
Message Catalogs:Programmer's Guide

900 Series HP 3000 Computers

ABCDE

HP Part No. 32650-90021

Printed in U.S.A. 19871101

E1187

Copyright c
 1987,1988,1989,1990,1991,1992,1993,1994 by
Hewlett-Packard Company

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition November 1987 A.01.00

iii

Documentation Map

iv

Preface

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of
forward-compatible operating systems for the HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will encounter references to
MPE XL, the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs
written for MPE XL will run without change under MPE/iX You can continue to use MPE
XL system documentation, although it may not refer to features added to the operating
system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating system for HP 3000s,
not based on PA-RISC architecture. MPE V software can be run on the PA-RISC (Series 900)
HP 3000s in what is known as compatibility mode.

This manual is written for experienced programmers who are inexperienced in working with
message catalogs. It is a programmer's guide that gives you step-by-step examples of creating,
accessing, and modifying message catalogs. It also explains how to maintain message catalogs
and create a HELP facility.

This manual contains only information on MPE/iX message catalogs. For information on
MPE/iX intrinsics, refer to the MPE/iX Intrinsics Reference Manual (32650-90028). For
information on MPE/iX native languages, refer to the Native Language Programmer's Guide
(32650-90022).

v

This manual is intended for use by programmers that are developing or maintaining a message
catalog. It assumes knowledge of general programming and MPE concepts.

Organization of This Manual

This manual is structured as follows:

Chapter 1 Introduction contains an introduction to message macilities on MPE/iX. It
introduces the di�erent message facilities.

Chapter 2 Creating an Application Message Catalog describes the facility for creating your
own catalogs for your applications. It includes discussions on localized
applications, GENCAT.PUB.SYS, application catalogs, source catalogs, catalog
naming conventions, and parameter substitutions.

Chapter 3 Accessing Application Messages shows you how to use the catalog intrinsics
(CATOPEN, CATCLOSE, and CATREAD) to obtain messages to use in your
applications.

Chapter 4 Modifying an Application Message Catalog contains information about
expanding formatted �les, creating maintenance �les, and using collision �les.

Chapter 5 Accessing System Error Messages describes the System Message facility and how
to use system error messages from the two system error message catalogs,
CATALOG.PUB.SYS and SYSCAT.PUB.SYS, for your own use.

Chapter 6 Creating Your Own HELP Facility explains how to create a HELP �le and
format the �le with MAKECAT.PUB.SYS to make a HELP facility.

Appendix A GENCAT Error Messages lists information on errors associated with GENCAT.
Included are error numbers, messages, meanings, and corrective actions.

Appendix B Maintenance Tasks for Catalogs Formatted With MAKECAT explains how to
use MAKECAT, convert programs and message catalogs from those that use
MAKECAT formatted messages to those that use GENCAT formatted messages, and
what the di�erences between MAKECAT and GENCAT are.

Appendix C COBOL Examples presents the COBOL version of Pascal examples given in the
body of the manual.

Appendix D FORTRAN Examples presents the FORTRAN version of Pascal examples given
in the body of the manual.

vi

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following
example, you must replace �lename with the name of the �le:

COMMAND(�lename)

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

vii

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

viii

Contents

1. Introduction

When to Use Message Catalogs . 1-1
Application Message Facility . 1-2
GENCAT Utility . 1-2
Catalog Intrinsics . 1-3
User Message Catalogs . 1-3

System Message Facility . 1-3
HELP Facility . 1-4
Program Examples . 1-4
Summary . 1-4

2. Creating an Application Message Catalog

Overview . 2-1
Using Application Message Catalogs 2-1
Introducing the GENCAT Utility . 2-2
Types of Files . 2-2
Using GENCAT in Batch Mode . 2-2
GENCAT JCWs . 2-3

Creating a Source File . 2-3
Directives . 2-3
Comment Records . 2-3
$SET Records . 2-4
Message Records . 2-4

Special Characters . 2-5
Parameter Substitution . 2-6
Positional Parameter Substitution 2-6
Numerical Parameter Substitution 2-6

Example Source Catalog . 2-7
Naming Convention . 2-7
Formatting a Source File . 2-8
Summary . 2-9

3. Accessing Application Message Catalogs

Overview . 3-1
Opening a Catalog . 3-2
Reading Messages . 3-2
Parameter Substitution . 3-3
Message Output . 3-3

Closing a Catalog . 3-4
Example of Accessing an Application Message Catalog 3-4
Summary . 3-6

Contents-1

4. Modifying the Application Message Catalog

Overview . 4-1
Creating an Expanded Source File 4-2
Modifying a Source File . 4-3
Editing the Source File . 4-3
Merging Source and Maintenance Files 4-4
Merging by Line Numbers . 4-4
Modifying a Record . 4-5
Adding a Record . 4-5
Deleting a Record . 4-5
Example . 4-5

Merging by Set and Message Number 4-6
Adding a Set . 4-6
Deleting a Set . 4-6
Modifying a Set or Message . 4-6
Adding a Message . 4-6
Deleting a Message . 4-6
Comment Records . 4-7
Example . 4-7

Creating a New Source File . 4-7
Rolling Back to the Old Source File 4-9
Summary . 4-10

5. Accessing System Error Messages

When to Use System Error Messages 5-1
Overview . 5-1
Format of a Message Catalog . 5-2
Message File Format Example . 5-2
Directives and Special Characters 5-3

Accessing the CM Error Message Catalog 5-4
Opening the CM Error Message Catalog 5-4
Reading Messages With GENMESSAGE 5-5
Parameter Substitution . 5-5
Message Output . 5-6

Closing the CM Error Message Catalog 5-7
Example of Accessing the CM Error Message Catalog 5-7

Accessing the NM Error Message Catalog 5-9
Opening the NM Error Message Catalog 5-10
Reading Messages With CATREAD 5-10
Parameter Substitution . 5-10
Message Output . 5-10

Closing the NM Error Message Catalog 5-11
Example of Accessing the NM Error Message Catalog 5-12

Summary . 5-13

Contents-2

6. Creating Your Own HELP Facility

Overview . 6-1
Creating the Source File . 6-1
Keyword Commands . 6-2
File Commands . 6-3
Example Source File . 6-3

Formatting the Source File . 6-3
Accessing the HELP Facility . 6-4
Summary . 6-4

A. GENCAT Error Messages

B. Catalogs Formatted With MAKECAT

Creating a Formatted Catalog . B-1
Accessing the Message Catalog . B-1
Modifying the Message Catalog . B-2
Converting MAKECAT Formatted Catalogs B-2
Altering the Catalog . B-2
Changing the Intrinsic Access . B-2

GENCAT MAKECAT Comparison B-3

C. COBOL Progam Examples

Example of Accessing an Application Message Catalog C-1
Example of Accessing the CM Error Message Catalog C-3
Example of Accessing the NM Error Message Catalog C-5

D. FORTRAN Progam Examples
Example of Accessing an Application Message Catalog D-1
Example of Accessing the CM Error Message Catalog D-4
Example of Accessing the NM Error Message Catalog D-8

Index

Contents-3

Figures

1-1. Message Catalog Access . 1-2
2-1. Formatting a Source File With GENCAT 2-8
3-1. Accessing an Application Message Catalog 3-1
4-1. Merging Files to Create a New Source (Creating a Collision File is Optional) 4-2
4-2. Expanding a GENCAT Formatted Catalog 4-2
4-3. Creating a New Source . 4-8
4-4. Rolling Back to the Old Source Catalog 4-10
5-1. Accessing System Error Messages 5-2
5-2. Accessing CATALOG.PUB.SYS 5-4
5-3. Accessing SYSCAT.PUB.SYS . 5-9
6-1. Keyword Subdivisions . 6-2

Tables

B-1. MAKECAT/GENCAT Comparison B-3

Contents-4

1

Introduction

Message catalogs are �les that contain informative user messages to be output from
applications. These messages are numbered and grouped into numbered sets. The messages
are accessed with their set and message numbers by your application program and output to
users.

This manual tells you how to create, access, and modify your own message catalogs, access
system message catalogs, and create your own HELP facility. It takes you step-by-step
through the steps needed to work with message catalogs. This manual presents example
catalogs and programs to help you create your own system messages and applications.

When to Use Message Catalogs

Using message catalogs to output messages is a convenient and e�cient method to create a
user interface. You may want to use message catalogs if you:

Have prompts, error messages, informative messages, etc. that you output to users.

Plan to localize the application.

Do not want to recompile each time you alter your messages.

Want easy access to the messages.

Message catalogs allow you to have a consistent and logical method of outputting messages to
the user. The messages are separate from your code; therefore, localization (translation to
other languages) is more e�cient. Only the message catalog needs to be translated and all the
messages are in a de�ned area. Because the messages are apart from the code, you won't need
to retain the source code and recompile when you make changes to the catalog.

The use of message catalogs allows you to create application message catalogs with messages
in a user's native language and access these messages programmatically. Messages such as
prompts, commands, error messages, or conventions for date and time, can be stored in
separate ASCII editor �les. As a result, you can create and maintain �les without changing
the program itself.

Message catalogs are easily used. As shown in Figure 1-1, you open the catalog from your
application, read and output messages, then close the catalog.

Introduction 1-1

Figure 1-1. Message Catalog Access

MPE/iX supports three message facilities:

Application Message Facility

System Message Facility

HELP Facility

Each is used for a di�erent cataloging task.

Application Message Facility

The Application Message Facility contains:

GENCAT.PUB.SYS utility program

Catalog intrinsics

User message catalogs

GENCAT Utility

GENCAT is a menu-driven program that performs various operations on message catalogs.
It formats the message catalog for more e�cient access, allows you to easily make changes
to the catalog, and expands a formatted catalog to its original form. GENCAT can be run
interactively or by a job.

1-2 Introduction

Catalog Intrinsics

Three intrinsics are available for accessing application message catalogs: CATOPEN, CATREAD,
and CATCLOSE. These intrinsics open the formatted catalog, read and output the messages,
and close the catalog. Use of these intrinsics is discussed in Chapter 3.

User Message Catalogs

You create your own catalogs by organizing your numbered messages into numbered sets and
then formatting them with GENCAT. Your messages may contain place holders so that at run
time, parameters are substituted in the messages. Messages usually consist of error messages,
prompts, and informational messages.

Creating, accessing, and modifying application message catalogs is discussed in Chapters 2-4.

System Message Facility

The MPE/iX System Message Facility consists of two message catalogs:

CATALOG.PUB.SYS, which contains Compatibility Mode system error messages.

SYSCAT.PUB.SYS, which contains Native Mode system error messages.

CATALOG.PUB.SYS is formatted with the MAKECAT utility. Its messages are accessed with
the GENMESSAGE intrinsic. CATALOG.PUB.SYS contains messages from procedures executing in
Compatibility Mode.

SYSCAT.PUB.SYS is formatted with the GENCAT utility. Its messages are accessed with the
CATREAD intrinsic. SYSCAT.PUB.SYS contains messages from procedures executing in Native
Mode.

You can only access messages in the System Message Facility; you can't modify the �les. For
example, you can output error messages from your program without creating your own error
message catalog.

Accessing system error messages is discussed in Chapter 5.

Introduction 1-3

HELP Facility

The HELP Facility is a special type of message facility. It contains CICAT.PUB.SYS,
the default HELP subsystem catalog that provides users with online help for MPE/iX.
CICAT.PUB.SYS can be equated to a your HELP �le.

HELP catalogs are formatted with the MAKECAT utility and accessed directly by users.

The HELP Facility provides a user interface that allow messages to be accessed very
di�erently from the user's standpoint. The HELP facility interface opens the catalog,
reads and outputs messages, and closes the catalog without explicit user operations. The
messages are identi�ed without set and message numbers and may not be accessed by user's
applications.

Creating your own HELP facility is discussed in Chapter 6.

Program Examples

This manual takes you step-by-step through the processes of: creating, accessing, and
modifying application message catalogs (formatted with GENCAT.PUB.SYS), accessing system
message catalogs, creating your own HELP facility, and maintaining application message
catalogs that were formatted using MAKECAT.PUB.SYS.

This manual presents many examples; they show you each operation to perform and allow you
to base your own actions on them. Complete program examples are shown, as well as program
fragments, sample dialogs, and message catalog examples. Example programs are shown in
the body of the manual in Pascal; examples in COBOL and FORTRAN are given in the
appendices. Although error checking routines are not explained or presented in this manual,
they are indicated on program examples. For information on intrinsic error checking, refer to
the MPE/iX Intrinsics Reference Manual (32650-90028).

Summary

Message catalogs provide a consistent way to access messages such as error messages or user
dialogs and are easily created, modi�ed, and accessed. They are separate from the programs
that call them, so they are easily modi�ed. For example, translating applications into a native
language only requires the message catalog to be translated.

You usually create your own message catalog to output messages from an application; you
may use the system error messages if they are appropriate. A special type of message catalog
is a HELP catalog. Messages are directly output to you through a prede�ned interface.

1-4 Introduction

2

Creating an Application Message Catalog

Application messages catalogs are message catalogs that you build, access, and modify. These
catalogs contain messages that you output to users from your applications. Application
message catalogs are used to organize messages from an application program. These messages
may be grouped by type of message (prompt, error message, etc.) and accessed from a
message catalog to modularize a program; therefore, all messages output from an application
can be placed in a single location separate from the code. The Application Message Facility
contains the GENCAT.PUB.SYS utility program and the catalog intrinsics, CATOPEN, CATREAD,
and CATCLOSE.

Overview

This chapter introduces you to the Application Message Facility and explains how to create a
message catalog. Topics include:

Using Application Message Catalogs

Introducing the GENCAT Utility

Creating a Source File

Formatting a Message Catalog

Using Application Message Catalogs

You use application message catalogs whenever you want to keep application output messages
separate from the program code. This separation is done so that messages can be altered
without having to recompile the program source. Message catalogs are also used when you
intend to create e�cient, modularized programs. When the output messages are physically, as
well as logically, grouped together they are easy to keep consistent and current.

Application message catalogs are often used for Native Language Support (NLS). When
applications are used in many countries and translated into many languages, the messages
that are output to the user are translated (localized) into the native language. Text, such as
prompts, commands, and messages intended for the user's native language interaction with
an application, is stored in message catalogs. Applications are localized without changing
the program code. For information about message catalog translation, refer to the Native
Language Programmer's Guide (32650-90022).

Creating an Application Message Catalog 2-1

Introducing the GENCAT Utility

GENCAT.PUB.SYS is the program that formats, incorporates your modi�cations, and unformats
(expands) the message catalog �les. GENCAT is menu-driven with HELP available in each
step.

GENCAT has an online HELP facility. To access HELP, enter the index number for HELP
from the menu, or a \?" in response to any prompt that does not have a menu selection for
HELP.

Explanations of GENCAT error messages are given in Appendix A.

Types of Files

GENCAT uses or creates four types of �les:

Source - You create source �les; they contain the sets of messages for your application.
Source �les are EDIT/V-compatible, ASCII �les. Creating a source �le is described in this
chapter.

Formatted - These �les are created by GENCAT from your source �les. They contain a
directory to the messages (as well as the messages) for quick access. The �les are formatted
in binary and are not EDIT/V-compatible. Formatted �les are accessed by your application;
the application then outputs the messages. Creating formatted �les is described in this
chapter.

Maintenance - You create these ASCII �les in an EDIT/V-compatible format. Maintenance
�les contain corrections to your source �les, such as adding, deleting, or replacing messages
and sets. Creating maintenance �les is described in Chapter 4.

Collision - When you use a maintenance �le to modify your source �le, GENCAT creates
a collision �le on your request. This ASCII, EDIT/V-compatible �le contains all the
changes made to the source �le by a given maintenance �le. If you use the collision �le as
a maintenance �le on a previously modi�ed source �le, you will get the original source.
Creating collision �les is described in Chapter 4.

GENCAT dialog examples are given throughout this manual. The operations are performed
on the example �les: SOURCE, FORMAT, MAINT, and COLISION. They are source, formatted,
maintenance, and collision �les respectively. Operations on the example �les show you how to
use GENCAT for your own message catalogs.

Using GENCAT in Batch Mode

To run GENCAT from a batch job, enter your responses to GENCAT prompts in the INFO
= string after specifying the execution of the GENCAT utility. Type the GENCAT menu
numbers and your �le names in the same order as you would interactively. Separate your
responses by semicolons. Submit the job in the usual manner.

An example of formatting a source �le, named SOURCE, to the formatted �le, FORMAT, with
GENCAT is:

!JOB Jobname,User/Userpass.Acct/Acctpass,Group/Groupass

!Run GENCAT.PUB.SYS;INFO = "3;SOURCE;FORMAT;0"

!EOJ

2-2 Creating an Application Message Catalog

If GENCAT encounters an error while formatting, expanding, or modifying a catalog, it will
abort the job.

For information on formatting with GENCAT, refer to the end of this chapter. For
information about creating jobs, refer to the MPE/iX Commands Reference Manual
(32650-90003).

GENCAT JCWs

GENCAT sets one of three Job Control Words (JCWs) at the conclusion of a formatting,
maintenance, or expansion operation: GCFORMAT, GCMAINT, or GCEXPAND, respectively. If the
operation completes successfully, the appropriate JCW is set to zero; if it fails, the JCW is set
to the GENCAT error number. These errors are listed in Appendix A.

For information about JCWs, refer to Command Interpreter Access & Variables Programmer's
Guide (32650-90011).

Creating a Source File

A source �le is an MPE ASCII �le in an EDIT/V-compatible format created in your favorite
editor. The catalog contains messages to be output to users. The messages are divided into
logical groupings of sets.

This section takes you through the tasks of:

Specifying comments, sets, and messages with directives.

Using special characters in your messages.

Substituting parameters in your messages.

Directives

A source catalog contains directives that partition information in the message catalog and
indicate the beginning of each record. Directives are not printed out when the catalog is
accessed and always begin in column one. There are three types of directives in a source �le:

$ to denote comment records.

$SET or $set to mark the beginning of a $SET record.

Message numbers to indicate message records.

Blank lines are not allowed in a message catalog.

Comment Records

Comments are used throughout the catalog to document sets and messages, and to make
them easier to read. The format of a comment record, where comment is an optional string of
characters is:

$comment

A space between $ and comment is optional.

Creating an Application Message Catalog 2-3

$SET Records

A $SET record initiates a logical grouping of messages. Sets break the catalog into manageable
segments containing logical groupings of messages (for example, one set of messages for
prompts, one set for instructions, one set for error messages). Each set is identi�ed by a set
number. Set numbers:

Identify each set.

Must be in ascending sequence and unique within the catalog that contains them.

Do not need to be consecutive.

Must be greater than 0 and less than 256.

May have leading zeros.

The format of a $SET record where setnum, an integer, is the required set number is:

$SET setnum comment

- or -

$set setnum comment

The comment is an optional text string that must be separated from the set number by a
blank. You may use $SET or $set, but not $Set or any variation of mixed cases. Examples of
set directives are:

$SET 1 Prompts

$

$set 2 Error messages

Note the use of a blank comment record for clarity.

Message Records

Message records contain the messages that are output to the user. Message records consist of
a message number followed by the message text. This text may be an error message, prompt,
or any text which may change according to the language or the country where the program
will be used. Message record numbers:

Identify message locations within a set.

Must be in ascending sequence and unique within the set that contains them.

Do not need to be consecutive.

Must be greater than 0 and less than 32,767.

Must begin in column one.

May have leading zeros.

For example, within a set, you can have messages 1-25, 101, 300-332, and 32,766. All of these
message numbers can be used again in another set. The format for a message record where
msgnum, an integer, is the required message number is:

msgnum message text

The message text is an optional character string which follows the message number. If the
text is not preceded by a blank, GENCAT replaces the character immediately following the
message number with a blank and informs you that a blank has replaced the character. An

2-4 Creating an Application Message Catalog

exception is made if one of two special characters, \%" or \&," follow the message number.
These characters will not be replaced by a blank. Their meaning is explained in the following
section.

An example of message records, set directives, and comments follows:

$SET 1 Prompts

1 ENTER FIRST NAME

2 ENTER LAST NAME

$

$

$set 2 Error Messages

1 NAME NOT ON DATA BASE

2 ILLEGAL INPUT

Special Characters

Special characters are used to control the format and content of messages when the messages
are output.

% - allows the message record to remain on several lines when printed out. It breaks up a
line by posting a carriage return/line feed before writing the next record. For example:

3 AN ERROR OCCURRED DURING THE LOADING %

OF THE DATA BASE.

When this message is accessed, it results in a display of:

AN ERROR OCCURRED DURING THE LOADING

OF THE DATA BASE.

& - indicates that the message record is continued on the next line in the source �le but is
printed out as one line. For example:

98 THE NUMBER OF FILES &

DOES NOT MATCH THE &

SYSTEM'S CALCULATIONS.

When this message is accessed, it is displayed as:

THE NUMBER OF FILES DOES NOT MATCH THE SYSTEM'S CALCULATIONS.

Note the use of blanks as separators preceding the ampersand.

~ - indicates a literal character The special character that follows it is treated as a part of
the message and is printed out when accessed. If you want a tilde in your message, you
must put two tildes in a row.

! - indicates the position for a parameter to be substituted in at run time. This is
explained in detail below.

Creating an Application Message Catalog 2-5

Parameter Substitution

Parameter substitutions are used to insert values that will be known at run time into your
messages. An exclamation mark (!) is used within a message to indicate where the parameter
is to be inserted. ! is treated as a special character; if you want to use an exclamation point
in your message, use the tilde before it. You are allowed up to �ve parameter substitutions in
each message. The parameters that are substituted are strings with an ASCII null as the last
character. You may choose positional or numerical parameter substitution. Mixing these two
types within a message is not allowed; if you do so, GENCAT will not create a formatted �le.

The CATREAD intrinsic, shown in the following examples, retrieves a message from the catalog
and substitutes the necessary prarmeters. Using CATREAD is discussed in Chapter 3.

Positional Parameter Substitution

Positional parameter substitution allows the parameters to be substituted from left to right.
The example listed below will demonstrate the use of positional parameter substitution.

Using the following values for parameter substitution:

var

Parm_1 : packed array of CHAR [0:5];

Parm_2 : packed array of CHAR [0:2];

Parm_1 := 'MARY';

Parm_2 := '3';

Message 400 in set 13 is:

400 INPUT FROM ! ON TERMINAL NUMBER !

The execution of the CATREAD intrinsic call . . . CATREAD (. . . , parm_1, parm_2, . . .);
results in the following message:

INPUT FROM MARY ON TERMINAL 3

Numerical Parameter Substitution

Numerical parameters allow the user to decide where the parameters are to be placed within
the message. The exclamation mark (!) is immediately followed by a number in the range
1 through 5. Numerical parameter substitution is not generally used. It is useful when you
rewrite your messages, or rearrange the parameters in the message, without changing the
CATREAD call in the application. The example listed below demonstrates the use of numerical
parameter substitution and uses the parameter de�nitions given above.

Message 401 in set 13 is:

401 INPUT FROM TERMINAL NUMBER !2 BY !1

The execution of the same CATREAD intrinsic call as above (. . . CATREAD (. . . , parm_1,

parm_2, . . .);) results in the following message:

INPUT FROM TERMINAL NUMBER 3 BY MARY

2-6 Creating an Application Message Catalog

Example Source Catalog

Notice the $SET numbers, message numbers, message comments, and the use of blanks in the
example source catalog listed below:

$SET 1 Prompts

1 ENTER FIRST NAME

2 ENTER LAST NAME

$

$

$set 2 Error Messages

1 NAME NOT ON DATA BASE

2 ILLEGAL INPUT

3 AN ERROR OCCURRED DURING THE LOADING %

OF THE DATA BASE.

98 THE NUMBER OF FILES &

DOES NOT MATCH THE &

SYSTEM'S CALCULATIONS.

$

$set 13 Run-Time Messages
400 INPUT FROM ! ON TERMINAL NUMBER !

401 INPUT FROM TERMINAL Number !2 BY !1

The source catalog given above is used in further examples in this manual and denoted by the
�le name, SOURCE.

Naming Convention

Before a source �le is formatted by the GENCAT utility, you must decide how you are going
to name your formatted catalog. Catalogs that are not going to be localized may use any valid
MPE/iX �le name. Catalogs that are going to be localized should take some guidelines into
consideration.

An application that has been localized into more than one language will typically have a
separate message catalog for each language. A naming convention facilitates using di�erent
localized versions of �les required by an application program.

Each native language supported by Native Language Support (NLS) has a three-digit
language ID number. This ID number can be used as the last three characters of each catalog
�le name to identify each localized catalog. This convention is used when the NLAPPEND
intrinsic selects the message catalog for the local language at run-time.

The NLAPPEND intrinsic is called to concatenate the language ID number and a generic
�ve-digit catalog �le name to form the name of the catalog that is opened.

For example, an original unlocalized message catalog is APCAT000. The message catalog
in German would be APCAT008 because the language ID for German is 8. NLAPPEND
concatenates 008 to APCAT to create the name of the catalog that is opened with CATOPEN.

Refer to the Native Language Programmer's Guide (32650-90022) for a complete list of native
languages and their corresponding language ID numbers. Run the NLUTIL utility to see the
languages that are available on your system.

Creating an Application Message Catalog 2-7

Formatting a Source File

You must format the source catalogs so the catalog intrinsics can access them. GENCAT
formatted message �les are binary and cannot be edited. Formatting compacts the �les and
creates a directory, which saves disc space and reduces access time. As shown in Figure 2-1,
GENCAT creates a formatted catalog from a source �le.

Figure 2-1. Formatting a Source File With GENCAT

During the formatting process, GENCAT veri�es that:

All directives are legal and used correctly.

Set numbers are in ascending order.

Set numbers are greater than 0 and less than 256.

Message numbers are in ascending order within each set.

Message numbers are greater than 0 and less than 32,767.

Continuation and concatenation characters are correct.

Parameter substitution characters are used correctly.

The dialog listed below is an example of formatting a source catalog:

:RUN GENCAT.PUB.SYS

HP32414A.02.01 GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

0. EXIT.

1. HELP.

2. MODIFY SOURCE CATALOG.

3. FORMAT SOURCE INTO FORMATTED CATALOG.

4. EXPAND FORMATTED CATALOG INTO SOURCE.

2-8 Creating an Application Message Catalog

>>3

ENTER NAME OF SOURCE FILE TO BE FORMATTED

>>SOURCE

FORMATTING...

ENTER NAME FOR NEW FORMATTED FILE

>>FORMAT

TOTAL NUMBER OF SET FORMATTED = 3

TOTAL NUMBER OF MESSAGES FORMATTED = 8

FORMATTING SUCCESSFUL

The formatted catalog given above is used in further examples in this manual and denoted by
the �le name, FORMAT.

Summary

To create an application message catalog, you �rst produce a source �le that contains
directives (comment records, set records, and message numbers), messages, and special
characters (&, %, ~, and !).

Messages are identi�ed by message and set number and may have run-time parameters
inserted when accessed.

After deciding on a naming convention, if you have Native Language Support (NLS)
considerations, the source message catalog is then formatted by the GENCAT utility. The
GENCAT program can be run by a job and sets JCWs to indicate success or failure of
operations.

The formatted message is accessed by the application program which then inserts run-time
parameters and outputs messages to the user. This access is described in Chapter 3.

Creating an Application Message Catalog 2-9

3

Accessing Application Message Catalogs

After you create a formatted message catalog with the GENCAT utility, you access the
formatted catalog from your application with system intrinsics, as shown in Figure 3-1. To
read and output the messages, you must �rst open the catalog. Messages may be output to a
�le or a bu�er. If run-time parameters are speci�ed, they are substituted when messages are
output. Before your program �nishes, you must close the catalog.

Overview

This chapter explains how to access your application message catalog and presents an example
of accessing the example catalog, FORMAT, that was created in the last chapter. Topics include:

Opening a Catalog - using the CATOPEN intrinsic

Reading Messages - using the CATREAD intrinsic, specifying parameters, and outputting
messages

Closing a Catalog - using the CATCLOSE intrinsic

Example of Accessing an Application Message Catalog

Figure 3-1. Accessing an Application Message Catalog

Accessing Application Message Catalogs 3-1

Opening a Catalog

The CATOPEN intrinsic opens an application message catalog. The syntax for the CATOPEN
intrinsic is:

catindex := CATOPEN (formaldesignator, catstatus);

The catindex is a value returned by the CATREAD intrinsic used to identify the message catalog
being accessed. This number is not the same as the �le number. The formaldesignator
parameter contains the string that identi�es the catalog �le to open; catstatus returns the
error number. It tells if the call is successful. An example of opening the example catalog,
FORMAT, would be done as follows:

var

Designator : packed array [1..7] of CHAR;

Catstatus : packed array [1..2] of SHORTINT;

Catindex : INTEGER;

Designator := 'FORMAT ';
Catindex := CATOPEN (Designator, Catstatus);

For detailed information about the CATOPEN intrinsic, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

Reading Messages

The CATREAD intrinsic reads the message speci�ed by the set and message number. When
you use CATREAD to read messages, the message facility fetches the message from a message
catalog, inserts parameters (if speci�ed), and then routes the message to a �le or returns the
message in a bu�er to the calling program. The syntax for the CATREAD intrinsic is:

msglength := CATREAD (catindex, setnum, msgnum, catstatus,
bu�er, bu�ersize, parm1, parm2, parm3, parm4,
parm5, msgdest);

The functional return, msglength, receives the length of the message in bytes. The catindex
parameter refers to the catalog identi�er you received from CATOPEN. The parameters, setnum
and msgnum specify the set and message number of the message to be output. The catstatus
parameter tells you if the CATOPEN call resulted in error, and, if so, what the error is. The
optional parameters, bu�er and bu�ersize, give the bu�er to put the message in and the
size of the bu�er, respectively. The substitution parameters, parm1 through parm5 , contain
character strings to be inserted into the message at run time. The �le number to which the
message may be sent is given in msgdest .

3-2 Accessing Application Message Catalogs

Parameter Substitution

Parameters may be inserted into the message read from the catalog. Parameter substitution is
used when a message output contains information only known at run time. The parameters
are passed to the message with the param1 , param2, param3, param4, and param5 parameters
in the CATREAD intrinsic and are inserted in the message wherever an \!" is found.
Parameters are inserted from left to right in positional parameter substation and in the
numerical position indicated in numerical parameter substitution. In either case, if param(n)
is included in the CATREAD call, param(n-1) must be present (that is, you cannot specify
param3 unless param1 and parm2 are speci�ed. Refer to \Parameter Substitutions" in
Chapter 2, for more information about parameter substitution. All substitutional parameters
are passed as strings that must terminate with an ASCII null character.

Message Output

Messages may be output to a bu�er or a �le. If you output to a bu�er, you specify the bu�er
and bu�er size with the bu�er and the bu�ersize parameters. To output to a �le, you specify
the �le number (returned from HPFOPEN) and message length with the msgdest and the
bu�ersize parameters. To output to $STDLIST, use a �le number of 0 (zero).

To output message #400 from set #13 to $STDLIST, a call to the CATREAD intrinsic is done as
follows:

var

Msglength: SHORTINT;

Catindex : INTEGER; {Returned by CATOPEN}

Setnum : SHORTINT;

Msgnum : SHORTINT;

Catstatus: Packed array [1..2] of SHORTINT;

Parm_1,

Parm_2 : STRING [5];

Msgdest : SHORTINT;

Dumy : INTEGER;

Setnum := 13;

Msgnum := 400;

Msgdest := 0; {Output to $STDLIST}

Parm_1 := 'MARY';

Parm_2 :='3';

{Append ASCII null}

STRWRITE (Parm_1, (STRLEN(Parm_1)+1), Dumy, CHR(0));

STRWRITE (Parm_2, (STRLEN(Parm_2)+1), Dumy, CHR(0));

Msglength := CATREAD (Catindex, Setnum, Msgnum,

Catstatus,,, Parm_1, Parm_2,,,, Msgdest);

For detailed information about the CATREAD intrinsic, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

Accessing Application Message Catalogs 3-3

Closing a Catalog

CATCLOSE closes the message catalog speci�ed by the catindex parameter. The syntax for the
CATCLOSE intrinsic is:

CATCLOSE(catindex, catstatus)

The catindex parameter contains the value returned by the CATOPEN intrinsic that identi�es
the message catalog. The �rst element of catstatus returns the error number that tells if the
call was successful.

Closing the example catalog using the CATCLOSE intrinsic is done as follows:

var

Catstatus : packed array [1..2] of SHORTINT;

Catindex : INTEGER: {Returned by CATOPEN}

CATCLOSE (Catindex, Catstatus);

For detailed information about the CATCLOSE intrinsic, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

Example of Accessing an Application Message Catalog

This example shows the access of the sample catalog called FORMAT (created in the last
chapter); the source of this sample catalog (SOURCE) is listed below.

$SET 1 Prompts

1 ENTER FIRST NAME

2 ENTER LAST NAME

$

$

$set 2 Error Messages

1 NAME NOT ON DATA BASE

2 ILLEGAL INPUT

3 AN ERROR OCCURRED DURING THE LOADING %

OF THE DATA BASE.

98 THE NUMBER OF FILES &

DOES NOT MATCH THE &

SYSTEM'S CALCULATIONS.

$

$set 13 Run-Time Messages

400 INPUT FROM ! ON TERMINAL NUMBER !

401 INPUT FROM TERMINAL NUMBER !2 BY !1

The program uses message 1 in set 1 to prompt for a �rst name, substitutes the name in
message 400 of set 13, and outputs the message. All output is written to the terminal.

Program MSGCAT (input,output);

var

Catindex : INTEGER;

3-4 Accessing Application Message Catalogs

Catstatus : packed array [1..2] of CHAR;

Function CATOPEN: INTEGER; intrinsic;
Function CATREAD: SHORTINT; intrinsic;

Procedure CATCLOSE; intrinsic;

Procedure OPEN_A_CATALOG;

{This procedure opens FORMAT}

var

Designator : packed array [1..7] of SHORTINT;

begin

Designator := 'FORMAT '; {specify file name}

Catindex := CATOPEN (Designator, Catstatus);

{Call procedure to check Catstatus for errors}

end;

Procedure READ_A_CATALOG;

{This procedure reads a message}

{from FORMAT and prints it to }

{$STDLIST }

var

Setnum : SHORTINT;

Msgnum : SHORTINT;

Parm_1,

Parm_2 : STRING [5];

Dumy : INTEGER;

Msgdest : SHORTINT;

Msglength: SHORTINT;

begin

Msgdest := 0; {Output to $STDLIST}

Setnum := 1;

Msgnum := 1;

Msglength := CATREAD (Catindex, Setnum, Msgnum,

Catstatus,,,,,,,, Msgdest);

{Call procedure to check Catstatus}

Readln (Parm_1);

Parm_2 :='3';

{Append ASCII null}

STRWRITE (Parm_1, (STRLEN(Parm_1)+1), Dumy, CHR(0));

STRWRITE (Parm_2, (STRLEN(Parm_2)+1), Dumy, CHR(0));

Setnum := 13;

Msgnum := 400; {Output operation message}

Msglength := CATREAD (Catindex, Setnum, Msgnum,

Catstatus,,, Parm_1, Parm_2,,,, Msgdest);

{Call procedure to check Catstatus}

end;

Accessing Application Message Catalogs 3-5

Procedure CLOSE_A_CATALOG;

{This procedure closes FORMAT}

begin

CATCLOSE (Catindex, Catstatus);

{Call procedure to check Catstatus}

end;

begin {main}

OPEN_A_CATALOG;

READ_A_CATALOG;

CLOSE_A_CATALOG;

end.

When this example is run, the output is as follows:

ENTER FIRST NAME

MARY

INPUT FROM MARY ON TERMINAL NUMBER 3

Summary

After you have formatted your catalog, you access it with your program. This access is done
using the ''CATOPEN, CATREAD, and CATCLOSE intrinsics. The CATOPEN intrinsic is used to open
the formatted catalog. CATREAD reads messages from the catalog and substitutes run-time
parameters; they may be in positional or numerical form. The substitutional parameters must
be strings with an ASCII null appended. CATCLOSE closes the catalog.

3-6 Accessing Application Message Catalogs

4

Modifying the Application Message Catalog

You modify a message catalog by adding, replacing, and deleting set, message, and comment
records in the source �le. This modi�cation is done by merging two �les, an old source �le,
and the maintenance �le to create a new source �le, as shown in Figure 4-1. The old source
�le is the catalog you originally created and input to the GENCAT utility to be formatted.
The maintenance �le contains the changes that will be made to the old source �le.

You may use one of two methods to merge these �les, either by line numbers or by set and
message numbers, to create a new source. Unless consecutive blocks of a source �le require
modi�cation, the set and message number merge method is the easiest.

You may keep changes made to a source during a maintenance merge in a collision �le.
Collision �les give you the capability to rollback to the old version of the source �le.

After you create a modi�ed source �le, you format it with GENCAT. The formatted catalog
can then be accessed by your application program. For information about formatting the
source �le, refer to \Formatting a Source Catalog" in Chapter 2. For information about
accessing your formatted catalog, refer to Chapter 3.

Overview

This chapter explains how to modify your application message catalog using maintenance and
collision �les. Topics include:

Creating an Expanded Source File

Creating a Maintenance File

Creating a New Source File

Rolling Back to an Old Source File

Modifying the Application Message Catalog 4-1

Figure 4-1.

Merging Files to Create a New Source (Creating a Collision File is Optional)

Creating an Expanded Source File

To modify your application message catalog, you must have a source �le. If you do not have
access to your original source �le, re-create a source �le by expanding the formatted catalog
with the GENCAT utility, as shown in Figure 4-2.

The expanded source �le doesn't have the comments that were included in the original,
but the rest of the content in the catalog is the same. The expanded �le is created as an
unnumbered �le, even if the original source was numbered. An expanded source �le and an
original source �le are used in the same way, they are both source �les.

Figure 4-2. Expanding a GENCAT Formatted Catalog

Listed below is an example of the user dialog for expanding a formatted message catalog:

:RUN GENCAT.PUB.SYS

4-2 Modifying the Application Message Catalog

HP32414A.02.01 GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

0. EXIT.

1. HELP.

2. MODIFY SOURCE CATALOG.

3. FORMAT SOURCE INTO FORMATTED CATALOG.

4. EXPAND FORMATTED CATALOG INTO SOURCE.

>>4

ENTER NAME OF FORMATTED CATALOG TO EXPAND

>>FORMAT

ENTER NAME OF NEW SOURCE FILE

>>SOURCE

EXPANDING...

TOTAL NUMBER OF SETS EXPANDED = 3

TOTAL NUMBER OF MESSAGES EXPANDED = 8

EXPANSION SUCCESSFULLY COMPLETED

Modifying a Source File

There are two ways to modify a source catalog:

Edit the source �le

Merge the source �le with a maintenance �le

Editing the Source File

The simplest way to modify the catalog is to text the �le into EDIT/V and make changes
directly. Although this is simple, it has many drawbacks:

You have no record of the changes you've made; therefore, if the �le doesn't work, you don't
know what has been changed.

Because there is no record of the changes, you have no rollback capability; you can't go back
to the old version of the source.

Most message �les are quite large, so it is slow and ine�cient to edit them.

For these reasons, editing the source �le directly is not recommended for most catalogs and
will not be discussed further.

Modifying the Application Message Catalog 4-3

Merging Source and Maintenance Files

You use GENCAT to merge source and maintenance �les. You can use either of two di�erent
merging methods:

Merging by Line Number

Merging by Set and Message Numbers

Each method requires a di�erent type of maintenance �le. Creating each type of maintenance
�le is described below, and examples are given.

For examples of merging �les, the example source catalog created earlier in this manual is
used. The example catalog is listed below. The numbers at the left are the line numbers in
the source �le; to merge by line number, the source and maintenance �les must be numbered.
When you merge by set and message number, the �les may be numbered or unnumbered.

1 $SET 1 Prompts

2 1 ENTER FIRST NAME

3 2 ENTER LAST NAME

4 $

5 $

6 $set 2 Error Messages

7 1 NAME NOT ON DATA BASE

8 2 ILLEGAL INPUT

9 3 ERROR OCCURRED DURING THE LOADING %

10 OF THE DATA BASE.

11 98 THE NUMBER OF FILES &

12 DOES NOT MATCH THE &

13 SYSTEM'S CALCULATIONS.

14 $

15 $set 13 Run-Time Messages

16 400 INPUT FROM ! ON TERMINAL NUMBER !

17 401 INPUT FROM TERMINAL NUMBER !2 BY !1

Merging by Line Numbers

Merging a maintenance �le against a source catalog �le by line numbers allows adding,
replacing, or deleting records. These records may be $SET, message, or comment records. This
method is recommended if your changes are in blocks, you don't have a lot of modi�cations, or
you want to add, delete, or modify comment lines; otherwise, you should use the merge by set
and message number method described in the next section.

To merge �les by line numbers, both source and maintenance �le must be numbered. If either
of them are unnumbered, GENCAT will fail.

Caution Merging by line numbers allows you to delete a set directive without deleting
the messages within it or to add messages and set numbers in non-ascending
order. These are errors that GENCAT will not allow. Be aware that you are
adding and deleting information by record number.

4-4 Modifying the Application Message Catalog

Modifying a Record

If the maintenance �le's line number is common to the source �le's, the source's record is
overwritten by the maintenance record.

Adding a Record

If the line number in the maintenance �le does not exist in the source, the record represented
by that line number from the maintenance �le is added to the source at that line number.
Make sure you don't have any blank lines in your maintenance �le; GENCAT will merge them
into your source �le and when you try to format it, GENCAT will abort.

Deleting a Record

The directives $EDIT and $EDIT VOID=XXXXXXXX are used to delete records from the source
�le. $EDIT deletes the line in the source �le that the $EDIT directive is on in the maintenance
�le. If $EDIT VOID is used, the records beginning with and including the record number of the
$EDIT VOID record to record XXXXXXXX are deleted. The line number XXXXXXXX represents the
line number XXXXX.XXX of the source �le.

Example

Below is an example of merging by line numbers. The maintenance �le that follows, is merged
with the example source catalog created in Chapter 2 and repeated at the beginning of this
chapter. The numbers on the left are the line numbers in the �le.

2 1 PLEASE ENTER YOUR FIRST NAME

3 $EDIT

5 $This is where $Set 2 used to be

6 $EDIT VOID=13000

14.1 $SET 3 Misc Messages

14.2 4 Welcome to the System

14.3 6 Please wait ...

14.4 $

The new source �le created by merging by line number is listed below:

1 $SET 1 Prompts

2 1 PLEASE ENTER YOUR FIRST NAME

4 $

5 $This is where $Set 2 used to be

14 $

14.1 $SET 3 Misc Messages

14.2 4 Welcome to the System

14.3 6 Please wait ...

14.4 $

15 $set 13 Run-Time Messages

16 400 INPUT FROM ! ON TERMINAL NUMBER !

17 401 INPUT FROM TERMINAL NUMBER !2 BY !1

Modifying the Application Message Catalog 4-5

Merging by Set and Message Number

This method is usually the easiest method of modifying your source. When the source is
merged with a maintenance �le by set and message numbers, you have rollback capability and
an easy way to build a maintenance �le.

When GENCAT reads a $SET record from the maintenance �le, all records following the
$SET record are considered to be message records or comment records within that set until
GENCAT reads another $SET record or exhausts the maintenance �le. Set numbers must
be in ascending order, and all message numbers must be in ascending order within each set.
GENCAT ensures that the new source �le is created with the correct structure of set and
message numbers.

The �rst record GENCAT expects to read from the maintenance �le is a $SET, $DELSET,
or a comment record. GENCAT will continue to read and evaluate the maintenance �le
records until there is an error or the maintenance �le is exhausted. After GENCAT reads a
maintenance �le record, it is evaluated according to a set of rules, and a copy of the source is
modi�ed as necessary; a new source is then created. The following rules for evaluation apply
to set numbers and message numbers.

Adding a Set

Any new set numbers are added to the source catalog �le. All message numbers and messages
following this set record are assumed to be new, and will be added to the source �le.

Deleting a Set

To delete a set and the messages it contains, use the directive $DELSET setnum. The $DELSET
directive is allowed only in a maintenance �le. It instructs GENCAT to delete the entire set of
messages denoted by setnum. A comment may follow setnum, providing it is preceded by at
least one blank. The $DELSET directive is not written to the new �le.

The directive may be either in upper case or lower case ($DELSET or $delset). Mixed cases
are not allowed (for example, $DELSet or $deLseT).

Modifying a Set or Message

Set or message numbers, if already present, signify changes to the sets and messages currently
in the source catalog.

Adding a Message

New message numbers within a set are added to the new source. When any new message
numbers are added, you must specify the set to which they belong.

All message numbers are evaluated according to the rules for message numbers (ascending
order, 1 through 32,766).

Deleting a Message

Message numbers that are already present are deleted if no text follows the message number.
The line of text is replaced by a comment line.

4-6 Modifying the Application Message Catalog

Comment Records

Comment records cannot be added, deleted, or modi�ed when you merge by set and message
number. You must merge by line number to perform operations on comment records. All
comment lines included in a maintenance �le for message and set number merging are ignored
by GENCAT.

Example

Below is an example of merging by set and message numbers. The maintenance �le that
follows, is merged with the example source catalog created in Chapter 2 and repeated at the
beginning of this chapter. No line numbers are shown because these �les can be numbered or
unnumbered.

$set 1

1 PLEASE ENTER YOUR FIRST NAME

2

$DELSET 2

$SET 3 Misc Messages

4 Welcome to the System

6 Please wait ...

The new source �le created by merging by line number is listed below:

$set 1

1 PLEASE ENTER YOUR FIRST NAME

$

$

$

$SET 3 Misc Messages

4 Welcome to the System

6 Please wait ...

$set 13

400 INPUT FROM ! ON TERMINAL NUMBER !
401 INPUT FROM TERMINAL NUMBER !2 BY !1

Creating a New Source File

Figure 4-3 shows how the new source �le is created by merging the old source with the
maintenance �le. A collision �le may be created at this time. Collision �les are described in
the next section.

Modifying the Application Message Catalog 4-7

Figure 4-3. Creating a New Source

The dialog listed below is an example of merging source and maintenance �les. Note that the
method of merging you specify depends on the type of maintenance �le you created. To use
GENCAT to modify your source catalog, enter:

:RUN GENCAT.PUB.SYS

HP32414A.02.01 GENCAT/3000 (C) HEWLETT-PACKARD., 1983

ENTER INDEX OF DESIRED FUNCTION

0. EXT.

1. HELP.

2. MODIFY SOURCE CATALOG.

3. FORMAT SOURCE INTO FORMATTED CATALOG.

4. EXPAND FORMATTED CATALOG INTO SOURCE.

>>2

ENTER NAME OF CATALOG SOURCE FILE TO BE MODIFIED

>>SOURCE

ENTER NAME OF MAINTENANCE FILE

>>MAINT

ENTER INDEX OF MERGE TYPE

0. DO NOT MERGE.

1. HELP.

2. BY LINE NUMBER.

3. BY SET/MESSAGE NUMBER.

4-8 Modifying the Application Message Catalog

>>2 or >>3

Entering an \0" or �Return� aborts the maintenance function and returns to the main menu.

You have the option of saving all the modi�cations resulting from the merge in a collision �le.

SAVE COLLISIONS? ENTER "YES" OR "NO"

>>YES

ENTER NAME OF COLLISION FILE

>>COLISION

If the name of an existing �le is entered, the prompt is repeated. A �Return� continues the
merging without saving the collisions.

GENCAT merges the source and maintenance �les into a temporary �le, and will prompt for
the name of a permanent �le:

ENTER NAME OF NEW SOURCE CATALOG FILE

>>NEWSOURC

This prompt is repeated until a unique �le name or a �Return� is entered. The temporary �le is
copied to the new permanent �le. If a �Return� is entered, the merging is aborted.

After a new source is created, it must be formatted before it can be accessed. Formatting a
source catalog is discussed in Chapter 3.

Rolling Back to the Old Source File

After creating a new source �le by merging an old source �le with a maintenance �le, you may
want to return to using the old source after it is no longer available. To rollback to the old
source, use a collision �le, as shown in Figure 4-4.

Collision �les are created at your option when GENCAT merges source and maintenance
�les. A collision �le contains the changes that were made to an old source. A collision �le's
contents depends on the source and maintenance �les and the method used of merging. Unlike
a maintenance �le which contains information to change the old source into the new source, a
collision �le contains information to re-create the old source from the new source. To rollback
to the previous version of the source, the collision �le is merged against the new source with
the same merging method that was used to create it.

Modifying the Application Message Catalog 4-9

Figure 4-4. Rolling Back to the Old Source Catalog

Summary

To modify a message catalog, you modify your source �le then reformat the new source before
accessing the message catalog.

To create a new source, merge the maintenance �les against the old source by line number, or
set and message number. A collision �le may be created during the merging operation. When
the collision �le is used as a maintenance �le on the new source, the old source is re-created.

4-10 Modifying the Application Message Catalog

5

Accessing System Error Messages

The System Message Facility consists of two error message catalogs. The message catalogs,
CATALOG.PUB.SYS and SYSCAT.PUB.SYS, contain Compatibility Mode (CM) and Native Mode
(NM) error messages. You can access these messages, but cannot modify them. To output
error messages without creating your own message catalog, use system error messages.

When to Use System Error Messages

Only if you prefer to use system error messages should you consider accessing them. Unless
you have speci�c reasons for using system error messages, such as creating a transparent
interface, creating your own message catalogs and accessing them is the easiest way to use
message catalogs. To learn about creating your own message catalogs, refer to Chapter 2.

Overview

This chapter tells you how to use system error messages as output from your applications. It
explains:

Message Catalog Format

Accessing CATALOG.PUB.SYS, the CM error message catalog, using:

- HPFOPEN to open the catalog

- GENMESSAGE to read and output message

- FCLOSE to close the catalog

Accessing SYSCAT.PUB.SYS, the NM error message catalog using:

- CATOPEN to open the catalog

- CATREAD to read and output messages

- CATCLOSE to close the catalog

CATALOG.PUB.SYS contains the CM error messages. It was formatted with the
MAKECAT.PUB.SYS program. The catalog is opened and closed with the HPFOPEN and FCLOSE

intrinsics; messages are read with the GENMESSAGE intrinsic. GENMESSAGE allows you to access
the message catalog and substitute parameters in the message.

SYSCAT.PUB.SYS contains the NM error messages. This message catalog was formatted
with the GENCAT.PUB.SYS program. You use the catalog intrinsics to open, read from, and
close this catalog. They are CATOPEN, CATREAD, and CATCLOSE. CATREAD allows parameter
substitution where applicable.

Accessing System Error Messages 5-1

Both CATALOG.PUB.SYS and SYSCAT.PUB.SYS may be accessed from Native Mode. Figure 5-1
shows the catalogs and the intrinsics that access them.

Figure 5-1. Accessing System Error Messages

Format of a Message Catalog

Although the two system error message catalogs contain di�erent sets of messages, their
format is the same. The messages are numbered and grouped into numbered sets. The sets
are logical divisions of messages. Before you can access the messages, you must know the
messages that are available and their identifying message and set message numbers.

To examine the CM error messages you can use, go into your editor and text in
CATALOG.PUB.SYS; to examine the NM error messages, expand the formatted �le
SYSCAT.PUB.SYS, as shown in Chapter 4, and text the expanded catalog into your editor.
Both of these �les are very large, but you can view them from within your editor. As you look
at the message catalog, you will see messages, message numbers, set directives, set numbers,
comments, and special characters, such as %, &, ! and ~.

Message File Format Example

The messages you see will look similar to the following example from CATALOG.PUB.SYS:

$SET 1 SYSTEM MESSAGES

1 LDEV#!IN USE BY FILE SYSTEM

2 LDEV#!IN USE BY DIAGNOSTICS

3 LDEV#!IN USE, DOWN PENDING

5 IS "!" ON LDEV#! (Y/N)?

.

.

.

$MESSAGE 35 IS TWO LINES LONG, A PARAMETER STARTS THE

5-2 Accessing System Error Messages

$FIRST LINE, AND THE SECOND LINE IS "HP32002"

35!%

HP32002B.00.!
.

.

.

276 LDEV # FOR "!" ON ! (NUM)!

$

$SET 2 CIERROR MESSAGES

82 STREAM FACILITY NOT ENABLED: SEE OPERATOR.(CIERR 82)

200 MORE THAN 30 PARAMETERS TO BUILD COMMAND.(CIERR 200)

.

.

.

Directives and Special Characters

Directives and special characters are not output to users, but they are important factors in
the unformatted message catalog.

A directive begins in column one and denotes the beginning of a set, a comment, or a
message. They are:

$SET - indicates the beginning of a logical set of messages

$ - proceeds a comment

message number - indicates the beginning of a message

Special characters are used to control the format and content of messages when the messages
are output.

% - lets a message continue on the next line in the catalog and when printed out. When a
message is output to a bu�er, a space is inserted where the % was.

& - lets a message continue on the next line in the catalog, but, when accessed, the message
is printed on one line.

! - allows a parameter to be inserted at run time. Up to �ve parameter substitutions are
allowed in a message, and substitution is done from left to right.

~ - when preceding a special character, allows the special character to be printed.

Accessing System Error Messages 5-3

Accessing the CM Error Message Catalog

The CM error message catalog, CATALOG.PUB.SYS, is read with the GENMESSAGE intrinsic; the
catalog �le is opened with HPFOPEN and closed with FCLOSE. Accessing any catalog that was
formatted with MAKECAT.PUB.SYS is similar to accessing CATALOG.PUB.SYS. Figure 5-2 shows
how intrinsics are used to access the CM error message catalog.

Figure 5-2. Accessing CATALOG.PUB.SYS

Opening the CM Error Message Catalog

CATALOG.PUB.SYS must be opened as a permanent ASCII �le with bu�ering inhibited and
multirecord mode (PERMANENT (OLD), ASCII, NOBUF, MULTI). You use HPFOPEN to
open the catalog. HPFOPEN returns the �le number for CATALOG.PUB.SYS. This �le number is a
required parameter for the GENMESSAGE intrinsic.

The HPFOPEN intrinsic is the most e�cient way to open a �le for access. When using the
HPFOPEN intrinsic, the parameters are:

domain option (item#3) = 1 (PERMANENT)

multirecord option (item#15) = 1 (MULTI)

inhibit bu�ering option (item#46) = 1 (NOBUF)

ASCII/Binary option (item#53) = 1 (ASCII)

To open CATALOG with HPFOPEN:

const {These are the item numbers for HPFOPEN}

Designator = 2;

Domain = 3:

MultiRec = 15;

Buffering = 46;

ASCII/Binary = 53;

var {These are the parameters and options}

{ for HPFOPEN }

Filenum : INTEGER; {Returned by HPFOPEN}

Status : INTEGER; {Returned by HPFOPEN}

5-4 Accessing System Error Messages

FileName : packed array [1..20] of CHAR;

Perm : INTEGER;

On : INTEGER;
Inhibited : INTEGER;

ASCII : INTEGER;

FileName := '%CATALOG.PUB.SYS%';

Perm := 1;

On := 1;

Inhibited := 1;

ASCII := 1;

HPFOPEN (Filenum, Status, Designator, FileName,

Domain, Perm, MultiRec, On, Buffering, Inhibited,

ASCII/Binary, ASCII);

Filenum returns the �le number for CATALOG.PUB.SYS; Status returns a value that indicates
if the intrinsic call was successful. If it was not successful, Status gives you information about
the error.

For detailed information about the HPFOPEN intrinsic, refer to the MPE XL Intrinsics
Reference Manual (32650-90028).

Reading Messages With GENMESSAGE

Use the GENMESSAGE intrinsic to read messages from CATALOG.PUB.SYS. Call GENMESSAGE with
the �le number for CATALOG.PUB.SYS, a set number, a message number, and any values to be
substituted in the message.

When you use GENMESSAGE to read messages, the message facility fetches the message from
a message catalog, inserts parameters (if speci�ed), and then routes the message to a �le
or returns the message in a bu�er to the calling program. The syntax for the GENMESSAGE
intrinsic is:

msglength := GENMESSAGE (�lenum, setnum, msgnum, bu�er,
bu�ersize, parmask, param1, param2, param3, param4,
param5, msgdestination, errornum);

The parameters param1 ... param5 are used to substitute values in the message at run time.

Parameter Substitution

Parameters may be inserted into the message read from the catalog. Parameter substitution
is used when a message output contains information only known at run time, such as a ldev
number or a session name. Parameters are passed to the message with the param1 , param2,
param3, param4, and param5 parameters in the GENMESSAGE intrinsic and are inserted in the
message wherever a \!" is found. Parameters are inserted in the following order: param1
substitutes for the leftmost \!" in the message, param2 for the next ! to the right, and so
forth. If param(n) is present, param(n-1) must be present (that is, you cannot specify param3
unless param1 and param2 are speci�ed).

To specify the format of each of your parameters, use the parmask parameter of the
GENMESSAGE intrinsic.

Accessing System Error Messages 5-5

The parmask parameter indicates the format of each of the �ve substitution parameters.
Three bits describe the data type for each of these parameters. With bit zero being the
leftmost bit, the value of parmask is represented as follows:

Bits (0:3) param1
Bits (3:3) param2
Bits (6:3) param3
Bits (9:3) param4
Bits (12:3) param5

These bit values are as follows:

000 Parameter is a string that is terminated by an ASCII null (0).

001 Parameter is a 16-bit signed integer.

010 Parameter is a 32-bit signed integer by reference.

011 Parameter is ignored.

The positions of the bit values given above, indicate which substitution parameter's data type
is being speci�ed. For example, parmask = OCTAL ('13333') denotes that the �rst parameter
is passed as a 16-bit signed integer, and all other parameters are ignored.

Note If a substitutional parameter (param1 through param5) is not speci�ed, the
value in the parmask for its format is ignored.

Message Output

Messages may be output to a bu�er or a �le. If you output to a bu�er, you specify the bu�er
and a bu�er size with the bu�er and the bu�ersize parameters. To output to a �le, you
specify the �le number and message the bu�ersize parameters. To output to $STDLIST, use a
�le number of 0 (zero).

To output message #210 from set #1 to $STDLIST, use GENMESSAGE to access
CATALOG.PUB.SYS in the following manner:

var

Msglength : SHORTINT; {Returns length of message}

Filenum : SHORTINT; {Value assigned by HPFOPEN}
Setnum : SHORTINT;

Msgnum : SHORTINT;

Parmask : SHORTINT;

Param1 : INTEGER;

Msgdestination : SHORTINT;

Errornum : SHORTINT;

Setnum := 1;

Msgnum := 201;

Parmask := OCTAL ('13333');

Param1 := 95;

Msglength := GENMESSAGE (Filenum, Setnum, Msgnum,,,

Parmask, Param1,,,,, Msgdestingaion, Errornum);

5-6 Accessing System Error Messages

For detailed information about the GENMESSAGE intrinsic, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

Closing the CM Error Message Catalog

To close the CM error message catalog, use the FCLOSE intrinsic. Close the catalog with the
same domain as when opened (PERM) with unrestricted access.

var

Filenum : INTEGER; {Returned by HPFOPEN}

Disposition : SHORTINT;

Securitycode : SHORTINT;

Disposition := 0; {No changes in domain }

{or disc space}

Securitycode := 0; {Unrestricted access}

FCLOSE (Filenum, Disposition, Securitycode)

For detailed information about the FCLOSE intrinsic, refer to the MPE/iX Intrinsics Reference
Manual (32650-90028).

Example of Accessing the CM Error Message Catalog

The following listing is a Pascal program that inserts the value 95 into message number 201 in
message set 1 in the message catalog CATALOG.PUB.SYS. The message is output to $STDLIST.
The accessed portion of the message catalog is:

$SET 1

.

.

.

201 SYSTEM LOG FILE NUMBER ! IS ON

Program CM_MSGCAT (input,output);

{This program reads a message from CATALOG.PUB.SYS }

{and writes it to $STDLIST }

var

Filenum : INTEGER;

Procedure HPFOPEN ; intrinsic;

Function GENMESSAGE: SHORTINT; intrinsic;
Procedure FCLOSE ; intrinsic;

Procedure OPEN_CATALOG;

{This procedure opens CATALOG.PUB.SYS }

const {These are the item numbers for HPFOPEN}

Designator = 2;

Domain = 3;

MultiRec = 15;

Buffering = 46;

ASCII_Binary = 53;

Accessing System Error Messages 5-7

var {These are the parameters for HPFOPEN}

Status : INTEGER; {Returned by HPFOPEN}
FileName : packed array [1..20] of char;

Perm : INTEGER;

On : INTEGER;

Inhibited : INTEGER;

ASCII_file : INTEGER;

begin

FileName := '%CATALOG.PUB.SYS%';

Perm := 1;

On := 1;

Inhibited := 1;

ASCII_file := 1;

HPFOPEN (Filenum, Status, Designator, FileName,

Domain, Perm, MultiRec, On, Buffering, Inhibited,

ASCII_Binary, ASCII_file);

{Call procedure to check Status for errors}

end;

Procedure READ_CATALOG;

{This procedure reads and outputs a message from }

{CATALOG.PUB.SYS and outputs it to $STDLIST }

var

msglength : SHORTINT; {Returns length of message}

Setnum : SHORTINT;

Msgnum : SHORTINT;

Parmask : SHORTINT;

Param1 : integer;
Msgdestination : SHORTINT;

Errornum : SHORTINT;

begin

Setnum := 1;

Msgnum := 201;

Msgdestination := 0;

Parmask := Octal('13333');

Param1 := 95;

msglength := GENMESSAGE (Filenum, Setnum, Msgnum,,,

Parmask, Param1,,,,, Msgdestination, Errornum);

{Call procedure to check Errornum for errors}

end;

Procedure CLOSE_CATALOG;

{This procedure closes CATALOG.PUB.SYS}

var

Disposition : SHORTINT;

5-8 Accessing System Error Messages

Securitycode : SHORTINT;

begin
Disposition := 0; {No changes in domain }

{or disc space}

Securitycode := 0; {Unrestricted access}

FCLOSE (Filenum, Disposition, Securitycode);

{Call procedure to check Condition Code for errors}

end;

begin {main}

OPEN_CATALOG;

READ_CATALOG;

CLOSE_CATALOG;

end.

When this program is executed, the output is:

SYSTEM LOG FILE NUMBER 95 IS ON

Accessing the NM Error Message Catalog

To open, read, and close the NM error message catalog, SYSCAT.PUB.SYS, use the catalog
intrinsics: CATOPEN, CATREAD, and CATCLOSE. Accessing any catalog that was formatted with
GENCAT.PUB.SYS is similar to accessing SYSCAT.PUB.SYS. Figure 5-3 shows the intrinsics used
to access the NM system error catalog.

Figure 5-3. Accessing SYSCAT.PUB.SYS

Accessing System Error Messages 5-9

Opening the NM Error Message Catalog

The CATOPEN intrinsic opens the NM error message catalog. The syntax for CATOPEN is:

catindex := CATOPEN (formaldesignator, catstatus);

The catindex is an index used to identify the message catalog being accessed. This number
is not the same as a �le number. The formaldesignator parameter contains a string that
identi�es the catalog �le to open; catstatus returns the error number. If the �rst element of
catstatus is zero, the intrinsic call was successful, if this element is not zero, its value indicates
the error that occurred. Opening SYSCAT.PUB.SYS is done as follows:

var
Designator : packed array [1..20] of CHAR;

Catstatus : packed array [1..2] of SHORTINT;

Catindex : INTEGER;

Designator := 'SYSCAT.PUB.SYS ';

Catindex := CATOPEN (Designator, Catstatus);

For detailed information about the CATOPEN intrinsic, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

Reading Messages With CATREAD

The CATREAD intrinsic reads the message speci�ed by set and message numbers from the
catalog speci�ed by catindex . When you use CATREAD to read messages, the message facility
fetches the message from a message catalog, inserts parameters (if speci�ed), and then routes
the message to a �le or returns the message in a bu�er to the calling program. The syntax for
CATREAD is:

msglength :=CATREAD (catindex, setnum, msgnum, catstatus,
bu�er, bu�ersize, parm1, parm2, parm3, parm4,
parm5, msgdest);

The parameters parm1 ... parm5 are used to substitute values in the message at run time.

Parameter Substitution

Parameters may be inserted into the message read from the catalog. Parameter substitution
is used when a message output contains information only known at run time, such as an ldev
number or a session name. Parameters are passed to the message with the param1 , param2 ,
param3 , param4 , and param5 parameters in the CATREAD intrinsic and are inserted in the
message wherever an \!" is found. Parameters are inserted in the following order: param1
substitutes for the leftmost \!" in the message, param2 for the next ! to the right, and so
forth. If param(n) is present, param(n-1) must be present (that is, you cannot specify param3
unless param1 and param2 are speci�ed). Parameters are passed as strings that must have
the ASCII null character appended.

Message Output

Messages may be output to a bu�er or a �le. If you output to a bu�er, you specify the bu�er
and a bu�er size with the bu�er and the bu�ersize parameters. To output to a �le, you
specify the �le number (returned from HPFOPEN) and message length with the msgdest and the
bu�ersize parameters. To output to $STDLIST, use a �le number of 0 (zero).

5-10 Accessing System Error Messages

To output message #8 from set #221 to $STDLIST, a call to the CATREAD intrinsic is done as
follows:

var
Catindex : INTEGER;

Catstatus : packed array [1..2] of SHORTINT;

Setnum : SHORTINT;

Msgnum : SHORTINT;

Parm1 : STRING [3];

Dumy : INTEGER:

Msgdest : SHORTINT;

Msglength : SHORTINT;

Setnum := 221;

Msgnum := 8;

Parm1 := '42';

{Append ASCII null}

STRWRITE (Parm1, STRLEN(Parm1)+1, Dumy, CHR(0);

Msgdest := 0; {Output to $STDLIST}

Msglength := CATREAD (Catindex, Setnum, Msgnum,

Catstatus,,, Parm1,,,,, Msgdest);

For detailed information about the CATREAD intrinsic, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

Closing the NM Error Message Catalog

CATCLOSE closes the message catalog speci�ed by the catindex parameter. The syntax for
CATCLOSE is:

CATCLOSE (catindex, catstatus)

The catindex parameter contains the value returned by the CATOPEN intrinsic that identi�es
the message catalog. The �rst element of catstatus returns the error number that tells if the
call was successful.

An example of the CATCLOSE intrinsic follows:

var

Catstatus : packed array [1..2] of SHORTINT;

Catindex : INTEGER; {Returned by CATOPEN}

CATCLOSE (Catindex, Catstatus);

For detailed information about the CATCLOSE intrinsic, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

Accessing System Error Messages 5-11

Example of Accessing the NM Error Message Catalog

The following listing is a Pascal program that inserts the value 42 into message #8 in set
#201 in the message catalog SYSCAT.PUB.SYS. The message is output to $STDLIST. The
accessed portion of the message catalog is:

$SET 201

.

.

.

008 The value passed for parameter #! is invalid.

Program NM_MSGCAT (input, output);

var

Catindex : INTEGER;

Catstatus : packed array [1..2] of SHORTINT;

Function CATOPEN: INTEGER; intrinsic;

Function CATREAD: SHORTINT; intrinsic;

Procedure CATCLOSE ; intrinsic;

Procedure OPEN_SYSCAT;

{This procedure opens SYSCAT.PUB.SYS}

var

Designator : packed array [1..20] of CHAR;

begin

Designator := 'SYSCAT.PUB.SYS ';

Catindex := CATOPEN (Designator, Catstatus);

{Call procedure to check Catstatus for errors}

end;

Procedure READ_SYSCAT;

{This procedure reads a message from SYSCAT.PUB.SYS}

{and prints it to $STDLIST }

var

Setnum : SHORTINT;

Msgnum : SHORTINT;
Parm1 : STRING [3];

Dumy : INTEGER;

Msgdest : SHORTINT;

Msglength : SHORTINT;

begin

Setnum := 221;

Msgnum := 8;

Parm1 :='42';

STRWRITE (Parm1, STRLEN(Parm1)+1, Dumy, CHR(0));

5-12 Accessing System Error Messages

{Append ASCII null}

Msgdest := 0; {Output to $STDLIST}

Msglength := CATREAD (Catindex, Setnum, Msgnum,
Catstatus,,, Parm1,,,,, Msgdest);

{Call procedure to check Catstatus for errors}

end;

Procedure CLOSE_SYSCAT;

{This procedure closes SYSCAT.PUB.SYS}

begin

CATCLOSE (Catindex, Catstatus);

{Call procedure to check Catstatus for errors}

end;

begin {main}

OPEN_SYSCAT;

READ_SYSCAT;

CLOSE_SYSCAT;

end.

When this program is executed, the output is:

The value passed for parameter #42 is invalid.

Summary

You are allowed to output the messages from the MPE operating system to use in your own
manner, from your own applications. You should only use the System Error Messages if you
have a particular reason for doing so. Otherwise, you should create your own message catalog.
Using the HPFOPEN, GENMESSAGE, and FCLOSE intrinsics, you access CATALOG.PUB.SYS,
the Compatibility Mode error messages. The catalog intrinsics, CATOPEN, CATREAD, and
CATCLOSE, access SYSCAT.PUB.SYS, the Native Mode error message catalog.

Messages are identi�ed by message and set numbers. Up to �ve paramters can be substituted
in messages at run time. Messages may be output to a �le or a bu�er.

Accessing System Error Messages 5-13

6

Creating Your Own HELP Facility

A HELP facility is a help catalog and the user interface to that catalog. You create your own
HELP facility by developing a help catalog and allowing users to access it via the MPE/iX
HELP user interface. You are probably already familiar with the MPE/iX HELP user
interface; you use it when you access the MPE/iX HELP facility.

HELP facilities provide extra information to the user by outputting explanatory text in
response to keyword input. You create this information easily and access it in a simple and
consistent manner.

To create your own HELP facility, you �rst create a source �le that contains keywords to
identify sections of the catalog. These keywords allow the user access to the HELP facility.
The source �le is then formatted and the user interface is redirected to the formatted �le.
Finally, users access the HELP facility.

Overview

This chapter tells you how to create your own HELP facility. Topics include:

Creating the Source File

Formatting the Source File

Accessing the HELP Facility

Creating the Source File

The source �le is in EDIT/V format and must have a maximum record length of 72
characters. It contains special catalog commands that begin with a backslash (n) in column 1.
There are two di�erent kinds of commands used in a source �le:

Keyword Commands

File Commands

Creating Your Own HELP Facility 6-1

Keyword Commands

Keywords identify the set of text that is output when a keyword is input to the HELP facility.
For example, if the keyword HELLO is input to the MPE/iX HELP Facility, a description of the
:HELLO command, and an explanation of its syntax, operation, and parameters is output.

There are three keyword commands:

\ENTRY=entryname comment , where entryname is a major divisional entry point in your
HELP facility and comment is optional text about the entry. The entryname must be in
upper case.

\ITEM=itemname, where itemname is an entry point subordinate to entryname.

\SUBITEM=subitemname, where subitemname is a subordinate entry point to itemname.

Keywords are entrynames, itemnames, and subitemnames . Keywords must not contain
spaces or nonalphabetic characters. In your source �le, the text on the lines between the
keyword commands is output to the user and is accessed in the hierarchical method shown in
Figure 6-1.

Figure 6-1. Keyword Subdivisions

6-2 Creating Your Own HELP Facility

File Commands

The other commands in the source �le specify information that is not output to users. The
�le commands are:

\ALL indicates the end of the source �le. It is required.

\STOPHELP denotes the start of a section in the �le that will not be shown when the facility
is accessed.

\STARTHELP denotes the point at which the HELP facility resumes displaying help
information.

\SUBSET, put at the beginning of the �le, allows all text between \STOPHELP and
\STARTHELP to be excluded from the formatted catalog.

Example Source File

The following is an example of a HELP source catalog:

\entry = ENTRYKEY

This is a entry point

\item = itemkey

This is the listing for an item

\subitem = subitemkey

This is a subitem

\subitem = more

This is another subitem.

\stophelp

This text will not be displayed in the help catalog.

\starthelp

\entry = ENTRY2

This is the second entry point

\all

Formatting the Source File

To create a HELP catalog that is accessible through the MPE/iX help user interface, format
the source �le with the MAKECAT utility.

The MAKECAT utility takes its input from the �le INPUT and outputs to the �le HELPCAT. You
can redirect these �les. When you run the MAKECAT utility, you use the HELP entry point.

For example, if your source �le is called MYSOURCE and you want your HELP catalog to be
called MYHELP, you use MAKECAT to build a HELP catalog by entering:

:FILE INPUT=MYSOURCE

:RUN MAKECAT.PUB.SYS, HELP

END OF PROGRAM

:RENAME HELPCAT,MYHELP

If a �le named HELPCAT exists prior to running MAKECAT, MAKECAT will abort with the
messages:

Creating Your Own HELP Facility 6-3

** FILE ERROR ON CATALOG (100)

PROGRAM TERMINATED IN ERROR STATE. (CIERR 976)

Accessing the HELP Facility

To use your HELP facility you must disable the system HELP facility and assign your HELP
�le to CICAT.PUB.SYS. Create a UDC or User Command to perform these functions easily. To
access your HELP facility with the command HELPME, use the following UDC:

HELPME PARM1=" " PARM2= " "

FILE CICAT.PUB.SYS = MYHELP

HELP !PARM1 !PARM2

RESET CICAT.PUB.SYS

You can access the HELP in one of two modes: subsystem or immediate. Immediate mode
gives you the information on the one or two keywords about which you inquire (for example,
HELPME keyword1 keyword2). Keywords are entry, item, or subitem names. You enter the
subsystem mode when you call the facility without keywords (for example, HELPME). When in
subsystem mode, you enter ALL, EXIT, or a keyword at the greater than (>) prompt.

Summary

The HELP Facility is a di�erent kind of message facility; messages are not identi�ed by set
and message numbers. To create your own HELP facility, you create your source �le, format
the �le with MAKECAT and then redirect the MPE/iX user interface to your HELP catalog.
This interface defaults to the system HELP catalog, CICAT.PUB.SYS.

6-4 Creating Your Own HELP Facility

A

GENCAT Error Messages

The following messages are returned from GENCAT:

1 MESSAGE FREAD ERROR ON SOURCE FILE.

CAUSE A failure by FREAD when reading a source message catalog.

ACTION Re-create the source message catalog.

2 MESSAGE INPUT FILE MUST HAVE AT LEAST ONE RECORD.

CAUSE The �le has an EOF of zero (0).

ACTION Place at least one record in the �le.

3 MESSAGE INPUT FILE MUST CONTAIN FIXED LENGTH RECORDS ONLY.

CAUSE File does not have a �xed record length.

ACTION Create the �le with a �xed record length.

4 MESSAGE INPUT FILE MUST BE ASCII FILE ONLY.

CAUSE Source and maintenance �les must have records that are in
ASCII format.

ACTION Create the source and maintenance �les with ASCII format.

5 MESSAGE INPUT FILE RECORD SIZE MUST BE BETWEEN 40 AND 256

BYTES.

CAUSE The record size of a source or maintenance �le is greater
than 256 bytes (128 words) or less than 40 bytes (20 words).

ACTION Create a source and maintenance �le with a record size
greater or equal to 40 bytes or less than or equal to 256
bytes. (Note that this record length includes any line
numbers in the �le.)

GENCAT Error Messages A-1

6 MESSAGE SET NUMBERS MUST BE BETWEEN 1 AND 255.

CAUSE A set number in a maintenance or source �le is not greater
than or equal to 1, or not less than or equal to 255. The set
number may be negative or it may not be numeric.

ACTION Change set number to a value between 1 and 255 inclusive.

8 MESSAGE SET NUMBERS MUST BE IN ASCENDING SEQUENCE.

CAUSE A set number is less than or equal to the previous set
number in the source �le. Error can be detected at format
time or during a maintenance function.

ACTION Change numbers to strict ascending sequence.

9 MESSAGE MESSAGE NUMBERS MUST BE BETWEEN 1 AND 32766.

CAUSE A message number value is not between 1 and 32,766
inclusive.

ACTION Change message number value to a value that is between 1
and 32,766 inclusive.

10 MESSAGE MESSAGES MUST EITHER CONTAIN ALL NUMBERED OR ALL

POSITIONAL PARAMETER SUBSTITUTION CHARACTERS.

MIXES NOT ALLOWED.

CAUSE During the scan of the message, GENCAT detected a mix of
parameter substitution characters. For example, a message
contained numeric substitution characters as well as
positional substitution characters.

ACTION Change the parameter substitution characters either to all
numeric substitution or all positional substitution
characters. (Note that this is for each message only.)

11 MESSAGE MESSAGE NUMBERS MUST BE IN ASCENDING SEQUENCE.

CAUSE A message number was processed that is less than or equal
to the previous message number. The message numbers
within a set are not in ascending sequence.

ACTION Arrange the messages within the set so that their numbers
are in strict ascending order.

A-2 GENCAT Error Messages

12 MESSAGE MESSAGE CONTAINS NON-BLANK CHARACTER IMMEDIATELY

FOLLOWING MESSAGE NUMBER. NON-BLANK CHARACTER

ASSUMED TO BE A BLANK.

CAUSE GENCAT detected a non-blank character immediately
following the message number in a message. GENCAT
replaces this character with a blank.

ACTION Insert a blank between the message number and the message
text.

13 MESSAGE EXPECTED ONE OF THE FOLLOWING INPUTS: 0, 1, 2, 3,

4, OR A RETURN.

CAUSE GENCAT detected an incorrect input in response to the �rst
menu (which prompts for a function).

ACTION Respond only with 0, 1, 2, 3, 4, or a �Return�.

14 MESSAGE EXPECTED ONE OF THE FOLLOWING INPUTS: 0, 1, 2, 3,

OR A RETURN.

CAUSE GENCAT detected an incorrect input in response to the
menu that prompts for the type of merging it is to perform.

ACTION Respond only with 0, 1, 2, 3, or a �Return�.

15 MESSAGE EXPECTED AN EXISTENT FILE AS INPUT.

CAUSE The �le does not exist on the system.

ACTION Either create the �le or input the name of a �le that does
exist on the system.

16 MESSAGE EXPECTED A UNIQUE, NON-EXISTENT FILE NAME AS

INPUT.

CAUSE The �le already exists on the system. The name of the �le
should be one that does not exist on the system.

ACTION Purge the �le or input the name of a �le that does not exist
on the system.

GENCAT Error Messages A-3

17 MESSAGE EXPECTED A RESPONSE OF "YES" OR "NO" AS INPUT.

CAUSE GENCAT requires a response of either YES, yes, NO, or no to
the prompt of SAVE COLLISIONS?.

ACTION Respond with YES, yes, NO, or no.

18 MESSAGE INPUT FILES MUST HAVE EQUAL RECORD SIZES FOR THIS

FUNCTION.

CAUSE Source and maintenance �les must have equal record sizes if
the maintenance �le is to modify the source �le.

ACTION Create a maintenance �le that has a record size equal to the
record size of the source �le.

20 MESSAGE THE CONSTRUCT OF $DELSET IS NOT ALLOWED IN THE

SOURCE.

CAUSE The construct $DELSET, which may be used in a
maintenance �le, was detected in a source �le during a
maintenance function.

ACTION Remove $DELSET construct from the source �le.

21 MESSAGE ONLY FIVE (5) POSITIONAL PARAMETER SUBSTITUTIONS

ALLOWED PER MESSAGE.

CAUSE GENCAT detected more than �ve (5) parameter
substitution characters in one message. Up to �ve parameter
substitution characters are allowed per message.

ACTION Only �ve (5) or fewer parameter substitution characters per
message.

22 MESSAGE MAINTENANCE FILE MUST BE NUMBERED FOR LINE-NUMBER

MERGES.

CAUSE The maintenance �le is an unnumbered �le. The
maintenance �le must be a numbered �le if it is to be used
in a line-number merge.

ACTION Number the maintenance �le if the �le is to be used in a
line-number merge.

A-4 GENCAT Error Messages

23 MESSAGE SOURCE FILE MUST BE NUMBERED FOR LINE-NUMBER

MERGES.

CAUSE The source �le is an unnumbered �le. The source �le must
be a numbered �le if it is to be used in a line-number merge.

ACTION Number the source �le if the �le is to be used in a
line-number merge.

24 MESSAGE SOURCE FILE CANNOT CONTAIN FORMS OF $EDIT.

CAUSE During a line-number merge, GENCAT examines the source
�le for $EDIT and $EDIT VOID= constructs. These are not
allowed since if collision �les are to be used, an ambiguity
would exist if the $EDIT and $EDIT VOID= were left in the
source �le.

ACTION Remove all occurrences of $EDIT and $EDIT VOID= from the
source �le.

25 MESSAGE SEQUENCE NUMBER IN $EDIT VOID RECORD CONTAINS TOO

MANY DIGITS. EIGHT IS THE MAXIMUM.

CAUSE The value following the $EDIT VOID= may have a maximum
of eight place holders.

ACTION Re-evaluate this value and correct it, as it represents a line
number.

26 MESSAGE FILE IS NOT A FORMATTED FILE.

CAUSE GENCAT can only expand formatted catalogs (for example,
�les formatted by GENCAT).

ACTION Format the �le using GENCAT.

27 MESSAGE SET RECORD IS REQUIRED BEFORE A MESSAGE RECORD IS

FORMATTED.

CAUSE A message was found before the set number was de�ned.

ACTION Place the message in a set or place a set number before the
message.

GENCAT Error Messages A-5

28 MESSAGE VALUE IN RIGHT BYTE OF KANJI CHARACTER IS INVALID.

CAUSE Your message contains special escape sequences provided by
HP that are used for research and development activities.
These special escape sequences are not supported by
Hewlett-Packard and Hewlett-Packard assumes no
responsibility for their use.

ACTION For messages 28 through 32, consult your Hewlett-Packard
representative, or remove all occurrences of the form
esc$<terminator> or ESC(<terminator> from your
message catalog. Where ESC is the escape character,
<terminator> is \@" or \A" through \Z".

29 MESSAGE SCAN COMPLETED WITH NO CLOSING KANJI ESCAPE

SEQUENCE. EXPECTS A CLOSING KANJI ESCAPE SEQUENCE

TO TERMINATE KANJI CHARACTER SEQUENCE.

CAUSE See Message Number 28.

ACTION See Message Number 28.

30 MESSAGE INCOMPLETE KANJI CLOSING ESCAPE SEQUENCE DETECTED.

CAUSE See Message Number 28.

ACTION See Message Number 28.

31 MESSAGE VALUE IN LEFT-BYTE OF KANJI CHARACTER IS INVALID.

CAUSE See Message Number 28.

ACTION See Message Number 28.

32 MESSAGE VALUE IN PARAMETER SECTION OF KANJI ESCAPE

SEQUENCE IS INVALID. EXPECTED A STRING OF DIGITS.

CAUSE See Message Number 28.

ACTION See Message Number 28.

A-6 GENCAT Error Messages

B

Catalogs Formatted With MAKECAT

Some older catalogs have been built using the MAKECAT.PUB.SYS program. Although that
method is not the most e�cient or convenient, the catalogs may still be used under MPE
XL. The following information is included for your convenience. If you are going to create a
catalog, refer to Chapters 2-4 for information about application message catalogs.

Creating a Formatted Catalog

To create a catalog, you must �rst create a source �le and then format it with the MAKECAT
utility.

Source �les for MAKECAT are EDIT/V �les, with set numbers 1-255, and message numbers
1-32,766. The MAKECAT utility is used to build message catalogs (and HELP catalogs).
The program's input �le has the formal designator INPUT. MAKECAT reads from the input
�le and builds a temporary �le with the formal designator CATALOG that exists in your group
and account. MAKECAT also renames any old temporary CATALOG to CATnn, using an
incremental numbering scheme (for example, CAT1, CAT2).

To use MAKECAT to build your own message catalog from a source named SOURCE, enter:

:FILE INPUT=SOURCE

:RUN MAKECAT.PUB.SYS

VALID MESSAGE CATALOG

:SAVE CATALOG

Accessing the Message Catalog

After creating a formatted catalog, you access it from your program using system intrinsics.
You �rst open the catalog with HPFOPEN, then you read and output the messages using
GENMESSAGE. After you have �nished outputting messages, close the catalog with FCLOSE. For
detailed information on these intrinsic, refer to the MPE XL Intrinsics Reference Manual
(32650-90028).

Catalogs Formatted With MAKECAT B-1

Modifying the Message Catalog

To modify your message catalog:

1. Text your source �le into the editor

2. Make the desired changes.

3. Keep the �le under a new name and exit the Editor

4. If SOURCE1 is the name of your new source �le, enter:

:FILE INPUT=SOURCE1

:RUN MAKECAT.PUB.SYS

VALID MESSAGE CATALOG

:SAVE CATALOG

Converting MAKECAT Formatted Catalogs

To increase the e�ciency of message catalog accessing, you may want to convert your
MAKECAT formatted message catalog to a GENCAT formatted catalog. GENCAT is the
newer facility for creating formatted message catalogs. It is faster, allows more set numbers,
allows you to modify your catalogs easily, and permits catalog rollback. If you decide to
perform the conversion you must perform two tasks:

Alter the Catalog

Change the Intrinsic Access

Altering the Catalog

Changing a MAKECAT formatted �le to a GENCAT formatted �le is easy; just run the
source through the GENCAT program to format it. For details about GENCAT and how it
formats source �les, refer to Chapter 3 of this manual.

Changing the Intrinsic Access

To access a GENCAT formatted catalog, change all the HPFOPEN calls in the program to the
catalog to CATOPEN calls with the correct parameters. GENMESSAGE intrinsic calls must be
changed to CATREAD; change FCLOSE to CATCLOSE when closing the catalog. For explanations
of the intrinsics, refer to the MPE XL Intrinsics Reference Manual (32650-90028). Also refer
to Chapter 3, \Accessing Application Message Catalogs".

B-2 Catalogs Formatted With MAKECAT

GENCAT MAKECAT Comparison

To allow you to compare the GENCAT and the MAKECAT utilities, the di�erences between
GENCAT and MAKECAT are listed in tabular form below.

Table B-1. MAKECAT/GENCAT Comparison

FEATURES MAKECAT GENCAT

Access Methods The FOPEN, GENMESSAGE, and FCLOSE intrinsics
open, access, and close formatted MAKECAT
catalogs.

CATOPEN, CATREAD, and
CATCLOSE intrinsics open,
access and close formatted
GENCAT catalogs.

Formatting Places an internal directory in the �le's user
labels. The �le is formatted in place without
creating a new �le.

A source message �le is
formatted into another �le,
leaving the original source
intact. The application uses
the formatted �le. The
original source �le can be
purged. The formatted �le
can be expanded to restore
the original source �le.

Function Converts or formats HELP and message �les into
catalogs. Installs system message catalog, using
the BUILD entry point.

Formats application message
catalogs. Provides
maintenance facility to
modify existing source
catalogs. Provides capability
of expanding a formatted �le
back into the original source
�le.

Input The name of a �le must be entered in a �le
equation. :FILE INPUT=<your �le>.

GENCAT prompts the user
for the name of a �le.

Literal Character Not supported. The tilde \~" serves as a
literal character, causing the
character which immediately
follows it to be treated as
text.

Messages The message number range per set is 1-32,766. The message number range
per set is 1-32,766.

Numerical
Parameters

Not supported. Up to 5 numerical
parameters can be contained
in a message.

Catalogs Formatted With MAKECAT B-3

Table B-1. MAKECAT/GENCAT Comparison (Cont.)

FEATURES MAKECAT GENCAT

Output Saves the formatted �le as a temporary �le with
the name CATALOG.

GENCAT prompts the user
for the name of the formatted
�le. The �le is saved as a
permanent �le.

Processing Formats more quickly than GENCAT. GENCAT veri�es each
message for correct
parameter substitution
characters. Manipulates two
temporary �les while
formatting the source �le.

Record Format Accepts source �les of any size, but the �le it
saves has a record size of 80 bytes. The system
message catalog is �xed binary. An application
catalog is �xed ASCII.

Accepts source catalog �les
with record sizes from 40 to
256 bytes. The formatted �le
has a record size of 128
words, and is �xed binary.
When a formatted catalog is
expanded into a source
catalog, the new source
catalog is �xed ASCII with a
record size identical to the
original source catalog.

When maintenance is being
performed, both the source
�le and the maintenance �le
must be of equal lengths in
�xed ASCII. The resulting
source �le, and collision �le,
if speci�ed will be �xed
ASCII, and their record sizes
will equal the record size of
the original source �le.

Sets The set directive is $SET. The set number range
for a catalog is 1-63.

The set directive can be $SET
or $set. The set number
range for a source catalog is
1-255.

User Interface The user must know which entry points to use
and when to use them. Files are input via �le
equations. Error messages require user
interpretation.

GENCAT is menu-driven.
The menus originate from a
catalog. Each prompt has
HELP text associated with
it. Error messages are
self-explanatory.

B-4 Catalogs Formatted With MAKECAT

C

COBOL Progam Examples

Example of Accessing an Application Message Catalog

This example shows the access of the sample catalog called FORMAT (created in the Chapter
2); the source of this sample catalog (SOURCE) is listed below.

$SET 1 Prompts

1 ENTER FIRST NAME

2 ENTER LAST NAME

$

$

$set 2 Error Messages

1 NAME NOT ON DATA BASE

2 ILLEGAL INPUT

3 AN ERROR OCCURRED DURING THE LOADING %

OF THE DATA BASE.

98 THE NUMBER OF FILES &

DOES NOT MATCH THE &

SYSTEM'S CALCULATIONS.

$

$set 13 Run-Time Messages

400 INPUT FROM ! ON TERMINAL NUMBER !
401 INPUT FROM TERMINAL NUMBER !2 BY !1

The program uses message 1 in set 1 to prompt for a �rst name, substitutes the name in
message 400 of set 13, and outputs the message. All output is written to the terminal.

001000 IDENTIFICATION DIVISION.

001001 PROGRAM-ID. CATMSSG.

001003*

001004 ENVIRONMENT DIVISION.

001005 DATA DIVISION.

001006 WORKING-STORAGE SECTION.

001007 77 CAT-INDEX PIC S9(9) COMP.

001008 01 CAT-STATUS.

001009 03 CAT-STATUS-1 PIC S9(4) COMP.

001010 03 CAT-STATUS-2 PIC S9(4) COMP.

001011 77 CAT-FILE PIC X(20).

001012 77 MSGLENGTH PIC S9(4) COMP.

001013 77 SETNUM PIC S9(4) COMP.

001014 77 MSGNUM PIC S9(4) COMP.

001015 77 PARM-1 PIC X(5).

001016 77 ASCII-NULL PIC X VALUE %0.

001017 77 PARM-2 PIC X(1).

001018 77 ASCII-NULL-1 PIC X VALUE %0.

COBOL Progam Examples C-1

001019 77 MSGDESTINATION PIC S9(4) COMP.

001020*

001021 PROCEDURE DIVISION.
001022*

001023 START-OF-PROGRAM.

001024 PERFORM OPEN-A-CATATLOG.

001025 PERFORM READ-A-CATATLOG.

001026 PERFORM CLOSE-A-CATATLOG.

001027 STOP RUN.

001028*

001029 OPEN-A-CATATLOG.

001030 MOVE "FORMAT%" TO CAT-FILE.

001031 CALL INTRINSIC "CATOPEN" USING CAT-FILE,

001032 CAT-STATUS

001033 GIVING CAT-INDEX.

001034*

001035* CHECK CAT-STATUS FOR SUCCESS

001036*

001037 READ-A-CATATLOG.

001038 MOVE 1 TO SETNUM.

001039 MOVE 1 TO MSGNUM.

001040 MOVE 0 TO MSGDESTINATION.

001041 CALL INTRINSIC "CATREAD" USING CAT-INDEX,

001042 SETNUM,

001043 MSGNUM,

001044 CAT-STATUS,

001045 \\, \\,

001046 \\,

001047 \\, \\, \\, \\,

001048 MSGDESTINATION.

001051 ACCEPT PARM-1.
001052 MOVE '3' TO PARM-2.

001053 MOVE 13 TO SETNUM.

001054 MOVE 400 TO MSGNUM.

001055 CALL INTRINSIC "CATREAD" USING CAT-INDEX,

001056 SETNUM,

001057 MSGNUM,

001058 CAT-STATUS,

001059 \\, \\,

001060 PARM-1,

001061 PARM-2,

001062 \\, \\, \\,

001063 MSGDESTINATION.

001064*

001065* CHECK ERRORNUM FOR SUCCESS

001066*

001067 CLOSE-A-CATATLOG.

001068 CALL INTRINSIC "CATCLOSE" USING CAT-INDEX,

001069 CAT-STATUS.

001070*

C-2 COBOL Progam Examples

001071* CHECK CONDITION CODE FOR SUCCESS

001072*

When this program is executed, the output is:

ENTER FIRST NAME

MARY

INPUT FROM MARY ON TERMINAL NUMBER 3

Example of Accessing the CM Error Message Catalog

The following listing is a COBOL program that inserts the value 95 into message number
201 in message set 1 in the message catalog CATALOG.PUB.SYS. The message is output to
$STDLIST. The accessed portion of the message catalog is:

$SET 1

.

.

.

210 SYSTEM LOG FILE NUMBER ! is ON

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. CM-MSGCAT.

001300*

001400 ENVIRONMENT DIVISION.

001500 DATA DIVISION.

001600 WORKING-STORAGE SECTION.

001700 77 FILE-NUM PIC S9(9) COMP.

001800 77 DESIGNATOR PIC S9(9) COMP VALUE 2.
001900 77 DOMAIN PIC S9(9) COMP VALUE 3.

002000 77 MULTIREC PIC S9(9) COMP VALUE 15.

002100 77 BUFFERED PIC S9(9) COMP VALUE 46.

002200 77 ASCII-BINARY PIC S9(9) COMP VALUE 53.

002300 77 HPFOPEN-STATUS PIC S9(9) COMP.

002400 77 HPFOPEN-FILE PIC X(20).

002500 77 PERM-DOMAIN PIC S9(9) COMP.

002600 77 MULTIREC-ON PIC S9(9) COMP.

002700 77 INHIBITED PIC S9(9) COMP.

002800 77 ASCII-FILE PIC S9(9) COMP.

002900 77 MSGLENGTH PIC S9(4) COMP.

003000 77 SETNUM PIC S9(4) COMP.

003100 77 MSGNUM PIC S9(4) COMP.

003200 77 PARM-MASK PIC S9(4) COMP.

003300 77 PARM-1 PIC S9(9) COMP.

003400 77 MSGDESTINATION PIC S9(4) COMP.

003500 77 ERRORNUM PIC S9(4) COMP.

003600 77 DISPOSITION PIC S9(4) COMP.

003700 77 CLOSE-SECURITY PIC S9(4) COMP.

COBOL Progam Examples C-3

003800*

003900 PROCEDURE DIVISION.

004000*
004100 START-OF-PROGRAM.

004200 PERFORM OPEN-CATALOG.

004300 PERFORM READ-CATALOG.

004400 PERFORM CLOSE-CATALOG.

004500 STOP RUN.

004600*

004700 OPEN-CATALOG.

004900 MOVE "%CATALOG.PUB.SYS%" TO HPFOPEN-FILE.

005000 MOVE 1 TO PERM-DOMAIN.

005100 MOVE 1 TO MULTIREC-ON.

005200 MOVE 1 TO INHIBITED.

005300 MOVE 1 TO ASCII-FILE.

005400 CALL INTRINSIC "HPFOPEN" USING FILE-NUM,

005500 HPFOPEN-STATUS,

005600 DESIGNATOR,

005700 HPFOPEN-FILE,

005800 DOMAIN,

005900 PERM-DOMAIN,

006000 MULTIREC,

006100 MULTIREC-ON,

006200 BUFFERED,

006300 INHIBITED,

006400 ASCII-BINARY,

006500 ASCII-FILE.

006600*

006610* CHECK HPFOPEN-STATUS FOR SUCCESS

006620*

006700 READ-CATALOG.
006900 MOVE 1 TO SETNUM.

007000 MOVE 201 TO MSGNUM.

007100 MOVE 0 TO MSGDESTINATION.

007200 MOVE 95 TO PARM-1.

007300 MOVE %13333 TO PARM-MASK.

007400 CALL INTRINSIC "GENMESSAGE" USING \FILE-NUM\,

007500 \SETNUM\,

007600 \MSGNUM\,

007700 \\, \\,

007800 \PARM-MASK\,

007900 \PARM-1\,

008000 \\, \\, \\, \\,

008100 \MSGDESTINATION\,

008200 ERRORNUM.

008400*

008410* CHECK ERRORNUM FOR SUCCESS

008420*

008500 CLOSE-CATALOG.

008700 MOVE 0 TO DISPOSITION.

C-4 COBOL Progam Examples

008800 MOVE 0 TO CLOSE-SECURITY.

008900 CALL INTRINSIC "FCLOSE" USING FILE-NUM,

009000 DISPOSITION,
009100 CLOSE-SECURITY.

009200*

009300* CHECK CONDITION CODE FOR SUCCESS

009400*

When this program is executed, the output is:

SYSTEM LOG FILE NUMBER 92 IS ON

Example of Accessing the NM Error Message Catalog

The following listing is a COBOL program that inserts the value 42 into message number
8 in message set 201 in the message catalog SYSCAT.PUB.SYS. The message is output to
$STDLIST. The accessed portion of the message catalog is:

$SET 201

.

.

.

008 The value passed for parameter #! is invalid.

The value passed for parameter #42 is invalid.

001000 IDENTIFICATION DIVISION.

001010 PROGRAM-ID. NM-MSGCAT.

001030*

001040 ENVIRONMENT DIVISION.

001050 DATA DIVISION.

001060 WORKING-STORAGE SECTION.

001070 77 CAT-INDEX PIC S9(9) COMP.

001080 01 CAT-STATUS.

001090 03 CAT-STATUS-1 PIC S9(4) COMP.

001100 03 CAT-STATUS-2 PIC S9(4) COMP.

001110 77 CAT-FILE PIC X(20).

001120 77 MSGLENGTH PIC S9(4) COMP.

001130 77 SETNUM PIC S9(4) COMP.

001140 77 MSGNUM PIC S9(4) COMP.

001150 77 PARM-1 PIC X(3).

001160 77 ASCII-NULL PIC X VALUE %0.

001170 77 MSGDESTINATION PIC S9(4) COMP.

001180*

001190 PROCEDURE DIVISION.

001200*

001210 START-OF-PROGRAM.

001220 PERFORM OPEN-SYSCAT.

001230 PERFORM READ-SYSCAT.

001240 PERFORM CLOSE-SYSCAT.

001250 STOP RUN.

COBOL Progam Examples C-5

001260*

001270 OPEN-SYSCAT.

001280 MOVE "SYSCAT.PUB.SYS%" TO CAT-FILE.
001290 CALL INTRINSIC "CATOPEN" USING CAT-FILE,

001300 CAT-STATUS

001310 GIVING CAT-INDEX.

001320*

001330* CHECK CAT-STATUS FOR SUCCESS

001340*

001350 READ-SYSCAT.

001360 MOVE 221 TO SETNUM.

001370 MOVE 8 TO MSGNUM.

001380 MOVE 0 TO MSGDESTINATION.

001390 MOVE "42" TO PARM-1.

001400 CALL INTRINSIC "CATREAD" USING CAT-INDEX,

001410 SETNUM,

001420 MSGNUM,

001430 CAT-STATUS,

001440 \\, \\,

001450 PARM-1,

001460 \\, \\, \\, \\,

001470 MSGDESTINATION.

001480*

001490* CHECK ERRORNUM FOR SUCCESS

001500*

001510 CLOSE-SYSCAT.

001520 CALL INTRINSIC "CATCLOSE" USING CAT-INDEX,

001530 CAT-STATUS.

001540*

001550* CHECK CONDITION CODE FOR SUCCESS

When this program is executed, the output is:

The value passed for parameter #42 is invalid.

C-6 COBOL Progam Examples

D

FORTRAN Progam Examples

Example of Accessing an Application Message Catalog

This example shows the access of the sample catalog called FORMAT (created in the Chapter
2); the source of this sample catalog (SOURCE) is listed below.

$SET 1 Prompts

1 ENTER FIRST NAME

2 ENTER LAST NAME

$

$

$set 2 Error Messages

1 NAME NOT ON DATA BASE

2 ILLEGAL INPUT

3 AN ERROR OCCURRED DURING THE LOADING %

OF THE DATA BASE.

98 THE NUMBER OF FILES &

DOES NOT MATCH THE &

SYSTEM'S CALCULATIONS.

$

$set 13 Run-Time Messages

400 INPUT FROM ! ON TERMINAL NUMBER ! RESULTS IN SUCCESSFUL &
OPERATION

401 INPUT FROM TERMINAL NUMBER !2 BY !1 RESULTS IN SUCCESSFUL &

OPERATION

The program uses message 1 in set 1 to prompt for a �rst name, substitutes the name in
message 400 of set 13, and outputs the message. All output is written to the terminal.

$control standard_level system

*

program MSGCAT

*

system intrinsic QUIT

*

*

logical STATUS_RETURN

*

character DESIGNATOR*20

*

call OPEN_A_CATALOG (STATUS_RETURN)

if (STATUS_RETURN) go to 10

print *,'OPEN_A_CATALOG Failed. Terminating.'

call QUIT (1)

*

FORTRAN Progam Examples D-1

10 call READ_A_CATALOG (STATUS_RETURN)

*

if (STATUS_RETURN) go to 20
print *,'READ_A_CATALOG Failed. Terminating.'

call QUIT (2)

*

20 call CLOSE_A_CATALOG (STATUS_RETURN)

if (STATUS_RETURN) go to 30

print *,'CLOSE_A_CATALOG Failed. Terminating'

call QUIT (3)

*

30 stop

end

*

*

subroutine OPEN_A_CATALOG (STATUS_RETURN)

*

system intrinsic CATOPEN

*

integer CATINDEX

2 ,CATSTATUS(2)

*

logical STATUS_RETURN

*

character DESIGNATOR*20

*

STATUS_RETURN = .true.

DESIGNATOR = 'FORMAT'

CATINDEX = CATOPEN (DESIGNATOR, CATSTATUS)

if (CATSTATUS(1) .ne. 0) STATUS_RETURN = .false.
*

return

end

*

*

subroutine READ_A_CATALOG (STATUS_RETURN)

*

system intrinsic CATREAD

*

integer*2 SETNUM

2 ,MSGNUM

3 ,MSGDEST

4 ,MSGLENGTH

5 ,CATSTATUS(2)

*

integer*4 CATINDEX

2 ,DUMY

*

D-2 FORTRAN Progam Examples

logical STATUS_RETURN

*

character PARM1*6
2 ,PARM2*2

*

STATUS_RETURN = .true.

SETNUM = 1

MSGNUM = 1

MSGDEST = 0

MSGLENGTH = CATREAD (CATINDEX

2 ,SETNUM

3 ,MSGNUM

4 ,CATSTATUS,,,

5 ,,,,,MSGDEST)

if (CATSTATUS(1) .ne. 0) STATUS_RETURN = .false.

*

SETNUM = 13

MSGNUM = 400

read *,PARM1(1:5)

write (PARM1(6:6),15) 0b

PARM2(1:1) = '3'

write (PARM2(2:2),15) 0b

15 format (r1)

*

MSGLENGTH = CATREAD (CATINDEX

2 ,SETNUM

3 ,MSGNUM

4 ,CATSTATUS

5 ,,,PARM1

6 ,PARM2

7 ,,,,MSGDEST)
if (CATSTATUS(1) .ne. 0) STATUS_RETURN = .false.

return

end

*

*

subroutine CLOSE_A_CATALOG (STATUS_RETURN)

*

system intrinsic CATCLOSE

*

integer*2 CATSTATUS(2)

*

integer*4 CATINDEX

*

logical STATUS_RETURN

*

STATUS_RETURN = .true.

call CATCLOSE (CATINDEX

2 ,CATSTATUS)

FORTRAN Progam Examples D-3

if (CATSTATUS(1) .ne. 0) STATUS_RETURN = .false.

return

end

When this program is executed, the output is:

ENTER FIRST NAME

MARY

INPUT FROM MARY ON TERMINAL NUMBER 3

Example of Accessing the CM Error Message Catalog

The following listing is a FORTRAN program that inserts the value 95 into message number
201 in message set 1 in the message catalog CATALOG.PUB.SYS. The message is output to
$STDLIST. The accessed portion of the message catalog is:

$SET 1

.

.

.

210 SYSTEM LOG FILE NUMBER ! IS ON

$control standard_level system

program CM_MSGCAT

*

system intrinsic QUIT

*

integer*2 MSGLEN

2 ,SETNUM
3 ,MSGNUM

4 ,PARMASK

5 ,DESTINATION

*

integer*4 PARAM1

2 ,FILENUM

*

logical STATUS_RETURN

*

character*20 FILENAME

*

* Initialize variables to open file.

*

FILENAME = '%CATALOG.PUB.SYS%'

STATUS_RETURN = .true.

*

* Open the file.

*

call OPEN_CATALOG (FILENAME

D-4 FORTRAN Progam Examples

2 ,FILENUM

3 ,STATUS_RETURN)

*
if (STATUS_RETURN) go to 10

print *,'Open failed. Terminating.'

call QUIT (1)

*

* Initialize variables to read message.

*

10 SETNUM = 1

MSGNUM = 201

DESTINATION = 0

PARMASK = 13333B

PARAM1 = 95

STATUS_RETURN = .true.

*

* Generate the message, which will be displayed on $STDLIST

*

call READ_CATALOG (FILENUM

2 ,SETNUM

3 ,MSGNUM

4 ,DESTINATION

5 ,PARMASK

6 ,PARAM1

7 ,STATUS_RETURN)

if (STATUS_RETURN) go to 20

print *,'Read failed. Terminating.'

call QUIT (2)

*

* Close the catalog with default disposition and unrestricted access

*
20 call CLOSE_CATALOG (FILENUM

2 ,STATUS_RETURN)

if (STATUS_RETURN) go to 30

print *,'Close failed. Terminating.'

call QUIT (3)

*

* Normal end of program

*

30 stop

end

*

**

*

subroutine OPEN_CATALOG (FILENAME

2 ,FILENUM

3 ,STATUS_RETURN)

*

system intrinsic HPFOPEN

*

FORTRAN Progam Examples D-5

integer STATUS

2 ,PERM

3 ,ON
4 ,INHIBITED

5 ,ASCII_FILE

6 ,DESIGNATOR

7 ,DOMAIN

8 ,MULTIREC

9 ,BUFFERING

A ,ASCII_BINARY

B ,FILENUM

*

logical STATUS_RETURN

*

character*20 FILENAME

*

* Initialize variables

*

DESIGNATOR = 2

DOMAIN = 3

MULTIREC = 15

BUFFERING = 46

ASCII_BINARY = 53

PERM = 1

ON = 1

INHIBITED = 1

ASCII_ENTITY = 1

STATUS_RETURN = .true.

*

* Open the file

*
call HPFOPEN (FILENUM, STATUS

2 ,DESIGNATOR, FILENAME

3 ,DOMAIN, PERM

4 ,MULTIREC, ON

5 ,BUFFERING, INHIBITED

6 ,ASCII_BINARY, ASCII_FILE)

*

if (STATUS .ne. 0) STATUS_RETURN = .false.

*

return

end

*

**

*

subroutine READ_CATALOG (FILENUM

2 ,SETNUM

3 ,MSGNUM

4 ,DESTINATION

5 ,PARMASK

D-6 FORTRAN Progam Examples

6 ,PARAM1

7 ,STATUS_RETURN)

*
system intrinsic GENMESSAGE

*

integer*2 MSGLENGTH

2 ,SETNUM

3 ,MSGNUM

4 ,PARMASK

5 ,DESTINATION

6 ,ERRORNUM

*

integer*4 PARAM1

2 ,FILENUM

*

logical STATUS_RETURN

*

* Initialize variables

*

STATUS_RETURN = .true.

*

* Generate the message

*

MSGLENGTH = GENMESSAGE (FILENUM

2 ,SETNUM

3 ,MSGNUM

4 ,,,PARMASK

5 ,PARAM1

6 ,,,,,DESTINATION

7 ,ERRORNUM)

*
if (ERRORNUM .ne. 0) STATUS_RETURN = .false.

*

return

end

*

**

*

subroutine CLOSE_CATALOG (FILENUM

2 ,STATUS_RETURN)

*

system intrinsic FCLOSE

*

integer*2 DISPOSITION

2 ,SECURITYCODE

*

integer*4 FILENUM

*

logical STATUS_RETURN

*

* Initialize variables

FORTRAN Progam Examples D-7

*

DISPOSITION = 0

SECURITYCODE = 0
STATUS_RETURN = .true.

*

* Close file

*

call FCLOSE (FILENUM

2 ,DISPOSITION

3 ,SECURITYCODE)

*

if (ccode()) 10,20,10

10 STATUS_RETURN = .false.

*

20 return

end

When this program is executed, the output is:

SYSTEM LOG FILE NUMBER 92 IS ON

Example of Accessing the NM Error Message Catalog

The following listing is a FORTRAN program that inserts the value 42 into message number
8 in message set 201 in the message catalog SYSCAT.PUB.SYS. The message is output to
$STDLIST. The accessed portion of the message catalog is:

$SET 201

.

.

.

008 The value passed for parameter #! is invalid.

$control standard_level system

*

program NM_MSGCAT

*

system intrinsic QUIT

*

integer*2 SETNUM

2 ,MSGNUM

3 ,MSGDEST

4 ,MSGLENGTH

*

integer CATINDEX

2 ,CATSTATUS(2)

*

logical STATUS_RETURN

*

character DESIGNATOR*20

D-8 FORTRAN Progam Examples

2 ,PARM1*3

*

DESIGNATOR = 'SYSCAT.PUB.SYS'
call OPEN_SYSCAT (DESIGNATOR

2 ,CATINDEX

3 ,STATUS_RETURN)

if (STATUS_RETURN) go to 10

print *,'OPEN_SYSCAT Failed. Terminating.'

call QUIT (1)

*

10 SETNUM = 221

MSGNUM = 8

PARM1(1:2) = '42'

write (PARM1(3:3),15) 0b

15 format (r1)

MSGDEST = 0

*

call READ_SYSCAT (CATINDEX

2 ,SETNUM

3 ,MSGNUM

4 ,PARM1

5 ,MSGDEST

6 ,STATUS_RETURN)

*

if (STATUS_RETURN) go to 20

print *,'READ_SYSCAT Failed. Terminating.'

call QUIT (2)

*

20 call CLOSE_SYSCAT (CATINDEX

2 ,STATUS_RETURN)

if (STATUS_RETURN) go to 30
print *,'CLOSE_SYSCAT Failed. Terminating'

call QUIT (3)

*

30 stop

end

*

*

subroutine OPEN_SYSCAT (DESIGNATOR

2 ,CATINDEX

3 ,STATUS_RETURN)

*

system intrinsic CATOPEN

*

integer CATINDEX

2 ,CATSTATUS(2)

*

logical STATUS_RETURN

*

FORTRAN Progam Examples D-9

character DESIGNATOR*20

*

STATUS_RETURN = .true.
CATINDEX = CATOPEN (DESIGNATOR, CATSTATUS)

if (CATSTATUS(1) .ne. 0) STATUS_RETURN = .false.

*

return

end

*

*

subroutine READ_SYSCAT (CATINDEX

2 ,SETNUM

3 ,MSGNUM

4 ,PARM1

5 ,MSGDEST

6 ,STATUS_RETURN)

*

system intrinsic CATREAD

*

integer*2 SETNUM

2 ,MSGNUM

3 ,MSGDEST

4 ,MSGLENGTH

5 ,CATSTATUS(2)

*

integer*4 CATINDEX

2 ,DUMY

*

logical STATUS_RETURN

*
character PARM1*3

*

STATUS_RETURN = .true.

MSGLENGTH = CATREAD (CATINDEX

2 ,SETNUM

3 ,MSGNUM

4 ,CATSTATUS

5 ,,,PARM1

6 ,,,,,MSGDEST)

if (CATSTATUS(1) .ne. 0) STATUS_RETURN = .false.

return

end

*

*

subroutine CLOSE_SYSCAT (CATINDEX

2 ,STATUS_RETURN)

*

system intrinsic CATCLOSE

D-10 FORTRAN Progam Examples

*

integer*2 CATSTATUS(2)

*
integer*4 CATINDEX

*

logical STATUS_RETURN

*

STATUS_RETURN = .true.

call CATCLOSE (CATINDEX

2 ,CATSTATUS)

if (CATSTATUS(1) .ne. 0) STATUS_RETURN = .false.

return

end

When this program is executed, the output is:

The value passed for parameter #42 is invalid

FORTRAN Progam Examples D-11

Index

Special characters

! , 2-5, 5-3
$, 5-3
% , 2-4, 2-5, 5-3
: , 2-4, 2-5, 5-3
~ , 2-5, 5-3

A

Accessing
an application message catalog, FORTRAN

example , D-1
an application message catalog, Pascal example

, 3-4
application message catalog, COBOL example

, C-1
application message catalogs , 3-1
syscat.pub.sys , 5-9
system error messages , 5-1
the CM error message catalog , 5-4
the CM error message catalog, Pascal example

, 5-7
the CM message catalog, COBOL example ,

C-3
the CM message catalog, FORTRAN example

, D-4
the HELP facility , 6-4
the HELP facility using a UDC , 6-4
the MAKECAT formatted catalog , B-1
the NM error message catalog , 5-9
the NM error message catalog, Pascal example

, 5-12
the NM message catalog, COBOL example ,

C-5
the NM message catalog, FORTRAN example

, D-8
Accessing CATALOG.PUB.SYS (Figure 5-2) ,

5-4
Accessing SYSCAT.PUB.SYS (Figure 5-3) , 5-9
Accessing System Error Messages (Figure 5-1)

, 5-2
Adding
a comment record using line number merging

, 4-5
a message record using line number merging

, 4-5

a message using set and message number
merging , 4-6

a record using line number merging , 4-5
a $SET record using line number merging ,

4-5
a set using set and message number merging

, 4-6
ALL
HELP command , 6-3

Altering
intrinsic access , B-3
the MAKECAT catalog to be a GENCAT

catalog , B-2
Application Message Catalog
COBOL example of accessing , C-1
FORTRAN example of accessing , D-1
Pascal example of accessing , 3-4
using directives, 2-3

Application Message Catalogs
closing , 3-4
creating the source �le , 2-1
formatting , 2-8
modifying , 4-1
opening , 3-2
reading messages from , 3-2
use with native languages , 2-1
using special characters , 2-4
when to use , 2-1

Application Message Facility , 1-2
ASCII Null Character , 3-3

B

Batch Mode Use of GENCAT
example , 2-2

Batch Mode Use of GENCAT , 2-2
Bu�er Output of Messages , 3-3, 5-6, 5-10

C

Catalog, Application Message
modifying , 4-1

Catalog Directives
$, comment records , 2-3
message numbers , 2-4
$SET , 2-3

Catalog Directives , 2-3
Catalog Intrinsics

Index-1

CATCLOSE , 1-3, 3-4, 5-1, 5-11, 5-13
CATOPEN , 1-3, 3-2, 5-1, 5-10, 5-13
CATREAD , 1-3, 3-2, 5-1, 5-10, 5-13

Catalog Intrinsics , 1-3
Catalog, Message
closing with CATCLOSE , 3-4, 5-11
closing with FCLOSE , 5-7
HELP , 1-4
opening with CATOPEN , 3-2, 5-10
opening with HPFOPEN , 5-4
reading messages with CATREAD , 3-2, 5-10
reading messages with GENMESSAGE , 5-5

CATALOG.PUB.SYS
opening , 5-4

CATALOG.PUB.SYS , 1-3, 5-1, 5-13
Catalogs Formatted With MAKECAT , B-1
CATCLOSE, Intrinsic , 1-3, 3-4, 5-1, 5-11, 5-13,

B-3
CATOPEN, Intrinsic , 1-3, 3-2, 5-1, 5-10, 5-13,

B-3
CATREAD, Intrinsic
substituting parameters , 3-2, 5-10

CATREAD, Intrinsic , 1-3, 3-2, 5-1, 5-10, 5-13,
B-3

CAUTION
using line number merging , 4-4

Changing
a comment record using line number merging

, 4-5
a message record using line number merging

, 4-5
a record using line number merging , 4-5
a $SET record using line number merging ,

4-5
a source �le , 4-3
comment records using set and message number

merging , 4-7
intrinsic access , B-3
messages , 4-1

Characters, Special - refer to Special Characters
, 2-5

CICAT.PUB.SYS
redirecting , 6-4

CICAT.PUB.SYS , 1-4, 6-4
Closing
an application message catalog , 3-4

Closing the CM Error Message Catalog , 5-7
Closing the NM Error Message Catalog , 5-11
CM Error Message Catalog
accessing , 5-4
closing , 5-7
COBOL example of accessing , C-3
FORTRAN example of accessing , D-4
opening , 5-4
Pascal example of accessing , 5-7

reading messages from , 5-5
CM Error Messages , 1-3, 5-1
CM MSGCAT
COBOL example , C-3
FORTRAN example , D-4
Pascal example , 5-7

COBOL Example
accessing an application message catalog

(MSGCAT) , C-1
accessing the CM message catalog

(CM MSGCAT) , C-3
accessing the NM message catalog

(NM MSGCAT) , C-5
COLISION Example File , 2-2
Collision File
description of , 2-2

Collision File , 4-9
Comment Record Addition
line number merging , 4-5

Comment Record Deletion
line number merging , 4-5

Comment Record Modi�cation
line number merging , 4-5

Comment Records , 2-3
Comparing MAKECAT and GENCAT , B-3
Compatablilty Mode - refer to CM , 1-3
Converting MAKECAT Formatted Catalogs ,

B-2
Creating
a formatted catalog , B-1
a formatted �le with GENCAT , 2-8
an application message catalog , 2-1
a new source �le , 4-7
a source �le , 2-3
a source �le from a formatted catalog , 4-2
the HELP source �le , 6-1
your own HELP facility , 6-1

Creating a New Source (Figure 4-3) , 4-7

D

Deleting
a comment record using line number merging

, 4-5
a message record using line number merging

, 4-5
a message using set and message number

merge , 4-6
a record using line number merging , 4-5
a $SET record using line number merging ,

4-5
a set using set and message number merging

, 4-6
$DELSET Directive , 4-6
Dialog

Index-2

expanding a GENCAT formatted catalog ,
4-2

formatting a source �le with GENCAT , 2-8
using GENCAT to merge source and

maintenance �les , 4-7
Directive
$, comment reocrds , 2-3
$DELSET , 4-6
$EDIT , 4-5
$EDIT VOID = XXXXXXXX , 4-5
message numbers , 2-4
$SET , 2-3

Directive , 2-3, 5-3
Dividing a Message into Several Lines , 2-5
Drawbacks to Editing the Source File , 4-3

E

$EDIT
directive , 4-5

Editing the Source File , 4-3
$EDIT VOID = XXXXXXXX
directive , 4-5

ENTRY
HELP Command , 6-2

Error Messages
GENCAT , 2-2, A-1
HELP facility , 6-3

Error Messages, System
accessing , 5-1

Examining the System Error Message Catalogs
, 5-2

Example
error checking , 1-4

Example, COBOL
accessing an application message catalog ,

C-1
accessing the CM message catalog , C-3
accessing the NM message catalog , C-5

Example File
COLISION , 2-2
FORMAT , 2-2
MAINT , 2-2
MAINT, used in example , 4-7
MYHELP , 6-3
MYSOURCE , 6-3
SOURCE , 2-2

Example, FORTRAN
accessing an application message catalog ,

D-1
accessing the CM message catalog , D-4
accessing the NM message catalog , D-8

Example HELP Source File , 6-3
Example Maintenance File
line number merge , 4-5
set and message number merge , 4-7

Example of
accessing an application message catalog ,

3-4, C-1, D-1
accessing the CM error message catalog , 5-7,

C-3, D-4
accessing the NM error message catalog ,

5-12, C-5, D-8
creating a formatted �le , 2-8
creating a source �le from a formatted catalog

, 4-2
expanding a formatted catalog with GENCAT

, 4-2
formatting a HELP source �le , 6-3
formatting a source �le wiht GENCAT , 2-8
merging by line number , 4-5
merging by set and message number , 4-7
message �le format , 5-2
using GENCAT in batch mode , 2-2
using MAKECAT to format a catalog , B-1

Example, Pascal
accessing an application message catalog , 3-4
accessing the CM error message catalog , 5-7
accessing the NM message catalog , 5-12

Example Programs , 1-4
Example Source Catalog , 2-7
Example Source File
SOURCE , 3-4

Example Source File , 4-4
Expanded Source File
changes from original source , 4-2

Expanding a Formatted Catalog , 4-2
Expanding a GENCAT Formatted Catalog

(Figure 4-2) , 4-2

F

Facility
application message , 1-2
HELP , 1-4
system message , 1-3, 5-1

FCLOSE, Intrinsic , 5-1, 5-7, 5-13, B-1, B-3
File Commands , 6-3
File Output of Messages , 3-3, 5-6, 5-10
File Types Used With GENCAT , 2-2
FORMAT, Example Catalog
creating , 2-8

FORMAT Example File , 2-2
Format of a Message Catalog , 5-2
Format of Run-Time Parameters , 5-5
Formatted Catalog
creating with MAKECAT , B-1

Formatted File Description , 2-2
Formatting
a HELP source �le , 6-3
a message catalog with MAKECAT , B-1
a source �le , 2-8

Index-3

with the GENCAT utility , 1-3
Formatting a Source File With GENCAT (Figure

2-1) , 2-8
FORTRAN Example
accessing an application message catalog

(MSGCAT) , D-1
accessing the CM message catalog

(CM MSGCAT) , D-4
accessing the NM message catalog

(NM MSGCAT) , D-8

G

GCEXPAND
GENCAT JCW , 2-3

GCFORMAT
GENCAT JCW , 2-3

GCMAINT
GENCAT JCW , 2-3

GENCAT, Utility
collision �le description , 2-2
conversion from MAKECAT formatted �les

, B-2
error messages , 2-2, A-1
example of expanding a formatted catalog ,

4-2
example of formatting a source �le , 2-8
example of using batch mode , 2-2
�le types used with , 2-2
formatted �le description , 2-2
formatting with , 1-3
HELP , 2-2
JCWs , 2-3
maintenance �le description , 2-2
source �le description , 2-2
used to expand a formatted catalog , 4-2
used to format a source �le , 2-8
used to merge source and maintenance �les ,

4-4, 4-7
using batch mode , 2-2

GENCAT, Utility , 1-2, 1-3, 2-2
GENMESSAGE, Intrinsic , 5-1, 5-5, 5-13, B-1,

B-3

H

HELPCAT
output �le designator for HELP , 6-3

HELP Entry Point to MAKECAT , 6-3
HELP Facility
accessing , 6-4
ALL command , 6-3
CICAT.PUB.SYS , 6-4
creating the source �le , 6-1
creating your own , 6-1
description of , 6-1
di�erences from other message facilities , 6-4

ENTRY command , 6-2
error , 6-3
�le commands , 6-3
formatting the source �le , 6-3
ITEM command , 6-2
keyword commands , 6-2
keywords , 6-2
STARTHELP command , 6-3
STOPHELP command , 6-3
SUBITEM command , 6-2
SUBSET command , 6-3
user interface , 1-4

HELP Facility , 1-2, 1-4
HELP Facility Access
immediate mode , 6-4
subsystem mode , 6-4
using a UDC , 6-4

HELP Source File
example , 6-3

HPFOPEN, Intrinsic , 5-1, 5-4, 5-13, B-1, B-3

I

Immediate Mode Access
HELP facility , 6-4

INPUT
input �le designator for HELP , 6-3

Inserting Run-Time Variables in Messages , 2-6
Intrinsic
CATCLOSE , 1-3, 3-4, 5-1, 5-11, 5-13, B-3
CATOPEN , 1-3, 3-2, 5-1, 5-10, 5-13, B-3
CATREAD , 1-3, 3-2, 5-1, 5-10, 5-13, B-3
CATREAD, used to substitute parameters ,

3-2, 5-10
FCLOSE , 5-1, 5-7, 5-13, B-1, B-3
GENMESSAGE , 5-1, 5-5, 5-13, B-1, B-3
HPFOPEN , 5-1, 5-4, 5-13, B-1, B-3
NLAPPEND , 2-7

Introduction to Message Catalogs , 1-1
ITEM
HELP Command , 6-2

J

JCWs Used by GENCAT , 2-3

K

Keyword , 6-2
Keyword Commands , 6-2
Keyword Subdivisions (Figure 6-1) , 6-2

L

Line Number Merging
adding a record , 4-5
CAUTION about using , 4-4
deleting a record , 4-5

Index-4

example , 4-5
modifying a record , 4-5

Line Number Merging , 4-4
Literal Character, ~ , 5-3
Literal Character,~ , 2-5
Localizing Catalogs
naming , 2-7

Localizing Catalogs , 2-1

M

MAINT
example �le , 2-2
example �le used in example dialog , 4-7

Maintenance File
example using merging by line number , 4-5
example using set and message number merge

, 4-7
Maintenance File , 4-4
Maintenance File Description , 2-2
MAKECAT/GENCAT Comparison (Table B-1)

, B-3
MAKECAT, Utility
Conversion to GENCAT formatted �les , B-2
creating a formatted catalog , B-1
example of formatting a catalog , B-1
HELP Entry Point , 6-3
source �les , B-1
using to format a message catalog , B-1

MAKECAT, Utility , 1-3, 1-4, 6-3, B-1
Making the Source File
HELP , 6-1

MARY
used in program example , 3-6

Merging by Line Number
adding a record , 4-5
CAUTION about using , 4-4
deleting a record , 4-5
example , 4-5
modifying a record , 4-5

Merging by Line Number , 4-4
Merging by Set and Message Number
adding a message , 4-6
adding a set , 4-6
changing comment records , 4-7
deleting a message , 4-6
deleting a set , 4-6
example , 4-7

Merging by Set and Message Number , 4-4, 4-6
Merging Files to Create a New Source (Figure

4-1) , 4-2
Merging Source and Maintenance Files , 4-4
Message Addtion
set and message number merge , 4-6

Message and Set Number Merging
adding a message , 4-6

adding a set , 4-6
changing comment records , 4-7
deleting a message , 4-6
deleting a set , 4-6
example , 4-7

Message and Set Number Merging , 4-4, 4-6
Message Catalog
accessing application messages , 3-1
accessing CM error messages , 5-4
accessing NM error messages , 5-9
closing with CATCLOSE , 3-4, 5-11
closing with FCLOSE , 5-7
COBOL example of accessing application

messages , C-1
COBOL example of accessing CM error

messages , C-3
COBOL example of accessing NM error

messages , C-5
creating , 2-1
FORTRAN example of accessing application

messages , D-1
FORTRAN example of accessing CM error

messages , D-4
FORTRAN example of accessing NM error

messages , D-8
introduction to , 1-1
mod�ying , B-2
modifying , 4-1
opening with CATCLOSE , 3-2
opening with CATOPEN , 5-10
opening with HPFOPEN , 5-4
Pascal example of acccessing application

messages , 3-4
Pascal example of accessing CM error messages

, 5-7
Pascal example of accessing NM error messages

, 5-12
reading messages with CATREAD , 3-2, 5-10
reading messages with GENMESSAGE , 5-5
using , 2-1
using for native language support , 2-1
when to use , 1-1

Message Catalog Access (Figure 1-1) , 1-2
Message Catalog Directives
$, comment records , 2-3
message numbers , 2-4
$SET , 2-3

Message Catalog Directives , 2-3
Message Catalog Format , 5-2
Message Deletion
set and message number merge , 4-6

Message Facility
application , 1-2
HELP , 1-2
system , 1-2, 1-3

Index-5

Message File Format
example , 5-2

Message Numbers , 2-4
Message Output , 3-3
Message Output to a File or Bu�er , 5-6
Message Output to File or Bu�er , 5-10
Message Record Addition
line number merging , 4-5

Message Record Deletion
line number merging , 4-5

Message Record Modi�cation
line number merging , 4-5

Message Records , 2-4
Messages
reading with CATREAD , 5-10
reading with GENMESSAGE , 5-5

Modifying
a comment record using line number merging

, 4-5
a comment record using set and message

number merge , 4-7
a message record using line number merging

, 4-5
an application message catalog , 4-1
a record using line number merging , 4-5
a set or message using set and message number

merging , 4-6
a $SET Record using line number merging ,

4-5
a source �le , 4-3
the message catalog , B-2

MPE/iX Message Facilities , 1-2
MSGCAT
COBOL example , C-1
FORTRAN example , D-1
Pascal example , 3-4

MYHELP
example HELP �le , 6-3

MYSOURCE
example HELP source �le , 6-3

N

Native Language
language ID number , 2-7
naming convention , 2-7
NLUTIL, to �nd language ids , 2-7
support , 2-1

Native Mode - refer to NM , 1-3
NLAPPEND, Intrinsic , 2-7
NLUTIL, Utility , 2-7
NM Error Message Catalog
accessing , 5-9
closing , 5-11
COBOL example of accessing , C-5
FORTRAN example of accessing , D-8

opening , 5-10
Pascal example of accessing , 5-12
reading messages from , 5-10

NM Error Message Catalog , 1-3, 5-1
NM MSGCAT
COBOL example , C-5
FORTRAN example , D-8
Pascal example , 5-12

Null Character
ASCII , 3-3

Numerical Parameter Substitution , 2-6

O

Opening
an application message catalog , 3-2
the CM error message catalog , 5-4
the NM error message catalog , 5-10

Output �le for HELP
HELPCAT , 6-3

Outputting Messages
to a bu�er , 3-3, 5-6, 5-10
to a �le , 3-3, 5-6, 5-10

P

Parameter Format (GENMESSAGE Intrinsic)
, 5-5

Parameter Substitution
numerical , 2-6
positional , 2-6

Parameter Substitution , 2-6, 3-2, 5-5, 5-10
Parameter Substitution Character , 2-5, 5-3
Pascal Example
accessing an application message catalog

(MSGCAT) , 3-4
accessing the CM error message catalog

(CM MSGCAT) , 5-7
accessing the NM error message catalog

(NM MSGCAT) , 5-12
Positional Parameter Substitution , 2-6
Printing a Message on a Single Line , 2-5, 5-3
Printing a Message on Several Lines , 2-5, 5-3
Printing Special Characters , 2-5, 5-3
Program CM MSGCAT
COBOL , C-3
FORTRAN , D-4
Pascal , 5-7

Program Example
COBOL , 1-4
COBOL, accessing an application message

catalog , C-1
COBOL, accessing the CM message catalog

, C-3
COBOL, accessing the NM message catalog

, C-5

Index-6

Error Checking , 1-4
FORTRAN , 1-4
FORTRAN, accessing an application message

catalog , D-1
FORTRAN, accessing the CM message catalog

, D-4
FORTRAN, accessing the NM message catalog

, D-8
Pascal , 1-4
Pascal, accessing an application message

catalog , 3-4
Pascal, accessing the CM error message catalog

, 5-7
Pascal, accessing the NM message catalog ,

5-12
Program Example , 1-4
Program MSGCAT
COBOL , C-1
FORTRAN , D-1
Pascal , 3-4

Program NM MSGCAT
COBOL , C-5
FORTRAN , D-8
Pascal , 5-12

R

Reading Messages
from a MAKECAT formatted catalog , B-1
with CATREAD , 5-10
with GENMESSAGE , 5-5

Reading Messages , 3-2
Record Addition
line number merging , 4-5

Record Modi�cation
line number merging , 4-5

Record Number Merging
adding a record , 4-5
CAUTION about using , 4-4
deleting a record , 4-5
modifying a record , 4-5

Record Number Merging , 4-4
Record $SET , 5-3
Redirecting CICAT.PUB.SYS , 6-4
Reverting to a Previous Source File , 4-9
Rolling Back to the Old Source Catalog (Figure

4-4) , 4-9
Rolling Back to the Old Source File , 4-9
Run-Time Parameter Format (GENMESSAGE

Intrinsic) , 5-5
Run-Time Parameter Substitution , 2-6, 3-2,

5-5, 5-10

S

$SET , 2-3
Set Addition
set and message munber merging , 4-6

Set and Message Number Merging
adding a message , 4-6
adding a set , 4-6
changing comment records , 4-7
deleting a message , 4-6
deleting a set , 4-6
example , 4-7

Set and Message Number Merging , 4-4, 4-6
Set Deletion
set and message number merging , 4-6

Set Modi�cation
set and message number merging , 4-6

Set Numbers , 2-4
$SET Record , 5-3
$SET Record Addition
line number merging , 4-5

Set Record Addition
line number merging , 4-5

$SET Record Deletion
line number merging , 4-5

Set Record Deletion
line number merging , 4-5

$SET Record Modi�cation
line number merging , 4-5

Set Record Modi�cation
line number merging , 4-5

Set Records , 2-3
SOURCE
example catalog , 3-4
example of formatting , 2-8
example source �le , 2-2, 4-4

Source Catalog Example , 2-7
Source File
creating , 2-3, 4-7
description , 2-2
editing , 4-3
expanding , 4-2
formatting , 2-8
modifying , 4-3
rolling back to , 4-9

Source File, HELP
example , 6-3
formatting , 6-3

Source Files
MAKECAT , B-1

Special Character
! , 2-5, 5-3
$, 5-3
% , 2-4, 2-5, 5-3
& , 2-4, 2-5, 5-3

Index-7

n , 2-4, 2-5, 5-3
~ , 2-5, 5-3

Special Character , 2-5, 5-3
STARTHELP
HELP command , 6-3

STOPHELP
HELP command , 6-3

SUBITEM
HELP command , 6-2

SUBSET
HELP command , 6-3

Substituting Run-Time Parameters , 2-6, 3-2,
5-5, 5-10

Subsystem Mode Access
Help facility , 6-4

SYSCAT.PUB.SYS
accessing , 5-9

SYSCAT.PUB.SYS , 1-3, 5-1, 5-13
System Error Messages
accessing , 5-1
when to use , 5-1

System Message Facility , 1-2, 1-3, 5-1

T

Tilde , 2-5, 5-3

U

UDC
accessing the HELP Facility with , 6-4

User Interface
HELP facility , 1-4

User Message Catalogs , 1-3
Using Application Message Catalogs , 2-1
Using Catalog Intrinsics
COBOL example , C-1, C-5
FORTRAN example , D-1, D-8
Pascal example , 3-4, 5-12

Using GENCAT
example of using in batch mode , 2-2
in batch mode , 2-2
to expand a formatted catalog , 4-2

to format a source �le , 2-8
to merge source and maintenance �les , 4-7

Using MAKECAT
to format a message catalog , B-1

Using Message Catalogs
for native language support , 2-1

Utility, GENCAT
collision �le description , 2-2
error messages , 2-2, A-1
example of expanding a formatted catalog ,

4-2
example of formatting a source �le , 2-8
example of using in batch mode , 2-2
�le types used with , 2-2
formatted �le description , 2-2
JCWs , 2-3
maintenance �le description , 2-2
source �le description , 2-2
using HELP in , 2-2
using in batch mode , 2-2
using to expand a formatted catalog , 4-2
using to format a source �le , 2-8
using to merge source and maintenance �les

, 4-4, 4-7
Utility, GENCAT , 1-2, 1-3, 2-2
Utility, MAKECAT
creating a formatted catalog with , B-1
example of formatting a catalog with , B-1
HELP entry point to , 6-3
source �les for , B-1
using to format a message catalog , B-1

Utility, MAKECAT , 1-3, 1-4, 6-3, B-1
Utility, NLUTIL , 2-7

W

When to Use Application Message Catalogs ,
2-1

When to Use Message Catalogs , 1-1
When to Use System Error Messages , 5-1

Why Souce Files Shouldn't be Edited , 4-3

Index-8

	Top of Document
	Contents
	Introduction
	When to Use Message Catalogs
	Application Message Facility
	System Message Facility
	HELP Facility
	Program Examples
	Summary

	Creating an Application Message Catalog
	Using Application Message Catalogs
	Introducing the GENCAT Utility
	Creating a Source File
	Example Source Catalog
	Naming Convention
	Formatting a Source File
	Summary

	Accessing Application Message Catalogs
	Opening a Catalog
	Reading Messages
	Closing a Catalog
	Example of Accessing an Application Message Catalog
	Summary

	Modifying the Application Message Catalog
	Creating an Expanded Source File
	Modifying a Source File
	Creating a New Source File
	Rolling Back to the Old Source File
	Summary

	Accessing System Error Messages
	When to Use System Error Messages
	Format of a Message Catalog
	Accessing the CM Error Message Catalog
	Accessing the NM Error Message Catalog
	Summary

	Creating Your Own HELP Facility
	Creating the Source File
	Formatting the Source File
	Accessing the HELP Facility
	Summary

	App. A - GENCAT Error Messages
	App. B - Catalogs Formatted With MAKECAT
	Creating a Formatted Catalog
	Accessing the Message Catalog
	Modifying the Message Catalog
	Converting MAKECAT Formatted Catalogs
	GENCAT MAKECAT Comparison

	App. C - COBOL Progam Examples
	Example of Accessing an Application Message Catalog
	Example of Accessing the CM Error Message Catalog
	Example of Accessing the NM Error Message Catalog

	App. D - FORTRAN Progam Examples
	Example of Accessing the CM Error Message Catalog
	Example of Accessing the NM Error Message Catalog

	Index

