
Trap Handling

Programmer's Guide

900 Series HP 3000 Computers

ABCDE

HP Part No. 32650-90026

Printed in U.S.A. 19871101

E1187

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied,reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company.

c 1987 by HEWLETT-PACKARD COMPANY

Printing History

New editions are complete revisions of the manual. Update packages, which
are issued between editions, contain additional and replacement pages to be
merged into the manual by the customer. The date on the title page and back
cover of the manual changes only when a new edition is published. When
an edition is reprinted, all the prior updates to the edition are incorporated.
No information is incorporated into a reprinting unless it appears as a prior
update.

First Edition November 1987 A.01.00

List of E�ective Pages

The List of E�ective Pages gives the date of the current edition, and lists the
dates of all changed pages. Unchanged pages are listed as \ORIGINAL".
Within the manual, any page changed since the last edition is indicated by
printing the date the changes were made on the bottom of the page. Changes
are marked with a vertical bar in the margin. If an update is incorporated
when an edition is reprinted, these bars and dates remain. No information is
incorporated into a reprinting unless it appears as a prior update.

First Edition November 1987

Documentation Map

iii

Figure 0-1. =center

width=6.5in height=3.9in border=box>

iv

Figure 0-2. =center

width=6.5in height=4.4in border=box>

v

Preface

The Trap Handling Programmer's Guide explains how you can develop your
own routines to handle interrupt events and thereby recover from errors and
avoid a process abort.

Chapter 1 Overview de�nes traps and trap handling; summarizes trap
handling on MPE XL.

Chapter 2 MPE XL Arithmetic Traps provides an overview of and reference
information on the arithmetic trap handling intrinsics; describes the
use of these intrinsics; includes example programs.

Chapter 3 MPE XL Code-related Traps provides information regarding how
the MPE XL trap subsystem handles code-related traps.

Chapter 4 MPE XL CONTROL-Y Traps provides an overview of, and
reference information on, the CONTROL-Y trap handling intrinsics;
describes the use of these intrinsics; includes example programs.

Chapter 5 MPE XL Software Library Traps provides an overview of, and
reference information on, the software library trap handling intrinsic;
describes the use of this intrinsic; includes example programs.

Chapter 6 MPE XL Software System Traps provides an overview of, and
reference information on, the software system trap handling
intrinsic; describes the use of this intrinsic; includes example
programs.

Appendix A MPE XL Trap Subsystem Escape Codes lists the MPE XL trap
subsystem escape codes in decimal and hexadecimal and supplies
the meanings for those codes.

Appendix B Intrinsic Numbers lists the MPE XL system intrinsics and their
associated numbers (used in handling software system traps).

vi

Conventions

vii

NOTATION DESCRIPTION

UPPERCASE Within syntax statements, characters in uppercase
must be entered in exactly the order shown, though
you can enter them in either uppercase or lowercase.
For example:

SHOWJOB

Valid entries: showjob ShowJob SHOWJOB

Invalid entries: shojwob ShoJob

SHOW_JOB

italics Within syntax statements, a word in italics represents
a formal parameter or argument that you must replace
with an actual value. In the following example, you
must replace �lename with the name of the �le you
want to release:

RELEASE �lename

punctuation Within syntax statements, punctuation characters
(other than brackets, braces, vertical parallel lines, and
ellipses) must be entered exactly as shown.

{ } Within syntax statements, braces enclose required
elements. When several elements within braces are
stacked, you must select one. In the following example,
you must select ON or OFF:

SETMSG

�
ON

OFF

�

[] Within syntax statements, brackets enclose optional
elements. In the following example, brackets around
,TEMP indicate that the parameter and its delimiter are
optional:

PURGE {�lename} [,TEMP]

When several elements with brackets are stacked, you
can select any one of the elements or none. In the
following example, you can select devicename or
deviceclass or neither:

SHOWDEV

�
devicename

deviceclass

�

viii

NOTATION DESCRIPTION

[. . .] Within syntax statements, a horizontal ellipsis enclosed
in brackets indicates that you can repeatedly select
elements that appear within the immediately preceding
pair of brackets or braces. In the following example,
you can select itemname and its delimiter zero or more
times. Each instance of itemname must be preceded by
a comma:

[,itemname][. . .]

If a punctuation character precedes the ellipsis, you
must use that character as a delimiter to separate
repeated elements. However, if you select only one
element, the delimiter is not required. In the following
example, the comma cannot precede the �rst instance
of itemname:

[itemname][, . . .]

| . . . | Within syntax statements, a horizontal ellipsis enclosed
in parallel vertical lines indicates that you can select
more than one element that appears within the
immediately preceding pair of brackets or braces.
However, each element can be selected only one time.
In the following example, you must select ,A or ,B or
,A,B or ,B,A :�

,A

,B

�
| . . . |

If a punctuation character precedes the ellipsis, you
must use that character as a delimiter to separate
repeated elements. However, if you select only one
element, the delimiter is not required. In the following
example, you must select A or B or AB or BA. The �rst
element cannot be preceded by a comma:�

A

B

�
|, . . . |

. . . Within examples, horizontal or vertical ellipses indicate
where portions of the example are omitted.

t Within syntax statements, the space symbol t shows a
required blank. In the following example, you must
separate modi�er and variable with a blank:

SET[(modi�er)]t(variable);

shading Within an example of interactive dialog, shaded
characters indicate user input or responses to prompts.
In the following example, OMEGA is the user's response
to the NEW NAME prompt:

NEW NAME? OMEGA

ix

NOTATION DESCRIPTION

� � The symbol � � indicates a key on the terminal's
keyboard. For example, �CTRL� indicates the Control
key.

�CTRL� char �CTRL� char indicates a control character. For example,
�CTRL� Y means you have to simultaneously press the
Control key and the Y key on the keyboard.

base pre�xes The pre�xes %, #, and $ specify the numerical base of
the value that follows:

%num speci�es an octal number.

#num speci�es a decimal number.

$num speci�es a hexadecimal number.

When no base is speci�ed, decimal is assumed.

Bit (bit:length) When a parameter contains more than one piece of data within
its bit �eld, the di�erent data �elds are described in the format
Bit (bit:length), where bit is the �rst bit in the �eld and length

is the number of consecutive bits in the �eld. For example,
Bits (13:3) indicates bits 13, 14, and 15:

most significant least significant

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

| 0| | | | | | | | | | | | |13|14|15|

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

Bit (0:1) Bits(13:3)

x

Contents

1. Overview
What are Traps? . 1-1
What You See When a Trap Aborts a Process 1-1
What is Trap Handling? 1-3
MPE XL Trap Handling Intrinsics 1-4
Arithmetic Traps . 1-5
Software Library Traps 1-5
Software System Traps 1-5
CONTROL-Y Traps 1-5
Code-related Traps 1-5

Operating Mode Considerations 1-6

2. MPE XL Arithmetic Traps
ARITRAP . 2-3
Syntax . 2-3
Parameters . 2-3
Condition Codes . 2-4

HPENBLTRAP . 2-4
Syntax . 2-4
Parameters . 2-5
Condition Codes . 2-7

XARITRAP . 2-7
Syntax . 2-7
Parameters . 2-7
Condition Codes . 2-10

Handling Arithmetic Traps 2-10
Integer Divide by Zero 2-11
Range Errors . 2-12
Nil Pointer Reference 2-12
Pointer Arithmetic Errors 2-13

Contents-1

Paragraph Stack Overow 2-13
Integer Overow . 2-14
Decimal Overow . 2-14
Invalid ASCII Digit 2-15
Invalid Decimal Digit 2-16
Decimal Divide by Zero 2-17
IEEE Floating Point Traps 2-18
3000 Mode Traps . 2-21

Examples . 2-23

3. MPE XL Code-related Traps

4. MPE XL CONTROL-Y Traps
XCONTRAP . 4-2
Syntax . 4-2
Parameters . 4-2
Condition Codes . 4-3

RESET CONTROL . 4-4
Syntax . 4-4
Parameters . 4-4
Condition Codes . 4-4

Handling CONTROL-Y Traps 4-4

5. MPE XL Software Library Traps
XLIBTRAP . 5-2
Syntax . 5-2
Parameters . 5-2
Condition Codes . 5-2

Handling Software Library Traps 5-3
Parameters . 5-3
Information-pointer 5-3
Error-code . 5-4
Abort-ag . 5-4

Escaping the Library Trap Handler 5-5
Unarmed Library Trap 5-5
Calling XLIBTRAP 5-5

Examples . 5-6

Contents-2

6. MPE XL Software System Traps
XSYSTRAP . 6-2
Syntax . 6-2
Parameters . 6-2
Condition Codes . 6-2

Handling Software System Traps 6-3
Examples . 6-4

A. MPE XL Trap Subsystem Escape Codes

B. Intrinsic Numbers

Contents-3

Figures

0-1. =center . iv
0-2. =center . v
1-1. Example 1-1: Minimal Stack Trace 1-2
1-2. Example 1-2: Full Stack Trace 1-2

Tables

A-1. Trap Library Escape Codes (Page 1) A-2

Contents-4

1

Overview

The following paragaphs describe traps and trap handling routines.
The discussion also introduces the concepts of enabling/disabling and
arming/disarming traps.

What are Traps?

A trap involves the interruption, and possible termination, of a running process
as the result of some event. Some events are detected in the hardware and,
therefore, are known as hardware traps. Division by zero, result overow, and
data memory protection traps are examples of hardware traps. Other events
are detected by the operating system or by subsystems. These events are called
software traps. Examples of software traps are stack overow and violations of
callable intrinsics, such as passing illegal parameters or invoking an intrinsic
without having the required capability class.

What You See When a Trap Aborts a Process

The following sequence of events occurs when a process is aborted because of a
trap:

1. You see two messages (see Examples 1-1 and 1-2):

a. The �rst message indicates the error condition that caused the abort.

b. The second message contains the program name and the type of abort.

2. The JCW Job Control Word is set to indicate an abort occurred.

3. Depending on whether the SETDUMP intrinsic is armed, the following happen:

Overview 1-1

a. If SETDUMP is not armed, then a minimal stack trace is printed, and the
process is terminated. This stack trace contains all calls in which the
destination (called) routine is in a di�erent executable library.

b. If SETDUMP is armed, the debugger is called with the SETDUMP command
string. Depending on the cause of the abort, the debugger could be called
again to allow interactive dialog.

Examples 1-1 and 1-2 illustrate a minimal (SETDUMP unarmed) and a full
(SETDUMP armed) stack trace, respectively:

**** FILE NOT OPENED (PASCERR 706)
ABORT: MYPROG.GROUP.ACCT

SYS a.4147c TRAP_HANDLER+3c4

XL 31.3361bc P_PASCFERROR+a0

USER 30.30d8 proc_in_user_library+324

PROG 25.4d30 proc_in_program+108

Figure 1-1. Example 1-1: Minimal Stack Trace

**** FILE NOT OPENED (PASCERR 706)

ABORT: MYPROG.GROUP.ACCT
SYS a.4147c TRAP_HANDLER+3c4

XL 31.361bc P_PASCFERROR+a0

XL 31.30044 P_FERR+68

XL 31.36a84 P_READINT+20

USER 30.30d8 proc_in_user_library+324

USER 30.54 first_proc_in_user_library+16

PROG 25.4d30 proc_in_program+108

PROG 25.8920 middle_proc_in_program+70

PROG 25.234 first_proc_in_program+5c

PROG 25.f938 PROGRAM+94

Figure 1-2. Example 1-2: Full Stack Trace

1-2 Overview

What is Trap Handling?

When a trap situation is detected and process execution is interrupted, control
passes to the MPE XL trap subsystem, which determines what action is to be
taken in response to the trap. In most instances, the trap subsystem outputs
an appropriate error message and aborts the o�ending process. Generally, this
is what you want to happen. You can, however, avoid the abort by writing and
enabling/arming one or more of the types of trap handlers allowed by MPE
XL:

Arithmetic trap handler, for errors of an arithmetic nature

Library trap handler, for errors detected during the execution of a system
library procedure

System trap handler, for errors detected during execution of a system
intrinsic

CONTROL-Y trap handler, for handling subsystem breaks during interactive
sessions

You can either arm or disarm your trap handlers, and in some instances, enable
or disable them. If your trap handler is armed and enabled, the MPE XL trap
subsystem does the following when an error is detected:

Suppresses output of the normal error message

Transfers control to a trap handling procedure de�ned by you

Passes one or more parameters describing the error to your trap handling
procedure

Your trap handling procedure may attempt to analyze or recover from the
error, or it may execute some other programming path. Upon exit from the
trap handling procedure, control usually returns to the instruction following
the one that activated the trap. In the case of library traps, however, you can
specify that the process should abort when control exits from the trap handler.

User-de�ned trap handling procedures are armed or disarmed, enabled or
disabled by means of the system intrinsics described later. If a user-de�ned
trap handler is not both armed and enabled, the MPE XL trap subsystem is
invoked when a trap occurs.

Overview 1-3

There is a di�erence between arming and enabling traps. Enabling a trap
means that the occurrence of a trap condition is not ignored. Arming a trap
is required so that, on a trap condition, a user-written routine is nvoked and
can take appropriate recovery actions. The following list summarizes what can
occur when an arithmetic trap condition arises:

1. If a trap is both enabled and armed, the user-written trap handler is invoked
whenever a trap condition occurs.

2. If a trap is enabled but not armed, one of two situations applies:

a. If you have executed an HP Pascal/XL TRY statement, control is passed
to the RECOVER block by doing an ESCAPE.

b. If you have not executed an HP Pascal/XL TRY statement, an error
message is output and the process aborts.

3. If a trap is disabled, irrespective of whether it is armed, the trap is ignored,
and execution of the process continues without any interruption.

Although trap situations are usually involuntary, there is one kind of trap that
you can cause intentionally. This is the subsystem break (CONTROL-Y), and
it can bge entered during interactive sessions. You can write a trap handling
procedure for such situations and arm or disarm your trap handler by using an
intrinsic.

Refer to individual programming language manuals for language-speci�c
information on trap handling.

MPE XL Trap Handling Intrinsics

In MPE XL, all access to user-de�ned trap handling routines is controlled by
system intrinsics. The MPE XL trap handling intrinsics deal with the following
types of trap situations:

Arithmetic trap

Software Library trap

Software System trap

CONTROL-Y trap

1-4 Overview

Trap intrinsics can be invoked from within trap handling procedures.

Arithmetic Traps

An arithmetic trap handler reacts to arithmetic errors that occur as a result of
arithmetic operations. The ARITRAP intrinsic enables or disables arithmetic
traps. The XARITRAP intrinsic arms or disarms the user-written arithmetic trap
handler. The HPENBLTRAP is similar in function to ARITRAP, but allows you
greater exibility in selectively enabling or disabling arithmetic traps.

Software Library Traps

A software library trap handler reacts to errors that occur during execution of
procedures from the compiler libraries. You can arm or disarm your software
library trap handler with the XLIBTRAP intrinsic.

Software System Traps

A software system trap handler reacts to certain errors that occur when user
programs call intrinsics incorrectly. You arm or disarm your software system
trap handler by means of the XSYSTRAP intrinsic.

CONTROL-Y Traps

If you are running a program in an interactive session, you can invoke a special
trap that transfers control in the program to an armed, user-de�ned trap
handling procedure when you enter a CONTROL-Y subsystem break signal
from the terminal. On most terminals, this signal is transmitted by pressing
the �Y� key while holding down the �CTRL� key. The XCONTRAP intrinsic arms or
disarms the user-written CONTROL-Y trap handling procedure.

If you send another CONTROL-Y signal, MPE XL ignores it unless you call
the RESETCONTROL intrinsic at some point prior to the signal.

Code-related Traps

Code-related traps are handled solely by the MPE XL trap subsystem (that is,
users cannot de�ne their own routines to handle these traps). Code-related
traps can occur as a result of illegal or incorrect coding practices.

Overview 1-5

Operating Mode Considerations

A Native Mode (NM) trap handling routine often di�ers from the
corresponding Compatibility Mode (CM) trap handler in its calling sequence
[refer to the Introduction to MPE XL for MPE V Programmers (30367-90005)]
and the method by which the trap routine obtains error information. However,
you need supply only the version for the mode in which you invoke intrinsics.

You do not need to modify existing CM applications that use a trap handler
in order to run them on MPE XL. Likewise, new NM applications need not
specify a CM version of their NM trap handling routine. Only those doing
mixed-mode programming, who invoke intrinsics in both modes, need to specify
and arm trap handling routines in both modes in order to capture all possible
traps.

This manual documents trap handling from the Native Mode perspective
only. For information concerning trap handling in the Compatibility Mode
environment, refer to the MPE V Intrinsics Reference Manual (32033-90007).
For information concerning trap handling when doing mixed-mode
programming, refer to the Introduction to MPE XL for MPE V Programmers

(30367-90005).

1-6 Overview

2

MPE XL Arithmetic Traps

There are two types of arithmetic traps:

Hardware arithmetic traps

Software arithmetic traps

Each trap in the arithmetic trap set detects a particular type of arithmetic
error, such as division by zero or result overow.

The user-written trap handler, if enabled and armed, receives an interrupt from
the trap when an error is encountered, and control transfers to the user-written
trap handling procedure.

When a user process begins execution, the following hold:

All arithmetic traps, except the IEEE oating-point exceptions, are enabled
automatically.

The software trap handler is disarmed. This allows any arithmetic error to
abort the process (unless a TRY/RECOVER block assumes control).

Through intrinsic calls, however, you can alter the ability of the arithmetic
traps to occur, and that of the software trap handler to be invoked from any
particular arithmetic trap. Only enabled traps can invoke a user-written trap
handling procedure.

There are three MPE XL intrinsics used in dealing with arithmetic traps:

ARITRAP

HPENBLTRAP (NM only)

XARITRAP

The ARITRAP intrinsic collectively enables or disables arithmetic traps (except
IEEE Floating Point and Inexact Result).

MPE XL Arithmetic Traps 2-1

The HPENBLTRAP intrinsic lets you selectively enable or disable speci�c
arithmetic traps. This intrinsic provides you with more exibility than the
ARITRAP intrinsic.

The XARITRAP intrinsic arms or disarms the user-written arithmetic trap
handling procedure and enables/disables whatever traps that procedure
accommodates. For some or all arithmetic traps, you can then replace the
MPE XL software arithmetic trap handler with your own trap handling
routine.

Note ARITRAP is provided for compatibility with MPE V/E systems.
HPENBLTRAP is provided on MPE XL to make available the full
power of MPE XL trap handling.

The interrupts listed below are the arithmetic traps that the ARITRAP,
HPENBLTRAP, and XARITRAP intrinsics let you enable/disable and arm/disarm:

Integer Overow
3000 Mode Double Precision Divide By Zero
3000 Mode Floating Point Overow
Decimal Overow
3000 Mode Floating Point Underow
Invalid ASCII Digit
Integer Divide By Zero
Invalid Decimal Digit
3000 Mode Floating Point Divide By Zero
3000 Mode Double Precision Overow
3000 Mode Double Precision Underow
Decimal Divide By Zero
IEEE Floating Point Divide By Zero
IEEE Floating Point, Inexact Result
IEEE Floating Point Underow
IEEE Floating Point Overow
IEEE Floating Point, Invalid Operation
Range Errors
Software-detected NIL Pointer Reference
Software-detected Result of Pointer Arithmetic Misaligned or Error in
Conversion From Long Pointer to Short Pointer
Unimplemented Condition Traps

2-2 MPE XL Arithmetic Traps

Paragraph Stack Overow

Discussions of the intrinsics follow.

ARITRAP

Collectively enables or disables arithmetic traps.

Note When arithmetic traps are ignored (disabled) on MPE XL, the
results are not guaranteed to be identical to those on MPE
V/E. On MPE XL, a better way to disable arithmetic traps is
to use compiler directives, for example, $ovflcheck off$ in HP
Pascal/XL.

When compiler directives are used, the compiler generates
arithmetic instructions that do not trap on overow. This
is a more natural way of ignoring arithmetic traps. When
arithmetic traps are ignored using ARITRAP, the trap actually
takes place, but the MPE XL trap subsystem recovers from the
trap and takes the action required to continue execution.

Syntax

The ARITRAP intrinsic is called as follows:

ARITRAP(trapstate);

Parameters

trapstate 32-bit signed integer by value (required)

A value enabling or disabling arithmetic traps.

Enter 0 if you want to disable arithmetic traps or 1 if you want to
enable all traps except the IEEE inexact result trap.

MPE XL Arithmetic Traps 2-3

Note By default, all traps except IEEE oating-point exceptions are
enabled, and no trap is armed. Many oating-point operations
result in an inexact result. Consequently, most compiler
libraries doing oating-point operations will result in an inexact
trap if the IEEE Inexact Result trap is enabled. Therefore,
you should enable the IEEE Inexact Result trap (using the
HPENBLTRAP intrinsic) only if absolutely necessary.

Condition Codes

CCE Request granted. The arithmetic traps were originally disabled.

CCG Request granted. The arithmetic traps were originally enabled.

CCL Not returned by this intrinsic.

HPENBLTRAP

Selectively enables or disables arithmetic traps.

Note By default, all traps except IEEE oating-point exceptions are
enabled, and no trap is armed. Many oating-point operations
result in an inexact result. Consequently, most compiler
libraries doing oating-point operations will result in an inexact
trap if the IEEE Inexact Result trap is enabled. Therefore, you
should enable the IEEE Inexact Result trap only if absolutely
necessary.

Syntax

The HPENBLTRAP intrinsic is called as follows:

HPENBLTRAP(mask,oldmask);

2-4 MPE XL Arithmetic Traps

Parameters

mask 32-bit signed integer by value (required)

A value determining which arithmetic traps are enabled and
which are not.

If a bit is on (=1), the corresponding trap is enabled. If a bit is
o� (=0), the corresponding trap is disabled. The bit and their
associated arithmetic errors are as follows:

Bit Trap Condition

(31:1) 3000 Mode Floating Point Divide By Zero.

(30:1) Integer Divide By Zero.

(29:1) 3000 Mode Floating Point Underow.

(28:1) 3000 Mode Floating Point Overow.

(27:1) Integer Overow.

(26:1) 3000 Mode Double Precision Overow.

(25:1) 3000 Mode Double Precision Underow.

(24:1) 3000 Mode Double Precision Divide By Zero.

(23:1) Decimal Overow.

(22:1) Invalid ASCII Digit.

(21:1) Invalid Decimal Digit.

(19:2) Reserved for future use. You should set these
to 0.

(18:1) Decimal Divide By Zero.

(17:1) IEEE Floating Point, Inexact Result.

(16:1) IEEE Floating Point Underow.

(15:1) IEEE Floating Point Overow.

(14:1) IEEE Floating Point Divide By Zero.

(13:1) IEEE Floating Point, Invalid Operation.

MPE XL Arithmetic Traps 2-5

(12:1) Range Errors.

(11:1) Software-detected NIL Pointer Reference.

(10:1) Software-detected Misaligned Result Of Pointer
Arithmetic or Error In Conversion From Long
Pointer To Short Pointer.

(9:1) Unimplemented Condition Traps.

(8:1) Paragraph Stack Overow.

(0:8) Reserved. You should set these to 0.

Note The following apply to the preceding trap conditions
represented in the mask:

1. Native Mode supports two oating-point formats: IEEE and
3000 Mode. Both execute in Native Mode, but 3000 Mode
performs HP 3000 type manipulations. Since it is possible
to use both formats during program execution, there are
separate bits in the mask for enabling/disabling traps of
these formats.

2. Some of the error conditions speci�ed here are not strictly
arithmetic traps (for example, range errors, nil pointers,
and paragraph stack overow). However, they and many
arithmetic traps are caught by reserved instructions
that raise the conditional traps. For this reason, all are
enabled/disabled by HPENBLTRAP.

3. Some of the instructions that raise conditional traps are
reserved to indicate some of the above trap conditions. A
nonreserved instruction is one not generated by a compiler.
If a nonreserved instruction causes a conditional trap, this
is reported as an Unimplemented Condition Trap. Only
assembly language programmers can generate such a trap.

oldmask 32-bit signed integer by reference (required)

Returns the value of the previous mask to your program.

2-6 MPE XL Arithmetic Traps

Condition Codes

CCE Request granted. All traps were originally disabled.

CCG Request granted. At least one trap was originally enabled.

CCL Not returned by this intrinsic.

XARITRAP

Arms or disarms the user-written arithmetic trap handling procedure.
Although you can arm the trap for any desired combination of events, at any
given time there is only one user-written trap handler for all armed traps.

Note By default, all traps except IEEE oating-point exceptions are
enabled, and no trap is armed. Many oating-point operations
result in an inexact result. Consequently, most compiler
libraries doing oating-point operations will result in an inexact
trap if the IEEE Inexact Result trap is enabled. Therefore, you
should enable the IEEE Inexact Result trap only if absolutely
necessary.

Syntax

The XARITRAP intrinsic is called as follows:

XARITRAP(mask,plabel,oldmask,oldplabel);

Parameters

mask 32-bit signed integer by value (required)

A value determining which trap conditions, if enabled, invoke
the user-written software trap handler, and which do not.

If a bit is on (=1), the corresponding trap condition becomes
armed. If a bit is o� (=0), the corresponding trap condition is

MPE XL Arithmetic Traps 2-7

disarmed. The bits and their associated arithmetic errors are
as follows:

Bit Trap Condition

(31:1) 3000 Mode Floating Point Divide By Zero.

(30:1) Integer Divide By Zero.

(29:1) 3000 Mode Floating Point Underow.

(28:1) 3000 Mode Floating Point Overow.

(27:1) Integer Overow.

(26:1) 3000 Mode Double Precision Overow.

(25:1) 3000 Mode Double Precision Underow.

(24:1) 3000 Mode Double Precision Divide By Zero.

(23:1) Decimal Overow.

(22:1) Invalid ASCII Digit.

(21:1) Invalid Decimal Digit.

(19:2) Reserved for future use. You should set these
to 0.

(18:1) Decimal Divide By Zero.

(17:1) IEEE Floating Point, Inexact Result.

(16:1) IEEE Floating Point Underow.

(15:1) IEEE Floating Point Overow.

(14:1) IEEE Floating Point Divide By Zero.

(13:1) IEEE Floating Point, Invalid Operation.

(12:1) Range Errors.

(11:1) Software-detected NIL Pointer Reference.

(10:1) Software-detected Misaligned Result Of Pointer
Arithmetic or Error In Conversion From Long
Pointer To Short Pointer.

2-8 MPE XL Arithmetic Traps

(9:1) Unimplemented Condition Traps.

(8:1) Paragraph Stack Overow.

(0:8) Reserved. You should set these to 0.

Note The following apply to the preceding trap conditions
represented in the mask:

1. Native Mode supports two oating-point formats: IEEE and
3000 Mode. Both execute in Native Mode, but 3000 Mode
performs HP 3000 type manipulations. Since it is possible
to use both formats during program execution, there are
separate bits in the mask for enabling/disabling traps of
these formats.

2. Some of the error conditions speci�ed here are not strictly
arithmetic traps (for example, range errors, nil pointers,
and paragraph stack overow). However, they and many
arithmetic traps are caught by reserved instructions
that raise the conditional traps. For this reason, all are
enabled/disabled by HPENBLTRAP.

3. Some of the instructions that raise conditional traps are
reserved to indicate some of the above trap conditions. A
nonreserved instruction is one not generated by a compiler.
If a nonreserved instruction causes a conditional trap, this
is reported as an Unimplemented Condition Trap. Only
assembly language programmers can generate such a trap.

plabel 32-bit signed integer by value (required)

The address of your trap handling procedure. If the value is 0,
the user-written arithmetic trap handler is disarmed.

oldmask 32-bit signed integer by reference (required)

Returns the value of the previous mask to your program.

oldplabel 32-bit signed integer by reference (required)

MPE XL Arithmetic Traps 2-9

Returns the plabel of your process' previous arithmetic trap
handler. If no plabel was previously con�gured, oldplabel
returns 0 (indicating the MPE XL trap subsystem was in
e�ect).

Condition Codes

CCE Request granted. The desired traps are now armed.

CCG Request granted. All traps are now disarmed.

CCL Not returned by this intrinsic.

Caution CCL is de�ned di�erently on MPE V/E systems.

Handling Arithmetic Traps

When you invoke a user-written trap handling procedure, it is passed a pointer
to a record that contains some useful information. This record has di�erent
�elds depending upon the trap condition. The following �elds are supplied for
all trap conditions:

instruction 32-bit integer

The o�ending instruction.

offset 32-bit integer

O�set of the o�ending instruction.

space_id 32-bit integer

Space ID of the o�ending instruction.

error_code 32-bit integer

Trap type. The error-code is forward by setting the bit
corresponding to the trap condition in a 32-bit integer. These

2-10 MPE XL Arithmetic Traps

bits are described in the discussion of the mask parameter of
the XARITRAP intrinsic.

Note If two exceptions occur simultaneously, the error-code is the
inclusive-OR of the error-code for each exception. The only
exceptions that coincide are IEEE inexact with IEEE overow,
and IEEE inexact with IEEE underow.

The following paragraphs describe the contents of this record structure for the
various arithmetic trap conditions.

Integer Divide by Zero

The record structure for a trap condition resulting from an integer divide by
zero is as follows:

0 |--------------------------------|

| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

|--------------------------------|

Corrective action for this trap condition is not supported. You can allow
execution to resume, but the result will be unpredictable.

Note If the trap is ignored, or if you continue execution from the
trap handler, then the result of the illegal division is zeroed.

MPE XL Arithmetic Traps 2-11

Range Errors

The record structure for a trap condition resulting from a range error is as
follows:

0 |--------------------------------|
| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

|--------------------------------|

Corrective action for this trap condition is not supported. You can allow
execution to resume, but the result will be unpredictable.

Nil Pointer Reference

The record structure for a trap condition resulting from a nil pointer reference
is as follows:

0 |--------------------------------|

| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

|--------------------------------|

Corrective action for this trap condition is not supported. You can allow
execution to resume, but the result will be unpredictable.

2-12 MPE XL Arithmetic Traps

Pointer Arithmetic Errors

The record structure for a trap condition resulting from a pointer arithmetic
error is as follows:

0 |--------------------------------|
| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

|--------------------------------|

Corrective action for this trap condition is not supported. You can allow
execution to resume, but the result will be unpredictable.

Paragraph Stack Overflow

The record structure for a trap condition resulting from a paragraph stack
overow is as follows:

0 |--------------------------------|

| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

|--------------------------------|

Corrective action for this trap condition is not supported. You can allow
execution to resume, but the result will be unpredictable.

MPE XL Arithmetic Traps 2-13

Integer Overflow

The record structure for a trap condition resulting from an integer overow is
as follows:

0 |--------------------------------|
| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

16 |--------------------------------|

| subcode |

|--------------------------------|

The subcode �eld is a 32-bit integer that tells what type of integer overow
has occurred. The following table summarizes the possible values for this �eld
and their associated overow types:

Value Type of Overow

1 32-bit overow

2 16-bit overow

4 Overow on conversion from a 3000 Mode oating-point
number

5 Overow on conversion from an IEEE oating-point number

Corrective action for this trap condition is not supported. You can allow
execution to resume, but the result will be unpredictable.

Decimal Overflow

The record structure for a trap condition resulting from a decimal overow is
as follows:

0 |--------------------------------|

| instruction |

4 |--------------------------------|

2-14 MPE XL Arithmetic Traps

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

16 |--------------------------------|

| subcode |

|--------------------------------|

The subcode �eld is a 32-bit integer that tells what type of decimal overow
has occurred. The following table summarizes the possible values for this �eld
and their associated overow types:

Value Type of Overow

1 Decimal arithmetic operation resulted in overow

2 Conversion from integer to ASCII resulted in overow

Corrective action for this trap condition is not supported. You can allow
execution to resume, but the result will be unpredictable.

Invalid ASCII Digit

The record structure for a trap condition resulting from an invalid ASCII digit
is as follows:

0 |--------------------------------|

| instruction |
4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

16 |--------------------------------|

| subcode |

20 |--------------------------------|

| source_address |

24 |--------------------------------|

| digit_count |

MPE XL Arithmetic Traps 2-15

|--------------------------------|

The subcode �eld can assume the following values with the associated
meanings:

0 There is an illegal digit and/or sign.

1 The number is not signed.

2 The input number on an unsigned-to-unsigned operation is
signed.

3 The input number on an unsigned-to-signed operation is
signed.

The source_address and digit_count record �leds supply the following
information:

Address of the �rst digit (32-bit address).

Digit count (32-bit integer) is the number of bytes.

With this information, you can correct the invalid digits, and then allow
execution to proceed. Validation of the data occurs before the actual operation
begins. This lets you correct invalid data and continue from the beginning of
the actual operation.

Invalid Decimal Digit

The record structure for a trap condition resulting from an invalid decimal
digit is as follows:

0 |--------------------------------|

| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

16 |--------------------------------|

| subcode |

20 |--------------------------------|

2-16 MPE XL Arithmetic Traps

| source_address |

24 |--------------------------------|

| digit_count |

|--------------------------------|

The subcode �eld can assume the following values with the associated
meanings:

0 There is an illegal digit and/or sign.

1 The number is not signed.

2 The input number on an unsigned-to-unsigned operation is
signed.

3 The input number on an unsigned-to-signed operation is
signed.

The source_address and digit_count record �elds supply the following
information:

Address of the �rst digit (32-bit address).

Digit count (32-bit integer) is the number of decimal digits, including the
sign bit.

With this information, you can correct the invalid digits, and then allow
execution to proceed. Validation of the data occurs before the actual operation
begins. This allows you to correct invalid data and continue from the beginning
of the actual operation. For complete information on decimal format, refer to
Data Types Conversion Programmer's Guide (32650-90015).

Decimal Divide by Zero

The record structure for a trap condition resulting from a decimal divide by
zero is as follows:

0 |--------------------------------|

| instruction |
4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

MPE XL Arithmetic Traps 2-17

12 |--------------------------------|

| error_code |

16 |--------------------------------|

| result address |

20 |--------------------------------|

| digit count |

|--------------------------------|

The result_address and digit_count record �elds supply the following
information:

Address of the result (32-bit address)

Number of digits in the result (32-bit integer)

With this information, you can assign the desired value to the result, and allow
execution to resume with the operation following the division.

IEEE Floating Point Traps

The IEEE oating-point traps include the following conditions:

IEEE Floating Point Divide By Zero

IEEE Floating Point, Inexact Result

IEEE Floating Point Underow

IEEE Floating Point Overow

IEEE Floating Point, Invalid Operation

The record structure for an IEEE oating-point trap condition is as follows:

0 |--------------------------------|

| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

16 |--------------------------------|

| status |

2-18 MPE XL Arithmetic Traps

20 |--------------------------------|

| operation |

24 |--------------------------------|

| format |

28 |--------------------------------|

| source_op1_ptr |

32 |--------------------------------|

| source_op2_ptr |

36 |--------------------------------|

| result_ptr |

|--------------------------------|

The following table explains the information supplied in the additional record
�elds associated with IEEE traps:

status 32-bit integer

Value of the status register of the IEEE corprocessor. You
can assign a new value to this �eld if you want to change the
contents of the status register. The most common use of this
�eld is to change the rounding mode.

operation 32-bit integer

Indicates which oating-point operation caused the trap. The
values of this �eld are associated with IEEE oating-point
operations as follows:

Hex Value Operation

18 ADD

19 SUB

1A MPY

1B DIV

1C REM

04 SQRT

03 ABS

05 RND

08 CNVFF

0A CNVFX

MPE XL Arithmetic Traps 2-19

09 CNVXF

10 CMP

Note The value of the operation record �eld is formed by extracting
the OP and CLASS �elds from the instruction that caused the
trap. The instruction appears as follows:

0 26 27 28 29 31

|---------------------------|------|------|

| all zeros |Class | OP |

|---------------------------|------|------|

format 32-bit integer

Indicates whether the operation that caused the trap had
32-bit, 64-bit, or 128-bit operands.

If the operation is not a CONVERT, then the following are the
values of the format �eld:

Value Format

0 32-bit

1 64-bit

3 128-bit

If the operation is a CONVERT, then these are the values of the
format �eld:

Value Format

1 The source is 64-bit;

the result is 32-bit.

3 The source is 128-bit;

the result is 32-bit.

4 The source is 32-bit;

the result is 64-bit.

7 The source is 128-bit;

2-20 MPE XL Arithmetic Traps

the result is 64-bit.

12 The source is 32-bit;

the result is 128-bit.

13 The source is 64-bit;

the result is 128-bit.

source_op1_ptr32-bit address

Address of the �rst operand. This operand can be a 32-bit,
64-bit, or 128-bit oating-point number depending upon the
operation and format. The address is properly aligned, with
32-bit items on a word boundary, and 64-bit and larger items
on a double-word boundary.

source_op2_ptr32-bit address

Address of the second operand. This operand can be a 32-bit,
64-bit, or 128-bit oating-point number depending upon the
operation and format. For operations that require only one
operand, this �eld must be ignored.

result_ptr 32-bit address

Points to the result of the operation that resulted in the
exception condition. This address can point to a 32-bit, 64-bit,
or 128-bit result depending upon the operation and format.
You can examine the result and replace it with the desired
value.

Note 128-bit oating-point numbers are not yet implemented.

3000 Mode Traps

The 3000 Mode traps include the following conditions:

3000 Mode Double Precision Divide By Zero

3000 Mode Double Precision Overow

3000 Mode Double Precision Underow

MPE XL Arithmetic Traps 2-21

3000 Mode Floating Point Divide By Zero

3000 Mode Floating Point Overow

3000 Mode Floating Point Underow

The record structure for a 3000 Mode trap condition is as follows:

0 |--------------------------------|

| instruction |

4 |--------------------------------|

| offset |

8 |--------------------------------|

| space_id |

12 |--------------------------------|

| error_code |

16 |--------------------------------|

| result_ptr |

|--------------------------------|

The result_ptr record �eld is a 32-bit address that points to the result of the
oating-point operation. You can examine the result and replace it with the
desired value. The address points to a 64-bit value or a 32-bit value depending
upon the type of trap (double-precision or oating-point).

Note An NM arithmetic trap handling routine di�ers from a
CM arithmetic trap handler in its calling sequence [refer
to the Introduction to MPE XL for MPE V Programmers

(30367-90005)] and the method by which the trap routine
obtains error information. However, you need supply only the
version for the mode in which you invoke intrinsics.

You do not need to modify existing CM applications that
use an arithmetic trap handler in order to run them on MPE
XL. Likewise, new NM applications need not specify a CM
version of their NM trap handling routine. Only those doing
mixed-mode programming, who invoke intrinsics in both
modes, need to specify and arm trap handling routines in both
modes in order to capture all possible arithmetic traps.

2-22 MPE XL Arithmetic Traps

Caution A user-de�ned trap handling procedure cannot perform a
goto out of that procedure. The state of the process and the
program results are not predictable after a non-local goto.
Performing an ESCAPE (HP Pascal/XL) or completing the
trap handling procedure are the only valid ways to return.

Examples

To use the ARITRAP, HPENBLTRAP, and XARITRAP intrinsics to enable/disable
or arm/disarm the user-written arithmetic trap handler, you must do the
following:

Declare the intrinsics in your source, using whatever conventions are
appropriate to your language.

Declare the trap handling procedure, using the appropriate formal
parameters.

Note Since you can provide only one plabel to the XARITRAP
intrinsic, your arithmetic trap handling procedure must handle
all types of armed traps associated with that particular
intrinsic.

Example 2-1 is an HP Pascal/XL code excerpt that illustrates how you can
handle the IEEE Floating Point Divide By Zero trap condition.

When the program containing this excerpt is executed, it results in a IEEE
Divide By Zero exception, and the user-written trap handling routine is
invoked. The trap handler replaces the result of the division with the desired
value. The output of this program is the value of maxlongreal.

Example 2-1 Arithmetic Trap Handler

(* Declaring record to receive trap information *)

(* returned by trap mechanism on a trap condition *)

PROGRAM XAMPL21(output);

MPE XL Arithmetic Traps 2-23

TYPE

real_ptr = ^real;

long_ptr = ^longreal;

user_info_rec = record

instruction : integer;

offset : integer;

space_id : integer;

error_code : integer;

status : integer;

operation : integer;

format : integer;

source1_ptr : localanyptr;

source2_ptr : localanyptr;

result_ptr : localanyptr;

end; (* record *)

user_info_ptr = ^user_info_rec;

(* Constants for the trap procedure *)

CONST

(* mask for trapping all ieee exceptions *)
ieee_mask = hex('0007C000');

(* error code for divide by zero *)

fdiv_zero = hex('00020000');

(* maximum longreal value *)

maxlongreal = 1.8E308;

(* maximum real value *)

maxreal = 1.8E308;

VAR

L1, L2, L3 : longreal;

oldmask : integer;

oldplabel : integer;

2-24 MPE XL Arithmetic Traps

PROCEDURE ARITRAP; intrinsic;

PROCEDURE XARITRAP; intrinsic;

Example 2-1 Arithmetic Trap Handler, continued

(* Trap handling routine *)

PROCEDURE Trap_Handler(user_info : user_info_ptr);

VAR

long_res_ptr : long_ptr;

real_res_ptr : real_ptr;

BEGIN

(* Handle only divide by zero; ignore all others *)

With user_info^ do

if (error_code = fdiv_zero) then

BEGIN

(* Change the value of the result *)

if (format = 0) then

BEGIN

real_res_ptr := result_ptr;

real_res_ptr^ := maxreal;

END

else if (format = 1) then

BEGIN

long_res_ptr := result_ptr;

long_res_ptr^ := maxlongreal;

END;

END;

END;

(* Main program *)

MPE XL Arithmetic Traps 2-25

BEGIN

ARITRAP(1); (* enable all traps *)

XARITRAP(ieee_mask, baddress(Trap_Handler),

oldmask, oldplabel);

(* arm all ieee traps *)

L1 := 233.0;

L2 := 0.0;

L3 := L1/L2; (* ieee divide by zero *)

(* The following statement is executed upon return from *)

(* the trap handler; the value of L3 is maxlongreal *)

writeln(L3);

END.

(* end example 2-1 *)

2-26 MPE XL Arithmetic Traps

3

MPE XL Code-related Traps

Code-related traps result from illegal or erroneous coding. The following are
the kinds of traps that can result:

Data memory protection trap (caused by nil pointer referencing, illegal
alignment, or accessing a data area with improper access rights)

Illegal instruction trap

Instruction memory protection trap

Break instruction trap

Privileged operation trap

Privileged register trap

Invalid data pointer (caused when an illegal data virtual address is speci�ed)

Invalid code pointer (caused when the target of a branch is not a valid
virtual address)

Code-related traps are permanently enabled.

Whenever a code-related trap condition occurs, the MPE XL trap subsystem
takes one of the following actions:

1. If you have executed an HP Pascal XL TRY statement, control is passed to
the RECOVER block by doing an ESCAPE. However, if a trap is caused
because the program is branching to an invalid address, then no ESCAPE is
executed, and the program aborts with an error message.

2. If you have not executed an HP Pascal XL TRY statement, an error
message is output and the process aborts.

MPE XL Code-related Traps 3-1

4

MPE XL CONTROL-Y Traps

If you are running a program in an interactive session, you can arm a special
trap that transfers control in the program to a trap handling procedure
whenever a subsystem break signal is entered from the session terminal. On
most terminals, you transmit the subsystem break signal by pressing the �CTRL�
Y key. To do this, press the �Y� key while holding down the �CTRL� key. For this
reason, subsystem break traps are commonly called CONTROL-Y traps.

Note You can change the key that causes such a subsystem break.
Refer to the discussion of controlcode 25 of the FCONTROL
intrinsic in the MPE XL Intrinsics Reference Manual

(32650-90028).

There are two MPE XL intrinsics that are used in handling CONTROL-Y
traps:

XCONTRAP

RESETCONTROL

The XCONTRAP intrinsic arms or disamrs the user-written CONTROL-Y trap
handling procedure. When a process is initiated, it has no CONTROL-Y trap
handler. Only one process in a session can receive a CONTROL-Y trap at
any one time. The process that called XCONTRAP most recently receives the
next CONTROL-Y trap. Once a process has received a CONTROL-Y trap, it
cannot receive another until it calls the RESETCONTROL intrinsic. Only processes
running in a session can arm CONTROL-Y traps. The trap handler can be any
procedure in the program or in the libraries to which the program is bound.
The CONTROL-Y trap handler has no parameters.

The RESETCONTROL intrinsic resets the CONTROL-Y trap for a process so the
process can accept another subsystem break signal. The process must have

MPE XL CONTROL-Y Traps 4-1

previously armed a CONTROL-Y trap handler with the XCONTRAP intrinsic.
After your CONTROL-Y trap handler has been invoked, you should call
RESETCONTROL when you are ready to receive another subsystem break signal.
RESETCONTROL can be called from within the CONTROL-Y trap handler, or
from any other procedure.

Note Once your process has received a subsystem break signal, only
a call to RESETCONTROL allows it to receive another such signal.
Calling XCONTRAP again does not have this e�ect.

Discussions of these intrinsics follow.

XCONTRAP

Arms or disarms the user-written CONTROL-Y trap handling procedure.

Syntax

The XCONTRAP intrinsic is called as follows:

XCONTRAP(plabel,oldplabel);

Parameters

plabel 32-bit signed integer passed by value (required)

The plabel of your CONTROL-Y trap handling procedure.
This plabel can be either an NM or a CM plabel. If this value
is 0, XCONTRAP disarms CONTROL-Y traps for this process.

How you obtain the external plabel of your NM trap handling
procedure depends on your programming language. In HP
Pascal/XL, for example, you can obtain the plabel by using the
waddress function. Supply the name of your CONTROL-Y
trap handler as an argument to waddress.

To pass a CM plabel, set it up as follows:

4-2 MPE XL CONTROL-Y Traps

1. Obtain the 16-bit external CM plabel of your CM
CONTROL-Y trap handler. One way to do this is by using
the LOADPROC intrinsic.

2. Pass this 16-bit plabel in the following 32-bit format:

Bits Setting

(0:16) 16-bit external CM plabel.

(16:13) Reserved. Set to zero.

(29:1) Set to 1.

(30:1) Set to 0.

(31:1) Set to 1.

oldplabel 32-bit signed integer passed by reference (required)

Returns the plabel of your process' previous CONTROL-Y
trap handler. This plabel can be either a CM or NM plabel,
as described above. If no plabel was previously con�gured,
oldplabel returns 0.

Condition Codes

CCE Request granted. Trap armed.

CCG Request granted. Trap disarmed.

CCL Request denied because of an illegal plabel, or because
XCONTRAP was called from a job.

MPE XL CONTROL-Y Traps 4-3

RESET CONTROL

Allows a process to accept another CONTROL-Y signal.

Syntax

The RESETCONTROL intrinsic is called as follows:

RESETCONTROL;

Parameters

None.

Condition Codes

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because the trap procedure was not invoked.

Handling CONTROL-Y Traps

When more than one process is currently running within your process tree
structure, the CONTROL-Y signal interrupts the last process to arm the trap.

When a process is interrupted by a CONTROL-Y signal, the following occur:

1. The input/output transactions pending between the process and the
terminal are completed and agged as though all were completed
successfully.

2. Control is transferred to the trap procedure. This procedure executes at the
same execution level (either privileged or nonprivileged) as the interrupted
user program.

3. Control returns from the trap procedure to the interrupted program or
procedure.

4-4 MPE XL CONTROL-Y Traps

a. If the interrupted program or procedure was waiting for completion
of input/output (reading from or writing to the terminal) when the
CONTROL-Y signal was received, the program continues execution
immediately after the FREAD or FWRITE call. These intrinsics will indicate
successful completion.

b. If the CONTROL-Y signal was received during reading, the number of
characters typed in before this signal is returned to you as the value of
FREAD. The \carriage" position is unchanged.

If you send another CONTROL-Y signal, it is ignored unless you issued a call
to the RESETCONTROL intrinsic at some point prior to the signal.

CONTROL-Y trap handlers di�er from other trap handlers in that a process
cannot arm a CM and an NM trap handler simultaneously. If the last call
to XCONTRAP armed an NM trap handler, then the next CONTROL-Y trap
invokes this procedure. If the program was running in CM at the time the
CONTROL-Y trap occurred, the system actually switches to NM to enter the
trap handler. The converse is also true.

When called in NM, XCONTRAP can arm either a CM or an NM trap handler.
The old plabel returned can be either CM or NM also.

When called in CM, XCONTRAP can accept only CM plabels and returns only
CM plabels. If XCONTRAP is called to con�gure a CM trap handler and the
process' previous CONTROL-Y trap handler was an NM procedure, XCONTRAP
returns 0 as the oldplabel value. This occurs because NM plabels are 32-bits,
while a call to XCONTRAP in CM can return only a 16-bit plabel value.

To use the XCONTRAP and RESETCONTROL intrinsics to enable/disable and
arm/disarm user-written CONTROL-Y trap handler, you must do the
following:

Declare the intrinsics in your source, using whatever conventions are
appropriate to your language.

Declare the trap handling procedure, with no parameters and no functional
return.

Caution A user-de�ned trap handling procedure cannot perform a
goto out of that procedure. The state of the process and the
program results are not predictable after a non-local goto.

MPE XL CONTROL-Y Traps 4-5

Performing an ESCAPE (HP Pascal/XL) or completing the
trap handling procedure are the only valid ways to return.

4-6 MPE XL CONTROL-Y Traps

5

MPE XL Software Library Traps

The software library trap reacts to errors that occur during execution of
procedures from the compiler libraries. You can arm or disarm the user-written
software library trap handing procedure by calling the XLIBTRAP intrinsic.

When a program begins execution, the user-written subsequently library trap
hander is disarmed automatically. If armed by the XLIBTRAP intrinsic, and
subsequently activated by an error, the user-written software library trap
handler executes.

This trap handler, in turn, returns to your program four words containing the
stack marker created when the library procedure was called by your program.
In addition, the trap handling procedure returns an integer representing the
error number. Although you de�ne the trap handling procedure, it must
conform to the special format discussed in the HP 3000 Compiler Library

Reference (30000-90028).

Note Upon exiting most trap handling procedures, control returns
to the instruction following the one that activated the trap. In
the case of the library trap, however, you can specify that the
process be aborted when control exists from the trap handling
procedure.

A discussion of the XLIBTRAP intrinsic follows.

MPE XL Software Library Traps 5-1

XLIBTRAP

Arms or disarms the user-written software library trap handling procedure.

Syntax

The XLIBTRAP intrinsic is called as follows:

XLIBTRAP(plabel,oldplabel);

Parameters

plabel 32-bit signed integer passed by value (required)

The address of your trap handling procedure. If the value of
plabel is 0, the trap handler is disarmed.

oldplabel 32-bit signed integer passed by reference (required)

Returns the plabel of your process' previous software library
trap handler. If no plabel was previously con�gured, oldplabel
returns 0.

Condition Codes

CCE Request granted. Trap armed.

CCG Request granted. Trap disarmed.

CCL Request denied because of an illegal plabel.

5-2 MPE XL Software Library Traps

Handling Software Library Traps

The subsequent paragraphs discuss issues relevant to the task of handling
software library traps, as follows:

Parameters of the library trap handler

Escape from the library trap handler

Failing to arm the library trap handler

Calling the XLIBTRAP intrinsic

Parameters

The user-written software library trap handler has the following three
parameters:

Information-pointer

Error-code

Abort ag

Information-pointer

The information-pointer parameter is a pointer to a record that contains
information about the procedure that invoked the library routine. This
record can contain additional information speci�c to a particular library and
error condition. for example, the HP Pascal/XL run-time library passes this
information. The HP FORTRAN 77/XL library, on the other hand, passes
the address of the result value, which you can change. For more information
on their relevance of this record in your programming language, refer to the
appropriate language reference manual.

On MPE V/E-based systems, the parameter USERSTACK is passed to the library
trap handler. USERSTACK is a pointer to the base of the stack marker that is
placed on the stack when your program called the compiler library. On MPE
XL-based systems, the information-pointer parameter is the functional
equivalent of USERSTACK. You de�ne the record pointed to by this parameter as
follows:

0 31

MPE XL Software Library Traps 5-3

|-----------------------------------|

| SPACE ID of procedure |

|-----------------------------------|

| OFFSET of procedure |

|-----------------------------------|

| SP (stack pointer) of procedure |

|-----------------------------------|

| DP (data pointer) of procedure |

|-----------------------------------|

These �elds describe the environment of the procedure that called the library
routine.

For more information on the information-pointer record, refer to the
appropriate language reference manual.

Error-code

The error-code parameter is a number indicating the type of compiler library
error. This parameter is a 32-bit integer by reference that has the following
format:

0 15 16 31

|------------------+------------------|

| error number | subsystem number |
|------------------+------------------|

For a complete listing of the error number values, refer to Appendix A. The
subsystem number depends on your programming language.

Abort-flag

Your library trap handler returns a value in the abort-flag parameter, a
32-bit integer by reference.

0 31

|-----------------------------------|

| Abort Flag |

|-----------------------------------|

If abort-flag is set to 1 before the library trap handler completes
execution,the compiler liberary aborts your program with the standard

5-4 MPE XL Software Library Traps

error message (just as if no trap handling procedure had been executed). If
abort-flag is set to 0, the compiler library does not abort your program, and
no error message is printed. Processing continues with the result as modi�ed
by your trap handling procedure.

Escaping the Library Trap Handler

The library trap handler can execute an ESCAPE if you have previously
executed an HP Pascal/XL TRY statement. Execution resumes with your
RECOVER block. An ESCAPE from the library trap handler is possible,
because all frames on the stack conform to the stack-unwinding conventions.

Unarmed Library Trap

If you do not arm the library trap handler, the compiler library takes a default
action. This default action may be di�erent for di�erent languages. For
example, the default action for an HP Pascal/XL library is to do an ESCAPE.

Calling XLIBTRAP

The following is an HP Pascal/XL example of how you can arm a library trap
handler. Let My_Library_Trap_Handler be the name of the user-written
library trap handler. It is declared as follows:

Procedure My_Library_Trap_Handler

(VAR information_rec : Pstmrk;

VAR errorcode : integer;

VAR abortflag : integer);

To arm the library trap handler, call the XLIBTRAP intrinsic as follows:

XLIBTRAP (baddress (My_Library_Trap_Handler),

old_handler);

Note An NM library trap handling routine di�ers from a CM library
trap handler in its calling sequence [refer to the Introduction
to MPE XL for MPE V Programmers (30367-90005)] and the
method by which the trap routine obtains error information.
However, you need supply only the version for the mode in
which you invoke intrinsics.

MPE XL Software Library Traps 5-5

You do not need to modify existing CM applications that
use a library trap handler in order to run them on MPE
XL. Likewise, new NM applications need not specify a CM
version of their NM trap handling routine. Only those doing
mixed-mode programming, who invoke intrinsics in both
modes, need to specify and arm trap handling routines in both
modes in order to capture all possible library traps.

Caution A user-de�ned trap handling procedure cannot perform a
goto out of that procedure. The state of the process and the
program results are not predictable after a non-local goto.
Performing an ESCAPE (HP Pascal/XL) or completing the
trap handling procedure are the only valid ways to return.

Examples

To use the XLIBTRAP intrinsic to arm/disarm the user-written library trap
handler, you must do the following:

Declare the intrinsic in your source, using whatever conventions are
appropriate to your language.

Declare the trap handling procedure, using the appropriate formal
parameters.

Example 5-1 is an HP Pascal/XL code excerpt that describes the algorithm for
implementing user handling of library traps:

Example 5-1 Software Library Trap Handler

(* The following is an example of using the XLIBTRAP

intrinsic to catch Pascal library errors. In this

example, the user trap handler ignores the file

close errors and aborts the program for other

library errors. *)

(* Declare the following record as the information

record. *)

5-6 MPE XL Software Library Traps

TYPE

Pstmrk = record

user_SpaceID,

user_Offset,

user_StackPointer,

user_DataPointer : integer;

end; (* record *)

VAR

Paserr_CloseError : integer;

oldplabel : integer;

PROCEDURE XLIBTRAP; intrinsic;

Example 5-1 Software Library Trap Handler, continued

PROCEDURE My_Library_Trap_Handler

(Var info_rec : Pstmrk;

Var errorcode : integer;

Var abortflag : integer);

BEGIN

(* ignore file close errors *)

if (errorcode = Paserr_CloseError) then

BEGIN

writeln ('File close error, continue execution');

abortflag := 0; (* no abort *)

END

else

abortflag := 1; (* abort *)

END; (* My_Library_Trap_Handler *)

BEGIN

(* arming the user-written software library trap handler *)

MPE XL Software Library Traps 5-7

XLIBTRAP(baddress(My_Library_Trap_Handler),

oldplabel);

(* remainder of program *)

END.

5-8 MPE XL Software Library Traps

6

MPE XL Software System Traps

A software system trap is a software-detected error that occurs while system
code (typically a system intrinsic) is executing. These traps result in the
calling process being aborted. You can intercept system traps by supplying
and arming a system trap handling routine. This trap handler can obtain
information about the error and prevent the process from being aborted.

Some intrinsics are designed to abort the calling process when certain errors
are detected. Typical errors are:

Illegal access. You attempt to access an intrinsic for which you do not have
access capability.

Illegal parameters. You pass intrinsic parameters that are not de�ned for
your environment.

Illegal environment. You did not pass a required intrinsic parameter.

Resource violation. The resource you requested is either illegal or outside the
constraints imposed by MPE XL.

The XSYSTRAP intrinsic arms (or subsequently disarms) the user-written system
trap handling procedure.

When a program begins execution, the user-written system trap handler is
disarmed automatically. If armed by the XSYSTRAP intrinsic, and subsequently
activated by an error, the uwer-written system trap handler executes.

A discussion of the XSYSTRAP intrinsic follows.

MPE XL Software System Traps 6-1

XSYSTRAP

Arms or disarms the user-written system trap handling procedure.

Syntax

The XSYSTRAP intrinsic is called as follows:

XSYSTRAP(plabel,oldplabel);

Parameters

plabel 32-bit signed integer passed by value (required)

The address of your trap handling procedure. If the value of
plabel is 0, the software trap handler is disarmed.

oldplabel 32-bit signed integer passed by reference (required)

Returns the plabel of your process' previous software system
trap handler. If no plabel was previously con�gured, oldplabel
returns 0.

Condition Codes

CCE Request granted. Trap armed.

CCG Request granted. Trap disarmed.

CCL Request denied because of an illegal plabel.

6-2 MPE XL Software System Traps

Handling Software System Traps

Information relating to the system trap is passed to the system trap handling
routine through its four parameters:

trapcode 32-bit signed integer passed by value

A constant value that is useful when the same trap handler is
used to handle di�erent types of system traps.

intrinsicnum 32-bit signed integer passed by value

A unique intrinsic identi�er (ID).

See Appendix C for a complete list of intrinsic numbers.

intrinsicerr 32-bit signed integer passed by value

A number that identi�es the error detected by the intrinsic.
If the error is greater than 20, the error is speci�c to a given
intrinsic. Otherwise, the number identi�es a general intrinsic
error.

parmnum 32-bit signed integer passed by value

A number that identi�es the error-causing parameter that
was passed to the intrinsic. If the error is not caused by a
parameter, then zero is passed as the parmnum value.

Note An NM system trap handling routine di�ers from a CM system
trap handler in its calling sequence [refer to the Introduction
to MPE XL for MPE V Programmers (30367-90005)] and the
method by which the trap routine obtains error information.
However, you need supply only the version for the mode in
which you invoke intrinsics.

You do not need to modify existing CM applications that
use a system trap handler in order to run them on MPE
XL. Likewise, new NM applications need not specify a CM
version of their NM trap handling routine. Only those doing
mixed-mode programming, who invoke intrinsics in both
modes, need to specify and arm trap handling routines in both
modes in order to capture all possible system traps.

MPE XL Software System Traps 6-3

Caution A user-de�ned trap handling procedure cannot perform a
goto out of that procedure. The state of the process and the
program results are not predictable after a non-local goto.
Performing an ESCAPE (HP Pascal/XL) or completing the
trap handling procedure are the only valid ways to return.

Examples

To use the XSYSTRAP intrinsic to arm/disarm the user-written system trap
handler, you must do the following:

Declare the intrinsic in your source, using whatever conventions are
appropriate to your language.

Declare the trap handling procedure, using the appropriate formal
parameters.

Note Since you can provide only one plabel to the XSYSTRAP
intrinsic, your software system trap handling procedure must
handle all types of software system traps.

Example 6-1 is an HP Pascal/XL program that illustrates the declaration and
arming of a system trap handler, as well as an erroneous intrinsic call that
would invoke the declared trap handler.

Example 6-1 Software System Trap Handler

Program foo (input,output);

procedure XSYSTRAP; intrinsic;
procedure activate; intrinsic;

procedure quit; intrinsic;

procedure sys_trap_procedure (trap_code : integer;

intrin_num : integer;

intrin_error : integer;

intrin_parm : integer);

6-4 MPE XL Software System Traps

{ This is the trap handling routine that will be invoked }

{ once a system trap occurs. }

begin

writeln (output, 'Now in the trap handling routine.');

writeln (output);

writeln (output, 'Trap code = ', trap_code);

writeln (output, 'Intrinsic number = ', intrin_num);

writeln (output, 'Error = ', intrin_error);

writeln (output, 'Parameter = ', intrin_parm);

end; {sys_trap_procedure}

procedure arm_systrap_routine;

{ This routine calls XSYSTRAP with the plabel of the }

{ preceding system trap handling routine. }

var

plabel : integer;

oldplabel : integer;

begin

plabel := waddress (sys_trap_procedure);

XSYSTRAP (plabel, oldplabel); { pass the offset }

end; { arm_systrap_procedure }

Example 6-1 Software System Trap Handler, continued

begin

{ This is the program's outer block. First set up }

{ sys_trap_procedure to be the system trap handling }

{ routine. Then attempt to activate the CI process, }

{ which should result in a system trap. }

MPE XL Software System Traps 6-5

{ When sys_trap_procedure exits, control should }

{ return to the statement following the call to the }

{ ACTIVATE intrinsic, which is a writeln statement. }

arm_systrap_routine;

activate (0,0); {invalid ACTIVATE call }

writeln (output, 'Now back in the program outer block.');

end. { foo }

6-6 MPE XL Software System Traps

A

MPE XL Trap Subsystem Escape Codes

The escape codes from the trap library are 32-bit integer values that are read
in two 16-bit �elds:

+----------------+----------------+

| Error Number | Subsystem |

+----------------+----------------+
Bit 0 15 16 31

Bits (0:16) comprise ecode.errnum. Bits (16:16) comprise ecode.subsys . The
subsystem number for the MPE XL trap subsystem is 200. The values of
ecode.errnum are listed in Table A-1:

MPE XL Trap Subsystem Escape Codes A-1

Table A-1. Trap Library Escape Codes (Page 1)

Error Number Escapecode in Hex Meaning

31 0x001f00c8 HP 3000 Mode Floating Point Divide by
Zero

29 0x001d00c8 HP 3000 Mode Floating Point Underow

28 0x001c00c8 HP 3000 Mode Floating Point Overow

24 0x001800c8 HP 3000 Mode Double Precision Divide
by Zero

25 0x001900c8 HP 3000 Mode Double Precision
Underow

26 0x001a00c8 HP 3000 Mode Double Precision Overow

30 0x001e00c8 Integer Divide by Zero

27 0x001b00c8 Integer Overow

23 0x001700c8 Decimal Overow

22 0x001600c8 Invalid ASCII Digit

21 0x001500c8 Invalid Decimal Digit

18 0x001200c8 Decimal Divide by Zero

17 0x001100c8 IEEE Floating Point Inexact Result

16 0x001000c8 IEEE Floating Point Underow

A-2 MPE XL Trap Subsystem Escape Codes

Table A-1 Trap Library Escape Codes (Page 2)

Error Number Escapecode in Hex Meaning

15 0x000f00c8 IEEE Floating Point Overow

14 0x000e00c8 IEEE Floating Point Divide by Zero

13 0x000d00c8 IEEE Floating Point Invalid Operation

12 0x000c00c8 Range Errors

11 0x000b00c8 Software-detected Nil Pointer Reference

10 0x000a00c8 Software-detected Misaligned Pointer or
Conversion of Long Pointer into Short
Pointer Error

09 0x000900c8 Unimplemented Condition Trap

08 0x000800c8 Paragraph Stack Overow

51 0x003300c8 Illegal Instruction

52 0x003400c8 Data Memory Protection Trap,
Hardware-detected Nil or Misaligned
Pointer

53 0x003500c8 Illegal Code or Data Virtual Address

Note There are four escape codes that are associated with illegal
pointers. If you want to catch code errors due to illegal
pointers, you must check for all four escape codes:

0x000a00c8

0x000b00c8

0x003400c8

0x003500c8

MPE XL Trap Subsystem Escape Codes A-3

B

Intrinsic Numbers

One of the parameters passed to a user-de�ned system trap handling routine
is the number of the intrinsic that caused the trap. The following lists the
system intrinsics and their associated numbers. In some instances, no number
is assigned. This occurs when the intrinsic cannot cause an abort.

Intrinsic Numbers B-1

Intrinsic Name Intrinsic Number

ABORTSESS 196

ACTIVATE 104

ADJUSTUSLF 83

ALMANAC 406

ALTDSEG 134

ARITRAP 51

ASCII 63

BEGINLOG 216

BINARY 62

CALENDAR 43

CATCLOSE 417

CATOPEN 415

CATREAD 416

CAUSEBREAK 56

CLEANUSL 88

CLOCK 44

CLOSELOG 212

COMMAND 68

CREATE 100

CREATEPROCESS 101

CTRANSLATE 61

DASCII 75

DATELINE 89

DBINARY 74

DEBUG 99

DLSIZE 135

DMOVIN 132

DMOVOUT 133

ENDLOG 217

EXPANDUSLF 84

FATHER 109

FCHECK 10

FCLOSE 8

FCONTROL 13

FDELETE 309

FDEVICECONTROL 310

FERRMSG 307

B-2 Intrinsic Numbers

Intrinsic Name Intrinsic Number

FINDJCW 86

FINTEXIT 23

FINTSTATE 24

FLABELINFO 25

FLOCK 15

FLUSHLOG 213

FMTCALENDAR 90

FMTCLOCK 91

FMTDATE 92

FOPEN 1

FPARSE 312

FPOINT 6

FREAD 2

FREADBACKWARD 39

FREADDIR 7

FREADLABEL 19

FREADSEEK 12

FREEDSEG 131

FREELOCRIN 31

FRELATE 18

FRENAME 17

FSETMODE 14

FSPACE 5

FUNLOCK 16

FUPDATE 4

FWRITE 3

FWRITEDIR 8

FWRITELABEL 20

GENMESSAGE No number assigned.

GETDSEG 130

GETINFO 87

GETJCW 73

GETLOCRIN 30

GETORIGIN 105

GETPRIORITY 120

GETPRIVMODE 200

GETPROCID 112

Intrinsic Numbers B-3

Intrinsic Name Intrinsic Number

HPSETCCODE No number assigned.

HPSETDUMP No number assigned.

HPSWITCHTOCM No number assigned.

HPUNLOADCMPROCEDURE No number assigned.

INITUSLF 82

IODONTWAIT 37

IOWAIT 22

JOBINFO 180

KILL 102

LOADPROC 80

LOCKGLORIN 34

LOCKLOCRIN 32

LOCRINOWNER 36

LOGINFO 215

LOGSTATUS 214

MAIL 106

MYCOMMAND 71

NLAPPEND 412

NLCOLLATE 402

NLCONVCLOCK 409

NLCONVCUSTDATE 408

NLFMTCALENDAR 413

NLFMTCLOCK 410

NLFMTCUSTDATE 407

NLFMTDATE 414

NLGETLANG 411

NLINFO 400

NLKEYCOMPARE 405

NLREPCHAR 403

NLSCANMOVE 401

NLTRANSLATE 404

OPENLOG 210

PAUSE 45

PRINT 65

PRINTFILEINFO 21

PRINTOP 66

PRINTOPREPLY 67

B-4 Intrinsic Numbers

Intrinsic Name Intrinsic Number

TIMER 40

SUSPEND 103

TERMINATE 60

UNLOADPROC 81

UNLOCKGLORIN 35

UNLOCKLOCRIN 33

WHO 69

WRITELOG 211

XARITRAP 50

XCONTRAP 54

XLIBTRAP 52

XSYSTRAP 53

ZSIZE 136

Intrinsic Numbers B-5

