FOR !

CAUSE HP Link Editor/XL automatically
de�nes three symbols for programs:
etext, edata and end. These symbols
are placed at the end of the code,
initialized data, and uninitialized data
subspaces, respectively. The $DATA$
and BSS subspaces must be de�ned in
one of the input �les, and are normally
de�ned in NRT0.LIB.SYS.

ACTION Check that the NRT0.LIB.SYS �le is
present on your system and that it has
not been overwritten with some other
�le. Also ensure that you do not have
a �le equate for NRT0.LIB.SYS. If the
problem persists, document the steps
that produced this error and report the
problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3005 MESSAGE NO $UNWIND_END$ SUBSPACE DEFINED

CAUSE HP Link Editor/XL generates
descriptors for all long branch, import
and export stubs that it creates. These
descriptors are required for unwinding
the stack during a stack trace or
a non-local escape operation. The
$UNWIND_END$ subspace must be de�ned
in one of the input �les, and is normally
de�ned in NRT0.LIB.SYS.

ACTION Check that the NRT0.LIB.SYS �le is
present on your system and that it has
not been overwritten with some other
�le. Also ensure that you do not have
a �le equate for NRT0.LIB.SYS. If the
problem persists, document the steps
that produced this error and report the
problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3006 MESSAGE FIRST INIT POINTER IS NOT CODE

A-50 Messages DRAFT

11/7/97 02:46

CAUSE In order to generate an executable
�le that the loader can accept, the
subspace records for the \code" space
must precede those for the \data" space.
Normally, the declarations contained in
the NRT0.LIB.SYS �le ensure that this
happens.

ACTION Check that the NRT0.LIB.SYS �le is
present on your system and that it has
not been overwritten with some other
�le. Also ensure that you do not have
a �le equate for NRT0.LIB.SYS. If the
problem persists, document the steps
that produced this error and report the
problem to your System Manager.

DRAFT

11/7/97 02:46

Messages A-51

||||||||||||||||||||||||||||||
|||

3008 MESSAGE TOO MANY LOADABLE SPACES

CAUSE The loader rejects an executable �le
that contains more than two loadable
spaces (a $TEXT$ space for code and a
$PRIVATE$ space for data). If a program
attempts to declare any other loadable
space, HP Link Editor/XL issues this
error message.

ACTION This is a compiler error. Record the
steps that produced this error and report
it to your System Manager.

||||||||||||||||||||||||||||||
|||

3009 MESSAGE LOADABLE SPACE MISMATCH

CAUSE HP Link Editor/XL has found two
relocatable �les that declare the same
space as both a loadable and an
unloadable space.

ACTION This is a compiler error. Record the
steps that produced this error and report
it to your System Manager.

||||||||||||||||||||||||||||||
|||

3010 MESSAGE PRIVATE SPACE MISMATCH

CAUSE HP Link Editor/XL found more that
one relocatable module that declares
the same space as both private and
non-private.

ACTION This is a compiler error. Record the
steps that produced this error and report
it to your System Manager.

||||||||||||||||||||||||||||||
|||

3012 MESSAGE ILLEGAL ARGUMENT COMBINATION (!,!)

CAUSE A parameter relocation stub cannot be
built to transfer the arguments.

A-52 Messages DRAFT

11/7/97 02:46

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

DRAFT

11/7/97 02:46

Messages A-53

||||||||||||||||||||||||||||||
|||

3013 MESSAGE SUBSPACE LENGTH NOT EQUAL INIT

LENGTH

CAUSE A relocatable object module contains a
subspace with a non-zero initialization
length but a larger subspace length.

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3014 MESSAGE !: UNSUPPORTED SYMBOL TYPE (!) FOR

UNSAT SYMBOL

CAUSE A relocatable object module contains
an unsatis�ed symbol with an illegal
symbol type. The valid symbol types
for unsatis�ed symbols are: CODE,
DATA, MILLICODE, STORAGE, ABSOLUTE,
MILLI_EXT, and NULL.

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3015 MESSAGE !: UNSUPPORTED SYMBOL TYPE (!) FOR

UNIVERSAL SYMBOL

CAUSE A relocatable object module contains
a universal symbol with an illegal
symbol type. The valid symbol types
for universal symbols are: CODE, DATA,
PRI_PROG, SEC_PROG, ENTRY, MILLICODE,
ABSOLUTE, MILLI_EXT, MODULE, and
NULL.

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3016

A-54 Messages DRAFT

11/7/97 02:46

MESSAGE FIXUP HAS INVALID EXPRESSION

SELECTOR

CAUSE A relocatable object module contains a
corrupt \�xup request" record. The one
or two lines that follow this message
gives the �le and subspace that require
the �xup, and the symbol which is
referenced by that location.

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

DRAFT

11/7/97 02:46

Messages A-55

||||||||||||||||||||||||||||||
|||

3017 MESSAGE FIXUP HAS INVALID FIELD SELECTOR

CAUSE A relocatable object module contains a
corrupt \�xup request" record. The one
or two lines that follow this message
gives the �le and subspace that require
the �xup, and the symbol which is
referenced by that location.

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3018 MESSAGE FIXUP HAS INVALID FORMAT SELECTOR

CAUSE A relocatable object module contains a
corrupt \�xup request" record. The one
or two lines that follow this message
gives the �le and subspace that require
the �xup, and the symbol which is
referenced by that location.

ACTION This is a compiler error. Record the
steps that produced this error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3019 MESSAGE DATA ADDRESS IS OUT OF RANGE FOR

SHORT LOAD OR STORE

CAUSE A load or store instruction is attempting
to reach a memory location that is not
reachable through a single instruction.
(Normally, compilers always generate
a two-instruction sequence for loading
or storing data, unless the location is
guaranteed to be within the range of
a single instruction.) The two lines
that follow this message give the �le
and subspace o�set of the load or store
instruction, and the symbol which is
being referenced.

A-56 Messages DRAFT

11/7/97 02:46

ACTION This is a compiler error. Record the
steps that produced this error and report
it to your System Manager.

DRAFT

11/7/97 02:46

Messages A-57

||||||||||||||||||||||||||||||
|||

3020 MESSAGE TARGET OF CONDITIONAL BRANCH IS OUT

OF RANGE

CAUSE A conditional branch instruction
is attempting to reach a memory
location that is not reachable through a
single instruction. Normally, HP Link
Editor/XL replaces single-instruction
branches with a chained branch when
necessary. The two lines that follow
this message give the �le and subspace
o�set of the branch instruction, and the
symbol which is being referenced.

ACTION This is a compiler error. Record the
steps that produced this error and report
it to your System Manager.

||||||||||||||||||||||||||||||
|||

3021 MESSAGE TARGET OF UNCONDITIONAL BRANCH IS

OUT OF RANGE

CAUSE An unconditional branch instruction
is attempting to reach a memory
location that is not reachable through a
single instruction. Normally, HP Link
Editor/XL replaces single-instruction
branches with a chained branch when
necessary. The two lines that follow
this message give the �le and subspace
o�set of the branch instruction, and the
symbol which is being referenced.

ACTION This is a compiler error. Record the
steps that produced this error and report
it to your System Manager.

||||||||||||||||||||||||||||||
|||

3022 MESSAGE TARGET OF ABSOLUTE BRANCH IS OUT OF

RANGE

CAUSE An absolute branch instruction is
attempting to reach a memory location
that is not reachable through a single
instruction. Normally, HP Link
Editor/XL replaces single-instruction

A-58 Messages DRAFT

11/7/97 02:46

branches with a chained branch when
necessary. The two lines that follow
this message give the �le and subspace
o�set of the branch instruction, and the
symbol which is being referenced.

ACTION This is a compiler error. Record the
steps that produced this error and report
it to your System Manager.

DRAFT

11/7/97 02:46

Messages A-59

||||||||||||||||||||||||||||||
|||

3024 MESSAGE FIXUP REFERS TO INVALID SYMBOL

CAUSE A \�xup request" record indicates that
a reference is being made to a symbol
whose symbol type is not valid for the
�xup.

ACTION This is typically a compiler error.
Document the steps that produced this
error and report the problem to your
System Manager.

||||||||||||||||||||||||||||||
|||

3027 MESSAGE INVALID FIXUPS EXIST

CAUSE When HP Link Editor/XL encounters
one or more problems with a \�xup
request" record, it prints this summary
message at the end of the link operation.

ACTION Refer to the \action" description for the
previously listed error messages. Once
you have resolved those problems, this
message goes away.

||||||||||||||||||||||||||||||
|||

3028 MESSAGE !: NOT A VALID LIBRARY (INVALID

MAGIC NUMBER)

CAUSE The named �le has the correct
�lecode but contains an incorrect
\magic number" in its library header
record. This usually indicates that
the relocatable library �le has been
corrupted, or that a non-library �le has
been created with an NMRL �lecode.

ACTION Verify that you have speci�ed a
relocatable library �le, that it is the
correct one and that its name is spelled
correctly. It the �le and �lecode are
correct, replace or rebuild the �le.

||||||||||||||||||||||||||||||
|||

3029

A-60 Messages DRAFT

11/7/97 02:46

MESSAGE !: CORRUPT LIBRARY FILE (INCORRECT

HEADER CHECKSUM)

CAUSE The named �le has the correct �lecode
but contains an incorrect \checksum" in
its library header record. This usually
indicates that the relocatable library �le
has been corrupted, or that a non-library
�le has been created with an NMRL
�lecode.

ACTION Verify that you have speci�ed a
relocatable library �le, that it is the
correct one and that its name is spelled
correctly. It the �le and �lecode are
correct, replace or rebuild the �le.

DRAFT

11/7/97 02:46

Messages A-61

||||||||||||||||||||||||||||||
|||

3030 MESSAGE !: MISSING LIBRARY SYMBOL TABLE

CAUSE The named relocatable library �le has
no symbol table. This usually indicates
that the relocatable library �le has been
corrupted, or that a non-library �le has
been created with an NMRL �lecode.

ACTION Verify that you have speci�ed a
relocatable library �le, that it is the
correct one and that its name is spelled
correctly. It the �le and �lecode are
correct, replace or rebuild the �le.

||||||||||||||||||||||||||||||
|||

3031 MESSAGE !: NOT A VALID OBJECT FILE (INVALID

MAGIC NUMBER)

CAUSE The named �le has the correct �lecode
but contains an incorrect \magic
number" in its header record. This
usually indicates that the relocatable
object �le has been corrupted, or that
a non-relocatable object �le has been
created with an NMOBJ �lecode.

ACTION Verify that you have speci�ed a
relocatable object �le, that it is the
correct one and that its name is spelled
correctly. It the �le and �lecode are
correct, recreate the �le.

||||||||||||||||||||||||||||||
|||

3032 MESSAGE !: NOT A VALID OBJECT FILE (INVALID

VERSION ID)

CAUSE The named �le has the correct �lecode
but contains an incorrect \version id" in
its header record. This usually indicates
that the relocatable object �le has been
corrupted, or that a non-relocatable
object �le has been created with an
NMOBJ �lecode.

ACTION Verify that you have speci�ed a
relocatable object �le, that it is the

A-62 Messages DRAFT

11/7/97 02:46

correct one and that its name is spelled
correctly. It the �le and �lecode are
correct, recreate the �le.

DRAFT

11/7/97 02:46

Messages A-63

||||||||||||||||||||||||||||||
|||

3033 MESSAGE !: CORRUPT OBJECT FILE (INCORRECT

HEADER CHECKSUM)

CAUSE The named �le has the correct �lecode
but contains an incorrect \checksum" in
its header record. This usually indicates
that the relocatable object �le has been
corrupted, or that a non-relocatable
object �le has been created with an
NMOBJ �lecode.

ACTION Verify that you have speci�ed a
relocatable object �le, that it is the
correct one and that its name is spelled
correctly. It the �le and �lecode are
correct, recreate the �le.

||||||||||||||||||||||||||||||
|||

3034 MESSAGE !: NOT A VALID OBJECT FILE (INVALID

SYSTEM ID)

CAUSE The named �le has the correct �lecode
but contains an incorrect \system id" in
its header record. This usually indicates
that the relocatable object �le has been
corrupted, or that a non-relocatable
object �le has been created with an
NMOBJ �lecode.

ACTION Verify that you have speci�ed a
relocatable object �le, that it is the
correct one and that its name is spelled
correctly. It the �le and �lecode are
correct, recreate the �le.

||||||||||||||||||||||||||||||
|||

3035 MESSAGE MISSING SYMBOL EXTENSION RECORD: !

(!)

CAUSE A relocatable object �le has requested
HP Link Editor/XL to perform type
checking, but it does not contain the
required symbol extension records that
provide the type checking information.

A-64 Messages DRAFT

11/7/97 02:46

ACTION This message indicates a compiler error.
Record the steps that produced the error
and report the problem to your System
Manager.

||||||||||||||||||||||||||||||
|||

3036 MESSAGE FIXUP HAS A SELECTOR MISMATCH

CAUSE An invalid �xup request was found in a
relocatable object �le during the �xup
translation in the linker.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

DRAFT

11/7/97 02:46

Messages A-65

||||||||||||||||||||||||||||||
|||

3037 MESSAGE FIXUP IS NOT A PROCEDURE CALL

CAUSE A �xup request record in a relocatable
object �le is invalid.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3038 MESSAGE BAD UNWIND DESCRIPTOR

CAUSE A corrupt unwind descriptor was found
in a relocatable object �le.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3039 MESSAGE BAD RECOVER DESCRIPTOR

CAUSE A corrupt recover descriptor was found
in a relocatable object �le.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3040 MESSAGE UNUSED FIXUP

CAUSE A �xup request was encountered that
was left unused. This typically means
that an invalid �xup request exists in the
relocatable object �le.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3041

A-66 Messages DRAFT

11/7/97 02:46

MESSAGE ILLEGAL COMBINATION OF RELOCATABLE

SYMBOLS

CAUSE A �xup request record in a relocatable
object �le is invalid.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

DRAFT

11/7/97 02:46

Messages A-67

||||||||||||||||||||||||||||||
|||

3042 MESSAGE EXPRESSION STACK UNDERFLOW

CAUSE A �xup request record in a relocatable
object �le is invalid.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3043 MESSAGE INVALID FIXUP: "!"

CAUSE A �xup request record in a relocatable
object �le is invalid.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3044 MESSAGE INVALID FRAME SIZE: "!"

CAUSE A �xup request record in a relocatable
object �le is invalid.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3045 MESSAGE FIXUP APPLIED TO INSTRUCTION: "!"

CAUSE A �xup request record in a relocatable
object �le is invalid.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3046 MESSAGE INVALID LOADER FIXUP NEEDED

CAUSE The linker has determined that a loader
�xup needs to be generated, but the

A-68 Messages DRAFT

11/7/97 02:46

target of the loader �xup is invalid. It is
illegal to have initialized code pointers
point into data. Make sure that the code
does not contain code pointers which
are initialized to point into data (it is
possible to make this error when writing
in assembly).

ACTION If the code does not contain initialized
code pointers which point into data, or
the program consists of only high-level
source language (eg. Pascal, COBOL,
etc.), then this is a compiler error.
Record the steps that produced the error
and report the problem to your System
Manager.

DRAFT

11/7/97 02:46

Messages A-69

||||||||||||||||||||||||||||||
|||

3047 MESSAGE INVALID ALIGNMENT OF DATA

CAUSE The alignment speci�ed in a �xup
request record in a relocatable object �le
is invalid.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3048 MESSAGE DIVISION BY 0 IN AN EXPRESSION

CAUSE A �xup request in a relocatable �le
contains a DIV expression that has an
invalid (0) divisor.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3049 MESSAGE TRY-RECOVER STACK UNDERFLOW

CAUSE A pop was attempted on an empty
try-recover stack.

ACTION This is a compiler error. Record the
steps that produced the error and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

3100 MESSAGE !: NOT A VALID LIBRARY/PROGRAM FILE

(CORRUPT FILE ID)

CAUSE The named �le has the correct �lecode
but contains a corrupted �eld in its
header record. This usually indicates
that the �le has been corrupted, or that
an invalid �le has been created with
a �lecode which HP Link Editor/XL
recognizes.

ACTION Verify that you have entered the correct
�le and that its name is spelled correctly.

A-70 Messages DRAFT

11/7/97 02:46

It the �le and �lecode are correct,
replace or rebuild the �le.

||||||||||||||||||||||||||||||
|||

3101 MESSAGE !: NOT A VALID OBJECT FILE (CORRUPT

FILE ID)

CAUSE The named �le has the correct �lecode
but contains a corrupted �eld in its
header record. This usually indicates
that the �le has been corrupted, or that
an invalid �le has been created with
a �lecode which HP Link Editor/XL
recognizes.

ACTION Verify that you have speci�ed a
relocatable object �le, that it is the
correct one and that its name is spelled
correctly. It the �le and �lecode are
correct, replace or rebuild the �le.

DRAFT

11/7/97 02:46

Messages A-71

||||||||||||||||||||||||||||||
|||

3102 MESSAGE !: NOT A VALID PROGRAM FILE (CORRUPT

FILE ID)

CAUSE The named �le has the correct �lecode
but contains a corrupted �eld in its
header record. This usually indicates
that the �le has been corrupted, or that
an invalid �le has been created with
a �lecode which HP Link Editor/XL
recognizes.

ACTION Verify that you have entered the correct
�le and that its name is spelled correctly.
It the �le and �lecode are correct,
replace or rebuild the �le.

||||||||||||||||||||||||||||||
|||

3103 MESSAGE !: MORE OBJECT MODULES EXPECTED IN

THIS OBJECT FILE

CAUSE This relocatable object �le contains a
series of relocatable object modules
and one of this series of relocatable
object modules is missing. This
usually indicates that the �le has been
corrupted.

ACTION Verify that you have included the correct
�le and that you have spelled the name
correctly. If the spelling is correct,
replace or rebuild the �le.

||||||||||||||||||||||||||||||
|||

3104 MESSAGE HEAP ALLOCATION ERROR

CAUSE This message usually indicates that
HP Link Editor/XL attempted to
allocate heap space and system resource
limitations caused the allocation to fail.

ACTION If this error persists, document the steps
that produced this problem and report
the problem to your System Manager.

||||||||||||||||||||||||||||||
|||

A-72 Messages DRAFT

11/7/97 02:46

Internal Errors
(4000-4999)

Internal errors are errors caused by the link editor subsystem.
Internal errors cause link editor commands to abort. If you encounter
any of these messages, document the steps that produced the error,
then report the problem and error number to your Hewlett-Packard
representative.

DRAFT

11/7/97 02:46

Messages A-73

B

Using HP Link Editor/XL with HP COBOL II/XL

This appendix discusses the HP COBOL II/XL compiler conventions
that relate speci�cally to HP Link Editor/XL. The following items
explain how you use the conventions to successfully create executable
program �les. (For details about compiler conventions, see the HP
COBOL II Reference Manual , the HP COBOL II/XL Programmer's
Guide or the HP COBOL II/XL Reference Manual Supplement .)

Compilation units

If you do not use the RLFILE option of the $CONTROL directive,
the entire source �le is treated as one compilation unit and the
compiler produces a relocatable object �le containing a single
relocatable object module.

If you use RLFILE, each concatenated (program unit that is not
contained in another program) is a separate compilation unit and
results in a separate relocatable object module in the relocatable
library.

Relocatable object module name

If you do not use the RLFILE option of the $CONTROL directive,
the relocatable object module name is the unquali�ed name of the
COBOL source �le.

If you use RLFILE, the relocatable object module name is the
PROGRAM-ID name of that module.

Program entry point

The program entry point is the name speci�ed in the PROGRAM-ID
statement. Secondary entry points are speci�ed by the ENTRY verb.

Scope of data

External data and �les are relative to the name of the data item or
�le.

Internal and local data has local scope.

Data in the main program is relative to $global$.

Data is OWN (relative to M$ n$ name in the map, where n is
a number and name is the module name) if the PROGRAM-ID
paragraph does not contain an INITIAL clause, or if the program
contains one of the following compiler directives:

$CONTROL ANSISUB

$CONTROL SUBPROGRAM

DRAFT

11/7/97 02:46

Using HP Link Editor/XL with HP COBOL II/XL B-1

Data is local (SP relative) if the PROGRAM-ID paragraph contains an
INITIAL clause, or if the program contains the $CONTROL DYNAMIC

directive.

B-2 Using HP Link Editor/XL with HP COBOL II/XL DRAFT

11/7/97 02:46

Locality sets

When an HP COBOL II relocatable object �le contains multiple
chunks of code, the locality set name is the name entered for the
PROGRAM-ID. When the relocatable object �le contains a single
chunk, no locality set is used.

Type checking

The compiler generates the following type checking information for
parameters in non-intrinsic CALL statements:

1. A type checking level of 3.

2. The parameter-passing method is by reference or value.

3. The alignment (but not the type) of each identi�er passed by
reference or by content.

4. The type of each identi�er passed by value.

5. The type of identi�er in the GIVING clause of the CALL
statement.

The compiler generates the following type checking information
for the formal parameters declared in the USING clause of the
Procedure Division header or ENTRY statement.

1. A type checking level of 3.

2. The parameter-passing method is by reference.

3. The alignment of each parameter. The alignment is assumed
to be on byte boundaries unless you use LINKALIGNED16
or LINKALIGNED for the OPTFEATURES= parameter of the
$CONTROL compiler directive. If you use LINKALIGNED16,
alignment is assumed to be on 16-bit boundaries and if you use
LINKALIGNED, alignment is assumed to be on 32-bit boundaries.

To override the type checking level used during compilation, use
the
PARMCHECK= check level parameter of the LINK command.

DRAFT

11/7/97 02:46

Using HP Link Editor/XL with HP COBOL II/XL B-3

C

Using HP Link Editor/XL with HP FORTRAN 77/XL

This appendix discusses the HP FORTRAN 77/XL compiler
conventions that relate speci�cally to HP Link Editor/XL. The
following items explain how you use these conventions to successfully
create executable program �les. (For details about the compiler
conventions shown, see the HP FORTRAN 77/XL Reference
Manual .)

Compilation units

If you do not use the $RLFILE compiler directive, the entire source
�le is treated as one compilation unit and the compiler produces
a relocatable object �le containing a single relocatable object
module.

If you use $RLFILE, each program unit (main program, subroutine,
function, or block data subprogram) is treated as a separate
compilation unit and results in a separate relocatable object
module in the relocatable library.

Relocatable object module name

If you do not use the $RLFILE compiler directive, the relocatable
object module name is the unquali�ed name of the HP FORTRAN
77 source �le.

If you use $RLFILE, the relocatable object module name is the
name of that program unit or module. If the program is a block
data subprogram, you must use the BLOCKDATA parameter (not the
MODULE parameter) to reference it when using the link editor.

Program entry point

The program entry point is the �rst executable statement in the
main program. This name is main unless you enter a di�erent
name in the HP FORTRAN 77 program statement.

Scope of variables, functions and procedures

Names of COMMON blocks, subroutines and functions have universal
scope. When compiled separately, HP FORTRAN 77 subroutines and
functions do not generate a dummy main block.

Locality sets

The HP FORTRAN 77 $LOCALITY compiler directive associates
program units with a locality set. The name of the locality set
must begin with a letter. It can contain up to 32 alphanumeric
characters. Place the $LOCALITY directive before the program

DRAFT

11/7/97 02:46

Using HP Link Editor/XL with HP FORTRAN 77/XL C-1

unit(s) to be placed in a locality set (the directive remains in e�ect
until the next $LOCALITY directive).

If you do not use the $LOCALITY directive, CODE is the default
locality set name.

C-2 Using HP Link Editor/XL with HP FORTRAN 77/XL DRAFT

11/7/97 02:46

Type checking

Two compiler directives specify the level of type checking that the
link editor uses when resolving references between HP FORTRAN

77 subroutines and functions. They are $CHECK_FORMAL_PARM
and $CHECK_ACTUAL_PARM and they are described in the next two
paragraphs.

$CHECK_FORMAL_PARM associates a check level with the
formal declaration of the subroutine or function. Place
$CHECK_FORMAL_PARM before the declaration of the subroutine or
function (it remains in e�ect until a new directive is encountered).
If you do not use $CHECK_FORMAL_PARM, the compiler uses type
checking level 3.

$CHECK_ACTUAL_PARM associates a check level with each subroutine
or function call encountered. You can place $CHECK_ACTUAL_PARM
anywhere in the source �le. It remains in e�ect until a new
directive is encountered. If you do not use $CHECK_ACTUAL_PARM,
the compiler uses type checking level 3.

To override the type checking level used during compilation, use
the PARMCHECK option of the LINK command (see Chapter 4).

DRAFT

11/7/97 02:46

Using HP Link Editor/XL with HP FORTRAN 77/XL C-3

D

Using HP Link Editor/XL with HP Pascal/XL

This appendix discusses the HP Pascal/XL compiler conventions that
relate speci�cally to HP Link Editor/XL. The following items explain
how you use these conventions to successfully create executable
program �les. (For details about the compiler conventions shown, see
the HP Pascal Programmer's Guide.)

Compilation units

If you do not use the $RLFILE compiler option, the entire source
�le is treated as one compilation unit and the compiler produces
a relocatable object �le containing a single relocatable object
module.

If you use $RLFILE, each PASCAL MODULE or non-nested
procedure is a separate compilation unit and results in a separate
relocatable object module in the relocatable library.

Relocatable object module name

If you do not use the $RLFILE compiler option, the relocatable
object module name is the unquali�ed name of the Pascal source
�le.

If you use $RLFILE, the relocatable object module name is the
name of the corresponding non-nested procedure or module in the
source �le.

Program entry point

The �rst executable statement in the outer block is the program
entry point. The outer block's name is PROGRAM.

Scope of variables, functions and procedures

Outer block variables (declared with the GLOBAL compiler option)
and all modules and level one procedures and functions, have
universal scope.

The SUBPROGRAM option lets you compile a subset of level one
procedures or functions. It also lets you select parts of a large
program for compilation. Because each compilation creates a new
relocatable object module, you can't recompile into an existing �le
and retain the old code. The SUBPROGRAM option is similar to the
EXTERNAL option in that the outer block is not compiled. Variables
can be coupled with an outer block that is compiled with the
GLOBAL option.

DRAFT

11/7/97 02:46

Using HP Link Editor/XL with HP Pascal/XL D-1

The EXTERNAL option can be used with the GLOBAL option to
compile procedures and functions separately. When EXTERNAL

appears in a source �le, the compiler generates information about
global variables. This allows them to be coupled with identical
variables in an outer block that are compiled with the GLOBAL
option. The compiler generates object code only for procedures
and functions; not for the statement part of the outer block.

D-2 Using HP Link Editor/XL with HP Pascal/XL DRAFT

11/7/97 02:46

Routines in an executable library cannot reference program globals.
This includes INPUT and OUTPUT.

The GLOBAL compiler option prepares information about all global
variables declared in the outer block. It allows the variables to
be coupled with identical variables that are compiled with the
EXTERNAL option. The compiler generates object code for the outer
block, as well as for all procedures and functions.

Locality sets

The LOCALITY option lets you assign the relocatable object to a
new or existing locality set. If you enter a name of an existing
locality set, the relocatable object code is placed into that set. If
the locality set does not exist, a new locality set is created using
that name.

The LOCALITY option remains in e�ect until a new one is
encountered. The LOCALITY option can appear anywhere in the
source program. However, the object code for an entire procedure
is placed into the last locality set used. You cannot place part of a
procedure in a locality set.

If you do not enter the LOCALITY option, CODE is the default
locality set name.

Type checking

Two compiler options specify the level of type checking that
the link editor uses when resolving references between Pascal
procedures and functions. They are $CHECK_FORMAL_PARM integer$
and $CHECK_ACTUAL_PARM integer$ and they are described in the
next two paragraphs.

CHECK_FORMAL_PARM associates a check level with the
formal declaration of the procedure or function. Place
CHECK_FORMAL_PARM before the declaration of the procedure or
function (it applies only to the procedure or function immediately
following it). If you do not use CHECK_FORMAL_PARM, the compiler
uses type checking level 3.

CHECK_ACTUAL_PARM associates a check level with each procedure
or function call encountered. You can place CHECK_ACTUAL_PARM
anywhere in the source �le. It remains in e�ect until a new
directive is encountered. If you do not use CHECK_ACTUAL_PARM,
the compiler uses type checking level 3.

To override the type checking level used during compilation, use
the PARMCHECK option of the LINK command (see Chapter 4).

DRAFT

11/7/97 02:46

Using HP Link Editor/XL with HP Pascal/XL D-3

E

Using HP Link Editor/XL with HP C/XL

This appendix discusses the HP C/XL compiler conventions that
relate speci�cally to HP Link Editor/XL. The following items explain
how you use these conventions to successfully create executable
program �les. (For details about the compiler conventions shown, see
the HP C/XL Reference Manual Supplement .)

Compilation units

The entire source �le is treated as one compilation unit and the
compiler produces a relocatable object �le containing a single
relocatable object module.

Relocatable object module name

The relocatable object module name is the unquali�ed name of the
C source �le.

Program entry point

The �rst executable statement in the function main is the program
entry point.

Scope of variables

Programs cannot share globals with routines in an executable
library. Since the standard C library is part of the executable
library XL.PUB.SYS, C programs cannot directly reference global
variables in it. To access these global variables, link the relocatable
library, LIBCINIT.LIB.SYS with the program. For example, if your
program contains the declaration,

extern int errno;

you access the C library global errno by linking LIBCINIT with the
program.

Locality sets

The LOCALITY pragma lets you assign the relocatable object to
a new or existing locality set. If you enter a name of an existing
locality set the relocatable object code is placed into that set. If
the locality set does not exist, a new locality set is created using
that name.

The LOCALITY pragma remains in e�ect until a new one is
encountered. It can appear anywhere in the source �le. However,
the object code for the entire function is placed into the last
locality set speci�ed. You cannot place part of a function in a
locality set.

DRAFT

11/7/97 02:46

Using HP Link Editor/XL with HP C/XL E-1

If you do not enter the LOCALITY pragma, CODE is the default
locality set name.

Type checking

The C compiler speci�es 0 (no checking) as the type checking level
for all C functions. There are no compiler directives that let you
change the level of type checking that the link editor uses when
resolving references between C functions.

E-2 Using HP Link Editor/XL with HP C/XL DRAFT

11/7/97 02:46

F
Differences Between HP Link Editor/XL
and MPE V Segmenter

This appendix summarizes the di�erences between linking programs
on MPE V systems using the MPE V Segmenter, and linking
programs on MPE XL systems using the HP Link Editor/XL. If you
are an experienced MPE V user, it should help you to understand the
most important di�erences between MPE V Segmenter and HP Link
Editor/XL.

DRAFT

11/7/97 02:46

Differences Between HP Link Editor/XL

and MPE V Segmenter

F-1

Differences in the
Programming
Environment

Creating an e�cient programming environment implies the e�ective
use of a computer's resources. Thus, utilities that make demands on
a system's processing time and memory allocation must e�ciently
use the architecture of the parent computer. The main di�erences
between HP Link Editor/XL and the MPE V Segmenter relate to
di�erences between the underlying architecture of the Series 900
systems and the segmented architecture of MPE V systems.

Programs running under MPE V are partitioned into variable-sized
pieces called segments. Segments are limited to 16K instructions and
they group code by logical relationships; you can use them to place
related procedures into one contiguous area of virtual memory. This
property of segments - grouping code by logical relationships - is
called code locality .

HP Precision Architecture (HPPA) systems do not have a segmented
architecture but they do allow code locality with the use of locality
sets. (See \Improving Performance with Locality Sets" in Chapter 7
for information on locality sets.) Locality sets allow the use of more
intelligent memory management algorithms, which results in fewer
page faults during a program's execution. Since HPPA systems do
not have segments, they have no code size restraints and the address
space is (e�ectively) unlimited.

F-2 Differences Between HP Link Editor/XL

and MPE V Segmenter

DRAFT

11/7/97 02:46

USL Files and
Relocatable Object
Files

Compilers on both MPE V and MPE XL systems read source �les
and generate object code for them, consisting of blocks of machine
instructions. MPE V compilers create relocatable binary modules
(RBMs), which are placed in USL �les. MPE XL compilers create
relocatable object modules, which are placed in relocatable object
�les or relocatable libraries.

The primary di�erences between compiling into a USL �le and a
relocatable object �le are:

MPE V Segmenter HP Link Editor/XL

Compilers produce one RBM for
each procedure in a source �le and
place each of these RBMs into one
USL �le.

Unless you use the RLFILE
compiler directive, compilers
produce only one relocatable
object module per compilation
unit (source �le). This module is
placed into a relocatable object
�le.

If you need to manipulate
individual procedures or
subroutines contained in a source
�le, use the RLFILE directive or
put the procedures in separate
source �les. When you compile
from separate source �les,a
relocatable object �le is produced
for each and can be manipulated
separately.

RBMs are the smallest units that
the MPE V Segmenter can
process.

Relocatable object modules are
the smallest unit that the HP
Link Editor/XL can process.

You can use subset compilation to
selectively replace RBMs in a USL
�le.

Compilation replaces all
procedures within a relocatable
object �le.

Version management is possible
with USL �les. You access a
de-activated RBM by using its
index number.

Version management is not
available. The entire relocatable
object �le is replaced during each
compilation.

DRAFT

11/7/97 02:46

Differences Between HP Link Editor/XL

and MPE V Segmenter

F-3

Relocatable
Libraries

Relocatable libraries on both MPE V and MPE XL systems let you
e�ciently organize code units. They are similar in that they contain
a collection of relocatable code units that are used during linking to
resolve external references.

The commands used to manipulate relocatable libraries under MPE
V and MPE XL have the following similarities :

The ADDRL command adds code units to a relocatable library.

The BUILDRL command creates a relocatable library.

The LISTRL command lists the contents of a relocatable library.

The PURGERL command deletes code units from a relocatable
library.

The HIDERL and the MPE V HIDE commands hide procedures.

Although HP Link Editor/XL and MPE V Segmenter manage
libraries in a similar fashion, they di�er in noticeable ways. The
following list summarizes the di�erences:

MPE V Segmenter HP Link Editor/XL

You specify the size of the
relocatable library by the �le size
parameter of the BUILDRL
command.

You specify the size of the
relocatable library by the LIMIT
parameter of the BUILDRL
command.

You can selectively add RBMs
(procedures) from a USL �le to a
relocatable library.

You can add only relocatable
object modules (compilation
units) to a relocatable library.
Procedures in the same
compilation unit cannot be added
individually.

You cannot copy RBMs from one
relocatable library to another and
you cannot copy RBMs from a
relocatable library back to a USL
�le.

You can copy relocatable object
modules from one relocatable
library to another. You can also
extract relocatable object modules
from a relocatable library creating
one or more relocatable object
�les.

You can specify only one
relocatable library in the PREP
command.

You can specify several relocatable
libraries in one LINK command.

Procedures in a relocatable library
produce a single code segment
which has size limitations.

Relocatable object modules have
no size limitations.

You cannot partially-link a
relocatable library.

You can partially-link a
relocatable library using the
ADDRL command with its RL and
MERGE parameters.

F-4 Differences Between HP Link Editor/XL

and MPE V Segmenter

DRAFT

11/7/97 02:46

Segmented and
Executable Libraries

Executable libraries on MPE XL systems are similar to segmented
libraries (SLs) on MPE V systems. Executable libraries contain
executable code that is used by the loader at run time to resolve
external references. Modules in executable and segmented libraries
are shared by programs running concurrently.

The following list summarizes the similarities between the MPE V
Segmenter commands that manage segmented libraries and the HP
Link Editor/XL commands that manage executable libraries:

The ADDSL command adds code units to a segmented library and
the ADDXL command adds code units to an executable library.

The BUILDSL command creates a segmented library and the
BUILDXL command creates an executable library.

The COPYSL command copies one segmented library to another and
the COPYXL command copies one executable library to another.

The LISTSL command lists the contents of a segmented library and
the LISTXL command lists the contents of an executable library.

The PURGESL command deletes code units from a segmented library
and the PURGEXL command deletes code units from an executable
library.

Although executable and segmented libraries are similar, executable
libraries provide more power and exibility in managing executable
code. The following list summarizes the di�erences between these
libraries:

MPE V Segmenter HP Link Editor/XL

Segmented libraries must have the
name SL.

Executable libraries can have any
valid MPE XL �le name.

Using the LIB= parameter, you
can search up to three segmented
libraries.

Using the LIB= and XL=

parameters of the LINK command,
you can search any number of
executable libraries at run time.

You can add only one segment to
a segmented library using the
ADDSL command.

Using ADDXL, you can add one or
more modules (from an executable
program �le or from one or more
relocatable libraries) to an
executable library.

You cannot use relocatable
libraries to resolve external
references when adding modules
to a segmented library.

When adding modules to an
executable library using the ADDXL
command, you can use relocatable
libraries to resolve external
references.

You cannot merge modules when
adding them to a segmented
library.

When adding modules to an
executable library using the ADDXL
command, you can merge one or
more modules into one.

DRAFT

11/7/97 02:46

Differences Between HP Link Editor/XL

and MPE V Segmenter

F-5

G

HP Link Editor/XL Command Summary

This appendix serves as a quick reference to the syntax of the HP
Link Editor/XL commands. The commands are listed alphabetically.

ADDRL FROM= source �le [, source �le]...

[;TO= dest �le]

[;MERGE [;RL= rl �le [, rl �le]...]]

[;SHOW]

[;REPLACE]

ADDXL FROM= source �le [,source �le]...

[;TO= dest �le]

[;MERGE [;RL= rl �le [, rl �le]...]]

[;SHOW]

[;PARMCHECK= check level]

[;PRIVLEV= priv level]

[;XLEAST= xleast level]

[;MAP]

[;REPLACE]

[;ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [,blockdata name]...]

[;LSET= lset name [,lset name]...]

[;NODEBUG]

ALTPROG [PROG= �le] [, �le]...

[;XL= xl �le [, xl �le]...]

[;CAP= cap list]

[;NMSTACK= max stack size]

[;NMHEAP= max heap size]

[;UNSAT= unsat name]

[;ENTRY= entry name]

[;PRI= priority level]

[;MAXPRI= max priority level]

BUILDRL RL= rl �le

[;LIMIT= max modules]

BUILDXL XL= xl �le

[;LIMIT= max modules]

DRAFT

11/7/97 02:46

HP Link Editor/XL Command Summary G-1

CLEANRL [RL= rl �le]

[;COMPACT]

[;LIMIT= max modules]

CLEANXL [XL= xl �le]

[;COMPACT]

[;LIMIT= max modules]

COPYRL [ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;LSET= lset name [,lset name]...]

[;FROM= source �le]

[;TO= dest �le]

[;REPLACE]

COPYXL [ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [,blockdata name]...]

[;LSET= lset name [,lset name]...]

[;FROM= source �le]

[;TO= dest �le]

[;REPLACE]

DO [command id]

EXIT

EXTRACTRL [ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [,blockdata name]...]

[;LSET= lset name [,lset name]...]

[;FROM= source �le]

[;TO= object �le]

HELP
�
keyword

�24 , ALL

, PARMS

, EXAMPLES

3
5

HIDERL

�
ENTRY= entry name

;ALL

�

[;RL= rl �le]

G-2 HP Link Editor/XL Command Summary DRAFT

11/7/97 02:46

LINK [FROM= source �le [, source �le]...]

[;TO= dest �le]

[;RL= rl �le [, rl �le]...]

[;XL= xl �le [, xl �le]...]

[;CAP= cap list]

[;NMSTACK= max stack size]

[;NMHEAP= max heap size]

[;UNSAT= unsat name]

[;PARMCHECK= check level]

[;PRIVLEV= priv level]

[;PRI= priority level]

[;MAXPRI= max priority level]

[;ENTRY= entry name]

[;NODEBUG]

[;MAP]

[;SHOW]

LISTOBJ OBJFILE= relocatable object �le

[;ALL]

[;CODE]

[;DATA]

[;ENTRYSYM]

[;MILLICODE]

LISTPROG PROG= executable prog �le

[;ALL]

[;CODE]

[;DATA]

[;ENTRYSYM]

[;MILLICODE]

[;STUB]

[;VALUE]

LISTREDO

DRAFT

11/7/97 02:46

HP Link Editor/XL Command Summary G-3

LISTRL [RL= rl �le]

[;ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [,blockdata name]...]

[;LSET= lset name [,lset name]...]

[;ALL]

[;CODE]

[;DATA]

[;ENTRYSYM]

[;MILLICODE]

LISTXL [XL= xl �le]

[;ENTRY= entry name [,entry name]...]

[;MODULE= module name [,module name]...]

[;BLOCKDATA= blockdata name [,blockdata name]...]

[;LSET= lset name [,lset name]...]

[;ALL]

[;CODE]

[;DATA]

[;ENTRYSYM]

[;MILLICODE]

[;STUB]

[;VALUE]

PURGERL8>><
>>:

ENTRY= entry name
�
,entry name

�
. . .

;MODULE= module name
�
,module name

�
. . .

;BLOCKDATA= blockdata name
�
, blockdata name

�
. . .

;LSET= lset name
�
,lset name

�
. . .

9>>=
>>;

[;RL= rl �le]

PURGEXL8>><
>>:

ENTRY= entry name
�
,entry name

�
. . .

;MODULE= module name
�
,module name

�
. . .

;BLOCKDATA= blockdata name
�
, blockdata name

�
. . .

;LSET= lset name
�
,lset name

�
. . .

9>>=
>>;

[;XL= xl �le]

REDO [command id]

G-4 HP Link Editor/XL Command Summary DRAFT

11/7/97 02:46

REVEALRL

�
ENTRY= entry name

;ALL

�

[;RL= rl �le]

RL RL= rl �le

SHOWRL

SHOWXL

XL XL= xl �le

DRAFT

11/7/97 02:46

HP Link Editor/XL Command Summary G-5

	Top
	Contents
	Introduction to HP Link Editor/XL
	When To Use HP Link Editor/XL
	If You're Familiar with MPE V Segmenter
	How HP Link Editor/XL Works
	Where To Go from Here

	Getting Started with HP Link Editor/XL
	Linking One Relocatable Object File
	Linking Several Relocatable Object Files
	Using a Relocatable Library
	Using an Executable Library
	Using Both Relocatable and Executable Libaraies

	Using HP Link Editor/XL Files and Commands
	The Files Used By HP Link Editor/XL
	The Relocatable Object File
	The $STDINX File
	The Relocatable Library File
	The $STDLIST File
	The LINKLIST File
	The Executable Program File
	The Executable Library File

	Starting HP Link Editor/XL
	Ending HP Link Editor/XL
	Entering HP Link Editor/XL Commands
	Re-executing HP Link Editor/XL Commands
	Checking the Execution Status of Commands
	Executing MPE XL Commands
	Getting Help

	Creating Executable Program Files
	The Executable Program File Commands
	The Executable Program Commands Reference
	ALTPROG
	LINK
	LISTOBJ
	LISTPROG

	Maintaining Relocatable Libraries
	Relocatable Libraries
	The Relocatable Library Commands
	The Relocatable Library Commands Reference
	ADDRL
	BUILDRL
	CLEANRL
	COPYRL
	EXTRACTRL
	HIDERL
	LISTRL
	Understanding the Symbol Listing

	PURGERL
	REVEALRL
	RL
	SHOWRL

	Maintaining Executable Libraries
	Executable Libraries
	The Executable Library Commands
	The Executable Library Commands Reference
	ADDXL
	BUILDXL
	CLEANXL
	COPYXL
	LISTXL
	Understanding the Symbol Listing

	PURGEXL
	SHOWXL
	XL

	Advanced Topics
	The MPE XL Programming Environment
	Millicode
	Improving Performance with Locality Sets

	Messages
	Warning Messages
	System Errors
	Language Subsystem Errors
	Internal Errors

	Using HP Link Editor/XL with HP COBOL II/XL
	Using HP Link Editor/XL with HP FORTRAN 77/XL
	Using HP Link Editor/XL with HP Pascal/XL
	Using HP Link Editor/XL with HP C/XL
	Differences Between HP Link Editor/XL and MPE V Segmenter
	Differences in the Programming Environment
	USL Files and Relocatable Object Files
	Relocatable Libraries
	Segmented and Executable Libraries

	HP Link Editor/XL Command Summary

