
Process Management

Programmer's Guide

900 Series HP 3000 Computer Systems

ABCDE

HP Part No. 32650-90023

Printed in USA 19871101

E1187

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c
 1987,1988 by Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition November 1987 A.01.00

iii

Preface

Process Management Programmer's Guide (32650-90023) is written for an experienced
programmer who has a working knowledge of MPE/iX and is familiar with:

A text editor

At least one programming language

Compiling, linking, and executing a program on MPE/iX

This manual contains detailed instructions describing how you can improve the performance
of your program when you use system intrinsics that take advantage of MPE/iX process
management capabilities. Intrinsics are available to create processes, manage processes, and
delete processes.

This manual also describes how you can manage interactive sessions on MPE/iX by using
system intrinsics to programmatically create and abort sessions.

This manual is part of the MPE/iX Programmer's Series that consists of the MPE XL
Intrinsics Reference Manual (32650-90028) and a set of task-oriented programmer's guides.
Refer to the MPE/iX Programmer's Series Documentation Map for an illustration of how this
manual relates to the rest of the series.

This manual contains the following chapters:

Chapter One Processes and Process Management describes processes and process
management under MPE/iX, and introduces system intrinsics that enable
your program to perform process management tasks. This chapter also
introduces session management intrinsics available on MPE/iX.

Chapter Two Process Management Tasks describes various ways you can use MPE XL
process management intrinsics to create, activate, suspend, interrogate, and
delete processes in MPE/iX.

Chapter Three Deadlock Considerations describes the conditions that can cause deadlock
within your program or between di�erent jobs/sessions.

Chapter Four Managing a Session Programmatically describes how you can
programmatically create or abort an interactive session.

iv

Contents

1. Processes and Process Management

What is a Process? . 1-1
Process Components . 1-1
Process Identi�cation . 1-2

Life Cycle of a Process . 1-2
Organization of Processes . 1-2
System Processes . 1-3
The SESSION and JOB Processes 1-3
The Command Interpreter Process 1-3
User Processes . 1-4

Managing User Processes . 1-5
Managing a Session Programmatically 1-7

2. Process Management Tasks

Assigning Process Handling (PH) Capability 2-1
Creating a Process (PH Capability Required) 2-2
Using CREATEPROCESS . 2-2
Using CREATE . 2-3

Activating a Process (PH Capability Required) 2-3
Suspending a Process (PH Capability Required) 2-4
Delaying a Process . 2-5
Requesting a Process Break . 2-6
Deleting Processes . 2-6
Deleting a Process with TERMINATE 2-7
Deleting a Child Process with KILL (PH Capability Required) 2-7
Aborting a Process . 2-7
Aborting the Entire User Process Structure 2-7

Interrogating Processes . 2-8
Determining the Parent Process (PH Capability Required) 2-8
Determining a Child Process (PH Capability Required) 2-8
Determining Source of Activation (PH Capability Required) 2-9
Determining Process Priority and State (PH Capability Required) 2-9
Determining Process Information 2-10
Determining Accumulated CPU Time for a Process 2-10

Passing Information to a Process . 2-10
Rescheduling a Process (PH Capability Required) 2-11
Providing Communication Between Processes 2-11

Contents-1

3. Deadlock Considerations

4. Managing a Session Programmatically

Creating a Session Programmatically 4-1
Assigning the Programmatic Sessions Capability 4-1
STARTSESS Description . 4-2
Specifying a Terminal . 4-2
Specifying the Logon . 4-2
Session Creation . 4-3
Using STARTSESS in a Program 4-3
Using :STARTSESS in the Startup State Con�gurator 4-5

Aborting a Session Programmatically 4-7
Requirements for Using ABORTSESS 4-7
Identifying the Job/Session You Want Aborted 4-7

Contents-2

Tables

1-1. Process Management Tasks/Intrinsics 1-6

Contents-3

1

Processes and Process Management

In the MPE/iX family of computer systems, the process is the basic executable entity that
competes for the resources managed by MPE/iX. The notion of many active processes
sharing the resources of the computer system is fundamental to the e�cient operation of
the MPE/iX operating system. By sharing the CPU and system resources among multiple
active processes, resource utilization is greatly increased and system throughput improved.
Process Management Programmer's Guide (32650-90023) provides you with information that
will assist you in your development of programs that utilize process management capabilities
available in the MPE/iX operating system.

This chapter describes processes and process management under MPE/iX, and introduces
process management capabilities and system intrinsics that MPE/iX makes available to you.

This chapter also describes the interactive session as a system-managed process, and
introduces session management capabilities and system intrinsics that enable your program to
create and abort interactive sessions.

What is a Process?

A process is the basic executable entity in the MPE/iX operating system. When you enter the
following command:

:RUN PROGNAME.PUB.MYACCT

you are directing MPE/iX to create and manage a process that executes the code found in
your program �le PROGNAME.

A process, then, can be described as a program and its environment. The program consists
of re-entrant and shared executable code. The environment, created and managed by
MPE/iX, includes all resources that the program may reference or use that are exterior to the
program. Resources may be main memory, I/O devices, and even other processes. In addition,
MPE/iX must keep a record of the current state of the process and what is currently in the
environment.

Process Components

A process in the MPE/iX operating system consists of sharable executable code, a private
data area available to the process, and a data structure commonly referred to as a process
control block that de�nes the process and contains pointers to information required for process
management.

Processes and Process Management 1-1

Process Identification

MPE/iX assigns each process a unique Process Identi�cation Number (PIN) when the process
is created. Both you and the system can use the PIN to identify a process throughout its life
span. When the process is �nally deleted from the system, the PIN is released, and can be
used again to identify another process.

Life Cycle of a Process

A process exists in di�erent states according to its past and present status and its present
requirements for system resources. MPE/iX allows the user some control over a process'
movement between three of these states.

A process in a suspended state is not allowed control of the CPU until it receives an
activation signal from a system intrinsic. When it suspends itself, a process must specify the
process or processes that are permitted to reactivate it.

A process in an active state is scheduled to gain control of the CPU (awaiting its turn to
enter an executing state).

A process in an executing state has control of the CPU. It leaves this state when it has
used up its scheduled quantum of time (it enters an active state), when it is blocked or
pre-empted by an interrupt, when it suspends itself (it enters a suspended state), or when it
is deleted from the system.

During its life span (that is, between creation and deletion), a process progresses through
these states in response to the following:

The instruction sequence found in the program code

The actions of other processes

Organization of Processes

The MPE family of operating systems is process-oriented in that the operating system
deals almost exclusively with processes. Because MPE/iX provides a multiprogramming
environment, many processes can share the CPU and other system resources to maximize
system utilization, thus increasing system performance.

The organization of processes in MPE/iX is a directed rooted tree structure whose nodes
correspond to processes. An arrow from one process P2 to another process (P3) means that
P2, the parent process, is the creator of P3, the child process. The parent/child relationship
between processes provides control from top to bottom throughout the process structure. In
most cases, the parent process is responsible for what happens to a child process, including
creation, deletion, and other special actions.

A process may have the capability to create one or more child processes. A process cannot
exist without a parent process (the one exception being PROGEN, the �rst process created by
MPE/iX and the ancestor of all other processes created on MPE/iX).

1-2 Processes and Process Management

System Processes

PROGEN, the Progenitor, is the �rst process created during the initialization phase
of MPE/iX. PROGEN creates child processes from a set of data speci�ed at system
con�guration time. These child processes are system processes that provide parallel functions
on behalf of the operating system. The system processes that perform operating system
functions can each have their own structure of descendants (children, grandchildren, and so
forth).

The SESSION and JOB Processes

In MPE/iX, a session is associated with an interactive access to the system, while a job
is associated with a batch access. If PROGEN can be considered to be the ancestor of all
processes in MPE/iX, then the system process SESSION is the common ancestor of all
interactive sessions in the system. When you press a �RETURN� on an unowned terminal, a
message is sent to SESSION. SESSION directs a JSMAIN process to allocate and initialize
session resources for the new session. JSMAIN then creates and activates a Command
Interpreter (CI) process, commonly referred to as the Root CI.

The system process JOB is the common ancestor of all jobs on the system. An attempt
to start a job results in a message being sent to JOB. JOB directs a JSMAIN process to
accomplish its task of establishing the environment for running batch jobs in the MPE/iX
operating system.

The Command Interpreter Process

The CI is a process that provides you with interactive access to the MPE/iX operating
system. A CI (or the Root CI) is created for each session logged on to MPE/iX. Your CI
reads the commands you enter on the keyboard as data, places the data on its stack, and acts
upon the data accordingly. For example, when you enter the following command:

:RUN EDITOR.PUB.SYS

you are directing your CI to create a child process to execute the code found in the program
�le EDITOR.PUB.SYS. Your CI is suspended until it is reactivated by the child process
(when you exit EDITOR or enter BREAK mode).

Your CI is limited to having one child process at a time. Following the example given in
Example 1-1 , if you are in EDITOR (the child process of your Root CI) and press the
BREAK key, EDITOR is suspended and your Root CI is reactivated (indicated by the colon
prompt appearing on your terminal). If you try to create a second child process with the
command :RUN MYPROG.PUB.MYACCT, you are prompted with ABORT? (YES/NO) and must
direct your CI either to abort EDITOR or to ignore the command.

If you respond with NO to the ABORT? (YES/NO) prompt, your CI will ignore your command
to create a second process. If you respond YES with ABORT? (YES/NO) prompt, your CI
�rst deletes from the system the process executing the EDITOR program, then the system
proceeds to create the process that executes MYPROG.

Processes and Process Management 1-3

:RUN EDITOR.PUB.SYS

HP32201A.07.17 EDIT/3000 WED, SEP 24, 1987 12:55 PM

c
 HEWLETT-PACKARD CO. 1985

\ �BREAK�
:RUN MYPROG.PUB.MYACCT

ABORT? (YES/NO) NO

COMMAND NOT ALLOWED IN BREAK. (CIWARN 986)

: RUN MYPROG.PUB.MYACCT

ABORT? (YES/NO) YES

PROGRAM ABORTED PER USER REQUEST. (CIERR 989)

: RUN MYPROG.PUB.MYACCT

.

.

.

Example 1-1. Attempting to Create Multiple Child Process from Your CI

As illustrated in Example 1-1, you are restricted to creating only one child process at a time
while in the CI. Processes that you create from your Root CI are normally restricted from
creating child processes because of the great amount of system overhead required to manage
each process. If you take advantage of the special capability to create multiple child processes,
you must take great care that the bene�ts gained by creating multiple processes to perform a
set of tasks (increased program performance and throughput) are not o�set by the liabilities
caused by the additional processes contending for the CPU and other system resources
(decreased system performance and response time).

User Processes

MPE/iX enables you to improve the performance of your program when you use system
intrinsics that take advantage of MPE/iX process management capabilities. You can develop a
large and/or complex program that creates multiple active processes to perform a set of tasks.
The concurrent accomplishment of tasks (versus serial accomplishment) can greatly increase
your program's performance and throughput.

1-4 Processes and Process Management

Managing User Processes

If you have standard MPE/iX capabilities (for example, IA, BA, SF), you can use many
system intrinsics to access operating system features, but you are allowed only limited
programmatic control over processes. For example, your program cannot use system intrinsics
to create a new process.

If you wish to design large and/or complex applications that use process management
capabilities to full advantage, MPE/iX provides Process Handling (PH) as an optional
capability.

PH intrinsics require that the operating system check for additional capabilities at program
load time and/or execution time. To execute any of the PH intrinsics, you must have the
correct capability assigned prior to running the program.

In order for a program containing PH intrinsics to execute successfully, the following criteria
must be met:

A System Manager (SM) or Account Manager (AM) must assign the PH capability to the
group where the program is to execute; however, if the program �le is a temporary �le, PH
must be assigned to the user who executes the program.

You must assign the PH capability to the program �le at link time (using the caplist
parameter of the :LINK command). The user who links the program does not need to be
assigned the PH capability in order to assign it to the program �le.

MPE/iX provides system intrinsics that allow you to create, activate, suspend, delete,
interrogate, and provide communication between processes. Table 1-1 lists the major tasks
involved with managing processes and the intrinsics required to accomplish each of the
tasks. Also noted is whether or not the intrinsic requires PH capability. Chapter 2 \Process
Management Tasks", describes how you can use the intrinsics listed in Table 1-1.

Processes and Process Management 1-5

Table 1-1. Process Management Tasks/Intrinsics

To Accomplish This Task: Use these Intrinsics: PH required?

Create a process CREATEPROCESS YES

CREATE YES

Activate a suspended process ACTIVATE YES

CREATEPROCESS YES

SUSPEND YES

Suspend an executing process SUSPEND YES

ACTIVATE YES

CREATEPROCESS YES

PAUSE NO

CAUSEBREAK NO

Delete a process TERMINATE NO

KILL YES

QUIT NO

QUITPROG NO

Interrogate a process FATHER YES

GETPROCID YES

GETORIGIN YES

GETPROCINFO YES

PROCTIME NO

PROCINFO NO

GETINTO NO

GETPRIORITY YES

Provide communication between HPFOPEN, FOPEN NO

process FREAD,FWRITE NO

MAIL YES

RECEIVEMAIL YES

SENDMAIL YES

Note If you are interested in the task of providing communication between
processes, refer to Interprocess Communication Programmer's Guide
(32650-90019).

1-6 Processes and Process Management

Managing a Session Programmatically

Normally, if you wish to create a session for yourself, you must be at a terminal and log on
to the system by entering the :HELLO command, then pressing �RETURN� . A message is sent
to the system SESSION process. SESSION directs a system JSMAIN process to allocate
and initialize session resources for the new session. JSMAIN then create and activates a CI
process.

Likewise, when you wish to exit the interactive session, you must be at the terminal and log
o� by entering the :BYE command at the colon prompt, then pressing �RETURN�. This action
directs MPE/iX to delete your sessions from the system.

Because an interactive session is managed by the system, your program cannot use PH
intrinsics to create, activate, and delete an interactive session. Instead, MPE/iX provides you
with two additional intrinsics that allow you a very limited form of programmatic control over
an interactive session:

The STARTSESS intrinsic enables your program to create a session for yourself, or for other
users, on an available (not currently assigned to a session) terminal without having to be at
the speci�ed terminal(s). Your SM or AM must assign the Programmatic Sessions (PS)
capability to any user who plans to run a program that calls the STARTSESS intrinsic.

The ABORTSESS intrinsic enables your program to remove (abort) an interactive session from
your system.

A discussion on how you use STARTSESS and ABORTSESS to manage interactive sessions can be
found in Chapter 4, \Managing a Session Programmatically".

Processes and Process Management 1-7

2

Process Management Tasks

This chapter explains how you can use MPE/iX intrinsics to:

Create a new process

Activate a suspended process

Suspend an executing process

Delay a process from executing

Request a process break

Delete a process

Interrogate a process

Pass information to a process

Reschedule a process

Provide communication between processes

For complete descriptions of the intrinsics described in this chapter, refer to the MPE/iX
Intrinsics Reference Manual (32650-90028).

This chapter describes how your program can call two kinds of process management intrinsics:

Intrinsics requiring only standard capabilities, (for example, IA, BA, SF)

Intrinsics requiring PH capability in addition to standard capabilities

Assigning Process Handling (PH) Capability

If you have standard MPE/iX capabilities, you can use many system intrinsics to access
operating system features. However, PH intrinsics require that the operating system check for
additional capabilities at program load and/or execution. To execute PH intrinsics, you must
have the correct capability assigned prior to running the program.

In order for a program containing PH intrinsics to execute successfully, the following criteria
must be met:

You must assign the PH capability to the program �le at link time (using the caplist
parameter of the :LINK command). The user who links the program does not need to be
assigned the PH capability in order to assign it to the program �le.

The System Manager (SM) or Account Manager (AM) must assign the PH capability to the
group where the program is to execute; however, if the program �le is a temporary �le, PH
must be assigned to the user who executes the program.

Process Management Tasks 2-1

Creating a Process (PH Capability Required)

If your program has PH capability, it can call the CREATEPROCESS intrinsic or the CREATE
intrinsic to create a child process. Both intrinsics direct MPE/iX to:

Initialize resources

Allocate a private data area (including a stack)

Load the speci�ed program into virtual memory

Assign a Process Identi�cation Number (PIN)

Place the newly created child process in a suspended state.

CREATEPROCESS is the recommended intrinsic for process creation because it is designed to be
more
exible and extendable than the CREATE intrinsic.

Using CREATEPROCESS

Your program can call the CREATEPROCESS intrinsic to create a child process. Your program
can control the creation of the child process with the optional parameters itemnums and
items . The information you can pass to MPE/iX through itemnums/items parameter pairs
include:

The names of the �les to be used as $STDIN and $STDLIST for the child process.

An option that indicates if the child process is to be activated immediately after it is
created, and if the parent process should be suspended automatically when the child process
is activated.

A list of user-named executable libraries to be searched at load time for required external
references.

A user-created UNSAT procedure, to which all unsatis�ed load-time external references may
be directed.

This is an example of a CREATEPROCESS intrinsic call:

.

.

.

ERRORCODE := 0;

PIN := 0;

BNAME := 'MYPROG.PUB.MYACCT';

ITEMNUMS[1] := 3;

ITEMNUMS[2] := 0;
ITEMS[1] := 1;

CREATEPROCESS (ERRORCODE,PIN,BNAME,ITEMNUMS,ITEMS);

.

.

.

The parameters speci�ed in the example above are described below.

ERRORCODE Returns a value that indicates the success or failure of the CREATEPROCESS
call, and, if unsuccessful, the nature of the error.

PIN Returns the PIN of the newly created child process.

2-2 Process Management Tasks

BNAME Passes the name of the program �le the child process is to execute.

ITEMNUMS Passes the value 3 in the �rst element of the array indicating that load option
information is passed in the �rst element of the array ITEMS. The value 0 in
the second element indicates the end of the option list.

ITEMS Passes the value 1 in the �rst element of the array indicating that the calling
process is to be reactivated when the child process is deleted.

Using CREATE

Because the CREATE intrinsic allows your program only limited control over the creation of a
child process, it o�ers a subset of the parameters available with the CREATEPROCESS intrinsic.

This is an example of a CREATE intrinsic call:

.

.

.
BNAME := 'MYPROG.PUB.MYACCT';

PIN := 0;

LOADFLAGS := 1;

CREATE (BNAME,,PIN,,LOADFLAGS);

.

.

.

The parameters speci�ed in the example above are described below. All other optional
parameters are omitted.

BNAME Passes the name of the program �le the child process executes.

PIN Returns the Process Identi�cation Number (PIN) of the child process.

LOADFLAGS Passes load option information. The value 1 speci�es that the calling process
is reactivated when the child process is deleted.

Activating a Process (PH Capability Required)

If your program has PH capability, it can call the ACTIVATE intrinsic to activate a process that
has been previously suspended (or just created) by the actions of these intrinsics:

SUSPEND

ACTIVATE

CREATEPROCESS

CREATE

The ACTIVATE intrinsic moves the speci�ed child or parent process from a suspended state
to an active state. . In addition, the ACTIVATE intrinsic optionally enables your program to
suspend itself as soon as it activates the speci�ed process.

Process Management Tasks 2-3

Your program can only activate the parent process or a child process. Also, your program
must have permission to activate the speci�ed process (refer to the discussion of suspending a
process). For example, only the parent process can activate a newly created child process.

This is an example of an ACTIVATE intrinsic call:

.

.

.

SUSP := 2;

CREATE (BNAME,,PIN,,FLAGS);

ACTIVATE (PIN,SUSP);

.

.

.

The parameters speci�ed in the example above are described below.

PIN Passes the PIN of the child process created by CREATE.

SUSP Passes activation information. A non-zero value speci�es that the calling
process is to be suspended when the process speci�ed by PIN is activated.
The value 2 speci�es that only a child process is permitted to reactivate the
suspended process.

Suspending a Process (PH Capability Required)

If your program has PH capability, it can call the SUSPEND intrinsic to suspend itself. In
addition, the CREATEPROCESS and ACTIVATE intrinsics also enable your program to suspend
itself (explained below).

When a process suspends itself, it moves from an executing state to a suspended state. The
process remains suspended until:

Another process calls the ACTIVATE intrinsic to reactivate it.

Another process (or MPE/iX) deletes it from the system.

When your program suspends itself, it must specify which processes have permission to
reactivate it. You use the susp parameter to specify one of the following three conditions:

Only the parent process has permission to reactivate the suspended process.

Any child process has permission to reactivate the suspended process.

The parent process or any child process has permission to reactivate the suspended process.

Your program can optionally unlock a local Resource Identi�cation Number (RIN) with the
rin parameter of SUSPEND if it has the local RIN currently locked. Refer to the discussion
of managing shared resources with RINs in Resource Management Programmer's Guide
(32650-90024).

This is an example of a SUSPEND intrinsic call:

.

.

2-4 Process Management Tasks

.

SUSP := 3;

RIN := 3;
SUSPEND (SUSP,RIN);

.

.

.

The parameters speci�ed in the example above are described below.

SUSP Passes activation information. The value 3 speci�es that the parent process
and all child processes have permission to reactivate the process.

RIN Passes a local RIN (3) that is unlocked when the process is suspended.

In addition, your program can suspend itself using:

The susp parameter of the ACTIVATE intrinsic

Item number 10 of the CREATEPROCESS intrinsic

When a non-zero value is speci�ed for either parameter, your program is suspended when
the speci�ed process is activated. The value also indicates what processes have permission
to reactivate your program after it had been suspended (in the same manner as the susp
parameter of SUSPEND).

Delaying a Process

Your program can call the PAUSE intrinsic to delay its own execution. The PAUSE intrinsic
places the process in a suspended state. and keeps it there for the number of seconds you
specify in the interval parameter. At the end of the speci�ed interval, the process re-enters an
active state. The maximum interval allowed is approximately 2,147,484 seconds (almost 25
days).

The following is an example of a PAUSE intrinsic call:

PAUSE (INTERVAL);

INTERVAL speci�es the length of time, in seconds, that you want the process to remain
suspended. MPE/iX resumes execution with the statement following the PAUSE intrinsic call.

Process Management Tasks 2-5

Requesting a Process Break

During a session, your program can initiate a break programmatically with the CAUSEBREAK
intrinsic. The CAUSEBREAK intrinsic performs the programmatic equivalent of pressing �BREAK�
in a session. MPE/iX suspends the entire user process structure (below the Root CI process)
and activates the Root CI.

The following is an example of a CAUSEBREAK intrinsic call:

CAUSEBREAK;

While you are in BREAK mode, MPE/iX permits you to use a limited number of CI
commands to perform functions such as creating a �le or transmitting a message. (Refer
to the MPE/iX Commands Reference Manual (32650-90003) for a discussion of commands
available in BREAK mode.) When you execute the :RESUME command, MPE/iX returns all
user processes to the state they were in before the CAUSEBREAK intrinsic call executed.

Note You are not permitted to use the CAUSEBREAK intrinsic in a job. Also, a
program containing the CAUSEBREAK intrinsic will not break if it is executed
from a UDC in which the NOBREAK option is speci�ed.

Deleting Processes

MPE/iX provides intrinsics that enable your program to delete itself and/or other processes.
You may wish to delete a process because:

It has accomplished its task (use the TERMINATE or KILL intrinsics).

It has reached an error condition (use the QUIT or QUITPROG intrinsics).

When your program directs MPE/iX to delete a process, MPE/iX uses as algorithm to delete
a process. When your program deletes a process, MPE/iX also searches for and deletes all of
the process's descendants (children, grandchildren, and so forth). In addition, the operating
system accomplishes the following tasks:

All �les opened by the process are closed and assigned the same disposition they had when
opened (as if the FCLOSE intrinsic had been called with a disposition of zero).

All system resources reserved for that process (including the data area, process control
block, and PIN) are returned to MPE/iX and made available for use by other processes.

The following sections describe how your program can delete itself and/or another process
using these intrinsics:

TERMINATE

KILL

QUIT

QUITPROG

2-6 Process Management Tasks

Deleting a Process with TERMINATE

Your program can call the TERMINATE intrinsic to delete itself. The following is an example of
a TERMINATE intrinsic call:

TERMINATE;

MPE/iX deletes the process by following the algorithm described in \Deleting Processes".

Deleting a Child Process with KILL (PH Capability Required)

If your program has PH capability, it can call the KILL intrinsic to delete a child process. An
example of a KILL intrinsic call is:

KILL (PIN);

PIN speci�es the Process Identi�cation Number of the child process to be deleted from the
system. MPE/iX deletes the process by following the algorithm described in \Deleting
Processes".

Aborting a Process

When your program has reached what you (the programmer) have de�ned as an error
condition, you may wish to delete it from the system. In addition, you want to be noti�ed
that MPE/iX deleted the calling process in an error condition (aborted).

The QUIT intrinsic accomplishes this task by:

1. Transmitting an abort message to $STDLIST

2. Setting your job/session Job Control Word (JCW) to an error state

3. Directing MPE/iX to delete the calling process, following the algorithm described in
\Deleting Processes"

The following is an example of a QUIT intrinsic call:

QUIT (NUM);

The NUM parameter is transmitted to $STDLIST as part of the abort message. You can use this
number to assist you in determining the state of the calling process when the abort occurred.

In a session, your Root CI remains active even after the entire program �nishes. In a batch
job, the job terminates as soon as the entire program �nishes, unless the :CONTINUE command
is in e�ect.

Aborting the Entire User Process Structure

Your program can call the QUITPROG intrinsic to abort your entire user process structure (all
processes below the Root CI). The QUITPROG intrinsic functions similarly to the QUIT intrinsic.
The only di�erence is that when your program calls QUITPROG, MPE/iX deletes the entire user
process structure (not just the calling process, as is the case with QUIT).

The following is an example of a QUITPROG intrinsic call:

QUITPROG (NUM);

Process Management Tasks 2-7

The NUM parameter is transmitted as part of the abort message to the calling process's
$STDLIST. You can use this number to assist you in determining the state of the calling
process when the abort occurred.

In a session, your Root CI remains active even after the entire program is aborted. In a batch
job, the job terminates, unless the :CONTINUE command is in e�ect.

Interrogating Processes

MPE/iX provides intrinsics that enable your program to interrogate MPE/iX about the status
of other processes. The process information you acquire can assist you in controlling your
process structure. Process interrogation intrinsics are:

FATHER

GETPROCID

GETORIGIN

GETPROCINFO

PROCTIME

PROCINFO

Determining the Parent Process (PH Capability Required)

If your program has PH capability, it can call the FATHER intrinsic to determine the Process
Identi�cation Number (PIN) of its parent process. Following is an example of a FATHER

intrinsic call:

PARENTPIN := FATHER;

FATHER acts as a function to return to PARENTPIN the PIN of the parent process.

Determining a Child Process (PH Capability Required)

If your program has PH capability, it can call the GETPROCID intrinsic to determine the PIN of
a child process. The following is an example of a GETPROCID intrinsic call:

CHILDPIN := GETPROCID (NUMSON);

GETPROCID acts as a function to return the PIN of the child process speci�ed by NUMSON.
If NUMSON speci�es a value greater than the number of current child processes, GETPROCID
returns the PIN of the current child process that was created �rst.

If NUMSON = 0, GETPROCID returns the PIN of the �rst child created by the calling process.

If NUMSON = n (n > 0), GETPROCID returns the PIN of the nth child created by the calling
process. For example, if NUMSON = 3, GETPROCID returns to CHILDPIN the PIN of the third
child process created by the calling process.

2-8 Process Management Tasks

Determining Source of Activation (PH Capability Required)

If your program has PH capability, it can call the GETORIGIN intrinsic to determine who
activated it, the parent process or a child process. An example of a GETORIGIN intrinsic call is:

ACTIVATIONSOURCE := GETORIGIN;

GETORIGIN returns one of the following codes to ACTIVATIONSOURCE:

0= Neither the parent process nor a child process activated the calling process
with an ACTIVATE intrinsic call

1= The parent process activated the calling process

2= A child process activated the calling process

Determining Process Priority and State (PH Capability Required)

If your program has PH capability, it can call the GETPROCINFO intrinsic to determine process
management information about its parent process or a child process. GETPROCINFO acts as a
function to return a value indicating:

Current state of the speci�ed process (active or suspended).

Processes permitted to activate the speci�ed process.

The type of process (parent or child) that called ACTIVATE to activate the speci�ed process.

The priority class of the speci�ed process.

The priority number in the master queue of the speci�ed process.

This is an example of a GETPROCINFO intrinsic call:

STATINFO := GETPROCINFO (PIN);

When PIN speci�es 0, GETPROCINFO returns to STATINFO process management information
about the parent of the calling process. For example, if the value $F0482 is returned to
STATINFO, it is interpreted in the following manner:

Bits Setting Meaning

(31:1) 0 Process is currently suspended.

(29:2) 01 Only the parent process can
activate the process.

(25:4) 0000 Not used.

(23:2) 01 The parent process last activated
the process.

(20:3) 010 Process is in CS priority class.

(16:4) 0000 Not used.

(8:8) 00001111 Process has priority 15 in master
queue.

(0:8) 00000000 Not used.

Process Management Tasks 2-9

Determining Process Information

Your program can call the PROCINFO intrinsic to determine process management information.
PROCINFO returns the same information as the GETPROCINFO intrinsic, as well as:

The PIN of the calling process

A value indicating the success or failure of the PROCINFO call, and, if unsuccessful, the
nature of the error

Some of the information available through PROCINFO requires that your program have PH
capability. For a list of capability requirements associated with each type of information
available through PROCINFO, refer to the PROCINFO description in the MPE/iX Intrinsics
Reference Manual (32650-90028).

Determining Accumulated CPU Time for a Process

Your program can call the PROCTIME intrinsic to determine the total amount of CPU time it
has used since it was created. The following is an example of a PROCTIME intrinsic call:

TIME := PROCTIME;

PROCTIME acts as a function to return to TIME the number of milliseconds your program has
been in an EXECUTING state.

Passing Information to a Process

When your program creates a process, it can programmatically pass information to the child
process with:

The param parameter of the CREATE intrinsic

Item numbers 2 and/or 11 of the CREATEPROCESS intrinsic

The parm and/or info parameters of the :RUN command

The GETINFO intrinsic enables your program to retrieve this information.

This is an example of a GETINFO intrinsic call:

GETINFO (INFO,MAXLENGTH,PARAMETER);

The parameters speci�ed in the example are described below.

INFO Returns the contents of the info parameter from the :RUN command or Item
Number 11 from CREATEPROCESS.

MAXLENGTH Passes the maximum number of characters that MPE/iX is allowed to move
to INFO. MAXLENGTH returns the number of characters actually moved to INFO

by MPE/iX. MPE/iX will not move a number of characters greater than the
original value of MAXLENGTH.

PARAMETER Returns the contents of the parm parameter from the :RUN command, item
number 2 from CREATEPROCESS, or the param parameter from CREATE.

2-10 Process Management Tasks

Rescheduling a Process (PH Capability Required)

If your program has PH capability, it can call the GETPRIORITY intrinsic to change its priority
class or the priority class of a child process. A process is scheduled on the basis of a particular
priority class when it is created.

Generally, MPE/iX schedules processes in linear or circular subqueues:

AS subqueue, a linear subqueue containing system processes only

BS subqueue, a linear subqueue containing processes of very high priority

CS subqueue, a circular subqueue recommended for interactive processes

DS subqueue, a circular subqueue available for general use at a lower priority than the CS
subqueue and recommended for batch jobs

ES subqueue, a circular subqueue operating at a very low priority (background)

The following is an example of a GETPRIORITY intrinsic call:

GETPRIORITY (PIN,PRIORITYCLASS);

The parameters speci�ed in the above example are described below.

PIN Passes the Process Identi�cation Number of the process whose priority class is
to change. For example, a value of zero indicates the calling process.

PRIORITY-

CLASS

Passes a value indicating the priority class in which the speci�ed process
is rescheduled. For example, the value 17,235 indicates that the process is
rescheduled in the CS priority class.

Providing Communication Between Processes

Di�erent processes can pass information among themselves using a special feature of the
operating system, referred to as Interprocess Communication (IPC). Large tasks that have
been broken into independent processes can use IPC to synchronize their actions and exchange
data with other processes. There are several ways you can implement IPC on MPE/iX:

Using �le system intrinsics and message �les

Using session-level variables and Job Control Words (JCWs)

Using process management mail intrinsics

The �le system intrinsics HPFOPEN,FOPEN,FREAD,and FWRITE provide the most powerful method
of performing IPC. These intrinsics can be used to communicate between any user process; the
processes do not need to be in the same process tree, or running in the same job or session.

Processes executing in the same job or session can use a session-level variable or JCW to pass
smaller amounts of data more e�ciently than using message �les.

Some older applications use the \mail" facility to communicate between processes in the same
process tree (same job or session). Each process in the process tree can use this facility to
pass information between itself and either its parent or child process.

For more information about using IPC features to provide communication between processes,
refer to Interprocess Communication Programmer's Guide (32650-90019).

Process Management Tasks 2-11

3

Deadlock Considerations

Simultaneous use of mail transmission, process suspension, and RIN-locking intrinsics
throughout a process structure could result in a deadlock if the intrinsic calls are not
synchronized properly. MPE/iX ensures that deadlock between di�erent jobs/sessions cannot
occur as long as none of the processes have Multiple RIN (MR) capability. Be aware of the
following:

In a multiprocess job/session, whenever a process is suspended (through the SUSPEND
intrinsic, or when locking a RIN or receiving mail), MPE/iX does not determine whether or
not all other processes in the tree are suspended. Avoid this situation.

An attempt by a process to lock a global RIN succeeds only if both of the following
conditions are met:

No other process within the job/session currently has locked this RIN. A global RIN
cannot be used as a local RIN, because deadlock within the same job/session can occur.

The calling process currently has no other global RIN locked for itself. This could
otherwise result in deadlock between two jobs/sessions.

For more information concerning the use of RIN-locking intrinsics refer to Resource
Management Programmer's Guide (32650-90024).

Deadlock Considerations 3-1

4

Managing a Session Programmatically

This chapter describes how your program can exercise a limited form of control over
interactive sessions on an MPE/iX-based computer system. Because an interactive session (or
a job) is a process created and managed by the system, a user is restricted from being able to
use process management intrinsics to create, manage, and delete sessions.

MPE/iX provides you with two intrinsics that enable you to direct the system to create a
session on a speci�ed terminal, then abort the session when desired:

\Creating a Session Programmatically", describes how your program can use the STARTSESS
intrinsic to create a session for yourself, or for other users, on an available (not currently
assigned to a session) terminal without having to be at the speci�ed terminal.

\Aborting a Session Programmatically", describes how your program can use the
ABORTSESS intrinsic to remove (abort) an interactive session from your system.

Creating a Session Programmatically

Normally, if you wish to create a session for yourself, you must be at a terminal and log on to
the system by:

1. Entering the :HELLO command correctly.

2. Pressing �RETURN�

3. Waiting for the logon banner and prompt to appear on your terminal screen before
continuing.

With Programmatic Sessions (PS) Capability, you can create a session for yourself, or for
other users, on an available (not currently assigned to a session) terminal without having to
be at the speci�ed terminal(s). The operating system facilities for performing the PS task are
available to you through the STARTSESS intrinsic and the :STARTSESS command.

Assigning the Programmatic Sessions Capability

Your System Manager (SM) or Account Manager (AM) must assign the PS capability to any
user who plans to:

Run a program that calls the STARTSESS intrinsic.

Execute the :STARTSESS command from the MPE/iX CI, from a UDC, from the Startup
State Con�gurator, or programmatically through the MYCOMMAND or HPCICOMMAND intrinsic.

When the operating system executes the code of either STARTSESS or :STARTSESS, it examines
the user's capability list for the PS capability:

Managing a Session Programmatically 4-1

If the PS capability is not found when invoking STARTSESS, the intrinsic fails and the
program is aborted.

If the PS capability is not found when invoking :STARTSESS, the command fails and control
returns to the CI.

STARTSESS Description

The syntax for the STARTSESS intrinsic is:

STARTSESS (ldev,logonstr,jsid,jsnum,errorstat);

The syntax for the :STARTSESS command is:

:STARTSESS ldev,logonstr

The ldev parameter of STARTSESS and the ldev parameter of :STARTSESS are functionally
equivalent, as are logonstr and logonstr, respectively. The intrinsic has additional parameters
that return the job/session number (jsid, jsnum) and possible error conditions (errorstat).

Specifying a Terminal

You must specify, with the ldev parameter, the logical device number of the terminal on which
the session is to be created (the target terminal). The target terminal must be:

A real physical device

An available terminal

Job accepting

Hard wired

Set to the con�gured baud rate

Specifying the Logon

You must specify with the logonstr parameter a character array containing the logon. The
logon is a superset of the :HELLO command syntax and includes an additional optional
parameter ;NOWAIT. The :HELLO command options are described in the MPE/iX Commands
Reference Manual (32650-90003). The ;NOWAIT parameter is described below.

If you specify the ;NOWAIT keyword parameter in logonstr and the session is successfully
created, MPE/iX continues with session startup as if it had actually received a carriage return
from the target terminal. There are two additional requirements for the ;NOWAIT keyword
parameter:

The target terminal must be turned on and set to the con�gured baud rate. Otherwise,
STARTSESS/:STARTSESS fails and the session is not created.

You must have SM capability if the target terminal is the System Console.

You must supply all required password(s) in the logonstr parameter. If required passwords are
not supplied in logonstr, STARTSESS/:STARTSESS fails because MPE/iX does not prompt for
passwords on the target terminal. You must place a carriage return character (%15) in the
array element following the last valid character of logonstr to indicate the end of valid data.

4-2 Managing a Session Programmatically

Session Creation

If STARTSESS/:STARTSESS is successful, a session is created at the terminal speci�ed in the
ldev . MPE/iX returns a successful status to STARTSESS/:STARTSESS, and the session or
process that called STARTSESS/:STARTSESS can continue execution without having to wait for
a carriage return from the target terminal. If you execute a :SHOWJOB command from another
terminal prior to �RETURN� being pressed on the target terminal, MPE/iX displays the newly
created session in EXEC* state.

If ;NOWAIT is not speci�ed in logonstr , MPE/iX waits for a carriage return from the target
terminal before continuing session startup and printing I/O to the terminal. If ;NOWAIT is
speci�ed, MPE/iX continues with session startup as if it had actually received a carriage
return from the target terminal.

After MPE/iX recognizes that you pressed �RETURN� on the target terminal:

1. The logon banner appears.

2. The line ***PROGRAMMATIC LOGON***" appears.

3. MPE/iX �nishes the normal logon sequence (initializing or executing logon UDCs).

At this point, MPE/iX no longer distinguishes between a session started with
STARTSESS/:STARTSESS and a session started with the :HELLO command.

Note If the target terminal is not set to the con�gured baud rate, MPE/iX cannot
recognize a carriage return (or any input) from that terminal because there
is no baud rate sensing by the intrinsic or the command. If this situation
arises, you must change the baud rate setting on the target terminal to the
con�gured rate and again press �RETURN�.

If you put a :STARTSESS command into a Startup State Con�gurator �le, you can also start a
session on the System Console. MPE/iX does not log OPERATOR.SYS on to the Console, but
instead treats the Console as an available terminal requiring a session logon.

Using STARTSESS in a Program

Example 4-1 is a simple Pascal XL program that demonstrates the use of the STARTSESS
intrinsic. The program can facilitate the logon process for novice users by creating the desired
session on the speci�ed logical device. Because the logonstr parameter speci�es ;NOWAIT,
MPE/iX accomplishes the logon sequence and executes all logon UDCs. In this case, the
novice user does not need any knowledge of the :HELLO command.

Managing a Session Programmatically 4-3

program Create_Session (input, output);

{This program demonstrates the use of the MPE/iX STARTSESS intrinsic to}

{programmatically create sessions on specified terminals. This program}

{prompts the user for the ldev, then creates a session for NOVICE.ACCT }

{specifying the :NOWAIT option. When the user inputs a zero, the }

{program ends. }

const

logon_string_size = 20;

blank = ' ';

var

ldev :shortint;

logonstring:packed array [1..logon_string_size] of char;

jsid :shortint;

jsnum :integer

error :shortint;

procedure STARTSESS; intrinsic;

begin

logonstring := 'NOVICE.ACCT;NOWAIT ';

logonstring[17] := ch(13); {Required delimiter. }

write ('Please input ldevs where you wish sessions started');

writeln (' (0 = end of list)');

readlin (ldev);

while ldev <> 0 do

begin {Create session on ldev. }

error := 0;

STARTSESS (ldev,logonstring,jsid,jsnum,error);

if error <> 0 then

begin {Return error status. }

write ('STARTSESS error = ',error);

writeln (' on ldev = ' ldev);

end;

readln (ldev);

end; {End while loop. }

end.

Example 4-1. Program Using STARTSESS Intrinsic to Create Sessions

If the following UDC is located in the UDC �le of the speci�ed session(s), the novice user is
further relieved of having to deal with the MPE/iX CI:

LOGON

OPTION LOGON,NOBREAK,NOHELP,NOLIST

4-4 Managing a Session Programmatically

RUN HPMENU.PUB.SYS

BYE

This UDC is executed at each session logon when the STARTSESS program is run. It
automatically places the user into the application speci�ed in the :RUN command (in this case,
HPMENU.PUB.SYS).

Using :STARTSESS in the Startup State Configurator

Example 4-1 illustrates how you can programmatically create sessions on speci�ed terminals.
However, the system must be up and running, and you must execute the program from a
session you have already logged onto.

You can use :STARTSESS from within the System Startup State Con�gurator to create sessions
on speci�ed terminals every time you start the system. If you have SM Capability as well as
PS capability, you can use the System Startup State Con�gurator facility to automatically:

Reset any of the system-de�ned defaults

Stream special jobs

Open DS lines

Create user sessions on speci�ed terminals when the system comes up

Using the full functionality of the System Startup State Con�gurator, it is possible for you to
describe beforehand exactly what the desired System Startup State should be.

In Example 4-2, the STARTUP command de�nes actions that the system will perform regardless
of the type of system startup used by the operator. WARMSTART (corresponds to the
system startup command START RECOVERY) and COOLSTART (corresponds to the system
startup command START NORECOVERY), as de�ned below, will cause sessions to be created for
MGR.ACCT on logical device 20 (the Console) and for NOVICE.ACCT on logical devices 21, 22,
and 23.

Managing a Session Programmatically 4-5

STARTUP

STREAMS 10

ALLOW @.@;COMMANDS=REPLY

ALLOCATE COBOLII.PUB.SYS

LIMIT 4,16

JOBFENCE 4

OUTFENCE 5

WARMSTART

STARTSESS 20;MGR.ACCT;HIPRI;NOWAIT

STARTSESS 21;NOVICE.ACCT;NOWAIT

STARTSESS 22;NOVICE.ACCT.NOWAIT

COOLSTART

STARTSESS 20;MGR.ACCT;HIPRI;NOWAIT

STARTSESS 21;NOVICE.ACCT;NOWAIT

STARTSESS 22;NOVICE.ACCT;NOWAIT

STARTSESS 23;NOVICE.ACCT;NOWAIT

Example 4-2. :STARTSESS Command Used in Startup State Configurator

If the following UDC is located in the UDC �le of the speci�ed sessions, the user is relieved of
having to deal with the MPE/iX CI:

LOGON

OPTION LOGON,NOBREAK,NOHELP,NOLIST

RUN HPMENU.PUB.SYS

BYE

This UDC is executed at the time of session logon. It automatically places the user into the
application speci�ed in the :RUN command (in this case, HPMENU.PUB.SYS).

For more information about the MPE/iX System Startup State Con�gurator, refer to
Managing Jobs and Sessions (32650-90035).

4-6 Managing a Session Programmatically

Aborting a Session Programmatically

Once your program has successfully created a session using the STARTSESS intrinsic, your
program no longer has any control over that session, except to abort it using the ABORTSESS
intrinsic. The newly created sessions runs as an independent system-managed process and is
not a child process of the process that invoked STARTSESS.

The ABORTSESS intrinsic (the programmatic equivalent to the :ABORTJOB command) is
provided to enable your program to remove (abort) a selected session from your system.
ABORTSESS is commonly used in conjunction with the STARTSESS intrinsic to allow your
program a limited form of control over interactive sessions located on your system.

Requirements for Using ABORTSESS

While the ABORTSESS intrinsic does not require either the PS or the PH capabilities, your
program can successfully call ABORTSESS only if the program is executing in a session (or job)
that satis�es one or more of the following conditions:

Your session is on the System Console, or has been allowed the :ABORTJOB command by the
Console.

:JOBSECURITY has been set to LOW and one of the following three conditions is true:

1. The user and account names of your session are the same as the user and account names
of the session to be aborted.

2. Your session has AM capability, and the account name of your session is the same as the
account name of the session to be aborted.

3. Your session has SM capability.

Note Aborting a session or job is a last resort measure. If you must do so, make
sure you abort the right one, and make every e�ort to warn the user �rst.

Identifying the Job/Session You Want Aborted

The ABORTSESS takes as a required parameter the job/session number the system has
associated with the session you want to abort. The STARTSESS intrinsic returns this
job/session number to your program when you create the session.

The JOBINFO intrinsic can also return a job/session number if you pass it the user and account
names of a selected session, but if there are multiple sessions associated with the same user
and account, you cannot be guaranteed that JOBINFO will return the correct job/session
number. In this case, the value returned by STARTSESS is the safest value to use.

An example of an ABORTSESS call is:

ABORTSESS(JSID,JSNUM,JSSTATUS)

The parameters speci�ed in the example are described below:

JSID Passes an integer value indicating whether the process to be aborted is a
session (JSID=1) or a job (JSID=2). This parameter is necessary because
session numbers and job numbers can be identical.

Managing a Session Programmatically 4-7

JSNUM Passes the system-de�ned session number or job number of the process that is
to be aborted. This value was returned by the STARTSESS intrinsic when you
created the session you are now planning to abort.

JSSTATUS Returns status information about the success or failure of the intrinsic call.

ABORTSESS deletes the speci�ed session or job from the system and sends a message to the
standard list device ($STDLIST) of the aborted session or job:

SESSION ABORTED BY SYSTEM MANAGEMENT

or

JOB ABORTED BY SYSTEM MANAGEMENT

No abort message is sent to the System Console. The session or job is deleted from the
system in a fashion similar to that described in \Deleting Processes" in Chapter 2 \Process
Management Tasks".

For more information about managing jobs and sessions on MPE/iX, refer to Managing Jobs
and Sessions (32650-90035).

4-8 Managing a Session Programmatically

	Top of Document
	Contents
	Processes and Process Management
	What is a Process?
	Life Cycle of a Process
	Organization of Processes
	Managing User Processes
	Managing a Session Programmatically

	Process Management Tasks
	Assigning Process Handling (PH) Capability
	Creating a Process (PH Capability Required)
	Activating a Process (PH Capability Required)
	Suspending a Process (PH Capability Required)
	Delaying a Process
	Requesting a Process Break
	Deleting Processes
	Interrogating Processes
	Passing Information to a Process
	Rescheduling a Process (PH Capability Required)

	Deadlock Considerations
	Managing a Session Programmatically
	Creating a Session Programmatically
	Aborting a Session Programmatically

