
Switch Programing Guide

HP 3000 Computer Systems

ABCDE

HP Part No. 32650-90014

Printed in U.S.A. 19890901

U0989

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company

c Copyright 1982, 1986, 1989, Hewlett-Packard Company.

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which
are issued between editions, contain additional and replacement pages to be
merged into the manual by the customer. The dates on the title page change
only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition
does not change when an update is incorporated.

The software code printed alongside the data indicates the version level of the
software product at the time the manual or update was issued. Many product
updates and �xes do not require manual changes and, conversely, manual
corrections may be done without accompanying product changes. Therefore, do
not expect a one-to-one correspondence between product updates and manual
updates.

There are many more manuals applicable to the HP 3000. A complete list may
be found in every issue of the MPE V Communicator. Please contact your
System Manager.

PREFACE

Although the manual provides basic as well as higher-level information, it is
assumed that you have some familiarity with programming, with the HP 3000,
or both. If you need further help or information, the following documentation
will provide any in-depth discussions you may require:

Using the HP 3000: An Introduction to Interactive Programming
(03000-90121)

MPE File System Reference Manual (30000-90236)

MPE V Intrinsics Reference Manual (32033-90007)

MPE V Commands Reference Manual (32033-90006)

iii

CONVENTIONS USED IN THIS MANUAL

NOTATION DESCRIPTION

COMMAND Commands are shown in CAPITAL LETTERS. The names must
contain no blanks and be delimited by a non-alphabetic
character (usually a blank).

KEYWORDS Literal keywords, which are entered optionally but exactly as
speci�ed, appear in CAPITAL LETTERS.

parameter Required parameters, for which you must substitute a value,
appear in bold italics .

parameter Optional parameters, for which you may substitute a value,
appear in standard italics .

[] An element inside brackets is optional. Several elements
stacked inside a pair of brackets means the user may select any
one or none of these elements.

Example: [A]

[B] user may select A or B or neither.

When brackets are nested, parameters in inner brackets can
only be speci�ed if parameters in outer brackets or comma
place-holders are speci�ed.

Example: [parm1[,parm2[,parm3]]]

may be entered as

parm1,parm2,parm3 or

parm1,,parm3 or

,,parm3 ,etc.

f g When several elements are stacked within braces the user must
select one of these elements.

Example: f A g
f B g user must select A or B or C.
f C g

iv

. . . An ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

user input In examples of interactive dialog, user input is underlined.

Example: NEW NAME? ALPHA1

superscriptc Control characters are indicated by a superscriptc.

Example: Yc. (Press Y and the CNTL key simultaneously.)

�RETURN� �RETURN� indicates the carriage return key.

v

Contents

1. Introduction
Native Mode (NM) . 1-1
Full Recompilation 1-2
Advantages . 1-2
Considerations . 1-2

Compatibility Mode . 1-3
Emulator . 1-4
Object Code Translator 1-4
Emulation and Translation Considerations 1-5

Summarizing NM-only and CM-only Execution 1-6
Mixed-mode Procedure Calling (Partial Recompilation) . . . 1-10
Mixed-mode Overview 1-12
Mixed-mode Situations 1-19
Relationship to Migration 1-20
Cost/Performance Factors 1-21

Switch Subsystem . 1-21
Purpose . 1-24
Invoking Switch . 1-24
Switch to CM Overview 1-25
Switch to NM Overview 1-27

Switch Stubs . 1-30
Operation . 1-31
Use . 1-31

Impact on Users . 1-32
Mixed-mode Summary and Example 1-34

Contents-1

2. Simplifying Switch Programming
SWitch Assist Tool (SWAT) 2-1
Who Uses SWAT? 2-2
Features . 2-3
Bene�ts . 2-4
Switch Stub Operation 2-5

Generating Switch Stubs Automatically 2-7
Invoking SWAT . 2-8
What SWAT Needs to Know 2-8
How SWAT Obtains Information 2-9
Typical SWAT Work Session 2-9
Inputting Information 2-10
Resolving Errors . 2-10
MAIN Menu Screen 2-11
Designating the Source Code File 2-11
Designating the Target CM Procedure 2-11
Designating the Target Procedure Parameters 2-11
MAIN Menu Function Keys 2-13
Completing the MAIN Menu Screen 2-14

PROCINFO Menu Screen 2-14
Designating the Location of the Target Procedure 2-15
Designating the Function Return Type of the Target

Procedure . 2-15
Designating the Privilege Level of the Target Procedure . . 2-15
Designating Whether the Target Procedure Returns a

Condition Code 2-15
PROCINFO Menu Function Keys 2-17
Completing the PROCINFO Menu 2-17

PARMINFO Menu Screen 2-17
Designating a Parameter's Addressing Method 2-18
Designating a Parameter's Data Type 2-18
Designating a Parameter's I/O Type 2-18
Designating Whether a Parameter Is an Array 2-19
PARMINFO Menu Function Keys 2-20
Completing the PARMINFO Menu 2-20

ARRAYLEN Menu Screen 2-20
Designating the Length Value of an Array Parameter . . . 2-21
Designating How to Interpret the Array Length Usage Value 2-21

Contents-2

ARRAYLEN Menu Function Keys 2-24
Completing the ARRAYLEN Menu 2-24

HELP Screens . 2-24
MAIN Menu HELP Screen 2-24
PROCINFO Menu HELP Screen 2-25
PARMINFO Menu HELP Screen 2-26
ARRAYLEN Menu HELP Screen 2-27

COMMIT Screen . 2-28
PROGRESS MESSAGES Screen 2-30
Completion of Stub Generation 2-31

Modifying SWAT Output 2-32
Using SWAT Output 2-32
SWAT Requirements 2-33
Hardware Requirements 2-33
Software Requirements 2-33

Example Source File Generated by SWAT 2-34
SWAT Quick Reference Summary 2-40
Special Cases . 2-42
Unsupported Cases 2-42
Special Case Considerations 2-43
Unconverted Real or Long Variables 2-43
Overlapping Reference Parameters 2-44
Run-time Speci�cation of Reference Parameter Data Lengths 2-44
Option-variable Procedures 2-45

User Options . 2-46

3. NM-to-CM Procedure Calls
Overview . 3-1
Flow of Control: NM|> CM 3-2
Stepwise Switch to CM 3-3

Switch to CM Details 3-5
HPSWITCH TOCM Intrinsic 3-6
Syntax . 3-8
Parameters . 3-10

HPLOADCM PROCEDURE Intrinsic 3-25
Syntax . 3-25
Parameters . 3-26

HPUNLOADCM PROCEDURE Intrinsic 3-32

Contents-3

Syntax . 3-32
Parameters . 3-32

Examples: NM to CM and Return 3-33
Switch to CM Sequence 3-55
Special Considerations and Restrictions 3-78
General . 3-78
NM|> CM . 3-79

Testing and Debugging Considerations 3-86

4. CM-to-NM Procedure Calls
Overview . 4-1
Flow of Control: CM|> NM 4-2
Stepwise Switch to NM 4-2

Switch to NM Details 4-4
HPSWTONM NAME Intrinsic 4-6
Syntax . 4-7
Parameters . 4-8

HPSWTONM PLABEL Intrinsic 4-23
Syntax . 4-24
Parameters . 4-25

HPLOADNM PROC Intrinsic 4-26
Syntax . 4-26
Parameters . 4-27

Examples: CM to NM and Return 4-28
Switch to NM Sequence 4-42
Special Considerations and Restrictions 4-55
General . 4-55
CM|> NM . 4-55

Testing and Debugging Considerations 4-56

5. Writing Switch Stubs
Switching to CM . 5-2
Writing the DECMADD Stub Declarations 5-3
Declaring the Stub Header 5-3
Declaring the Stub Parameters 5-5
Declaring Constants 5-6
Declaring User-De�ned Types 5-8
Declaring Variables 5-10

Contents-4

Declaring Called External Procedures 5-11
Writing the DECMADD Stub Body 5-12
Finished DECMADD Stub 5-17
Checklist for Writing NM|> CM Switch Stubs 5-22
Switching to NM . 5-23
Writing the CMCICommand Stub Declarations 5-25
Declaring the Stub Header 5-25
Declaring the Stub Parameters 5-26
Declaring User-De�ned Types 5-27
Declaring Variables 5-27

Declaring Called External Procedures 5-30
Writing the CMCICommand Stub Body 5-31
Finished CMCICommand Stub 5-35
Checklist for Writing CM|> NM Switch Stubs 5-42

A. SWAT Warning Messages

B. SWAT Fatal Error Messages

C. SWAT Progress Messages

D. TDP Use File for Concatenating Switch Stubs

E. EDIT Use File for Concatenating Switch Stubs

Contents-5

Figures

1-1. MPE XL Execution Environment 1-7
1-2. OCT Translation Process 1-9
1-3. Switch in MPE XL Execution Environment 1-11
1-4. Compatibility Mode Execution Model 1-13
1-5. Native Mode Execution Model 1-15
1-6. CM|> NM Mixed-mode Execution Model 1-17
1-7. NM|> CM Mixed-mode Execution Model 1-18
1-8. Role of Switch Intrinsics in CM|> NM Switch 1-22
1-9. Role of Switch Intrinsics in NM|> CM Switch 1-23
1-10. Mixed-mode Procedure Call: NM|> CM 1-26
1-11. Mixed-mode Procedure Call: CM|> NM 1-28
1-12. CM|> NM Switch Summary 1-35
1-13. NM|> CM Switch Summary 1-36
1-14. Before Migration . 1-38
1-15. Migrating High-level Code to Native Mode 1-39
1-16. Using Switch to Access SPL Procedure 1-40
2-1. Mixed-mode Procedure Call 2-2
2-2. Switch Scenario . 2-6
2-3. MAIN Menu Screen 2-13
2-4. PROCINFO Menu Screen 2-16
2-5. PARMINFO Menu Screen 2-19
2-6. ARRAYLEN Menu Screen 2-23
2-7. Main Menu Help Screen 2-25
2-8. PROCINFO Menu Help Screen 2-26
2-9. PARMINFO Menu Help Screen 2-27
2-10. ARRAYLEN Menu Help Screen 2-28
2-11. COMMIT Screen . 2-30
2-12. PROGRESS MESSAGES Screen 2-31
3-1. NM|> CM Switch Summary 1 3-2
3-2. HPSWITCHTOCM Example, CONVERTDATE 3-34

Contents-6

3-3. NM|> CM Switch Summary 2 3-47
4-1. CM|> NM Switch Summary 1 4-2
4-2. ARGDESC and ARGLIST Arrays 4-12
4-3. Supported Function Type Mappings 4-22
4-4. HPSWTONMNAME Example, CMDeleteVar 4-29
4-5. CM|> NM Switch Summary 2 4-37

Contents-7

Tables

2-1. Number of Allowed Array Elements By Type 2-21
3-1. Data Alignment By XL Language 3-19
3-2. HPSWITCHTOCM Status Returns (Page 1) 3-22
3-3. CM Loader Status Returns (Page 1) 3-28
3-4. Table 3-3. CM Loader Status Returns (Page 4) 3-31
4-1. Parameter Type IDs and Their NM/CM Sizes 4-14
4-2. SPL|> HP Pascal/XL Parameter Type Mappings 4-15
4-3. Pascal/V|> HP Pascal/XL Parameter Type Mappings (Page

1) . 4-17
4-4. COBOL II/V -> HP Pascal/XL Parameter Type

Mappings(Page 1) 4-20

Contents-8

1

Introduction

Through a simple STORE/RESTORE process, you can move nonprivileged
MPE V/E applications to MPE XL-based machines without modi�cation,
conversion, or recompilation.

Once applications are on an MPE XL-based system, you can choose how to
execute them from the following four migration options involving two operating
modes (Compatibility and Native):

Emulation (Compatibility Mode)

Object Code Translation (Compatibility Mode)

Partial recompilation (Mixed Modes|Compatibility Mode and Native Mode)

Full recompilation (Native Mode)

This manual focuses on the partial recompilation option. However, before
beginning the discussion of mixed-mode operation, it is appropriate to give
a brief overview of the two operating modes and the other three migration
options.

Native Mode (NM)

Native Mode (NM), or direct execution on a 900 Series computer, allows use of
the following HP Precision Architecture (HPPA) features:

32-bit words

Contiguous memory

Reduced instruction set

64-bit addressing

Introduction 1-1

Vastly increased stack/code/data space

The 900 Series systems run MPE XL, an extended version of the MPE V/E
operating system.

Full Recompilation

After moving MPE V/E programs over to MPE XL, you will ultimately want
to take advantage of the optimizing NM compilers. Recompilation can involve
source code changes, especially if your application calls routines in languages
not supported in Native Mode or uses MPE V/E features deleted from, or no
longer available on, MPE XL. However, recompilation also a�ords the potential
for performance gains since recompiled applications or routines execute directly
in the NM environment.

Advantages

Programs running in Native Mode exploit the higher performance and
expanded addressing capabilities of the HP Precision Architecture. Recompiled
applications execute considerably faster than emulated or translated
applications. The optimizing compilers written for MPE XL-based systems
take high-level source code and compile it into NM object code. NM compiled
programs run faster for the following reasons:

They run directly on the 900 Series machine, rather than being emulated.

They make fullest use of the more powerful HPPA instruction set.

They take advantage of optimizations that the compilers produce by
precisely scheduling and combining the HPPA instructions.

Considerations

For applications where source code is available, recompilation yields
signi�cant improvements in performance, simplicity, ease of maintenance, and
supportability. When source code is not available or the e�ort of rewriting
is not justi�ed by the potential bene�ts, you can use the optimizing Object
Code Translator (OCT) to translate MPE V/E-based programs and SL's. This
translator produces signi�cant performance gains over emulated programs run
in Compatibility Mode, at the cost of code size expansion.

1-2 Introduction

Compatibility Mode

Compatibility Mode (CM) is an emulation of the MPE V/E operating
environment. Consequently, it is very compatible with HP 3000 object code
from MPE V/E-based systems, allowing applications newly restored from MPE
V/E-based systems to run immediately and transparently on 900 Series HP
3000s (with certain exceptions, as noted below in \Emulation and Translation
Considerations").

Compatibility Mode is available to simplify the migration to the 900 Series of
the HP 3000 family. You can move programs written in high-level languages
(Pascal/V, FORTRAN 77/V, and COBOL II/V) to Native Mode by
recompilation with an NM compiler. But you cannot recompile a program or
procedure written in SPL in Native Mode, because HP does not provide an
NM SPL compiler. For best performance, you should completely rewrite such
code in a language having an NM compiler. However, if you must use an SPL
program or procedure, it will run only in Compatibility Mode.

You have two options for running applications in the Compatibility Mode (CM)
environment with few, if any, source code changes (discussed in more detail
below):

You can run applications directly in HP 3000 Compatibility Mode (using the
Emulator).

For better performance while still executing in Compatibility Mode, you can
pass MPE V/E-based application program �les through the Object Code
Translator (OCT) and then run them.

Neither alternative requires any source code modi�cation. A translated
(processed by OCT) application program will generally execute somewhat
faster than the same program executing under emulation. Recompiled
programs should execute faster than either their translated or emulated
versions.

Introduction 1-3

Emulator

Under MPE XL, HP 3000 Compatibility Mode is implemented as an emulator
for the CPU of MPE V/E-based systems and as an interface between
supported MPE V/E intrinsic calls and MPE XL intrinsics. The Emulator
functions as an object code interpreter. 900 Series machines have several
features that make them good interpreters:

Simplicity of the instruction set

Simplicity of control paths

The HP 3000 object code Emulator works by interpreting (reading and
initiating appropriate machine activity), at run time, each MPE V/E-based
instruction into a functionally equivalent sequence of 900 Series instructions.
Because the machine instruction set on MPE XL-based systems has been
simpli�ed from that found on MPE V/E-based systems, it often takes several
900 Series instructions to emulate a single MPE V/E-based instruction.

Thus, even though interpreted execution is slower than direct execution of
the same instructions, the advanced features of the 900 Series machine yield
performance under emulation (running in Compatibility Mode) similar to that
of a HP 3000 Series 70.

Object Code Translator

The Object Code Translator (OCT) converts the MPE V/E-based instructions
in a CM program �le into 900 Series instructions. This Object Code Translator
is valuable for programs whose source is not available and as a low-cost
speed-up of compute-bound CM programs.

You invoke the Object Code Translator by means of the :OCTCOMP command.
OCT not only translates the CM instructions to NM instructions; it also
does whatever low-level optimizations are possible without reference to the
program's source. OCT performs an optimized translation of code once and
saves the result, eliminating the need for reading and decoding each time the
program is run. OCT produces an output �le, either permanent or temporary
depending on the option selected. Consequently, overhead during execution
is greatly reduced, but the translated MPE V/E program or SL will require
greater disc space (currently up to 10 times more space; the actual �le size
usually expands by about 3-4 times) than the original program �le.

1-4 Introduction

Emulation and Translation Considerations

A code size expansion occurs when translating MPE V/E-based object code to
its 900 Series equivalent using the Object Code Translator. You have a choice
between higher performance execution using the Object Code Translator or
more e�cient disc space utilization using the Emulator.

Another tradeo� involves the ease of debugging. Since original MPE V/E
program �les are unchanged when emulated, they can be debugged using the
CM portion of the MPE XL Debugger. In contrast, MPE V/E programs
that have been translated by means of the Object Code Translator consist of
optimized 900 Series instructions. This requires use of the NM debugger on
mechanically-translated object code and is more di�cult than using the NM
debugger on CM programs.

Both the Emulator and the Object Code Translator need to know MPE
V/E-based instructions and stack architecture. The Emulator creates MPE
V/E-based program and stack structures when a CM program is run. Object
code compatibility is provided by exactly emulating the MPE V/E-based
environment. You are subject to the same addressing and stack limitations
found on MPE V/E-based systems. OCT executes in Native Mode on a CM
program �le. Its output, a translated program, executes in Compatibility
Mode on CM data, thus still having the addressing and stack limitations. If
you require additional features and performance, you need to migrate your
application(s) to Native Mode.

You can use Compatibility Mode not only to run MPE V/E applications
immediately following migration, but also, over the long term, to execute those
applications that perform acceptably on MPE V/E-based systems today.

Note Applications running in Compatibility Mode must not execute
privileged instructions and must call only documented, callable
MPE V/E or subsystem intrinsics. However, you can enter
Privileged Mode and call MPE V/E privileged intrinsics from
Compatibility Mode.

Caution The normal checks and limitations that apply to standard users
in MPE XL are bypassed in Privileged Mode. A Privileged
Mode program could destroy �le integrity, including the MPE

Introduction 1-5

XL operating system software itself. Hewlett-Packard will
investigate and attempt to resolve problems resulting from
the use of Privileged Mode code. This service, which is not
provided under the standard service contract, is available on
a time and materials billing basis. Hewlett-Packard will not
support, correct, or attend to any modi�cation of the MPE XL
operating system software.

Summarizing NM-only and CM-only Execution

Figure 1-1 illustrates the place of emulation, translation, and full recompilation
within the Native Mode (NM) operating environment. The �gure shows three
processes running independently under MPE XL:

Process 1 is a CM program (obtained from a STORE/RESTORE) running
under emulation. Emulation is a feature of the MPE XL operating system
that uses existing program �les and data to produce the same results as if
the program ran on an MPE V/E-based system.

Process 2 is a CM program that has been translated to achieve a
performance boost. This translation involves converting portions of a CM
program �le to NM object code and appending that code to the �le. The
performance gain is achieved by escaping from the Emulator to this NM code
during execution of the CM program. Translated programs are still subject
to all CM limitations and still execute in Compatibility Mode.

Process 3 is an NM program (produced by full recompilation). This program
can take advantage of the full MPE XL feature set, including the optimizing
NM compilers and the performance improvement resulting from direct
execution of the HP Precision Architecture instruction set.

1-6 Introduction

Figure 1-1. MPE XL Execution Environment

Introduction 1-7

The translated program in Figure 1-1 is the result of a one-time translation
process illustrated in Figure 1-2. The translation process is invoked by issuing
the command: :OCTCOMP CMprogname.

1-8 Introduction

Figure 1-2. OCT Translation Process

Introduction 1-9

Mixed-mode Procedure Calling (Partial Recompilation)

Partial recompilation, possibly requiring rewriting, employs the Switch
subsystem (Switch) to make mixed-mode procedure calls. The MPE XL
Switch subsystem (Switch) provides the ability for programs executing in
one mode to call Compatibility Mode (CM) Segmented Library (SL) or
Native Mode (NM) Executable Library (XL) procedures that reside in the
opposite mode. For instance, users with high-level NM applications that call
low-level CM SL procedures (COBOL calling SPL Segmented Library code, for
example) can recompile the high-level portion using the appropriate compiler
and, using Switch, can call CM SL procedures. With this capability, you get
the advantage of Native Mode (large code and data space and performance
improvements) in the recompiled portion of your application, without having to
rewrite SL procedures in a supported NM language.

Figure 1-3 illustrates the place of Switch in the NM environment.

1-10 Introduction

Figure 1-3. Switch in MPE XL Execution Environment

Introduction 1-11

Mixed-mode Overview

MPE XL-based systems provide two operating modes (Compatibility Mode and
Native Mode) and a variety of execution options:

1. You can run CM programs (directly after being restored from your MPE
V/E STORE tape), and, from that code, call procedures that are located
in a CM SL. In this instance, all execution is within Compatibility Mode,
and no apparent mode switching on the part of your program is involved.
Figure 1-4 illustrates this model.

1-12 Introduction

Figure 1-4. Compatibility Mode Execution Model

Introduction 1-13

2. You can run NM programs (after full recompilation), and, from that code,
call procedures that are located in an NM Executable Library. In this
instance, all execution is within Native Mode, and again no apparent mode
switching on the part of your program is involved. This is demonstrated in
Figure 1-5.

1-14 Introduction

Figure 1-5. Native Mode Execution Model

Introduction 1-15

3. When running NM code you can call procedures located in a CM SL,
or when running CM code you can call procedures located in an NM
Executable Library. These situations involve mixed-mode procedure calls,
and Switch provides such capability. Figures 1-6 and 1-7 symbolize this
mixed-mode calling feature.

1-16 Introduction

Figure 1-6. CM|> NM Mixed-mode Execution Model

Introduction 1-17

Figure 1-7. NM|> CM Mixed-mode Execution Model

1-18 Introduction

Note Combinations of mixed-mode procedure calls are also possible.
For example, your NM program could use Switch to call a
CM SL procedure that, in turn, could call an NM Executable
Library procedure via Switch (NM|> CM|> NM), and so
on. Conversely, your CM program could use Switch to call an
NM Executable Library procedure that, in turn, could call a
CM SL procedure via Switch (CM|> NM|> CM), and so on.
However, you should carefully consider use of this feature since
you pay an overhead penalty on every switch.

Mixed-mode Situations

If you have existing applications written in a high-level language that call
user-written CM SL procedures that are written in SPL or other languages
not supported by Hewlett-Packard in Native Mode, and you want to recompile
these applications in Native Mode, then you will need to use Switch. To take
full advantage of the features and performance of 900 Series machines, it is
necessary to recompile existing applications entirely in Native Mode. However,
a number of factors may make full recompilation infeasible. Among these are
the following:

Size of the application

Availability of shared procedures

Language of implementation (SPL, for example)

Desired performance

Resources available for migration

Availability of source code of CM SL procedures

Such factors can lead you to split the application into two di�erent modes of
execution, Compatibility Mode and Native Mode, and migrate by phases, until
you have migrated the entire application into Native Mode.

Or, mixed-mode execution may be your target state. You may need to make
mixed-mode procedure calls in the NM|> CM direction if your high-level
applications running on MPE V/E-based systems make calls to SPL procedures
in order to take advantage of the special features accessible from that
language. Because SPL is close to the HP 3000 architecture of earlier series,

Introduction 1-19

it is able to take particular advantage of that architecture. However, SPL
is so architecture-dependent that it has not been migrated to Native Mode.
Consequently, the user of SPL procedures is faced with two options:

1. Rewrite all SPL procedures in higher-level languages that can be compiled
directly in Native Mode.

2. If rewriting is not feasible or the procedure is not performance-sensitive,
use Switch to continue to call such procedures but call them from code
that has been migrated to (recompiled in) Native Mode.

Other factors may motivate CM|> NM switching. A common situation
involves the most performance-sensitive portions of your application. These
are probably the �rst pieces of code you want to recompile or rewrite.
Mixed-mode procedure calling allows you to migrate those portions to Native
Mode to obtain the performance gains, while still running the remainder of
the application in Compatibility Mode. This provides a continual, incremental
upgrade path. Be sure that the overhead of the Switch is outweighed by the
performance advantage of running that code in Native Mode.

Relationship to Migration

When you move your application or subsystem from MPE V/E- to MPE
XL-based systems, you can carry out this migration in a phased manner.
Phased migration refers to the ability to convert your application in steps from
100% CM execution to, potentially, 100% NM execution.

Because Hewlett-Packard has provided object code compatibility, most
applications can be restored and execute in Compatibility Mode without
changes. You can then migrate a portion of your application to Native Mode
to take advantage of increased performance and added features. You can
choose to migrate your database, application programs, or application libraries
independently of one another. It is this capability to migrate portions of an
application over time that makes up the phased migration feature of MPE XL.

Since the HP Precision Architecture is di�erent from that of non-MPE
XL-based HP 3000 family members, users of the 900 Series face certain
di�erences when migrating to the MPE XL environment. Furthermore,
migration does not end when an MPE XL-based system is installed. In many
instances, Series 900 systems will be used in both networks and environments
alongside MPE V/E-based systems. The transfer of information between these

1-20 Introduction

types of systems and the attendant need to convert between MPE V/E- and
MPE XL-based data may make migration an ongoing concern.

Cost/Performance Factors

As noted previously, you have the ability to run applications in Compatibility
Mode, Native Mode, or mixed modes. To some extent, the choice of how to
mix execution modes may involve the question of how to achieve the best
possible performance. The following recommendations are intended to guide
you in making a decision appropriate to your circumstances:

Find the procedure that uses the most resources.

If that procedure is CPU-intensive (for example, doing calculations or
character comparisons), you may bene�t from converting it to Native Mode
and accessing it via Switch.

If that procedure is a special-purpose SPL technique to make your
application bigger or faster, look for an NM feature (such as the large data
space or mapped I/O) that can take the place of the SPL procedure.

Take measurements to be sure that the Switch overhead does not outweigh
the performance improvement you gain from converting to an NM procedure.

Switch Subsystem

The Switch subsystem is an integral part of the MPE XL operating system.
Switch consists of a set of intrinsics that provide the following services:

Ability to call subsystem, intrinsic, or user-written CM SL procedures from
NM system or user code

Ability to call subsystem, intrinsic, or user-written NM XL procedures from
CM system or user code

Note MPE V/E intrinsics (except for those no longer supported) are
directly callable from both Compatibility Mode and Native
Mode. You do not need to code any Switch calls to access these
intrinsics.

Introduction 1-21

Figures 1-8 and 1-9 demonstrate the role of the Switch intrinsics in the process
of carrying out mixed-mode procedure calls:

Figure 1-8. Role of Switch Intrinsics in CM|> NM Switch

1-22 Introduction

Figure 1-9. Role of Switch Intrinsics in NM|> CM Switch

Introduction 1-23

Purpose

Due to architectural di�erences between MPE V/E- and MPE XL-based
systems, programs that switch between CM and NM execution may encounter
di�erences in data representation. The primary purpose of Switch is to resolve
this situation by providing mixed-mode execution access and parameter
translation between Compatibility Mode and Native Mode.

Invoking Switch

One way to invoke Switch is to use an intermediate, user-written procedure
that sets up variables and calls Switch to translate these data references
whenever the program changes execution mode. This intermediate procedure is
called a Switch stub. The primary purpose of a stub is to provide transparency
to the calling procedure/program and thereby avoid source changes in the
original code. To do this, the stub must have the same name as the original
procedure.

You can use the SWitch Assist Tool (SWAT) to automatically generate
NM-to-CM stub procedures, or you can write your own Switch stubs. Refer to
Chapter 2 for information on SWAT and to Chapters 3-5 for information on
the Switch subsystem and the process of writing your own stubs.

Another way to invoke Switch is to code the Switch call, and its attendant
setting up of variables and error checking, directly in line in the calling
procedure. Although this involves modi�cation of your program, there are
factors that may lead you to consider this alternative. For example, every time
you call a procedure or function, the call and the entry and exit code add to
execution overhead. This overhead could increase execution time if it occurred
in a critical section of your program.

In-line switch code may be appropriate for other-mode procedures that should
execute quickly and/or are executed often (for example, in a loop). If an
other-mode procedure is referenced in many places, then the convenience of
the stub can justify the added overhead of a procedure call. Another factor
inuencing the choice between stubs and in-line switches is whether data setups
can be reused. If not, the in-line switch is not justi�ed. Finally, if backward
source compatibility is important to you, you should use Switch stubs. To
compile an application or module on an MPE V/E system, removing the stub
from the compile procedures is all that is required.

1-24 Introduction

Switch to CM Overview

Figure 1-10 represents the process of mixed-mode procedure calling in the
NM|> CM direction.

Introduction 1-25

Figure 1-10. Mixed-mode Procedure Call: NM|> CM

1-26 Introduction

A mixed-mode procedure call in the direction NM|> CM involves the
following steps, as indicated in Figure 1-10:

1. The NM code needing to access a CM routine calls a Switch intrinsic,
either by means of in-line code or a Switch stub.

2. The in-line code or NM Switch stub sets up the data structures and
parameters required by Switch and makes a call to the HPSWITCHTOCM
intrinsic (call by name), or the HPLOADCMPROCEDURE and HPSWITCHTOCM

intrinsics (call by plabel).

3. HPSWITCHTOCM calls the CM routine and passes the parameters, translating
addresses and/or copying data to Compatibility Mode as required by their
type, size, and location.

4. The CM routine executes using the passed parameters and returns its data
values to HPSWITCHTOCM.

5. HPSWITCHTOCM receives the data values returned by the CM routine,
back-translating addresses and recopying data as needed.

6. HPSWITCHTOCM returns the translated values to the caller. The stub or
in-line code checks whether the Switch operation was successful and then
control returns to the NM routine.

Note HPSWITCHTOCM is the system intrinsic that makes NM
parameters addressable to Compatibility Mode, changes the
execution mode, and invokes the CM routine. HPSWITCHTOCM
and HPLOADCMPROCEDURE reside in the NM system library,
NL.PUB.SYS.

Switch to NM Overview

Figure 1-11 represents the process of mixed-mode procedure calling in the
CM|> NM direction.

Introduction 1-27

Figure 1-11. Mixed-mode Procedure Call: CM|> NM

1-28 Introduction

A mixed-mode procedure call in the direction CM|> NM involves the
following steps, as indicated in Figure 1-11:

1. The CM code needing to access an NM routine calls Switch, either by
means of in-line code or a Switch stub.

2. The in-line code or CM Switch stub sets up the data structures
and parameters required by Switch and makes a call to either the
HPSWTONMNAME intrinsic or the HPLOADNMPROC and HPSWTONMPLABEL

intrinsics.

3. HPSWTONMNAME or HPSWTONMPLABEL calls the NM routine, after preparing
the NM registers as though the call was being made from Native Mode.

4. The NM routine executes as though called from Native Mode and returns
the functional return value (if any) to the calling Switch intrinsic.
Reference parameters are modi�ed by the NM routine.

5. If the NM routine has a functional return value, HPSWTONMNAME or
HPSWTONMPLABEL copies the value back to the CM stack.

6. The stub or in-line code checks whether the Switch operation was
successful and then control returns to the CM routine.

Note HPSWTONMNAME or a combination of HPLOADNMPROC and
HPSWTONMPLABEL are the system intrinsics called to pass
CM values and parameters to Native Mode, to change the
execution mode, and to invoke an NM routine. HPSWTONMNAME,
HPLOADNMPROC, and HPSWTONMPLABEL reside in the CM system
library, SL.PUB.SYS. The only di�erence between using
HPSWTONMNAME and HPLOADNMPROC/HPSWTONMPLABEL is the
manner in which the target routine is identi�ed. For details on
when and why to use names versus plabels, see Chapter 4.

Introduction 1-29

Switch Stubs

A Switch stub is a routine that acts as a facade, hiding the complexity of
the actual Switch call. The primary purpose of Switch stubs is to provide
applications that must call routines residing in an other-mode library with
transparent access to Switch.

Transparency for the application making the mixed-mode call means that the
recompiled calling program usually does not require source changes to call
procedures from its original mode. The Switch stub makes this transparency
possible due to the following factors:

The Switch stub procedure name is identical to the original procedure name.

The stub parameters and their types are equivalent to those of the original
procedure.

The Switch stub sets up the special parameters required by the
Switch intrinsic (HPSWITCHTOCM, HPSWTONMNAME, or HPLOADNMPROC and
HPSWTONMPLABEL).

The stub makes the call to the intrinsic.

The Switch stub handles the necessary return parameters (if any).

In this way, an application program that must now call an other-mode routine
can call an identically named procedure in its own mode and thereby avoid
making changes in the application source code. The only change required is
the addition of a stub procedure to a CM Segmented Library (SL) or an NM
Executable Library (XL).

Note Sometimes the calling procedure must change to allow it to do
sophisticated recovery from error situations. Data alignment is
an ongoing concern and possible cause of change.

1-30 Introduction

Operation

The Switch stub is responsible for doing the following:

Setting up the data structures and parameters required by Switch intrinsics

Making the call to the Switch intrinsic, which translates and copies
parameters as required and triggers the change in operating mode

Retranslating the parameters that the mixed-mode procedure call returns
through Switch

Setting the condition code on return from the NM routine (CM|> NM
only)

Error handling

Switch makes the data and parameters of the calling procedure understandable
to the called procedure, and vice versa. Use of a stub concentrates the
programming e�ort to call the Switch intrinsics in one place. All calls to the
other-mode routine are routed through the stub, so there is no need for direct
calls to the Switch intrinsics by the application itself.

Use

For the mixed-mode call to succeed, three pieces of code are needed:

Calling routine

Switch stub in same mode (NM or CM) as the caller

Other-mode routine in library of mode opposite the caller (NM Executable
Library or CM Segmented Library)

When a program is loaded (run), the loader cannot bind any unresolved
external references to procedures residing in an other-mode library. Whenever
an external reference is encountered, the loader searches the speci�ed libraries
of the calling mode to resolve that reference. If the external reference cannot
be resolved by a search of those current mode libraries, then the load fails.

For example, an NM program that refers to an external procedure residing in a
Compatibility Mode (CM) Segmented Library (SL) cannot be loaded. The CM
SL's are not searched by the NM Loader because all entry points in a program
�le, executable library, or object library must be in the same mode. Neither

Introduction 1-31

loader resolves an external reference made in one mode to an executable library
in the opposite mode, because object �le formats for the two processors are
very di�erent.

Explicit calls to Switch intrinsics resolve such external references by identifying
the �le from which to load the procedure and providing the information needed
to translate parameters. This is possible because one of the parameters passed
to the Switch intrinsic designates the library in which the external procedure
can be found. The Switch stub, among other things, calls the appropriate
Switch intrinsic (HPSWITCHTOCM, HPSWTONMNAME, or HPSWTONMPLABEL), which, in
turn, calls the other-mode procedure.

After you produce and compile a Switch stub, use the Linker or Segmenter
(depending on the mode of the caller) to place the object code in the
appropriate system library (NM Executable Library or CM Segmented Library)
or to incorporate the stub code into the calling program.

Refer to the MPE XL Commands Reference Manual (32650-90003) for
information on the commands used to invoke the various NM and CM
compilers.

Refer to the MPE Segmenter Reference Manual (30000-90011) for information
on CM Segmented Libraries.

Refer to the Link Editor/XL Reference Manual (32650-90030) for information
on linking object code modules into NM program �les and installing object
modules in NM Executable Libraries.

Impact on Users

Switch is used in the following areas:

Phased migration of existing applications

Recompilation into Native Mode of existing source code that contains calls to
user-written CM SL procedures

New NM applications that call user-written CM SL procedures

Members of the following groups will make use of Switch:

1-32 Introduction

1. Suppliers of application programs and subsystems who want to migrate
that software to Native Mode in a phased approach

2. Users who choose to recompile existing source code with MPE XL-based
NM compilers (HP Pascal/XL, HP FORTRAN 77/XL, COBOL II/XL)
and whose original source contains calls to user-written CM procedures
that remain in CM SLs and where rewriting these procedures in an NM
language is impractical or impossible

3. Developers of new NM programs that require the services of non-intrinsic
CM procedures

4. Users with performance-sensitive MPE V/E SL procedures who want
to recompile or rewrite those procedures in Native Mode to get the
best performance, but also want CM programs to continue to call the
procedures

5. Suppliers of application software who need to provide access to their
routines from both modes

If you fall into the �rst category, you should do the following:

Generate NM|> CM Switch calls (coded in-line or in Switch stubs) to
non-intrinsic CM procedures

Generate CM|> NM Switch calls (coded in-line or in Switch stubs) from
CM procedures to NM procedures

Incorporate into an MPE XL Executable Library any new NM procedures
that CM procedures call via Switch

Understand the performance factors that a�ect mixed-mode procedure calls

Members of the second category should do the following:

Recompile application programs written in Pascal, FORTRAN, or COBOL
with the appropriate NM compiler

Generate Switch calls (either by means of in-line code or Switch stubs linked
with the converted programs) to user-written CM procedures that remain in
CM SLs

Those in the third category should do the following:

Introduction 1-33

Generate Switch calls (either via in-line code or Switch stubs linked with the
new NM programs) to CM procedures

Those in the fourth category should do the following:

Write NM procedures to replace performance-critical CM procedures and
place them in an Executable Library

Generate CM|> NM Switch calls (through in-line code or Switch stubs) to
these NM procedures

Those in the �nal category should do the following:

Generate the appropriate NM|> CM Switch calls (coded in-line or in
Switch stubs)

Generate the appropriate CM|> NM Switch calls (coded in-line or in
Switch stubs)

Incorporate into an MPE XL Executable Library any new NM procedures
that CM procedures call via Switch

Incorporate into a CM SL any new CM procedures that NM procedures call
via Switch

Understand the performance factors that a�ect mixed-mode procedure calls

Mixed-mode Summary and Example

Figures 1-12 and 1-13 summarize mixed-mode procedure calling as provided by
Switch:

1-34 Introduction

Figure 1-12. CM|> NM Switch Summary

Introduction 1-35

Figure 1-13. NM|> CM Switch Summary

1-36 Introduction

The following series of �gures illustrates the migration of an existing COBOL
II/V application to Native Mode. You can simply do a STORE/RESTORE to
move the application. For even greater performance in Native Mode, you can
recompile the source, taking advantage of the NM compilers. However, this
application calls an SPL procedure that cannot be migrated to Native Mode.
Therefore, you must use Switch to access this SPL procedure (if you do not
want to rewrite it in an NM high-level language).

Note In the following �gures, shading means that a module is no
longer needed.

Introduction 1-37

Figure 1-14. Before Migration

1-38 Introduction

Figure 1-15. Migrating High-level Code to Native Mode

Introduction 1-39

Figure 1-16. Using Switch to Access SPL Procedure

1-40 Introduction

2

Simplifying Switch Programming

Tools have been developed to facilitate the migration process. Among these
tools is one that, in most instances, can simplify use of the Switch subsystem
(Switch), when switching from Native Mode to Compatibility Mode.

SWitch Assist Tool (SWAT)

The SWitch Assist Tool (SWAT) is an interactive utility that produces the
Switch stub source code you can use to make mixed-mode procedure calls in
the NM|> CM direction. SWAT prompts you for information regarding the
called other-mode procedure and its parameters. In response, SWAT builds
source code containing the data structures and logic required to use Switch.

Figure 2-1 illustrates a situation that requires invocation of Switch:

Simplifying Switch Programming 2-1

Figure 2-1. Mixed-mode Procedure Call

Procedure Z represents an entity that is not supplied in the Native Mode
environment. The SWAT utility can help you handle such unresolved
references.

Tools like SWAT enable you to improve performance of migrated applications
with a minimum of e�ort and concern about the architectural di�erences. You
can use SWAT prior to installation to prepare the source code for Switch stubs
ahead of time, as well as after the MPE XL-based system is up and running.

Who Uses SWAT?

If you develop applications and subsystems for the HP 3000, then you may
be interested in migrating existing applications to MPE XL-based systems.
Migrating an application entirely to Native Mode is the preferred approach.
However, due to considerations such as the size of the application, the
availability of shared procedures, and the language of implementation (SPL, in
particular), you may have no choice but to mix modes of execution. The most
e�cient means for accomplishing this task is to migrate those applications in a

2-2 Simplifying Switch Programming

phased approach. That requires the mixing of Compatibility Mode and Native
Mode code.

Switch provides the ability to make mixed-mode procedure calls. SWAT helps
you use Switch to run portions of an application in Compatibility Mode and
portions in Native Mode. You will be particularly interested in using SWAT
if you have high-level applications that call user-written SPL routines or if
your applications call SPL routines for which the source code is not available.
Because these two types of routines cannot run in Native Mode, they must
either be rewritten entirely or execute in Compatibility Mode. Once you have
decided which procedures or modules of your application are to remain in
Compatibility Mode, you can use SWAT to generate the necessary Switch stubs
to make the switching transparent.

Features

The features of the Switch Assist Tool include the following:

SWAT's user interface is interactive, exible, and easy-to-use.

SWAT generates standardized Switch stub source code in the HP Pascal/XL
programming language.

SWAT facilitates user modi�cation by keeping the source �le output in a text
�le.

SWAT fully supports most programming options, within the limitations of
Switch and MPE XL.

SWAT automatically appends the appropriate compiler commands to the
generated source code.

SWAT is available upon installation of MPE XL-based systems.

SWAT standardizes management of the interface between Compatibility
Mode and Native Mode.

SWAT generates the source code required for most possible types of
mixed-mode procedure calls in the NM|> CM direction.

Simplifying Switch Programming 2-3

Benefits

SWAT's primary bene�t is the programmer support it provides by alleviating
much of the complexity faced in making mixed-mode procedure calls. It also
increases the quality of Switch stub source code by generating standardized
source code.

To code a working Switch stub manually, you need the following:

Knowledge of the stack architecture of MPE V/E-based systems and the
register assignments of 900 Series machines

Familiarity with two system programming languages (SPL and HP
Pascal/XL)

Details of the calling sequences, parameter types, and return values of the
target procedures

Familiarity with the complexities of the Switch intrinsics

Access to the library management of both CM and NM environments

Knowledge of how to handle condition codes and status words that are
returned when mixed-mode procedure calls are made

By helping you meet these concerns, SWAT helps to make the migration
process as smooth and easy as possible.

Furthermore, because much of the information and data structures required
by Switch are repetitive in nature and must be duplicated for each parameter
passed through Switch, SWAT eliminates much of the tedium otherwise
associated with manually coding Switch stubs.

In summary, SWAT serves to increase your productivity and reduce the time
required to migrate applications to a Series 900 machine. SWAT bene�ts those
who are migrating application programs and subsystems to MPE XL-based
systems in the following ways:

SWAT incorporates into the logic of the tool the systems and programming
knowledge required to produce Switch stub code.

SWAT eliminates many of the repetitious aspects of stub coding.

SWAT helps assure the correct execution of mixed-mode procedure calls by
generating standardized Switch stub source code as its output.

2-4 Simplifying Switch Programming

For those who prefer to code Switch stubs manually, or in some instances
must do so, SWAT provides examples of good coding practices and can act as
a template for advanced stubs.

Switch Stub Operation

Figure 2-2 demonstrates how Switch stubs and the Switch subsystem �t into
the overall ow of program execution:

Simplifying Switch Programming 2-5

Figure 2-2. Switch Scenario

2-6 Simplifying Switch Programming

The Switch stub acts as an interceptor/intermediary that calls the Switch
subsystem and passes it the parameters of the called procedure and any other
information required by Switch. Switch itself calls the other-mode procedure.

Generating Switch Stubs Automatically

The Switch Assist Tool and its user interface help you create the Switch stub
source code, which has the following components:

Compiler commands

Data structures

Logic

Speci�cally, in producing the source code of a stub procedure, SWAT does the
following:

1. Converts the SPL procedure name and variable names to valid HP
Pascal/XL names

2. Generates the top global area code

3. Generates the stub procedure declaration and parameters

4. Generates the stub procedure local variables and its BEGIN statement

5. Generates the stub procedure body code to prepare the Switch call
parameters

6. Generates the code to call the Switch intrinsic

7. Generates the code to check the status and calls the QUIT intrinsic when
Switch encounters an error

8. Generates the END statement of the stub procedure

9. Generates the bottom global area code

Note SWAT output is a stub written in HP Pascal/XL, no matter
what language the original application was written in. The
Switch stub source code produced by SWAT is, in turn, input
for the HP Pascal/XL compiler, which produces Switch

Simplifying Switch Programming 2-7

stub object code. For more information on how to invoke
this compiler, see the discussion of the PASXL command in
the MPE XL Commands Reference Manual (32650-90003).
Compilation of that source must be on an MPE XL-based
machine. The resulting object code is input to the MPE XL
Link Editor, where you can either install the object code in an
NM Executable Library or link it into an NM program �le. For
more information on the Link Editor, refer to Link Editor/XL
Reference Manual (32650-90030).

Invoking SWAT

To invoke SWAT, enter the following at the system prompt:

RUN SWAT.PUB.SYS

What SWAT Needs to Know

In order to generate NM|> CM Switch stubs, SWAT needs to know the
following information:

Name of the text �le into which SWAT should place the generated source
code

Name of the procedure to be called

Location of that procedure (for example, CM system, account, or group
Segmented Library)

Type (expressed in SPL terminology) of the function return value if the
Switch call is to a function

Whether the stub procedure should pass any condition code to the caller

Number of parameters Switch is to pass to the procedure

Addressing method, data type, I/O type, and length of each parameter in the
calling sequence of the procedure Switch is to invoke (for arrays, length is
speci�ed as the number of elements)

2-8 Simplifying Switch Programming

Note The process of gathering information about parameters is
iterative.

How SWAT Obtains Information

When you run SWAT, SWAT uses VPLUS screens to prompt you for this
required information. There are a total of seven screens that you may
encounter as you enter the information required by SWAT, request help on
how to complete a form screen, edit forms or con�rm your satisfaction with
the completed forms, and await the result of the stub generation process. The
names of the screens (discussed in detail below) are as follows:

MAIN menu screen (see Figure 2-3)

PROCINFO menu screen (see Figure 2-4)

PARMINFO menu screen (see Figure 2-5)

ARRAYLEN menu screen (see Figure 2-6)

HELP facility screens (see Figure 2-7 and Figure 2-10)

COMMIT screen (see Figure 2-11)

PROGRESS MESSAGES screen (see Figure 2-12)

Typical SWAT Work Session

The normal progression in a work session with SWAT is to complete the
MAIN menu information �rst and then the PROCINFO menu. Based on the
information you entered in the MAIN menu, the PARMINFO menu appears
repeatedly, once for every parameter you entered by name in the MAIN menu.
If, in the course of �lling out the PARMINFO menu, you indicate that a
parameter is an array, the ARRAYLEN menu will appear.

The contents of a HELP screen depend on the menu you are in at the time of
the request for help.

After committing your menu selections via the COMMIT screen, stub
generation begins and you are placed in the PROGRESS MESSAGES screen so
you can track the generation process.

Simplifying Switch Programming 2-9

After generation of Switch stub source code is complete, the MAIN menu
screen reappears, allowing you to build another stub or to exit SWAT and
return to the system Command Interpreter.

Inputting Information

You move from �eld to �eld and item to item within a menu by means of the
Cursor Control keys or the Tab key. To complete some �elds, you must enter
a name or numerical value. In other instances, the �eld consists of a list of
options. You complete such �elds by placing a nonblank character next to the
option of your choice.

At any point before actually committing the information in the menus and
beginning the generation of a stub, you can move back and forth through the
menus in order to change their contents or request help on how to complete a
menu item.

To input the information entered on the menu to SWAT, press the �Enter� key.
This records your selections, but does not prevent you from reviewing and
editing them. When you press the �Enter� key, SWAT performs error-checking on
your selections.

Resolving Errors

The Switch Assist Tool helps you resolve any problems that may arise in
completing a menu.

The tool uses highlighting to indicate any �elds that contain errors. It also
prints a diagnostic message at the bottom of the screen. You can use the
highlighting and the message to make corrections to the menu.

SWAT places the cursor in the topmost �eld containing an error. After making
the correction suggested by the message, press �Enter�. If your correction
resolves the error, both the message and the highlighting disappear. If not, the
highlighting remains, and a new message may appear to help you resolve the
problem.

If your menu contains more than one error, you can resolve them one by one in
this same manner. After you resolve the topmost �eld, the highlighting of other
errors remains, the cursor moves to the next �eld containing an error, and a

2-10 Simplifying Switch Programming

message appropriate to that error appears at the bottom of the screen. In this
way, the tool guides you through the correction process.

When the last error is resolved, the Switch Assist Tool records your entries
when you press �Enter� and brings up the next menu.

MAIN Menu Screen

The MAIN menu screen is the �rst to appear upon invoking SWAT. To
complete this menu, you need to supply the following information:

Name of the �le to hold the source code generated by SWAT

Name of the target procedure

Names of the target's parameters (up to 32)

Designating the Source Code File

The �le name to hold the source code generated by SWAT can have a
maximum of eight characters. SWAT creates a �xed ASCII type �le in the
group and account in which you are currently logged on. If you do not enter
a �le name, you receive a message indicating that you cannot leave this �eld
blank. The cursor is repositioned to the �le name �eld.

Note Fully quali�ed �le names and passwords are not allowed.

Designating the Target CM Procedure

The target procedure is the procedure to be called by means of the
SWAT-generated stub. Its name can have a maximum of sixteen characters.
Again, if you do not enter a name, you receive a message indicating that it is
not possible to leave this �eld blank. The cursor returns to the beginning of
this �eld.

Designating the Target Procedure Parameters

SWAT allows calls to target procedures with up to 32 parameters. It is
important to note that you must enter target parameters in the same order as
the calling sequence of the target procedure. Parameter names can be up to a

Simplifying Switch Programming 2-11

maximum of 32 characters long. You may leave these �elds blank, indicating
that the target procedure has no parameters.

Note Procedure and parameter names are not localizable. They are
limited to the alphanumeric characters of the English alphabet.
All entries are checked for validity. However, the Switch Assist
Tool does not check for use of HP Pascal/XL reserved words
and prede�ned routines as names. For more information about
reserved words and prede�ned routine names in HP Pascal/XL,
refer to the HP Pascal/XL Reference Manual (31502-90001).

Refer to Figure 2-3 for an illustration of the MAIN menu screen.

2-12 Simplifying Switch Programming

Figure F02-03 here.

Figure 2-3. MAIN Menu Screen

MAIN Menu Function Keys

There are several function key options available to you on the MAIN menu
screen:

Press F4 to refresh the screen.

Press F6 to proceed to the next menu (used for reviewing and editing menu
contents).

Simplifying Switch Programming 2-13

Press F7 to view the HELP screen on the MAIN menu.

Press F8 to exit SWAT and return to the system Command Interpreter.

Caution Pressing F8 at any time returns you immediately to the system
prompt, causing you to lose any information entered up to that
point.

Completing the MAIN Menu Screen

To input the information entered on the menu to SWAT and initiate
error-checking, press the �Enter� key.

The process of correcting MAIN menu errors is the same as that described in
\Resolving Errors".

PROCINFO Menu Screen

The PROCINFO menu screen collects information concerning the procedure
to be invoked by the SWAT-generated stub. The name of this procedure
is displayed at the top of the PROCINFO menu. It is the same name that
you entered on the MAIN menu screen. You can change that name on
the PROCINFO screen if you desire. Switch needs to know the following
information about this procedure:

Location of the target procedure (CM system, account, or group Segmented
Library)

Data type of its return value if it is a function

Privilege level of the target procedure

Whether the target procedure returns a condition code

For each of the �ve �elds listed above, the appropriate number of legal options
is provided on the PROCINFO menu. You can select one value for each �eld.
You make your selection by placing a nonblank character in the space provided
next to the appropriate value. For some �elds, default values are provided.

You cannot leave any of the �ve �elds blank. If you do so, the cursor is
repositioned at the blank �eld, and an appropriate error message is sent to the
screen.

2-14 Simplifying Switch Programming

Designating the Location of the Target Procedure

The target procedure must be located in some CM Segmented Library (SL).
This may be the system library, an account library, or a group library. If you
specify the system library, only the system SL is searched. If you specify an
account library, the account library is searched �rst, then the system library.
Finally, if you specify a group library, the group library is searched �rst,
followed in turn by that group's account library and the system library. The
target procedure need not be installed in order for SWAT to generate Switch
stub source code for calling the target.

Designating the Function Return Type of the Target Procedure

If the target procedure is not a function (that is, does not return a value
as a functional return value), you should select the NONE value in the �eld
designating the function return type. Otherwise, select the appropriate data
type from the list of possibilities.

Designating the Privilege Level of the Target Procedure

SWAT designates NON-PRIVILEGED as the default value for the privilege level of
the target procedure. To access user-written CM SL procedures, simply accept
this default value.

Designating Whether the Target Procedure Returns a Condition Code

Every process has an associated condition code. A condition code is a
temporary value that provides information about process execution. From the
condition code value, you can learn some basic information regarding what
happened during execution of the process. This code has three possible values,
which are assigned as follows:

CCE, or Condition Code Equal (=), generally indicating that the process
executed successfully

CCG, or Condition Code Greater Than (>), indicating that a special
condition occurred, but may not have a�ected the execution of the process

CCL, or Condition Code Less Than (<), indicating that the process did not
execute successfully, but the error condition may be recoverable

Simplifying Switch Programming 2-15

Since this code is a�ected by many processes, you should check its value
immediately upon return from a process. To return the condition code from
the target CM routine, select the YES, RETURN CONDITION CODE option on the
PROCINFO screen.

Figure 2-4 provides an example of the PROCINFO menu screen.

re F02-04 here.

Figure 2-4. PROCINFO Menu Screen

2-16 Simplifying Switch Programming

PROCINFO Menu Function Keys

There are several function key options available to you on the PROCINFO
menu screen:

Press F1 to return to the MAIN menu.

Press F4 to refresh the screen.

Press F5 to go back to the previous menu.

Press F6 to proceed to the next menu (for reviewing/editing information, not
recording it).

Press F7 to view the HELP screen on the PROCINFO menu.

Press F8 to exit SWAT and return to the system Command Interpreter.

Completing the PROCINFO Menu

To input the information entered on the menu to SWAT and initiate error
checking, press the �Enter� key.

The process of correcting PROCINFO menu errors is the same as that
described in \Resolving Errors".

PARMINFO Menu Screen

The PARMINFO menu screens collect information concerning the parameters
to be passed to the target routine. This screen appears repeatedly, once for
each parameter you entered on the MAIN menu screen. The name of each
parameter appears at the top of the PARMINFO menu screen, just as you
entered it on the MAIN menu. You can change that name on the PARMINFO
screen, if desired. The order in which the PARMINFO screens appear reects
the order in which you entered these parameter names and, thus, the call
sequence of the target routine.

The type of information about each parameter that Switch needs includes the
following:

Addressing method of the parameter

Data type of the parameter

I/O type of the parameter, relative to the target CM procedure

Simplifying Switch Programming 2-17

Whether the parameter is an array

The appropriate legal options are provided on the PARMINFO menu. You can
select one value for each �eld. You make your selection by placing a nonblank
character in the space provided next to the appropriate value.

You cannot leave any of the �elds blank. If you do so, the cursor is
repositioned at the blank �eld. SWAT also checks that you have not speci�ed a
multi-element item as a value parameter.

Designating a Parameter's Addressing Method

In specifying the addressing method of a parameter, you indicate whether the
parameter is passed as a reference parameter or as a value parameter.

Note In COBOL, all parameters are passed by reference unless
surrounded by \\.

Designating a Parameter's Data Type

The data type of a parameter must be speci�ed in SPL terminology. SWAT
does not handle the following data types: pointers, labels, plabels, and arrays
passed by value. Any types not covered require manual programming of
Switch stubs. The section entitled \Special Cases" provides more detail about
unsupported data types.

Note For further details on SPL addressing methods and data types,
refer to Systems Programming Language Reference Manual
(30000-90024).

Designating a Parameter's I/O Type

In the �eld designating the I/O type, you designate whether the parameter
is an input parameter, an output parameter, or an input/output parameter,
relative to the target CM procedure. If the parameter is an input parameter,
data goes from the NM to the CM stack, but not back. On the other hand, for
an output parameter, data is returned from the CM stack to the NM stack. In
the case of input/output parameters, data goes from the NM to the CM stack,
and back again.

2-18 Simplifying Switch Programming

Designating Whether a Parameter Is an Array

You must indicate whether a parameter is an array. You do so by designating
the appropriate option in the ARRAY SPECIFICATION �eld. If you indicate that
a parameter is an array, the ARRAYLEN menu screen subsequently appears to
collect information about the length of the array parameter.

A sample PARMINFO menu screen appears in Figure 2-5.

Figure F02-05 here.

Figure 2-5. PARMINFO Menu Screen

Simplifying Switch Programming 2-19

PARMINFO Menu Function Keys

There are several function key options available to you on the PARMINFO
menu screen:

Press F1 to return to the MAIN menu.

Press F4 to refresh the screen.

Press F5 to go back to the previous screen.

Press F6 to proceed to the next screen (for reviewing/editing information,
not recording it).

Press F7 to view the HELP screen on the PARMINFO menu.

Press F8 to exit SWAT and return to the system Command Interpreter.

Completing the PARMINFO Menu

To input the information entered on the menu to SWAT and initiate error
checking, press the �Enter� key.

The process of correcting PARMINFO menu errors is the same as that
described in \Resolving Errors".

ARRAYLEN Menu Screen

The ARRAYLEN menu screen appears only if you have indicated that a
parameter is an array on the PARMINFO menu screen. The ARRAYLEN
screen collects information concerning array parameters to be passed to the
routine you want to call in the Compatibility Mode environment.

The array information required by the Switch Assist Tool includes the
following:

Length of the array parameter

How the length value should be interpreted

You cannot leave any of the �elds blank. If you do so, the cursor is
repositioned at the blank �eld.

2-20 Simplifying Switch Programming

Designating the Length Value of an Array Parameter

You have two options when specifying the length (size) of an array parameter.
One way is to designate a speci�c constant value in the range of 1 to 65,535.
If that is your choice, enter a decimal number in the space provided. The
number of array elements allowed depends on the SPL data type in the target
CM array parameter. Table 2-1 lists the allowed array element ranges for the
various SPL data types.

Table 2-1. Number of Allowed Array Elements By Type

SPL Array Element Type No. of Array Elements Allowed

Byte 1 . . . 65,535

Integer 1 . . . 32,767

Logical 1 . . . 32,767

Double 1 . . . 16,383

Real 1 . . . 16,383

Long 1 . . . 8,191

You can also use the value of a parameter to specify the length of an array. If
that is your choice, enter the parameter name in the space provided. The name
speci�ed must be the name of another parameter being passed to the target
procedure. If it is not, SWAT displays an error message.

Designating How to Interpret the Array Length Usage Value

In addition to indicating the length of an array (either as a constant value or
by means of a parameter name), you must also indicate how SWAT should
interpret that value. The length usage value speci�es one of the following:

Number of array elements.

Number of bytes in the array.

Negative = Bytes / Positive = Elements Rule

If you select the third option, the following apply:

Simplifying Switch Programming 2-21

If the parameter has a positive value, that value represents the size as the
number of elements.

If the value of the parameter is negative, the parameter represents the size as
the number of bytes.

Select the appropriate option by placing a nonblank character in the space
provided next to your choice.

Caution If you specify an array size larger than its declared size,
unpredictable results occur when the stub is executed.

A sample ARRAYLEN menu screen appears in Figure 2-6.

2-22 Simplifying Switch Programming

Figure F02-06 here.

Figure 2-6. ARRAYLEN Menu Screen

Simplifying Switch Programming 2-23

ARRAYLEN Menu Function Keys

There are several function key options available to you on the ARRAYLEN
menu screen:

Press F1 to return to the MAIN menu.

Press F4 to refresh the screen.

Press F5 to go back to the previous screen.

Press F6 to proceed to the next screen (for reviewing/editing information,
not recording it).

Press F7 to view the HELP screen on the ARRAYLEN menu.

Press F8 to exit SWAT and return to the system Command Interpreter.

Completing the ARRAYLEN Menu

To input the information entered on the menu to SWAT and initiate error
checking, press the �Enter� key.

The process of correcting ARRAYLEN menu errors is the same as that
described in \Resolving Errors".

HELP Screens

There are HELP screens for each of the menu screens that make up the SWAT
user interface.

There are several function key options available to you in the HELP facility:

Press F4 to refresh the screen.

Press F5 to go back to the previous screen.

Press F6 to proceed to the next screen.

Press F8 to exit the HELP facility.

MAIN Menu HELP Screen

The MAIN menu HELP screen provides information to help you complete the
items requested in the MAIN menu screen:

Name of the �le to hold source code generated by SWAT

2-24 Simplifying Switch Programming

Name of the target procedure

Name(s) of the parameters of the target procedure (up to 32)

Figure 2-7 illustrates the appearance of the introductory MAIN menu HELP
screen.

d a

c b

The MAIN screen gathers the following global information:

* the name of the file to hold the source code produced

by the Switch Assist Tool

* the name of the target procedure you want to call in

the Compatibility Mode (CM) environment

* the names of the target procedure's parameters (up to 32)

From the MAIN screen, you may:

1. Press (F4) to refresh the screen.

2. Press (F6) to proceed to the PROCINFO screen.

3. Press (F7) to enter the HELP facility, where you are now.

4. Press (F8) to exit the program entirely, returning to MPE.

5. Fill in the empty fields on the form, and press (ENTER).

Figure 2-7. Main Menu Help Screen

PROCINFO Menu HELP Screen

The PROCINFO menu HELP screen provides information to help you
complete the items requested in the PROCINFO menu screen:

Location of the target procedure

Type of the return value if the target procedure is a function

Simplifying Switch Programming 2-25

Privilege level of the target procedure

Whether the target procedure returns a condition code

Figure 2-8 illustrates the appearance of the introductory PROCINFO menu
HELP screen.

a

b

The PROCINFO screen collects information about the procedure

you want to call in the Compatibility Mode environment. The

Switch Assist Tool needs the following information about the

target procedure:

* the location of the target procedure

* the type of its return value if it is a function

* the privilege level of the target procedure

* whether the target procedure returns a condition code

From the PROCINFO screen, you may:

1. Press (F1) to return to the MAIN screen.

2. Press (F4) to refresh the screen.

3. Press (F5) to return to the previous screen.

4. Press (F6) to proceed to the next screen.

5. Press (F7) to enter the HELP facility, where you are now.

6. Press (F8) to exit the program entirely, returning to MPE.

7. Fill in the empty fields on the form, and press (ENTER).

Figure 2-8. PROCINFO Menu Help Screen

PARMINFO Menu HELP Screen

The PARMINFO menu HELP screen provides information to help you
complete the items requested in the PARMINFO menu screen:

Addressing method of a parameter

Data type of a parameter

2-26 Simplifying Switch Programming

I/O type of a parameter

Whether the parameter is an array and, if so, how many elements are in that
structure

Figure 2-9 illustrates the appearance of the introductory PARMINFO menu
HELP screen.

d a

c b

The PARMINFO screens collect information concerning the

parameters to be passed to the routine you want to call in the

Compatibility Mode environment. The parameter information

required by the Switch Assist Tool includes the following:

* the addressing method of the parameter

* the data type of the parameter

* the I/O type of the parameter

* whether the parameter is an array

From the PARMINFO screen, you may:

1. Press (F1) to return to the MAIN screen.

2. Press (F4) to refresh the screen.

3. Press (F5) to return to the previous screen.

4. Press (F6) to proceed to the next screen.

5. Press (F7) to enter the HELP facility, where you are now.

6. Press (F8) to exit the program entirely, returning to MPE.

7. Fill in the empty fields on the form, and press (ENTER).

Figure 2-9. PARMINFO Menu Help Screen

ARRAYLEN Menu HELP Screen

The ARRAYLEN menu HELP screen provides information to help you
complete the items requested in the ARRAYLEN menu screen:

Length of the array parameter

Simplifying Switch Programming 2-27

How the array length value (either a constant value or a parameter name)
should be interpreted

Figure 2-10 illustrates the appearance of the introductory ARRAYLEN menu
HELP screen.

a

b

The ARRAYLEN screens collect information concerning the arrays

to be passed to the routine you want to call in the

Compatibility Mode environment. The array information

required by the Switch Assist Tool includes the following:

* the length of the array parameter

* how the length value should be interpreted

From the ARRAYLEN screen, you may:

1. Press (F1) to return to the MAIN screen.

2. Press (F4) to refresh the screen.

3. Press (F5) to return to the previous screen.

4. Press (F6) to proceed to the next screen.

5. Press (F7) to enter the HELP facility, where you are now.

6. Press (F8) to exit the program entirely, returning to MPE.

7. Fill in the empty fields on the form, and press (ENTER).

Figure 2-10. ARRAYLEN Menu Help Screen

COMMIT Screen

The COMMIT screen does not request that you supply information to
complete a menu. Instead, this screen presents you with the following function
key options:

Press F1 to return to the MAIN menu.

2-28 Simplifying Switch Programming

Press F2 to commit your menu selections and allow SWAT to begin stub
generation.

Press F4 to refresh the screen.

Press F5 to return to the previous screen.

Press F7 to view the HELP screen that deals with the COMMIT screen.

Press F8 to leave SWAT.

These options let you decide whether SWAT should begin generating Switch
stub source code or whether you need to edit information entered in the menu
screens. Recall that the Previous (and Next) function keys allow you to review
and edit any SWAT menu screen. The COMMIT screen does not allow you to
begin Switch stub generation if any menus remain unresolved. The COMMIT
screen presents messages that indicate which menus or items need resolution.

Figure 2-11 illustrates the appearance of the COMMIT screen:

Simplifying Switch Programming 2-29

Figure F02-11 here.

Figure 2-11. COMMIT Screen

PROGRESS MESSAGES Screen

The PROGRESS MESSAGES screen appears after you have committed your
menu selections by means of the COMMIT screen. In addition to displaying
the name of the stub procedure and the line number currently being processed,
the PROGRESS MESSAGES screen has space to display any progress, result,
or error messages that SWAT has to report as it generates the source code for
the stub. An example PROGRESS MESSAGES screen follows in Figure 2-12:

2-30 Simplifying Switch Programming

Figure F02-12 here.

Figure 2-12. PROGRESS MESSAGES Screen

Completion of Stub Generation

After generation of Switch stub source code is complete, the MAIN menu
screen reappears, allowing you to build another stub or to exit SWAT and
return to the system Command Interpreter.

Simplifying Switch Programming 2-31

Modifying SWAT Output

The output �le generated by SWAT contains the compiler statements and
external declarations necessary to permit compilation of the stub procedure
source code as a single entity. However, for a variety of reasons, you may wish
to modify this �le. Because SWAT generates source code in a text �le, you can
use existing HP 3000 editors to modify the source produced by the tool.

Reasons for modifying SWAT output include the following:

Adding additional compiler commands, error-handling statements, and/or
comments

Merging several Switch stub source modules into one �le (SWAT produces
only one stub per �le)

Making changes to handle the speci�c situations for which SWAT cannot
generate complete stubs (see \Special Cases")

To merge Switch stubs, you need to identify the global area of a stub. The top
global area consists of the �rst line through the comment line designating the
end of the outer block declarations. The bottom global area begins following
the line containing the comment that designates the end of the stub procedure.
If you combine stubs, only one such global area is necessary. You can delete
the global areas from all but one stub, and then insert any number of stub
procedures between those global declarations. Refer to Appendixes D and E
for use �les that automate the process of merging several Switch stub source
modules into one �le.

Using SWAT Output

SWAT output is a stub written in HP Pascal/XL, no matter what language
the original application was written in. The Switch stub source code
produced by SWAT is, in turn, input for the HP Pascal/XL compiler, which
produces Switch stub object code. The following command would compile
a SWAT-generated stub named mystub, yielding an object code �le named
myobj:

PASXL mystub, myobj

2-32 Simplifying Switch Programming

For more information, refer to the discussion of the PASXL command in the
MPE XL Commands Reference Manual (32650-90003). Compilation of that
source must be on an MPE XL-based machine.

The resulting object code is input to the MPE XL Link Editor, where you can
either install the object code in an NM Executable Library for shared use or
link it into an NM program �le. Example 3-10 of this manual illustrates a
sample LinkEdit session. For more information on the Link Editor, refer to the
Link Editor/XL Reference Manual (32650-90030).

SWAT Requirements

The Switch Assist Tool is designed to run on MPE XL-based systems. SWAT
has certain hardware and software requirements.

Hardware Requirements

SWAT requires the minimum system con�guration listed below for operation
on MPE XL-based systems:

1 900 Series System Processing Unit
1 System disc
1 System printer
1 System tape drive
1 Block mode terminal (as supported by VPLUS/XL)

Software Requirements

In addition to the SWAT program �le (SWAT.PUB.SYS), the tool requires the
following additional system software:

VPLUS/XL fast form �le SWATFORM (part of the tool)

VPLUS/XL subsystem

Pascal run-time library

Message catalog �le SWATCAT

NLS message catalog subsystem

Simplifying Switch Programming 2-33

Note All of the above are part of the Fundamental Operating
Software (FOS).

To compile the source code generated by SWAT, you must have the HP
Pascal/XL compiler.

Example Source File Generated by SWAT

The following is an example of the source code generated by SWAT. You
can use this source to call an SPL function FREAD with three parameters
FILENUMBER, TARGET, and TCOUNT.

Note This FREAD stub is only an example. The FREAD intrinsic is
directly accessible from both CM and NM, without the need of
writing a stub to gain access.

$subprogram$

$check_actual_parm 0$

$check_formal_parm 0$

$os 'MPE/XL'$

$standard_level 'ext_modcal'$

$tables off$

$code_offsets off$

$xref off$

$type_coercion 'representation'$

{**}

{* *}

{* Generated: WED, OCT 21, 1987, 10:21 AM *}

{* *}

{* Switch Assist Tool HP30363A.00.00 *}
{* *}

{**}

PROGRAM Hp_stub_outer_block(input, output);

2-34 Simplifying Switch Programming

{This program is an example program written by the }

(SWitch Assist Tool. }

CONST

Hp_Pidt_Known = 0; {by number}

Hp_Pidt_Name = 1; {by name}

Hp_Pidt_Plabel = 2; {by PLABEL}

Hp_System_SL = 0; {System SL}

Hp_Logon_Pub_SL = 1; {Logon PUB SL}

Hp_Logon_Group_SL = 2; {Logon GROUP SL}

Hp_Pub_SL = 3; {Program's PUB SL}

Hp_Group_SL = 4; {Program's GROUP SL}

Hp_Method_Normal = 0; {Not callable from split stack}

Hp_Method_Split = 1; {Callable in split stack mode}

Hp_Method_No_Copy = 2;

Hp_Parm_Value = 0; {value parameter}

Hp_Parm_Word_Ref = 1; {reference parm, word addr}

Hp_Parm_Byte_Ref = 2; {reference parm, byte addr}

Hp_Ccg = 0; {condition code greater (>)}

Hp_Ccl = 1; {condition code less (<)}

Hp_Cce = 2; {condition code equal (=)}

Hp_All_Ok = 0; {Used in status check}

TYPE

Hp_BIT8 = 0..255;

Hp_BIT16 = 0..65535;

Hp_BIT8_A1 = $ALIGNMENT 1$ Hp_BIT8;

Hp_BIT16_A1 = $ALIGNMENT 1$ Hp_BIT16;

Hp_SCM_PROCEDURE = PACKED RECORD

Hp_CM_PROC_NAME = PACKED ARRAY[1..16] OF CHAR;

Hp_GENERIC_BUFFER = PACKED ARRAY[1..65535] OF CHAR;

CASE Hp_p_proc_id_type : Hp_BIT8 OF

Simplifying Switch Programming 2-35

Hp_Pidt_Known : (Hp_p_fill : Hp_BIT8_A1;

Hp_p_proc_id : Hp_BIT16_A1

);

Hp_Pidt_Name : (Hp_p_lib : Hp_BIT8_A1;

Hp_p_proc_name : Hp_CM_PROC_NAME

);

Hp_Pidt_Plabel: (Hp_p_plabel : Hp_BIT16_A1);

END; {record}

Hp_SCM_IO_TYPE = SET OF (Hp_input, Hp_output);

Hp_PARM_DESC = PACKED RECORD

Hp_pd_parmptr : GLOBALANYPTR;

Hp_pd_parmlen : Hp_BIT16;

Hp_pd_parmtype : Hp_BIT16;

Hp_pd_io_type : Hp_SCM_IO_TYPE;

END; {record}

Hp_SCM_PARM_DESC_ARRAY = ARRAY[0..31] OF Hp_PARM_DESC;

HP_STATUS_TYPE = RECORD

CASE INTEGER OF

0 : (Hp_all : INTEGER);
1 : (Hp_info : SHORTINT;

Hp_subsys : SHORTINT);

END; {record}

{Declare all types which can be passed to this stub }

{so that 16 bit alignments are allowed. }

HP_SHORTINT = $ALIGNMENT 2$ SHORTINT;

HP_INTEGER = $ALIGNMENT 2$ INTEGER;

HP_REAL = $ALIGNMENT 2$ REAL;

HP_LONG = $ALIGNMENT 2$ LONGREAL;

HP_CHAR = $ALIGNMENT 1$ CHAR;

PROCEDURE HPSWITCHTOCM;

INTRINSIC;

2-36 Simplifying Switch Programming

PROCEDURE HPSETCCODE;

INTRINSIC;

PROCEDURE QUIT;

INTRINSIC;

{End of OUTER BLOCK GLOBAL declarations}

FUNCTION FREAD $ALIAS 'FREAD'$

(

FILENUMBER : HP_SHORTINT;

ANYVAR TARGET : Hp_GENERIC_BUFFER;

TCOUNT : HP_SHORTINT

) : HP_SHORTINT

OPTION UNCHECKABLE_ANYVAR;

VAR

Hp_proc : Hp_SCM_PROCEDURE;

Hp_parms : Hp_SCM_PARM_DESC_ARRAY;

Hp_method : INTEGER;

Hp_nparms : INTEGER;

Hp_funclen : INTEGER;

Hp_funcptr : INTEGER;
Hp_byte_len_of_parm : Hp_BIT16;

Hp_cond_code : SHORTINT;

Hp_status : Hp_STATUS_TYPE;

VAR Hp_retval : SHORTINT;

VAR Hp_loc_FILENUMBER : HP_SHORTINT;

VAR Hp_loc_TCOUNT : HP_SHORTINT;

begin {STUB procedure FREAD}

{**}

{* *}

{* Generated: WED, OCT 21, 1987, 10:21 AM *}

{* *}

{* Switch Assist Tool HP30363A.00.00 *}

Simplifying Switch Programming 2-37

{* *}

{**}

{Initialization}

{Set up procedure information--name, lib, etc.}

Hp_proc.Hp_p_proc_id_type := Hp_Pidt_Name; {by name}

Hp_proc.Hp_p_lib := Hp_System_SL; {library}

Hp_proc.Hp_p_proc_name := 'FREAD ';

{Set up misc. variables}

Hp_method := Hp_Method_Normal; {non-split-stack}

Hp_nparms := 3;

{Set up length/pointers for functional return if this}

{is a FUNCTION. Set length to zero, pointer to NIL }

{if this is not a FUNCTION. }

Hp_funclen := SIZEOF(Hp_retval);

Hp_funcptr := INTEGER(LOCALANYPTR(ADDR(Hp_retval)));

{Make a local copy of all VALUE parameters}

Hp_loc_FILENUMBER := FILENUMBER;

Hp_loc_TCOUNT := TCOUNT;

{Build the parm descriptor array to describe each}

{parameter. }

{FILENUMBER -- Input Only by VALUE}

Hp_byte_len_of_parm := 2;

Hp_parms[0].Hp_pd_parmptr := ADDR(Hp_loc_FILENUMBER);

Hp_parms[0].Hp_pd_parmlen := Hp_byte_len_of_parm;

Hp_parms[0].Hp_pd_parm_type := Hp_Parm_Value;

Hp_parms[0].Hp_pd_io_type := [Hp_input];

2-38 Simplifying Switch Programming

{TARGET -- Output Only by REFERENCE}

IF TCOUNT < 0 THEN

Hp_byte_len_of_parm := ABS(TCOUNT)

ELSE

Hp_byte_len_of_parm := TCOUNT * 2;

Hp_parms[1].Hp_pd_parmptr := ADDR(TARGET);

Hp_parms[1].Hp_pd_parmlen := Hp_byte_len_of_parm;

Hp_parms[1].Hp_pd_parm_type := Hp_Parm_Word_Ref;

Hp_parms[1].Hp_pd_io_type := [Hp_output];

{TCOUNT -- Input Only by VALUE}

Hp_byte_len_of_parm := 2;

Hp_parms[2].Hp_pd_parmptr := ADDR(Hp_loc_TCOUNT);

Hp_parms[2].Hp_pd_parmlen := Hp_byte_len_of_parm;

Hp_parms[2].Hp_pd_parm_type := Hp_Parm_Value;

Hp_parms[2].Hp_pd_io_type := [Hp_input];

{Do the actual SWITCH call}

HPSWITCHTOCM (Hp_proc, {Procedure info}

Hp_method, {Switch copy method}

Hp_nparms, {Number of parameters}

Hp_parms, {Parm descriptor array}

Hp_funclen, {func ret value length}

Hp_funcptr, {addr of func return}

Hp_cond_code, {cond code return}

Hp_status); {SWITCH status code}

if (Hp_status.Hp_all <> Hp_all_ok) then

begin {SWITCH subsystem error}

QUIT (Hp_status.Hp_info); {handles error codes}

{returned by Switch}

end; {SWITCH subsystem error}

Simplifying Switch Programming 2-39

HPSETCCODE (Hp_cond_code);

FREAD := Hp_retval;

end; {STUB procedure FREAD}

BEGIN {Program Outer block code}

END. {Program Outer block code}

SWAT Quick Reference Summary

The following steps summarize the process of using SWAT to generate Switch
stubs automatically and how to use SWAT-generated stubs:

1. To invoke SWAT, type: RUN SWAT.PUB.SYS. SWAT uses VPLUS screens to
prompt you for the information it needs.

2. Follow these guidelines when �lling in a menu:

a. Use the Cursor Control keys or the Tab key to move from �eld to �eld
and item to item within a menu.

b. To complete some �elds, you must enter a name or numerical value.

c. If the �eld consists of a list of options, place a nonblank character in the
space provided next to your choice.

d. To record information on the menu, press the �Enter� key.

e. If you have made errors while �lling the menu, SWAT will help you
resolve them by highlighting the �elds containing errors and displaying
diagnostic messages.

3. Fill in SWAT's MAIN menu with the following information:

Source code �le name

Target CM procedure name

Target procedure parameter names

2-40 Simplifying Switch Programming

4. Fill in SWAT's PROCINFO menu with the following information:

Location of the target procedure

Function return type of the target procedure

Privilege level of the target procedure

Whether the target procedure returns a condition code

5. For each parameter, �ll in SWAT's PARMINFO menu with the following
information:

Parameter's addressing method

Parameter's data type

Parameter's I/O type

Whether a parameter is an array

6. If a parameter is an array, �ll in SWAT's ARRAYLEN menu with the
following information:

Length value of the array parameter

How the length value is to be interpreted

7. If you want to review or edit any of these menu screens, use the F5 and F6
function keys to move backward and forward through the screens.

8. When �nished with your review/edit, proceed to the COMMIT screen and
press the F2 function key to begin generating the Switch stub source code.

9. When code generation begins, the PROGRESS MESSAGES screen appears
and displays any progress, error, and/or result messages associated with
the code generation process.

10. When SWAT has generated the source for your Switch stub, it redisplays
the MAIN menu screen. You can either press the F8 function key to exit
SWAT or return to step 2 to generate another stub.

11. Use the PASXL command to compile the SWAT-generated Switch stub. For
more information on PASXL, refer to the MPE XL Commands Reference
Manual (32650-90003).

Simplifying Switch Programming 2-41

12. Use the Link Editor to link the resulting object code into an NM program
�le or install it in an NM Executable Library. For more information on the
Link Editor, refer to the Link Editor/XL Reference Manual (32650-90030).

Special Cases

There are certain situations that the Switch Assist Tool does not handle.
Other situations require special consideration before you decide to use
SWAT-generated Switch stubs.

Note The following information applies only to switches in the NM|
> CM direction. The Switch Assist Tool does not handle
mixed-mode procedure calls in the CM|> NM direction. Refer
to Chapter 5 for a discussion of how to code CM|> NM stubs
manually.

Unsupported Cases

The Switch Assist Tool cannot handle the following:

Value parameters that are larger than a single element (for example, arrays
passed by value) are not handled.

No pointers of any kind are allowed.

Plabels, and program labels in general, cannot be passed as parameters.

CM procedures that execute in split-stack mode cannot be accessed by
SWAT-generated stubs.

In Pascal, any size structure can be passed by value to another procedure
because a copy is placed on the top of the stack. SPL, on the other hand, does
not allow arrays to be passed by value. Because most CM target procedures
are written in SPL, the Switch Assist Tool does not allow multi-element
parameters, such as arrays, to be passed by value.

For a pointer to be valid, all its possible targets would also have to be available
to the called procedure. This is not possible since all available storage within
the NM process stack would have to be copied. There may be some cases

2-42 Simplifying Switch Programming

where an application dictates that a pointer always points to a location within
one of the other passed parameters, but you must handle those instances
manually.

Passing plabels across modes implies that you can transfer control across
modes without using Switch. Since that is not the case, you cannot pass
plabels as parameters.

Caution Programming a correct and reliable split-stack Switch stub
requires a very high level of knowledge about programming
in both modes on MPE XL. It also requires a strict coding
discipline in all of the procedures that the target procedure
calls, as well as special programming and debugging techniques
for error handling and recovery. In addition, all of the warnings
and restrictions about Privileged Mode programming apply
to split-stack stubs and their target procedures. Therefore,
Hewlett-Packard recommends that, if your application needs
access to split-stack target procedures, you should request
assistance from trained Hewlett-Packard support sta�.

Special Case Considerations

There are some conditions that either are undetectable by the Switch Assist
Tool or make use of the SWAT-generated source code inadvisable. These
situations require modi�cation of SWAT-generated Switch stubs:

Use of unconverted variables of type real or long

Overlapping reference parameters

Speci�cation of reference parameter data lengths at run time

Option-variable procedures

Unconverted Real or Long Variables

Compatibility Mode has HP 3000 mode oating-point format, while Native
Mode supports both the HP 3000 mode format and IEEE oating-point
format. You can use the Switch Assist Tool to generate Switch stubs for
procedures that have variables of type real or long. If you have not already
coded their conversion, then, to guarantee correct results, you must insert calls

Simplifying Switch Programming 2-43

to the HPFPCONVERT intrinsic into the SWAT-generated stub. You may have to
perform the conversion twice, once in preparation for the Switch and again
upon returning from it. No conversion is necessary if the calling procedure has
already done the conversion or if the caller used HP 3000 Mode oating-point
format. Refer to the MPE XL Intrinsics Reference Manual (32650-90028) for
information about HPFPCONVERT.

Overlapping Reference Parameters

If reference parameters overlap, unpredictable results can occur. In Native
Mode, the parameters will overlap; in Compatibility Mode, however, the
parameters are placed one after the other on the CM stack. The Switch Assist
Tool cannot detect this situation. If you design calls to CM procedures via
Switch, it is your responsibility to deal with the consequences of overlapping
reference parameters.

Run-time Specification of Reference Parameter Data Lengths

Reference parameter data lengths must be known at run time in the stub
procedure. It is not simply a matter of specifying the maximum length because
the length speci�ed is copied to the CM stack and back again to the NM data
space. In many instances, it would not be practical, or even possible, to use
the maximum length. Such is the case with the target parameter (bu�er) for
FREAD or FWRITE. For many situations, however, it is possible to specify a
maximum length. For example, the maximum length of the formal�ledesignator
parameter in an FOPEN call is never larger than 36 bytes.

If you use a maximum length, you should declare the parameter to Switch
as an input/output parameter, even if it is output only. If you declare the
parameter as output only, then part of your NM data area can be altered when
the CM data area of the declared length is copied back to the NM data area.
On the other hand, if you declare the parameter to be input/output, then any
portion of the data area that was not changed during execution of the CM
target is copied back unchanged to the NM data area.

Several options are available to alleviate the reference parameter data length
problem. A discussion of two such options follows.

As one option, you can scan the bu�er for a termination character to determine
the length. This method is applicable in many cases where the data is

2-44 Simplifying Switch Programming

terminated by a carriage return (for example, the COMMAND intrinsic) or a
binary zero (for example, the GENMESSAGE intrinsic).

Or, as another option (using SWAT), you can take the length of the bu�er
from another parameter. In the case of FREAD/FWRITE, you specify the length
in the call. On the PARMINFO screen, you supply the name of the parameter
and then select the USE NEGATIVE = BYTES RULE option. SWAT must do some
additional processing to use the length value since the length passed in the call
is negative if speci�ed in bytes or positive if speci�ed in words. The Switch call
requires the length to be speci�ed in positive bytes. So, SWAT performs one of
two conversions:

Negative values (specifying byte lengths) are made positive.

Positive values (specifying word lengths) are multiplied by two to convert the
word count to a byte count.

Option-variable Procedures

The problems involving calls to option-variable procedures include the
following:

No direct HP Pascal/XL equivalent for the OPTION VARIABLE option

Default value options for non-HP Pascal/XL programs

Interference of EXTERNAL declarations with default value options

Determining if a value parameter was included in the call

The OPTION VARIABLE option, as de�ned in the HP 3000/SPL environment, is
not supported in the HP Pascal/XL environment. Although the replacement
capability of HP Pascal/XL allows the speci�cation of default values for
parameters left out of a procedure call, this capability does not provide the
functional equivalent of SPL option variable calls.

For the non-HP Pascal/XL program, the only way for the default values
options to function is through the use of an intrinsic �le. The Switch Assist
Tool does not write the code necessary to place the declaration of each
option-variable stub into an intrinsic �le.

Even if you manually place the stub's declaration in an intrinsic �le, the default
values option does not function if there is an EXTERNAL declaration for the stub
procedure embedded within the calling program's code.

Simplifying Switch Programming 2-45

Assuming there is no such EXTERNAL declaration and the default value option
works correctly, you can give reference parameters a default value of NIL.
Since NIL is never a valid value for reference parameters, this provides an
easy method for determining whether the parameter was passed. However,
parameters passed by value can have any value since, unlike reference
parameters, they do not have to be a valid address. This poses a major
problem in distinguishing value parameters included in the call. A default
value that will never be valid must somehow be assigned in order to identify
value parameters that were given default values versus value parameters whose
values were speci�ed in the call.

User Options

Pointers are not allowed, and the Switch Assist Tool does not generate them.
However, if a pointer always points to an address within another variable
that is also being passed in the Switch call, then you can manually code the
statements needed to transfer the pointer.

2-46 Simplifying Switch Programming

3

NM-to-CM Procedure Calls

This section presents the following topics:

Review of the ow of control in NM|> CM switches

Details of NM|> CM switches, including their inner workings, syntax,
parameters, and examples

Special considerations and restrictions that apply to mixed-mode procedure
calls

Testing and debugging considerations

This chapter provides the detailed reference information you will need if you
write your own NM-to-CM Switch stubs. Refer to Chapter 5 for further
information on writing Switch stubs.

Overview

This overview presents mixed-mode procedure calls in the NM|> CM
direction in two ways:

Schematic ow-of-control diagram

Stepwise sequence of events

NM-to-CM Procedure Calls 3-1

Flow of Control: NM|> CM

The ow of control for mixed-mode procedure calls in the direction NM|>
CM is illustrated in Figure 3-1:

Figure F03-01 here.

Figure 3-1. NM|> CM Switch Summary 1

3-2 NM-to-CM Procedure Calls

Stepwise Switch to CM

A mixed-mode procedure call in the direction NM|> CM involves the
following steps, as indicated in Figure 3-1:

NM-to-CM Procedure Calls 3-3

1. The NM code needing to access a CM routine calls Switch, either by means
of in-line code or a Switch stub.

2. The in-line code or NM Switch stub sets up the data structures and
parameters required by Switch and makes a call to the HPSWITCHTOCM
intrinsic (call by name), or the HPLOADCMPROCEDURE and HPSWITCHTOCM

intrinsics (call by plabel).

3. HPSWITCHTOCM calls the CM routine and passes the parameters, translating
addresses and/or copying data to Compatibility Mode as required by their
type, size, and location.

4. The CM routine executes using the passed parameters and returns its data
values to HPSWITCHTOCM.

5. HPSWITCHTOCM receives the data values returned by the CM routine,
back-translating addresses and recopying data as needed.

6. HPSWITCHTOCM returns the translated values to the caller. The stub or
in-line code checks whether the Switch operation was successful and then
control returns to the NM routine.

Note HPSWITCHTOCM is the system intrinsic that makes NM
parameters addressable to Compatibility Mode, changes the
execution mode, and invokes the CM routine. HPSWITCHTOCM
and HPLOADCMPROCEDURE reside in the NM system library,
NL.PUB.SYS.

3-4 NM-to-CM Procedure Calls

Switch to CM Details

Switch requires the following information to call a CM procedure from an NM
procedure:

Name of the CM SL routine and the library containing it or the 16-bit CM
plabel of a currently loaded copy of the routine

Number of parameters in the calling sequence of the CM SL routine

Length of each actual parameter

For each parameter, a designation as an input parameter, an output
parameter, or both

For each parameter, an indication whether the CM SL routine expects
that parameter to be a value parameter or a reference parameter; reference
parameters require the further speci�cation of a word or byte address

Whether the CM procedure is a procedure or a function

Note that there are two ways to specify the target procedure, by name or by
plabel.

You can supply the ASCII name of the target each time it is called. In this
case, Switch automatically loads the procedure from the library the �rst time it
is invoked. Thereafter, Switch uses an internal hash table to �nd the already
loaded procedure.

Instead of specifying the target by name and encountering the lookup overhead,
you can call an intrinsic procedure (HPLOADCMPROCEDURE or LOADPROC) to
obtain the target's plabel and supply that to Switch instead of the name. You
must save the plabel for use in subsequent calls.

Switch needs the parameter length information for parameters because, in
most cases, it must copy data from the NM data space to the CM stack. If the
target procedure is callable in split-stack mode (requiring Privileged Mode),
and if the reference parameters are close enough to each other to �t in a CM
extra data segment, and if the reference parameters are big enough to justify
the overhead of a copy operation, then you can request that HPSWITCHTOCM
wrap the reference parameters in an extra data segment and call the CM
procedure in split-stack mode.

NM-to-CM Procedure Calls 3-5

HPSWITCH TOCM Intrinsic

The mechanism that enables mixed-mode calls in the NM|> CM direction is
the HPSWITCHTOCM intrinsic.

Speci�cally, HPSWITCHTOCM does the following:

Copies value parameters to the CM stack

Translates NM addresses of reference parameters to CM addresses when they
are within the CM data segment (split-stack mode only)

Copies NM reference parameters to the CM data segment if they are input
parameters, converts NM addresses to CM addresses, then copies the
parameters back to the NM data space

Changes the execution mode

Calls the CM procedure speci�ed by the NM caller

There are three methods of passing reference parameters to the target
procedure:

Normal method

Split-stack method

No-copy method

The normal method is the only one available to callers with execution level
three (standard user level). This method does the following:

Allocates room for the NM parameter(s) in the CM stack

Copies the contents of the NM parameter(s) to the CM stack (if input
parameters) and allocates space for output parameters

Copies the CM results back to the NM parameter(s) upon target completion
(if output parameters and if not already in the CM stack)

3-6 NM-to-CM Procedure Calls

Caution HPSWITCHTOCM does no checking for overlapping reference
parameters. On MPE V/E-based systems, you may have used
overlapping reference parameters to obtain side e�ects since
both copies could share the overlap area. In Native Mode, the
parameters will overlap. In Compatibility Mode, however, the
parameters will be placed one on top of the other on the CM
stack. If you rely on this particular e�ect, the results will not
be as expected.

If a procedure is split-stack callable, HPSWITCHTOCM encapsulates the reference
parameters within an extra data segment and calls the target procedure with
DB at the base of the extra data segment. When the CM target procedure
returns, the extra data segment is released and the DB register is set back to
its previous value.

No extra data segment is created, even if requested, if any of the following
conditions applies:

There are no reference parameters (DB is unchanged).

All reference parameters are already in the CM stack (DB points to the CM
stack).

The reference parameters are either too large or too distant from one another
to be encapsulated by an extra data segment.

The total size of the reference parameters is less than a �xed threshold (300
bytes), in which case copying them to the CM stack is quicker.

An extra data segment cannot be obtained, in which case the parameters are
copied to the CM stack.

The no-copy method is the same as the split-stack method except that the
threshold check is omitted.

Note Both the split-stack and the no-copy methods require
Privileged Mode.

NM-to-CM Procedure Calls 3-7

The syntax of the HPSWITCHTOCM intrinsic and detailed explanations of its
parameters are given in the following paragraphs. Also provided are examples
of switches in the NM|> CM direction.

Syntax

Prior to calling the HPSWITCHTOCM intrinsic, your programming language may
require you to declare it. In HP Pascal/XL, the declaration is as follows:

PROCEDURE HPSWITCHTOCM; INTRINSIC;

Next comes an example of an HP Pascal/XL call to HPSWITCHTOCM:

HPSWITCHTOCM(proc, method, nparms, parms, fretlen,

fretval, condcode, status);

You call the HPSWITCHTOCM intrinsic with eight parameters. These parameters
provide Switch with the following information:

Name and CM library or the plabel of the target procedure.

Whether the target procedure runs in normal, split-stack, or no-copy mode.

Number of parameters being passed to the target procedure.

Array of records, each record containing a description of one parameter being
passed, including:

Pointer to the parameter; that is, a reference to where the parameter
begins in NM memory (value parameters larger than one byte must be
16-bit aligned).

Length (size) of the parameter in bytes (must be positive, nonzero integer
<= 2 ** 16).

For reference parameters, the stub must specify either a byte or word
address and also indicate whether the parameter is an input and/or output
parameter.

Length of the function return value (0 if not a function).

Pointer to the function return value (nil if not a function).

CM condition code value to be returned from the target procedure.

Status record to report on HPSWITCHTOCM's operation.

3-8 NM-to-CM Procedure Calls

Note If the SPL procedure is option variable (see the MPE V/E
Intrinsics Reference Manual (32033-90007) or the header of a
non-intrinsic SPL procedure), you must construct the option
variable mask and pass it as the last parameter. See Example
3-11 for an illustration.

All this information is key to the correct interpretation of data, return values,
and status information when you make mixed-mode procedure calls.

NM-to-CM Procedure Calls 3-9

Parameters

A detailed explanation of the parameters of the HPSWITCHTOCM intrinsic follows.

Required parameters are shown in boldface; optional parameters are shown in
italics .

proc record (required)

Passes the target CM procedure identi�er, which you can
specify either by a library to search and an ASCII name of
up to 16 characters or by a CM plabel (obtained from the
HPLOADCMPROCEDURE or LOADPROC intrinsic).

The structure of the proc record varies, depending on
how the target procedure is identi�ed. All variants have a
p proc id type �eld. The HP Pascal/XL declaration of this
record follows:

TYPE

BIT8 = 0..255;

BIT16 = 0..65535;

BIT8_A1 = $ALIGNMENT 1$ BIT8;

BIT16_A1 = $ALIGNMENT 1$ BIT16;

CM_PROC_NAME = PACKED ARRAY[1..16] OF CHAR;

scm_procedure = packed record

{pidt_known, pidt_load, pidt_plabel}

case p_proc_id_type : bit8 of

{proc found by number}

pidt_known : (p_fill : bit8_a1;

p_proc_id : bit16_a1);

{proc found by name}

pidt_load : (

{system, pub, or group library}

p_lib : bit8_a1;

{ASCII name left justified & blank padded}

p_proc_name : cm_proc_name);

3-10 NM-to-CM Procedure Calls

{proc found by plabel}

pidt_plabel : (

{proc's CM plabel}

p_plabel : bit16_a1);

end;

NM-to-CM Procedure Calls 3-11

If you designate the target CM procedure by means of an ASCII name, then
the following apply:

The value of the p proc id type �eld is 1.

The search library is designated in a p lib �eld whose value can be 0 for
the system SL, 1 for the logon pub SL, 2 for the logon group SL, 3 for the
program's pub SL, or 4 for the program's group SL.

The ASCII name is designated in the p proc name �eld and can be up to 15
bytes long. The name is padded on the right with blanks to a length of 16
bytes.

The storage layout of the proc record is as follows:

Word +--------------+-----------+--------------------+

0 | p_proc_id_ | p_lib | p_proc_name |
| type (8 bits)| (8 bits) | (16 bytes) |

+--------------+-----------+--------------------+

1 | p_proc_name (cont.) |

| |

+---+

2 | p_proc_name (cont.) |

| |

+---+

3 | p_proc_name (cont.) |

| |

+--------------------------+--------------------+

4 | p_proc_name (cont.) | unused |

| | |

+--------------------------+--------------------+

The minimum alignment for this layout is an 8-bit boundary.

Note Switches by name involve high system overhead on the �rst call
per name, but substantially lower overhead on each subsequent
call for that name. The HPSWTONMNAME, HPSWITCHTOCM,
HPLOADCMPROCEDURE, and HPLOADNMPROC intrinsics perform a
hashing function on the name of the other-mode procedure and
store the plabel for that procedure in a system internal hash
table. The LOADPROC intrinsic, on the other hand, does not

3-12 NM-to-CM Procedure Calls

perform any hashing and, consequently, involves high system
overhead every time it is called.

NM-to-CM Procedure Calls 3-13

If you designate the target CM procedure by means of a plabel, then the
following apply:

The value of the p proc id type �eld is 2.

A p plabel �eld designates the plabel.

The proc record has the following storage layout:

Word +--------------+-----------------+--------------+

0 | p_proc_id_ | p_plabel | unused |

| type (8 bits)| (16 bits) | |

+--------------+-----------------+--------------+

1 | unused |

| |

+---+

2 | unused |

| |

+---+
3 | unused |

| |

+---+

4 | unused |

| |

+---+

The minimum alignment for this layout is an 8-bit boundary.

3-14 NM-to-CM Procedure Calls

method 32-bit signed integer by value (required)

Value indicating whether the CM target procedure runs in
normal, split-stack, or no copy mode. The valid values and
their meanings follow:

0 Normal (non-split-stack) Method

1 Split-stack Method

2 No-copy Method

Note The split-stack method works as follows:

If all parameters are within the CM stack, or the length of the
reference parameters is less than the threshold, then use normal
method. Otherwise, wrap the reference parameters in an extra
data segment if the reference parameters are outside of the CM
stack (split-stack method). The no-copy method is the same
as the split-stack method, except that the threshold check is
omitted. Both the split-stack and the no-copy method require
Privileged Mode.

nparms 32-bit signed integer by value (required)

The number of parameters you are passing to the CM target
procedure.

parms array of records (required)

Passes descriptions of each parameter being passed to the CM
target procedure. Each parameter is located and described by
a record in this array. The �elds of the record are as follows:

pd parmptr 64-bit address

The NM virtual address of the beginning of the
parameter to be passed.

pd parmlen 16-bit unsigned integer

The length in bytes of the item that
pd parmptr points to. Together with that
pointer, pd parmlen speci�es the data area

NM-to-CM Procedure Calls 3-15

being described. The following restriction
applies:

1 <= pd parmlen <= (2**16)

3-16 NM-to-CM Procedure Calls

pd parm type 16-bit unsigned integer

Provides information needed to determine the kind of mapping
to be performed during the transfer of the parameter. The
allowed mappings are as follows:

0 Value parameter

1 Reference parameter requiring word address

2 Reference parameter requiring byte address

pd io type 32-bit signed integer

Applies only to reference parameters and speci�es whether such a parameter is
input, output, or both. Switch uses this information to minimize the amount of
data transfer when data must be copied.

Only the two high-order bits in this word are set. Set bit (0:1)=1 to designate
an input parameter. Set bit (1:1)=1 to designate an output parameter. Good
programming practice dictates that you designate a parameter as being input,
output, or both.

The minimum alignment of the parms record is 32-bit word boundary, and the
storage layout of this record is as follows:

Word +---+

0 | pd_parmptr |

| (8 bytes) |

+ +

1 | |

| |

+----------------------+------------------------+

2 | pd_parmlen | pd_parm_type |

| (16 bits) | (16 bits) |

+----------------------+------------------------+

3 | pd_io_type |

| (32 bits) |

+---+

NM-to-CM Procedure Calls 3-17

Note The pd parmptr �eld is a 64-bit address that is currently
supported only in HP Pascal/XL.

Table 3-1 summarizes, according to MPE XL-supported language, the data
alignments of the common data types.

3-18 NM-to-CM Procedure Calls

Table 3-1. Data Alignment By XL Language

Data Type HP Pascal/XL COBOL II/XL FORTRAN 77/XL

16-bit signed integer
(I16)

halfword halfword halfword

32-bit signed integer
(I32)

word word word

64-bit signed integer
(I64)

doubleword doubleword doubleword

16-bit unsigned
integer (U16)

halfword halfword halfword

32-bit unsigned
integer (U32)

word word word

64-bit unsigned
integer (U64)

doubleword doubleword N/A

32-bit real (R32) word N/A word

64-bit real (R64) doubleword N/A doubleword

Boolean (B) byte byte byte

Character (C) byte byte byte

32-bit address
(@32)

word word word

64-bit address
(@64)

doubleword doubleword N/A

Array (A) Determined by
element type

Determined by
element type

Determined by
element type

Record (REC) Boundary of most
restrictive element

word word

NM-to-CM Procedure Calls 3-19

fretlen 32-bit signed integer by value (optional)

The length in bytes of the optional functional return value.

The default is 0.

fretval record (optional)

A single-element record containing a 32-bit NM pointer to the
beginning of the area to which the optional functional return
value is returned.

The HP Pascal/XL declaration of this record is as follows:

LOCALANYPTRREC = RECORD

(rtn_addr: LOCALANYPTR);

END;

The default value of this pointer is nil. If fretval is omitted, its
place in the parameter list is taken by nil.

condcode 16-bit signed integer by reference (optional)

Returns the condition code that the target CM procedure
returns. Valid values are in the range 0 . . . 2.

The default is nil. If condcode is omitted, its place in the
parameter list is taken by nil (32 bits of zero) and no condition
code is returned.

status status-record (optional)

Returns the status of the intrinsic call. If no errors or warnings
are encountered, status returns 32 bits of zero. If errors or
warnings are encountered, status is interpreted as two 16-bit
�elds. The HP Pascal/XL declaration of this record is as
follows:

XLSTATUS = RECORD

CASE INTEGER OF

0 : (all : INTEGER);

1 : (info : SHORTINT;

subsys : SHORTINT);

END; {record}

3-20 NM-to-CM Procedure Calls

Bits (0:16) comprise status.info. A negative value indicates
an error condition, and a positive value indicates a warning
condition.

Bits (16:16) comprise status.subsys. The value represented
by these bits de�nes the subsystem that set the status
information. The Switch identi�cation number is 100.

The values of status.info that can be returned from a call to HPSWITCHTOCM are
listed in ***<xref T03-02>: undefined***.

NM-to-CM Procedure Calls 3-21

Table 3-2. HPSWITCHTOCM Status Returns (Page 1)

Status Code Meaning

-20 Invalid method parameter value (not in range 0 . . . 2)

-30 Parameter bounds violation

-40 Invalid number of parameters

-50 Invalid parameter length

-60 Privileged operation error

-80 Invalid procedure type

-90 Non-extant plabel

-110 CM Switch-by-name table exhausted

-120 Procedure not loaded

-130 Invalid status parameter

-150 Invalid proc address

-152 Invalid parms address

-154 Invalid parameter address

-156 Invalid pd parm type value

-158 Invalid parameter I/O speci�cation

-160 Invalid function return length

-162 Invalid function return address

-164 Invalid function return speci�cation

-166 Invalid condition code address

-168 Invalid status address

3-22 NM-to-CM Procedure Calls

Table 3-2. CM Status Returns (Page 2)

Status Code Meaning

-190 Invalid proc length

-194 Invalid lib length

-200 Invalid function type

-210 Invalid parameter type

-250 Invalid number of arguments

-260 Invalid process ID

-270 Invalid Switch-to-NM executor

-290 FINDPROC error

-300 Illegal reference parameter alignment (No copy method where
the actual parameter is byte-aligned and the pd parm type =
1, indicating a reference parameter requiring a word address)

Note Since call by name can result in a call to the LOADPROC
intrinsic, Switch can also return CM Loader errors. See Table
3-3.

NM-to-CM Procedure Calls 3-23

Caution Since HPSWITCHTOCM can return information on the success of
its execution in the status parameter, it is good programming
practice to specify this parameter and check its value after the
intrinsic call. If an error or warning condition is encountered
and you did not specify the status parameter, HPSWITCHTOCM
causes the calling process to abort.

HPSWITCHTOCM makes the following checks on its parameters:

If a plabel is used, it is range-checked.

The number of the target's parameters must be less than or equal to 32 (the
maximum number of parameters).

If the split-stack or no-copy method is used, the caller must be operating at
either execution level one or zero.

The Switch method must be valid (either 0 for normal, 1 for split-stack, or 2
for no-copy).

For each parameter, the pd parm type value must be valid (0, 1, or 2), and
the pd parm len value must be positive and <= 2 ** 16.

Switch relies on the hardware to check for the following:

Invalid data area

Target procedure not user-callable (execution level violation)

If you do not specify the status parameter and the switching operation is
successful, the HPSWITCHTOCM intrinsic returns to the calling routine. However,
if an error occurs, HPSWITCHTOCM assumes the caller is HP Pascal/XL and
attempts to escape to the caller's RECOVER block. If there is no RECOVER
block, the program is aborted. Refer to TRY/RECOVER in the HP Pascal/XL
Reference Manual (31502-90001).

3-24 NM-to-CM Procedure Calls

HPLOADCM PROCEDURE Intrinsic

Switching by name incurs the overhead of forming a hash probe out of the
procedure's name and �nding the name in a hash table in order to obtain the
procedure's plabel.

You can eliminate this overhead by obtaining the target procedure's plabel
through the Switch support intrinsic function HPLOADCMPROCEDURE. You then
supply the result returned by HPLOADCMPROCEDURE as the value of the proc
parameter in the call to the HPSWITCHTOCM intrinsic.

Note This method is to your advantage only if you make many calls
to the same procedure. Otherwise, no overhead is saved.

Syntax

In HP Pascal/XL, the declaration of the HPLOADCMPROCEDURE intrinsic is as
follows:

FUNCTION HPLOADCMPROCEDURE : SHORTINT; INTRINSIC;

Next, an example of an HP Pascal/XL call to this function:

plabel := HPLOADCMPROCEDURE(proc, lib, status);

You call the HPLOADCMPROCEDURE intrinsic with three parameters. These
parameters provide the following information:

ASCII procedure name

Indicator of the CM SL to be searched

Status record to report on HPLOADCMPROCEDURE's operation

NM-to-CM Procedure Calls 3-25

Parameters

A detailed explanation of the parameters of the HPLOADCMPROCEDURE intrinsic
follows.

Required parameters are shown in boldface; optional parameters are shown in
italics .

proc character array (required)

Passes an ASCII procedure name, left-justi�ed and
blank-padded. The name can have a maximum of 15
characters. The name is padded with blanks to a length of 16.

lib 8-bit unsigned integer (optional)

Passes indicator of the CM SL to be searched. The valid values
are as follows:

0 Search the system SL only.

1 Search the logon account SL, then the system
SL.

2 Search the logon group SL �rst, the logon
account SL second, and the system SL last.

3 Search the program �le's account SL, then the
system SL.

4 Search the program �le's group SL �rst, the
program �le's account SL second, and the
system SL last.

The system SL is the default.

3-26 NM-to-CM Procedure Calls

status status-record (optional)

Returns the status of the intrinsic call. If no errors or warnings
are encountered, status returns 32 bits of zero. If errors or
warnings are encountered, status is interpreted as two 16-bit
�elds. The HP Pascal/XL declaration of this record is as
follows:

XLSTATUS = RECORD

CASE INTEGER OF

0 : (all : INTEGER);

1 : (info : SHORTINT;

subsys : SHORTINT);

END; {record}

Bits (0:16) comprise status.info. A negative value indicates
an error condition, and a positive value indicates a warning
condition.

Bits (16:16) comprise status.subsys. The value represented
by these bits de�nes the subsystem that set the status
information. The Switch subsystem identi�cation number is
100.

The values of status.info that can be returned from a call to
HPLOADCMPROCEDURE (or HPUNLOADCMPROCEDURE) are listed in
Table 3-3. These numbers are derived as follows: - jCM Loader
Error Numberj - 1000.

Caution Since HPLOADCMPROCEDURE can return information on the
success of its execution in the status parameter, it is good
programming practice to specify this parameter and check its
value after the intrinsic call. If an error or warning condition
is encountered and you did not specify the status parameter,
HPLOADCMPROCEDURE causes the calling process to abort.

NM-to-CM Procedure Calls 3-27

Table 3-3. CM Loader Status Returns (Page 1)

Status Code Meaning

-1020 Illegal library search.

-1021 Unknown entry point.

-1022 The TRACE subsystem is not present.

-1023 The stack size is too small.

-1024 Maxdata is greater than 32K.

-1025 The data segment is greater than the maxdata segment.

-1026 The program is loaded in the opposite mode.

-1027 SL binding error.

-1028 Invalid system SL �le.

-1029 Invalid public SL �le.

-1030 Invalid group SL �le.

-1031 Invalid program �le.

-1032 Invalid list �le.

-1033 The code segment is greater than the system maximum.

-1034 The program uses more than one extent.

-1035 The data segment is greater than 32K.

-1036 The data segment is greater than the system maximum.

-1037 The number of code segments is greater than 63.

-1038 The number of code segments is greater than the system
maximum.

-1039 Illegal capability.

-1040 Too many procedures are loaded.

-1041 Unknown procedure name.

-1042 Invalid procedure number.

3-28 NM-to-CM Procedure Calls

Table 3-3. CM Loader Status Returns (Page 2)

Status Code Meaning

-1043 Illegal procedure unload.

-1044 Illegal SL capability.

-1045 Invalid entry point.

-1050 Unable to open system SL �le.

-1051 Unable to open public SL �le.

-1052 Unable to open group SL �le.

-1053 Unable to open program �le.

-1054 Unable to open list �le.

-1055 Unable to close system SL �le.

-1056 Unable to close public SL �le.

-1057 Unable to close group SL �le.

-1058 Unable to close program �le.

-1059 Unable to close list �le.

-1060 EOF or I/O error on system SL �le.

-1061 EOR or I/O error on public SL �le.

-1062 EOF or I/O error on group SL �le.

-1063 EOF or I/O error on program �le.

-1064 EOF or I/O error on list �le.

-1065 Unable to obtain CST entries.

-1066 Unable to obtain process DST entry.

-1067 Unable to obtain mail data segment.

-1068 Unable to obtain working set.

-1069 Unable to obtain CSTX entries.

NM-to-CM Procedure Calls 3-29

Table 3-3. CM Loader Status Returns (Page 3)

Status Code Meaning

-1070 Segment Table overow.

-1071 Unable to obtain su�cient DL storage.

-1072 ATTIO error.

-1073 Unable to obtain virtual memory.

-1074 Directory I/O error.

-1075 Print I/O error.

-1076 Illegal DLSIZE.

-1080 The program is already allocated.

-1081 Illegal program allocation.

-1082 The program is not allocated.

-1083 Illegal program deallocation.

-1084 The procedure is already allocated.

-1085 Illegal procedure allocation.

-1086 The procedure is not allocated.

-1087 Illegal procedure deallocation.

-1092 ALLOCATE/DEALLOCATE from non-system disc.

-1093 Unable to mount program's home volume set.

-1094 Unable to mount system SL's home volume set.

-1095 Unable to mount private SL's home volume set.

-1096 Unable to mount group SL's home volume set.

-1097 Unable to load remote program.

-1098 Unable to convert old format.

-1099 Unable to obtain DST for logical map.

3-30 NM-to-CM Procedure Calls

Table 3-4. Table 3-3. CM Loader Status Returns (Page 4)

Status Code Meaning

-1100 There are too many mapped segments.

-1101 The SEGMAP is too big.

-1102 Unable to expand SEGMAP.

-1103 There are too many dynamic loads on the procedure.

NM-to-CM Procedure Calls 3-31

HPUNLOADCM PROCEDURE Intrinsic

Procedures whose plabels are obtained via the HPLOADCMPROCEDURE intrinsic
function are automatically unloaded when the process terminates. However,
you can use the HPUNLOADCMPROCEDURE intrinsic to do the unloading before the
process terminates.

Syntax

In HP Pascal/XL, the declaration of the HPUNLOADCMPROCEDURE intrinsic is as
follows:

PROCEDURE HPUNLOADCMPROCEDURE; INTRINSIC;

Next is an example Pascal/XL call to HPUNLOADCMPROCEDURE:

HPUNLOADCMPROCEDURE (proc, lib, status);

Parameters

The parameters of the HPUNLOADCMPROCEDURE intrinsic are identical to those of
the HPLOADCMPROCEDURE intrinsic function.

Note You can use the LOADPROC and UNLOADPROC as functional
equivalents of HPLOADCMPROCEDURE and HPUNLOADCMPROCEDURE,
respectively. HPLOADCMPROCEDURE performs a hashing function
on the name of the other-mode procedure and stores the
plabel for that procedure in a system internal hash table.
LOADPROC performs no hashing. Consequently, while both
intrinsics involve high system overhead on the �rst call per
name, HPLOADCMPROCEDURE involves substantially lower
overhead on each subsequent call for that name. Refer to the
appropriate entries in the MPE XL Intrinsics Reference Manual
(32650-90028) for further details.

3-32 NM-to-CM Procedure Calls

Examples: NM to CM and Return

Now consider an example of the NM|> CM mixed-mode switching process.
Suppose there is an SPL procedure CONVERTDATE that resides in a CM SL
and that you want to access from MPE XL code. CONVERTDATE converts
an input parameter FROMDATE to an output parameter TODATE, based on the
values of the FROMFORMAT and TOFORMAT parameters.

The SPL declaration of the procedure is as follows:

+---+

| |
|PROCEDURE CONVERTDATE (FROMDATE, TODATE, |

| FROMFORMAT, TOFORMAT, DATELENGTH);|

| VALUE FROMFORMAT, TOFORMAT, DATELENGTH; |

| BYTE ARRAY FROMDATE, TODATE; |

| INTEGER FROMFORMAT, TOFORMAT, DATELENGTH; |

| |

+---+

The DATELENGTH parameter contains the number of bytes in the date.

The FROMFORMAT, TOFORMAT, and DATELENGTH parameters are declared to be
value parameters, while FROMDATE and TODATE are passed by reference.

Because the CONVERTDATE procedure resides in a CM SL, you can write
a Switch stub that calls the HPSWITCHTOCM intrinsic, which, in turn, calls
CONVERTDATE.

Figure 3-2 illustrates the purpose of the CONVERTDATE Switch stub.

NM-to-CM Procedure Calls 3-33

Figure F03-02 here.

Figure 3-2. HPSWITCHTOCM Example, CONVERTDATE

Recall that Switch stubs make the mixed-mode calling process transparent to
the calling program so that program need not change. This is possible because
the stub procedure name is identical to the CM target procedure name, and
the stub procedure parameters and their types are also identical to those of the
target procedure. This allows the recompiled application to continue to call
CONVERTDATE without any changes to the source code of the application.

3-34 NM-to-CM Procedure Calls

The following sample procedure declarations demonstrate these aspects of
achieving mixed-mode calling transparency. The �rst extract is the declaration
portion of an SPL procedure in the CM SL:

NM-to-CM Procedure Calls 3-35

+---------+

+-| MPE V/E |---+

| +---------+ |

| |

|PROCEDURE CONVERTDATE (FROMDATE, TODATE, |

| FROMFORMAT, TOFORMAT, DATELENGTH);|

| VALUE FROMFORMAT, TOFORMAT, DATELENGTH; |

| BYTE ARRAY FROMDATE, TODATE; |

| INTEGER FROMFORMAT, TOFORMAT, DATELENGTH; |

| |

| |

+---+

The second extract is the HP Pascal/XL declaration portion of a Switch stub
that enables you to call the corresponding CM SL procedure:

+--------+

+-| MPE XL |--+

| +--------+ |

| |

|TYPE |

| DATE_BUFFER : PACKED ARRAY [1..80] OF CHAR; |

| |

| |

|PROCEDURE CONVERTDATE(VAR FROMDATE, TODATE : DATE_BUFFER;|

| FROMFORMAT, TOFORMAT, DATELENGTH : SHORTINT);|

| |

| |

| |

+---+

Note the ways in which the MPE XL declaration makes the stub and the
switching process transparent to any program that calls the SPL procedure:

The Switch stub procedure name is identical to that of the SPL procedure.

The types of the Switch stub parameters are declared to correspond to those
of the SPL procedure:

Value parameters correspond to value parameters; likewise, reference
parameters correspond.

3-36 NM-to-CM Procedure Calls

The data types of the corresponding parameters are compatible.

Another responsibility of the Switch stub is to set up the parameters required
by the appropriate Switch intrinsic. In this instance, that is the HPSWITCHTOCM
intrinsic. Here, again, is a sample call to HPSWITCHTOCM:

HPSWITCHTOCM(proc, method, numparms, parms, funcreturnlen,

funcvalue, conditioncode, userstatus)

The parameters that the CONVERTDATE Switch stub must set up before it
can call the HPSWITCHTOCM intrinsic convey to Switch the following information:

Name and CM library or plabel of the target procedure.

Whether the target procedure runs in normal, split-stack, or no-copy mode.

Number of parameters being passed to the target procedure.

Array of records, each containing a description of one parameter being
passed, including:

Pointer to the parameter; that is, a reference to where the parameter
begins in NM memory. Value parameters larger than one byte must be
16-bit aligned.

Length (size) of the parameter in bytes (must be positive integer <= 2 **
16).

For reference parameters, the stub must specify either a byte or word
address and also indicate whether the parameter is an input and/or output
parameter.

Length of the function return value (0 if not a function).

Pointer to the function return value (nil if not a function).

CM condition code value to be returned from the target procedure.

Status record to report on HPSWITCHTOCM's operation.

In the course of Example 3-1A, the necessary constants, types, and variables
are declared. The body of the stub follows in Example 3-1B. Examples 3-1A
and 3-1B together constitute the CONVERTDATE stub.

NM-to-CM Procedure Calls 3-37

Example 3-1A. Declarations Portion of CONVERTDATE Stub

$standard_level 'EXT_MODCAL'$

$subprogram$

$os 'MPE/XL'$

Program XAMPL31A(input, output);

const { * * * PROC parameter * * * }

{The OS finds procedures by number, by name, or by plabel}

pidt_known = 0; {it is found by number }

pidt_load = 1; {it is found by name }

pidt_plabel = 2; {it is specified by its CM plabel}

{Which library is the procedure in?}

system_sl = 0;

logon_pub_sl = 1;

logon_group_sl = 2;

pub_sl = 3;

group_sl = 4;

{max CM procedure name length}

length_cm_proc_name = 16;

type

bit8 = 0..255;

bit16 = 0..65535;

bit8_a1 = $ALIGNMENT 1$ bit8;

bit16_a1 = $ALIGNMENT 1$ bit16;

{type declaration for procedure names}

cm_proc_name = packed array [1..length_cm_proc_name]

of char;

3-38 NM-to-CM Procedure Calls

{defining type of HPSWITCHTOCM proc parameter}

scm_procedure = packed record

case p_proc_id_type : bit8 of

{proc found by number}

pidt_known : (p_fill : bit8_a1;

p_proc_id : bit16_a1);

{proc found by name}

pidt_load : (

{system, pub, or group library}

p_lib : bit8_a1;

{ASCII name left justified & blank padded}

p_proc_name : cm_proc_name);

{proc found by proc's CM plabel}

pidt_plabel : (p_plabel : bit16_a1);

end;

Example 3-1A. Declarations Portion of CONVERTDATE Stub, continued

const { * * * METHOD parameter * * * }

{defining HPSWITCHTOCM method parameter}

method_normal = 0; {non-split-stack}
method_split = 1; {if all parameters within cm stack

or ref parm length < threshold

then use method_normal

else wrap ref parms in extra data

segment }

method_no_copy = 2; {use split stack if ref parms

outside of cm stack }

const { * * * NUM_PARMS parameter * * * }

max_target_parms = 32; {max # of target parameters}

const { * * * PARMS parameter * * * }

{What is the parameter type?}

NM-to-CM Procedure Calls 3-39

parm_type_value = 0; {value parameter }

parm_type_word_ref = 1; {word address is required}

parm_type_byte_ref = 2; {byte address is required}

type

{defining type of indicator as byte or word address}

scm_parm_type = bit16;

{defining type of indicator as input and/or output }

{parameter }

scm_io_type = set of (INPUT_PARM, OUTPUT_PARM);

{defining individual record of HPSWITCHTOCM parms }

{parameter; parms is array describing the stub }

{parameters; each record describes a parameter }

parm_desc = packed record

pd_parmptr : globalanyptr; {where parameter found}
pd_parmlen : bit16; {size in bytes}

pd_parm_type : scm_parm_type;

{value parm or byte or word address reference parm}

pd_io_type : scm_io_type; {input and/or output}

end;

{defining type of HPSWITCHTOCM parms parameter}

scm_parm_desc_array = array [1..max_target_parms]

of parm_desc;

Example 3-1A. Declarations Portion of CONVERTDATE Stub, continued

const { * * * CONDITION_CODE parameter * * * }

3-40 NM-to-CM Procedure Calls

ccg = 0;

ccl = 1;

cce = 2;

type

ccode_type = shortint;

const { * * * STATUS constant * * * }

all_ok = 0; {used in status check}

type { * * * STATUS parameter * * * }

xlstatus = record

case integer of

0 : (all : integer);

1 : (info : shortint;

subsys : shortint);

end;

type { * * * Switch stub parameters * * * }

date_buffer = packed array[1..80] of char;

{declaring intrinsic procedures -- externals}

procedure HPSWITCHTOCM; intrinsic;

procedure HPSETCCODE; intrinsic;

procedure QUIT; intrinsic;

{declaring Switch stub header}

procedure CONVERTDATE (var FROMDATE, TODATE : date_buffer;

FROMFORMAT, TOFORMAT, DATELENGTH : shortint);

NM-to-CM Procedure Calls 3-41

var

proc : scm_procedure; {target proc name}

parms : scm_parm_desc_array;

{describes target proc's parameters}

method : integer; {method of call}

nparms : integer; {# of target's parameters}

Example 3-1A. Declarations Portion of CONVERTDATE Stub, continued

{declaring return parameters}

funclen : integer; {length of return value}

funcptr : integer; {pointer to return value}

cond_code : ccode_type; {how condition code returned}

status : xlstatus; {how MPE XL returns warnings}

{declaring local variables}

loc_fromformat : bit16; { FROMFORMAT }

loc_toformat : bit16; { TOFORMAT }

loc_datelength : bit16; { DATELENGTH }

{end example 3-1A, completing the declaration portion}

Example 3-1B. Body of CONVERTDATE Stub

begin

{format and length parameters are copied into local

variables; local copies used since first 4 parms of proc

are put in registers; Switch wants address but value in

register won't have address; to get address, you must

make local copy}

loc_fromformat := FROMFORMAT;

loc_toformat := TOFORMAT;

loc_datelength := DATELENGTH;

{the Switch variables are initialized}

3-42 NM-to-CM Procedure Calls

proc.p_proc_id_type := pidt_load; {find proc by name}

proc.p_lib := pub_sl; {look in PUB SL (LIB=P)}

proc.p_proc_name := 'CONVERTDATE '; {procedure name}

method := method_normal; {NOT split-stack callable}

nparms := 5; {number of parameters}

{unless option variable, when option}

{variable, add 1 to nparms }

funclen := 0; {not a function--no return value}

funcptr := 0; {not a function--no return value}

{In the next sequence, "describe" involves the following:}

{ 1) give a pointer to the parameter's location }

{ 2) give the length (size) of the parameter }

{ 3) indicate whether value or reference parameter}

{ IF a reference parameter, THEN }

{ 4) indicate whether input and/or output parameter}

{describe FROMDATE -- input by reference}

{determine pointer to parameter's location; addr }

{function takes parameter as argument and returns address}

parms[1].pd_parmptr := addr(FROMDATE);

{determine length of parameter; }

{sizeof function takes parameter as argument and returns}

{number of bytes in parameter }

parms[1].pd_parmlen := sizeof(FROMDATE);

{reference parameter requiring byte address}

parms[1].pd_parm_type := parm_type_byte_ref;

{input parameter}

NM-to-CM Procedure Calls 3-43

parms[1].pd_io_type := [input_parm];

Example 3-1B. Body of CONVERTDATE Stub, continued

{describe TODATE -- output by reference}

{determine pointer to parameter's location; addr }

{function takes parameter as argument and returns address}

parms[2].pd_parmptr := addr(TODATE);

{determine length of parameter; }

{sizeof function takes parameter as argument and returns}

{number of bytes in parameter }

parms[2].pd_parmlen := sizeof(TODATE);

{reference parameter requiring byte address}

parms[2].pd_parm_type := parm_type_byte_ref;

{output parameter}

parms[2].pd_io_type := [output_parm];

{describe TOFORMAT -- input by value}

{determine pointer to parameter's location; addr }

{function takes parameter as argument and returns address}

parms[3].pd_parmptr := addr(loc_toformat);

{determine length of parameter; }

{sizeof function takes parameter as argument and returns}

{number of bytes in parameter }

parms[3].pd_parmlen := sizeof(TOFORMAT);

3-44 NM-to-CM Procedure Calls

{value parameter}

parms[3].pd_parm_type := parm_type_value;

{input parameter}

parms[3].pd_io_type := [input_parm];

{describe FROMFORMAT -- input by value}

{determine pointer to parameter's location; addr }

{function takes parameter as argument and returns address}

parms[4].pd_parmptr := addr(loc_fromformat);

{determine length of parameter; }

{sizeof function takes parameter as argument and returns}

{number of bytes in parameter }

Example 3-1B. Body of CONVERTDATE Stub, continued

parms[4].pd_parmlen := sizeof(FROMFORMAT);

{value parameter}

parms[4].pd_parm_type := parm_type_value;

{input parameter}

parms[4].pd_io_type := [input_parm];

{describe DATELENGTH -- input by value}

{determine pointer to parameter's location; addr }

{function takes parameter as argument and returns address}

parms[5].pd_parmptr := addr(loc_datelength);

NM-to-CM Procedure Calls 3-45

{determine length of parameter; }

{sizeof function takes parameter as argument and returns}

{number of bytes in parameter }

parms[5].pd_parmlen := sizeof(DATELENGTH);

{value parameter}

parms[5].pd_parm_type := parm_type_value;

{input parameter}

parms[5].pd_io_type := [input_parm];

{call the Switch intrinsic to change modes}

HPSWITCHTOCM (proc, method, nparms, parms, funclen,

funcptr, cond_code, status);

{test MPE XL status value and set ccode if not OK }

{HPSETCCODE intrinsic used to pass on result of CM }

{call made by stub; calling program checks returned}
{ccode }

if status.all = all_ok then

HPSETCCODE(cond_code) {from CM proc }

else

QUIT(status.info); {Switch subsystem error}

end; {Stub procedure CONVERTDATE}

BEGIN {dummy outer block}

END. {end example 3-1B}

3-46 NM-to-CM Procedure Calls

Note For a complete analysis of NM-to-CM Switch stub code, refer
to Chapter 5.

Figure 3-3 illustrates how your CONVERTDATE Switch stub �ts into the ow
of control and enables you to access your CM SL CONVERTDATE procedure:

Figure F03-03 here.

Figure 3-3. NM|> CM Switch Summary 2

Example 3-2 implements a Switch stub for the BINARY intrinsic. This example
illustrates a stub for a target procedure that has a functional return value:

NM-to-CM Procedure Calls 3-47

Note This BINARY stub is only an example. The BINARY intrinsic is
directly accessible from both Compatibility Mode and Native
Mode, without the need of writing a stub to gain access.

Example 3-2. BINARY Intrinsic Switch Stub

$subprogram$

$standard_level 'EXT_MODCAL'$

$tables off$

$code_offsets off$

$xref off$

$type_coercion 'representation'$

$os 'MPE/XL'$

PROGRAM XAMPL32(input, output);

CONST

Pidt_Known = 0; {by number}
Pidt_Name = 1; {by name}

Pidt_Plabel = 2; {by plabel}

System_Sl = 0; {search library}

Logon_Pub_Sl = 1;

Logon_Group_Sl = 2;

Pub_Sl = 3;

Group_Sl = 4;

Method_Normal = 0; {Switch copy mode}

Method_Split = 1;

Method_No_Copy = 2;

Parm_Type_Value = 0; {value parameter}

Parm_Type_Word_Ref = 1; {reference parm, word addr}

Parm_Type_Byte_Ref = 2; {reference parm, byte addr}

Ccg = 0; {condition code greater (>)}

Ccl = 1; {condition code less (<)}

3-48 NM-to-CM Procedure Calls

Cce = 2; {condition code equal (=)}

All_ok = 0; {used in status check}

TYPE

BIT8 = 0..255;

BIT16 = 0..65535;

BIT8_A1 = $ALIGNMENT 1$ BIT8;

BIT16_A1 = $ALIGNMENT 1$ BIT16;

CM_PROC_NAME = PACKED ARRAY [1..16] of CHAR;

GENERIC_BUFFER = PACKED ARRAY [1..65535] of CHAR;

Example 3-2. BINARY Intrinsic Switch Stub, continued

SCM_PROCEDURE =

PACKED RECORD

CASE p_proc_id_type : BIT8 of

Pidt_Known:

(p_fill : BIT8_A1;

p_proc_id : BIT16_A1);

Pidt_Name:

(p_lib : BIT8_A1;

(p_proc_name : CM_PROC_NAME);

Pidt_Plabel:

(p_plabel : BIT16_A1);

END; {record}

SCM_IO_TYPE = SET OF (input_parm, output_parm);

PARM_DESC =

PACKED RECORD

pd_parmptr : GLOBALANYPTR;

pd_parmlen : BIT16;

pd_parm_type : BIT16;

pd_io_type : SCM_IO_TYPE;

END; {record}

NM-to-CM Procedure Calls 3-49

SCM_PARM_DESC_ARRAY = ARRAY [0..31] of PARM_DESC;

CCODE_TYPE = shortint;

XLSTATUS =

RECORD

CASE INTEGER OF

0 :

(all : INTEGER);

1 :

(info : SHORTINT;

subsys : SHORTINT);

END; {record}

PROCEDURE HPSWITCHTOCM; INTRINSIC;

PROCEDURE HPSETCCODE; INTRINSIC;

PROCEDURE QUIT; INTRINSIC;

{End of OUTER BLOCK GLOBAL declarations}

3-50 NM-to-CM Procedure Calls

Example 3-2. BINARY Intrinsic Switch Stub, continued

FUNCTION BINARY $ALIAS 'BINARY'$

(

ANYVAR F1 : GENERIC_BUFFER;

F2 : SHORTINT;

) : SHORTINT

OPTION UNCHECKABLE_ANYVAR;

VAR

proc : SCM_PROCEDURE;

parms : SCM_PARM_DESC_ARRAY;

method : INTEGER;

nparms : INTEGER;

funclen : INTEGER;

funcptr : INTEGER;

byte_len_of_parm : BIT16;

cond_code : CCODE_TYPE;

status : XLSTATUS;

VAR loc_F2 : SHORTINT;

funcval : SHORTINT;

begin {STUB procedure BINARY }

{ Initialization }

{ Setup procedure information -- name, lib, etc}

proc.p_proc_id_type := Pidt_Name; {by name}

proc.p_lib := Pub_Sl; {library}

proc.p_proc_name := 'BINARY ';

{Setup misc. variables}

method := Method_Normal; {Switch copy mode}

nparms := 2;

NM-to-CM Procedure Calls 3-51

{Setup length/pointers for functional return if this }

{is a FUNCTION. Set length to zero, pointer to NIL }

{if this is not a FUNCTION. }

funclen := sizeof(funcval); {A function}

funcval := 0;

funcptr := INTEGER(LOCALANYPTR(ADDR(funcval)));

{Make a local copy of all VALUE parameters }

loc_F2 := F2;

3-52 NM-to-CM Procedure Calls

Example 3-2. BINARY Intrinsic Switch Stub, continued

{Build parameter descriptor array to describe each }

{parameter. }

{F1 -- Input Only by Reference }

byte_len_of_parm := F2 * 1;

parms[0].pd_parmptr := ADDR(F1);

parms[0].pd_parmlen := byte_len_of_parm;

parms[0].pd_parm_type := Parm_Type_Byte_Ref;

parms[0].pd_io_type := [Input_Parm];

{F2 -- Input Only by Value }

byte_len_of_parm := 2;

parms[1].pd_parmptr := ADDR(loc_F2);

parms[1].pd_parmlen := byte_len_of_parm;

parms[1].pd_parm_type := Parm_Type_Value;

parms[1].pd_io_type := [Input_Parm];

{Do actual Switch call}

HPSWITCHTOCM

(proc, {procedure info}

method, {Switch copy method}

nparms, {Number of parameters}

parms, {Parm descriptor array}

funclen, {Function return value length}

funcptr, {Address of functional return}

cond_code, {Condition code return}

status); {Switch status code}

binary := 0;

if (status.all <> all_ok) then

BEGIN {Switch subsystem error}

QUIT(status.info);

NM-to-CM Procedure Calls 3-53

END {Switch subsystem error}

else binary := funcval;

HPSETCCODE(cond_code);

END; {STUB procedure}

BEGIN {Program Outer Block code}

END. {Program Outer Block code}

{end Example 3-2}

3-54 NM-to-CM Procedure Calls

Switch to CM Sequence

Examples 3-3 through 3-10 are a series of code examples, intended to illustrate
the partial recompilation migration option, using an NM|> CM switch. In
these examples, the calling routine migrates to Native Mode while the target
procedure remains in Compatibility Mode.

The partial recompilation migration option typically begins with a program
that calls procedures written in languages for which there is no NM compiler.
Example 3-3 is a Pascal/V program that calls an SPL procedure.

Example 3-3. Pascal/V Program Calling SPL

PROGRAM EXAMPLE (input,output);

TYPE

pac26 = packed array [1..26] of char;

shortint = -32768..32767;

VAR

buffer : pac26;

count : shortint;

number : integer;

FUNCTION d2a(number : integer; VAR buffer : pac26) :

shortint;

external;

BEGIN

number := 198765432;

buffer := 'xxxxxxxxxxxxxxxxxxxxxxxxxx';

count := d2a(number, buffer);

writeln('The number is: ',number);

writeln('The buffer is: ',buffer);

writeln('The count is: ',count);

END.

{end Example 3-3}

NM-to-CM Procedure Calls 3-55

Example 3-4 illustrates a procedure that is written in a language for which
Hewlett-Packard does not supply an NM compiler. It is the SPL procedure
called by the Pascal/V program in Example 3-3.

Example 3-4. Called SPL Procedure

$CONTROL USLINIT,SUBPROGRAM,SEGMENT=EXAMPLE

BEGIN

EQUATE BASE = 10;

DEFINE D'MINIT = -214748256D#;

EQUATE OFFSET = 48;

EQUATE PLACES = 9; << size of maxint, 32-bits >>

DOUBLE PROCEDURE D'EXP(X,Y);

VALUE X, Y;

INTEGER X, Y;

BEGIN

DOUBLE XX;

<< D'EXP carries out exponentiation on positive 16-bit >>

<< integers, yielding a 32-bit result. Negative >>

<< arguments yield 0. >>

IF (X < 0) OR (Y < 0) THEN

D'EXP := 0D

ELSE
BEGIN

XX := 1D;

WHILE (Y > 0) DO

BEGIN

XX := XX * DOUBLE(X);

Y := Y - 1;

END;

D'EXP := XX;

END;

END;

INTEGER PROCEDURE D2A(D'INT, ASCII'NUMERIC);

VALUE D'INT;

DOUBLE D'INT;

BYTE ARRAY ASCII'NUMERIC;

3-56 NM-to-CM Procedure Calls

<< D2A stands for Double-to-Ascii. It converts a 32-bit>>

<< integer into an ASCII numeric in decimal >>

<< representation and returns a count of the digits >>

<< converted. A "-" is placed at the beginning of the >>

<< number for negative integers. The "-" sign >>

<< character counts as a digit. >>

BEGIN

DOUBLE SCALE;

INTEGER DIGIT, INDEX, J;

LOGICAL SKIP'ZEROS;

NM-to-CM Procedure Calls 3-57

Example 3-4. Called SPL Procedure, continued

INDEX := 0; << at left edge of buffer >>

MOVE ASCII'NUMERIC(INDEX) := " ";

MOVE ASCII'NUMERIC(INDEX+1) :=

ASCII'NUMERIC(INDEX),(PLACES);

IF (D'INT = D'MININT) THEN

BEGIN

MOVE ASCII'NUMERIC := "-214748256";

INDEX := 10;

END

ELSE

BEGIN

IF (D'INT < 0D) THEN

BEGIN

D'INT := \D'INT\;

ASCII'NUMERIC(INDEX) := "-";

INDEX := INDEX + 1;

END;

SKIP'ZEROS := TRUE; << skip leading 0's >>

FOR J := (PLACES - 1) STEP -1 UNTIL 0 DO

BEGIN

SCALE := D'EXP(BASE,J);

DIGIT := INTEGER(D'INT/SCALE);
IF (DIGIT <> 0) OR (SKIP'ZEROS = FALSE)

OR (J = 0) THEN

BEGIN

SKIP'ZEROS := FALSE;

D'INT := D'INT - (DOUBLE(DIGIT) * SCALE);

ASCII'NUMERIC(INDEX) :=

BYTE(DIGIT + OFFSET);

INDEX := INDEX + 1;

END;

END;

END;

D2A := INDEX; << return how many characters in number>>

END;

END.

3-58 NM-to-CM Procedure Calls

{end Example 3-4}

NM-to-CM Procedure Calls 3-59

Before migration, the Segmenter was needed to combine the preceding program
and its called procedure. Example 3-5 is an illustration of such a Segmenter
session to combine the program and the procedure.

Example 3-5. Segmenter Session

:SPL EXAMPLE2,,*LP

$CONTROL USLINIT,SUBPROGRAM,SEGMENT=EXAMPLE

^

***** WARNING #001 ***** SUBPROGRAM AND USL INITIALIZED

PRIMARY DB STORAGE=%000; SECONDARY DB STORAGE=%00000

NO. ERRORS=0000; NO. WARNINGS=0001

PROCESSOR TIME=0:00:00; ELAPSED TIME=0:00:00

END OF COMPILE

:SEGMENTER

HP32050A.02.00 SEGMENTER/3000 (C) HEWLETT-PACKARD CO 1985

-SL SL

-PURGESL SEGMENT,EXAMPLE

-USL $OLDPASS
-LISTUSL

USL FILE $OLDPASS.DTJ.DTEST

EXAMPLE

D2A 143 P A C N R

D'EXP 34 P A C N R

FILE SIZE 144000(620. 0)

DIR. USED 255(1. 55) INFO USED 205(1. 5)

DIR. GARB. 0(0. 0) INFO GARB. 0(0. 0)

DIR. AVAIL. 14123(60.123) INFO AVAIL. 127173(534.173)

-ADDSL EXAMPLE

-LISTSL EXAMPLE

3-60 NM-to-CM Procedure Calls

SL FILE SL.DTJ.DTEST

SEGMENT 2 EXAMPLE LENGTH 204

ENTRY POINTS CHECK CAL STT ADR

D2A 0 C 1 0

D'EXP 0 C 2 143

EXTERNALS CHECK STT SEG

001

-EXIT

END OF SUBSYSTEM

{end Example 3-5}

The migration of routines for which NM compilers exist can be accomplished
by recompiling the routine using one of the NM optimizing compilers. The
code example in Example 3-6 is the HP Pascal/XL version of the Pascal/V
program in Example 3-3. It illustrates that migration through recompilation
may involve little or no change to source code.

Example 3-6. HP Pascal/XL Version of Pascal/V Program

$standard_level 'ext_modcal'$

$os 'MPE/XL'$

PROGRAM XAMPL36(input,output);

TYPE

pac26 = packed array [1..26] of char;

shortint = -32768..32767;

VAR

buffer : pac26;

count : shortint;

number : integer;

FUNCTION d2a(number : integer; VAR buffer : pac26) :

shortint;

NM-to-CM Procedure Calls 3-61

external;

BEGIN

number := 198765432;

buffer := 'xxxxxxxxxxxxxxxxxxxxxxxxxx';

count := d2a(number, buffer);

writeln('The number is: ', number);

writeln('The buffer is: ', buffer);

writeln('The count is: ', count);

END.

{end Example 3-6}

3-62 NM-to-CM Procedure Calls

However, if nothing else is done, an error results because the NM loader cannot
resolve the external procedure reference because the procedure resides in a CM
SL. Example 3-7 illustrates the link error obtained from referencing the called
SPL procedure from the HP Pascal/XL program in Example 3-6.

Example 3-7. Link Error

:PASXLLK XAMPL36,,$null

PAGE 1 HP PASCAL/XL HP31502A.01.00 COPYRIGHT HEWLETT-PACKARD CO. 1986

SAT, NOV 21, 1987, 11:40 AM

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0
PROCESSOR TIME 0: 0: 1 ELAPSED TIME 0: 0: 0

NUMBER OF LINES = 25 LINES/MINUTE = 2645.5

NUMBER OF NOTES = 0

END OF COMPILE

LinkEd> link from $oldpass;to=

HP Link Editor/XL (HP30315A.01.00) Copyright Hewlett-Packard Co 1986

END OF LINK

:$oldpass

UNRESOLVED EXTERNALS: d2a (LDRERR 512)

UNABLE TO LOAD PROGRAM TO BE RUN. (CIERR 625)

NM-to-CM Procedure Calls 3-63

There are two alternatives for resolving the external reference so that your NM
routine can access the CM SPL procedure:

You can alter the original source code of the HP Pascal/XL routine
to include the required data setup and an in-line Switch that calls the
appropriate Switch intrinsic. Example 3-8 illustrates such an in-line Switch.

You can potentially avoid any changes to original source code by writing a
Switch stub to perform the actual mode switch (by setting up parameters for
and invoking the appropriate Switch intrinsic). Example 3-9 illustrates a
Switch stub.

Example 3-8. HP Pascal/XL Program With In-line Switch

$standard_level 'ext_modcal'$

$os 'MPE/XL'$

PROGRAM XAMPL38(INPUT, OUTPUT);

CONST

Pidt_Known = 0; {by number}
Pidt_Name = 1; {by name}

Pidt_Plabel = 2; {by plabel}

System_Sl = 0; {search library}

Logon_Pub_Sl = 1;

Logon_Group_Sl = 2;

Pub_Sl = 3;

Group_Sl = 4;

Method_Normal = 0; {Switch copy mode}

Method_Split = 1;

Method_No_Copy = 2;

Parm_Type_Value = 0; {value parameter}

Parm_Type_Word_Ref = 1; {reference parm, word addr}

Parm_Type_Byte_Ref = 2; {reference parm, byte addr}

Ccg = 0; {condition code greater (>)}

Ccl = 1; {condition code less (<)}

3-64 NM-to-CM Procedure Calls

Cce = 2; {condition code equal (=)}

All_ok = 0; {used in status check}

NM-to-CM Procedure Calls 3-65

Example 3-8. HP Pascal/XL Program With Inline Switch, continued

TYPE

BIT8 = 0..255;

BIT16 = 0..65535;

BIT8_A1 = $ALIGNMENT 1$ BIT8;

BIT16_A1 = $ALIGNMENT 1$ BIT16;

CM_PROC_NAME = PACKED ARRAY [1..16] of CHAR;

GENERIC_BUFFER = PACKED ARRAY [1..65535] of CHAR;

SHORTINT = -32768..32767;

SCM_PROCEDURE =

PACKED RECORD

CASE p_proc_id_type : BIT8 of

Pidt_Known:

(p_fill : BIT8_A1;

p_proc_id : BIT16_A1);

Pidt_Name:

(p_lib : BIT8_A1;

(p_proc_name : CM_PROC_NAME);

Pidt_Plabel:

(p_plabel : BIT16_A1);
END; {record}

SCM_IO_TYPE = SET OF (input_parm, output_parm);

PARM_DESC = PACKED RECORD

pd_parmptr : GLOBALANYPTR;

pd_parmlen : BIT16;

pd_parm_type : BIT16;

pd_io_type : SCM_IO_TYPE;

END; {record}

SCM_PARM_DESC_ARRAY = ARRAY [0..31] of PARM_DESC;

CCODE_TYPE = shortint;

3-66 NM-to-CM Procedure Calls

xlstatus = record case integer of

0 : (all : integer);

1 : (info : shortint;

subsys : shortint);

end;

pac26 = packed array [1..26] of char;

localanyptrrec = record

rtn_addr : localanyptr; { for alignment }

end;

VAR

condcode : shortint;

count : shortint;

status : xlstatus;

parms : scm_parm_desc_array;

proc_info : scm_procedure;

i : integer;

Example 3-8. HP Pascal/XL Program With Inline Switch, continued

VAR

method : integer;

buffer : pac26;

nparms : integer;

rtn_len : integer;

rtn_val : localanyptrrec; {localanyptr}

procedure HPSWITCHTOCM; intrinsic;

BEGIN

proc_info.p_lib := group_sl;

proc_info.p_proc_name := 'D2A '; {procedure name}

method := method_normal; {single stack}

nparms := 2;

i := 123456789; {value to convert}

NM-to-CM Procedure Calls 3-67

parms[1].pd_parmptr := addr(i);

parms[1].pd_parmlen := 4; {bytes}

parms[1].pd_parm_type := parm_type_value;

parms[1].pd_io_type :=

parms[1].pd_io_type + [input_parm];

buffer := '';

parms[2].pd_parmptr := addr(buffer);

parms[2].pd_parmlen := 6; {bytes}

parms[2].pd_parm_type := parm_type_byte_ref;

parms[2].pd_io_type :=

parms[2].pd_io_type + [output_parm];

rtn_len := 2; {bytes}

rtn_val.rtn_addr := addr(count);

condcode := 2; {CCE}

status.all := 0;

writeln('The number to convert = ',i);

writeln('The buffer contents are: ',buffer);

HPSWITCHTOCM(proc_info, method, nparms, parms,

rtn_len, rtn_val, condcode, status);

writeln('Switch status : subsys ',status.subsys);

writeln(' : info ',status.info);

writeln('Count of converted digits (+sign) = ',count);

writeln('The buffer contents are: ',buffer);

END. {end Example 3-8}

Note The status parameter returns information concerning the
success of the intrinsic's execution. It is considered good
programming practice to check the value of status after making
an intrinsic call. Normally this would involve a conditional
statement, with the value of status determining the execution

3-68 NM-to-CM Procedure Calls

path. In Example 3-8, this sort of test is intentionally omitted.
Instead, the routine prints out the values of the status
parameter �elds.

Example 3-9. HP Pascal/XL Switch Stub

$subprogram$

$check_actual_parm 0$

$check_formal_parm 0$

$standard_level 'ext_modcal'$

$os 'MPE/XL'$

$tables off$

$code_offsets off$

$xref off$

$type_coercion 'representation'$

PROGRAM XAMPL39(INPUT, OUTPUT);

CONST

Pidt_Known = 0; {by number}

Pidt_Name = 1; {by name}

Pidt_Plabel = 2; {by plabel}

System_Sl = 0; {search library}

Logon_Pub_Sl = 1;

Logon_Group_Sl = 2;

Pub_Sl = 3;

Group_Sl = 4;

Method_Normal = 0; {Switch copy mode}

Method_Split = 1;

Method_No_Copy = 2;

Parm_Type_Value = 0; {value parameter}

Parm_Type_Word_Ref = 1; {reference parm, word addr}

Parm_Type_Byte_Ref = 2; {reference parm, byte addr}

NM-to-CM Procedure Calls 3-69

Ccg = 0; {condition code greater (>)}

Ccl = 1; {condition code less (<)}

Cce = 2; {condition code equal (=)}

All_ok = 0; {used in status check}

Example 3-9. HP Pascal/XL Switch Stub, continued

TYPE

BIT8 = 0..255;

BIT16 = 0..65535;

BIT8_A1 = $ALIGNMENT 1$ BIT8;

BIT16_A1 = $ALIGNMENT 1$ BIT16;

CM_PROC_NAME = PACKED ARRAY [1..16] of CHAR;

GENERIC_BUFFER = PACKED ARRAY [1..65535] of CHAR;

SCM_PROCEDURE =

PACKED RECORD

CASE p_proc_id_type : BIT8 of

Pidt_Known:

(p_fill : BIT8_A1;

p_proc_id : BIT16_A1);

Pidt_Name:

(p_lib : BIT8_A1;

(p_proc_name : CM_PROC_NAME);

Pidt_Plabel:

(p_plabel : BIT16_A1);

END; {record}

SCM_IO_TYPE = SET OF (input_parm, output_parm);

PARM_DESC = PACKED RECORD

pd_parmptr : GLOBALANYPTR;

pd_parmlen : BIT16;

pd_parm_type : BIT16;

pd_io_type : SCM_IO_TYPE;

END; {record}

3-70 NM-to-CM Procedure Calls

SCM_PARM_DESC_ARRAY = ARRAY [0..31] of PARM_DESC;

CCODE_TYPE = shortint;

xlstatus = record case integer of

0 : (all : integer);

1 : (info : shortint;

subsys : shortint);

end;

{Declare all types which can be passed to this stub }

{so that 16-bit alignments are allowed. }

hp_shortint = $alignment 2$ shortint;

hp_integer = $alignment 2$ integer;

hp_real = $alignment 2$ real;

hp_long = $alignment 2$ longreal;

hp_char = $alignment 1$ char;

Example 3-9. HP Pascal/XL Switch Stub, continued

procedure HPSWITCHTOCM; intrinsic;

procedure HPSETCCODE; intrinsic;

procedure QUIT; intrinsic;

{End of OUTER BLOCK GLOBAL declarations }

FUNCTION D2A $ALIAS 'D2A'$

(

NUMBER : INTEGER;

ANYVAR BUFFER : GENERIC_BUFFER

) : SHORTINT

OPTION UNCHECKABLE_ANYVAR;

VAR

proc_info : scm_procedure;

parms : scm_parm_desc_array;

NM-to-CM Procedure Calls 3-71

method : integer;

nparms : integer;

funclen : integer;

funcptr : integer;

byte_len_of_parm : bit16;

condcode : shortint;

status : xlstatus;

VAR retval : shortint;

VAR loc_number : integer;

BEGIN {STUB procedure D2A}

{Initialization}

{Set up procedure information--name, lib, etc.}

proc_info.p_proc_id_type := pidt_load;

proc_info.p_lib := group_sl;

proc_info.p_proc_name := 'D2A '; {procedure name}

{Set up miscellaneous variables}

method := method_normal; {single stack}

nparms := 2;

{Set up length/pointers for functional return if this}

{is a FUNCTION. Set length to zero, pointer to NIL }

{if this is not a FUNCTION. }

funclen := SIZEOF(retval);

funcptr := INTEGER(LOCALANYPTR(ADDR(retval)));

Example 3-9. HP Pascal/XL Switch Stub, continued

{Make a local copy of all VALUE parameters}

loc_number := NUMBER;

3-72 NM-to-CM Procedure Calls

{Build the parm descriptor array to describe each}

{parameter. }

{NUMBER -- Input only by VALUE}

byte_len_of_parm := 4;

parms[0].pd_parmptr := addr(loc_number);

parms[0].pd_parmlen := byte_len_of_parm;

parms[0].pd_parm_type := parm_type_value;

parms[0].pd_io_type := [input_parm];

{BUFFER -- Output only by REFERENCE}

byte_len_of_parm := 6;

parms[1].pd_parmptr = addr(buffer);

parms[1].pd_parmlen = byte_len_of_parm;

parms[1].pd_parm_type := parm_type_byte_ref;

parms[1].pd_io_type := [output_parm];

{Do Switch call}

HPSWITCHTOCM(proc_info, method, nparms, parms,

funclen, funcptr, condcode, status);

if (status.all <> all_ok) then

begin {Switch subsystem error}

QUIT (status.info); {handles error codes}

end; {Switch subsystem error}

HPSETCCODE (condcode);

D2A := retval;

END; {stub procedure D2A}

begin {main}

NM-to-CM Procedure Calls 3-73

end. {main}

{end Example 3-9}

3-74 NM-to-CM Procedure Calls

On MPE XL, a LinkEdit session is used to combine a routine and its external
references. Example 3-10 represents a LinkEdit session to combine the
compiled stub procedure of Example 3-9 with the compiled HP Pascal/XL
program of Example 3-6.

When the LinkEdit session is completed, the partial recompilation migration is
complete. The error of Example 3-7 will no longer occur, and you can run the
HP Pascal/XL routine, still accessing the CM SPL procedure.

Before beginning the LinkEdit session, you need to compile both the source for
the program in Example 3-6 and the Switch stub source code in Example 3-9.
Since both routines are written in Pascal, use the PASXL command to invoke
the HP Pascal/XL compiler and create NM object modules.

The following command compiles the main program (Example 3-6) and yields
an object code �le named APPOBJ:

PASXL XAMPL36, APPOBJ

The next command compiles the Switch stub (Example 3-9) and yields an
object code �le named STUBOBJ:

PASXL XAMPL39, STUBOBJ

For more information about the PASXL command or the commands to invoke
other NM compilers, refer to the MPE XL Commands Reference Manual
(32650-90003).

NM-to-CM Procedure Calls 3-75

Example 3-10. LinkEdit Session

{The first LinkEdit session illustrates how to

create or designate an NM Executable Library (XL)

and add a Switch stub object module to it. This

example also shows how to create an executable

NM program that accesses the XL. If you want to

make the Switch stub object module accessible to

more than one application, this is the appropriate

course to follow. }

:LINKEDIT

{If the XL to which the stub object code is to be

added does not exist, create it and add the object

module to it as follows. }

LinkEd> BUILDXL MYXL

LinkEd> ADDXL FROM=STUBOBJ

{If the XL to which the stub object code is to be

added already exists, designate it and add the

object module to it as follows. }

LinkEd> XL XL=MYXL

LinkEd> ADDXL FROM=STUBOBJ

{Finally, to create an executable program (MYPROG),

use the LINK command as follows: }

LinkEd> LINK FROM=APPOBJ; TO=MYPROG; XL=MYXL

{The second LinkEdit session illustrates how to

link a Switch stub object module into an NM program

file. If you do not want to make the object code

available for shared use, this is the appropriate

choice. }

3-76 NM-to-CM Procedure Calls

:LINKEDIT

LinkEd> LINK FROM=APPOBJ, STUBOBJ; TO=MYPROG

{You can also issue the LINK command directly at

the Command Interpreter prompt (:), as follows: }

:LINK FROM=APPOBJ, STUBOBJ; TO=MYPROG

For more information about the Link Editor, refer to the Link Editor/XL
Reference Manual (32650-90030).

NM-to-CM Procedure Calls 3-77

Special Considerations and Restrictions

There are certain considerations to bear in mind when you use Switch.

General

General considerations apply no matter what the direction of the mixed-mode
call:

Mixed-mode procedure calls require an increased level of programming
complexity.

The overhead of Switch can be signi�cant.

Because Switch does no probing on addresses passed by the caller, data
memory protection faults are likely when you pass in bad parameter
addresses or lengths.

Since Switch does no parameter type or alignment checking, the target
procedure must make the necessary checks.

The following considerations apply to a particular direction of mixed-mode call.

3-78 NM-to-CM Procedure Calls

NM|> CM

When making mixed-mode procedure calls in the direction NM|> CM, the
following considerations apply:

Any CM procedure called from NM code must reside in a CM SL. The
SL containing the procedure must be accessible via the LOADPROC or
HPLOADCMPROCEDURE intrinsic. This may be the system library, a group
library, or a user library.

Unlike other MPE XL intrinsics, the Switch intrinsics do not promote their
privilege level. If your user code calls Switch to access a non-Privileged
target procedure, the execution level remains unchanged. On the other hand,
if your user code calls Switch to access a Privileged target, the execution
level becomes Privileged after the target is accessed.

HP Pascal/XL does not support the equivalent of SPL's option variable,
and HPSWITCHTOCM knows nothing about such procedures. Option variable
procedures are implemented in Compatibility Mode by pushing a 16- or
32-bit mask on the CM stack immediately before calling the procedure.

You can use the HPSWITCHTOCM intrinsic to call an option variable procedure,
but it is your responsibility to construct the mask (refer to the SPL
Reference Manual (30000-90024) for more information on the OPTION
VARIABLE option) and to describe it to HPSWITCHTOCM as the �rst parameter.
See Example 3-11 for an illustration of the use of HPSWITCHTOCM to call an
option variable procedure.

NM-to-CM Procedure Calls 3-79

Example 3-11. Stub for Option Variable Target Procedure

$subprogram$

$standard_level 'ext_modcal'$

$tables off$

$code_offsets off$

$xref off$

$type_coercion 'representation'$

PROGRAM XAMPL311(input, output);

CONST

Pidt_Known = 0; { By number }

Pidt_Name = 1; { By name }

Pidt_Plabel = 2; { By PLABEL }

System_Sl = 0;

Logon_Pub_Sl = 1;

Logon_Group_Sl = 2;

Pub_Sl = 3;

Group_Sl = 4;

Method_Normal = 0; { Not callable from split stack}

Method_Split = 1; { Callable in split stack mode }
Method_No_Copy = 2; { No-copy method }

Parm_Type_Value = 0; { value parameter }

Parm_Type_Word_Ref = 1; { reference parm, word addr }

Parm_Type_Byte_Ref = 2; { reference parm, byte addr }

Ccg = 0; { condition code greater (>) }

Ccl = 1; { condition code less (<) }

Cce = 2; { condition code equal (=) }

All_Ok = 0; { Used in status check }

TYPE

BIT8 = 0..255;

BIT16 = 0..65535;

BIT8_A1 = $ALIGNMENT 1$ BIT8;

3-80 NM-to-CM Procedure Calls

BIT16_A1 = $ALIGNMENT 1$ BIT16;

CM_PROC_NAME = PACKED ARRAY [1..16] OF CHAR;

GENERIC_BUFFER = PACKED ARRAY [1..65535] OF CHAR;

SCM_PROCEDURE =

PACKED RECORD

CASE p_proc_id_type : BIT8 OF

Pidt_Known: (p_fill : BIT8_A1;

p_proc_id : BIT16_A1);

Pidt_Name: (p_lib : BIT8_A1;

p_proc_name : CM_PROC_NAME);

Pidt_Plabel: (p_plabel : BIT16_A1);

END; { record }

Example 3-11. Stub for Option Variable Target Procedure, continued

SCM_IO_TYPE = SET OF (input_parm, output_parm);

PARM_DESC =

PACKED RECORD

pd_parmptr : GLOBALANYPTR;

pd_parmlen : BIT16;

pd_parm_type : BIT16;

pd_io_type : SCM_IO_TYPE;
END;

SCM_PARM_DESC_ARRAY = ARRAY [0..31] OF PARM_DESC;

CCODE_TYPE = shortint;

XLSTATUS =

RECORD

CASE INTEGER OF

0: (all : INTEGER);

1: (info : SHORTINT;

subsys : SHORTINT);

END; { record }

PROCEDURE HPSWITCHTOCM; INTRINSIC;

NM-to-CM Procedure Calls 3-81

PROCEDURE HPSETCCODE; INTRINSIC;

PROCEDURE QUIT; INTRINSIC;

{ End of OUTER BLOCK GLOBAL declarations }

PROCEDURE FCHECK $ALIAS 'FCHECK'$

(

FILENUM : SHORTINT;

VAR ERRORCODE : SHORTINT;

VAR TLOG : SHORTINT;

VAR BLKNUM : INTEGER;

VAR NUMRECS : SHORTINT

);

VAR

proc : SCM_PROCEDURE;

parms : SCM_PARM_DESC_ARRAY;

method : INTEGER;

nparms : INTEGER;

funclen : INTEGER;

funcptr : INTEGER;
byte_len_of_parm : BIT16;

cond_code : CCODE_TYPE;

status : XLSTATUS;

mask : BIT16;

Example 3-11 Stub for Option Variable Target Procedure, continued

VAR loc_FILENUM : SHORTINT;

begin { STUB procedure FCHECK }

{ Initialization }

{ Setup procedure information--name, lib, etc. }

3-82 NM-to-CM Procedure Calls

proc.p_proc_id_type := Pidt_Name; { By name }

proc.p_lib := System_Sl; { Library }

proc.p_proc_name := 'FCHECK ';

{ Setup misc. variables }

mask := 0;

method := Method_Normal; { Split stack? }

nparms := 6; { 5 + mask }

{ Setup length/pointers for functional return if this }

{ is a FUNCTION. Set length to zero, pointer to NIL }

{ if this is not a FUNCTION. }

funclen := 0; { Not a function }

funcptr := 0;

{ Make a local copy of all VALUE parameters }

loc_FILENUM := FILENUM;

{ Build parameter descriptor array to describe each }
{ parameter. }

{ FILENUM -- Input Only by VALUE }

byte_len_of_parm := 2;

mask := binary('10000');

parms[0].pd_parmptr := ADDR(loc_FILENUM);

parms[0].pd_parmlen := byte_len_of_parm;

parms[0].pd_parm_type := Parm_Type_Value;

parms[0].pd_io_type := [Input_Parm];

{ ERRORCODE -- Output Only by REFERENCE }

NM-to-CM Procedure Calls 3-83

byte_len_of_parm := 2;

mask := ior16(mask, binary('01000'));

parms[1].pd_parmptr := ADDR(ERRORCODE);

parms[1].pd_parmlen := byte_len_of_parm;

parms[1].pd_parm_type := Parm_Type_Word_Ref;

parms[1].pd_io_type := [Output_Parm];

Example 3-11. Stub for Option Variable Target Procedure, continued

{ TLOG -- Output Only by REFERENCE }

byte_len_of_parm := 2;

mask := ior16(mask, binary('00100'));

parms[2].pd_parmptr := ADDR(TLOG);

parms[2].pd_parmlen := byte_len_of_parm;

parms[2].pd_parm_type := Parm_Type_Word_Ref;

parms[2].pd_io_type := [Output_Parm];

{ BLKNUM -- Output Only by REFERENCE }

byte_len_of_parm := 4;

mask := ior16(mask, binary('00010'));

parms[3].pd_parmptr := ADDR(BLKNUM);

parms[3].pd_parmlen := byte_len_of_parm;

parms[3].pd_parm_type := Parm_Type_Word_Ref;

parms[3].pd_io_type := [Output_Parm];

{ NUMRECS -- Output Only by REFERENCE }

byte_len_of_parm := 2;

mask := ior16(mask, binary('00001'));

parms[4].pd_parmptr := ADDR(NUMRECS);

parms[4].pd_parmlen := byte_len_of_parm;

parms[4].pd_parm_type := Parm_Type_Word_Ref;

parms[4].pd_io_type := [Output_Parm];

3-84 NM-to-CM Procedure Calls

{ mask parameter }

parms[5].pd_parmptr := ADDR(mask);

parms[5].pd_parmlen := byte_len_of_parm;

parms[5].pd_parm_type := parm_type_value;

parms[5].pd_io_type := [Input_Parm];

{ Do the actual SWITCH call }

HPSWITCHTOCM(proc, { Procedure info }

method, { Split stack ? }

nparms, { Number of parameters }

parms, { Parm descriptor array }

funclen, { func ret value length }

funcptr, { Addr of func return }

cond_code, { cond. code return }

status); { SWITCH status code }

if (status.all <> all_ok) then

BEGIN { SWITCH subsystem error }

QUIT(status.info);

END; { SWITCH subsystem error }

Example 3-11. Stub for Option Variable Target Procedure, continued

HPSETCCODE(cond_code);

end; { STUB procedure FCHECK }

BEGIN { Program Outer block code }

END. { Program Outer block code }

{end Example 3-11}

NM-to-CM Procedure Calls 3-85

Testing and Debugging Considerations

You must test Switch stubs and inline Switches in the run-time environment
on an MPE XL-based system. You must either compile the stub and install
the compiled version in the appropriate system library or merge it with the
code requiring the Switch call and recompile that merged source. You can
also compile the stub and then link it with the USL/SOM �le for the program
that calls it. Before you can verify correct execution of the stub, the target
procedure that Switch is to invoke must be present in the appropriate callable
library of the other mode. You can use the MPE XL debug facilities to
troubleshoot, should you encounter problems.

The following are testing and debugging considerations that apply speci�cally
to switches in the NM|> CM direction:

Verify that the other-mode procedure operates correctly by calling it from its
own mode.

Verify that the switch worked correctly by checking its status parameter
return. It should be all zeros.

Verify that the method and number of parameters of the target procedure
are correctly speci�ed.

Verify that the parameter types in the parms descriptor array are correct.

Verify that the parameters for the function return length and function return
value were correctly speci�ed (if applicable).

Verify that name lengths are correct.

Verify that HPLOADCMPROCEDURE succeeded (by checking the status parameter
return) before calling HPSWITCHTOCM.

Insure that array lengths speci�ed in the parms descriptor array are not
longer than the actual arrays being passed. If you must specify an array
length longer than the actual length, then make sure the array is an
input/output parameter, rather than output alone.

3-86 NM-to-CM Procedure Calls

4

CM-to-NM Procedure Calls

This section presents the following topics:

Review of the ow of control in CM|> NM switches

Details of CM|> NM switches, including their inner workings, syntax,
parameters, and examples

Special considerations and restrictions that apply to mixed-mode procedure
calls

Testing and debugging considerations

This chapter provides the detailed reference information you will need if you
write your own CM-to-NM Switch stubs. Refer to Chapter 5 for further
information on writing Switch stubs.

Overview

This overview presents mixed-mode procedure calls in the CM|> NM
direction in two ways:

Schematic ow-of-control diagram

Stepwise sequence of events

CM-to-NM Procedure Calls 4-1

Flow of Control: CM|> NM

The ow of control for mixed-mode procedure calls in the direction CM|>
NM is illustrated in Figure 4-1:

Figure 4-1. CM|> NM Switch Summary 1

Stepwise Switch to NM

A mixed-mode procedure call in the direction CM|> NM involves the
following steps, as indicated in Figure 4-1:

4-2 CM-to-NM Procedure Calls

1 The CM code needing to access an NM routine calls Switch, either by
means of in-line code or a Switch stub.

2 The in-line code or CM Switch stub sets up the data structures
and parameters required by Switch and makes a call to either the
HPSWTONMNAME intrinsic or the HPLOADNMPROC and HPSWTONMPLABEL

intrinsics.

3 HPSWTONMNAME or HPSWTONMPLABEL calls the NM routine, after preparing
the NM registers as though the call was being made from Native Mode.

4 The NM routine executes as though called from Native Mode and returns
the functional return value (if any) to the calling Switch intrinsic.
Reference parameters are modi�ed by the NM routine.

5 If the NM routine has a functional return value, HPSWTONMNAME or
HPSWTONMPLABEL copies the value back to the CM stack.

6 The stub or in-line code checks whether the Switch operation was
successful and then control returns to the CM routine.

Note HPSWTONMNAME or a combination of HPLOADNMPROC and
HPSWTONMPLABEL are the system intrinsics called to pass
CM values and parameters to Native Mode, to change the
execution mode, and to invoke an NM routine. HPSWTONMNAME,
HPLOADNMPROC, and HPSWTONMPLABEL reside in the CM system
library, SL.PUB.SYS. The only di�erence between using
HPSWTONMNAME and HPSWTONMPLABEL is the manner in which the
target routine is identi�ed.

CM-to-NM Procedure Calls 4-3

Switch to NM Details

Switch requires the following information to call an NM procedure from a CM
procedure:

Name of the procedure or an NM plabel (32-bits)

If the NM procedure is speci�ed by name, the following additional items are
required:

Length of the procedure name

NM library to search for the target procedure

Length of the library name

Number of parameters being passed to the NM procedure

Array of values and/or pointers to the parameters being passed

Array of descriptions of the parameters being passed

Space reserved at the beginning of the parameter list for a function return
value, if calling a function

The CM|> NM Switch must make the parameters of the calling CM
procedure understandable to the NM procedure being called and must
also make the data value(s) and status returned by the NM procedure
understandable to the CM procedure.

The mechanism that Switch uses to enable mixed-mode calls in the CM|
> NM direction are the HPSWTONMNAME, HPSWTONMPLABEL, and HPLOADNMPROC

intrinsics. These intrinsics do address translation and copy parameters, as
needed.

These intrinsics di�er only in the way they identify the target procedure.
HPSWTONMNAME uses the DB-relative address of a byte array passed by reference
to specify the target procedure, while HPSWTONMPLABEL uses a 32-bit NM plabel
(obtained from HPLOADNMPROC) to make this speci�cation. With HPSWTONMNAME,
the NM loader converts the procedure name to a plabel by means of a hashing
function. HPSWTONMPLABEL eliminates the overhead of this name-to-plabel
mapping.

4-4 CM-to-NM Procedure Calls

Note The �rst time a switch by name occurs in either direction,
a load from the library occurs. Thereafter, Switch uses an
internal hash table to quickly invoke the already loaded
procedure.

CM-to-NM Procedure Calls 4-5

HPSWTONM NAME Intrinsic

The HPSWTONMNAME intrinsic allows CM user programs, user libraries,
and system code to invoke NM procedures. In a manner similar to the
HPSWITCHTOCM intrinsic, HPSWTONMNAME does the following:

Converts the CM references in the argument list to virtual NM addresses

Changes the execution mode

Invokes the NM procedure speci�ed by the CM caller

Since NM code can address the entire CM stack, there is no copying of
reference parameters. The length of each actual parameter is not needed
because lengths are implied in the descriptor list.

The syntax of this intrinsic and detailed explanations of its parameters are
given in the following paragraphs. Also provided are examples of switches in
the CM|> NM direction.

Note Switches by name involve high system overhead on the �rst call
per name, but substantially lower overhead on each subsequent
call for that name. The HPSWTONMNAME, HPSWITCHTOCM,
HPLOADCMPROCEDURE, and HPLOADNMPROC intrinsics perform a
hashing function on the name of the other-mode procedure and
store the plabel for that procedure in a system internal hash
table. The LOADPROC intrinsic, on the other hand, does not
perform any hashing and, consequently, involves high system
overhead every time it is called.

4-6 CM-to-NM Procedure Calls

Syntax

Prior to calling the HPSWTONMNAME intrinsic, your programming language may
require you to declare it. In Pascal/V, the declaration is as follows:

FUNCTION HPSWTONMNAME : INTEGER; INTRINSIC;

Next comes an example of a Pascal/V call to this intrinsic:

return_status := HPSWTONMNAME (procname, proclen,

libname, liblen, nparms, arglist,

argdesc, functype);

You call the HPSWTONMNAME intrinsic with eight parameters. These parameters
provide Switch with the following information:

Name of the NM routine

Length of the procedure name

NM library to search for the target procedure

Length of the library name

Number of parameters of the NM routine

Parameter list

Parameter description list

Type of the functional return value (if any)

All this information is key to the correct operation of mixed-mode procedure
calls.

Caution The strings you supply as values of the Procname and libname
parameters must exactly match the names of the target NM
routine and its NM library, respectively.

CM-to-NM Procedure Calls 4-7

Parameters

A detailed explanation of the parameters of the HPSWTONMNAME intrinsics
follows.

Required parameters are shown in boldface; optional parameters are shown in
italics .

procname byte array by reference (required)

Passes the target procedure name. The target procedure must
be contained in an Executable Library (XL). If the value of
procname is invalid, blank, or does not contain your NM
procedure, NL.PUB.SYS is searched.

proclen 16-bit signed integer by value (required)

Passes the byte length of the procedure name.

libname byte array by reference (required)

Passes the name of the NM library to be searched for the
target. If the value of libname is invalid, blank or does not
contain your NM procedure, NL.PUB.SYS is searched.

liblen 16-bit signed integer by value (required)

Passes the byte length of the library name.

nparms 16-bit signed integer by value (required)

Passes the number of parameters you are passing to the target
NM procedure. It speci�es the length of the argdesc array.
You must also account for any hidden parameters due to
ANYVAR parameters, an extensible parameter list, and so forth.
For more information on hidden parameters, refer to the HP
Pascal/XL Reference Manual (31502-90002).

arglist 16-bit signed integer array by reference (required)

Passes the actual parameters you are going to pass to the NM
procedure.

argdesc 16-bit signed integer array by reference (required)

4-8 CM-to-NM Procedure Calls

Passes integer codes describing the parameters held in the
arglist array. Refer to Tables 4-2, 4-3, and 4-4.

functype 16-bit signed integer by value (required)

Passes the data type of the value the target procedure returns
if it is a function. If the target is not a function, the value
of this parameter is zero. The supported function types are
described in Table 4-5.

CM-to-NM Procedure Calls 4-9

Note It is your responsibility to build and load the argument arrays
and make the call to Switch.

The arglist array is an image of the target procedure's argument list as it
would appear in the stack if the routine were in Compatibility Mode. Space
for the function return value (if any) comes �rst, followed in order by the �rst
through last parameters. Value parameters are represented by their values,
and reference parameters are represented by their DB-relative addresses. Each
entry in arglist starts on a CM 16-bit word boundary.

Note A function return value is placed in the rightmost 8 bits of the
�rst element of the arglist array.

The leftmost 8 bits of arglist(1) is used if the NM procedure
you are switching to has a parameter declared as follows:

TYPE bit8 = 0..255;

You need to use whatever construct your MPE V/E-supported
programming language provides to move that 8-bit quantity
into the leftmost 8 bits of the value you assign to arglist(1).

The argdesc array provides additional information required to describe the
parameters in arglist. Whereas arglist speci�es the location of the parameters
(value parameters are in the list; reference parameters are pointed to by the
list), argdesc speci�es the type of the parameter. There is usually a one-to-one
correspondence between the entries in argdesc (descriptors) and the parameters
to be passed. The �rst entry in the argdesc array describes the �rst parameter,
and so on to the last entry describing the last parameter. The exception
(described in the discussion of the nparms parameter) involves NM target
procedures that have hidden parameters. You must account for any hidden
parameters due to ANYVAR parameters, an extensible parameter list, and so
forth. For more information on hidden parameters, refer to the HP Pascal/XL
Reference Manual (31502-90002).

Note Arguments can be longer than one arglist element. For
example, it takes two arglist elements to hold one 32-bit integer

4-10 CM-to-NM Procedure Calls

passed by value. The descriptor types map to parameters, not
to arglist elements.

CM-to-NM Procedure Calls 4-11

Figure 4-2 illustrates the relationship between the argdesc and arglist arrays:

Figure 4-2. ARGDESC and ARGLIST Arrays

4-12 CM-to-NM Procedure Calls

The descriptors in the argdesc array are intergers that represent the type of
the associated parameter. The type IDs and their NM and CM sizes (in bits)
are listed in Table 4-1. The types and their associated SPL-HP Pascal/XL,
Pascal/V-HP Pascal/XL, and COBOL II/V-HP Pascal/XL mappings are listed
in Tables 4-2, 4-3, and 4-4, respectively.

Types 1 through 4 direct Switch to pass by value the corresponding parameters
you have placed in arglist

Types 5 and 6 are used to pass reference parameters only. Types 5 and 6
direct Switch to map the DB-relative addresses you place in the corresponding
locations in arglist to equivalent MPE/XL NM virtual addresses, e�ectively
creating NM pointers from CM pointers. The size indicated in Table 4-1 for
these types is the number of bits required to contain the CM pointer to that
parameter.

Types 7 through 9 should not be used. They are reserved for MPE XL.

Types 10 and 11 are used like types 5 and 6 when the target HP Pascal/XL
procedure expects long pointers to reference parameters.

Types 12 and 13 are used as place holders in the target procedure's parameter
list, standing for optional reference parameters that are omitted on this call.
The corresponding elements(s) of the arglist parameter should be set to nil.

Note Nil is not necessarily 0. The Pascal standard de�nes nil as
being implementation-dependant. You should test the value of
nil in the Pascal to which you are switching if your Switch call
must pass a nil pointer.

CM-to-NM Procedure Calls 4-13

Table 4-1. Parameter Type IDs and Their NM/CM Sizes

Call Type Type ID NM Size (Bits) CM Size (Bits)

By Value 1 8 8

2 16 16

3 32 32

4 64 64

By Reference, Short
Pointer

5 32 16

6 32 16

7 Do not use Do not use

8 Do not use Do not use

9 Do not use Do not use

By reference, Long
Pointer

10 64 16

11 64 16

Optional Reference
Parameters

12 32 16

13 64 16

When calling Switch from SPL, declare two arrays as follows:

integer array argdesc(0:31);

integer array arglist(0:63);

Then, for each parameter, follow the appropriate instructions given in
Table 4-2.

4-14 CM-to-NM Procedure Calls

Table 4-2. SPL|> HP Pascal/XL Parameter Type Mappings

If the NM procedure you are
switching to has a
parameter declared as
follows:

Declare it like this in
Pascal/V:

And do the following to pass
the Pascal/V variable
through the
switch:

TYPE bit8 = 0..255;

A : bit8;

byte A; argdesc(n) := 1;

arglist(n) := A;

B : shortint; integer B; argdesc(n) := 2;

arglist(n) := B;

C : integer; double C;

integer array C'(*)

= C;

argdesc(n) := 3;

move arglist(n) :=

C'(0),(2);

D : longint;

D : anyptr;

integer array

D(0:3);

argdesc(n) := 4;

move arglist(n) :=

D(0),(4);

TYPE pacN = packed

array [1..N] of

char;

VAR E : pacN;

byte array E(0:N-1); argdesc(n) := 5;

arglist(n) := @E;

TYPE 16_bit_ary =

array [1..N] of

shortint;

TYPE 32_bit_ary =

array [1..N] of

integer;

VAR F : 16_bit_ary; or
VAR F : 32_bit_ary;

integer array

F(0:N-1);

double array

F(0:N-1);

argdesc(n) := 6;

arglist(n) := @F;

Reserved for MPE XL. Do not use. Do not use.

Reserved for MPE XL. Do not use. Do not use.

Reserved for MPE XL. Do not use. Do not use.

VAR J : anyptr; byte array J(0:N); argdesc(n) := 10;

arglist(n) := @J;

K : anyptr; integer array

K(0:N);

argdesc(n) := 11;

arglist(n) := @K;

L : localanyptr; Nothing required. argdesc(n) := 12;

arglist(n) := 0;

M : anyptr; Nothing required. argdesc(n) := 13;

arglist(n) := 0;

CM-to-NM Procedure Calls 4-15

When calling Switch from Pascal/V, declare two arrays as follows:

TYPE

shortint = -32768..32767;

VAR

argdesc : array [1..32] of shortint;

arglist : array [1..64] of shortint;

Then, for each parameter, follow the appropriate instructions given in
Table 4-3.

4-16 CM-to-NM Procedure Calls

Table 4-3.

Pascal/V|> HP Pascal/XL Parameter Type Mappings (Page 1)

If the NM procedure you are
switching to has a
parameter declared as
follows:

Declare it like this in
SPL:

And do the following to pass
the SPL variable through
the
switch:

TYPE bit8 = 0..255;

A : bit8;

TYPE bit8 = 0..255;

A : bit8;

argdesc[n] := 1;

arglist[n] := A;

B : shortint; B : shortint; argdesc[n] := 2;

arglist[n] := B;

C : integer; TYPE split_word =

record

case integer of

0 : (all : integer);

1 : (hi : shortint;

lo : shortint);

end;

VAR

C : split_word;

argdesc[n] := 3;

arglist[n] := C.hi;

arglist[n+1] := C.lo;

D : longint; or
D : anyptr;

TYPE split_long =

record

case integer of

0:(all : array[1..2]

of shortint);

1:(sh : array[1..4]

of shortint);

end;

VAR

D : split_long;

argdesc[n] := 4;

arglist[n] :=

D.sh[1];
arglist[n+1] :=

D.sh[2];
arglist[n+2] :=

D.sh[3];
arglist[n+3] :=

D.sh[4];

TYPE pacN = packed

array [1..N]

of char;

VAR E : pacN;

TYPE pacN = packed

array [1..N]

of char;

VAR E : pacN;

argdesc[n] := 5;
arglist[n] :=

baddress(E);

CM-to-NM Procedure Calls 4-17

TABLE 4.3 Ppascal/V|> HP Pascal/XL Parameter Type

Mappings (Page 2)

If the NM procedure you are
switching to has a
parameter declared as
follows:

Declare it like this in
SPL:

And do the following to pass
the SPL variable through
the
switch:

TYPE 16_bit_ary =

array [1..N] of

shortint;

TYPE 32_bit_ary =

array [1..N] of

integer;

VAR F : 16_bit_ary; or
VAR F : 32_bit_ary;

TYPE 16_bit_ary =

array [1..N] of

shortint;

TYPE 32_bit_ary =

array [1..N] of

integer;

VAR F : 16_bit_ary;

or
VAR F : 32_bit_ary;

argdesc[n] := 6;

arglist[n] :

waddress(F);

Reserved for MPE XL. Do not use. Do not use.

Reserved for MPE XL. Do not use. Do not use.

Reserved for MPE XL. Do not use. Do not use.

J : anyptr; J : packed array

[1..N]

of char;

argdesc[n] := 10;

arglist[n] :=

baddress(J);

K : anyptr; K : array [1..N]

of shortint;

argdesc[n] := 11;

arglist[n] :=

waddress(K);

L : localanyptr; Nothing required. argdesc[n] := 12;

arglist[n] := NIL;

M : anyptr; Nothing required. argdesc[n] := 13;

arglist[n] := NIL;

When calling Switch from COBOL II/V, declare two arrays as follows:

01 ARGDESC PIC S9(4) COMP OCCURS 32 TIMES.

01 ARGLIST PIC S9(4) COMP OCCURS 64 TIMES.

4-18 CM-to-NM Procedure Calls

Then, for each parameter, follow the appropriate instructions given in
Table 4-4.

CM-to-NM Procedure Calls 4-19

Table 4-4.

COBOL II/V -> HP Pascal/XL Parameter Type Mappings(Page 1)

If the NM procedure you are
switching to has a
parameter declared as
follows:

Declare it like this in
COBOL II/V:

And do the following to pass
the COBOL II/V variable
through the
switch:

TYPE bit8 = 0..255;

A : bit8;

01 A PIC X. or
01 A PIC 9. or
01 A PIC 9 COMP.

MOVE A TO ARGLIST(N).

B : shortint; 01 B PIC S9 COMP.

01 B PIC S9(2) COMP.

01 B PIC S9(3) COMP.

01 B PIC S9(4) COMP.

MOVE B TO ARGLIST(N).

C : integer; 01 C PIC S9(5) COMP.

01 C PIC S9(6) COMP.

01 C PIC S9(7) COMP.

01 C PIC S9(8) COMP.

01 C PIC S9(9) COMP.

01 C-SPLIT REDEFINES

C.

05 C-HI PIC S9(4)

COMP.

05 C-LO PIC S9(4)

COMP.

MOVE C-HI TO ARGLIST(N).

MOVE C-LO TO

ARGLIST(N+1).

D : longint; 01 D PIC S9(10)

COMP.

01 D PIC S9(11)

COMP.

01 D PIC S9(12)

COMP.

01 D PIC S9(13)

COMP.

01 D PIC S9(14)

COMP.

01 D PIC S9(15)

COMP.

01 D PIC S9(16)

COMP.

01 D PIC S9(17)

COMP.

01 D PIC S9(18)

COMP.

01 D-SPLIT REDEFINES

D.

05 D-SHORT PIC S9(4)

COMP OCCURS 4 TIMES.

MOVE D-SHORT(1) TO

ARGLIST(N).

MOVE D-SHORT(2) TO

ARGLIST(N+1).

MOVE D-SHORT(3) TO

ARGLIST(N+2).

MOVE D-SHORT(4) TO

ARGLIST(N+3).

TYPE pacN = packed

array[1..N] of char;

01 E PIC X(80).

(or any size array)
CALL ".LOC." USING E

GIVING ARGLIST(N).

4-20 CM-to-NM Procedure Calls

Table 4-4. COBOL II/V -> HP Pascal/XL Parameter Type

Mappings(Page 2)

If the NM procedure you are
switching to has a parameter
declared as follows:

Declare it like this in
COBOL II/V:

And do the following to pass
the COBOL II/V variable
through the switch:

Reserved for MPE XL. Do not use. Do not use.

Reserved for MPE XL. Do not use. Do not use.

Reserved for MPE XL. Do not use. Do not use.

VAR J : anyptr; 01 J PIC X(80)

OCCURS N

TIMES.

CALL ".LOC." USING J

GIVING ARGLIST(N).

K : anyptr; 01 K PIC S9(9) COMP

OCCURS N TIMES.

CALL ".LOC." USING K

GIVING ARGLIST(N).

L : localanyptr; Nothing required. MOVE 0 TO ARGLIST(N).

M : anyptr; Nothing required. MOVE 0 TO ARGLIST(N).

Function returns are described using a similar scheme. Those mappings are
given in Figure 4-3.

CM-to-NM Procedure Calls 4-21

d a

c b

TYPE SPL Function CM Size Pascal/XL NM Size

ID Type (Bytes) Function Type (Bytes)

0 none (0) not a function (0)

1 byte (1) bit8 (1)

2 integer (2) shortint (2)

3 double (4) integer (4)

4 long (8) longreal (8)

Figure 4-3. Supported Function Type Mappings

Note A function return value is placed in the rightmost 8 bits of
the �rst element of the arglist array. The leftmost 8 bits of
arglist(1) is used if the NM procedure you are switching to has
a parameter declared as follows:

TYPE bit8 = 0..255;

You need to use whatever construct your MPE V/E-supported
programming language provides to move that 8-bit quantity
into the leftmost 8 bits of the value you assign to arglist(1).

4-22 CM-to-NM Procedure Calls

HPSWTONM PLABEL Intrinsic

The HPSWTONMPLABEL intrinsic allows CM user programs, user libraries,
and system code to invoke NM procedures. In a manner similar to the
HPSWITCHTOCM intrinsic, HPSWTONMPLABEL does the following:

Converts the CM references in the argument list to virtual NM addresses

Changes the execution mode

Invokes the NM procedure speci�ed by the CM caller

Since NM code can address the entire CM stack, there is no copying of
reference parameters. The length of each actual parameter is not needed
because lengths are implied in the descriptor list.

The syntax of this intrinsic and detailed explanations of its parameters are
given in the following paragraphs. Also provided are examples of switches in
the CM|> NM direction.

CM-to-NM Procedure Calls 4-23

Syntax

Prior to calling the HPSWTONMPLABEL intrinsic, your programming language may
require you to declare it. In Pascal/V, the declaration is as follows:

FUNCTION HPSWTONMPLABEL : INTEGER; INTRINSIC;

Next, an example Pascal/V call to this intrinsic:

return_status := HPSWTONMPLABEL (proc, nparms, arglist,

argdesc, functype);

You call the HPSWTONMPLABEL intrinsic with �ve parameters. These parameters
provide Switch with the following information:

Plabel of the NM routine (as returned by the HPLOADNMPROC intrinsic)

Number of parameters in the NM routine

Parameter list

Parameter description list

Type of the functional return value (if any)

All this information is key to the correct operation of mixed-mode procedure
calls.

4-24 CM-to-NM Procedure Calls

Parameters

A detailed explanation of the parameters of the HPSWTONMPLABEL intrinsic
follows.

Required parameters are shown in boldface; optional parameters are shown in
italics .

proc double by value (required)

Passes the NM plabel of the target procedure name. This
plabel is usually obtained by calling the HPLOADNMPROC
intrinsic.

nparms 16-bit signed integer by value (required)

Passes the number of parameters you are passing to the target
NM procedure. It speci�es the length of the argdescnarray.
You must also account for any hidden parameters due to
ANYVAR parameters, an extensible parameter list, and so forth.
For more information on hidden parameters, refer to the HP
Pascal/XL Reference Manual (31502-90002).

arglist 16-bit signed integer array by reference (required)

Passes the actual parameters you are going to pass to the NM
procedure.

argdesc 16-bit signed integer array by reference (required)

Passes integer codes describing the parameters held in the
arglist array, that is, byte, word, double, pointer, and so forth.

functype 16-bit signed integer by value (required)

Passes the data type of the value the target procedure returns
if it is a function. If the target is not a function, the value
of this parameter is zero. The supported function types are
described in Table 4-5.

For more information on the arglist and argdesc arrays, see the discussion of
HPSWTONMNAME parameters.

CM-to-NM Procedure Calls 4-25

HPLOADNM PROC Intrinsic

The HPLOADNMPROC intrinsic returns the plabel of an NM procedure.

You call this intrinsic to obtain the NM plabel of the target procedure. This
plabel is then used by the HPSWTONMPLABEL intrinsic as the value of its proc
parameter.

Syntax

Prior to calling HPLOADNMPROC, your programming language may require you to
declare it. In Pascal/V, the declaration is as follows:

FUNCTION HPLOADNMPROC : INTEGER; INTRINSIC;

Next, an example of a Pascal/V call to HPLOADNMPROC:

plabel := HPLOADNMPROC (procname, proclen, libname,

liblen);

You call the HPLOADNMPROC with four parameters. These parameters supply the
following information:

Name of the NM target procedure

Length of the name of the NM target procedure

Name of the library to be searched for the NM target procedure

Length of the name of the library to be searched

Caution The strings you supply as values of the procname and libname
parameters must exactly match the names of the target NM
routine and its NM library, respectively.

4-26 CM-to-NM Procedure Calls

Parameters

A detailed explanation of the parameters of the HPLOADNMPROC intrinsic follows.

Required parameters are shown in boldface; optional parameters are shown in
italics .

procname byte array by reference (required)

Passes the target procedure name. The target procedure
must be contained in an Executable Library. If the value
of procname is invalid, blank, or does not contain your NM
procedure, NL.PUB.SYS is searched.

proclen 16-bit signed integer by value (required)

Passes the byte length of the procedure name.

libnamebyte
array by
reference
(required)
Passes the
name of the
NM library to
be searched for
the target. If
the value of
libname

is invalid, blank or does not contain your NM procedure,
NL.PUB.SYS is searched.

liblen 16-bit signed integer by value (required)

Passes the byte length of the library name.

CM-to-NM Procedure Calls 4-27

Examples: CM to NM and Return

Now consider an example of the mixed-mode switching process in the CM|
> NM direction. The HPCIDELETEVAR intrinsic removes an entry from
the session-local variable table. This intrinsic is not directly callable from
Compatibility Mode. However, you can call it from CM code by means of a
CM|> NM Switch stub.

The syntax of the HPCIDELETEVAR intrinsic is as follows:

CA I32

HPCIDELETEVAR(varname, status);

The varname parameter is a required character array. It passes the name of the
variable to be deleted. The name can be up to 255 characters in length and
must be a valid MPE XL variable name.

The status parameter is an optional 32-bit signed integer passed by reference.
It returns a number indicating the status of the procedure. The default is nil.

For more information on HPCIDELETEVAR, refer to the appropriate entry in the
MPE XL Intrinsics Reference Manual (32650-90028).

4-28 CM-to-NM Procedure Calls

Figure 4-4 illustrates the purpose of the CMDeleteVar Switch stub.

Figure F04-03 here.

Figure 4-4. HPSWTONMNAME Example, CMDeleteVar

The Switch stub sets up the parameters required by the appropriate Switch
intrinsic. In this instance, that is the HPSWTONMNAME intrinsic. Here, again, is a
sample call to HPSWTONMNAME:

return_status := HPSWTONMNAME (procname, proclen, libname,

liblen, nparms, arglist, argdesc,

functype);

CM-to-NM Procedure Calls 4-29

The parameters that the CMDeleteVar Switch stub must set up before it can
call the HPSWTONMNAME intrinsic convey to Switch the following information:

Name of the NM routine

Length of the procedure name

NM library to search for the target procedure

Length of the library name

Number of parameters of the NM routine

Parameter list

Parameter description list

Type of the functional return value (if any)

Example 4-1 contains the complete Switch to NM stub.

4-30 CM-to-NM Procedure Calls

Example 4-1. CMDeleteVar Stub

{ XAMPL41 -- Switch to NM by name }

$standard_level 'HP3000'$

{$subprogram$} {uncomment this to make an RBM for your SL}

$uslinit$

PROGRAM XAMPL41(input, output);

{Type Declarations}

TYPE

shortint = -32768..32767;

shr_ary32 = packed array [1..32] of shortint;

xlstatus = record

case integer of

0 : (all : integer);

1 : (info : shortint;

subsys : shortint);

end;

pac16 = packed array [1..16] of char;

pac255 = packed array [1..255] of char;

{Global variable declarations}

VAR

{Parameters passed to HPCIDELETEVAR via Switch}

status : xlstatus; {status must be 4-byte aligned}

{waddress must return an even number}

VarName : pac255;

{Intrinsic procedure declarations}

FUNCTION HPSWTONMNAME : integer; intrinsic;

FUNCTION HPSWTONMPLABEL : integer; intrinsic;

CM-to-NM Procedure Calls 4-31

FUNCTION HPLOADNMPROC : integer; intrinsic;

4-32 CM-to-NM Procedure Calls

Example 4-1. CMDeleteVar Stub, continued

{Stub procedure declaration}

PROCEDURE CMDeleteVar(VAR CIVarName : pac255;

VAR NMStatus : xlstatus);

VAR

{Switch intrinsic parameters}

arglist : shr_ary32; {parameter list}

argdesc : shr_ary32; {parameter description list}

fct_typ : shortint; {functional return type, if any}

lib_name : pac16; {NM library to search for target}

lib_len : shortint; {length of NM library name}

nparms : shortint; {number of target parameters}

proc_name : pac16; {name of NM routine}

proc_len : shortint; {length of target's name}

{Parameter assigned functional return}

rtn_st : integer;

BEGIN {stub procedure CMDeleteVar}

{Initializations}

proc_name := 'HPCIDELETEVAR ';

proc_len := 13;

lib_name := 'NL.PUB.SYS ';

lib_len := 10;

nparms := 3; {nparms governs how many types are}

{searched for in argdesc; }

{2 parms plus extensible_gateway }

{HPCIDELETEVAR is declared }

{$OPTION 'EXTENSIBLE_GATEWAY$ }

CM-to-NM Procedure Calls 4-33

arglist[1] := 0; {extensible gateway mask is 32 bits}

arglist[2] := 0; {of anything, all 0 bits works ok! }

arglist[3] := baddress(CIVarName);

{reference parameter passed by address; }

{take byte address of variable name buffer}

arglist[4] := waddress(NMStatus);

{reference parameter passed by address;}

{take word address of local status}

4-34 CM-to-NM Procedure Calls

Example 4-1. CMDeleteVar Stub, continued

argdesc[1] := 03; {32-bit word value for gateway mask}

argdesc[2] := 05; {byte pointer for arglist[3]}

argdesc[3] := 06; {word pointer for arglist[4]}

fct_typ := 00; {This is an NM procedure, not a }

{function. If it was an NM function, the }

{return value would come back in }

{arglist[1..n] where n is the length of }

{the value in 16-bit words. }

{Switch intrinsic call}

rtn_st := HPSWTONMNAME (proc_name,

proc_len,

lib_name,

lib_len,

nparms,

arglist,

argdesc,

fct_typ);

{Since Status was passed by reference, if the }
{Switch succeeded, HPCIDELETEVAR will have set it.}

{Otherwise, the Switch failed, so return the }

{status from the Switch. This works because }

{.subsys is unique. }

if (rtn_st <> 0) then

NMStatus.all := rtn_st;

END; {Stub procedure CMDeleteVar}

BEGIN {outer block}

writeln('Use the command "SETVAR DELETE_ME 0" before');

writeln('running this.');

writeln(' ');

CM-to-NM Procedure Calls 4-35

VarName := 'DELETE_ME';

status.all := 0;

CMDeleteVar(VarName, status);

writeln('Status for subsystem ', status.subsys:3);

writeln(' is ', status.info:3);

END. {outer block}

{end Example 4-1}

4-36 CM-to-NM Procedure Calls

Note For a complete analysis of CM|> NM Switch stub code, refer
to Chapter 5.

Figure 4-5 illustrates how your CMDeleteVar Switch stub accesses the
HPCIDELETEVAR intrinsic in NL.PUB.SYS.

Figure F04-04 here.

Figure 4-5. CM|> NM Switch Summary 2

CM-to-NM Procedure Calls 4-37

Example 4-2 illustrates a CM|> NM Switch, using a COBOL II/V stub
procedure in Compatibility Mode to access an HP Pascal/XL target procedure
in Native Mode. Both the stub and the target are included in Example 4-2.

Example 4-2. CM|> NM Switch, COBOL

{ XAMPL42 -- example Switch to NM using COBOL stub}

$CONTROL USLINIT

IDENTIFICATION DIVISION.

PROGRAM-ID. XAMPL42.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SWITCH-STATUS PIC S9(9) COMP VALUE ZERO.

01 SWITCH-STATUS-X REDEFINES SWITCH-STATUS.

05 SWITCH-INFO PIC S9(4) COMP.

05 SWITCH-SUBSYS PIC S9(4) COMP.

01 DISP-INFO PIC ZZZ9.

01 DISP-SUBSYS PIC ZZZ9.

01 DISP-ANSWER PIC ZZZ9.

01 PROCNAME PIC X(16) VALUE SPACES.

01 ADD-TO-PARM PIC S9(9) COMP.

01 PROCNAME-LEN PIC S9(4) COMP.
01 LIBNAME PIC X(80) VALUE SPACES.

01 LIBNAME-LEN PIC S9(4) COMP.

01 ARGLIST.

O5 LIST-ELEMENT OCCURS 32 TIMES PIC S9(4) COMP.

01 ARGDESC.

O5 DESC-ELEMENT OCCURS 32 TIMES PIC S9(4) COMP.

01 NPARMS PIC S9(4) COMP.

PROCEDURE DIVISION.

BEGIN.

DISPLAY "Begin execution of CM main PROG".

*

* SET THE "REFERENCE" PARAMETER TO HAVE A VALUE OF 1

4-38 CM-to-NM Procedure Calls

*

MOVE 1 TO ADD-TO-PARM.

Example 4-2. CM|> NM Switch, COBOL, continued

*

* ESTABLISH PROCNAME, LIBNAME, AND ASSOCIATED LENGTHS.

*

MOVE "testadd" TO PROCNAME.

MOVE 7 TO PROCNAME-LEN.

MOVE "NL" TO LIBNAME.

MOVE 2 TO LIBNAME-LEN.

MOVE 2 TO NPARMS.

*

* BUILD THE ARGUMENT LIST ARRAY:

* 1) 0 RESERVES SPACE FOR THE RETURN VALUE

* 2) 99 RESERVES SPACE FOR THE FIRST PARAMETER (BY VALUE),

* CALL .LOC. INTRINSIC TO GET ADDRESS OF THE

* BY-REFERENCE PARAMETER

*

MOVE 0 TO LIST-ELEMENT(1).

MOVE 99 TO LIST-ELEMENT(2).

CALL INTRINSIC ".LOC." USING ADD-TO-PARM

GIVING LIST-ELEMENT(3).

*

* BUILD THE ARGUMENT DESCRIPTOR ARRAY

*

MOVE 2 TO DESC-ELEMENT(1).

MOVE 6 TO DESC-ELEMENT(2).

*

* MAKE THE SWITCH CALL

*

CM-to-NM Procedure Calls 4-39

CALL "HPSWTONMNAME" USING @PROCNAME, \PROCNAME-LEN\,

@LIBNAME, \LIBNAME-LEN\,

\NPARMS\,

ARGLIST, ARGDESC,

\2\

GIVING SWITCH-STATUS.

*

* TEST STATUS

*

IF SWITCH-STATUS IS NOT ZERO

MOVE SWITCH-INFO TO DISP-INFO

MOVE SWITCH-SUBSYS TO DISP-SUBSYS

DISPLAY "Status info = ", DISP-INFO

DISPLAY "Status subsys = ", DISP-SUBSYS

ELSE

DISPLAY "HPSWTONMNAME completed successfully".

Example 4-2. CM|> NM Switch, COBOL, continued

*

* SHOW THE RETURN VALUE (WHICH SHOULD BE 100)
*

MOVE LIST-ELEMENT(1) TO DISP-ANSWER.

DISPLAY "Return value = ", DISP-ANSWER.

STOP RUN.

*

* END COBOL II/V PROGRAM IN COMPATIBILITY MODE

*

{ Target Pascal/XL procedure in Native Mode }

$subprogram$

4-40 CM-to-NM Procedure Calls

program dummy_outer_block(input, output);

TYPE

A8_INTEGER = $ALIGNMENT 1$ INTEGER;

FUNCTION TESTADD(

byvalueparm : SHORTINT;

VAR byrefparm : A8_INTEGER

) : SHORTINT;

BEGIN {function testadd }

TESTADD := byvalueparm + byrefparm;

END; {function testadd }

BEGIN {dummy_outer_block }

END. {dummy_outer_block }

{end Example 4-2 }

CM-to-NM Procedure Calls 4-41

Switch to NM Sequence

Examples 4-3 through 4-8 are a series of routines, intended to illustrate the
partial recompilation migration level, using a CM|> NM switch.

In these examples the target procedure migrates to Native Mode while the
calling routine remains in Compatibility Mode.

4-42 CM-to-NM Procedure Calls

A possible reason for moving the target procedure to Native Mode is that
it has a feature that is no longer available on MPE XL and an attractive
alternative exists in the NM environment. Example 4-3 is a Pascal/V source
with a procedure call to the PTAPE intrinsic (deleted on MPE XL).

Example 4-3. Pascal/V Program Calling Routine With Deleted Featur

PROGRAM XAMPL43(input,output);

TYPE

pac37 = packed array [1..37] of char;

logical = 0..65535;

shortint = -32768..32767;

VAR

fname1 : pac37;

fname2 : pac37;

filenum1 : shortint;

filenum2 : shortint;

foptions1 : logical;

foptions2 : logical;

aoptions1 : logical;

aoptions2 : logical;

recsize1 : shortint;
recsize2 : shortint;

dev1 : shortint;

dev2 : shortint;

function fopen : shortint; intrinsic;

procedure ptape (fnum1, fnum2 : shortint); external;

BEGIN

fname1 := '$STDIN ';

foptions1 := 0;

aoptions1 := 0;

recsize1 := 0;

dev1 := 0;

filenum1 := FOPEN(fname1, foptions1, aoptions1,

recsize1, dev1);

CM-to-NM Procedure Calls 4-43

writeln('fopen ',fname,'ccode is ',ccode);

fname2 := 'XMPLA ';

foptions2 := 0;

aoptions2 := 0;

recsize2 := 0;

dev2 :=0;

filenum2 := FOPEN(fname2, foptions2, aoptions2,

recsize2, dev2);

writeln('fopen ',fname2,'ccode is ',ccode);

4-44 CM-to-NM Procedure Calls

Example 4-3. Pascal/V Program, continued

PTAPE(filenum1,filenum2);

writeln('ptape result: ');

case ccode of

0 : writeln('CCE');

1 : writeln('CCG');

2 : writeln('CCL');

end;

END.

{end Example 4-3}

Example 4-4 is an SPL procedure incorporating the call to the PTAPE intrinsic.

Example 4-4. SPL Procedure With Feature Deleted on MPE XL

$CONTROL USLINIT,SUBPROGRAM,SEGMENT=XAMPL43

BEGIN

EQUATE BASE = 10;

DEFINE D'MININT = -214748256D#;

EQUATE OFFSET = 48;

EQUATE PLACES = 9; << size of maxint, 32-bits >>

INTRINSIC FREAD, FWRITE;

PROCEDURE PTAPE(FILE1, FILE2);

VALUE FILE1, FILE2;

INTEGER FILE1, FILE2;

<< PTAPE replaces the deleted MPE/V intrinsic of the >>

<< same name. This routine transfers records from >>

<< FILE1 to FILE2. >>

BEGIN

INTEGER RECLEN, LEN;

LOGICAL ARRAY BUFFER(1:256);

RECLEN := 256;

DO

BEGIN

LEN := FREAD(FILE1, BUFFER, RECLEN);

IF = THEN FWRITE(FILE2, BUFFER, LEN, 0);

CM-to-NM Procedure Calls 4-45

END

UNTIL <>;

END;

END.

{end Example 4-4}

4-46 CM-to-NM Procedure Calls

To replace the deleted feature, you may want to write your own NM procedure.
Example 4-5 is an HP Pascal/XL procedure replacing the call to the deleted
PTAPE intrinsic with an MPE XL feature. This procedure will replace the SPL
procedure.

Example 4-5. Pascal/XL Procedure Replacing Deleted Feature

$standard_level 'ext_modcal'$

$subprogram$

PROGRAM XAMPL45 (input,output);

TYPE

pac256 = packed array [1..256] of char;

FUNCTION FREAD : SHORTINT; INTRINSIC;

PROCEDURE FWRITE; INTRINSIC;

PROCEDURE PTAPE(FILE1, FILE2 : integer);

{ PTAPE replaces the deleted MPE/V intrinsic of the }

{ same name. This routine transfers records from }

{ FILE1 to FILE2. }

VAR

reclen : shortint;

len : shortint;

buffer : pac256;

BEGIN

reclen := 256;

repeat

begin

len := FREAD(file1, buffer, reclen);

if ccode = 2 then FWRITE(file2, buffer, len, 0);

end

until (ccode <> 2);

END;

CM-to-NM Procedure Calls 4-47

begin

end.

{end Example 4-5}

4-48 CM-to-NM Procedure Calls

It is advisable to test one thing at a time. You can test the NM replacement
procedure separately from a Switch stub or in-line Switch that calls the
appropriate intrinsic to invoke the target. Example 4-6 is an NM driver to test
the HP Pascal/XL procedure.

Example 4-6. NM Driver

$standard_level 'ext_modcal'$

PROGRAM XAMPL46(input,output);

TYPE

pac37 = packed array [1..37] of char;

logical = 0..65535;

VAR

fname1 : pac37;

fname2 : pac37;

filenum1 : shortint;

filenum2 : shortint;

foptions1 : logical;

foptions2 : logical;

aoptions1 : logical;

aoptions2 : logical;
recsize1 : shortint;

recsize2 : shortint;

dev1 : shortint;

dev2 : shortint;

FUNCTION FOPEN : SHORTINT; INTRINSIC;

PROCEDURE ptape (filenum1, filenum2 : shortint); external;

BEGIN

fname1 := '$STDIN ';

foptions1 := 0;

aoptions1 := 0;

recsize1 := 0;

dev1 := 0;

CM-to-NM Procedure Calls 4-49

filenum1 := FOPEN(fname1, foptions1, aoptions1,

recsize1, dev1);

writeln('fopen ',fname1,'ccode is ',ccode);

fname2 := 'PTAPE ';

foptions2 := 0;

aoptions2 := 0;

recsize2 := 0;

dev2 := 0;

filenum2 := FOPEN(fname2, foptions2, aoptions2,

recsize2, dev2);

writeln('fopen ',fname2,'ccode is ',ccode);

4-50 CM-to-NM Procedure Calls

Example 4-6. NM Driver, continued

ptape(filenum1,filenum2);

writeln('ptape result: ');

case ccode of

0 : writeln('CCE');

1 : writeln('CCG');

2 : writeln('CCL');

end;

END.

{end Example 4-6}

As it stands, the HP Pascal/XL procedure represents an unresolvable external
reference to the CM routine that must call it. Again, you can use either a
Switch stub or an in-line Switch to enable the CM caller to access the NM
target. Example 4-7 is a Pascal/V Switch stub enabling access to the HP
Pascal/XL procedure.

Example 4-7. Pascal/V Switch Stub

$standard_level 'HP3000'$

PROGRAM XAMPL47(input, output);

TYPE

shortint = -32768..32767;

FUNCTION HPSWTONMNAME : integer; intrinsic;

PROCEDURE ptape(file1, file2 : shortint);

TYPE

pac256 = packed array [1..256] of char;

pac16 = packed array [1..16] of char;

shr_ary32 = packed array [1..32] of shortint;

VAR

proc_name : pac16;

proc_len : shortint;

CM-to-NM Procedure Calls 4-51

lib_name : pac16;

lib_len : shortint;

nparms : shortint;

arglist : shr_ary32;

argdesc : shr_ary32;

fct_type : shortint;

rtn_st : integer;

4-52 CM-to-NM Procedure Calls

Example 4-7. Pascal/V Switch Stub, continued

BEGIN

proc_name := 'PTAPE ';

proc_len := 5;

lib_name := 'SL ';

lib_len := 2;

nparms := 2;

arglist[1] := file1;

arglist[2] := file2;

argdesc[1] := 02; { 16-bit value }

argdesc[2] := 02; { 16-bit value }

fct_type := 0; {not a function }

rtn_st := HPSWTONMNAME(proc_name, proc_len, lib_name,

lib_len, nparms, arglist,

argdesc, fct_type);

END;

BEGIN

END.

{end Example 4-7}

To compile the Switch stub in Example 4-7, use the :PASCAL command. For
complete information, refer to the MPE XL Commands Reference Manual
(32650-90003).

On the CM side, you must use the MPE Segmenter to put the stub into
the CM SL in place of the SPL target procedure. Example 4-8 illustrates an
MPE Segmenter session to replace the SPL procedure with the Switch stub in
Example 4-7.

CM-to-NM Procedure Calls 4-53

Example 4-8. Segmenter Session

:SEGMENTER

HP32050A.02.00 SEGMENTER/3000 (C) HEWLETT-PACKARD CO 1985

-SL SL

-LISTSL

SL FILE SL.SWITCH.EXAMPLE

SEGMENT 0 SWCMLIB LENGTH 706

ENTRY POINTS CHECK CAL STT ADR

PTAPE 3 C 1 13

EXTERNALS CHECK STT SEG

FWRITE 0 13 ?

FREAD 0 12 ?

USED 4600(23.0) AVAILABLE 2334200(11565.0)

-PURGESL PTAPE

-USL $OLDPASS

-ADDSL PTAPE

-EXIT

END OF SUBSYSTEM

:

4-54 CM-to-NM Procedure Calls

Special Considerations and Restrictions

There are certain considerations to bear in mind when you use Switch.

General

General considerations apply no matter what the direction of the mixed-mode
call:

Mixed-mode procedure calls require an increased level of programming
complexity.

The overhead of Switch can be signi�cant.

Since Switch does no parameter type or alignment checking, the target
procedure must make the necessary checks.

The following considerations apply to a particular direction of mixed-mode call.

CM|> NM

When making mixed-mode procedure calls in the direction CM|> NM, be
mindful of the following:

Any NM procedure called from CM code must reside in an Executable
Library. The CM program and its user must have access to the NL, and
the NL must be properly described to HPLOADNMPROC or HPSWTONMNAME. All
library searches default to NL.PUB.SYS.

An NM procedure that is declared Option Extensible_Gateway must have
a 32-bit zero placed in the �rst and second elements of the argument list.
The descriptor list should hold a 3 (type 3, 32 bits) at the �rst element. The
actual arguments of the procedure follow.

CM-to-NM Procedure Calls 4-55

Testing and Debugging Considerations

You must test Switch stubs and inline Switches in the run-time environment
on an MPE XL-based system. You must either compile the stub and install
the compiled version in the appropriate system library or merge it with the
code requiring the Switch call and recompile that merged source. You can
also compile the stub and then link it with the USL/SOM �le for the program
that calls it. Before you can verify correct execution of the stub, the target
procedure that Switch is to invoke must be present in the appropriate callable
library of the other mode. You can use the MPE XL debugging facilities to
troubleshoot, should you encounter problems.

The following are testing and debugging considerations that apply speci�cally
to switches in the CM|> NM direction:

Verify that the other-mode procedure operates correctly by calling it from its
own mode.

Verify that the switch worked correctly by checking its status parameter
return. It should be all zeros.

Verify that the parameter types in the argdesc description are correct.

Verify that arglist elements were correctly reserved for hidden parameters
and/or function return values.

Verify that name lengths are correct.

Verify that HPLOADNMPROC succeeded (by testing the condition code) before
calling HPSWTONMPLABEL.

Verify either that alignments match or that the target can handle any
alignment.

4-56 CM-to-NM Procedure Calls

5

Writing Switch Stubs

You will �nd the information in this and the following chapter of value if you
fall into one of these categories:

You must modify the stubs generated by the Switch Assist Tool because of
the special nature of your application (see \Special Cases" in Chapter 2).

You choose to write your own Switch stubs.

You are the inquisitive type whose curiosity compels you to take things apart
and �nd out how they work.

Included in this chapter are the following:

Step-by-step analysis of writing Switch stubs

Exercises to check comprehension and progress

Summary checklists to follow on your own

The examples used in this chapter approximate those generated by the Switch
Assist Tool in degree of complexity.

Writing Switch Stubs 5-1

Switching to CM

To illustrate a mixed-mode switch to Compatibility Mode (CM), consider
the example of an SPL procedure DECMADD that adds two packed decimal
numbers, OPERAND1 and OPERAND2, and leaves a packed decimal result in
RESULT. DECMADD also has a parameter DIGITS that contains the total number
of whole digits in each parameter and a parameter FRAC that contains the total
number of fractional digits in each parameter.

The SPL declaration portion of the DECMADD procedure follows:

+---------+

+----| MPE V/E |---------------------------------------+

| +---------+ |

| |

| PROCEDURE DECMADD(OPERAND1, OPERAND2, RESULT, |

| DIGITS, FRAC); |

| VALUE DIGITS, FRAC; |

| BYTE ARRAY OPERAND1, OPERAND2, RESULT; |

| INTEGER DIGITS, FRAC; |

| |

| |

+--+

OPERAND1, OPERAND2, DIGITS, and FRAC are input parameters, while RESULT is
an output parameter.

DIGITS and FRAC are declared as value parameters. OPERAND1, OPERAND2, and
RESULT, on the other hand, are reference parameters.

To access the DECMADD procedure from Native Mode (NM) code, you need
to write a Switch stub and place that stub procedure in an Executable Library.
This stub must call the appropriate Switch intrinsic (HPSWITCHTOCM), which, in
turn, calls DECMADD.

An example call to this procedure would be as follows:

DECMADD(x,y,z,3,2)

where x = 100.01 and y = 156.86. Upon return from the procedure, z =
256.87.

5-2 Writing Switch Stubs

Writing the DECMADD Stub Declarations

Begin the process of writing a Switch stub with the declaration portion of
the procedure. To guarantee that the switching process is transparent to the
calling program, follow these guidelines:

Make the stub name identical to that of the SPL procedure.

Make the types of the stub parameters correspond to those of the SPL
procedure.

Type correspondence refers both to status as either value or reference
parameter, as well as to the data type of the parameter. In SPL, value
parameters are explicitly declared. In HP Pascal/XL, it is reference parameters
that are explicitly declared by being preceded by the designation VAR. Data
type correspondence is not quite so easily obtained. To match the SPL
INTEGER and BYTE ARRAY data types in HP Pascal/XL, you need to use
declared types.

The declaration portion includes the following:

Stub header

Stub parameters

Called external procedures

Declaring the Stub Header

The following extract is a possible declaration portion for the stub procedure to
enable a call to the SPL DECMADD procedure:

+--------+

+----| MPE XL |---+

| +--------+ |

| |

| TYPE |

| decm_number : PACKED ARRAY [1..80] OF CHAR; |

| |

| PROCEDURE DECMADD(VAR OPERAND1, OPERAND2 : decm_number; |

| VAR RESULT : decm_number; |

| DIGITS, FRAC : shortint); |

| |

Writing Switch Stubs 5-3

+---+

Note The data type shortint is used to correspond to the SPL
INTEGER type because DECMADD is a CM routine and
integers in Compatibility Mode are 16-bit.

5-4 Writing Switch Stubs

Declaring the Stub Parameters

The next step in writing a Switch stub is to set up the parameters required by
the particular Switch intrinsic, in this instance HPSWITCHTOCM.

Consider again the declaration of the HPSWITCHTOCM intrinsic:

PROCEDURE HPSWITCHTOCM; INTRINSIC;

Next comes an example of an HP Pascal/XL call to HPSWITCHTOCM:

HPSWITCHTOCM(proc, method, numparms, parms,

funcreturnlen, funcvalue, conditioncode,

userstatus);

You call the HPSWITCHTOCM intrinsic with eight parameters. These parameters
provide Switch with the following information:

Name and CM library or the plabel of the target procedure.

Whether the target procedure runs in normal, split-stack, or no-copy mode.

Number of parameters being passed to the target procedure.

A list containing a description of each parameter being passed, including:

Pointer to each parameter; that is, a reference to where the parameter
begins in NM memory (value parameters larger than one byte must be
16-bit aligned).

Length (size) of each parameter in bytes (must be positive integer <= 2 **
16).

For reference parameters, the stub must specify whether it is a byte or
word address and also indicate whether the parameter is an input and/or
output parameter.

Length of the function return value (0 if not a function).

Pointer to the function return value (nil if not a function).

CM condition code value for the target procedure.

Status record to report on HPSWITCHTOCM's operation.

Writing Switch Stubs 5-5

Setting up these parameters involves three stages:

1. Declaring the necessary constants

2. Declaring the necessary user-de�ned types

3. Declaring the necessary variables

Declaring Constants. Constants are declared to correspond to the following
possibilities:

How does the operating system �nd the target procedure?

By number

By name

By plabel

Which CM library is the target procedure in?

System SL

Logon public SL

Logon group SL

Program's public SL

Program's group SL

Is the target procedure called in split-stack mode?

Of what type is a parameter?

Value parameter

Reference parameter requiring a word address

Reference parameter requiring a byte address

What are the valid condition and status codes?

The excerpt in Example 5-1 is a typical constant declaration section for a
Switch stub procedure:

5-6 Writing Switch Stubs

Example 5-1. DECMADD Stub, Constant Declarations

const

{The OS finds procedure either by number, by name, or }

{by plabel. }

pidt_known = 0; {it is found by number }

pidt_load = 1; {it must be found by name}

pidt_plabel = 2; {it is found by plabel }

{Which library is the procedure in?}

system_sl = 0;

logon_pub_sl = 1;

logon_group_sl = 2;

pub_sl = 3;

group_sl = 4;

{Is the procedure split-stack callable?}

method_normal = 0; {non-split-stack }

method_split = 1; {split-stack callable}

method_no_copy =2; {no-copy method }

{What is the parameter type?}

parm_type_value = 0; {value parameter }

parm_type_word_ref = 1; {word address is required}

parm_type_byte_ref = 2; {byte address is required}

{Condition and status code constants}

ccg = 0; {condition code greater (>)}

ccl = 1; {condition code less (<) }

cce = 2; {condition code equal (=) }

All_Ok = 0; {Used in status check }

{end Example 5-1}

Writing Switch Stubs 5-7

Declaring User-Defined Types. Several user-declared types are necessary to set
up the stub procedure variables. These include the following:

Type to represent parameter names (a packed array of characters)

Variant type to represent the HPSWITCHTOCM proc parms parameter (contents
depend on whether the target procedure is called by number, by name, or by
plabel)

Array of records type to represent the HPSWITCHTOCM parms parameter,
where the individual records are declared to be a packed record type having
the following components:

Pointer to where the parameter is located

Length value indicating the size of the parameter

Value indicating parameter type (value, word-address reference, or
byte-address reference)

For reference parameters, a value indicating status as either an input,
output, or input/output parameter

Condition and status types

The type declaration section for the DECMADD stub procedure follows in
Example 5-2:

5-8 Writing Switch Stubs

Example 5-2. DECMADD Stub, Type Declarations

type

bit8 = 0..255;

bit16 = 0..65535;

bit8_a1 = $ALIGNMENT 1$ bit8;

bit16_a1 = $ALIGNMENT 1$ bit16;

{type declaration for procedure names}

cm_proc_name = packed array [1..16] of char;

{defining generic buffer type}

generic_buffer = packed array [1..65535] of char;

{defining type of HPSWITCHTOCM proc parameter}

scm_procedure = packed record {variant record}

case p_proc_id_type : bit8 of

{proc found by number}

pidt_known : (p_fill : bit8_a1;
p_proc_id : bit16_a1);

{proc found by name}

pidt_load : (p_lib : bit8_a1;

p_proc_name : cm_proc_name);

{proc found by plabel}

pidt_plabel : (p_plabel : bit16_a1);

end; {record}

{defining type of indicator as input and/or output }

{parameter }

scm_io_type = set of (INPUT_PARM, OUTPUT_PARM);

Writing Switch Stubs 5-9

{define individual record of HPSWITCHTOCM parms parameter;}

{parms is array describing the stub parameters; }

{each record describes a parameter }

parm_desc = packed record

pd_parmptr : globalanyptr; {where parameter found}

pd_parmlen : bit16; {size in bytes }

pd_parm_type : bit16; {byte or word address }

pd_io_type : scm_io_type; {input and/or output }

end;

{defining type of HPSWITCHTOCM parms parameter}

scm_parm_desc_array = array [0..31] of parm_desc;

Example 5-2. DECMADD Stub, Type Declarations, Continued

{defining condition code type}

ccode_type = shortint;

{defining status code type}

xlstatus =
record

case integer of

0 : (all : integer);

1 : (info : shortint;

subsys : shortint);

end; {record}

{end Example 5-2}

Declaring Variables. You declare two groups of variables in the variable
declaration section of the stub:

Eight variables required by the HPSWITCHTOCM intrinsic

Any local variables

5-10 Writing Switch Stubs

The variable declaration section for the DECMADD stub follows in Example
5-3:

Example 5-3. DECMADD Stub, Variable Declarations

var

proc : scm_procedure; {target procedure name}

parms : scm_parm_desc_array; {describes target }

{proc's parameters}

method : integer; {split-stack callable?}

nparms : integer; {# of target's parameters}

{declaring return parameters}

funclen : integer; {length of return value }

funcptr : integer; {pointer to return value }

status : xlstatus; {how MPE XL returns warnings}

cond_code : ccode_type; {how condition code returned}

{declaring local variables}

loc_digits : shortint;

loc_frac : shortint;

{end Example 5-3}

Declaring Called External Procedures

To conclude the global declarations, you declare the external procedures called
within the Switch stub procedure (see Example 5-4).

Example 5-4. DECMADD Stub, External Procedure Declarations

{declaring the HPSWITCHTOCM intrinsic}

PROCEDURE HPSWITCHTOCM; INTRINSIC;

{declaring the HPSETCCODE intrinsic}

PROCEDURE HPSETCCODE; INTRINSIC;

Writing Switch Stubs 5-11

{declaring the QUIT intrinsic}

PROCEDURE QUIT; INTRINSIC;

{end Example 5-4}

Writing the DECMADD Stub Body

Once the declaration section is complete, it is possible to proceed to the body
of the Switch stub procedure. In the body, the actual work of setting up the
parameters required by the HPSWITCHTOCM intrinsic is done. Speci�cally, the
body does the following:

Initializes local variables

Initializes the Switch intrinsic parameter variables

Describes each target procedure parameter by doing the following:

Giving a pointer to the parameter's location

Giving the length (size) of the parameter

Indicating whether it is a value or a reference parameter

Indicating whether it is an input or an output parameter (if a reference
parameter)

Calls the HPSWITCHTOCM intrinsic to change modes

Sets the condition code upon return from Switch

Tests the MPE XL status value

Takes action on errors

The body of the DECMADD stub procedure follows in Example 5-5. It is
intended as a lab exercise to test your understanding of the operation of Switch
stubs. Use the accompanying code documentation to assist you in completing
the lines of code. You can check the correctness of your choices by turning to
Example 5-6 immediately following this exercise where the DECMADD stub is
presented in its entirety.

Example 5-5. DECMADD Stub, Stub Body

5-12 Writing Switch Stubs

begin

{initializing local variables}

loc_digits :=-----------; {initialize local copy of DIGITS}

loc_frac :=-----------; {initialize local copy of FRAC }

{initializing SWITCH variables}

proc.p_proc_id_type :=--------------; {find procedure}

{by name }

proc.p_lib := -------------; {look in PUB SL (LIB=P)}

proc.p_proc_name := '----------------'; {procedure name}

method := -----------------; {NOT split-stack}

{callable }

nparms := ------; {number of parameters}

funclen := ------; {length, in bytes, of function}

{return }

funcptr := ------; {pointer to function return}

{value }

{In the following, "describe" involves the following:}
{ 1) give a pointer to the parameter's location }

{ 2) give the length (size) of the parameter }

{ 3) indicate whether value or reference parameter }

{ IF a reference parameter, THEN }

{ 4) indicate whether input or output parameter }

{describe OPERAND1 -- input by reference}

{determine pointer to parameter's location; }

{addr function takes parameter as argument and returns}

{address }

parms[0].pd_parmptr := addr(-----------------);

Writing Switch Stubs 5-13

{determine length of parameter; sizeof function takes }

{parameter as argument and returns number of bytes }

parms[0].pd_parmlen := sizeof(--------------------);

{reference parameter requiring byte address}

parms[0].pd_parm_type := -----------------------------;

{input parameter}

parms[0].pd_io_type := [----------------------];

Example 5-5. DECMADD Stub, Stub Body, Continued

{describe OPERAND2 -- input by reference}

{determine pointer to parameter's location; }

{addr function takes parameter as argument and returns}

{address }

parms[1].pd_parmptr := addr(-----------------);

{determine length of parameter; sizeof function takes }
{parameter as argument and returns number of bytes }

parms[1].pd_parmlen := sizeof(-------------------);

reference parameter requiring byte address}

parms[1].pd_parm_type := -----------------------------;

{input parameter}

parms[1].pd_io_type := [----------------------];

{describe RESULT -- output by reference}

5-14 Writing Switch Stubs

{determine pointer to parameter's location; }

{addr function takes parameter as argument and returns}

{address }

parms[2].pd_parmptr := addr(-----------------);

{determine length of parameter; sizeof function takes }

{parameter as argument and returns number of bytes }

parms[2].pd_parmlen := sizeof(-------------------);

{reference parameter requiring byte address}

parms[2].pd_parm_type := -----------------------------;

{output parameter}

parms[2].pd_io_type := [----------------------];

{describe DIGITS -- input by value}

{determine pointer to parameter's location; }
{addr function takes parameter as argument and returns}

{address }

parms[3].pd_parmptr := addr(-----------------);

Example 5-5. DECMADD Stub, Stub Body, Continued

{determine length of parameter; sizeof function takes}

{parameter as argument and returns number of bytes }

parms[3].pd_parmlen := sizeof(-----------------------);

{value parameter}

parms[3].pd_parm_type := -----------------------------;

Writing Switch Stubs 5-15

{input parameter}

parms[3].pd_io_type := [----------------------];

{describe FRAC -- input by value}

{determine pointer to parameter's location; }

{addr function takes parameter as argument and returns}

{address }

parms[4].pd_parmptr := addr(-----------------);

{determine length of parameter; sizeof function takes}

{parameter as argument and returns number of bytes }

parms[4].pd_parmlen := sizeof(-------------------);

{value parameter}

parms[4].pd_parm_type := -----------------------------;

{input parameter}

parms[4].pd_io_type := [----------------------];

{call the Switch intrinsic to change modes}

HPSWITCHTOCM(--------, --------, --------, --------,

--------, --------, --------, --------);

{set condition code upon return from Switch}

HPSETCCODE(--------);

{test MPE XL status value and set ccode if not OK}

if (status.all <> all_ok) then

5-16 Writing Switch Stubs

begin

QUIT(status.info);

end;

end; {stub procedure DECMADD}

{end Example 5-5}

Finished DECMADD Stub

Putting all these pieces together yields the following stub procedure declaration
(see Example 5-6):

Example 5-6. Finished DECMADD (NM|> CM) Stub

$os 'mpe/xl'$

$subprogram$

$standard_level 'ext_modcal'$

$tables off$

$code_offsets off$

$xref off$

$type_coercion 'representation'$

PROGRAM Xampl56(input,output);

TYPE

decm_number = PACKED ARRAY [1..80] of CHAR;

PROCEDURE DECMADD(var OPERAND1, OPERAND2 : decm_number;

var RESULT : decm_number;

DIGITS, FRAC : shortint);

(* SPL calling sequence:

variable name type value

PROCEDURE decmadd(

OPERAND1 BYTE ARRAY REFERENCE

OPERAND2 BYTE ARRAY REFERENCE

RESULT BYTE ARRAY REFERENCE

Writing Switch Stubs 5-17

DIGITS INTEGER VALUE

FRAC) INTEGER VALUE *)

const

pidt_known = 0; {it's found by number}

pidt_load = 1; {it's found by name }

pidt_plabel = 2; {it's found by plabel}

system_sl = 0;

logon_pub_sl = 1;

logon_group_sl = 2;

pub_sl = 3;

group_sl = 4;

method_normal = 0; {not callable from split stack}

method_split = 1; {callable in split-stack mode}

method_no_copy =2; {callable in no-copy-mode}

parm_type_value = 0; {value parameter }

parm_type_word_ref = 1; {word address is required}

parm_type_byte_ref = 2; {byte address is required}

Example 5-6. Finished DECMADD (NM|> CM) Stub, Continued

ccg = 0; {condition code greater (>)}

ccl = 1; {condition code less (<) }

cce = 2; {condition code equal (=) }

All_Ok = 0; {used in status check }

type

bit8 = 0..255;

bit16 = 0..65535;

bit8_a1 = $ALIGNMENT 1$ bit8;

bit16_a1 = $ALIGNMENT 1$ bit16;

cm_proc_name = packed array [1..16] of char;

generic_buffer = packed array [1..65535] of char;

scm_procedure = packed record

case p_proc_id_type : bit8 of

pidt_known : (p_fill : bit8_a1;

5-18 Writing Switch Stubs

p_proc_id : bit16_a1);

pidt_load : (p_lib : bit8_a1;

p_proc_name : cm_proc_name);

pidt_plabel : (p_plabel : bit16_a1);

end;

scm_io_type = set of (INPUT_PARM, OUTPUT_PARM);

parm_desc = packed record

pd_parmptr : globalanyptr;

pd_parmlen : bit16;

pd_parm_type : bit16;

pd_io_type : scm_io_type;

end;

scm_parm_desc_array = array [0..31] of parm_desc;

ccode_type = shortint;

xlstatus =

record

case integer of

0 : (all : integer);

1 : (info : shortint;

subsys : shortint);

end; {record}

Example 5-6. Finished DECMADD (NM|> CM) Stub, Continued

PROCEDURE HPSWITCHTOCM; INTRINSIC;

PROCEDURE HPSETCCODE; INTRINSIC;

PROCEDURE QUIT; INTRINSIC;

{End of OUTER BLOCK GLOBAL declarations}

var

Writing Switch Stubs 5-19

proc : scm_procedure;

parms : scm_parm_desc_array;

method : integer; {split-stack callable?}

nparms : integer; {# of parameters}

funclen : integer;

funcptr : integer;

status : xlstatus;

cond_code : ccode_type;

loc_digits : shortint;

loc_frac : shortint;

begin

{ Initialize local variables }

loc_digits := DIGITS;

loc_frac := FRAC;

{ Initialize Switch variables }

proc.p_proc_id_type := pidt_load; {find procedure by name}

proc.p_lib := pub_sl; {look in PUB SL (LIB=P)}

proc.p_proc_name := 'DECMADD'; {procedure name}

method := method_normal; {not split-stack callable}
nparms := 5; {number of parameters}

funclen := 0; {length, in bytes, of function return}

funcptr := 0; {pointer to function return value}

{OPERAND1 -- input by reference}

parms[0].pd_parmptr := addr(OPERAND1);

parms[0].pd_parmlen := sizeof(OPERAND1);

parms[0].pd_parm_type := parm_type_byte_ref;

parms[0].pd_io_type := [input_parm];

{OPERAND2 -- input by reference}

parms[1].pd_parmptr := addr(OPERAND2);

parms[1].pd_parmlen := sizeof(OPERAND2);

parms[1].pd_parm_type := parm_type_byte_ref;

parms[1].pd_io_type := [input_parm];

5-20 Writing Switch Stubs

Example 5-6. Finished DECMADD (NM|> CM) Stub, Continued

{RESULT -- output by reference}

parms[2].pd_parmptr := addr(RESULT);

parms[2].pd_parmlen := sizeof(RESULT);

parms[2].pd_parm_type := parm_type_byte_ref;

parms[2].pd_io_type := [output_parm];

{DIGITS -- input by value}

parms[3].pd_parmptr := addr(loc_digits);

parms[3].pd_parmlen := sizeof(DIGITS);

parms[3].pd_parm_type := parm_type_value;

parms[3].pd_io_type := [input_parm];

{FRAC -- input by value}

parms[4].pd_parmptr := addr(loc_frac);

parms[4].pd_parmlen := sizeof(FRAC);

parms[4].pd_parm_type := parm_type_value;

parms[4].pd_io_type := [input_parm];

{Execute the SWITCH}

HPSWITCHTOCM(proc, method, nparms, parms, funclen, funcptr,

cond_code, status);

HPSETCCODE(cond_code);

if (status.all <> all_ok) then

begin

QUIT(status.info);

end;

end; {procedure DECMADD}

BEGIN {Program Outer Block Code}

END. {Program Outer Block Code}

{end Example 5-6}

Writing Switch Stubs 5-21

Checklist for Writing NM|> CM Switch Stubs

The following list summarizes the steps involved in writing your own NM|>
CM Switch stub procedure:

Make the stub name identical to that of the target procedure.

Make the names of the stub parameters identical to those of the target
procedure (observing HP Pascal/XL naming conventions and restrictions).

Make the types of the stub parameters correspond to those of the target
procedure.

Set up the parameters required by the HPSWITCHTOCM intrinsic.

Declare the necessary constants

Declare the necessary user-de�ned types

Declare the necessary variables

Conclude the global declarations by declaring the procedures called within
the Switch stub procedure (HPSWITCHTOCM, HPSETCCODE, and QUIT)

Initialize local variables

Initialize the Switch intrinsic parameter variables

Describe each target procedure parameter by doing the following:

Give a pointer to the parameter's location

Give the length (size) of the parameter

Indicate whether it is a value or a reference parameter

Indicate whether it is an input or an output parameter (if a reference
parameter)

Call the HPSWITCHTOCM intrinsic to change modes

Set the condition code upon return from Switch

Test the MPE XL status value

Take action upon errors returned

5-22 Writing Switch Stubs

Switching to NM

To illustrate a mixed-mode Switch from Compatibility Mode (CM) to Native
Mode (NM), consider the example of a Pascal/V procedure that calls an
intrinsic that is available only in Native Mode. It makes this call in order to
access a new NM capability.

The HPCICOMMAND intrinsic executes an MPE XL command programmatically.
Unlike the MPE V/E-compatible COMMAND intrinsic, HPCICOMMAND allows you to
execute UDC's and command �les programmatically.

The syntax of the HPCICOMMAND intrinsic is as follows:

CA I16 I16 I16V

HPCICOMMAND(cmdimage,errnum,parmnum,msglevel);

The cmdimage parameter passes a required character array that represents a
command string in the current language of the system. The string is limited to
280 bytes and must be terminated by a carriage return or be blank-�lled up to
the 280th byte.

The errnum parameter is a required 16-bit signed integer that is passed by
reference and returns the Command Interpreter error number. If there are no
errors, the value returned is 0.

The parmnum parameter is a required 16-bit integer that is passed by reference
and indicates the nature of the error (if errnum <> 0). If parmnum is positive,
this is a �le system error. If parmnum is negative, then the absolute value of
parmnum speci�es the column number where the error occurred.

The msglevel parameter is a required 16-bit integer that is passed by value
and indicates how error and warning messages are handled. The following list
summarizes the valid values of the msglevel parameter and the meanings of
those values:

0 All errors/warnings are printed to $STDLIST.

1 All Command Interpreter error/warnings are printed to $STDLIST.

2 No errors/warnings are printed. This is the default.

Writing Switch Stubs 5-23

For more information on the HPCICOMMAND intrinsic, refer to the appropriate
entry in the MPE XL Intrinsics Reference Manual (32650-90028).

5-24 Writing Switch Stubs

To access the HPCICOMMAND intrinsic from CM code, you need to write a
CM|> NM Switch stub and place that stub procedure in a CM Segmented
Library (SL). This stub must call the appropriate Switch intrinsic (either
HPSWTONMNAME or HPSWTONMPLABEL), which, in turn, invokes HPCICOMMAND.
HPSWTONMNAME calls a procedure by name, while HPSWTONMPLABEL allows you to
call an NM procedure by plabel. The examples in the following paragraphs
illustrate a call by plabel.

Writing the CMCICommand Stub Declarations

Begin the process of writing a Switch stub with the declaration portion of the
procedure.

The declaration portion includes the following:

Stub header

Stub parameters

Called external procedures

Declaring the Stub Header

The following excerpt is a possible header declaration for the stub procedure to
enable a call to the Native Mode HPCICOMMAND intrinsic:

+---+

| |

| TYPE |
| pac280 = PACKED ARRAY [1..280] OF CHAR; |

| shortint = -32768..32767; |

| |

| PROCEDURE CMCICommand(VAR CICmdName : pac280; |

| VAR CIErrNum : shortint; |

| VAR CIParmNum : shortint; |

| CIMsgLevel : shortint); |

| |

+---+

Writing Switch Stubs 5-25

Declaring the Stub Parameters

The next step in writing a CM|> NM Switch stub is to set up the parameters
required by the particular Switch intrinsic(s), in this instance HPLOADNMPROC
and HPSWTONMPLABEL.

Consider again the Pascal/V declaration of these intrinsics:

FUNCTION HPSWTONMPLABEL : integer; intrinsic;

FUNCTION HPLOADNMPROC : integer; intrinsic;

Next come examples of Pascal/V calls to these intrinsics:

plabel := HPLOADNMPROC (procname, procnamelen, libname,

libnamelen);

returnstatus := HPSWTONMPLABEL (plabel, numparms,

arglistarray, argdescarray, functype);

You call the HPLOADNMPROC intrinsic with four parameters. These parameters
provide Switch with the following information:

Name of the NM target procedure

Length of the name of the NM target procedure

Name of the library to be searched for the NM target procedure

Length of the name of the library to be searched

The HPSWTONMPLABEL intrinsic is called with �ve parameters, providing Switch
with this information:

Plabel of the NM routine (as returned by the HPLOADNMPROC intrinsic)

Number of parameters in the NM routine

Parameter list (value parameters represented by their values; reference
parameters, by their DB-relative addresses)

Parameter description list (specifying the type of the parameters)

Type of the functional return value (if any)

5-26 Writing Switch Stubs

Setting up these parameters involves two stages:

1. Declaring the necessary user-de�ned types

2. Declaring the necessary variables

Declaring User-Defined Types. Several user-declared types are necessary to set
up the stub procedure variables. These include the following:

String type to represent procedure and library names

String type to represent MPE XL command or UDC names

Status Type

Integer subrange type to represent error numbers, the number of parameters,
message levels, the length of character strings, and function types

Array of integer subrange type values to represent and describe the
parameters of the target procedure

The type declaration section for the CMCICommand stub procedure follows in
Example 5-7:

Example 5-7. CMCICommand Stub, Type Declarations

{Type Declarations}

TYPE

shortint = -32768..32767;

shr_ary32 = packed array [1..32] of shortint;

pac16 = packed array [1..16] of char;

pac280 = packed array [1..280] of char;

{end Example 5-7}

Declaring Variables. You declare two groups of variables in the variable
declaration section of the stub:

Nine variables required by the HPLOADNMPROC and HPSWTONMPLABEL intrinsics

Any local variables

Writing Switch Stubs 5-27

The variable declaration section for the CMCICommand stub procedure follows
in Example 5-8:

Example 5-8. CMCICommand Stub, Variable Declarations

{Global variable declarations}

VAR

{Parameters passed to HPCICOMMAND via Switch}

CmdName : pac280;

ErrNum : shortint;

ParmNum : shortint;

MsgLevel : shortint;

{Stub procedure variable declarations}

VAR

{HPLOADNMPROC intrinsic parameters}

proc_name : pac16; {name of NM routine}

proc_len : shortint; {length of target's name}
lib_nam : pac16; {NM library to search for target}

lib_len : shortint; {length of NM library name}

{HPSWTONMPLABEL intrinsic parameters}

proc : integer; {plabel of NM routine}

nparms : shortint; {number of target parameters}

arglist : shr_ary32; {parameter list}

argdesc : shr_ary32; {parameter description list}

fct_typ : shortint; {functional return type, if any}

{Assigned functional return}

rtn_st : integer;

5-28 Writing Switch Stubs

{end Example 5-8}

Writing Switch Stubs 5-29

Declaring Called External Procedures

You must also declare the procedures called within the Switch stub procedure
(see Example 5-9).

Example 5-9. CMCICommand Stub, External Procedure Declarations

{Intrinsic procedure declarations}

FUNCTION HPSWTONMNAME : integer; intrinsic;

FUNCTION HPSWTONMPLABEL : integer; intrinsic;

FUNCTION HPLOADNMPROC : integer; intrinsic;

{end Example 5-9}

5-30 Writing Switch Stubs

Writing the CMCICommand Stub Body

Once the declaration section is complete, proceed to the body of the Switch
stub procedure. In the body, the actual work of setting up the parameters
required by the HPLOADNMPROC and HPSWTONMPLABEL intrinsics is done.
Speci�cally, the body does the following:

Initializes local variables

Initializes the Switch intrinsic parameter variables as follows:

Designates names as string values

Designates the lengths of the strings

Designates the number of target procedures

Designates the type of the target's functional return

Initializes arrays to represent and describe target procedure parameters

Calls the HPLOADNMPROC and HPSWTONMPLABEL intrinsics

Copies local variables back to formal parameters

Tests the status value

Takes action on errors

The body of the CMCICommand stub procedure follows in Example 5-10. It is
intended as a lab exercise to test your understanding of the operation of Switch
stubs. Use the accompanying code documentation to assist you in completing
the lines of code. You can check the correctness of your choices by turning to
Example 5-11 immediately following this exercise where the CMCICommand
stub is presented in its entirety.

Writing Switch Stubs 5-31

Example 5-10. CMCICommand Stub, Stub Body

BEGIN {Stub procedure CMCICommand}

{Initializations}

proc_name := '----------------'; {name of target}

proc_len := ----; {length of target name}

lib_name := '----------------'; {name of library}

lib_len := ----; {length of library name}

nparms := ---; {nparms governs how many types are}

{searched for in argdesc; }

{4 parms plus extensible_gateway }

{HPCICOMMAND is declared }

{$OPTION 'EXTENSIBLE_GATEWAY$ }

arglist[1] := --; {extensible gateway mask is 32 bits}

arglist[2] := --; {of anything, all 0 bits works ok! }

arglist[3] := baddress(------------);

{reference parameter passed by address; }

{take byte address of variable name buffer}

arglist[4] := waddress(-----------);

{reference parameter passed by address;}

{take word address of error number parm}

arglist[5] := waddress(------------);

{reference parameter passed by address;}

{take word address of parameter number }

{parm }

arglist[6] := -------------;

{value parameter represented by its value}

argdesc[1] := ---; {32-bit word value for gateway mask}

argdesc[2] := ---; {byte pointer for arglist[3]}

argdesc[3] := ---; {word pointer for arglist[4]}

5-32 Writing Switch Stubs

argdesc[4] := ---; {word pointer for arglist[5]}

argdesc[5] := ---; {shortint value parameter}

fct_typ := ---; {This is an NM procedure, not a }

{function. If it was an NM function, the }

{return value would come back in }

{arglist[1..n] where n is the length of }

{the value in 16-bit words. }

Writing Switch Stubs 5-33

Example 5-10. CMCICommand Stub, Stub Body, Continued

{HPLOADNMPROC intrinsic call -- 4 parameters}

proc := HPLOADNMPROC

(------------, {target name}

------------, {length of target }

{name }

------------, {library name}

------------); {length of library}

{name }

{HPSWTONMPLABEL intrinsic call -- 5 parameters}

rtn_st := HPSWTONMPLABEL

(------------, {returned plabel}

------------, {number of target}

{parameters }

------------, {target argument }

{list array }

------------, {target argument }

{description array}

------------); {type of target}

{functional return}

END; {Stub procedure CMCICommand}

{end Example 5-10}

5-34 Writing Switch Stubs

Finished CMCICommand Stub

Putting all these pieces together yields the following stub procedure declaration
(see Example 5-11):

Example 5-11. Finished CMCICommand (CM|> NM) Stub

{ XAMPL511 -- example Switch to NM by plabel }

$standard_level "HP3000"$

{$subprogram$} {uncomment this to make an RBM for your SL}

$uslinit$

PROGRAM XAMPL511(input, output);

{Type Declarations}

TYPE

shortint = -32768..32767;

shr_ary32 = packed array [1..32] of shortint;

pac16 = packed array [1..16] of char;

pac280 = packed array [1..280] of char;

{Global variable declarations}

VAR

{Parameters passed to HPCICOMMAND via Switch}

CmdName : pac280;

ErrNum : shortint;

ParmNum : shortint;

MsgLevel : shortint;

{Intrinsic procedure declarations}

FUNCTION HPSWTONMNAME : integer; intrinsic;

FUNCTION HPSWTONMPLABEL : integer; intrinsic;

Writing Switch Stubs 5-35

FUNCTION HPLOADNMPROC : integer; intrinsic;

5-36 Writing Switch Stubs

Example 5-11. Finished CMCICommand (CM|> NM) Stub, Continued

{Stub procedure declaration}

PROCEDURE CMCICommand(VAR CICmdName : pac280;

VAR CIErrNum : shortint;

VAR CIParmNum : shortint;

CIMsgLevel : shortint);

VAR

{HPLOADNMPROC intrinsic parameters}

proc_name : pac16; {name of NM routine}

proc_len : shortint; {length of target's name}

lib_name : pac16; {NM library to search for target}

lib_len : shortint; {length of NM library name}

{HPSWTONMPLABEL intrinsic parameters}

proc : integer; {plabel of NM routine}

nparms : shortint; {number of target parameters}

arglist : shr_ary32; {parameter list}

argdesc : shr_ary32; {parameter description list}
fct_typ : shortint; {functional return type, if any}

{Assigned functional return}

rtn_st : integer;

BEGIN {Stub procedure CMCICommand}

{Initializations}

proc_name := 'HPCICOMMAND ';

proc_len := 11;

lib_name := 'NL.PUB.SYS ';

lib_len := 10;

Writing Switch Stubs 5-37

nparms := 5; {nparms governs how many types are}

{searched for in argdesc; }

{4 parms plus extensible_gateway }

{HPCICOMMAND is declared }

{$OPTION 'EXTENSIBLE_GATEWAY$ }

5-38 Writing Switch Stubs

Example 5-11. Finished CMCICommand (CM|> NM) Stub, Continued

arglist[1] := 0; {extensible gateway mask is 32 bits}

arglist[2] := 0; {of anything, all 0 bits works ok! }

arglist[3] := baddress(CICmdName);

{reference parameter passed by address; }

{take byte address of variable name buffer}

arglist[4] := waddress(CIErrNum);

{reference parameter passed by address;}

{take word address of error number parm}

arglist[5] := waddress(CIParmNum);

{reference parameter passed by address;}

{take word address of parameter number }

{parm }

arglist[6] := CIMsgLevel;

{value parameter represented by its value}

argdesc[1] := 03; {32-bit word value for gateway mask}

argdesc[2] := 05; {byte pointer for arglist[3]}

argdesc[3] := 06; {word pointer for arglist[4]}
argdesc[4] := 06; {word pointer for arglist[5]}

argdesc[5] := 02; {shortint value parameter}

fct_typ := 00; {This is an NM procedure, not a }

{function. If it was an NM function, the }

{return value would come back in }

{arglist[1..n] where n is the length of }

{the value in 16-bit words. }

{HPLOADNMPROC intrinsic call}

proc := HPLOADNMPROC

(proc_name,

proc_len,

lib_name,

Writing Switch Stubs 5-39

lib_len);

{HPSWTONMPLABEL intrinsic call}

rtn_st := HPSWTONMPLABEL

(proc,

nparms,

arglist,

argdesc,

fct_typ);

END; {Stub procedure CMCICommand}

5-40 Writing Switch Stubs

Example 5-11. Finished CMCICommand (CM|> NM) Stub, Continued

BEGIN {outer block}

.

.

.

CmdName := ' ';

ErrNum := 0;

ParmNum := 0;

MsgLevel := 0;

CMCICommand(CmdName, ErrNum, ParmNum, MsgLevel);

.

.

.

END. {outer block}

{end Example 5-11}

Writing Switch Stubs 5-41

Checklist for Writing CM|> NM Switch Stubs

The following list summarizes the steps involved in writing your own CM|>
NM Switch stub procedure:

Set up the parameters required by the HPSWTONMNAME or HPLOADNMPROC and
HPSWTONMPLABEL intrinsics

Declare the necessary constants

Declare the necessary user-de�ned types

Declare the necessary variables

Conclude the global declarations by declaring the procedures called within
the Switch stub procedure

Initialize local variables

Initialize the Switch intrinsic parameter variables

Call the HPSWTONMNAME intrinsic or the HPLOADNMPROC and HPSWTONMPLABEL

intrinsics to change modes

Test the status value

Take action upon errors returned

5-42 Writing Switch Stubs

A

SWAT Warning Messages

The following are the warning messages that the Switch Assist Tool issues.

SWAT Warning Messages A-1

0001 The �le speci�ed already exists.
0002 The �le speci�ed already exists and has a lockword.
0003 Invalid character found.
0004 Unknown problem while checking �lename.
0005 The �rst character must be ALPHABETIC.
0006 The function key pressed is not allowed here.
0007 The �lename for the generated source is required.
0008 The name of the target procedure is required.
0009 Duplicate parameter names are not allowed.
0010 Only one library location may be speci�ed.
0011 One library location must be speci�ed.
0012 Not used.
0013 Not used.
0014 Only one functional return option may be selected.
0015 One functional return option must be selected.
0016 Only one privilege level option may be selected.
0017 One privilege level must be selected.
0018 Only one condition code return option may be selected.
0019 One condition code return option must be selected.
0020 Parameter name �eld cannot be left blank here.
0021 Only one addressing method may be speci�ed.
0022 One addressing method must be selected.
0023 Only one input/output direction may be selected.
0024 One input/output direction must be selected.
0025 Parameters passed by value must be input only.
0026 Only one data type may be selected.
0027 One data type must be selected.
0028 Arrays cannot be passed by VALUE.
0029 Only one array speci�cation may be selected.
0030 One array speci�cation must be selected.
0031 Length of array cannot be speci�ed by both a constant and a parameter.

A-2 SWAT Warning Messages

0032 Length of array must be speci�ed.
0033 Input must be a number in the range of 1 to 65535.
0034 Only one array length usage may be selected.
0035 One array length usage must be selected.
0036 The indirect length variable must not be an array.
0037 The indirect length variable is not de�ned.
0038 The MAIN screen has not been entered successfully.
0039 The PROCINFO screen has not been entered successfully.
0040 Variable has unde�ned indirect length parameter.
0041 Variable's indirect length parameter is output only.
0042 Indirect parameter can't be logical with negative=bytes rule.
0043 Indirect parameter must be integer, logical, or double data type.
0044 The following parameters need more attention.
0045 Press F2 when ready to begin generating code.
0046 The ENTER key is not allowed here.
0047 You must attend to above items before code generation can begin.
0048 Length of byte array must be in the range 1 to 65535 elements.
0049 Length of integer array must be in the range 1 to 32767 elements.
0050 Length of logical array must be in the range 1 to 32767 elements.
0051 Length of double array must be in the range 1 to 16383 elements.
0052 Length of real array must be in the range 1 to 16383 elements.
0053 Length of long array must be in the range 1 to 8191 elements.

SWAT Warning Messages A-3

B

SWAT Fatal Error Messages

The following are the fatal error messages that can appear on an abort screen if
the Switch Assist Tool encounters an irrecoverable error.

SWAT Fatal Error Messages B-1

0001 Fatal error returned from the VGETFIELD intrinsic.
0002 Fatal error returned from the VSETERROR intrinsic.
0003 Fatal error returned from the VPUTFIELD intrinsic.
0004 Fatal error returned from the VPUTWINDOW intrinsic.
0005 Fatal error returned from the VGETBUFFER intrinsic.
0006 Fatal error returned from the VPUTBUFFER intrinsic.
0007 Fatal error returned from the VSHOWFORM intrinsic.
0008 Fatal error returned from the VREADFIELDS intrinsic.
0009 Fatal error returned from the VGETNEXTFORM intrinsic.
0010 Fatal error returned from the VINITFORM intrinsic.
0011 Fatal error returned from the VSETKEYLABEL intrinsic.
0012 Fatal error returned from the VFIELDEDITS intrinsic.
0013 Fatal error returned from the VERRMSG intrinsic.
0014 Internal inconsistencies found when attempting to provide help.
0015 Unknown target language found when transferring to second screen.
0016 Unknown target language found when transferring to third screen.
0017 The next screen found is not a valid screen number.
0018 CCL was returned when attempting to open the new source �le.
0019 Not used.
0020 Impossible ccode returned from FOPEN, not CCE or CCL?
0021 Impossible ccode returned from FCLOSE, not CCE or CCL?
0022 CCL returned when re-fopening the new source �le.
0023 Impossible ccode returned when re-fopening, not CCE or CCL?
0024 An irrecoverable error occurred when opening new source �le.
0025 Passed parameter is neither by VALUE, or by REFERENCE?
0026 The data type of the parameter is not one of the possible types.
0027 *** UNUSED ***
0028 The FUNCTIONAL return type is not a valid type.
0029 This program may not be run in a BATCH job. It uses VPLUS/3000.
0030 A fatal error has occurred while accessing the message catalog.
0031 Found bad data type when building local copies of VALUE parms.
0032 Found bad FUNCTIONAL return type when creating local variable.
0033 Found bad data type when calculating element size in bytes.
0034 The direction does not specify NM -> CM, or CM -> NM.
0035 Fatal error when opening the msg catalog �le SWATCAT.PUB.SYS.
0036 Fatal error while opening SWATCAT.PUB.SYS.
0037 Fatal error returned by VOPENTERM intrinsic.
0038 Fatal error returned by VOPENFORMF intrinsic.

B-2 SWAT Fatal Error Messages

C

SWAT Progress Messages

The following are the progress messages that appear on the PROGRESS screen
while the Switch Assist Tool is generating Switch stub source code.

0001 Adjusting variable names to PASCAL standards.
0002 Generating outer block global declarations.
0003 Generating procedure declaration for the STUB procedure.
0004 Generating parameter declarations for the STUB procedure.
0005 Closing out the STUB procedure declarations.
0006 Setting up local constant values within the STUB procedure.
0007 Generating the STUB procedure \BEGIN" statement, with comments.
0008 Generating declarations for a local copy of any VALUE parameters.
0009 Generating local variable for a local copy of functional return.
0010 Generating local variables for use by the STUB procedure.
0011 Building target procedure speci�cations for the SWITCH call.
0012 Generating misc. initialization code.
0013 Generating code to handle a functional return value.
0014 Generating code to do initializations.
0015 Generating code to move value parms to STUB local copies.
0016 Building the parameter descriptor array for the SWITCH call.
0017 Generating the actual call to the SWITCH procedure.
0018 Generating code to pass the functional return back to caller.
0019 Generating code to handle the condition code return value.
0020 Generating the main body of the STUB procedure.
0021 Generating the STUB procedure's bottom outer block.

SWAT Progress Messages C-1

D

TDP Use File for Concatenating Switch Stubs

:comment |--|

:comment | |

:comment | This file is meant to be used as a 'USE' file |

:comment | with TDP/3000 to concatenate multiple STUB |

:comment | procedure source files into a single file. To |

:comment | use this utility, perform the following steps: |

:comment | |

:comment | :RUN TDP.PUB.SYS |

:comment | /USE CATTDP |

:comment | --- Then simply answer the prompts as they -- |

:comment | --- are presented. -- |

:comment | /EXIT |

:comment | |

:comment | * NOTE * |

:comment | These comment lines DO NOT HAVE TO BE REMOVED |

:comment | for this TDP 'USE' file to function correctly. |

:comment | |

:comment |--|

set shorterror

set quiet

q " ";q " ";q " ";q " ";q " "

q " Switch Assist Tool (SWAT) STUB concatenation utility "

q " ";q " "

q "In the following dialog, enter the information"

q "requested when prompted."

q " ";q " "

q "Enter first STUB FILE name below. This file may be a"

q "file as generated by SWAT, or a concatenated STUB file"

TDP Use File for Concatenating Switch Stubs D-1

q "created during a previous execution of this utility."

q " "

zp="First STUB FILE : "

q " "

q "Bringing in file (z)"

q " "

text zq " "

verify total

q " "

q "Extracting top outer block, and first STUB"

D-2 TDP Use File for Concatenating Switch Stubs

q " "

holdq first/last-3

@L1 q " ";q " "

q "Enter ANOTHER STUB FILE name below. This file may be a"

q "file as generated by SWAT, or a concatenated STUB file"

q "created during a previous execution of this utility."

q " "

zp="Enter ANOTHER STUB file name : "

q " "

q "Bringing in file (z)"

q " "

t zq " "

verify total

q " "

q "Skipping over TOP OUTER BLOCK"

q " "

findq "$PAGE$",NOTEXT

q "Extracting current STUB procedure"

holdq */last-3,APPEND

q " "

@IF "Concatenating another STUB? (Y/N) : " THEN GO TO L1

q " ";q " "

q "Appending bottom outer block code"

holdq last-2/last,APPEND

q " "

q "Rebuilding work file"

dq all

addq 1,HOLDQ

q " ";q " "

zp="Enter NEW file name to contain concatenated STUBS : "

k z,unn

q " ";q " ";q " "

q "STUB concatenation complete"

q " "

set display

TDP Use File for Concatenating Switch Stubs D-3

set longerror

D-4 TDP Use File for Concatenating Switch Stubs

E

EDIT Use File for Concatenating Switch Stubs

:comment -

:comment | |

:comment | This file is meant to be used as a 'USE' file |

:comment | with EDITOR/3000 to concatenate multiple STUB |

:comment | procedure source files into a single file. To |

:comment | use this utility, perform the following steps: |

:comment | |

:comment | :EDITOR |

:comment | /USE CATEDIT |

:comment | --- Then simply answer the prompts as they -- |

:comment | --- are presented. -- |

:comment | /EXIT |

:comment | |

:comment | * NOTE * |

:comment | These comment lines DO NOT HAVE TO BE REMOVED |

:comment | for this EDITOR 'USE' file to function |

:comment | correctly. |

:comment | |

set short -

set quiet

q " ";q " ";q " ";q " ";q " "

q " Switch Assist Tool (SWAT) STUB concatenation utility "

q " ";q " "

q "In the following dialog, you must enter the requested"

q "information following the EDITOR 'ENTER Z=' prompt. "

q " ";q " "

q "Enter first STUB FILE name below. This file may be a"

q "file as generated by SWAT, or a concatenated STUB file"

EDIT Use File for Concatenating Switch Stubs E-1

q "created during a previous execution of this utility."

q " "

z=

q " "

q "Bringing in file (z)"

q " "

text z

E-2 EDIT Use File for Concatenating Switch Stubs

q " "

verify total

q " "

q "Extracting top outer block, and first STUB"

q " "

holdq first/last-3

set batch

z=

//

set poll

WHILE FLAG

BEGINQ

q " ";q " "

q "Enter ANOTHER STUB FILE name below. This file may be"

q "a file as generated by SWAT, or a concatenated STUB"

q "file created during a previous execution of this"

q "utility."

q " "

q "** If there are NO MORE STUB FILES to concatenate **"

q "** press CTRL-Y to complete the concatenation and **"

q "** generate a new file. **"

q " "

z=

q " "

q "Bringing in file (z)"

q " "

t z

q " "

verify total

q " "

q "Skipping over TOP OUTER BLOCK"

q " "

findq "$PAGE$"

q "Extracting current STUB procedure"

holdq */last-3,APPEND

EDIT Use File for Concatenating Switch Stubs E-3

q " "

END

YES

q "Appending bottom outer block code"

holdq last-2/last,APPEND

q " "

E-4 EDIT Use File for Concatenating Switch Stubs

q "Rebuilding work file"

dq all

add,holdq,now

q "Enter NEW file name to contain the concatenated STUB"

q "procedures."

q " "

z=

k z,unn

q " ";q " ";q " "

q "STUB concatenation complete"

q " "

set long

set display

EDIT Use File for Concatenating Switch Stubs E-5

	Top of Document
	Contents
	Introduction
	Native Mode (NM)
	Compatibility Mode
	Summarizing NM-only and CM-only Execution
	Switch Subsystem
	Impact on Users
	Mixed-mode Summary and Example

	Simplifying Switch Programming
	SWitch Assist Tool (SWAT)
	Generating Switch Stubs Automatically
	Modifying SWAT Output
	Using SWAT Output
	SWAT Requirements
	Example Source File Generated by SWAT
	SWAT Quick Reference Summary
	Special Cases

	NM-to-CM Procedure Calls
	Overview
	Switch to CM Details
	HPSWITCH TOCM Intrinsic
	HPLOADCM PROCEDURE Intrinsic
	HPUNLOADCM PROCEDURE Intrinsic
	Switch to CM Sequence
	Special Considerations and Restrictions
	Testing and Debugging Considerations

	CM-to-NM Procedure Calls
	Overview
	Switch to NM Details
	HPSWTONM NAME Intrinsic
	HPSWTONM PLABEL Intrinsic
	HPLOADNM PROC Intrinsic
	Examples: CM to NM and Return
	Switch to NM Sequence
	Special Considerations and Restrictions
	Testing and Debugging Considerations

	Writing Switch Stubs
	Switching to CM

	SWAT Warning Messages
	SWAT Fatal Error Messages
	SWAT Progress Messages
	TDP Use File for Concatenating Switch Stubs
	EDIT Use File for Concatenating Switch Stubs

