
Getting Started with TRANSACT/V

HP 3000 MPE/iX Computer Systems

Edition 2
Manufacturing Part Number: 32247-90007

E0788

U.S.A. July 1988

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing
or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1985, and 1988 by Hewlett-Packard Company.
2

Contents
1. Getting Started
Compiling and Executing Transact Programs . 14
Reporting From a Dataset . 17

Getting a Complete Listing . 17
Sorting the Data . 19

Formatting Options . 21
Selective Reporting . 23

Reporting from Multiple Datasets . 27

2. Using Character Mode I/O
Adding Data to a Dataset . 38

Updating Data in a Dataset . 42
Looping Structures. 50
Command Mode . 53

3. Using VPLUS and IMAGE
Adding Data to a Dataset . 60
Updating Data in a Dataset. 64
Reporting Data from a Dataset . 67
Setting Up a Menu-Driven System . 72

4. Using KSAM and MPE
Using KSAM . 76

Adding Records . 76
Using MPE Files. 78

Adding Records . 78
Updating Records . 79

5. Automatic Error Handling and Prototyping

6. Data Structures

7. Using Transact Without a Dictionary
IMAGE . 112
MPE. 114
KSAM . 115
VPLUS . 116

8. Special Topics
Interface to Report/V . 117
Arrays . 125
Subprograms . 137
Intrinsics. 145
Test Facility . 148

9. Creating Custom Applications
Rearranging the Form . 155
3

Contents
Form Independence .157
Adding, Deleting, and Changing Elements .161
User Exits .170
Transactions Across Multiple Datasets .176

A. Building the Dictionary

B. Entering the Database Definition

C. Loading Definitions from IMAGE

D. Creating the Physical Database

E. Entering Form Definitions

F. Loading Form Definitions

G. Element and File Dictionary Reports

H. Application Forms Formats
4

Figures
Figure 1-1. . Compiling and Executing a TRANSACT Program . 15

Figure 1-2. . Program to Display a Dataset . 17

Figure 1-3. . Report from a Single Dataset . 18

Figure 1-4. . Program to Sort and Report Data . 19

Figure 1-5. . Program to Sort Data and Use FORMAT for Reporting 19

Figure 1-6. . The Sorted Report on Customers . 20

Figure 1-7. . Options for FORMAT. 21

Figure 1-8. . Report Produced by FORMAT Options. 22

Figure 1-9. . Program to Select Data for Reporting. 23

Figure 1-10. . Report of Selected Data . 24

Figure 1-11. . Program to Select Data by Key Value. 24

Figure 1-12. . Program to Let User Set Selection Criteria . 25

Figure 1-13. . User-Entered Selection Criteria . 25

Figure 1-14. . More User-Entered Selection Criteria . 26

Figure 1-15. . Program to Report from Two Datasets . 27

Figure 1-16. . Report from Two Datasets . 28

Figure 1-17. . Program to Report from Three Datasets . 29

Figure 1-18. . Report from Three Datasets . 31

Figure 1-19. . Program to Create a Report with DISPLAY(TABLE) 32

Figure 1-20. . Report created by DISPLAY(TABLE). 33

Figure 1-21. . Program to Select Data by the Conditional Verb IF 34

Figure 1-22. . Data Selected with Conditional Verb IF. 35

Figure 2-1. . Program to Add Data to a Dataset . 38

Figure 2-2. . Interactive Data Entry to a Dataset . 39

Figure 2-3. . Changing the Default Input Field Delimiter . 39

Figure 2-4. . Using a Programmer-Defined Field Delimiter . 40

Figure 2-5. . Automatic Error Handling for a Duplicate Record . 40

Figure 2-6. . Program to Check Item Entered by User . 41

Figure 2-7. . User Interaction with Early Error Checking . 41
5

Figures
Figure 2-8. . Program to Update Data in a Dataset .42

Figure 2-9. . Interactive Updating of a Dataset .43

Figure 2-10. . Program Using a Record Already Retrieved .44

Figure 2-11. . Program to Change a Key Field Value .45

Figure 2-12. . Changing a Key Field Value. .46

Figure 2-13. . Program to Change Key Values Using REPLACE .47

Figure 2-14. . Program to Delete Records .48

Figure 2-15. . Interactively Deleting Records .49

Figure 2-16. . Program Using REPEAT to Loop. .50

Figure 2-17. . Program Using WHILE to Loop .51

Figure 2-18. . Program Using LEVEL to Loop .52

Figure 2-19. . Program Using Command Mode for Add, Update, and Display.53

Figure 2-20. . Command Mode Interaction .55

Figure 2-21. . Program with Subcommands .57

Figure 2-22. . User Interaction with Subcommands .58

Figure 3-1. . Dictionary Definitions of Customer Form and Dataset 60

Figure 3-2. . VPLUS Form for Adding Customer Data .61

Figure 3-3. . Program accessing a VPLUS form .61

Figure 3-4. . Using Command Mode with VPLUS for Looping .62

Figure 3-5. . Using LEVEL with VPLUS for Looping .62

Figure 3-6. . Using REPEAT with VPLUS for Looping .62

Figure 3-7. . Preventing a Blank Record. .63

Figure 3-8. . Using LEVEL with VPLUS to Update Data .64

Figure 3-9. . Using REPEAT with VPLUS to Update Data. .65

Figure 3-10. . Dictionary Definition of Customer Number Form .65

Figure 3-11. . VPLUS Form for Customer Number .66

Figure 3-12. . Program accessing two VPLUS forms .66

Figure 3-13. . Using VPLUS to Display Data .67

Figure 3-14. . Dictionary Definitions for Customer Forms to be Appended68
6

Figures
Figure 3-15. . VPLUS Form for Customer Header . 68

Figure 3-16. . VPLUS Form to be Appended . 68

Figure 3-17. . Program with VPLUS Freeze and Append. 69

Figure 3-18. . Result of VPLUS Freeze and Append . 71

Figure 3-19. . VPLUS Form for Main Menu . 72

Figure 3-20. . VPLUS Menu-Driven Program . 73

Figure 4-1. . Program to Add Data to a KSAM File . 76

Figure 4-2. . Adding Data to a KSAM File. 76

Figure 4-3. . Program to Update Data in a KSAM File. 77

Figure 4-4. . Updating Data in a KSAM File . 77

Figure 4-5. . Program to Add Data to an MPE File. 78

Figure 4-6. . Figure 4-6. Adding Data to an MPE File . 78

Figure 4-7. . Program to Update Records in an MPE File . 79

Figure 4-8. . Updating Records in an MPE File. 80

Figure 5-1. . Basic Prototype Program for Adding Data . 82

Figure 5-2. . Running the Basic Prototype Program . 82

Figure 5-3. . Prototype Program to Add Multiple Master Records 84

Figure 5-4. . Automatic Error Handling with VPLUS . 85

Figure 5-5. . Automatic Error Handling with VPLUS Append. 85

Figure 5-6. . Automatic Error Handling with VPLUS Append. 86

Figure 5-7. . Functional Prototype with Automatic Error Handling 87

Figure 5-8. . Prototype with Programmatic Data Validation . 89

Figure 5-9. . Automatic Error Handling, Duplicate Record . 90

Figure 5-10. . Automatic Error Handling on Frozen Screen. 90

Figure 5-11. . Automatic Error Handling on Appended Screen . 91

Figure 5-12. . Production Version of Prototype Program . 92

Figure 5-13. . Production Version of Prototype Program (Continued) 93

Figure 6-1. . Transact Data Structures . 95

Figure 6-2. . Comparable COBOL Data Structures . 96
7

Figures
Figure 6-3. . Comparable PASCAL Data Structures .97

Figure 6-4. . LIST(AUTO) Equivalent with LIST. .98

Figure 6-5. . VPLUS Default with no LIST= .98

Figure 6-6. . VPLUS Explicit LIST= .99

Figure 6-7. . LIST= Item Range .99

Figure 6-8. . IMAGE Explicit Item List .99

Figure 6-9. . COBOL Redefinition of Data Storage .100

Figure 6-10. . Transact Redefinition of Data Storage .100

Figure 6-11. . COBOL Array Definitions .101

Figure 6-12. . Comparable Transact Array Definitions .101

Figure 6-13. . LISTing Items From Multiple Datasets .102

Figure 6-14. . Use of ALIAS= for Items with Same Name. .103

Figure 6-15. . Use of SET(STACK) LIST .104

Figure 6-16. . LIST Register Map with Same Item Twice .105

Figure 6-17. . LIST Register After SET(STACK) .105

Figure 6-18. . Removing the Last Item Name from the LIST .105

Figure 6-19. . Use of Marker Items .106

Figure 6-20. . Illustration of Dynamic Data Storage .108

Figure 6-21. . Illustration of Dynamic Data Storage (Continued)109

Figure 7-1. . IMAGE Access Without the Dictionary .112

Figure 7-2. . IMAGE Access Without the Dictionary (Continued).113

Figure 7-3. . MPE Access Without the Dictionary .114

Figure 7-4. . KSAM Access Without the Dictionary .115

Figure 7-5. . VPLUS Access Without the Dictionary .116

Figure 8-1. . Part Number Balances by Location .118

Figure 8-2. . Part Number Open Orders .118

Figure 8-3. . Backlog Detail by Customer and Part .119

Figure 8-4. . Transact Program to Create Backlog Report .120

Figure 8-5. . Transact Program to Create Backlog Report (Continued)121
8

Figures
Figure 8-6. . Report/V Program to Create Backlog Report . 122

Figure 8-7. . Using Report/V Without the Dictionary . 124

Figure 8-8. . One Dimensional Array . 125

Figure 8-9. . One Dimensional Array (Continued) . 126

Figure 8-10. . One-Dimensional Record Array (Multiple Items) 128

Figure 8-11. . Two-Dimensional Array. 129

Figure 8-12. . Two-Dimensional Array (Continued) . 130

Figure 8-13. . Two-Dimensional Array with LET OFFSET . 132

Figure 8-14. . Two-Dimensional Array with LET OFFSET (Continued) 133

Figure 8-15. . Two-Dimensional Array, Special Use of LET OFFSET 134

Figure 8-16. . Two-Dimensional Array, Special Use of LET OFFSET (Continued) 135

Figure 8-17. . Calling a Subprogram . 138

Figure 8-18. . The Called Subprogram . 139

Figure 8-19. . Calling a Subprogram Using DATA= . 140

Figure 8-20. . The Called Subprogram with DATA=. 141

Figure 8-21. . Calling a COBOL Procedure . 142

Figure 8-22. . The Called COBOL Procedure. 143

Figure 8-23. . Adding a COBOL Procedure to an SL. 144

Figure 8-24. . Accessing Intrinsics with PROC . 146

Figure 9-1. . VPLUS Form to Maintain a Dataset . 152

Figure 9-2. . Dictionary Definitions for Customer VPLUS Form 153

Figure 9-3. . Basic Program to Maintain Customers (VPLUS). 154

Figure 9-4. . Rearranged Customer VPLUS Form . 155

Figure 9-5. . Dictionary Changes to Specify a Rearranged Screen. 156

Figure 9-6. . Screen Independence Via Indirect Referencing . 158

Figure 9-7. . Screen Independence, Customer Main Menu. 159

Figure 9-8. . Screen Independence, Marketing Customer Update 159

Figure 9-9. . Screen Independence, Finance Customer Update . 159

Figure 9-10. . Screen Independence, Accounts Payable Customer Update 160
9

Figures
Figure 9-11. . Screen Independence, Form Cross Reference File 160

Figure 9-12. . Customer Main Menu, Change Size of cust-no .161

Figure 9-13. . Marketing Customer Update, Change Size of cust-no161

Figure 9-14. . Finance Customer Update, Add, Change, Delete Elements 162

Figure 9-15. . AP Customer Update, Add, Change, Delete Elements162

Figure 9-16. . Changing dictionary definitions, add, change, Delete Element163

Figure 9-17. . Changing Dictionary Definitions .164

Figure 9-18. . Unloading the Database with DICTDBU .165

Figure 9-19. . Purging the Database with DBUTIL .166

Figure 9-20. . Creating the Database with DICTDBC .166

Figure 9-21. . Creating the Database with DICTDBC (Continued) 167

Figure 9-22. . Creating the New Database with DBUTIL .168

Figure 9-23. . Reloading the Database with DICTDBL .168

Figure 9-24. . Compiling Transact Program to Resolve Data Changes.169

Figure 9-25. . Providing User Exits .171

Figure 9-26. . Providing User Exits (Continued) .172

Figure 9-27. . User Exit cross Reference Table .172

Figure 9-28. . Setting up Transaction-Specific Data in the Dictionary.173

Figure 9-29. . User Exit Subprogram for Data Validation .174

Figure 9-30. . User-Modified Customer Main Menu, Adding an Element 175

Figure 9-31. . Dictionary Definitions of Modified Customer Main Menu175

Figure 9-32. . One Screen, Multiple Dataset Generic Transaction176

Figure 9-33. . Dictionary Definitions for One Screen, Multi Dataset Transaction.177

Figure 9-34. . Multiple Dataset Screen .178

Figure G-1. . The Database and Files Used Throughout this Document208
10

Preface
This manual is intended to be used as a supplement to the Transact Reference Manual,
part number 32247-90001. It illustrates many of the features of Transact through
programming examples, and is designed to serve as a task-oriented learning aid.

Readers are expected to be programmers who have a working knowledge of at least one
programming language. They should also understand the basic concepts of the IMAGE
database system, Dictionary/V and VPLUS.
11

12

1 Getting Started

This document is designed to give the novice Transact user a easy-to-use starting point
from which to quickly gain an understanding of the language. Beginning with a simple
three-line program to display the data in a dataset, we move on to introduce many of the
important concepts of Transact, always with simple, yet complete, programs.

Later sections point up some of the ways Transact can be most beneficially used to increase
programming efficiency.

The examples throughout this guide are all based on a single Image database, three MPE
data files, and a single VPLUS forms file. In other words, they represent a mini working
environment.

The database, files, and forms file have all be described in Dictionary/V. The appendices
provide complete examples of how to use the dictionary to describe the database, forms,
and files used throughout the guide.
13

Getting Started
Compiling and Executing Transact Programs
Compiling and Executing Transact Programs
Transact programs are written using an editor such as EDIT/V or TDP. The source is then
compiled using TRANCOMP and the resulting program is executed using TRANSACT.

If you are using DICTIONARY/V to hold the definition of your database, TRANCOMP
expects the dictionary to be called DICT and to reside in the PUB group. However, you can
override this by issuing a file equate before running TRANCOMP, such as:

 FILE DICT.PUB=dictname[.group]

Figure 1-1 shows the steps used to compile and execute a TRANSACT program. After the
discussion of compiling and executing programs in complete, the same program used in
Figure 1-1 is displayed in Figure 1-2, where it is accompanied by a line-by-line
explanation.
14 Chapter 1

Getting Started
Compiling and Executing Transact Programs
Figure 1-1. Compiling and Executing a TRANSACT Program

1 :file dict.pub=dict

2 :run trancomp.pub.sys

3 TRANSACT/3000 COMPILER HP32247A.02.02 - (C) Hewlett-Packard Co. 1984

4 SOURCE FILE> ex1

5 LIST FILE>

6 CONTROL>

7 TRANSACT/3000 COMPILER A.02.02 : TUE, MAR 19, 1985, 11:07 AM COMPILED

8 LISTING OF FILE EX1.HOWTO.MILLER PAGE 1

9 COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

10 1.000 system ex1,base=orders;

11 2.000 0000 list(auto) customer;

12 3.000 0005 output(serial) customer;

13 CODE FILE STATUS: NEW

14 0 COMPILATION ERRORS

15 PROCESSOR TIME=00:00:04

16 ELAPSED TIME=00:00:09

17 END OF PROGRAM

18 :run transact.pub.sys

19 TRANSACT/3000 HP32247A.02.02 - (C) Hewlett-Packard Co. 1984

20 SYSTEM NAME> ex1

21 PASSWORD FOR ORDERS>
Chapter 1 15

Getting Started
Compiling and Executing Transact Programs
Let’s look at what is happening in the above example on a line by line basis.

1 By default, the compiler TRANCOMP expects the user dictionary to be in
the PUB group of the logon account. We are changing the default to be the
logon group by issuing a file equation.

2 We run the Transact compiler to transform the source input into
intermediate code which can then be executed using the processor (see line
18 below).

4 The compiler asks for the name of the file containing the source code to be
compiled. The source code was previously entered by using a text editor
such as EDIT or TDP.

5 By default, the compiler listing goes to $STDLIST (the terminal in this
case). To override the default, we could have entered the name of a file or
directed the output to the printer.

6 The compiler has many options which can be entered at this prompt.
These options control, for example, whether an object file is created, the
format of the listing generated, ways to optimize code generated so as to
conserve resources, such as stack usage, and so forth.

No options are required. Quite often, you will probably not want to see the
compiled listing. You can keep the listing from printing by responding
NOLIST.

9 Since we entered no options, TRANCOMP uses the default options, which
are shown here. LIST means that a listing will be generated, CODE calls
for the generation of an object or code file, DICT specifies that a dictionary
is to be used to resolve file and element definitions, and ERRS means that
we want to see a listing of any compiler errors.

10 Lines 10 through 12 are the compiler listing. In this example, the listing
consists of the source line number, an internal location reference number
that is used when test modes are in effect to debug a program, and the
source text.

18 At this point we run TRANSACT. The compiler does not create a true
object or program file like that produced by COBOL or PASCAL. It creates
what is called an intermediate processor code file. TRANSACT interprets
the contents of this file and performs the functionality of our source
program.

20 The processor asks for the name used in the SYSTEM statement of the
source program. It uses this name to figure out the name of the MPE file
that contains the intermediate processor code. The MPE file name is
always in the format IPname where name is the name used in the
SYSTEM statement. For this system, the name is IPEX1.
16 Chapter 1

Getting Started
Reporting From a Dataset
Reporting From a Dataset
The first program we look at is a simple, three-line program to report the contents of a
dataset. Then we will expand this program and give it many more capabilities as the
section progresses. However, this should not be viewed as implying that Transact is a
report writer. Transact’s power lies in several areas: it provides a high-level interface for
database and file access, a high level interface with VPLUS for online database updating,
and an automatic error handling facility that makes prototyping of a system possible in a
very short time frame.

In addition, when Transact is interfaced with Report/V, it is possible to write complex
reports that no nonprocedural report writer can do. The procedural power of Transact is
used to retrieve and manipulate the data and then Report is used to format the data and
provide summarization as necessary. We will see an example of that later on.

Getting a Complete Listing

One of the simplest tasks to perform with TRANSACT is to display the contents of a data
set. The three-line program shown in Figure 1-2 lists the contents of a data set called
customer.

Figure 1-2. Program to Display a Dataset

1 The first statement in a Transact program is always a SYSTEM
statement, in which we give a name to the current program and identify
the database (and other files) to be used by the program. In this example,
the program is called EX1. This is the name we will provide to Transact
when we want to run the program. We also tell Transact that our Image
database is named ORDERS.

2 The Image dataset that we want to list is called customer. We don’t need to
tell Transact what data elements are in the dataset. LIST(AUTO)
instructs TRANCOMP to go to the dictionary and extract the names of all
the data elements for the named dataset. Appendix G lists the data
element or item content of each dataset and file used throughout this
manual, and also displays a diagram that shows the relationship of the
sets.

In this example, the LIST(AUTO) statement is equivalent to individually
listing each of the data elements as in:

list cust-no:

 name:

1 system ex1,base=orders;

2 list(auto) customer;

3 output(serial) customer;
Chapter 1 17

Getting Started
Reporting From a Dataset
 street-addr:

 city-state:

 zipcode;

A statement is terminated with a semicolon. Within the statement, item
names are separated by colons.

3 The OUTPUT verb sets up a data retrieval and reporting loop; the
(SERIAL) option specifies that the customer set be read serially and that
each item of each record be retrieved and reported.

The output from this program might look like the report below.

Figure 1-3. Report from a Single Dataset

Transact recognizes that our output is going to a terminal screen which can hold 24 lines,
each 80 characters long. Since the output is wider then 80 characters, the last column of
the report is on a second line.

If we had directed Transact to send our output to a 132 column printer, then all the data
would appear on a single line. After a full screen of the report is displayed on the terminal,
Transact pauses, waiting for us to tell it to continue. If we direct output to a printer, the
report is generated without any pauses between pages. Also, the report page length is
adjusted to the length of a page on the printer.

From the above example, we can see that Transact provides a simple format by default.
First, Transact reserves a column for each of the data elements in our report. It makes the
column either the width of the name of the data element or the actual element length,
whichever is longer. It adds one blank space between the columns. It makes up column
headings by using the names of the data elements.

Later on we will see examples of how we can control the format ourselves.

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

1 Able-1 Answering 2775 Park Av San Jose, Ca 95111

2 Grand Depression 27 E Main Santa Clara, Ca 95122

3 Rummage Palace 410 N 10th South Bend, Ind. 49146

4 Victorian Antiques 476 S 1st San Francisco, Ca. 94123

5 Vinicator Corp 1092 Steward Drive San Jose, Ca 95144

7 Frank Leary Racing 590 Laurelwood Mountain View, Ca. 92123

8 Professor Muldoon's 123 Main Street Balloon City, Md 12465

9 Bayliner Boats 1548 Maple San Jose, Ca. 95144

20 Natkin & Co 807 Aldo Av Redwood City, Ca. 93144

CONTINUE(Y/N)> N
18 Chapter 1

Getting Started
Sorting the Data
Sorting the Data
Let’s change the report to be all elements except cust-no so that it will fit on one line. Also,
we will sort the report by city-state.

Figure 1-4. Program to Sort and Report Data

2 Since we do not want access to all items from the customer set, we must
individually list the items that we do want.

3 Appending the SORT= phrase to the OUTPUT verb tells Transact to sort
the data in ascending sequence by the city-state item.

By default, the OUTPUT verb retrieves and reports all items that are
LISTed to the program.

An alternative way to do the report is:

Figure 1-5. Program to Sort Data and Use FORMAT for Reporting

3 Rather than specify through the LIST verb that a subset of the customer
items is to be retrieved, all the items are retrieved, but the FORMAT verb
specifies to OUTPUT that only the named subset is to be reported.

1 system ex2,base=orders;

2 list name:

street-addr:

city-state:

zipcode;

3 output(serial) customer,sort=(city-state);

1 system ex2a,base=orders;

2 list (auto) customer:

3 format name:

street-addr:

city-state:

zipcode;

4 output(serial) customer,sort=(city-state);
Chapter 1 19

Getting Started
Sorting the Data
Either of these programs produces a report that looks like the one below:

Figure 1-6. The Sorted Report on Customers

NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

Hold A Hill Planter 651 El Camino Dallas, Texas 45623

Balcon's Bridal 1775 Capitol Express Fresno, Ca. 98167

Hobie Cat 3410 Monterey Rd Gilroy, Ca. 96144

Furtado Inports 1396 E Santa Clara Los Angeles, Ca. 90189

Cobalt Boats 2250 San Ramon Louisville, Ky. 33246

Frank Leary Racing 590 Laurelwood Mountain View, Ca. 92123

Excl Chemical Co 630 Walsh New York, NY 44636

Bay Repro 123 Hospital Dr Palo Alto, Ca. 94967

Natkin & Co 807 Aldo Av Redwood City, Ca. 93144

Drama Books 511 Geary St. Redwood City, Ca. 92143

Victorian Antiques 476 S 1st San Francisco, Ca. 94123

Able-1 Answering 2775 Park Av San Jose, Ca 95111

Vinicator Corp 1092 Steward Drive San Jose, Ca 95144

Bayliner Boats 1548 Maple San Jose, Ca. 95144

Pour House 1475 Lipton Place San Jose, Ca. 95122

Grand Depression 27 E Main Santa Clara, Ca 95122

Saxon's 518 W San Carlos Santa Clara, Ca. 94168

Rummage Palace 410 N 10th South Bend, Ind. 49146

19 RECORDS FOUND

EXIT/RESTART(E/R)?>
20 Chapter 1

Getting Started
Sorting the Data
Formatting Options

The FORMAT verb also provides extensive reporting options for such things as field
editing, heading text, line breaks, column positioning, etc.

The following program illustrates a few of the options available on the FORMAT verb.

Figure 1-7. Options for FORMAT

3 $TODAY is a special name that means print today’s date. The edit options
specify to print the first three characters of the day of the week followed by
a period, then print the first three characters of the month, then the
numeric day of the month, and last the year.

4 Any literal to be displayed is placed in quotation marks. The COL= option
indicates an absolute report column number for the start of the display of
an item. In the example the literal value begins in column 30.

6 $PAGE is a special name that means print the current page number here.

7 The LINE= option indicates the number of lines to advance before
displaying the item that the option is attached to. In the example, the line
count is advanced by two lines. The TITLE option indicates that all report
definitions that precede this, including the current report item, make up a
report heading or title. These items appear at the top of each new page.

8 The NOHEAD option specifies that no column heading is to be generated
for this item. We have decided to provide our own column heading called
CUSTOMER.

Note that the LINE= option is used here to indicate that the report is to
advance two lines before printing the customer name.

9 This line prints the value of the street address immediately under the
name and suppresses the generation of a column heading.

1 system ex2b,base=orders;

2 list(auto) customer;

3 format $today,edit="3w. 3m DD, YYYY":

4 "LIST OF CUSTOMERS REPORT",col=30:

5 "PAGE",col=60:

6 $page:

7 "CUSTOMER",line=2,title:

8 name,nohead,line=2:

9 street-addr,line,nohead:

10 city-state,line,nohead:

11 zipcode,nohead,join=1;

12 output(serial) customer,sort=(city-state);
Chapter 1 21

Getting Started
Sorting the Data
10 Line 10 prints rint the city and state immediately under the street address
and suppresses generation of a column heading.

11 The JOIN= option specifies that this item is to be joined to the previous
item by leaving only one blank space between the two items. For example,
the data item CITY-STATE is 20 bytes long. It only takes 13 bytes to store
the value “San Jose, Ca.”. Thus there are 7 trailing blanks in the
CITY-STATE item for this value. JOIN=1 specifies that only one blank
should appear between the last nonblank character of CITY-STATE and
the first character of ZIP-CODE.

The program produces a report that looks like this:

Figure 1-8. Report Produced by FORMAT Options

Wed. Mar 30, 1988 LIST OF CUSTOMERS REPORT PAGE 1

CUSTOMER

Able-1 Answering

2775 Park Av

San Jose, Ca. 95111

Grand Depression

27 E Main

Santa Clara, Ca. 95122
22 Chapter 1

Getting Started
Sorting the Data
Selective Reporting

Now let’s see some examples of selective reporting. The first program below prints all
orders for a particular customer.

Figure 1-9. Program to Select Data for Reporting

3 The DATA verb is a data entry verb. When the program is run, the user is
prompted to enter the cust-no. By default, the prompt uses the name of the
element. This could be overridden here in several ways. For example, we
could define entry text in the dictionary to be used when prompting for
this field. We could also specify prompt text as a part of the DATA verb.

4 SET(MATCH) sets up a match criterion so that a record is selected only if
the cust-no is equal to the one entered into the program via line 3. This is
the default. We could also specify other match operators, such as LT (less
than), GT (greater than), NE (not equal), etc.

5 OUTPUT(SERIAL) specifies a serial read through the orderhead dataset.
When a cust-no matches the one entered by the user, then the record is
selected.

1 system ex3,base=orders;

2 list(auto) orderhead;

3 data cust-no;

4 set(match) list (cust-no);

5 output(serial) orderhead;
Chapter 1 23

Getting Started
Sorting the Data
Here is an example of running the program listed in Figure 1-9.

Figure 1-10. Report of Selected Data

Setting up match criteria and serially reading datasets and files will work against any
kind of file. However, in the case of Image, we can take advantage of search keys to retrieve
the data more rapidly. Cust-no happens to be a search key in the orderhead dataset. Thus
we can retrieve the data desired more rapidly if we change the program to the following:

Figure 1-11. Program to Select Data by Key Value

4 The retrieval is to be by the dataset key cust-no. The value of the cust-no is
requested from the user in line 3.

5 The retrieval is to be done by Image CHAINed reads.

These examples show how a single input value can be used to qualify or select data.
However, with a slight change, we can put the data selection logic into the hands of the
user. Doing so allows a single program to be used to select data on the basis of any number
of selection criteria entered by the user.

CUST-NO> 1

ORDER-NO: CUST-NO: ORDER-STATUS: ORDER-DATE:

po1001 1 o 850101

po1002 1 o 850203

po1003 1 o 850127

po1004 1 o 850301

po1005 1 c 850212

5 RECORDS FOUND

EXIT/RESTART(E/R)?>

1 system ex4,base=orders;

2 list(auto) orderhead;

3 data cust-no;

4 set(key) list (cust-no);

5 output(chain) orderhead;
24 Chapter 1

Getting Started
Sorting the Data
The following example is an expansion of the example in Figure 1-9.

Figure 1-12. Program to Let User Set Selection Criteria

We have combined lines 3 and 4 into a single DATA(MATCH) verb. This verb not only
provides data entry, but also recognizes a variety of relational conditions that can be
provided by the user at run time. These relational conditions are used as the selection
criteria for data retrieval.

The following examples demonstrate how to run the program and enter various relational
conditions.

Figure 1-13. User-Entered Selection Criteria

In this example, the user specified that cust-no 1 and 2 are to be retrieved. If data values
are provided without any relational conditions, equality is assumed. That is, retrieve the
data if it matches any of the data values provided in the list.

1 system ex4a,base=orders;

2 list(auto) orderhead;

3 data(match) cust-no:

order-status:

order-date;

4 output(serial) orderhead;

CUST-NO> 1,2

ORDER-STATUS>

ORDER-DATE>

ORDER-NO: CUST-NO: ORDER-STATUS: ORDER-DATE:

po1001 1 o 850101

po1002 1 o 850203

po1003 1 0 850127

po1004 1 0 850301

po1005 1 c 850212

po2001 2 h 880301

po2002 2 o 880312
Chapter 1 25

Getting Started
Sorting the Data
No relational conditions were provided for items order-status or order-date. Thus, no data
is excluded based on these two items.

Figure 1-14. More User-Entered Selection Criteria

In this example, the relational conditions input by the user specify that order data is to be
retrieved if the cust-no is greater than 0 and less than 2 and order-status is not equal to “c”
or “h” and order-date begins with 85.

CUST-NO> > 0 and < 2

ORDER-STATUS> <> c,h

ORDER-DATE> 85^^

ORDER-NO: CUST-NO: ORDER-STATUS: ORDER-DATE:

po1001 1 o 850101

po1002 1 o 850203

po1003 1 o 850127

po1004 1 o 850301
26 Chapter 1

Getting Started
Reporting from Multiple Datasets
Reporting from Multiple Datasets
The following program prints the customer’s name rather than the customer’s cust-no.
This requires data to be retrieved from both the customer set and the orderhead set.

Figure 1-15. Program to Report from Two Datasets

2 LIST(AUTO) reserves space to hold records from the customer set.

3 LIST(AUTO) reserves space to hold records from the orderhead set.

4 DATA asks the user to input the value of the cust-no to be retrieved.

5 SET(KEY) specifies that cust-no is a key element. For Image, this
establishes the value to be used for direct retrieval from a master dataset
and chained retrieval from a detail dataset.

6 GET CUSTOMER gets the customer record. The LIST=(@) option specifies
that we retrieve the entire record. This is equivalent to specifying
list=(cust-no,name,street-addr,city-state,zipcode);

7 The default option for the OUTPUT verb is to print all data items that we
have listed. To limit our printing, we must use the FORMAT verb first to
indicate which data items we want to print.

8 Since the program is accessing data from more than one dataset, we must
specify the subset of data that is to be retrieved by OUTPUT. The
LIST=(@) limits data retrieval to the elements in the orderhead dataset.

1 system ex5,base=orders;

2 list(auto) customer;

3 list(auto) orderhead;

4 data cust-no;

5 set(key) list (cust-no);

6 get customer,list=(@);

7 format name:

order-no:

order-status;

8 output(chain) orderhead,list=(@);
Chapter 1 27

Getting Started
Reporting from Multiple Datasets
Figure 1-16 shows the report produced by this program.

Figure 1-16. Report from Two Datasets

Now let’s create a program to retrieve all orders that are open, i.e., all orders that have
order-status equal to “o”. Also, let’s print out the details of each order. The operation
requires the use of a master and two detail sets: customer, orderhead, and orderline.

CUST-NO> 1

NAME: ORDER-NO: ORDER-STATUS:

Able-1 Answering po1001 o

Able-1 Answering po1002 o

Able-1 Answering po1003 o

Able-1 Answering po1004 o

Able-1 Answering po1005 c

5 RECORDS FOUND

EXIT/RESTART(E/R)?>
28 Chapter 1

Getting Started
Reporting from Multiple Datasets
Figure 1-17. Program to Report from Three Datasets

3 MOVE sets up the match value that we want for selection. We want to
select open orders only.

4 SET(MATCH) establishes the match criterion for the data retrieval verb
FIND (in line 5). The match element is order-status and the match value is
“o”.

5 The FIND verb retrieves all records from the orderhead set that match the
selection criterion of being an open order. The LIST=(@) specifies that all

1 system ex6,base=orders;

2 list(auto) orderhead;

3 move (order-status) = "o";

4 set(match) list (order-status);

5 find(serial) orderhead,list=(@)

,perform=get-orderdata;

6 exit;

7 get-orderdata:

8 level;

9 set(key) list (cust-no);

10 list(auto) customer;

11 get customer,list=(@);

12 set(key) list (order-no);

13 list(auto) orderline;

14 format name:

order-no:

line-no:

part-number:

quantity;

15 output(chain) orderline,list=(@)

,nocount;

16 end(level);

17 return;
Chapter 1 29

Getting Started
Reporting from Multiple Datasets
data elements in the orderhead dataset are to be retrieved (for each
record) that is selected. For each record that is retrieved, control is
transferred to the label get-orderdata as specified by the PERFORM=
option.

8 We use LEVEL to take advantage of some automatic housekeeping
provided by Transact. This statement and the END(LEVEL) statement on
line 16 specify a program area where data elements retrieved from data
sets are temporarily stored. When the level is ended, the storage area for
the elements is released. LEVELs will be discussed more in later sections.

9 Lines 9-11 setup and retrieve the customer record for the customer
number just retrieved from orderhead.

12 SET(KEY) sets up the retrieval key for order details.

13 LIST(AUTO) reserves the space to hold the orderline record.

14 FORMAT sets up the list of data items that we want to report via output.
The name comes from the customer dataset. All other items come from
orderline.

15 OUTPUT(CHAIN) retrieves the order details and prints the data. The
NOCOUNT option suppresses printing the number of records found.

16 END(LEVEL) releases the storage space for customer and orderline
records.

17 RETURN specifies that control is to be returned to the statement that
contains the PERFORM instruction. This is the FIND verb in statement 5.

This program produces the report shown below. Since the OUTPUT verb controls retrieval
of detail information for each order, the report is formatted with headings for each order
number.
30 Chapter 1

Getting Started
Reporting from Multiple Datasets
Figure 1-18. Report from Three Datasets

If we want to see the same data in a more typical report format, then we can use the other
reporting verb in Transact, which is the DISPLAY verb.

The following program demonstrates how the report above can be generated using this
verb.

NAME: ORDER-NO: LINE-NO: PART-NUMBER: QUANTITY: :

Able-1 Answering po1001 10 p121 75

Able-1 Answering po1001 20 p123 150

NAME: ORDER-NO: LINE-NO: PART-NUMBER: QUANTITY: :

Able-1 Answering po1002 10 p122 50

Able-1 Answering po1002 20 p124 10

Able-1 Answering po1002 30 p127 243

NAME: ORDER-NO: LINE-NO: PART-NUMBER: QUANTITY: :

Able-1 Answering po1003 10 p121 10

NAME: ORDER-NO: LINE-NO: PART-NUMBER: QUANTITY: :

Able-1 Answering po1004 10 p122 20

NAME: ORDER-NO: LINE-NO: PART-NUMBER: QUANTITY: :

Grand Depression po2003 10 p126 50

END OF PROGRAM

:

Chapter 1 31

Getting Started
Reporting from Multiple Datasets
Figure 1-19. Program to Create a Report with DISPLAY(TABLE)
1 system ex7,base=orders;

2 list(auto) orderhead;

3 move (order-status) = "o";

4 set(match) list (order-status);

5 find(serial) orderhead,list=(@)

,perform=get-orderdata;

6 exit;

7 get-orderdata:

8 level;

9 set(key) list (cust-no);

10 list(auto) customer;

11 get customer,list=(@);

12 set(key) list (order-no);

13 list(auto) orderline;

14 find(chain) orderline,list=(@)

,perform=displayit;

15 end(level);

16 return;

17 displayit:

18 display(table) name:

order-no:

line-no:

part-number:

quantity;

19 return;
32 Chapter 1

Getting Started
Reporting from Multiple Datasets
14 Replace the FORMAT and OUTPUT verbs with a FIND verb which
performs a routine to display the data.

18 DISPLAY displays the information. The TABLE option specifies that we
want Transact to print the headings at the start of each new page.

The items to be reported are specified as a part of the DISPLAY verb.

Our report now looks like this:

Figure 1-20. Report created by DISPLAY(TABLE)

Data selection can also be specified programmatically by using Transact’s IF verb. This
verb is very similar in functionality to the IF verb in languages such as COBOL and
Pascal.

The following program illustrates how IF can be used to select a report of order details by
order line, if the order line generates sales of over $1000. This program brings into play a
fourth dataset, PARTS. It also changes the order in which data is retrieved.

NAME: ORDER-NO: LINE-NO: PART-NUMBER: QUANTITY:

Able-1 Answering po1001 10 p121 75

Able-1 Answering po1001 20 p123 150

Able-1 Answering po1002 10 p122 50

Able-1 Answering po1002 20 p124 10

Able-1 Answering po1002 30 p127 243

Able-1 Answering po1003 10 p121 10

Able-1 Answering po1004 10 p122 20

Grand Depression po2003 10 p126 50

END OF PROGRAM

:

Chapter 1 33

Getting Started
Reporting from Multiple Datasets
Figure 1-21. Program to Select Data by the Conditional Verb IF

1 system ex7a,base=orders;

2 list(auto) orderhead;

3 move (order-status) = "o";

4 set(match) list (order-status);

5 find(serial) orderhead,list=(@)

,perform=get-orderdata;

6 exit;

7 get-orderdata:

8 level;

9 set(key) list (order-no);

10 list(auto) orderline;

11 find(chain) orderline,list=(@)

,perform=select-orderline;

12 end(level);

13 return;

14 select-orderline:

15 level;

16 set(key) list (part-number);

17 list(auto) parts;

18 get parts,list=(@);

19 if [(quantity) * (selling-price)] > 1000 then

20 do

21 set(key) list (cust-no);

22 list(auto) customer;

23 get customer,list=(@);

24 display(table) name:

order-no:

line-no:

part-number:

quantity:

selling-price;

25 doend;

26 end(level);

27 return;
34 Chapter 1

Getting Started
Reporting from Multiple Datasets
9 Lines 9-11 get the order information from orders before retrieving the
customer information.

16 Lines 16-18 set up and retrieve the parts record for the current part
number.

19 A further screening is done on the record.

20 If the record passes the screening in line 19, then lines 20-25 are
performed.

21 Lines 21-23 get the customer name.

An example of the report follows:

Figure 1-22. Data Selected with Conditional Verb IF

NAME: ORDER-NO: LINE-NO: PART-NUMBER: QUANTITY: SELLING-PRICE:

Able-1 Answering p01001 20 p123 150 20.00

Able-1 Answering p01002 10 p122 50 21.00

Able-1 Answering p01002 30 p127 243 50.00

Grand Depression p02003 10 p126 50 40.00
Chapter 1 35

Getting Started
Reporting from Multiple Datasets
36 Chapter 1

2 Using Character Mode I/O

The next logical step in learning about Transact is to look at how to maintain Image
datasets. This section therefore considers the three types of maintenance: adding data,
changing data, and deleting data.

As the programs that we examine develop in capability, we will also look at some of the
useful features of Transact, like the many ways to loop, or repeat, activity, and command
mode, which lets the user control program flow.
37

Using Character Mode I/O
Adding Data to a Dataset
Adding Data to a Dataset
This first program adds new customers to the customer set.

Figure 2-1. Program to Add Data to a Dataset

1 By including the database password (“;”) in the SYSTEM statement, we
avoid prompting the user for it.

2 The LEVEL verb sets up a looping structure which repeats whenever the
END verb is executed (line 5 in the example). Levels can be nested, as we
will see in later examples. What happens when the END verb is executed
is that Transact keeps track of the start of the code identified by each
LEVEL verb. Control returns to the starting point of the current level
whenever the END verb is executed.

3 The PROMPT verb sets up data storage and prompts the user, one data
item at a time, to enter values for a new record. Transact automatically
generates entry text to identify each item as it should be entered. By
default, the prompt is the name of the data item.

4 The PUT statement adds the record just entered to the customer set.

1 system ex8,base=orders(";");

2 level;

3 prompt cust-no:

name:

street-addr:

city-state:

zipcode;

4 put customer;

5 end;
38 Chapter 2

Using Character Mode I/O
Adding Data to a Dataset
Figure 2-2. Interactive Data Entry to a Dataset

The program repeats, or loops, indefinitely. When the last customer has been added, The
user stops the loop by entering the special character “]”. This character is reserved in
Transact to signify the end of user interaction.

The program called for the zipcode to be entered, but we see that the user was not
prompted for it. The reason is not a bug in the program. Instead, the comma entered
between the city and state sent an unexpected message to the Transact processor.

Transact allows user input to be stacked. That is, users who know what the program is
going to ask for can enter the data in advance. The default field separator for Transact is
the comma.

Thus our program did not work correctly. When we responded to the CITY-STATE prompt,
Transact associated San Jose with CITY-STATE and associated CA. with ZIPCODE.

The following program gets around this problem by changing the default field separator.

Figure 2-3. Changing the Default Input Field Delimiter

CUST-NO> 301

NAME> Joe's Bike Shop

STREET-ADDR> 1243 East Julian

CITY-STATE> San Jose, Ca.

CUST-NO>]

EXIT/RESTART(E/R)?>

END OF PROGRAM

:

1 system ex9,base=orders(";");

2 set(delimiter) "/";

3 level;

4 prompt cust-no:

name:

street-addr:

city-state:

zipcode;

5 put customer;

6 end;
Chapter 2 39

Using Character Mode I/O
Adding Data to a Dataset
2 The SET(DELIMITER) statement makes the field separator a slash rather
than the comma.

An example of a terminal session is shown in Figure 2-4.

Figure 2-4. Using a Programmer-Defined Field Delimiter

In the example above, we entered the data for the first customer one item at a time. The
data for the second customer was all entered on one line by separating the fields with
slashes. Note that Transact did not prompt for the data items that were stacked.

Let's run the program again to see what happens if the customer already exists.

Figure 2-5. Automatic Error Handling for a Duplicate Record

Transact provides us with an error message and restarts the Transaction at the point of
data entry. We can make the program more user friendly by checking to see whether the
customer exists before asking for the rest of the customer data. Then if an error occurs, all
the input will not have to be entered a second time. The program now looks like this:

CUST-NO> 303

NAME> John's Consulting

STREET-ADDR> 5489 El Camino

CITY-STATE> Santa Clara, Ca.

ZIPCODE> 95143

CUST-NO> 304/The Flower Shop/123 1st Street/San Jose, Ca./95125

CUST-NO>]

EXIT/RESTART(E/R)?>

END OF PROGRAM

:

CUST-NO> 301 |

| NAME> New name |

| STREET-ADDR> New street |

| CITY-STATE> New city |

| ZIPCODE> 123 |

| *ERROR:DUPLICATE KEY VALUE IN MASTER (IMAGE 43,7,CUSTOMER)|

| CUST-NO>] |

| EXIT/RESTART(E/R)?> |

| END OF PROGRAM |

| :
40 Chapter 2

Using Character Mode I/O
Adding Data to a Dataset
Figure 2-6. Program to Check Item Entered by User

4 The CHECKNOT=CUSTOMER causes the cust-no input to be validated
against the customer dataset to verify that an entry does not already exist.
If an entry does exist, Transact provides an error message and prompts for
input of cust-no again.

This results in the following dialog when the program is run and the user enters a
customer number that already exists:

Figure 2-7. User Interaction with Early Error Checking

1 system ex10,base=orders(";");

2 set(delimiter) "/";

3 level;

4 prompt cust-no,checknot=customer;

5 prompt name:

street-addr:

city-state:

zipcode;

6 put customer;

7 end;

CUST-NO> 301 |

| *ERROR: ENTRY ALREADY EXISTS (IMAGE 1,4,CUSTOMER)|

| CUST-NO> 306 |

| NAME> High Fashions |

| STREET-ADDR> 1 The Embarcadero |

| CITY-STATE> San Francisco, Ca. |

| ZIPCODE> 93245 |

| CUST-NO>] |

| EXIT/RESTART(E/R)?> |

| END OF PROGRAM |

| :
Chapter 2 41

Using Character Mode I/O
Adding Data to a Dataset
Updating Data in a Dataset

The programs that follow demonstrate three types of updating. These are changing data
for non-key items, changing data for key items, and deleting records.

Figure 2-8. Program to Update Data in a Dataset

3 LIST reserves space to hold the customer record. In the previous example
we let the PROMPT verb reserve space automatically as we went along.
LIST prepares a temporary storage area to receive data. When LIST is
used, DATA is used to prompt for data and receive the input. In these
simple programs, the two methods produce the same result. For more
complex data manipulation, setting up the temporary area before
prompting for data provides more flexibility.

5 Since the space has already been reserved, we use the DATA verb rather
than the PROMPT verb. Since we are updating existing records, we want
to verify that the cust-no that is entered already exists. If it does not exist,
an error message is generated and the prompt repeated.
CHECK=CUSTOMER does this for us.

6 SET(KEY) sets up the IMAGE key to be used to retrieve the customer
record.

8 DISPLAY displays the record. This gives the user a chance to see if this is
really the record he meant to update.

9 The SET option specifies that if the user presses [[RETURN]] in response
to any prompt, the original data for that item is retained. If we did not use
this option, then when the user pressed [[RETURN]] the item would

1 system ex11,base=orders(";");

2 set(delimiter) "/";

3 list(auto) customer;

4 level;

5 data cust-no,check=customer;

6 set(key) list (customer);

7 get customer;

8 display;

9 data(set) name:

street-addr:

city-state:

zipcode;

10 update customer;

11 end;
42 Chapter 2

Using Character Mode I/O
Adding Data to a Dataset
become spaces or zero, depending on whether it was an alphanumeric or
numeric item.

10 UPDATE moves the record into the customer set.

Figure 2-9. Interactive Updating of a Dataset

Note that a valid cust-no has to be entered before the program will continue.

In the above example, we corrected the zipcode, but left the other items as they were.

When we enter the same customer number a second time, Transact displays the updated
record, thereby giving us an easy way to verify the data just entered--or to further change
the record if necessary.

In the next program, we take advantage of the fact that Transact has to retrieve the
customer record when it verifies cust-no. In fact, this feature actually makes our program
less complicated and eliminates an extra database access.

CUST-NO> 305

*ERROR: NO ENTRY FOUND (IMAGE 17,9,CUSTOMER)

CUST-NO> 301

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

301 Joe's Bike Shop 1243 East Julian San Jose Ca.

NAME>

STREET-ADDR>

CITY-STATE>

ZIPCODE> 12345

CUST-NO> 301

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

301 Joe's Bike Shop 1243 East Julian San Jose 12345

NAME>]

EXIT/RESTART(E/R)?>

END OF PROGRAM

:

Chapter 2 43

Using Character Mode I/O
Adding Data to a Dataset
Figure 2-10. Program Using a Record Already Retrieved

6 We know that Transact already retrieved the record in order to do the
validation check in step 5. Therefore, by using the CURRENT option to get
the record out of the temporary storage area, we save both the physical
time of retrieving the record a second time and also simplify the program.

What if we need to change the cust-no to another value. Since this is a key item to IMAGE,
we have to treat it differently. One way is to delete the old record and add a new. The next
example shows this method.

1 system ex12,base=orders(";");

2 set(delimiter) "/";

3 list(auto) customer;

4 level;

5 data cust-no,check=customer;

6 get(current) customer;

7 display;

8 data(set) name:

street-addr:

city-state:

zipcode;

9 update customer;

10 end;
44 Chapter 2

Using Character Mode I/O
Adding Data to a Dataset
Figure 2-11. Program to Change a Key Field Value

8 The DELETE statement removes the old customer record.

9 This DATA statement overrides the default prompt for a data field,
substituting the prompt enter new cust-no. It also verifies that this new
customer does not already exist.

10 The temporary storage area still contains the values for the old customer
that we just deleted. The user may change any of these values or leave
them as is by pressing [[RETURN]] to any of the prompts.

11 The new customer record is added to the dataset.

1 system ex13,base=orders(";");

2 set(delimiter) "/";

3 list(auto) customer;

4 level;

5 data cust-no,check=customer;

6 get(current) customer;

7 display;

8 delete(current) customer;

9 data cust-no ("enter new cust-no"),checknot=customer;

10 data(set) name:

street-addr:

city-state:

zipcode;

11 put customer;

12 end;
Chapter 2 45

Using Character Mode I/O
Adding Data to a Dataset
Figure 2-12. Changing a Key Field Value

Most of the time this program works correctly. However, if a problem like a system crash
occurs immediately after the delete of the old customer and just before the add of the new
customer, we force the user to add the complete customer record after system recovery.

We could modify this program to first add the new customer and then delete the old, but to
do this would require setting up a data item within the program to hold the value of the old
cust-no while we added the new one. We may do this in a later example, but another way to
do this is to use the special verb REPLACE, which does the hard work for us. The following
program shows how to use REPLACE to update a key field.

CUST-NO> 301

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

301 The Cannery 123 Worthy Street Waltham, Ma. 46534

enter new cust-no> 303

*ERROR: ENTRY ALREADY EXISTS (IMAGE 1,16,CUSTOMER)

enter new cust-no> 302

NAME>

STREET-ADDR>

CITY-STATE>

ZIPCODE> 46533

CUST-NO> 302

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

302 The Cannery 123 Worthy Street Waltham, Ma. 46533

enter new cust-no> 301

NAME>

STREET-ADDR>

CITY-STATE>

ZIPCODE>

CUST-NO>]

EXIT/RESTART(E/R)?>

END OF PROGRAM

:

46 Chapter 2

Using Character Mode I/O
Adding Data to a Dataset
Figure 2-13. Program to Change Key Values Using REPLACE

5 The KEY option automatically sets up the IMAGE key, preparing us to
retrieve the customer record. When the KEY option can be used, the DATA
verb performs the input of data and also sets the IMAGE key for database
retrieval. Note that we are also supplying our own prompt.

8 DATA(UPDATE) tells Transact that we really do want to change a key
field in the record. CHECKNOT verifies that the new customer number
does not already exist in the dataset.

9 REPLACE causes the new customer record to be added before the old
customer record is deleted.

In this example, we did not allow any other fields to be updated. We could have, by
prompting with DATA(UPDATE) for each of the fields. In other words, when you use the
REPLACE verb, you must give Transact the new values, using DATA(UPDATE) or its
equivalent. Any data items not specified this way, retain the values from the original
record.

Figure 2-11 used the DELETE verb to change a key value. Figure 2-14 is an example of a
program that uses the DELETE verb to simply delete records.

1 system ex14,base=orders(";")

2 set(delimiter) "/";

3 list(auto) customer;

4 level;

5 data(key) cust-no ("enter old cust-no");

6 get customer;

7 display;

8 data(update) cust-no ("enter new cust-no")

,checknot=customer;

9 replace customer;

10 end;
Chapter 2 47

Using Character Mode I/O
Adding Data to a Dataset
Figure 2-14. Program to Delete Records

7 The INPUT verb is used to get a value from the user that is to be tested by
an IF statement. Here it gets verification from the user that this is the
customer to delete.

8 Whatever the user types in as a response to the INPUT verb is
automatically upshifted. Thus we check to see if the response is y or yes. If
so, the customer is deleted. If not, we print a confirmation that nothing
was done.

1 system ex15,base=orders(";");

2 list(auto) customer;

3 level;

4 data(key) cust-no ("enter cust-no to delete");

5 get customer;

6 display;

7 input "delete this customer?";

8 if input = "Y","YES"

9 then delete(current) customer

10 else display "customer not deleted";

11 end;
48 Chapter 2

Using Character Mode I/O
Adding Data to a Dataset
Figure 2-15. Interactively Deleting Records

enter cust-no to delete> 301

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

301 The Cannery 123 Worthy Street Waltham, Ma. 46533

delete this customer? n

customer not deleted

enter cust-no to delete> 301

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

301 The Cannery 123 Worthy Street Waltham, Ma. 46533

delete this customer? y

enter cust-no to delete> 301

*ERROR: NO ENTRY FOUND (IMAGE 17,10,CUSTOMER)

enter cust-no to delete>
Chapter 2 49

Using Character Mode I/O
Looping Structures
Looping Structures
In most of the examples, we have used LEVEL as the way to get a program to loop.
Transact also has the verbs REPEAT, UNTIL, and WHILE to control looping.

For example, we could have written the last program using REPEAT as follows:

Figure 2-16. Program Using REPEAT to Loop

7 The DO verb designates the start of a block of code that is to be executed
under the control of the current verb, in this case the REPEAT verb. The
block of code is terminated with a DOEND verb. This is line 16 in the
example. Thus lines 8 through 15 are executed under the control of the
REPEAT statement.

DO/DOEND can also be used with the WHILE and IF verbs.

Replacing REPEAT with WHILE, the program looks like: WHILE statement”

1 system ex16,base=orders(";");

2 list(auto) customer;

3 data cust-no ("enter cust-no to delete");

4 if (cust-no) <> 0

5 then

6 repeat

7 do

8 set(key) list (cust-no);

9 get customer;

10 display;

11 input "delete this customer?";

12 if input = "Y","YES"

13 then delete(current) customer

14 else display "customer not deleted";

15 data cust-no ("enter cust-no to delete");

16 doend

17 until (cust-no) = 0;
50 Chapter 2

Using Character Mode I/O
Looping Structures
Figure 2-17. Program Using WHILE to Loop

It is easier programmatically to use the LEVEL verb. However, when we do so, we ask the
user to do a bit more in order to stop things. The user must enter the character] to get the
loop to stop.

In order to use the simpler LEVEL structure and still keep things easy for the user, we
could put an extra test in our LEVEL program to accomplish the same thing as we did
using REPEAT or WHILE. The program now looks like this.

1 system ex17,base=orders(";");

2 list(auto) customer;

3 data cust-no ("enter cust-no to delete");

4 while (cust-no) <> 0

5 do

6 set(key) list (cust-no);

7 get customer;

8 display;

9 input "delete this customer?";

10 if input = "Y","YES"

11 then delete(current) customer

12 else display "customer not deleted";

13 data cust-no ("enter cust-no to delete");

14 doend;
Chapter 2 51

Using Character Mode I/O
Looping Structures
Figure 2-18. Program Using LEVEL to Loop

18 Programmatically, END(LEVEL) is the same as if the user entered the
special key]. It terminates the current level of the program.

The preceding three examples allow the user to get out of the loop by just pressing
[[RETURN]] in response to the cust-no prompt. That is, each program continues to loop
until the cust-no input is zero, which is the result of pressing [[RETURN]] in response to
the prompt for cust-no.

1 system ex15a,base=orders(";");

2 set(delimiter) "/";

3 list(auto) customer;

4 level;

5 data cust-no ("enter cust-no to delete");

6 if (cust-no)

0

7 then

8 do

9 set(key) list (cust-no);

10 get customer;

11 display;

12 input "delete this customer?";

13 if input = "Y","YES"

14 then delete(current) customer

15 else display "customer not deleted";

16 doend

17 else

18 end(level);
52 Chapter 2

Using Character Mode I/O
Command Mode
Command Mode
Much of the control of a program can be removed altogether from the program logic and
put into the hands of the user via built-in commands. The following program illustrates a
way to build the functions of adding, updating, and reporting customer data into a
program.

Figure 2-19. Program Using Command Mode for Add, Update, and Display

1 system ex18,base=orders;

2

3 $$help:

4 display "List of customer transactions:";

5 set(command) command;

6

7 $$add:

8 set(delimiter) "/";

9 prompt cust-no,checknot=customer;

10 prompt name:

11 street-addr:

12 city-state:

13 zipcode;

14 put customer;

15

16 $$update:

17 set(delimiter) "/";

18 list(auto) customer;

19 data cust-no,check=customer;

20 get(current) customer;

21 display;

22 data(set) name:

23 street-addr:

24 city-state:

25 zipcode;

26 update customer;

27

28 $$display:

29 list(auto) customer;

30 data cust-no;

31 set(key) list (cust-no);

32 output customer;
Chapter 2 53

Using Character Mode I/O
Command Mode
3 A command is identified to Transact by the special characters “$$”. In our
program we have identified four commands. These are: HELP, ADD,
UPDATE, and DISPLAY.

We can think of commands as entry points into a program. Typically a
command will do a unit of work or a transaction.

We do not need to do anything special to identify the end of a command
sequence. During the processing flow, when Transact detects the starting
point of a new command, it returns control to the user and reissues the
prompt > for the user to specify a new command or transaction.

Command processing removes a lot of the control over processing flow from
the program and puts it in the Transact processor.

5 SET(COMMAND) sets up a mini help system within the program. If the
user types HELP, we display the valid commands for this program.
Transact also does this automatically if the user types in the special
command COMMAND.

The following example shows the execution of this program.
54 Chapter 2

Using Character Mode I/O
Command Mode
Figure 2-20. Command Mode Interaction
> help

List of customer transactions:

HELP

ADD

UPDATE

> add

CUST-NO> 401

NAME> Brown Publishing

STREET-ADDR> 123 Wrong Street

CITY-STATE> Reno, Nevada

ZIPCODE> 36745

> update

CUST-NO> 401

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

401 Brown Publishing 123 Wrong Street Reno, Nevada 36745

NAME>

STREET-ADDR> 123 Right Street

CITY-STATE>

ZIPCODE>

>repeat display

CUST-NO> 401

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

401 Brown Publishing 123 Right Street Reno, Nevada| 36745

CUST-NO> 1

CUST-NO: NAME: STREET-ADDR: CITY-STATE: ZIPCODE:

1 Able-1 Answering 2775 Park Av San Jose, Ca 95111

CUST-NO>]

> exit

END OF PROGRAM

:

Chapter 2 55

Using Character Mode I/O
Command Mode
The user merely types in the command to be executed. After Transact finishes the
transaction, it prompts for the next command.

The user can cause a command to be iterative by prefacing the command with the special
command REPEAT as in REPEAT DISPLAY, where DISPLAY is one of the commands in
our program.

We can add one additional level of commands to our program, called a subcommand. For
example, we want to have the general facilities to ADD, UPDATE, and DISPLAY in our
program. But within each we want to build specific transactions such as adding customers,
adding part numbers, etc.

These subcommands are identified to Transact by the special character “$”.
Sub-commands must be placed after the command they apply to and are executed by the
user by typing in both the command and subcommand names. The following program and
sample execution demonstrate this.
56 Chapter 2

Using Character Mode I/O
Command Mode
Figure 2-21. Program with Subcommands
1 system ex19,base=orders;

2

3 $$help:

4 display "List of transactions:";

5 set(command) command;

6

7 $$add:

8 $help:

9 display "types of add maintenance:";

10 set(command) command(add);

11 $customer:

12 set(delimiter) "/";

13 prompt cust-no,checknot=customer;

14 prompt name:

15 street-addr:

16 city-state:

17 zipcode;

18 put customer;

19

20 $parts:

21 set(delimiter) "/";

22 prompt part-number,checknot=parts;

23 prompt description;

24 put parts;

25

26

27 $$update:

28 set(delimiter) "/";

29 list(auto) customer;

30 data cust-no,check=customer;

31 get(current) customer;

32 display;

33 data(set) name:

34 street-addr:

35 city-state:

36 zipcode;

37 update customer;

38

39 $$display:

40 list(auto) customer;

41 data cust-no;

42 set(key) list (cust-no);

43 output customer;
Chapter 2 57

Using Character Mode I/O
Command Mode
Figure 2-22. User Interaction with Subcommands

> help

List of transactions:

HELP

ADD

UPDATE

DISPLAY

> add help

types of add maintenance:

HELP

CUSTOMER

PARTS

> add parts

PART-NUMBER> p001

DESCRIPTION> air socket

> add customer

CUST-NO> 501

NAME> Foot Appeal

STREET-ADDR> 323 Bottom Ave.

CITY-STATE> Atlanta, Ga.

ZIPCODE> 23845

>

58 Chapter 2

3 Using VPLUS and IMAGE

This section illustrates how easily VPLUS forms can be used to maintain and get
information from an IMAGE dataset.
59

Using VPLUS and IMAGE
Adding Data to a Dataset
Adding Data to a Dataset
The SHOW FILE command in Dictionary/3000 reports the following for our form called
vcustomer and a dataset called customer. This form and dataset are used in the following
examples.

Figure 3-1. Dictionary Definitions of Customer Form and Dataset

The important things to know about the above are that for both form vcustomer and
dataset customer, the valid data items or elements are: cust-no, name, street-addr,
city-state, and zipcode. These elements occur in the same order in both the dataset and the

> show file

FILE vcustomer

FILE TYPE: RESPONSIBILITY:

VCUSTOMER FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CUST-NO 9 (4,0,4) CUST-NO

NAME X (20,0,20) NAME

STREET-ADDR X (20,0,20) STREET-ADDR

CITY-STATE X (20,0,20) CITY-STATE

ZIPCODE X (6,0,6) ZIPCODE

> show file

FILE customer

FILE TYPE: RESPONSIBILITY:

CUSTOMER MAST

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CUST-NO * 9 (4,0,4) CUST-NO

NAME X (20,0,20) NAME

STREET-ADDR X (20,0,20) STREET-ADDR

CITY-STATE X (20,0,20) CITY-STATE

ZIPCODE X (6,0,6) ZIPCODE
60 Chapter 3

Using VPLUS and IMAGE
Adding Data to a Dataset
form, and the parallel data items have compatible data types and lengths. All of the forms
in our formsfile are shown in appendix H. The form vcustomer is also shown below:

Figure 3-2. VPLUS Form for Adding Customer Data

The program below causes the VPLUS form vcustomer to be displayed on the terminal.
After the operator fills in the blanks and presses [[ENTER]], the data is added to the
customer dataset.

Figure 3-3. Program accessing a VPLUS form

1 The option VPLS= on the SYSTEM statement specifies that the name of
our formsfile is formfile.

3 GET(FORM) displays the form on the terminal, initialize the fields, and
accepts the data entered by the user.

The example above shows how simple it is to code a program for data entry. However, it
only allows someone to enter data one time and then it quits. As we have seen in previous
sections, there are several ways to get this program to loop until we are done entering
data.

First, we can make this a command-driven program. Figure 3-4 illustrates this. If the user
enters the command REPEAT ADD instead of just ADD, the program will execute lines 3-5
forever. Just as the special key] is used to stop processing in character mode, so the
function key [[F8]] is used to stop processing in block mode. Thus this program will
continue to execute until the user presses [[F8]].

vcustomer add a customer

number []

name []

address []

city,state []

zipcode []

1 system ex20,base=orders,vpls=formfile;

2 list(auto) customer;

3 get(form) vcustomer,init;

4 put customer;
Chapter 3 61

Using VPLUS and IMAGE
Adding Data to a Dataset
Figure 3-4. Using Command Mode with VPLUS for Looping

Another way to get the program to loop is to build the repeating structure into the
program, using either a LEVEL or a REPEAT statement. The following programs show
these two possibilities.

Figure 3-5. Using LEVEL with VPLUS for Looping

Lines 3-5 of the above program execute until the user presses [[F8]].

Figure 3-6. Using REPEAT with VPLUS for Looping

The user can terminate this program either by pressing [[ENTER]] without entering any
data or by pressing [[F8]]. However, [[ENTER]] causes Transact to create a blank record
with a zero customer number.

Since we probably do not want such a record in the dataset, we should change the above
program as shown in Figure 3-7 to make it more practical.

1 system ex21,base=orders,vpls=formfile;

2 $$add:

3 list(auto) customer;

4 get(form) vcustomer,init;

5 put customer

1 system ex22,base=orders,vpls=formfile;

2 level;

3 list(auto) customer;

4 get(form) vcustomer,init;

5 put customer;

1 system ex23,base=orders,vpls=formfile;

2 list(auto) customer;

3 repeat

4 do

5 get(form) vcustomer,init;

6 put customer;

7 doend

8 until (cust-no) = 0;

9 exit;
62 Chapter 3

Using VPLUS and IMAGE
Adding Data to a Dataset
Figure 3-7. Preventing a Blank Record
1 system ex24,base=orders,vpls=formfile;

2 list(auto) customer;

3 repeat

4 do

5 get(form) vcustomer,init;

6 if (cust-no)

0

7 then put customer;

8 doend

9 until (cust-no) = 0;

10 exit;
Chapter 3 63

Using VPLUS and IMAGE
Updating Data in a Dataset
Updating Data in a Dataset
Now that we have added data to the customer dataset, how do we go about updating this
data? This section shows two approaches. The only difference between the two is the way
in which we ask for input of the cust-no.

The first example uses the form vcustomer for both input of the cust-no and input of the
data. The second example sets up a separate form vcustno for entering the customer
number. It then uses form vcustomer for data entry.

Figure 3-8. Using LEVEL with VPLUS to Update Data

4 First, GET(FORM) gets the cust-no for the record that we want to update.

5 SET establishes the key or IMAGE path into the customer dataset to
retrieve the record to be updated.

6 GET retrieves the record from the customer dataset.

7 PUT(FORM) displays the information that currently exists for the
customer on the screen. At this point the operator changes the field(s) that
need to be updated.

8 GET(FORM) accepts the data from the screen.

9 UPDATE puts the record in the dataset customer.

As in previous examples, we can exit the LEVEL repeating loop at any time merely by
pressing [[F8]].

This same program could be coded using the REPEAT construct as follows:

1 system ex25,base=orders,vpls=formfile;

2 level;

3 list(auto) customer;

4 get(form) vcustomer,init;

5 set(key) list (cust-no);

6 get customer;

7 put(form) vcustomer;

8 get(form) vcustomer;

9 update customer;
64 Chapter 3

Using VPLUS and IMAGE
Updating Data in a Dataset
Figure 3-9. Using REPEAT with VPLUS to Update Data

6 The IF statement instructs Transact to quit if a customer number is not
input. If one is input, then the DO/DOEND block of statements retrieve
the information, display it on the screen, accept the changed data, and
update the dataset.

As was indicated earlier, another way to get the cust-no is to introduce a separate form to
ask for it first. Let's assume that we have set up this second form in the dictionary and in
the formsfile. The dictionary listing for this form and the format of the form are shown
below.

Figure 3-10. Dictionary Definition of Customer Number Form

1 system ex26,base=orders,vpls=formfile;

2 list(auto) customer;

3 repeat

4 do

5 get(form) vcustomer,init;

6 if (cust-no) <> 0

7 then

8 do

9 set(key) list (cust-no);

10 get customer;

11 put(form) vcustomer;

12 get(form) vcustomer;

13 update customer;

14 doend;

15 doend

16 until (cust-no) = 0;

show file

FILE vcustno

FILE TYPE: RESPONSIBILITY:

VCUSTNO FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CUST-NO 9 (4,0,4) CUST-NO
Chapter 3 65

Using VPLUS and IMAGE
Updating Data in a Dataset
Figure 3-11. VPLUS Form for Customer Number

To implement this, we need only change the name of the form in line 5 of Figure 3-9 above
and we now have a program working with two forms.

Figure 3-12. Program accessing two VPLUS forms

5 GET(FORM) displays the new form and accepts the cust-no from the user.

11 PUT(FORM) replaces the form vcustno with the form vcustomer, displays
the current customer data, and allows the user to change it.

vcustno update customer data

enter customer number to update []

1 system ex27,base=orders,vpls=formfile;

2 list(auto) customer;

3 repeat

4 do

5 get(form) vcustno,init;

6 if (cust-no) <> 0

7 then

8 do

9 set(key) list (cust-no);

10 get customer;

11 put(form) vcustomer;

12 get(form) vcustomer;

13 update customer;

14 doend;

15 doend

16 until (cust-no) = 0;
66 Chapter 3

Using VPLUS and IMAGE
Reporting Data from a Dataset
Reporting Data from a Dataset
Now let’s use VPLUS to display data from the customer dataset.

One way to display the data is to display a record at a time using the same form we used to
add and update data.

The following program illustrates this.

Figure 3-13. Using VPLUS to Display Data

3 The FIND verb can also be a looping verb. In this example, it serially
retrieves each record from the customer dataset. As each record is
retrieved, the PERFORM= option passes control to the routine at label
display-record. When the RETURN is encountered, control passes back to
the FIND.

6 PUT(FORM) displays the information to the screen. The WAIT= option
causes the program to wait until the user has pressed any of the function
keys before continuing with the next record. The WINDOW= option
displays a message in the VPLS window area to remind the user that he
must press one of the function keys before the program will continue.

Another way to display the information back to the terminal is to format the data to look
more like a report, but yet remain within VPLUS. To do this, we need to set up a form for
the report heading information, a form to hold the detail information for each record, and a
counter to increment so that we know when we have filled the screen.

Up until now, we have accepted the default selection as to what data elements are
extracted and reported. Now we will override the default selection by using a qualifier on
the verb to specify which subset of data we want.

The new forms we need are called vcustomerrh, and vcustomerrd. Their definition in the
dictionary and the format of the forms are shown below.

1 system ex28,base=orders,vpls=formfile;

2 list(auto) customer;

3 find(serial) customer,perform=display-record;

4 exit;

5 display-record:

6 put(form) vcustomer,wait=

,window=("press f1-f7 to continue");

7 return;
Chapter 3 67

Using VPLUS and IMAGE
Reporting Data from a Dataset
Figure 3-14. Dictionary Definitions for Customer Forms to be Appended

Figure 3-15. VPLUS Form for Customer Header

Figure 3-16. VPLUS Form to be Appended

We want to FREEZE the report heading on the screen and APPEND each of the customer
records. When the screen is full, which in this example is after displaying 5 customer
records, we want to pause until the person requesting this report is ready to go on.

The following program illustrates these points.

>show file

FILE vcustomerrh

FILE TYPE: RESPONSIBILITY:

VCUSTOMERRH FORM

> show file

FILE vcustomerrd

FILE TYPE: RESPONSIBILITY:

VCUSTOMERRD FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CUST-NO 9 (4,0,4) CUST-NO

NAME X (20,0,20) NAME

STREET-ADDR X (20,0,20) STREET-ADDR

CITY-STATE X (20,0,20) CITY-STATE

ZIPCODE X (6,0,6) ZIPCODE

customer address

[] []

[]

[]

[]
68 Chapter 3

Using VPLUS and IMAGE
Reporting Data from a Dataset
Figure 3-17. Program with VPLUS Freeze and Append

2 We define an element local to this program called counter. It is an integer
that can store a 4-digit number, e.g. <= 9999.

3 LIST includes this new element in the list of variables that our program
can access. The INIT option initializes its value to zero.

1 system ex29,base=orders,vpls=formfile;

2 define(item) counter i(4);

3 list counter,init;

4 list(auto) customer;

5 put(form) vcustomerrh,freeze;

6 find(serial) customer,list=(cust-no:zipcode)

,perform=display-record;

7 if (counter) > 0

8 then update(form) vcustomerrd,list=()

,wait=

,window=("press f1-f7 to
continue");

9 exit;

10 display-record:

11 let (counter) = (counter) + 1;

12 if (counter) = 5

then

do

13 let (counter) = 0;

14 put(form) vcustomerrd,wait=

,window=("press f1-f7 to continue")

,append;

doend

15 else put(form) vcustomerrd,window=(" ")

,append;

16 return;
Chapter 3 69

Using VPLUS and IMAGE
Reporting Data from a Dataset
5 PUT(FORM) displays the report heading form to the terminal. The
FREEZE option freezes the form on the terminal so that the scrolling
portion of the screen begins below this form.

6 The LIST= option designates the items in the program list that the FIND
verb is to retrieve. If we didn't do this, it would attempt to retrieve the
item counter from dataset customer and would be unable to do so. The
default for IMAGE data access verbs is to retrieve all items known to the
program via the LIST verb unless this is overridden on the data access
verb with the LIST= option. We will see more of this in the section on data
structures.

The colon between cust-no and zipcode specifies a range of data items. In
this example, we are telling Transact to limit itself to the range of items
starting with cust-no and ending with zipcode.

7 Here we have ended the display of all full screens of customer data.
Counter will be greater than zero if we have displayed another customer
since the last time the screen was entirely filled. If so, then we must pause
one more time to give the user the opportunity to review this data before
going on. Lines 7 and 8 take care of the last set of records if there are
fewer than five.

8 We only want to update the VPLUS message window and wait for a
response. We save data transmission time by not re-sending the form data
to the screen, thus the LIST=() option which specifies a null item list.

12 If this customer fills the screen, then wait for the user to indicate that he is
ready to continue, otherwise append this new customer to the screen and
go on.

This program produces the screen output shown below.
70 Chapter 3

Using VPLUS and IMAGE
Reporting Data from a Dataset
Figure 3-18. Result of VPLUS Freeze and Append
customer address

[14] [Furtado Inports]

[1396 E Santa Clara]

[Los Angeles, Ca.]

[90189]

[15] [Saxon's]

[518 W San Carlos]

[Santa Clara, Ca.]

[94168]

[16] [Pour House]

[1475 Lipton Place]

[San Jose, Ca.]

[95122]

[18] [Excl Chemical Co]

[630 Walsh]

[New York, NY]

[44636]

[19] [Hold A Hill Planter]

[651 El Camino]

[Dallas, Texas]

[45623]

press f1-f7 to continue
Chapter 3 71

Using VPLUS and IMAGE
Setting Up a Menu-Driven System
Setting Up a Menu-Driven System
Now all we need to do is tie the pieces together with a menu and we have a complete
system for adding, updating, and reporting data. A mainmenu form does the trick. The
format of the form is:

Figure 3-19. VPLUS Form for Main Menu

Now we can integrate the individual programs we wrote earlier into a program driven by
the main menu. Depending on the choice entered on the mainmenu, the program will
execute the code to add, update, or report a customer.

The program might look like the one below.

mainmenu Customer module

f1 = add customer

f2 = update customer

f3 = report customer

F8 = exit
72 Chapter 3

Using VPLUS and IMAGE
Setting Up a Menu-Driven System
Figure 3-20. VPLUS Menu-Driven Program

1 system ex30,base=orders,vpls=formfile;

2 list(auto) customer;

3 level;

4 get(form) mainmenu,f1=add-customer

,f2=update-customer

,f3=report-customer;

5 end;

6 add-customer:

7 get(form) vcustomer;

8 put customer;

9 end;

10 update-customer:

11 get(form) vcustno;

12 set(key) list (cust-no);

13 get customer;

14 put(form) vcustomer;

15 get(form) vcustomer;

16 update customer;

17 end;

18 report-customer:

19 get(form) vcustno;

20 set(key)list (cust-no);

21 get customer;

22 put(form) vcustomer,wait=

23 ,window=("press f1-f7 to continue");

24 set(form) vcustomer,window=(" ");

25 end;
Chapter 3 73

Using VPLUS and IMAGE
Setting Up a Menu-Driven System
4 The GET statement drives the program. The mainmenu is displayed and,
depending on the function key entered, various routines are executed.
When any of the three tasks finishes, END returns control to the first line
in the present level, which is line 4.

The options F1=, F2=, and F3= specify a conditional transfer of control
depending on the function key pressed. This is like a GOTO rather than a
PERFORM. However, by proper use of the LEVEL and END, the logic flow
can be made to resemble a PERFORM more closely.

5 END returns control to the start of the current level which means we
return to statement 4.

6 The code to add a customer executes when the user presses [[F1]].

9 END returns control to the start of the current level which means we
return to statement 4.

10 The code to update a customer executed when the user presses [[F2]].

17 END returns control to the start of the current level which means we
return to statement 4.

18 The code to report a customer executes when the user presses [[F3]].

26 END returns control to the start of the current level which means we
return to statement 4.

By default, if [[F8]] is pressed, we terminate the program.
74 Chapter 3

4 Using KSAM and MPE

The examples in this section explain how to use Transact to maintain KSAM and MPE
files. They assume that the KSAM and MPE file definitions have been added to a
Dictionary/V dictionary. Appendix G contains file definitions for the file referenced by
these examples.
75

Using KSAM and MPE
Using KSAM
Using KSAM

Adding Records

Adding a record to a KSAM file uses the same verbs and syntax as adding a record to an
IMAGE dataset. Compare this program with Ex9 in Figure 2-3.

Figure 4-1. Program to Add Data to a KSAM File

1 The KSAM= option names the KSAM file to be accessed. The default
access is READ only. The most inclusive capability is UPDATE.

Figure 4-2. Adding Data to a KSAM File

1 system ex32,ksam=kcust(update);

2 set(delimiter) "/";

3 level;

4 prompt cust-no;

5 prompt name;

6 put kcust;

7 end;

CUST-NO> 301

NAME> Wheeler Dealer

CUST-NO> 301

NAME> My Place

*ERROR: DUPLICATE KEY VALUE (FSERR 171) (KSAM 171,4,KCUST)

CUST-NO>
76 Chapter 4

Using KSAM and MPE
Using KSAM
Figure 4-3. Program to Update Data in a KSAM File

10 In the KSAM file, both data items are key fields. Therefore, to change a
field we need to add a new record and delete the old. We can code the steps
ourselves, or we can take advantage of the REPLACE capability in
Transact. SET(UPDATE) prepares to let Transact do the delete and add
for us. In this statement, we tell Transact each field that we are going to
update.

11 REPLACE does the add and delete, thereby changing the value for name
to the new value we input.

Figure 4-4. Updating Data in a KSAM File

1 system ex33,ksam=kcust(update);

2 set(delimiter) "/";

3 list(auto) kcust;

5 data cust-no;

6 set(key) list (cust-no);

7 get kcust;

8 display;

9 data name;

10 set(update) list(name);

11 replace kcust;

12 end;

CUST-NO> 301

CUST-NO: NAME:

301 Wheeler Dealer

NAME> My Place

CUST-NO> 301

CUST-NO: NAME:

301 My Place

NAME>]
Chapter 4 77

Using KSAM and MPE
Using MPE Files
Using MPE Files

Adding Records

Adding a record to an MPE file uses the same verb and syntax as does adding a record to
an IMAGE dataset or a KSAM file. We have the option of using LIST with DATA or just
using PROMPT alone.

Figure 4-5. Program to Add Data to an MPE File

1 The FILE= option names the MPE file we are going to access. The default
access is READ. UPDATE provides the most complete update capability to
files.

Figure 4-6. Figure 4-6. Adding Data to an MPE File

1 system ex34,file=batchinv(update);

2 list(auto) batchinv;

3 level;

4 data part-number:

5 location:

6 quantity;

7 put batchinv;

PART-NUMBER> p101

LOCATION> bin1

INV-QUANTITY> 100

PART-NUMBER> p102

LOCATION> bin2

INV-QUANTITY> 105

PART-NUMBER>]
78 Chapter 4

Using KSAM and MPE
Using MPE Files
Updating Records

Figure 4-7. Program to Update Records in an MPE File

5 Since there is no chained access to MPE files, we set up a match criterion
to match on part-number.

6 FIND(SERIAL) reads the file serially. For each part-number that matches
the part-number value specified in line 5, the check-it-out routine is
performed.

19 Updating a record in an MPE file uses the same verb and syntax as
updating a record in an IMAGE dataset.

1 system ex35,file=batchinv(update);

2 list(auto) batchinv;

3 level;

4 data part-number;

5 set(match) list (part-number);

6 find(serial) batchinv,perform=check-it-out;

7 end;

8 exit;

9

10 check-it-out:

11

12 display;

13 input "is this the record to update?";

14 if input="Y","YES"

15 then

16 do

17 data(set) location:

18 quantity;

19 update batchinv;

20 doend;

21 return;
Chapter 4 79

Using KSAM and MPE
Using MPE Files
Figure 4-8. Updating Records in an MPE File

Direct access to an MPE file is possible if the MPE record number is known. Use the FIND
verb with both the DIRECT and RECNO= options to accomplish this.

PART-NUMBER> p102

PART-NUMBER: LOCATION: QUANTITY:

p102 bin2 105

is this the record to update? y

LOCATION>

INV-QUANTITY> 110

PART-NUMBER> p102

PART-NUMBER: LOCATION: QUANTITY:

p102 bin2 110

is this the record to update? n

PART-NUMBER>]
80 Chapter 4

5 Automatic Error Handling and
Prototyping

This section will demonstrate how easy it is to develop a working prototype of an
application system by taking advantage of Transact’s power, in particular the automatic
error handling facility.

We will take a particular example and follow it from the initial prototype attempt until the
finished product emerges.

Usually, when prototyping of a system is discussed, it is thought of in terms of throwaway
code. This need not be the case with Transact. Unlike most other application development
tools, Transact is a complete procedural language. However, as an integral part of the
language, there are high level, more nonprocedural types of constructs that provide the
true power of the language.

These high-level constructs and facilities can be used to advantage to produce a working
prototype of a system. The prototype can then be reviewed with and even developed with
the user community until mutual agreement has been reached as to the functionality of
the system and its appearance to the user.

Because agreement can be reached much more quickly than with traditional languages,
prototyping is a viable tool to help get the users more involved. At the same time, the effort
of the application developer is not wasted because the code does not need to be thrown
away as the production system is developed. Instead, much of the code can be retained as
is, and only those procedures where Transact’s automatic facilities do not provide the
required control need to be expanded to provide the necessary control. The emphasis on
expansion is there because typically the code is not rewritten at this point, but additional
options are added to existing Transact constructs and additional code is written to provide
the necessary control.

The example that we will develop in this chapter consists of providing the functionality to
add an order to the database. We could prototype the database design, forms design, etc.,
as well as the program design, but let's assume that there are valid reasons to have the
database design remain as it is. We will concentrate on how we present data to the user
and get data from the user.

This program is our first attempted solution:
81

Automatic Error Handling and Prototyping
Figure 5-1. Basic Prototype Program for Adding Data

This program would not be considered a good working version, since it will only add one
order. It must be restarted to add another order. However, the program does allow us to
demonstrate or prototype for our user the data flow for adding an order to the database.

The program first displays and inputs data using the vorderhead form (line 4), then adds
this data to dataset orderhead (lines 5 to 7).

It will then repeatedly (line 8) use form vorderdetail to display, input (line 9), and add data
to dataset orderline (lines 10 to 13) each time we press [[ENTER]]. A new vorderdetail
form is put onto the screen for each line of the order. Each form is appended to the
preceding form. An example of entering an order with three lines follows:

Figure 5-2. Running the Basic Prototype Program

1 system ex36,base=orders,vpls=formfile;

2 list(auto) vorderhead;

3 list(auto) vorderline;

4 get(form) vorderhead,init,freeze;

5 put orderhead,list=(order-no,

6 cust-no,

7 order-status,

7.01 order-date);

8 level;

9 get(form) vorderline,init,append;

10 put orderline,list=(order-no,

11 line-no,

12 part-number,

13 quantity);

vorderhead order data

order number [123] customer [1] status [0] date [850101]

line number [1] part-number [p001] quantity [12]

line number [2] part-number [p002] quantity [12

line number [3] part-number [p003] quantity [20]

line number [] part-number [] quantity []
82 Chapter 5

Automatic Error Handling and Prototyping
When we have entered the last order line, pressing [[F8]] gets us back to the point where
we can either exit the program or restart it.

Thus with just a small amount of code, we can generate a program that adds data to two
datasets. We can use this program to verify with the user that we are creating the correct
solution and we can also use this program to enter data that can be used to test other
modules within the system.

Perhaps our prototype should have started with a version that could add more than one
order to the database. Even so, the first version is important to emphasize how much can
be accomplished in Transact with a small amount of code.

A prototyping version which will add more than one order follows:
Chapter 5 83

Automatic Error Handling and Prototyping
Figure 5-3. Prototype Program to Add Multiple Master Records

Here we have added an additional level (line 3.1) to our program to control entering each
order; we still retain the level that controls adding order lines.

We also added a test to see whether the [[ENTER]] key was last pressed (lines 9.1 to 9.2) or
whether one of the function keys was pressed (pressing [[ENTER]] sets 0 to lastkey;
pressing any function key sets the number of that key to lastkey). Pressing any of the
function keys (lines 14 to 18) is our way of indicating that all order lines have been entered
and we want to enter a new order now.

1 system ex37,base=orders,vpls=formfile;

1.1 define(item) lastkey i(4):

1.2 enter i(4),init=0;

1.3 list lastkey:

1.4 enter;

2 list(auto) vorderhead;

3 list(auto) vorderline;

3.1 level;

4 get(form) vorderhead,init,freeze;

5 put orderhead,list=(order-no,

6 cust-no,

7 order-status,

7.01 order-date);

8 level;

9 get(form) vorderline,init,append,fkey=lastkey;

9.1 if (lastkey) = (enter)

9.2 then

10 put orderline,list=(order-no,

11 line-no,

12 part-number,

13 quantity)

14 else

15 do

16 set(form) vorderline,clear;

17 end(level);

18 doend;
84 Chapter 5

Automatic Error Handling and Prototyping
In order to find out what key was pressed by the user, line 9 was modified by adding an
option to tell Transact where to put this information and lines 1.1 to 1.4 were added to
define the variable lastkey.

As a side note, the variable enter was set up to improve program readability when
checking if [[ENTER]] was pressed.

What happens if we enter some invalid data using this prototype? Transact's automatic
error handling takes over and redisplays the screen, while asking for new input. It also
attempts to let us know what caused the error. For example, cust-no is a numeric field. If
non-numeric data is entered, Transact displays an error message in the VPLUS window,
pauses for a few seconds to give us the opportunity to read the message, and then
redisplays the screen that was in error for us to enter data again. The following screen
illustrates that process.

Figure 5-4. Automatic Error Handling with VPLUS

Things are more complicated if an error occurs on form vorderline because it is displayed
using the APPEND option. After Transact displays the error message, the new form for
data entry is appended to the last form. Thus the line in error remains on the screen and a
new empty form for correcting the error is added to the screen. The two example screens
below illustrate this point.

Figure 5-5. Automatic Error Handling with VPLUS Append

vorderhead order data

order number [123] customer [CUST1] status [0] date [850101]|

*ERROR: ENTRY NOT NUMERIC (USER 1,10)

vorderhead order data

order number [123] customer [1] status [0] date [850101]|

line number [1] part-number [PART1] quantity [10]

*ERROR:THERE IS NO CHAIN HEAD (MASTER ENTRY) FOR PATH 2 (IMAGE 102,32,ORDERLIN
Chapter 5 85

Automatic Error Handling and Prototyping
Figure 5-6. Automatic Error Handling with VPLUS Append

Up to this point, no order line has been added to the database. The valid line number,
part-number, and quantity would be entered into the blank form line.

After you have a good understanding of the VPLUS interface using Transact, you will
discover that there are ways to get automatic error handling to do what you want it to,
even when using the APPEND and FREEZE options. The following version of our program
demonstrates this. No functionality has been added. Only code to make automatic error
handling properly display the correct screen format has been added.

vorderhead order data

order number [123] customer [CUST1] status [0] date [850101]|

line number [1] part-number [PART1] quantity [10]

line number [] part-number [] quantity []
86 Chapter 5

Automatic Error Handling and Prototyping
Figure 5-7. Functional Prototype with Automatic Error Handling

1 system ex38,base=orders,vpls=formfile;

1.1 define(item) lastkey i(4):

1.2 enter i(4),init=0;

1.3 list lastkey:

1.4 enter;

2 list(auto) vorderhead;

3 list(auto) vorderline;

3.01 set(form) vorderhead,init,list=();

3.1 level;

4 get(form) vorderhead,fkey=lastkey;

4.1 if (lastkey) <> (enter)

4.2 then

4.3 do

4.4 set(form) vorderhead,init,list=();

4.5 end(level);

4.6 end;

4.7 doend;

5 put orderhead,list=(order-no,

6 cust-no,

7 order-status,

7.01 order-date);

7.1 set(form) vorderhead,freeze;

7.2 put(form) vorderline,init,list=();

8 level;

9 get(form) vorderline,fkey=lastkey,current;

9.1 if (lastkey) <> (enter)

9.2 then

9.3 do

9.4 set(form) vorderhead,init,list=();

9.5 end(level);

9.6 end;

9.7 doend;

10 put orderline,list=(order-no,

11 line-no,

12 part-number,

13 quantity);

19 set(form) vorderline,append;

20 put(form) vorderline,init,list=();
Chapter 5 87

Automatic Error Handling and Prototyping
This version delays specifying whether a form is to be frozen or appended to another form
until the last possible moment. Recall that our goal is to first display a blank form for
entering global order information. If there are any errors in the data, then the form should
not be cleared, since that would require the user to re-enter all data.

Once the global information has been entered, then each line of the order is entered. If the
data is invalid, the form for that line should not be cleared, but left for correction of the
data.

Line 3.01 initially clears form vorderhead. Line 4 has been modified to capture the key
pressed by the user. If any of the function keys are pressed, it indicates that no more orders
are to be entered. Lines 4.1 to 4.7 perform this function and cause the program to end if the
user presses any of [[F1]] through [[F8]].

If the user presses [[ENTER]], Transact will continue to loop through lines 4 to 4.7 until
the data entered is valid. When this occurs, line 7.1 freezes the form on the screen so that
the forms to enter each order line will appear after this form.

Line 7.2 displays the first form for entering an order line after blanking it out. This is an
important step and gets us started in our order line data collection loop.

Line 9 is the important line within this loop. It specifies that we want to work with the
form currently displayed on the screen. This is also where the automatic error handling
will restart if Transact discovers any input errors. It is this line the prevents the problem
discussed in the previous example from happening; that is, it prevents automatic error
handling from putting a fresh form on the screen when it encountered data errors.

Lines 9.3 through 9.7 detect that the user has pressed any of [[F1]] through [[F8]] to
indicate that all lines have been added for the order. It reinitializes vorderhead and
terminates the level.

Lines 19 through 20 are reached after a valid order line has been added to the database.
They specify that the next form is to be appended to the screen and put a new blank form
on the screen so that the loop can be started again.

So far, we are only letting the automatic error handling detect the entering of non-numeric
data into a numeric field and trying to add an entry that is missing a master.

There are additional validation checks that can be handled automatically. The next version
of our prototype implements these checks.
88 Chapter 5

Automatic Error Handling and Prototyping
Figure 5-8. Prototype with Programmatic Data Validation
1 system ex39,base=orders,vpls=formfile;

1.1 define(item) lastkey i(4):

1.2 enter i(4),init=0;

1.3 list lastkey:

1.4 enter;

2 list(auto) vorderhead;

3 list(auto) vorderline;

3.01 set(form) vorderhead,init,list=();

3.1 level;

4 get(form) vorderhead,fkey=lastkey;

4.1 if (lastkey)

(enter)

4.2 then

4.3 do

4.5 end(level);

4.6 end;

4.7 doend;

4.8 set(key) list (order-no);

4.9 get order,list=(),nofind;

4.91 set(key) list (cust-no);

4.92 get customer,list=();

5 put orderhead,list=(order-no,

6 cust-no,

7 order-status,

7.01 order-date);

7.1 set(form) vorderhead,freeze;

7.2 put(form) vorderline,init,list=();

8 level;

9 get(form) vorderline,fkey=lastkey,current;

9.1 if (lastkey)

(enter)

9.2 then

9.3 do

9.4 set(form) vorderhead,init,list=();

9.5 end(level);

9.6 end;

9.7 doend;

9.8 set(key) list (part-number);

9.9 get parts,list=(part-number);

10 put orderline,list=(order-no,

11 line-no,

12 part-number,

13 quantity);

19 set(form) vorderline,append;

20 put(form) vorderline,init,list=();
Chapter 5 89

Automatic Error Handling and Prototyping
Figure 5-8 will help you see how automatic error handling can work for you.

In this version, lines 4.8 and 4.9 have been added to verify that the order now being
entered does not already exist. The NOFIND option on line 4.9 specifies that it is not an
error if a record is not found. It is an error if a record is found. If the error occurs,
automatic error handling will display a message and restart at the data collection point,
which is line 4.

Lines 4.91 and 4.92 verify that the customer already exists. If not, the program is restarted
at line 4 after displaying the error message.

Lines 9.8 and 9.9 validate the part number. If the part number does not exist, the program
is restarted at the last data entry point which is line 9.

The examples below illustrate the messages generated by the automatic error facility
when there are errors, such as:

• order already exists

• customer is invalid

• part number is invalid

Figure 5-9. Automatic Error Handling, Duplicate Record

Figure 5-10. Automatic Error Handling on Frozen Screen

vorderhead order data

order number [123] customer [1] status [0] date [850101]|

*ERROR: ENTRY ALREADY EXISTS (IMAGE 1,23,ORDER)

vorderhead order data

order number [124] customer [987] status [0] date [850101]|

*ERROR: NO ENTRY FOUND (IMAGE 17,27,CUSTOMER)
90 Chapter 5

Automatic Error Handling and Prototyping
Figure 5-11. Automatic Error Handling on Appended Screen

When using this version of the prototype to demonstrate to the users how the system
operates, we explain what each particular message means, for example, that we were
attempting to add an order for a customer, but the customer is not valid. We could also
explain that when the production version of the system is implemented, the error message
will appropriately say “invalid customer” and that it will highlight the customer field for
data correction.

However, these details do not have to be addressed until the user agrees with the overall
system design and flow.

Finally, the user agrees with our system design. The user may also agree to use the system
“as is” or he may agree to use the system temporarily until the final version is ready. Most
production environments will probably need the additional control in order to make the
system more user friendly.

The production version of our prototype follows. The automatic error handling provided by
Transact has been replaced with programmatic control and user defined error messages.

vorderhead order data

order number [124] customer [1] status [0] date [850101]|

line number [1]] part-number [PART1] quantity [10]

*ERROR: NO ENTRY FOUND (IMAGE 17,55,PARTS)
Chapter 5 91

Automatic Error Handling and Prototyping
Figure 5-12. Production Version of Prototype Program

1 system ex40,base=orders,vpls=formfile;

1.1 define(item) lastkey i(4):

1.2 enter i(4),init=0;

1.21 define(item) valid i(4):

1.22 yes i(4),init=1:

1.23 no i(4),init=0;

1.24 list valid:

1.25 yes:

1.26 no;

1.3 list lastkey:

1.4 enter;

2 list(auto) vorderhead;

3 list(auto) vorderline;

3.1 level;

3.2 set(form) vorderhead,init,list=();

3.3 repeat

3.4 do

3.5 let (valid) = (yes);

4 get(form) vorderhead,fkey=lastkey;

4.1 if (lastkey)

(enter)

4.2 then

4.3 do

4.5 end(level);

4.6 end;

4.7 doend;

4.8 set(key) list (order-no);

4.9 find order,list=();

4.901 if status > 0

4.902 then

4.903 do

4.904 set(form) vorderhead,window=(order-no,"order already
exists");

4.905 let (valid) = (no);

4.906 doend;
92 Chapter 5

Automatic Error Handling and Prototyping
Figure 5-13. Production Version of Prototype Program (Continued)
4.92 find customer,list=();

4.93 if status = 0

4.94 then

4.95 do

4.96 set(form) vorderhead,window=(cust-no,"customer does not exist");

4.97 let (valid) = (no);

4.98 doend;

4.99 doend

4.991 until (valid) = (yes);

5 put orderhead,list=(order-no,

6 cust-no,

7 order-status,

7.01 order-date);

7.1 set(form) vorderhead,freeze;

7.2 set(form) vorderline,init,list=();

8 level;

8.1 repeat

8.2 do

8.3 let (valid) = (yes);

9 get(form) vorderline,fkey=lastkey;

9.1 if (lastkey)

(enter)

9.2 then

9.3 do

9.5 end(level);

9.6 end;

9.7 doend;

9.8 set(key) list (part-number);

9.9 find parts,list=(part-number);

9.91 if status = 0

9.92 then

9.93 do

9.94 set(form) vorderline,

9.95 window=(part-number,"invalid part number");

9.96 let (valid) = (no);

9.97 doend;

9.98 if (quantity) <= 0

9.99 then

9.991 do

9.992 set(form) vorderline,

9.993 window=(quantity,"must be > 0");

9.994 let (valid) = (no);

9.995 doend;

9.996 doend

9.997 until (valid) = (yes);

10 put orderline,list=(order-no,

11 line-no,

12 part-number,

13 quantity);

19 set(form) vorderline,append,init,list=();
Chapter 5 93

Automatic Error Handling and Prototyping
 The main thing done to this version is to replace the automatic looping on data errors
until the data is valid with explicit programmatic looping until the errors are corrected.

Lines 1.21 to 1.26 define new variables to programmatically detect whether a data entry
form contains valid data or not. Valid can be viewed as a switch which is either yes or no
depending on whether the data entered is valid or not.

Lines 3.3, 3.4, 4.99, and 4.991 set up the boundaries of a loop that is executed until the
data entered is valid.

Within the loop, the valid flag will be set to indicate the data is invalid if an error is found.
However, before any data validation is done, line 3.5 sets the default for the flag to be that
the data is valid.

Line 4.9 changes the verb of the previous prototype from GET to FIND. GET was useful
when depending on the automatic error handling facility, because when we use GET,
Transact assumes that we know the data we want either exists or doesn't exist. Therefore
it is an error if the opposite condition occurs. When we use FIND though, Transact does
not assume that we know whether the data exists or not. In effect we are asking whether it
does exist or not. Therefore, it is not automatically an error if the data does not exist.

FIND tells us how many records it found by putting the number of records in the system
variable called STATUS. Lines 4.901 to 4.906 detect whether the user is attempting to add
an order that already exists. If so, line 4.904 uses the WINDOW option to highlight the
order-no field as being in error and to display the error message “order already exists” in
the VPLUS form window.

Lines 4.92 to 4.98 perform a similar validity check on the cust-no field. The only difference
is that the error occurs if there is no existing customer record.

Lines 8.1, 8.2, 9.996, and 9.997 set up a loop that will repeat until the data for an order
line item is valid.

Lines 9.91 to 9.97 validate the part-number.

Lines 9.98 to 9.995 perform an additional validation on the order quantity which we could
not do using automatic error handling.
94 Chapter 5

6 Data Structures

So far, the examples have made little reference to Transact’s data structures. However, if
you go back and scan each example, you will find that some form of the LIST verb exists in
each example. For many applications, what you see in the examples is all that is needed.
However, there are times when it is necessary to programmatically take more control over
Transact’s temporary data storage.

COBOL and Pascal have very well defined data structures. This chapter will compare
Transact's data structures to those used by both of these languages.

Typically, high-level application development products have data structures that are not
well defined. For many applications, this makes them very easy to work with to generate
reports and to update databases or files. By the same token, there are applications which
become, if not impossible, then extremely difficult to implement with these products
because of their weak data structures.

Let’s start by using some lines from EX40 in Figure 5-12.

Figure 6-1. Transact Data Structures

1.1 define(item) lastkey i(4):

1.2 enter i(4),init=0;

1.21 define(item) valid i(4):

1.22 yes i(4),init=1:

1.23 no i(4),init=0;

1.24 list valid:

1.25 yes:

1.26 no;

1.3 list lastkey:

1.4 enter;

2 list(auto) vorderhead;

3 list(auto) vorderline;

3.1 level;
95

Data Structures
This same definition in COBOL might be:

Figure 6-2. Comparable COBOL Data Structures

And in Pascal:

1 01 valid pic 9(4) comp.

2 01 yes pic 9(4) comp value 1.

3 01 no pic 9(4) comp value 0.

4 01 lastkey pic 9(4) comp.

5 01 enter pic 9(4) comp value 0.

6 01 ws-vorderhead.

7 02 order-no pic x(8).

8 02 cust-no pic 9(4).

9 02 order-status pic x(2).

10 02 order-date pic x(6).

11 01 ws-vorderline.

12 02 line-no pic 9(2).

13 02 part-number pic x(8).

14 02 quantity pic 9(6) comp.
96 Chapter 6

Data Structures
Figure 6-3. Comparable PASCAL Data Structures

NO and ENTER are reserved words in COBOL. These variable names would have to be
changed, but that is unimportant to our discussion.

The Pascal example is not exactly the same as the Transact or COBOL example, since
Pascal does not have the direct equivalent of an ASCII numeric data type as COBOL and
Transact do. However, that is not important. The important part is being able to compare
how storage is reserved and how access is gained to it.

In Transact, an item is defined one time. This definition is either done using a data
dictionary or within the program. In either case, when space is reserved for the item, the
definition part is not included as it is for COBOL and Pascal.

1 const yes=1;

2 no=0;

3 enter=0;

4 type small_int=-32768..32767;

5 char2=packed array[1..2] of char;

6 char4=packed array[1..4] of char;

7 char6=packed array[1..6] of char;

8 char8=packed array[1..8] of char;

9 typ_vorderhead=record

10 order_no:char8;

11 cust_no:char4;

12 order_status:char2;

13 order_date:char6;

14 end;

15 typ_vorderline=record

16 line_no:char2;

17 part_number:char8;

18 quantity:integer;

19 end;

20 var valid:small_int;

21 lastkey:small_int;

22 ws_vorderhead:typ_vorderhead;

23 ws_vorderline:typ_vorderline;
Chapter 6 97

Data Structures
In the Transact example, DEFINE(ITEM) (lines 1.1 to 1.23) defines the name, format, and
size of five data items. All five are of single word integer or binary format. In addition,
whenever storage space is reserved for enter, yes, or no, the space is initialized to contain
the values 0, 1, or 0, respectively. Note that DEFINE does not reserve space for the data
items. It more closely resembles the Pascal TYPE construct.

Lines 1.24 to 1.4 actually reserve space or make the data items known to Transact.

LIST(AUTO) in lines 2 and 3 also reserves space for data items. However, in this case the
data items have been previously defined in Dictionary/V. Also the VPLUS form names
vorderhead and vorderline have been defined in Dictionary/V. These lines are equivalent to
the following:

Figure 6-4. LIST(AUTO) Equivalent with LIST

Later on in the program there are verbs that input data from the VPLUS screens and
other verbs that update data in an IMAGE dataset. Examples from the program are:

Figure 6-5. VPLUS Default with no LIST=

Line 9 inputs data to the program from the VPLUS screen vorderline. There is nothing on
this line to indicate which data items to retrieve. In this default case, Transact looks at the
form definition in Dictionary/V to determine which data items are involved. If we wanted
to be explicit, we could have made this line read:

2 list order-no: |

| 2.1 cust-no: |

| 2.2 order-status: |

| 2.3 order-date; |

| 3 list line-no: |

| 3.1 part-number: |

| 3.2 quantity;

9 get(form) vorderline,fkey=lastkey;

10 put orderline,list=(order-no,

11 line-no,

12 part-number,

13 quantity);
98 Chapter 6

Data Structures
Figure 6-6. VPLUS Explicit LIST=

or alternatively:

Figure 6-7. LIST= Item Range

to indicate a range of data items.

Lines 10 to 13 add a new record to dataset orderline using data items order-no, line-no,
part-number, quantity.

Figure 6-8. IMAGE Explicit Item List

Transact does not automatically figure out which items should be used for IMAGE. If we
omit the LIST= option, Transact assumes that all items currently known to the program
(via LIST) are to be used. In fact, this is also true of MPE and KSAM files.

However, the items have to be contiguous in temporary storage if LIST= is not included.
Since in our example they are not contiguous, we need to specify LIST=.

COBOL also has the facility to redefine storage. We have already seen one example above.
In the COBOL program example, by referencing the variable ws-vorderhead, a COBOL
program would perform a group level operation on order-no, cust-no, and order-status. The
COBOL program could also reference each of these data items individually.

9 get(form) vorderline,fkey=lastkey

9.01 ,list=(line-no,

9.02 part-number,

9.03 quantity);

9 get(form) vorderline,fkey=lastkey

9.01 ,list=(line-no:

9.02 quantity);

10 put orderline,list=(order-no,

11 line-no,

12 part-number,

13 quantity);
Chapter 6 99

Data Structures
Another COBOL example is the following:

Figure 6-9. COBOL Redefinition of Data Storage

This same example in Transact is handled as follows:

Figure 6-10. Transact Redefinition of Data Storage

In Transact, these items are referred to as parent and child items. A child item as in lines
2 to 4 is equated to a byte offset of the parent item. If no offset is specified, it defaults to the
start of the parent item. Although our program may make a reference to yy, this child item
is never used in the LIST. Space must be reserved for the parent item which is date.

Lists or arrays are another common data structure. In COBOL, the following is a segment
of a program containing both a one and two dimensional array.

1 01 record-data.

2 02 dte pic 9(6).

3 02 date-redef redefines dte.

4 04 yy pic 99.

5 04 mm pic 99.

6 04 dd pic 99.

1 define(item) date 9(6):

2 yy 9(2)=date:

3 mm 9(2)=date(3):

4 dd 9(2)=date(5);

5 list date;
100 Chapter 6

Data Structures
Figure 6-11. COBOL Array Definitions

This would be implemented in Transact as follows:

Figure 6-12. Comparable Transact Array Definitions

Line 1 defines the total number of occurrences (10) and total byte length of each occurrence
(40) of the one-dimensional array.

Line 2 defines one occurrence of employee data to be 40 bytes long. In a later section, we
will see how to access array items by subscripting or using the LET(OFFSET) verb.

Lines 3-5 define detail items making up one employee record. The total byte length of all
these fields adds up to the 40 bytes that makes up one record.

Line 6 starts a new array definition.

1 01 empl-table.

2 02 empl-rec occurs 10.

3 04 empl-no pic x(6).

4 04 empl-name pic x(30).

5 04 empl-salary pic 9(8)v99 comp.

6

7 01 reg-sales-by-mo.

8 02 region-line occurs 10.

9 04 region pic x(4).

10 04 month pic 9(8) comp occurs 12.

1 define(item) empl-table 10 x(40):

2 empl-rec x(40)=empl-table:

3 empl-no x(6)=empl-rec:

4 empl-name x(30)=empl-rec(7):

5 empl-salary i(10,2)=empl-rec(37):

6 reg-sales-by-mo 10 x(52):

7 region-line x(52)=reg-sales-by-mo:

8 region x(4)=region-line:

9 month-data 12 i(8)=region-line(5):

10 month i(8)=month-data;

11 list empl-table:

12 reg-sales-by-mo;
Chapter 6 101

Data Structures
Line 9 defines a second dimension of this array. The first dimension holds the data for 10
regions. The second dimension is made up of 12 months of data for each region.

As we have seen, Transact does have definite data structures which in many respects
correlate quite closely with those in COBOL.

Transact works best when you keep in mind that you only want to add new information to
your data structure, not define anything twice. For example, the orders database has
several sets which contain the item part-number. Two of these sets are inventory and
parts. If a program needs to have access to all information contained in both of these sets,
it should only list each item one time. Since part-number is common to both sets, it should
only be listed once. To illustrate, if a program first retrieves an inventory record and then
needs to retrieve the corresponding parts record to get the part description, a good way to
do this is:

Figure 6-13. LISTing Items From Multiple Datasets

This technique can be used when an item in two or more datasets refers to the same data.
However, there are times when two datasets or files contain the same item name, but they
are independent of each other. For example, the database we have been using for examples
has two datasets that contain an item called quantity. Even though these data items share
a common name, the meaning is quite different for each set. In the inventory set, quantity
is the inventory at a particular location. In the orderline set, quantity is the quantity
ordered on this line of an order.

Perhaps we need to generate a report which lists all part numbers ordered, the order
quantity, and the total inventory on hand. The following program is one way to do this.

1 list part-number:

2 location:

3 quantity:

4 description;

5 get(serial) inventory,list=(part-number:quantity);

6 set(key) list (part-number);

7 get parts,list=(description);
102 Chapter 6

Data Structures
Figure 6-14. Use of ALIAS= for Items with Same Name

The above program is able to create a unique identifier for each type of quantity by using
the ALIAS= option. Within the program, the item is always referenced by the first name in
the DEFINE. The ALIAS item name identifies the item name and dataset as they are
known to IMAGE.

Another way to solve this problem is to use the dynamic feature of Transact’s data
structures. The data known to a Transact program can be redefined or remapped at any

1 system ex54,base=orders;

2 define(item) inv-quantity i(6),alias=(quantity(inventory))

3 order-quantity i(6),alias=(quantity(orderline))

4 tot-inv i(6),head="inventory";

5 list part-number:

6 inv-quantity:

7 order-quantity:

8 tot-inv;

9 find(serial) orderline,list=(part-number,order-quantity)

10 ,perform=100-get-inv;

11 end;

12

13 100-get-inv:

14

15 set(key) list (part-number);

16 let (tot-inv) = 0;

17 find(chain) inventory,list=(inv-quantity)

18 ,perform=110-accum-inv;

19 display(table) part-number:

20 tot-inv:

21 order-quantity;

22 return;

23

24 110-accum-inv:

25

26 let (tot-inv) = (tot-inv) + (inv-quantity);

27 return;
Chapter 6 103

Data Structures
time during program execution. Unlike COBOL and Pascal, Transact does not map
physical data storage at compile time. Storage is allocated at run time as the program
processes LIST verbs.

There are also verbs to deallocate storage when it is no longer needed or when it needs to
be remapped. These verbs are illustrated in the program below which solves the same
problem as the program shown in Figure 6-14.

Figure 6-15. Use of SET(STACK) LIST

1 system ex55,base=orders;

4 define(item) tot-inv i(6),head="inventory";

5 list part-number:

6 quantity:

8 tot-inv;

9 find(serial) orderline,list=(part-number,quantity)

10 ,perform=100-get-inv;

11 end;

12

13 100-get-inv:

14

14.1 list quantity;

15 set(key) list (part-number);

16 let (tot-inv) = 0;

17 find(chain) inventory,list=(quantity)

18 ,perform=110-accum-inv;

18.1 set(stack) list (tot-inv);

19 display(table) part-number:

20 tot-inv:

21 quantity,head="order-quantity";

22 return;

23

24 110-accum-inv:

25

26 let (tot-inv) = (tot-inv) + (quantity);

27 return;
104 Chapter 6

Data Structures
In this example program, the data storage always exists in one of two forms. When lines 15
to 18 and 26 to 27 are executed, the data storage looks like:

Figure 6-16. LIST Register Map with Same Item Twice

During the remainder of the program, the data storage looks like:

Figure 6-17. LIST Register After SET(STACK)

This is all controlled by the repeated execution of lines 14.1 and 18.1. Line 14.1 reserves
space for the item quantity. It will hold the inventory quantity at a location while line 17 is
executing. Line 18.1 deallocates this space after we have computed the total inventory
balance.

How does Transact know which quantity we want to use in line 26? It doesn't. Whenever a
program instructs Transact to perform some action on a data item, Transact always uses
the most recently defined (LISTed) version of the item. Once line 14.1 has been executed,
there is no way we can ever access the space reserved for quantity by lines 5 to 7 until we
execute line 18.1.

In the example above, we could also have written line 18.1 as:

Figure 6-18. Removing the Last Item Name from the LIST

This deallocates the last data item defined (LISTed) to Transact.

A slightly more general purpose way to implement the last example is to use marker items.
Just as their name implies, these items mark a data storage reference point that we can go
back to. Or they can be used in pairs to delimit a set of data that pertains to a file or
dataset. A marker is just a name and does not physically take up any data storage space.

5 part-number

6 quantity

8 tot-inv

14.1 quantity

5 part-number

6 quantity

8 tot-inv

18.1 set(stack) list (*);
Chapter 6 105

Data Structures
In the last example we can take advantage of both usages of marker items as follows:

Figure 6-19. Use of Marker Items

1 system ex59,base=orders;

4 define(item) tot-inv i(6),head="inventory";

4.1 define(item) begin-orderline @:

4.2 end-orderline @;

4.3 list tot-inv;

5 list begin-orderline:

5.1 part-number:

6 quantity:

7 end-orderline;

9 find(serial) orderline,list=(begin-orderline:end-orderline)

10 ,perform=100-get-inv;

11 end;

12

13 100-get-inv:

14

14.1 list quantity;

15 set(key) list (part-number);

16 let (tot-inv) = 0;

17 find(chain) inventory,list=(quantity)

18 ,perform=110-accum-inv;

18.1 set(stack) list (end-orderline);

19 display(table) part-number:

20 tot-inv:

21 quantity,head="order-quantity";

22 return;

23

24 110-accum-inv:

25

26 let (tot-inv) = (tot-inv) + (quantity);

27 return;
106 Chapter 6

Data Structures
Lines 4.1 and 4.2 define the marker items. Lines 5 and 7 put the markers around the items
that we want to use from the orderline set. Line 9 now uses the markers to indicate the
data item range to be used. With this implemented, at some later date we could decide that
the program also needs to retrieve order-no from the orderline set and no changes would
have to be made to line 9. Order-no would only need be added to the LIST verb between
lines 5 and 7.

In line 18.1, we can now use end-orderline as a reference to reset to and thus make the
section of code that sums the part inventory independent of the code that retrieves order
information.

Transact's dynamic data storage can be illustrated by another example. However, keep in
mind that even though data storage is dynamic, it is not boundless. This kind of program is
fun to write, but it is not the example that you want to base your future Transact
development on. In fact, this example should be viewed simply as demonstration of
Transact’s dynamic storage capabilities.
Chapter 6 107

Data Structures
Figure 6-20. Illustration of Dynamic Data Storage

1 system ex60,base=orders;

2 define(item) temp-part x(8):

3 from-part x(8):

4 to-part x(8);

5 define(item) count i(4),init=0:

6 dun x(4),init="no":

7 yes x(4),init="yes":

8 no x(4),init="no";

9 define(item) parts-this-pass i(4):

10 no-of-parts i(4);

11 define(item) start-of-parts @;

12 list temp-part:

13 parts-this-pass:

14 no-of-parts;

15 list count:

16 dun:

17 yes:

18 no;

19 list start-of-parts;

20 repeat

21 do

22 list part-number;

23 get(serial) parts,list=(part-number),status;

24 if status = 0

25 then let (count) = (count) + 1

26 else let (dun) = (yes);

27 doend

28 until (dun) = (yes);

29 let (no-of-parts) = (count);

30 let (parts-this-pass) = (no-of-parts);

31 while (parts-this-pass) > 0

32 perform 100-bubble-sort;
108 Chapter 6

Data Structures
Figure 6-21. Illustration of Dynamic Data Storage (Continued)

33 set(stack) list (start-of-parts);

34 let (count) = 0;

55 while (count) < (no-of-parts)

36 do

37 list part-number;

38 let (count) = (count) + 1;

39 doend;

40 let (count) = (no-of-parts);

41 while (count) > 0

42 do

43 display(table) part-number;

44 set(stack) list (*);

45 let (count) = (count) - 1;

46 doend;

47 end;

48

49 100-bubble-sort:

50

51 set(stack) list (start-of-parts);

52 let (count)= 1;

53 while (count) < (parts-this-pass)

54 do

55 let (count) = (count) + 1;

56 list from-part:

57 to-part;

58 if (from-part) < (to-part)

59 then

60 do

61 move (temp-part) = (to-part);

62 move (to-part) = (from-part);

63 move (from-part) = (temp-part);

64 doend;

65 set(stack) list (*);

66 doend;

67 let (parts-this-pass) = (parts-this-pass) - 1;

68 return;
Chapter 6 109

Data Structures
The above program performs a bubble sort of valid part-numbers. You will never want to
do this, since it is much easier to let Transact do the sort for you via the
SORT=(part-number) option, but it does illustrate the dynamics of Transact's data
structures.

Lines 20 to 28 serially read the master set that contains part-numbers and dynamically
adds each to the program data storage. Line 22 reserves an additional 8 bytes of storage
each time it is executed.

Lines 29 to 31 and 49 to 68 perform the bubble sort. The idea of a bubble sort is that for
each pass over the data, the lowest key item is floated to the top. Also, the second pass over
the data knows that the first pass found the lowest value item, so it only has to look at all
data except the one at the top (which is already lowest).

No-of-parts is the count of the total number of items. Parts-this-pass is the total number of
items that need to be scanned during this pass of the bubble sort. Count is just a counter
that is reinitialized and reused as an index through the data storage throughout the
program.

Line 30 sets things up for the first pass of the sort. Line 67 sets things up for the next pass
of the bubble sort after the previous pass has been completed.

Lines 31 and 32 control the passes of the sort.

Line 51 makes use of a marker to set the data storage pointer to the start of the part
numbers. Lines 53 to 66 increment through the part numbers, comparing one entry to the
next. The integral part of this loop is lines 56, 57, and 65. Lines 56 and 57 name or remap
the next two parts to be compared. Line 65 backs the program up one item so that the next
loop will compare the winner of the last compare with the next item.

Lines 58 to 64 perform the compare of the next two parts and when completed, the lowest
value part-number has been floated up. It is then compared to the next item during the
next loop.

After the bubble sort is completed, lines 33 to 39 remap the data storage to just contain the
name part-number. This needs to be done because the bubble sort routine kept calling
items from-part and to-part.

Lines 40 to 46 start at the top and print out the value of each part-number in ascending
order.
110 Chapter 6

7 Using Transact Without a Dictionary

Transact can be used with either Dictionary/3000 or System Dictionary. It can also be used
without a dictionary and can still interface with IMAGE, MPE, KSAM, and VPLUS.

This section uses examples from previous sections, modifying them so that they work
independent of the dictionary. All that has to be done is to replace the common data
definitions in the dictionary with program data definitions. These examples are shown
below with the changes highlighted. For the most part, no additional discussion is needed.
111

Using Transact Without a Dictionary
IMAGE
IMAGE
The following program shows the modifications made to the program listed in Figure 1-17
in order to make it independent of the dictionary.

Figure 7-1. IMAGE Access Without the Dictionary

1 system ex61,base=orders;

2 define(item) order-no x(8):

2.1 cust-no 9(4):

2.2 order-status x(2):

2.21 order-date x(6):

2.3 name x(20):

2.4 street-addr x(20):

2.5 city-state x(20):

2.6 zipcode x(6):

2.61 line-no 9(2):

2.62 part-number x(8):

2.63 quantity i(6);

2.7 list order-no:

2.8 cust-no:

2.9 order-status:

2.91 order-date;

3 move (order-status) = "o";

4 set(match) list (order-status);

5 find(serial) orderhead,list=(order-no:order-date)

6 ,perform=get-orderdata;

6.1 exit;
112 Chapter 7

Using Transact Without a Dictionary
IMAGE
Figure 7-2. IMAGE Access Without the Dictionary (Continued)

Lines 2 to 2.63 provide the data item definition normally done centrally in the dictionary.

Lines 2.7 to 2.9, 9.11 to 9.14, and 10.01 to 10.03 replace the LIST(AUTO) construct which
automatically extracts the record definition from the dictionary.

Lines 5,9.2, and 11 are modified to replace the LIST=(@) with an item range list.

8 get-orderdata:

9

9.01 level;

9.1 set(key) list (cust-no);

9.11 list name:

9.12 street-addr:

9.13 city-state:

9.14 zipcode;

9.2 get customer,list=(name:zipcode);

10 set(key) list (order-no);

10.01 list line-no:

10.02 part-number:

10.03 quantity;

11 find(chain) orderline,list=(line-no:quantity)

11.01 ,perform=displayit;

11.1 end(level);

12 return;

13

14 displayit:

15

16 display(table) name:

17 order-no:

18 line-no:

19 part-number:

20 quantity;

21 return;
Chapter 7 113

Using Transact Without a Dictionary
MPE
MPE
The following program is a modification of the program listed in Figure 4-5. The items are
explicitly defined in lines 1.1 to 1.3, and LIST(AUTO) is replaced with a list of the items.

Figure 7-3. MPE Access Without the Dictionary

1 system ex62,file=batchinv(update);

1.1 define(item) part-number x(8):

1.2 location x(4):

1.3 quantity i(6);

2 list part-number:

2.1 location:

2.2 quantity;

3 level;

4 data part-number:

5 location:

6 quantity;

7 put batchinv;
114 Chapter 7

Using Transact Without a Dictionary
KSAM
KSAM
The following program is a modification of the program listed in Figure 4-3. Changes are
the same as for the preceding two programs.

Figure 7-4. KSAM Access Without the Dictionary

1 system ex63,ksam=kcust(update);

2 set(delimiter) "/";

2.1 define(item) cust-no 9(4):

2.2 name x(20);

3 list cust-no:

3.1 name;

4 level;

5 data cust-no;

6 set(key) list (cust-no);

7 get kcust;

8 display;

9 data name;

10 set(update) list (name);

11 replace kcust;

12 end;
Chapter 7 115

Using Transact Without a Dictionary
VPLUS
VPLUS
For forms access without a dictionary, the form and its fields must be spelled out in the
SYSTEM statement, then the fields must be defined. The following program is a
modification of the program listed in Figure 3-3.

Figure 7-5. VPLUS Access Without the Dictionary

Lines 1 and 1.1 replace the form and data item information that is normally obtained from
the dictionary.

1 system ex64,base=orders,vpls=formfile(vcustomer(cust-no,name,

1.1 street-addr,city-state,zipcode));

1.2 define(item) cust-no 9(4):

1.3 name x(20):

1.4 street-addr x(20):

1.5 city-state x(20):

1.6 zipcode x(6);

2 $$add:

4 list cust-no:

4.1 name:

4.2 street-addr:

4.3 city-state:

4.4 zipcode;

5 get(form) vcustomer,init;

6 put customer;
116 Chapter 7

8 Special Topics

Interface to Report/V
In previous sections, we looked at examples of using Transact as a report generator. These
examples illustrated features of Transact but were not meant to indicate that one of the
strengths of Transact is its report writing capability.

In fact, Transact is not meant to be a report writer. Although some high level benefits are
gained, most reporting controls, like sort control breaks and subtotals, still have to be
coded in Transact. This is where Report/V can help out.

Report/V is a report writer. It can be run as a free standing program and most times this is
the way it is run.

However for complex reporting needs, combining Transact and Report/V will solve the
problem. Transact can be used to extract the data and do the data manipulation creating a
file which is then given to Report/V to generate the report.

The following example illustrates a typical Transact solution to a complicated reporting
requirement. For those of you who use report writers, think about what you would have to
do if you needed to prepare a report like this. If the report writer you are familiar with
could prepare this report, the chances are it would consist of several intermediate passes
over the data before the final report could be generated.

More typically, you would have to do the data extraction and manipulation using a
language like COBOL and would probably let COBOL create the report, since interfacing
to a report writer at that point would be difficult.

The example consists of preparing a backorder report. Our database maintains inventory
of each part-number by location code. Thus it is possible that there are many records to
add up to compute the total inventory on hand for a part. Likewise, there may be many
orders for the same part-number. For illustration purposes, inventory is arbitrarily
allocated to orders based upon the order-date. Thus, the backlog report will identify which
orders or parts of an order can be filled from inventory and which can only be filled from
future production.

Assume that the database contains the following inventory and order information.
117

Special Topics
Interface to Report/V
Figure 8-1. Part Number Balances by Location

Figure 8-2. Part Number Open Orders

The report looks like this:

INVENTORY DETAILS

PART-NUMBER LOCATION QUANTITY

PART1 LOC1 100

LOC2 200

LOC3 300

PART2 LOC1 100

PART3 LOC2 200

ORDER DETAILS

ORDER-NO CUST-NO ORDER-DATE LINE-NO PART-NUMBER QUANTITY

ORDER1 1000 850101 10 PART1 100

20 PART2 200

30 PART3 300

ORDER2 2000 850102 10 PART3 200

20 PART2 300

30 PART1 400

ORDER3 1000 850103 10 PART1 300

20 PART2 400

30 PART3 500
118 Chapter 8

Special Topics
Interface to Report/V

ERED
Figure 8-3. Backlog Detail by Customer and Part

Note that the inventory was applied to the oldest orders based on order-date.

The Transact and Report/V program that generated this report follow.

BACKLOG DETAIL BY CUSTOMER AND PART

CUSTOMER PART NUMBER ORDER DATE LINE ORDERED BACKORD

1000 PART1 ORDER1 85/01/01 10 100

1000 PART2 600 500

PART3 ORDER1 85/01/01 30 300 100

ORDER3 85/01/03 30 500 500

1000 PART3 800 600

1000 TOTAL 1,800 1,300

2000 PART1 ORDER2 85/01/02 30 400

2000 PART1 400

PART2 ORDER2 85/01/02 20 300 300

2000 PART2 300 300

2000 PART3 ORDER2 85/01/02 10 200 200

2000 PART3 200 200

2000 TOTAL 900 500

GRAND TOTAL 2,700 1,800
Chapter 8 119

Special Topics
Interface to Report/V
Figure 8-4. Transact Program to Create Backlog Report

1 system ex65,base=orders,file=shortage(update)

2 ,file=temp(sort);

3 define(item) tot-inv i(6):

4 inv-part x(8):

5 inv-quantity i(6),alias=(quantity(inventory));

6 list part-number:

7 cust-no:

8 order-date:

9 order-no:

10 line-no:

11 quantity:

12 back-order:

13 tot-inv:

14 inv-part:

15 inv-quantity;

16 find(serial) orderline,list=(part-number,order-no,line-no,quantity

17 ,perform=each-orderline;

18 find(serial) temp,list=(part-number:quantity)

19 ,sort=(part-number,order-date)

20 ,perform=each-temp-orderline;

21 call ex65r,report;

22 exit;

23

24 each-orderline:

25

26 set(key) list (order-no);

27 find(chain) orderhead,list=(cust-no,order-date);

28 put temp,list=(part-number:quantity);

29 return;
120 Chapter 8

Special Topics
Interface to Report/V
Figure 8-5. Transact Program to Create Backlog Report (Continued)

31 each-temp-orderline:

32

33 if (part-number) <> (inv-part)

34 then perform each-inv-part;

35 let (tot-inv) = (tot-inv) - (quantity);

36 if (tot-inv) < 0

37 then

38 do

39 let (back-order) = 0 - (tot-inv);

40 let (tot-inv) = 0;

41 doend

42 else let (back-order) = 0;

43 put shortage,list=(cust-no,part-number,order-no,order-date,

44 line-no,quantity,back-order);

45 return;

46

47 each-inv-part:

48

49 move (inv-part) = (part-number);

50 set(key) list (part-number);

51 let (tot-inv) = 0;

52 find(chain) inventory,list=(inv-quantity)

53 ,perform=accum-inv;

54 return;

55

56 accum-inv:

57

58 let (tot-inv) = (tot-inv) + (inv-quantity);

59 return;
Chapter 8 121

Special Topics
Interface to Report/V
Figure 8-6. Report/V Program to Create Backlog Report

1 report ex65r;

2 option nohead;

3 access shortage,list=(cust-no,part-number,order-no,order-date,

4 line-no,quantity,back-order);

5 sort(1) cust-no:part-number;

6 page heading "BACKLOG DETAIL BY CUSTOMER AND PART",col=25:

7 "CUSTOMER",LINE=2,COL=1:

8 "PART NUMBER",COL=10:

9 "ORDER",COL=22:

10 "DATE",COL=32:

11 "LINE",COL=42:

12 "ORDERED",COL=50:

13 "BACKORDERED",COL=70:

14 " ",line=1;

15 detail cust-no,col=1:

16 part-number,col=10:

17 order-no,col=22:

18 order-date,col=32,edit="^^^^/^^^^/^^^^":

19 line-no,col=43:

20 quantity,col=50,edit="ZZZ,ZZZ":

21 back-order,col=70,edit="ZZZ,ZZZ";

22 group(2) summary cust-no,col=1:

23 part-number,col=10:

24 total(quantity),col=50,edit="ZZZ,ZZZ":

25 total(back-order),col=70,edit="ZZZ,ZZZ":

26 " ",line=1;

27 group(1) summary cust-no,col=1:

28 "TOTAL",col=10:

29 total(quantity),col=50,edit="ZZZ,ZZZ":

30 total(back-order),col=70,edit="ZZZ,ZZZ":

31 " ",line=1;

32 report summary "GRAND TOTAL",col=1:

33 total(quantity),col=50,edit="ZZZ,ZZZ":

34 total(back-order),col=70,edit="ZZZ,ZZZ";
122 Chapter 8

Special Topics
Interface to Report/V
The Transact program extracts the data desired and writes it to an MPE file called
shortage. When it is finished, it calls the report program in line 21.

That's all there is to it. There is a similar interface between Transact and Inform. If the
report were defined using Inform, line 21 would become:

 call ex65r,inform;

The example above took advantage of Dictionary/V by defining the file shortage in the
dictionary. When interfacing with Report/V, the file does not have to be defined in the
dictionary nor do the data elements that are contained in the file have to be defined in the
dictionary.

We have already seen how to use Transact without the dictionary. If the data items were
defined in the dictionary, but the file was not, there would not be any changes required to
run the above program.

If the data items were not defined in the dictionary, then the report program would have to
contain the item definitions using DEFINE(ITEM). The resulting Report/V program is
shown below.
Chapter 8 123

Special Topics
Interface to Report/V
Figure 8-7. Using Report/V Without the Dictionary

1 report ex65r;

2 option nohead;

2.1 define(item) cust-no 9(4):

2.2 part-number x(8):

2.3 order-no x(8):

2.4 order-date x(6):

2.5 line-no 9(2):

2.6 quantity i(6):

2.7 back-order i(6);

3 access shortage,list=(cust-no,part-number,order-no,order-date,

4 line-no,quantity,back-order);

5 sort(1) cust-no:part-number;

6 page heading "BACKLOG DETAIL BY CUSTOMER AND PART",col=25:

7 "CUSTOMER",LINE=2,COL=1:

8 "PART NUMBER",COL=10:

9 "ORDER",COL=22:

10 "DATE",COL=32:

11 "LINE",COL=42:

12 "ORDERED",COL=50:

13 "BACKORDERED",COL=70:

14 " ",line=1;

15 detail cust-no,col=1:

16 part-number,col=10:

17 order-no,col=22:

18 order-date,col=32,edit="^^^^/^^^^/^^^^":

19 line-no,col=43:

20 quantity,col=50,edit="ZZZ,ZZZ":

21 back-order,col=70,edit="ZZZ,ZZZ";

22 group(2) summary cust-no,col=1:

23 part-number,col=10:

24 total(quantity),col=50,edit="ZZZ,ZZZ":

25 total(back-order),col=70,edit="ZZZ,ZZZ":

26 " ",line=1;

27 group(1) summary cust-no,col=1:

28 "TOTAL",col=10:

29 total(quantity),col=50,edit="ZZZ,ZZZ":

30 total(back-order),col=70,edit="ZZZ,ZZZ":

31 " ",line=1;

32 report summary "GRAND TOTAL",col=1:

33 total(quantity),col=50,edit="ZZZ,ZZZ":

34 total(back-order),col=70,edit="ZZZ,ZZZ";
124 Chapter 8

Special Topics
Arrays
Arrays
It is possible to set up multi-dimensional arrays in Transact. We will look at examples of
one- and two-dimensional arrays. The bubble sort example illustrated in Figure 6-20 can
be implemented replacing the dynamic part-number data structure with a static list or
one-dimensional array of part numbers. The resulting program might look like this:

Figure 8-8. One Dimensional Array

1 system ex66,base=orders;

2 define(item) temp-part x(8):

2.1 part-table 20 x(8):

2.2 each-part x(8)=part-table:

3 from-part x(8)=part-table:

4 to-part x(8)=part-table(9);

5 define(item) count i(4),init=0:

6 dun x(4),init="no":

7 yes x(4),init="yes":

8 no x(4),init="no";

9 define(item) parts-this-pass i(4):

10 no-of-parts i(4);

11 <<deleted>>

12 list temp-part:

12.1 part-number:

12.2 part-table:

13 parts-this-pass:

14 no-of-parts;

15 list count:

16 dun:

17 yes:

18 no;

19 <<deleted>>

20 repeat

21 do

22 <<deleted>>

23 get(serial) parts,list=(part-number),status;

24 if status = 0 then

24.1 do

25 let (count) = (count) + 1;

25.1 move (each-part((count))) = (part-number);

25.2 doend

26 else let (dun) = (yes);

27 doend
Chapter 8 125

Special Topics
Arrays
Figure 8-9. One Dimensional Array (Continued)

This example was purposely left as close as possible to the bubble sort example. The
differences between the two examples are highlighted.

28 until (dun) = (yes);

29 let (no-of-parts) = (count);

30 let (parts-this-pass) = (no-of-parts);

31 while (parts-this-pass) > 0

32 perform 100-bubble-sort;

33 <<deleted 33-39>>

40 let (count) = (no-of-parts);

41 while (count) > 0

42 do

43 display(table) each-part((count)),head="part-number";

44 <<deleted>>

45 let (count) = (count) - 1;

46 doend;

47 end;

48

49 100-bubble-sort:

50

51 <<deleted>>

52 let (count)= 1;

53 while (count) < (parts-this-pass)

54 do

55 <<moved to 65.1>>

56 <<deleted 56-57>>

58 if (from-part((count))) < (to-part((count)))

59 then

60 do

61 move (temp-part) = (to-part((count)));

62 move (to-part((count))) = (from-part((count)));

63 move (from-part((count))) = (temp-part);

64 doend;

65 <<deleted>>

65.1 let (count) = (count) + 1;

66 doend;

67 let (parts-this-pass) = (parts-this-pass) - 1;

68 return;
126 Chapter 8

Special Topics
Arrays
Lines 2.1 through 4 define the part number array and the individual items within the
array that we need to access. Line 2.1 defines the array to contain 20 occurrences of 8 bytes
each. Lines 2.2 through 4 define individual items within the array that we will use for
storing, retrieving, and comparing.

The verbs used for IMAGE access cannot refer to subscripted items. The items must be
parent items. Thus, line 23 retrieves the next part-number from the database. If we have
not reached the end of the dataset, line 25.1 moves the part-number retrieved into the next
array occurrence of part-table. Notice the double set of parentheses around the item count.
The innermost set denotes that we are subscripting a reference to each-part. The next set
denotes that we are using an item named count to contain the array occurrence to be
accessed.

Using a fixed data structure rather than a dynamic data structure allows us to delete
several lines of code that were needed to manipulate the dynamic data structure. These
lines are identified as <<deleted>> throughout the example.

The balance of the example is very similar to the dynamic data structure implementation
of the bubble sort problem. However, there is one other area of the example worth
mentioning. Notice that line 4 defines to-part to start in the ninth byte of the part-table
array. This differs from the definition of from-part which starts in the first byte of the
part-table array (line 3). This allows us to access two different occurrences of part-number
in the array using the same subscript value, as is illustrated in lines 58-64. For example, if
count has the value 1, then using from-part references the first part-number in the array
and using to-part references the second part-number in the array.

Sometimes one-dimensional arrays contain multiple occurrences of more than one item.
The following example illustrates this.
Chapter 8 127

Special Topics
Arrays
Figure 8-10. One-Dimensional Record Array (Multiple Items)
1 system ex67,base=orders;

2 define(item) order-table 10 x(10):

3 ot-line 9(2)=order-table:

4 ot-part x(8)=order-table(3):

5 index i(4):

6 end-of-table i(4);

7 list order-no:

8 line-no:

9 part-number:

10 index:

11 end-of-table:

12 order-table;

13 data order-no;

14 set(key)list (order-no);

15 let (index) = 1;

16 find(chain) orderline,list=(line-no:part-number)

17 ,perform=100-each-line;

18 let (end-of-table) = (index);

19 let (index) = 1;

20 while (index) < (end-of-table)

21 do

22 display(table) ot-line((index)):

23 ot-part((index));

24 let (index) = (index) + 1;

25 doend;

26 exit;

27

28 100-each-line:

29

30 move (ot-part((index))) = (part-number);

31 move (ot-line((index))) = (line-no);

32 let (index) = (index) + 1;

33 return;
128 Chapter 8

Special Topics
Arrays
Line 2 defines an array consisting of 10 occurrences of 10 bytes each. Each occurrence is
made up of a 2-byte line number and an 8-byte part number (lines 3 and 4).

Notice again that the IMAGE access verbs cannot reference array items. Thus lines 16-17
retrieve the next values of line-no and part-number, then lines 30-31 move these values
into the next array occurrence, and line 32 increments the array occurrence subscript.

Lines 20-25 are a loop that subscripts through the array and prints out the contents of
line-no (ot-line) and part-number (ot-part).

Transact allows subscripting of only one dimension of an array. Consequently, if an array
has more than one dimension, other methods must be used to qualify the array access of
all but the outermost dimension. This qualification is made possible by the LET OFFSET
verb.

The next example is a two-dimensional array and illustrates using a subscript to qualify
the outermost dimension and using LET OFFSET to qualify the inner dimension.

Figure 8-11. Two-Dimensional Array

1 system ex68,base=orders;

2 define(item) order-table 10 x(50):

3 ot-yr-indx x(50) = order-table:

4 ot-year 9(2)=ot-yr-indx:

5 ot-mo-indx 12 9(4)=ot-yr-indx(3):

6 ot-mo 9(4)=ot-mo-indx;

7 define(item) date x(6):

8 date-yy 9(2)=date:

9 date-mm 9(2)=date(3):

10 indx i(4):

11 end-of-table i(4),init=1;

12 define(item) dun i(4):

13 no i(4),init=0:

14 yes i(4),init=1;

15 list dun:

16 no:

17 yes;

18 list order-table,init:

19 end-of-table:

20 indx:

21 date:

22 order-no:
Chapter 8 129

Special Topics
Arrays
Figure 8-12. Two-Dimensional Array (Continued)

23 order-date:

24 quantity;

25 find(serial) orderhead,list=(order-no,order-date),|

26 perform=100-each-order;

27 display order-table;

28 exit;

30 100-each-order:

31

32 move (date) = (order-date);

33 set(key) list (order-no);

34 find(chain) orderline,list=(quantity)

35 ,perform=200-each-line;

36 return;

37

38 200-each-line:

39 let (indx) = 0;

40 let (dun) = (no);

41 while (dun) = (no)

42 do

43 let (indx) = (indx) + 1;

44 if (ot-year((indx))) = (date-yy)

45 then let (dun) = (yes)

46 else

47 if (indx) = (end-of-table)

48 then

49 do

50 let (end-of-table) = (end-of-table) + 1;

51 let (ot-year((indx))) = (date-yy);

52 let (dun) = (yes);

53 doend;

54 doend;

55 let offset(ot-mo) = [(date-mm) - 1] * 4;

56 let (ot-mo((indx))) = (ot-mo((indx))) + (quantity);

57 return;
130 Chapter 8

Special Topics
Arrays
Lines 2 through 6 define the array. The array is intended to hold up to 10 years of data by
month. The data that is to be accumulated into the table is the order quantity for each
order and part number.

Line 2 specifies that the first dimension of the array is 10 years of information. At this
time, we must also specify the total byte length of all information for a year (which is 50).
As discussed below, the 50 bytes for each year contain a 2-byte year number and 12
monthly quantities of 4 bytes each.

Line 3 defines a parent item for one year in the array.

Lines 4 and 5 define the child items that make up a year. A subscript will be used to access
a year and a byte offset via the LET OFFSET verb will be used to access a month within a
year.

Line 5 also defines the parent item for one year of information by month. Line 6 defines a
month within the year.

Line 44 uses the subscript indx to access the year in the array. If the value of the year in
the array is the same as the value of the year in the input record, we have resolved the
year to accumulate to. If it does not, then the loop is iterated until the matching year is
found or the end of the array is reached. If the end of the array is reached, a new entry is
made into the array, storing the new year number (line 51).

Line 55 specifies the byte offset for a month relative to its parent item. Since the length of
data for each month is 4 bytes, the offset for the n th month is (n - 1) * 4. Use of LET
OFFSET specifies the starting byte position relative to the base. The base is zero. Thus the
first month has a zero offset, the second month has an offset of 4, which is the length of the
item ot-mo.

The above example illustrates using both subscripts and LET OFFSET to access a
multi-dimensional array.

The following example illustrates using LET OFFSET exclusively to access the array.
Chapter 8 131

Special Topics
Arrays
Figure 8-13. Two-Dimensional Array with LET OFFSET

1 system ex68a,base=orders;

2 define(item) order-table 10 x(50):

3 ot-yr-indx x(50) = order-table:

4 ot-year 9(2)=ot-yr-indx:

5 ot-mo-indx 12 9(4)=ot-yr-indx(3):

6 ot-mo 9(4)=ot-mo-indx;

7 define(item) date x(6):

8 date-yy 9(2)=date:

9 date-mm 9(2)=date(3):

10 indx i(4):

11 end-of-table i(4),init=0;

12 define(item) dun i(4):

13 no i(4),init=0:

14 yes i(4),init=1;

15 list dun:

16 no:

17 yes;

18 list order-table,init:

19 end-of-table:

20 indx:

21 date:

22 order-no:

23 order-date:

24 quantity;

25 find(serial) orderhead,list=(order-no,order-date),

26 perform=100-each-order;

27 display order-table;

28 exit;

30 100-each-order:

31

32 move (date) = (order-date);

33 set(key) list (order-no);
132 Chapter 8

Special Topics
Arrays
Figure 8-14. Two-Dimensional Array with LET OFFSET (Continued)

The differences between this example and example EX68 are highlighted.

Line 43.1 specifies the byte offset for a year. At this point, we have resolved addresses for
the child items of ot-yr-indx which are ot-year and ot-mo-indx. Since the length of the data
for each year is 50 bytes (2 byte year and 12 months of 4 bytes each), the offset for the n th
year is (n -1) * 50. However, in the example, indx is used to indicate a year and has been
specified relative to zero. Thus the example does not need to convert n to be relative to
zero.

Line 55 specifies the byte offset for a month relative to its parent item. Since the length of
data for each month is 4 bytes, the offset for the n th month is (n - 1) * 4.

34 find(chain) orderline,list=(quantity)

35 ,perform=200-each-line;

36 return;

37

38 200-each-line:

39 let (indx) = -1;

40 let (dun) = (no);

41 while (dun) = (no)

42 do

43 let (indx) = (indx) + 1;

43.1 let offset(ot-yr-indx) = (indx) * 50;

44 if (ot-year) = (date-yy)

45 then let (dun) = (yes)

46 else

47 if (indx) = (end-of-table)

48 then

49 do

50 let (end-of-table) = (end-of-table) + 1;

51 let (ot-year) = (date-yy);

52 let (dun) = (yes);

53 doend;

54 doend;

55 let offset(ot-mo) = [(date-mm) - 1] * 4;

56 let (ot-mo) = (ot-mo) + (quantity);

57 return;
Chapter 8 133

Special Topics
Arrays
Notice that once the proper offsets for an item have been established, the item can be
referenced directly without any further qualification (lines 44, 51, and 56).

The above example is not the only way a two-dimensional array can be implemented. It is
perhaps as close as it is possible to get to the way COBOL or Pascal might define the same
array, recognizing that Transact always requires you to specify byte offsets rather than an
occurrence number.

The following example illustrates an alternative way to implement the same array. It is
not any better than the first and in fact, the first is probably easier to follow. However, it is
presented with the hope of improving your understanding of the ways you can manipulate
data storage.

Figure 8-15. Two-Dimensional Array, Special Use of LET OFFSET

1 system ex69,base=orders;

2 define(item) order-table x(500):

3 <<deleted>>

4 ot-year 9(2)=order-table:

5 <<deleted>>

6 ot-mo 9(4)=order-table;

7 define(item) date x(6):

8 date-yy 9(2)=date:

9 date-mm 9(2)=date(3):

10 indx i(4):

11 end-of-table i(4),init=0;

12 define(item) dun i(4):

13 no i(4),init=0:

14 yes i(4),init=1;

15 list dun:

16 no:

17 yes;

18 list order-table,init:

19 end-of-table:

20 indx:

21 date:

22 order-no:

23 order-date:

24 quantity;
134 Chapter 8

Special Topics
Arrays
Figure 8-16. Two-Dimensional Array, Special Use of LET OFFSET (Continued)
25 find(serial) orderhead,list=(order-no,order-date),

26 perform=100-each-order;

27 display order-table;

28 exit;

30 100-each-order:

31

32 move (date) = (order-date);

33 set(key) list (order-no);

34 find(chain) orderline,list=(quantity)

35 ,perform=200-each-line;

36 return;

37

38 200-each-line:

39 let (indx) = -1;

40 let (dun) = (no);

41 while (dun) = (no)

42 do

43 let (indx) = (indx) + 1;

43.1 let offset(ot-year) = (indx) * 50;

44 if (ot-year) = (date-yy)

45 then let (dun) = (yes)

46 else

47 if (indx) = (end-of-table)

48 then

49 do

50 let (end-of-table) = (end-of-table) + 1;

51 let (ot-year) = (date-yy);

52 let (dun) = (yes);

53 doend;

54 doend;

55 let offset(ot-mo) = offset(ot-year) + 2 + [(date-mm) - 1] * 4;

56 let (ot-mo) = (ot-mo) + (quantity);

57 return;
Chapter 8 135

Special Topics
Arrays
In this example, the definition of the array makes no reference to the number of years or
the number of months in a year. It is just 500 bytes long, which is the same as the previous
example of 10 years by month where the data for each year is a 2-digit year and 12 months
of 4 bytes each.

The only items that will ever be referred to in this array are ot-year and ot-mo. These are
the only items defined and the definition of them does not indicate where they are within
the array. The definition only establishes that they are child items of the array, and
references to them will be made relative to the start of the array.

This means that before we address either of these items, we must fully establish the byte
offset of each.

Line 43.1 establishes the byte offset for ot-year. There is no difference between this and the
previous example. The reason is that both examples define ot-year relative to the start of
the array.

Line 55 establishes the byte offset for ot-mo. Here there is a big difference between this
and the previous example. The previous example defined the start of the months to be
relative to the start of a year plus 2 bytes. The start of a year was defined relative to the
start of the array. In the current example, ot-mo was defined relative to the start of the
array. Therefore its byte offset must account for the year offset plus the month offset
within year plus the fact that the start of the months for a year are offset from the start of
a year by 2 bytes to allow for storage of a 2-byte year number.

Looking at line 55 and relating it to the above, we already know the year offset since we set
it in line 43.1. Thus we can include it by specifying OFFSET(ot-year) which is equivalent
to the calculation (indx) * 50. Each month is 4 bytes long, so the offset of the month we
want to reference relative to zero is [(date-mm) - 1] * 4. Finally, the first month of a year is
offset by 2 bytes from the beginning of each year's data.
136 Chapter 8

Special Topics
Subprograms
Subprograms
Transact allows you to call other programs from within Transact. We have already seen an
example of calling a Report/V program from Transact. You can also call another Transact
Program, Inform report, or a program written in another language such as COBOL or
Pascal.

The CALL verb is used to call another Transact, Report/V, or Inform program. The PROC
verb is used to call a program written in another language.

Calling a Transact program is easily demonstrated by taking the example program listed
in Figure 8-9 and dividing it into a main program which does all the database access and a
subprogram that takes care of the array processing. The following two programs result.
Chapter 8 137

Special Topics
Subprograms
Figure 8-17. Calling a Subprogram

1 system ex70,base=orders;

2 define(item) order-table 10 x(50):

3 ot-yr-indx x(50) = order-table:

4 ot-year 9(2)=ot-yr-indx:

5 ot-mo-indx 12 9(4)=ot-yr-indx(3):

6 ot-mo 9(4)=ot-mo-indx;

7 define(item) date x(6):

8 date-yy 9(2)=date:

9 date-mm 9(2)=date(3):

10 indx i(4):

11 end-of-table i(4),init=1;

12 define(item) dun i(4):

13 no i(4),init=0:

14 yes i(4),init=1;

15 list dun:

16 no:

17 yes;

18 list order-table,init:

19 end-of-table:

20 indx:

21 date:

22 order-no:

23 order-date:

24 quantity;

25 find(serial) orderhead,list=(order-no,order-date),

26 perform=100-each-order;

27 display order-table;

28 exit;

29

30 100-each-order:

31

32 move (date) = (order-date);

33 set(key) list (order-no);

34 find(chain) orderline,list=(quantity)

35 ,perform=200-each-line;

36 return;

37

38 200-each-line:

39 call ex70a;

40 return;
138 Chapter 8

Special Topics
Subprograms
Figure 8-18. The Called Subprogram

1 system ex70a,base=orders;

2 define(item) order-table 10 x(50):

3 ot-yr-indx x(50) = order-table:

4 ot-year 9(2)=ot-yr-indx:

5 ot-mo-indx 12 9(4)=ot-yr-indx(3):

6 ot-mo 9(4)=ot-mo-indx;

7 define(item) date x(6):

8 date-yy 9(2)=date:

9 date-mm 9(2)=date(3):

10 indx i(4):

11 end-of-table i(4);

12 define(item) dun i(4):

13 no i(4):

14 yes i(4);

15 list dun:

16 no:

17 yes;

18 list order-table:

19 end-of-table:

20 indx:

21 date:

22 order-no:

23 order-date:

24 quantity;

25 let (indx) = 0;

26 let (dun) = (no);

27 while (dun) = (no)

28 do

29 let (indx) = (indx) + 1;

30 if (ot-year((indx))) = (date-yy)

31 then let (dun) = (yes)

32 else

33 if (indx) = (end-of-table)

34 then

35 do

36 let (end-of-table) = (end-of-table) + 1;

37 let (ot-year((indx))) = (date-yy);

38 let (dun) = (yes);

39 doend;

40 doend;

41 let offset(ot-mo) = [(date-mm) - 1] * 4;

42 let (ot-mo((indx))) = (ot-mo((indx))) + (quantity);

43 exit;
Chapter 8 139

Special Topics
Subprograms
In this example, the main program and subprogram share the same data. The two
programs do not have to define the data storage identically, but both must be aware that
they are working with the same space. In our example, both programs do define the data
storage the same way.

The example can be modified so that the two programs only share the data that both need.

Figure 8-19. Calling a Subprogram Using DATA=

1 system ex71,base=orders;

2 define(item) order-table 10 x(50);

3 define(item) end-of-table i(4),init=1;

4 list order-no:

5 order-date:

6 quantity:

7 order-table,init:

8 end-of-table;

9 find(serial) orderhead,list=(order-no,order-date),

10 perform=100-each-order;

11 display order-table;

12 exit;

13

14 100-each-order:

15

16 set(key) list (order-no);

17 find(chain) orderline,list=(quantity)

18 ,perform=200-each-line;

19 return;

20

21 200-each-line:

22 call ex71a,data=order-date;

23 return;
140 Chapter 8

Special Topics
Subprograms
Figure 8-20. The Called Subprogram with DATA=

1 system ex71a,base=orders;

2 define(item) order-table 10 x(50):

3 ot-yr-indx x(50) = order-table:

4 ot-year 9(2)=ot-yr-indx:

5 ot-mo-indx 12 9(4)=ot-yr-indx(3):

6 ot-mo 9(4)=ot-mo-indx;

7 define(item) date x(6):

8 date-yy 9(2)=date:

9 date-mm 9(2)=date(3):

10 indx i(4):

11 end-of-table i(4);

12 define(item) dun i(4):

13 no i(4),init=0:

14 yes i(4),init=1;

15 list date:

16 quantity:

17 order-table:

18 end-of-table:

19 indx:

20 dun:

21 no:

22 yes;

23 let (indx) = 0;

24 let (dun) = (no);

25 while (dun) = (no)

26 do

27 let (indx) = (indx) + 1;

28 if (ot-year((indx))) = (date-yy)

29 then let (dun) = (yes)

30 else

31 if (indx) = (end-of-table)

32 then

33 do

34 let (end-of-table) = (end-of-table) + 1;

35 let (ot-year((indx))) = (date-yy);

36 let (dun) = (yes);

37 doend;

38 doend;

39 let offset(ot-mo) = [(date-mm) - 1] * 4;

40 let (ot-mo((indx))) = (ot-mo((indx))) + (quantity);

41 exit;
Chapter 8 141

Special Topics
Subprograms
In this example, the main program only contains definitions for the data that it needs and
at the level that it needs access. For example, it does not contain a detail definition of the
array. The subprogram does contain a detail definition of the array.

The main program also specifies how much data the subprogram has access to by way of
the DATA=ORDER-DATE option on the CALL. This protects order-no from being accessed
by the subprogram. The subprogram must be aware of all data being passed to it and
define its storage first. Then it can define its own local storage following this.

We can also use this same array example to illustrate calling a program written in another
language. In this example, the main program does the database access and the
subprogram written in COBOL performs the array handling for us.

Figure 8-21. Calling a COBOL Procedure

The COBOL subprogram looks like this.

1 system ex72,base=orders;

2 define(item) order-table 10 x(50);

3 define(item) end-of-table i(4),init=1;

4 define(item) year-subx 9(2)=order-date:

5 month-subx 9(2)=order-date(3);

6 list order-no:

7 order-date:

8 quantity:

9 order-table,init:

10 end-of-table;

11 find(serial) orderhead,list=(order-no,order-date),

12 perform=100-each-order;

13 display order-table;

14 exit;

15

16 100-each-order:

17

18 set(key) list (order-no);

19 find(chain) orderline,list=(quantity)

20 ,perform=200-each-line;

21 return;

22

23 200-each-line:

24 proc ex72a((order-table),(end-of-table),(year-subx),(month-subx),

25 (quantity));

26 return;
142 Chapter 8

Special Topics
Subprograms
Figure 8-22. The Called COBOL Procedure

The subprogram can only be accessed from an SL. A way to load the COBOL subprogram
into an SL is:

1 $control dynamic

1.1 identification division.

1.2 program-id. ex72a.

1.3 environment division.

1.4 data division.

1.5 working-storage section.

1.6 01 i pic 9(4) comp.

1.7 linkage section.

1.8 01 yr pic 99.

1.9 01 mo pic 99.

2 01 data-table.

2.1 02 yrs occurs 10.

2.2 04 tab-yr pic 99.

2.3 04 tab-qty pic 9(4) occurs 12.

2.4 01 end-tab pic 9(4) comp.

2.5 01 qty pic 9(6) comp.

2.6 procedure division using data-table end-tab yr mo qty.

2.7 100-start.

2.8 perform 200-find varying i from 1 by 1 until yr = tab-yr (i)

2.9 or i = end-tab.

3 if i = end-tab

3.1 move yr to tab-yr (i)

3.2 compute end-tab = end-tab + 1.

3.3 compute tab-qty (i, mo) = tab-qty (i, mo) + qty.

3.4 goback.

3.5

3.6 200-find.
Chapter 8 143

Special Topics
Subprograms
Figure 8-23. Adding a COBOL Procedure to an SL

:cobol ex72a

PAGE 0001 HP32213C.02.12 (C) HEWLETT-PACKARD CO. 1983

DATA AREA IS %000172 WORDS.

CPU TIME = 0:00:01. WALL TIME = 0:00:03.

END COBOL/3000 COMPILATION. NO ERRORS. NO WARNINGS.

END OF COMPILE

:segmenter

HP32050A.01.09 SEGMENTER/3000 (C) HEWLETT-PACKARD CO 1983

-buildsl sl,1000,100

-usl $oldpass

-listusl

USL FILE $OLDPASS.HOWTO.MILLER

EX88A'

EX88A' 230 P A C N R

EX88A

EX88A 525 P A C N R

EX88A'S CP A C R

FILE SIZE 377600(1777. 0)

DIR. USED 311(1.111) INFO USED 1027(4. 27)

DIR. GARB. 0(0. 0) INFO GARB. 0(0. 0)

DIR. AVAIL. 37267(175. 67) INFO AVAIL. 336751(1573.151)

-addsl ex72a'

-addsl ex72a

-exit

END OF PROGRAM

:run transact.pub.sys

TRANSACT/3000 HP32247A.01.09 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME> ex72

PASSWORD FOR ORDERS>

ORDER-TABLE:
860600

850900 1200

END OF PROGRAM
144 Chapter 8

Special Topics
Intrinsics
Intrinsics
The PROC verb can also be used to call intrinsics. These intrinsics can be the MPE
intrinsics, VPLUS intrinsics, IMAGE, KSAM, etc., intrinsics.

The example below illustrates the use of several of the MPE intrinsics.
Chapter 8 145

Special Topics
Intrinsics
Figure 8-24. Accessing Intrinsics with PROC
1 system ex73;

2 define(item) filerec x(40):

3 fileref x(8):

4 fopt i(4):

5 aopt i(4):

6 bitmap i(4):

7 fnum i(4):

8 icount i(4):

9 icontrol i(4):

10 filesize i(9),init=1023;

11 define(item) comimage x(40):

12 comcr x(1)=comimage(40):

13 ncr i(4):

14 xncr2 x(1)=ncr(2):

15 error i(4):

16 parm i(4);

17 list comimage:

18 ncr:

19 error:

20 parm;

21 move (comimage) = "build ex73f;rec=-40,,,ascii;disc=10";

22 let (ncr) = 13; <<decimal equivalent of a carriage return>>|

23 move (comcr) = (xncr2);

24 proc command(%(comimage),(error),(parm));

25 list filerec:
26 fileref:
27 fopt:
28 aopt:
29 bitmap:
30 fnum:
31 icount:
32 icontrol:
33 filesize;

34 move (filerec) = "this is test data";

35 move (fileref) = "ex73f";

36 let (fopt) = 1; <<bits 14-15 = 01 = old file>>

37 let (aopt) = 1; <<bite 12-15 = 0001 = write only>>

38 let (bitmap) = 7176; << = 1110000001000 = parms 1,2,3,10>>

39 let (icount) = -40; << write 40 bytes>>

40 let (icontrol) =0; <<single space>>

41 proc fopen(%(fileref),#(fopt),#(aopt),,,,,,,#(filesize),,,,

42 #(bitmap),&(fnum));

43 proc fwrite(#(fnum),(filerec),#(icount),#(icontrol));
146 Chapter 8

Special Topics
Intrinsics
The example is a program that builds a file using the COMMAND intrinsic and then
writes a record to the file using the FOPEN and FWRITE intrinsics.

Line 21 sets up the buffer for the COMMAND intrinsic to be the BUILD command. The
buffer for a command has to end with a [[RETURN]] which is what lines 22 and 23
accomplish.

Line 41 executes the FOPEN intrinsic. This line illustrates several important points to
remember when calling intrinsics. The intrinsics manual describes the information we
need to know about both the intrinsic and the data being passed to it.

The first parameter passed to the FOPEN intrinsic is the formal designator or filename of
the file to be opened. It is a byte array. The % in front of the first parameter tells Transact
that this parameter is to be passed as a byte array.

The next parameter is the foptions. This is a word that FOPEN interprets groups of bits as
a description of the attributes of the file. The bit numbering convention is from left to right
starting with bit 0 and ending with bit 15. In line 36, we established a value for fopt with
only bit 15 on. This specifies the file domain to be an old permanent file. The # tells
Transact to pass this parameter by value to the intrinsic.

The parameter to satisfy the aoptions is also passed by value.

The remainder of the FOPEN parameters do not need to be specified for our use of the
intrinsic. However, there is one special case parameter which we need to consider, which is
the filesize parameter. This parameter is a double word parameter that is passed by value.
Transact does not know anything about the data types that intrinsics expect. It expects
you to provide that information. This works great and is easy to do for all data types except
optional double by value. When an option variable intrinsic contains this kind of
parameter, pass the parameter with either the default value in those cases where you don't
care what the parameter value is or with the needed value in those cases where you do
care. This assures that the correct number of words are passed to the intrinsic when
called.

Another special thing about this intrinsic is that it is an option variable intrinsic. This
means a bit map must be passed to the intrinsic telling it which parameters are being
passed to it. The intrinsic expects 13 parameters. Thus one word is passed to the intrinsic
with the first 13 bits of the word designating those parameters passed. In our example,
parameters 1, 2, 3, and 10 were passed, so the first three and the 10th bits of the bit map
word are set on in line 38 (1110000001000 to the base 2 is equal to 7176 to the base 10).

The last special thing about this intrinsic is that it is a function intrinsic which means it
returns a value to you. The very last parameter we pass it is the parameter to hold this
data. The & in front of the parameter tells Transact that this is where the value returned
is to be placed.

Line 43 executes the FWRITE intrinsic to write the data we specified to the file opened in
line 41.
Chapter 8 147

Special Topics
Test Facility
Test Facility
Transact provides an extensive test facility to aid in the debugging of a program. The
Transact Reference Manual provides a detailed description of this facility.

Three of the options that provide the answers to most debugging problems are options 25,
34, and 42. Option 25 provides information whenever a database or file access occurs.
Option 34 provides information whenever a VPLUS action occurs and option 42 provides
information whenever the data storage description changes.

Depending on the program being debugged and the test option chosen, Transact may
display a considerable amount of data for you. Another useful option which helps reduce
the amount of data displayed is to indicate a range of internal location reference numbers
where the display is to occur. Data is then displayed only when the program is executing
within the range specified. Before using this option, you must first compile your program
with the LIST option in order to get a listing of internal location reference numbers.

The test facility by default displays the data on your terminal. Quite often, it is desirable
to direct the data to a file so as not to interfere with terminal activity. This is especially
true when debugging a VPLUS program. The file designator used for displaying test
facility results is TRANDUMP. The default of the terminal can be altered to some other
device, typically a spooler file by doing two things. First set up a file equate such as:

FILE TRANDUMP;DEV=LP,1

Second, when specifying the option desired to the test facility, precede the option with a
minus sign.

Below is an example of debugging a VPLUS program with test option 34 and directing the
output to a spooler file. First, the program is compiled to get the internal location reference
numbers, then the file equation is entered to direct the test results to the TRANDUMP file.
When the program is run, test mode 34 is specified, and the debugging range is limited to
the update-customer paragraph (internal location reference numbers 21 to 28). The last
step is to look at the SPOOK output.

:run trancomp.pub.sys

TRANSACT/3000 COMPILER HP32247A.02.02 - (C) Hewlett-Packard Co. 1984

SOURCE FILE> ex74

LIST FILE>

CONTROL>
TRANSACT/3000 COMPILER A.02.02 : MON, MAR 18, 1985, 8:11 AM COMPILED
LISTING OF FILE EX13.HOWTO.MILLER PAGE 1

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS
1.000 system ex74,base=orders,vpls=formfile;
2.000 0000 list(auto) customer;
3.000 0005 level;
4.000 0006 get(form) mainmenu,f1=add-customer
5.000 0006 ,f2=update-customer
6.000 0006 ,f3=report-customer;
148 Chapter 8

Special Topics
Test Facility
6.100 0017 end;
7.000 0018
8.000 0018 add-customer:
9.000 0018

10.000 0018 get(form) vcustomer;
11.000 0019 put customer;
12.000 0020 end;
13.000 0021
14.000 0021 update-customer:
15.000 0021
16.000 0021 get(form) vcustno;
16.100 0022 set(key) list (cust-no);
17.000 0023 get customer;
18.000 0025 put(form) vcustomer;
19.000 0026 get(form) vcustomer;
20.000 0027 update customer;
21.000 0028 end;
22.000 0029
23.000 0029 report-customer:
24.000 0029
25.000 0029 get(form) vcustno;
25.100 0030 set(key)list (cust-no);
26.000 0031 get customer;
27.000 0033 put(form) vcustomer,wait=
28.000 0033 ,window=("press f1-f8 to continue");
29.000 0037 set(form) vcustomer,window=(" ");
30.000 0041 end;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:05

ELAPSED TIME=00:00:09

END OF PROGRAM
:file trandump;dev=lp,1
:run transact.pub.sys

TRANSACT/3000 HP32247A.02.02 - (C) Hewlett-Packard Co. 1984

SYSTEM NAME> ex74,,-34,21,28

 END OF PROGRAM

:run spook5.pub.sys

SPOOK5 G.01.00 (C) HEWLETT-PACKARD CO., 1983
> s
#FILE #JOB FNAME STATE OWNER
#O3449 #S344 TRANDUMP READY MARV.MILLER
> t3449
> l all 0 1 +-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+

2 |
3 | GET(FORM) CODE: 0 FKEY: 2
4 | FORM: ..MAINMENU FILE: ..FORMFILE
5 | 6 +--------------------------------------+
7 1 00021 160:009
8 +-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+
9 |

10 | GET(FORM) CODE: 0 FKEY: 0 11 | FORM: ..VCUSTNO . FILE: ..FORMFILE
12 |
Chapter 8 149

Special Topics
Test Facility
13 | OFFSET: LIST: DATA:
14 | 0 CUST-NO 1
15 |
16 +--------------------------------------+
17 1 00022 198:000
18 1 00023 064:139
19 1 00025 161:002
20 +-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+
21 |
22 | PUT(FORM) CODE: 0 FKEY: 0
23 | FORM: ..VCUSTOMER FILE: ..FORMFILE
24 |
25 | OFFSET: LIST: DATA:
26 | 0 CUST-NO 1
27 | 4 NAME updated name
28 | 24 STREET-ADDR street
29 | 44 CITY-STATE city
30 | 64 ZIPCODE zip
31 |
32 +--------------------------------------+
33 1 00026 160:002
34 +-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+
35 |
36 | GET(FORM) CODE: 0 FKEY: 0
37 | FORM: ..VCUSTOMER FILE: ..FORMFILE
38 |
39 | OFFSET: LIST: DATA:
40 | 0 CUST-NO 1
41 | 4 NAME new name
42 | 24 STREET-ADDR street
43 | 44 CITY-STATE city
44 | 64 ZIPCODE zip
45 |
46 +--------------------------------------+
47 1 00027 049:011
48 1 00028 000:000
49 +-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+
50 |
51 | GET(FORM) CODE: 0 FKEY: 8
52 | FORM: ..MAINMENU FILE: ..FORMFILE
53 |
54 +--------------------------------------+
150 Chapter 8

9 Creating Custom Applications

In this section, we look at coding techniques that use the power of Transact and
Dictionary/V. One of the most time-consuming functions of an application system's
programming team is program maintenance. Quite often this time is related to the kinds
of activity that can be greatly reduced or even eliminated by taking full advantage of the
integration of Transact and the dictionary.

Some of these time-consuming activities are: adding new input forms, changing or deleting
existing input forms, adding new data elements, deleting existing elements, or changing
existing elements in size.

We will follow through examples of localizing a program, that is, making it independent of
the form name and of the number of forms that execute the same code, independent of the
form contents, and provide user exits for additional processing. The changes we make
always apply to the dictionary. The changes become effective in the program when the
program is recompiled in order to pull in the new dictionary definitions.

An application system can be divided into at least two parts. The first part is made up of
the data that is needed by the system processing logic. This data or these data elements
are critical to the proper functioning of the system. For example, a manufacturing system
no doubt has an element called part-number which is a critical part of practically all
system transactions.

A typical application may have several critical data elements. It is fair to say that a
localizable application cannot allow critical fields to be deleted from the application.
Application programs rely upon these fields to be present in transactions.

However, a localizable application should allow these elements to be changed in size. It
should also allow the physical placement of these elements within an input form to be
changed.

The other part of an application is made up of noncritical elements. Many of these
elements may be supplied as a part of the original application, if for no other reason than
the typical generic application has these data elements. Other noncritical elements may be
added by the particular user of the application.

A localizable application should allow noncritical elements to be added, deleted, changed
in size, and changed in physical placement within an input form.

Also, generic transactions should be localizable. A generic transaction is defined here to be
a transaction that provides a basic function such as adding a customer or updating a
customer. For example, one organization may be responsible for adding new customers to
the database, but several organizations need to be able to update portions of the customer
data. Each organization should be provided with a form which only accesses the data they
need. The same program logic that provides customer update capability should be able to
handle any number of these variations.
151

Creating Custom Applications
Finally, a localizable application should allow logic to be added to handle such things as:
special field edits for any of the transaction’s data elements, data calculations, etc. With
this brief background, let’s look at how Transact can achieve this level of localization. Our
objective is to write an application program such that if we choose to change the
application as described above, we need not modify the program. We only need to record
the changes in the dictionary, recompile the program to make the changes known to it,
modify our VPLUS forms file to reflect the changes, and possibly unload and reload the
database, if its structure has been modified.

We will start with a simple transaction that only applies to one dataset. This will
demonstrate all of the concepts we want to achieve through localization. Later we will
extend this example to include a transaction that applies to several datasets, in order to
demonstrate the general case of how to write generic code.

Let’s use the customer dataset of our example database for illustration. Our generic
transaction provides the capability to update information for a customer. Breaking this
application into the two parts discussed above, the critical element in this transaction is
cust-no. The noncritical elements are: name, street-addr, city-state, and zip-code.

The VPLUS form used for each of these functions is vcustomer.

Figure 9-1. VPLUS Form to Maintain a Dataset

The dataset definition looks like this:

vcustomer customer data

number []

name []

address []

city,state []

zipcode []
152 Chapter 9

Creating Custom Applications
Figure 9-2. Dictionary Definitions for Customer VPLUS Form

The following program illustrates how a transaction to update a customer might be
written without allowing for any localization. We will expand this program to illustrate
most of the localization concepts.

FILE customer

FILE TYPE: RESPONSIBILITY:

CUSTOMER MAST

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CUST-NO * I+(4,0,2) CUST-NO

NAME X (20,0,20) NAME

STREET-ADDR X (20,0,20) STREET-ADDR

CITY-STATE X (20,0,20) CITY-STATE

ZIPCODE X (6,0,6) ZIPCODE
Chapter 9 153

Creating Custom Applications
Figure 9-3. Basic Program to Maintain Customers (VPLUS)

The program uses the same form to initially input the customer to be updated (line 5),
display the current data for the customer (line 9), and input the new data for the customer
(line 10).

1 system custfm,base=orders,vpls=formfile;

2 list(auto) customer;

3

4 level;

5 get(form) vcustomer,init;

6

7 set(key) list (cust-no);

8 get customer,list=(@);

9 put(form) vcustomer,window=("update? - f1=yes, f2=no");

10 get(form) vcustomer,f1(autoread)=modify-f1

11 ,f2=modify-f2;

12

13 modify-f1:

14

15 update customer,list=(@);

16

17 modify-f2:

18

19 end;

20

21

22 exit:

23

24 exit;
154 Chapter 9

Creating Custom Applications
Rearranging the Form
Rearranging the Form
Perhaps the easiest form of localization is to rearrange the order of elements on the form.
Our program form specification does not include any element ordering information. This is
controlled through the dictionary. Thus, this localization can be accomplished by modifying
the form using FORMSPEC, changing the element sequence on the form definition in the
dictionary, and recompiling our program using TRANCOMP.

The same program could then handle input from a form such as this:

Figure 9-4. Rearranged Customer VPLUS Form

Changing the form definition in the dictionary might go something like this:

vcustomer customer data

name [] number []

address []

city,state []

zipcode []
Chapter 9 155

Creating Custom Applications
Rearranging the Form
Figure 9-5. Dictionary Changes to Specify a Rearranged Screen

:run dictdbm.pub.sys

DICTIONARY/3000 HP32244A.02.01 - (C) Hewlett-Packard Co. 1984

PASSWORD FOR DICT.PUB>

FORMS ENTRY(Y/N)?>

> show file
FILE vcustomer

FILE TYPE: RESPONSIBILITY:
VCUSTOMER FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CUST-NO I+(4,0,2) CUST-NO
NAME X (20,0,20) NAME
STREET-ADDR X (20,0,20) STREET-ADDR
CITY-STATE X (20,0,20) CITY-STATE
ZIPCODE X (6,0,6) ZIPCODE

> resequence file
FILE vcustomer

ELEMENT name
NEW POSITION cust-no

ELEMENT

> show file

FILE vcustomer

FILE TYPE: RESPONSIBILITY:
VCUSTOMER FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):
NAME X (20,0,20) NAME
CUST-NO I+(4,0,2) CUST-NO

STREET-ADDR X (20,0,20) STREET-ADDR
CITY-STATE X (20,0,20) CITY-STATE
ZIPCODE X (6,0,6) ZIPCODE
156 Chapter 9

Creating Custom Applications
Form Independence
Form Independence
Now let’s see how to implement generic transaction code that can handle multiple form
formats. This will be illustrated by modifying the program above. Keep in mind that we
could have written the program this way to start with. It is not a program modification
that we must make every time we want to add another form.

The following program provides generic update customer capability and is form
independent. That is, the program has no idea of which data elements exist on a form, nor
does it know how many possible different forms may be used to update a customer.
Chapter 9 157

Creating Custom Applications
Form Independence
Figure 9-6. Screen Independence Via Indirect Referencing
1 system custup,base=orders
2 ,vpls=formfile
3 ,file=formxref;
4 define(item) menuname x(16):
5 fkey 9(2):
6 screen x(16):
7 lastkey i(4);
8 list menuname:
9 lastkey;

10
11 data menuname; <<to simulate transfer of control to this subroutine>>
12
13 <<
14 ***
15 Subroutine: to update customer information
16
17 input: menuname - contains the name of the screen to be displayed
18
19 output: none
20 ***
21 >>
22 level;
23 list fkey:
24 screen;
25 list(auto) customer;
26 get(form) (menuname),init
27 ,window=(" ")
28 ,fkey=lastkey
29 ,autoread;
30 if (lastkey) = 0
31 then perform modify
32 else
33 do
34 set(match) list (menuname);
35 let (fkey) = (lastkey);
36 set(match) list (fkey);
37 get(serial) formxref,list=(menuname,fkey,screen);
38 reset(option) match;
39 perform modify;
40 doend;
41 end;

43 modify:
44
45 set(key) list (cust-no);
46 get customer,list=(@);
47 put(form) (screen),window=("update? - f1=yes, f2=no");
48 get(form) (screen),f1(autoread)=modify-f1
49 ,f2=modify-f2;
50
51 modify-f1:
52
53 update customer,list=(@);
54
55 modify-f2:
56
57 end;
158 Chapter 9

Creating Custom Applications
Form Independence
This program uses Transact’s indirect referencing capability for forms. Notice that all
verbs which reference a form name do not actually specify the form name. Each verb
specifies the name of an element which contains the name of the form to be referenced.

The program sets up a menu-driven customer update capability such as the following
series of forms depict.

Figure 9-7. Screen Independence, Customer Main Menu

Figure 9-8. Screen Independence, Marketing Customer Update

Figure 9-9. Screen Independence, Finance Customer Update

custupdatemm customer update main menu

enter customer number [1]

f1 - marketing (custupdate1)

f2 - finance (custupdate2)

f3 - accounts payable (custupdate3)

or

enter screen name []

market- finance accounts exit

ing payable

custupdate1 marketing customer update

customer number [1]

name [name of customer 1]

update? - f1=yes, f2=no

custupdate2 finance customer update

customer number [1]

zip code [12345]

update? - f1=yes, f2=no
Chapter 9 159

Creating Custom Applications
Form Independence
Figure 9-10. Screen Independence, Accounts Payable Customer Update

There are many ways to implement a form-independent program. The above is just one
illustration. The key to this implementation is the MPE file called FORMXREF which
provides the indirection we need to establish form independence.

The content of FORMXREF is as follows:

Figure 9-11. Screen Independence, Form Cross Reference File

MENUNAME and FKEY are the index into the file specifying the menu that the user is
currently working with and the function key just pressed by the user to indicate the next
form to go to. SCREEN contains the name of the next data entry form to use.

When this program begins, the element menuname contains the name of the menu that
controls its functionality. Line 11 simulates this by prompting for the menu name. When
prompted for the menu name, we typed in CUSTUPDATEMM.

The menu we have set up allows the user to specify the next form in either of two ways.
The name of the form can be entered in the box titled enter screen name. The [[ENTER]]
enters this data and lines 30 and 31 detect this and perform the update routine. Or, the
form can be indicated via a function key. If this way is chosen, the file formxref is accessed
to determine the form name to be used by the modify routine. Lines 34 through 39
accomplish this.

The cross reference file has a record for each function key of each form that defines the
name of the form to use when that function key is pressed. In our example, if the user
presses [[F1]], then form custupdate1 is used.

Another form for updating a customer could now be designed and used by this program
merely by recompiling the program. Of course, the form would have to be designed in
FORMSPEC and defined in the data dictionary first.

custupdate3 accounts payable customer update

customer number [1]

name [name of customer 1]

address [108 Lincoln Ave.]

city,state [So. Bend, Ind.]

zipcode [12345]

update? - f1=yes, f2=no

MENUNAME: FKEY: SCREEN:

CUSTUPDATEMM 1 CUSTUPDATE1

CUSTUPDATEMM 2 CUSTUPDATE2

CUSTUPDATEMM 3 CUSTUPDATE3
160 Chapter 9

Creating Custom Applications
Adding, Deleting, and Changing Elements
Adding, Deleting, and Changing Elements
Now let’s take on a major localization step. Let’s redefine the customer dataset, expanding
the size of cust-no from 4 to 6 digits long, deleting the zipcode field and adding a new field
called area. The following Figures illustrate what must be done to accomplish all of this.
The important point for Transact is that we only need to recompile the program to
incorporate the new structure.

First we modify the form file, changing all the forms that reference the customer data.

custupdatemm is changed to reflect the 6-digit customer number.

Figure 9-12. Customer Main Menu, Change Size of cust-no

custupdate1 is changed to reflect the 6-digit customer number.

Figure 9-13. Marketing Customer Update, Change Size of cust-no

custupdate2 is changed to reflect the 6-digit customer number, delete of zipcode, and
addition of area, because finance needs to be able to update this new code.

custupdatemm customer update main menu

enter customer number []

f1 - marketing (custupdate1)

f2 - finance (custupdate2)

f3 - accounts payable (custupdate3)

or

enter screen name []

market- finance accounts exit

ing payable

custupdate1 marketing customer update

customer number []

name []
Chapter 9 161

Creating Custom Applications
Adding, Deleting, and Changing Elements
Figure 9-14. Finance Customer Update, Add, Change, Delete Elements

custupdate3 is changed to reflect the 6-digit customer number, delete of zipcode, and
addition or area, because accounts payable needs to be able to update all fields.

Figure 9-15. AP Customer Update, Add, Change, Delete Elements

These changes, as well as the database changes, are recorded in the dictionary using
DICTDBM.

custupdate2 finance customer update

customer number []

area []

custupdate3 accounts payable customer update

customer number []

name []

address []

city,state []

area []
162 Chapter 9

Creating Custom Applications
Adding, Deleting, and Changing Elements
Figure 9-16. Changing dictionary definitions, add, change, Delete Element

:run dictdbm.pub.sys

DICTIONARY/3000 HP32244A.02.01 - (C) Hewlett-Packard Co. 1984

PASSWORD FOR DICT.PUB>

FORMS ENTRY(Y/N)?>

> modify element

ELEMENT cust-no

EDIT DESCRIPTION(Y/N)?> n

ELEMENT TYPE: SIZE: DEC: LENGTH: COUNT: RESPONSIBILITY:

CUST-NO i+ 4 0 4 1
LONG NAME:
HEADING TEXT:
ENTRY TEXT:
EDIT MASK:
MEASUREMENT UNITS:
BLANK WHEN ZERO: NO

TYPE i+
SIZE 6

DECIMAL !
Chapter 9 163

Creating Custom Applications
Adding, Deleting, and Changing Elements
Figure 9-17. Changing Dictionary Definitions
> create element

ELEMENT area
LONG NAME

TYPE x
SIZE 6

STORAGE LENGTH(6) !

> delete file
FILE custupdate3

ELEMENT zipcode
ENTRY DELETED

ELEMENT

> add file
FILE custupdate3

ELEMENT area
ELEMENT ALIAS

FIELD NUMBER
DESCRIPTION

ELEMENT

> delete file
FILE custupdate2

ELEMENT zipcode
ENTRY DELETED

ELEMENT
> add file

FILE custupdate2

ELEMENT area
ELEMENT ALIAS

FIELD NUMBER
DESCRIPTION

ELEMENT
> delete file

FILE customer
ELEMENT zipcode

ENTRY DELETED
ELEMENT

> add file
FILE customer

ELEMENT area
ELEMENT ALIAS

DESCRIPTION
ELEMENT

> exit

END OF PROGRAM
:

164 Chapter 9

Creating Custom Applications
Adding, Deleting, and Changing Elements
Next the database is unloaded using DICTDBU.

Figure 9-18. Unloading the Database with DICTDBU

Then the current database is purged using DBUTIL.

:run dictdbu.pub.sys

DICTIONARY/3000 DB UNLOADER P32244A.02.01-(C)Hewlett-Packard Co. 1984

STORE FILE> mpestore

LIST FILE>

BASE> orders

BASE PASSWORD>

MODE> 1

UNLOAD AUTOMATIC MASTER SETS(N/Y)?>

UNLOAD DETAIL SETS BY CHAIN(Y/N)?>

UNLOAD EDIT(N/Y)?>

PROCESSING SETS

CUSTOMER M:2/100

2 ENTRIES UNLOADED IN <1 CPU-SEC

PARTS M:2/100

2 ENTRIES UNLOADED IN <1 CPU-SEC

ORDER A:2/100

AUTO NOT UNLOADED

INVENTORY D:3/108

3 ENTRIES UNLOADED IN <1 CPU-SEC

ORDERHEAD D:2/112

2 ENTRIES UNLOADED IN <1 CPU-SEC

ORDERLINE D:3/100

3 ENTRIES UNLOADED IN <1 CPU-SEC

UNLOAD COMPLETED

END OF PROGRAM

:

Chapter 9 165

Creating Custom Applications
Adding, Deleting, and Changing Elements
Figure 9-19. Purging the Database with DBUTIL

Then the new database root file is created using DICTDBC.

Figure 9-20. Creating the Database with DICTDBC

:run dbutil.pub.sys

HP32215B.04.61 IMAGE/3000: DBUTIL C)COPYRIGHT HEWLETT-PACKARD COMPANY 1978

>>pur orders
Data base has been PURGED.
>>exit

END OF PROGRAM
:

:run dictdbc.pub.sys
DICTIONARY/3000 DB CREATOR HP32244A.02.01 - (C) Hewlett-Packard Co. 1984
DICTIONARY PASSWORD>
BASE> orders
CONTROL LINE>
SCHEMA FILE>
LISTING FILE>
APPLY SECURITY JUST TO SET LEVEL(N/Y)?>
SCHEMA GENERATION
DBSCHEMA PROCESSOR
PAGE 1 HEWLETT-PACKARD 32215B.04.50 IMAGE/3000: DBSCHEMA

TUE, MAY 14, 1985, 9:21 AM (C) HEWLETT-PACKARD CO. 1978

BEGIN DATA BASE ORDERS;
PASSWORDS:
ITEMS:

AREA, X6 ;
CITY-STATE, X20 ;
CUST-NO, I2 ;
DESCRIPTION, X20 ;
LINE-NO, X2 ;
LOCATION, X4 ;
NAME, X20 ;
ORDER-DATE, X6 ;
ORDER-NO, X8 ;
ORDER-STATUS, X2 ;
PART-NUMBER, X8 ;
QUANTITY, I2 ;
STREET-ADDR, X20 ;
166 Chapter 9

Creating Custom Applications
Adding, Deleting, and Changing Elements
Figure 9-21. Creating the Database with DICTDBC (Continued)

SETS:
NAME: CUSTOMER, MANUAL ;
ENTRY: CUST-NO (1),
NAME,
STREET-ADDR,
CITY-STATE,
AREA;
CAPACITY: 100;
NAME: PARTS, MANUAL ;
ENTRY: PART-NUMBER (2),
DESCRIPTION;
CAPACITY: 100;
NAME: ORDER, AUTOMATIC ;
ENTRY: ORDER-NO (2);
CAPACITY: 100;
NAME: INVENTORY, DETAIL ;
ENTRY: PART-NUMBER (PARTS),
LOCATION,
QUANTITY;
CAPACITY: 100;
NAME: ORDERHEAD, DETAIL ;
ENTRY: ORDER-NO (ORDER),
CUST-NO (CUSTOMER),
ORDER-STATUS,
ORDER-DATE;
CAPACITY: 100;
NAME: ORDERLINE, DETAIL ;
ENTRY: ORDER-NO (ORDER)
LINE-NO,
PART-NUMBER (PARTS),
QUANTITY;
CAPACITY: 100;
END.
DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC

NAME CNT CT LGTH REC FAC LGTH SPACE
CUSTOMER M 5 1 36 46 100 11 507 44
PARTS M 2 2 14 29 100 13 378 27
ORDER A 1 2 4 19 100 20 382 18
INVENTORY D 3 1 8 12 120 40 483 16
ORDERHEAD D 4 2 11 19 100 20 382 18
ORDERLINE D 4 2 11 19 100 20 382 18

TOTAL DISC SECTORS INCLUDING ROOT: 152
NUMBER OF ERROR MESSAGES: 0
ITEM NAME COUNT: 13 DATA SET COUNT: 6
ROOT LENGTH: 587 BUFFER LENGTH: 507 TRAILER LENGTH: 256
ROOT FILE ORDERS CREATED.
END OF PROGRAM
:

Chapter 9 167

Creating Custom Applications
Adding, Deleting, and Changing Elements
The new database is created using DBUTIL.

Figure 9-22. Creating the New Database with DBUTIL

The database is reloaded using DICTDBL.

Figure 9-23. Reloading the Database with DICTDBL

Finally, we recompile the Transact program and implement the new application.

run dbutil.pub.sys

HP32215B.04.61 IMAGE/3000: DBUTIL (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1978

>>cre orders
Data base ORDERS has been CREATED.
>>exit
END OF PROGRAM
:

run dictdbl.pub.sys

DICTIONARY/3000 DB LOADER HP32244A.02.01 - (C) Hewlett-Packard Co. 1984

STORE FILE> mpestore
LIST FILE>
BASE: ORDERS.CUSTOMIZ.MILLER
RUN MODE(LOAD/EDIT/SHOW/EXIT)>
NEW BASE NAME>
BASE PASSWORD>
MODE>
FAST I/O(Y/N)?>
CUSTOMER M 2/100
ZIPCODE ITEM NOT FOUND, NEW ITEM NAME> <cr> = not reloaded
2 ENTRIES LOADED IN <1 CPU-SEC
PARTS M 2/100
2 ENTRIES LOADED IN <1 CPU-SEC
INVENTORY D 3/120
3 ENTRIES LOADED IN <1 CPU-SEC
ORDERHEAD D 2/100
2 ENTRIES LOADED IN <1 CPU-SEC
ORDERLINE D 3/100
3 ENTRIES LOADED IN <1 CPU-SEC
LOAD COMPLETED
END OF PROGRAM
:

168 Chapter 9

Creating Custom Applications
Adding, Deleting, and Changing Elements
Figure 9-24. Compiling Transact Program to Resolve Data Changes

DICTDBU and DICTDBL cannot handle all types of element changes. For example,
cust-no was changed from a 9(4) definition to an I+(4) definition in this example because
these utilities will not convert a numeric ASCII element properly. This is because Image
does not have a data type corresponding to numeric ASCII. DICTDBC creates an element
defined as numeric ASCII as an alphanumeric element of type X. Thus, if cust-no were
being changed from 9(4) to 9(6), DICTDBU would unload it as X(4). DICTDBL would
reload it as X(6) causing the new field to be left justified with two spaces inserted on the
right. Transact would no longer be able to interpret the field as numeric.

Thus, when writing a custom application, avoid using data type 9 or write a utility to
convert data after DICTDBU has run and before DICTDBL has run.

run trancomp.pub.sys
TRANSACT/3000 COMPILER HP32247A.02.02 - (C) Hewlett-Packard Co. 1984

SOURCE FILE> custup
LIST FILE>
CONTROL> dBlist
TRANSACT/3000 COMPILER A.02.02 : TUE, MAY 14, 1985, 9:32 AM COMPILED

LISTING OF FILE CUSTUP.CUSTOMIZ.MILLER PAGE 1
COMPILING WITH OPTIONS: CODE,DICT,ERRS
CODE FILE STATUS: REPLACED
0 COMPILATION ERRORS
PROCESSOR TIME=00:00:08
END OF PROGRAM
:

Chapter 9 169

Creating Custom Applications
User Exits
User Exits
In general, there are two types of application development environments. First there are
application software companies who build application solutions to sell to other companies.
Second, there are companies who build application solutions for use internally.
Localization is attractive to both environments. Ignoring the fact that the software is sold
in one case, both types of environments have a similar structure. There is a central group
responsible for maintaining and enhancing the core system. There are one or more user
organizations who accept the basic system functionality, but who have unique needs from
the other users. Until these needs become the common needs of the majority of the system
users, the central group typically resists adding the functionality to the core system.

If, however, the central group provides ways in which the individual users can modify the
system to include the functionality they need without destroying the functionality of the
core system, then both groups become winners.

The concepts discussed earlier, plus the concept of user exits provide this capability.

It is probably much easier for the software engineers developing software for sale to build
in user exits, since they are acutely aware of the many unique demands their customers
make.

It is no doubt much more difficult for a software engineer building internal software to
distinguish between capabilities that should be a part of the core system versus
capabilities that should be extensions or localization of the core system, since his users are
also internal.

Providing the capability for user exits and deciding on the timing of this capability are up
to the designer of the core system. For example, a designer may only want to allow user
intervention after data has been entered. Another designer may want to allow user
intervention before and after data entry, as well as before and after database update.

Naturally, the more a designer provides this capability, the better the possibility that the
user can solve his unique problem outside of the core system.

The example below illustrates one way to implement user exits within Transact. It
implements a structure that allows the user to do some processing just after data has been
entered.
170 Chapter 9

Creating Custom Applications
User Exits
Figure 9-25. Providing User Exits

1 system custex,base=orders
2 ,vpls=formfile
3 ,file=formxref,exitxref;
4 define(item) menuname x(16):
5 fkey 9(2):
6 screen x(16):
7 lastkey i(4):
8 userexit-prog x(6):
9 userexit-marker @;

10 list menuname:
11 lastkey:
12 userexit-prog;
13
14 data menuname; <<to simulate transfer of control to this subroutine>>
15
16 <<
17 ***
18 Subroutine: to update customer information
19
20 input: menuname - contains the name of the screen to be displayed
21
22 output: none
23 ***
24 >>
25 list fkey:
26 screen;
27 list userexit-marker;
28 list(auto) custupd-global;
29 let (yes) = 1;
30 let (no) = 0;
31 let (error) = (no);

32 level;
33 list(auto) customer;
34 if (error) = (no)
35 then
36 get(form) (menuname),init
37 ,window=(" ")
38 ,fkey=lastkey
39 ,autoread
40 else
41 get(form) (menuname)
42 ,fkey=lastkey
43 ,autoread;
44 if (lastkey) = 8
45 then exit;
46 set(match) list (menuname);
47 get(serial) exitxref,list=(menuname,userexit-prog);
Chapter 9 171

Creating Custom Applications
User Exits
Figure 9-26. Providing User Exits (Continued)

The user exit is established in a way similar to that used to achieve form independence. A
cross reference file is set up to contain the name of the subprogram to be called based upon
the name of the form that the program is currently processing.

The content of this cross-reference file is:

Figure 9-27. User Exit cross Reference Table

48 call (userexit-prog),data=userexit-marker;
49 if (error) = (yes)
50 then end;
51 if (lastkey) = 0
52 then perform modify
53 else
54 do
55 set(match) list (menuname);
56 let (fkey) = (lastkey);
57 set(match) list (fkey);
58 get(serial) formxref,list=(menuname,fkey,screen);
59 reset(option) match;
60 perform modify;
61 doend;
62 end;
63
64 modify:
65
66 set(key) list (cust-no);
67 get customer,list=(@);
68 put(form) (screen),window=("update? - f1=yes, f2=no");
69 get(form) (screen),f1(autoread)=modify-f1
70 ,f2=modify-f2;
71
72 modify-f1:
73
74 update customer,list=(@);
75
76 modify-f2:
77
78 end;

MENUNAME: USEREXIT-PROG:

CUSTUPDATEMM CU1
172 Chapter 9

Creating Custom Applications
User Exits
MENUNAME is the index into the program specifying the current menu or form.
USEREXIT-PROG contains the name of the Transact subprogram to be called.

As this program illustrates, there can be some data defined within the program for its own
use (lines 10 through 26). This data could also be defined in the dictionary. There can also
be global data that is of importance to both the program and the user exit program (lines
28 through 31). This data should be defined in the dictionary in order to make coding of the
user exit program easier. Included in this data are elements for handling form data input
errors (validation) and the data the user wants to add to the transaction. Finally, there is
the dataset definition needed specifically for this generic transaction, also defined in the
dictionary (line 33). The dictionary description of custupd-global and customer is as
follows:

Figure 9-28. Setting up Transaction-Specific Data in the Dictionary

Note that the user of the system has added the element password to the custupd-global
list. This element is not a part of the core application.

The program depends upon the existence of error, yes, and no as the way in which the
subprogram indicates to the main program that an error has been detected. The main
program initializes these variables in lines 29 to 31.

FILE custupd-global

FILE TYPE: RESPONSIBILITY:

CUSTUPD-GLOBAL FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

PASSWORD X (8,0,8) PASSWORD
ERROR I (4,0,2) ERROR
YES I (4,0,2) YES
NO I (4,0,2) NO

FILE customer

FILE TYPE: RESPONSIBILITY:

CUSTOMER MAST

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CUST-NO * I+(6,0,4) CUST-NO
NAME X (20,0,20) NAME
STREET-ADDR X (20,0,20) STREET-ADDR
CITY-STATE X (20,0,20) CITY-STATE
AREA X (6,0,6) AREA
Chapter 9 173

Creating Custom Applications
User Exits
The program sets up a marker element which it uses to denote the point in the list register
that the subprogram has access to (line 27 and 48).

The form is displayed without erasing the information, if the user exit program detected
an error. Otherwise an initialized form is displayed. Lines 34 to 45 handle this.

Lines 46 to 48 implement the user exit by searching for a match on form name in the
cross-reference file. This code and file could be expanded to provide for multiple user exits
during the same transaction and to make a user exit optional.

The user exit program follows. The user has decided to add a password to the customer
update menu and has added the logic to his subprogram to validate the password.

Figure 9-29. User Exit Subprogram for Data Validation

Note that the user exit program must contain the LIST definition corresponding to the
main program definition that occurs after the marker item. Standardized procedures for
communicating error conditions, etc. must also exist.

The modified user version of the form custupdatemm and the dictionary description of this
form follows:

1 system cu1,vpls=formfile;

2 list(auto) custupd-global;

3 list(auto) customer;

4 let (error) = (no);

5 if (password) <> "OKAY"

6 then

7 do

8 set(form) *,window=(password,"invalid password");

9 let (error) = (yes);

10 doend;

11 exit;
174 Chapter 9

Creating Custom Applications
User Exits
Figure 9-30. User-Modified Customer Main Menu, Adding an Element

Figure 9-31. Dictionary Definitions of Modified Customer Main Menu

custupdatemm customer update main menu

enter customer number []

f1 - marketing (custupdate1)

f2 - finance (custupdate2)

f3 - accounts payable (custupdate3)

or

enter screen name []

password []

market- finance accounts exit

ing payable

FILE TYPE: RESPONSIBILITY:

CUSTUPDATEMM FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CUST-NO I+(6,0,4) CUST-NO

SCREEN X (16,0,16) SCREEN

PASSWORD X (8,0,8) PASSWORD
Chapter 9 175

Creating Custom Applications
Transactions Across Multiple Datasets
Transactions Across Multiple Datasets
All of the above concepts are still valid even if the transaction affects multiple datasets.
The following program illustrates a way to write generic code that accesses more than one
dataset. This code could be expanded to include the topics previously discussed to provide
form independence, user exits, etc.

Figure 9-32. One Screen, Multiple Dataset Generic Transaction

The generic transaction adds a new record to the parts dataset, which is the master
dataset. It then adds a record to each of two detail sets, inventory and partvendors.
Part-number is a critical element and is common to all three sets.

The dictionary description of the lists used by the program are as follows:

1 system addprt,base=orders

2 ,vpls=formfile;

3 list(auto) addpart-global;

4 level;

5 list(auto) partvendors;

6 level;

7 list(auto) inventory;

8 level;

9 list(auto) parts;

10 get(form) addpart,init;

11 put parts,list=(@);

12 move (global-part) = (part-number);

13 end(level);

14 move (part-number) = (global-part);

15 put inventory,list=(@);

16 end(level);

17 move (part-number) = (global-part);

18 put partvendors,list=(@);

19 end;
176 Chapter 9

Creating Custom Applications
Transactions Across Multiple Datasets
Figure 9-33. Dictionary Definitions for One Screen, Multi Dataset Transaction

Note that the global definitions for this transaction include an element called global-part.
This element is used to store the value of part-number between dataset updates as
explained below.

The form addpart looks like this:

FILE TYPE: RESPONSIBILITY:
ADDPART FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):
PART-NUMBER X (8,0,8) PART-NUMBER
DESCRIPTION X (20,0,20) DESCRIPTION
LOCATION X (4,0,4) LOCATION
QUANTITY I (6,0,4) QUANTITY
VENDOR-CODE X (6,0,6) VENDOR-CODE
VENDOR-NAME X (20,0,20) VENDOR-NAME

FILE TYPE: RESPONSIBILITY:
ADDPART-GLOBAL FORM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):
GLOBAL-PART X (8,0,8) GLOBAL-PART

FILE TYPE: RESPONSIBILITY:
INVENTORY DETL

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):
PART-NUMBER * X (8,0,8) PART-NUMBER

CHAIN MASTER SET: PARTS
LOCATION X (4,0,4) LOCATION
QUANTITY I (6,0,4) QUANTITY

FILE TYPE: RESPONSIBILITY:
PARTS MAST

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):
PART-NUMBER * X (8,0,8) PART-NUMBER
DESCRIPTION X (20,0,20) DESCRIPTION

FILE TYPE: RESPONSIBILITY:
PARTVENDORS DETL

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):
PART-NUMBER * X (8,0,8) PART-NUMBER

CHAIN MASTER SET: PARTS
VENDOR-CODE X (6,0,6) VENDOR-CODE
VENDOR-NAME X (20,0,20) VENDOR-NAME
Chapter 9 177

Creating Custom Applications
Transactions Across Multiple Datasets
Figure 9-34. Multiple Dataset Screen

The key to understanding how to write generic code is to understand how the VPLUS and
Image interface work with the list register.

The first thing to understand is that the list register can have as many definitions of an
element on it as you want. However, Transact always references the latest definition. Thus
when we do a LIST(AUTO) for each dataset that the transaction is to access, we are
putting three definitions of part-number in the list register.

The VPLUS interface with the dictionary does not require us to use the LIST= option. If
this is left off, Transact matches the elements that are a part of the form with the current
contents of the list register. These elements can occur anywhere physically in the list
register. Elements are resolved by starting at the end (most recent change) of the list
register, and working back until the element definition is found (line 10).

The Image interface through LIST=(@) requires the element list to be contiguous. We
cannot list the individual elements, since this would defeat the idea of creating custom
code. Thus after updating the parts dataset (line 11), we need to save the value of
part-number (line 12) and then remove all of the parts dataset elements (line 13), then
restore part-number which now will be the part-number defined for dataset inventory (line
14). A record is then added to the inventory dataset.

Since part-number has already been saved, we do not need to save it again, but can now
remove the elements that belong to the inventory set from the LIST and then restore
part-number which now becomes the part-number for the partvendors set.

This same logic can be repeated any number of times. Similar logic also handles data
retrieval from different sets.

addpart add a part

part number []

description []

location []

quantity []

vendor code []

vendor name []
178 Chapter 9

A Building the Dictionary

The following is an example of a terminal session creating the dictionary.

After the dictionary is created, then it is loaded with database definitions, form definitions,
and elements. Appendices B,C, E, and F are examples of this.

 :run dictinit.pub.sys

DICTIONARY/3000 INITIALIZATION HP32244A.02.00 - (C) Hewlett-Packard Co. 1983

 Initialization/Re-initialization (I/R) >i

 USER PASSWORD >

 ACCOUNT PASSWORD >

 GROUP PASSWORD >

 #J70

 END OF PROGRAM

 :

 FROM/J70 MARV.MILLER/PLEASE RUN DICTINIT.PUB.SYS,UPDATE

 run dictinit.pub.sys,update

DICTIONARY/3000 INITIALIZATION HP32244A.02.00 - (C) Hewlett-Packard Co. 1983

 Initialization/Re-initialization (I/R) >i

 Dictionary capacities: Default or Provided (D/P) >d

 DATA-ELEMENT will have capacity 1001

 DATA-FILE will have capacity 503

 DATA-PROCEDURE will have capacity 203

 DATA-CATEGORY will have capacity 203

 DATA-GROUP will have capacity 503

 DATA-CLASS will have capacity 203

 DATA-LOCATION will have capacity 203

 LINK-FILE will have capacity 401

 LINK-ELEMENT will have capacity 401

 LINK-DESCRIPTION will have capacity 2003

 DATA-REPORTLOC will have capacity 503

 ELEMENT-REFTYPE will have capacity 500

 ELEMENT-ELEMENT will have capacity 500

 FILE-FILE will have capacity 250
179

Building the Dictionary
 PROCEDURE-PROCED will have capacity 100

 CATEGORY-CATEGOR will have capacity 100

 GROUP-GROUP will have capacity 250

 FILE-ELEMENT will have capacity 2000

 FILE-EL-SECOND will have capacity 100

 FILE-PATH will have capacity 400

 FILE-SORT will have capacity 400

 Press RETURN to continue >

 PROCEDURE-ELEMEN will have capacity 500

 CATEGORY-ELEMENT will have capacity 500

 GROUP-ELEMENT will have capacity 1000

 CLASS-CLASS will have capacity 500

 CLASS-ELEMENT will have capacity 3000

 CLASS-FILE will have capacity 500

 CLASS-GROUP will have capacity 500

 FILE-LOCATION will have capacity 500

 DESCRIPTION-TEXT will have capacity 5000

 REPORT-LIST will have capacity 500

 Are the capacities correct? (Y/N) >y

 Password for MANAGER access >dbmgr

 Password for PROGRAMMER access >dbprog

 Password for INFORM access >dbinf

 Password for DOCUMENTATION access >dbdoc

 Password for REPORT access >dbrpt

 Password for MANAGER access will be dbmgr

 Password for PROGRAMMER access will be dbprog

 Password for INFORM access will be dbinf

 Password for DOCUMENTATION access will be dbdoc

 Password for REPORT access will be dbrpt

 Are the passwords correct? (Y/N) >y

 USER PASSWORD >

 ACCOUNT PASSWORD >

 GROUP PASSWORD >

 #J74

 END OF PROGRAM

 :

 FROM/J74 MARV.MILLER/Dictinit is complete
180 Appendix A

B Entering the Database Definition

The following is an example of entering database and file definitions into the dictionary.
The IMAGE database ORDERS, KSAM file KCUST, and MPE files BATCHINV and
SHORTAGE which are all used by the examples of this manual, are the definitions entered
by this example. The example is also complete, that is it completely defines the files and
database.

The example shows the minimum data that must be added. The other data, such as
heading text, entry text, and edit masks, when entered helps to customize the application.

 :file dict.pub=dict

 :run dictdbm.pub.sys

 DICTIONARY/3000 HP32244A.02.00 - (C) Hewlett-Packard Co. 1983

 PASSWORD FOR DICT.PUB>

 FORMS ENTRY(Y/N)?>

 > repeat create file

 FILE orders

LONG NAME

 TYPE base

 RESPONSIBILITY

DESCRIPTION

 FILE customer

LONG NAME

 TYPE mast

 RESPONSIBILITY

DESCRIPTION

 FILE order

LONG NAME

 TYPE auto

 RESPONSIBILITY

DESCRIPTION

 FILE parts

LONG NAME

 TYPE mast

 RESPONSIBILITY
181

Entering the Database Definition
DESCRIPTION

 FILE orderhead

LONG NAME

 TYPE detl

 RESPONSIBILITY

DESCRIPTION

 FILE orderline

LONG NAME

 TYPE detl

 RESPONSIBILITY

DESCRIPTION

 FILE inventory

LONG NAME

 TYPE detl

 RESPONSIBILITY

DESCRIPTION

 FILE kcust

LONG NAME

 TYPE ksam

 RESPONSIBILITY

DESCRIPTION

 ADDITIONAL FILE ATTRIBUTES(N/Y)?>

 FILE batchinv

LONG NAME

 TYPE mpef

 RESPONSIBILITY

DESCRIPTION

 ADDITIONAL FILE ATTRIBUTES(N/Y)?>

 FILE shortage

LONG NAME

 TYPE mpef

 RESPONSIBILITY

DESCRIPTION

 ADDITIONAL FILE ATTRIBUTES(N/Y)?>

 FILE

 > relate file

 PARENT FILE orders

 CHILD FILE customer
182 Appendix B

Entering the Database Definition
 CHILD ALIAS

 CAPACITY 100

 BLOCKMAX

DESCRIPTION

 CHILD FILE order

 CHILD ALIAS

 CAPACITY 100

 BLOCKMAX

DESCRIPTION

 CHILD FILE parts

 CHILD ALIAS

 CAPACITY 100

 BLOCKMAX

DESCRIPTION

 CHILD FILE orderhead

 CHILD ALIAS

 CAPACITY 100

 BLOCKMAX

DESCRIPTION

 CHILD FILE orderline

 CHILD ALIAS

 CAPACITY 100

 BLOCKMAX

DESCRIPTION

 CHILD FILE inventory

 CHILD ALIAS

 CAPACITY 100

 BLOCKMAX

DESCRIPTION

 CHILD FILE

 > repeat create element

 ELEMENT cust-no

LONG NAME

 TYPE 9

 SIZE 4

 DECIMAL

 STORAGE LENGTH(4)

 COUNT(1)
Appendix B 183

Entering the Database Definition
 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 BLANK WHEN ZERO(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT name

LONG NAME

 TYPE x

 SIZE 20

 STORAGE LENGTH(20)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT street-addr

LONG NAME

 TYPE x

 SIZE 20

 STORAGE LENGTH(20)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT city-state

LONG NAME

 TYPE x

 SIZE 20

 STORAGE LENGTH(20)
184 Appendix B

Entering the Database Definition
 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT zipcode

LONG NAME

 TYPE x

 SIZE 6

 STORAGE LENGTH(6)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT order-no

LONG NAME

 TYPE x

 SIZE 8

 STORAGE LENGTH(8)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT order-status

LONG NAME

 TYPE x

 SIZE 2
Appendix B 185

Entering the Database Definition
 STORAGE LENGTH(2)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT order-date

LONG NAME

 TYPE x

 SIZE 6

 STORAGE LENGTH(2)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT line-no

LONG NAME

 TYPE 9

 SIZE 2

 DECIMAL

 STORAGE LENGTH(2)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 BLANK WHEN ZERO(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT quantity

LONG NAME
186 Appendix B

Entering the Database Definition
 TYPE i

 SIZE 6

 DECIMAL

 STORAGE LENGTH(4)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 SYNCHRONIZED(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT part-number

LONG NAME

 TYPE x

 SIZE 8

 STORAGE LENGTH(8)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT description

LONG NAME

 TYPE x

 SIZE 20

 STORAGE LENGTH(20)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION
Appendix B 187

Entering the Database Definition
 ELEMENT location

LONG NAME

 TYPE x

 SIZE 4

 STORAGE LENGTH(4)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT back-order

LONG NAME

 TYPE i

 SIZE 6

 STORAGE LENGTH(4)

 COUNT(1)

 HEADING TEXT

 ENTRY TEXT

 EDIT MASK

 MEASUREMENT UNITS

 RIGHT JUSTIFY(N/Y)?>

 RESPONSIBILITY

DESCRIPTION

 ELEMENT

 > repeat add file

 FILE order

 KEY ELEMENT order-no

 ELEMENT ALIAS

DESCRIPTION

 FILE customer

 KEY ELEMENT cust-no

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT name

 ELEMENT ALIAS
188 Appendix B

Entering the Database Definition
DESCRIPTION

 ELEMENT street-addr

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT city-state

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT zipcode

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT

 FILE parts

 KEY ELEMENT part-number

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT description

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT

 FILE orderhead

 ELEMENT order-no

 ELEMENT ALIAS

 PATH MASTER FILE order

 SORT ELEMENT

 PRIMARY PATH(N/Y)?>

DESCRIPTION

 ELEMENT cust-no

 ELEMENT ALIAS

 PATH MASTER FILE customer

 SORT ELEMENT

 PRIMARY PATH(N/Y)?>

DESCRIPTION

 ELEMENT order-status

 ELEMENT ALIAS

 PATH MASTER FILE

DESCRIPTION

 ELEMENT order-date

 ELEMENT ALIAS
Appendix B 189

Entering the Database Definition
 PATH MASTER FILE

DESCRIPTION

 ELEMENT

 FILE orderline

 ELEMENT order-no

 ELEMENT ALIAS

 PATH MASTER FILE order

 SORT ELEMENT

 PRIMARY PATH(N/Y)?>

DESCRIPTION

 ELEMENT line-no

 ELEMENT ALIAS

 PATH MASTER FILE

DESCRIPTION

 ELEMENT part-number

 ELEMENT ALIAS

 PATH MASTER FILE parts

 SORT ELEMENT

 PRIMARY PATH(N/Y)?>

DESCRIPTION

 ELEMENT quantity

 ELEMENT ALIAS

 PATH MASTER FILE

DESCRIPTION

 ELEMENT

 FILE inventory

 ELEMENT part-number

 ELEMENT ALIAS

 PATH MASTER FILE parts

 SORT ELEMENT

 PRIMARY PATH(N/Y)?>

DESCRIPTION

 ELEMENT location

 ELEMENT ALIAS

 PATH MASTER FILE

DESCRIPTION

 ELEMENT quantity

 ELEMENT ALIAS
190 Appendix B

Entering the Database Definition
 PATH MASTER FILE

DESCRIPTION

 ELEMENT

 FILE shortage

 PRIMARY/SECONDARY (P/S)?>

 ELEMENT cust-no

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT part-number

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT order-no

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT order-date

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT line-no

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT quantity

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT back-order

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT

 FILE batchinv

 PRIMARY/SECONDARY (P/S)?>

 ELEMENT part-number

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT location

 ELEMENT ALIAS

DESCRIPTION

 ELEMENT quantity

 ELEMENT ALIAS

DESCRIPTION
Appendix B 191

Entering the Database Definition
 ELEMENT

 FILE kcust

 PRIMARY/SECONDARY (P/S)?>

 ELEMENT cust-no

 ELEMENT ALIAS

 KEY ELEMENT(N/Y)?> y

 PRIMARY KEY(N/Y)?> y

 DUPLICATES (N/Y)?> n

DESCRIPTION

 ELEMENT name

 ELEMENT ALIAS

 KEY ELEMENT(N/Y)?> y

 DUPLICATES (N/Y)?> y

DESCRIPTION

 ELEMENT

 FILE

 >exit

 END OF PROGRAM
192 Appendix B

C Loading Definitions from IMAGE

Appendix B showed how to enter a database definition manually into the dictionary.

If the IMAGE database already exists, it is not necessary to load the data manually into
the dictionary. DICTDBD is a dictionary utility that loads the database definitions for you.
The following is an example of loading the definitions for the database ORDERS into the
dictionary.

 :file dict.pub=dict

 :run dictdbd.pub.sys

DICTIONARY/3000 DB INFO LOADER HP32244A.02.00 - (C) Hewlett-Packard Co. 1983

 DICTIONARY PASSWORD>

 BASE> orders

 BASE PASSWORD>

 MODE> 1

 LOADING DATA DICTIONARY

 END OF PROGRAM

 :
193

Loading Definitions from IMAGE
194 Appendix C

D Creating the Physical Database

If the IMAGE database has not been created, then after entering in the database definition
to the dictionary as shown in appendix B, this definition is used by DICTDBC to create the
IMAGE root file for the database.

The example below shows the physical creation process for the database ORDERS, KSAM
file KCUST, and MPE files SHORTAGE and BATCHINV. These are the database and files
used by the examples throughout the manual.

 :run dictdbc.pub.sys

DICTIONARY/3000 DB CREATOR HP32244A.02.00 - (C) Hewlett-Packard Co. 1983

 DICTIONARY PASSWORD>

 BASE> orders

 CONTROL LINE> nolist

 SCHEMA FILE>

 LISTING FILE>

 APPLY SECURITY JUST TO SET LEVEL(N/Y)?>

 SCHEMA GENERATION

 DBSCHEMA PROCESSOR

 PAGE 1 HEWLETT-PACKARD 32215B.03.10 IMAGE/3000: DBSCHEMA

 THU, OCT 18, 1984, 2:27 PM (C) HEWLETT-PACKARD CO. 1978

 $CONTROL NOLIST

 DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC

 NAME CNT CT LGTH REC FAC LGTH SPACE

 CUSTOMER M 5 1 35 45 100 11 496 44

 PARTS M 2 2 14 29 100 13 378 27

 ORDER A 1 2 4 19 100 20 382 18

 ORDERHEAD D 3 2 7 15 100 25 377 15

 ORDERLINE D 4 2 11 19 100 20 382 18

 INVENTORY D 3 1 8 12 120 40 483 16

 TOTAL DISC SECTORS INCLUDING ROOT: 149

 NUMBER OF ERROR MESSAGES: 0

 ITEM NAME COUNT: 13 DATA SET COUNT: 6

 ROOT LENGTH: 585 BUFFER LENGTH: 496 TRAILER LENGTH: 256

 ROOT FILE ORDERS CREATED.
195

Creating the Physical Database
 END OF PROGRAM

 :run dbutil.pub.sys

HP32215B.03.10 IMAGE/3000: DBUTIL (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1978

 >>cre orders

 data base ORDERS has been CREATED.

 >>exit

 END OF PROGRAM

 :build shortage;rec=-36,,,ascii;disc=100

 :build batchinv;rec=-16,,,ascii;disc=100

 :run ksamutil.pub.sys

 >build kcust;rec=-24,,,ascii;keyfile=keycust >

;key=numeric,1,4 > ;key=byte,5,20,,duplicate

 KCUST.group.acct & KEYCUST ARE CREATED.

 >exit

 END OF PROGRAM

 :
196 Appendix D

E Entering Form Definitions

The following is an example of entering VPLUS form definitions into the dictionary. The
appendix uses the formfile used by the examples in this manual to illustrate loading the
definitions. The example is complete in that it shows how to load each form used in the
manual.

 :run dictdbm

 DICTIONARY/3000 HP32244A.02.00 - (C) Hewlett-Packard Co. 1983

 PASSWORD FOR DICT.PUB>

 FORMS ENTRY(Y/N)?>

 > repeat create file

 FILE formfile

 LONG NAME

 TYPE vpls

 RESPONSIBILITY

 DESCRIPTION

 FILE mainmenu

 LONG NAME

 TYPE form

 RESPONSIBILITY

 DESCRIPTION

 FILE vcustno

 LONG NAME

 TYPE form

 RESPONSIBILITY

 DESCRIPTION

 FILE vcustomer

 LONG NAME

 TYPE form

 RESPONSIBILITY

 DESCRIPTION

 FILE vcustomerrd

 LONG NAME

 TYPE form
197

Entering Form Definitions
 RESPONSIBILITY

 DESCRIPTION

 FILE vcustomerrh

 LONG NAME

 TYPE form

 RESPONSIBILITY

 DESCRIPTION

 FILE vorderhead

 LONG NAME

 TYPE form

 RESPONSIBILITY

 DESCRIPTION

 FILE vorderline

 LONG NAME

 TYPE form

 RESPONSIBILITY

 DESCRIPTION

 FILE

 > repeat add file

 FILE vcustno

 ELEMENT cust-no

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT

 FILE vcustomer

 ELEMENT cust-no

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT name

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT street-addr

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION
198 Appendix E

Entering Form Definitions
 ELEMENT city-state

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT zipcode

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT

 FILE vcustomerrd

 ELEMENT cust-no

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT name

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT street-addr

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT city-state

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT zipcode

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT

 FILE vorderhead

 ELEMENT order-no

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT cust-no

 ELEMENT ALIAS
Appendix E 199

Entering Form Definitions
 FIELD NUMBER

 DESCRIPTION

 ELEMENT order-status

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT order-date

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT

 FILE vorderline

 ELEMENT line-no

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT part-number

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT quantity

 ELEMENT ALIAS

 FIELD NUMBER

 DESCRIPTION

 ELEMENT

 FILE

 > relate file

 PARENT FILE formfile

 CHILD FILE mainmenu

 CHILD ALIAS

 DESCRIPTION

 CHILD FILE vcustomer

 CHILD ALIAS

 DESCRIPTION

 CHILD FILE vorderhead

 CHILD ALIAS

 DESCRIPTION

 CHILD FILE vorderline
200 Appendix E

Entering Form Definitions
 CHILD ALIAS

 DESCRIPTION

 CHILD FILE vcustomerrh

 CHILD ALIAS

 DESCRIPTION

 CHILD FILE vcustomerrd

 CHILD ALIAS

 DESCRIPTION

 CHILD FILE vcustno

 CHILD ALIAS

 DESCRIPTION

 CHILD FILE
Appendix E 201

Entering Form Definitions
202 Appendix E

F Loading Form Definitions

The utility DICTVPD may be used to load form definitions to the dictionary. When the
forms are defined using FORMSPEC, you must be careful to define the field names to be
the same as the names you want to identify with the form in the dictionary.

For example, the following is the FORMSPEC listing of the form vorderhead.

********* ********* ********* ********* ********* ********* ********* *********

 vorderhead order data

 order number [order_no] customer [cust] status [st] date [date]

 ________ _____ __ ______

 ********* ********* ********* ********* ********* ********* ********* **********

 Field: order_no

 Num:14 Len: 8 Name: ORDER_NO Enh: HI FType: O DType: CHAR

 Init Value:

 Field: cust

 Num: 2 Len: 5 Name: CUST_NO Enh: HI FType: O DType: CHAR

 Init Value:

 Field: st

 Num: 3 Len: 2 Name: ORDER_STATUS Enh: HI FType: O DType: CHAR

 Init Value:

 Field: date

 Num: 4 Len: 6 Name: ORDER_DATE Enh: HI FType: O DType: CHAR

 Init Value:

This form definition was loaded into the dictionary as follows:

 :run dictvpd.pub.sys

DICTIONARY/3000 VPLUS LOADER HP32244A.02.00 - (C) Hewlett-Packard Co. 1983

 DICTIONARY PASSWORD>

 FORMS FILE NAME> formfile

 SELECT DATA CONVERSION (Default/Char)>

 DATA ELEMENTS ALREADY DEFINED (Y/N)> y

 LIST FILE>

 CHANGE UNDERSCORE TO HYPHEN (Y/N)> y

 LOADING DATA DICTIONARY

 FORM NAME TO BE LOADED (or "@"/"?")> vorderhead

 LOADING FORM: VORDER_HEAD

 FORM NAME TO BE LOADED (or "@"/"?")>
203

Loading Form Definitions
 Name Alias NEW/OLD Type

 FORMFILE NEW VPLS

 VORDERHEAD NEW FORM

 ORDER-NO OLD X (8, 0, 8)

 CUST-NO OLD 9 (4, 0, 4)

 ORDER-STATUS OLD X (2, 0, 2)

 ORDER-DATE OLD X (6, 0, 6)

 END OF PROGRAM

 :

Note that the form definition used the underscore character. DICTVPD will convert the
underscore to a hyphen if directed to do so.
204 Appendix F

G Element and File Dictionary Reports

The following reports from DICTDBM list the elements and file definitions for the
database and files used in the examples throughout this manual. Figure G-1 graphically
portrays the relationship of the datasets and data items.

 > report element

 LIST OF DATA ELEMENTS DEFINED IN THE DICTIONARY

 ELEMENT(PRIMARY): TYPE: SIZE: DEC: LENGTH: COUNT:

 BACK-ORDER I 6 0 4 1

 CITY-STATE X 20 0 20 1

 CUST-NO 9 4 0 4 1

 DESCRIPTION X 20 0 20 1

 LINE-NO 9 2 0 2 1

 LOCATION X 4 0 4 1

 NAME X 20 0 20 1

 ORDER-DATE X 6 0 6 1

 ORDER-NO X 8 0 8 1

 ORDER-STATUS X 2 0 2 1

 PART-NUMBER X 8 0 8 1

 QUANTITY I 6 0 4 1

 STREET-ADDR X 20 0 20 1

 ZIPCODE X 6 0 6 1

 > show file

 FILE orders

 SHOW ALL FILE ELEMENTS(Y/N)?> y

 FILE TYPE: RESPONSIBILITY:

 ORDERS BASE

 FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

 CUSTOMER MAST CUSTOMER 100

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 CUST-NO * 9 (4,0,4) CUST-NO

 NAME X (20,0,20) NAME

 STREET-ADDR X (20,0,20) STREET-ADDR
205

Element and File Dictionary Reports
 CITY-STATE X (20,0,20) CITY-STATE

 ZIPCODE X (6,0,6) ZIPCODE

 FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

 ORDER AUTO ORDER 100

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 ORDER-NO * X (8,0,8) ORDER-NO

 FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

 PARTS MAST PARTS 100

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 PART-NUMBER * X (8,0,8) PART-NUMBER

 DESCRIPTION X (20,0,20) DESCRIPTION

 FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

 ORDERHEAD DETL ORDERHEAD 100

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 ORDER-NO * X (8,0,8) ORDER-NO

 CHAIN MASTER SET: ORDER

 CUST-NO * 9 (4,0,4) CUST-NO

 CHAIN MASTER SET: CUSTOMER

 ORDER-STATUS X (2,0,2) ORDER-STATUS

 ORDER-DATE X (6,0,6) ORDER-DATE

 FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

 ORDERLINE DETL ORDERLINE 100

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 ORDER-NO * X (8,0,8) ORDER-NO

 CHAIN MASTER SET: ORDER

 LINE-NO 9 (2,0,2) LINE-NO

 PART-NUMBER * X (8,0,8) PART-NUMBER

 CHAIN MASTER SET: PARTS

 QUANTITY I (6,0,4) QUANTITY

 FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

 INVENTORY DETL INVENTORY 100

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 PART-NUMBER * X (8,0,8) PART-NUMBER

 CHAIN MASTER SET: PARTS

 LOCATION X (4,0,4) LOCATION

 QUANTITY I (6,0,4) QUANTITY

 > show file

 FILE kcust
206 Appendix G

Element and File Dictionary Reports
 PRIMARY/SECONDARY (P/S)?>

 FILE TYPE: RESPONSIBILITY:

 KCUST KSAM

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 CUST-NO ! 9 (4,0,4) CUST-NO

 NAME * X (20,0,20) NAME

 > show file

 FILE shortage

 PRIMARY/SECONDARY (P/S)?>

 FILE TYPE: RESPONSIBILITY:

 SHORTAGE MPEF

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 CUST-NO 9 (4,0,4) CUST-NO

 PART-NUMBER X (8,0,8) PART-NUMBER

 ORDER-NO X (8,0,8) ORDER-NO

 ORDER-DATE X (6,0,6) ORDER-DATE

 LINE-NO 9 (2,0,2) LINE-NO

 QUANTITY I (6,0,4) QUANTITY

 BACK-ORDER I (6,0,4) BACK-ORDER

 > show file

 FILE batchinv

 PRIMARY/SECONDARY (P/S)?>

 FILE TYPE: RESPONSIBILITY:

 BATCHINV MPEF

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

 PART-NUMBER X (8,0,8) PART-NUMBER

 LOCATION X (4,0,4) LOCATION

 QUANTITY I (6,0,4) QUANTITY
Appendix G 207

Element and File Dictionary Reports
Figure G-1. The Database and Files Used Throughout this Document

MANUAL MASTER
CUSTOMER

AUTO MASTER
ORDER

MANUAL MASTER
PARTS

DETAIL SET
INVENTORY

DETAIL SET
ORDERLINE

DETAIL SET
ORDERHEAD

SHORTAGE BATCHINV KCUST

Cust-no
Name
Street-addr
City-state
Zipcoade

*Order-no
*Custo-no
Oder-status
Order-date

Cust-no
Part-no
Order-date
Line-no
Quantity
Back-order

Order-no Part-number
Description
Selling-Price

*Part-number
Location
Quantity

*Order-no
Line-no

*Part-number
Quantity

*Cust-no
*Name

Part-number
Location

KSAM FILEMPE FILES

IMAGE DATABASE = ORDERS
208 Appendix G

H Application Forms Formats

MAINMENU

VCUSTOMER

mainmenu Customer module

f1 = add customer

f2 = update customer

f3 = report customer

f8 = exit

vcustomer customer data

number []

name []

address []

city,state []

zipcode []
209

Application Forms Formats
VCUSTNO

VCUSTOMERRD

VCUSTOMERRH

VORDERHEAD

VORDERLINE

vcustno

enter customer number []

[] []

[]

[]

[]

customer address

vorderhead order data

order number [] customer [] status [] date []

line number [] part-number [] quantity []
210 Appendix H

Application Forms Formats
Appendix H 211

	1� Getting Started
	Compiling and Executing Transact Programs
	Reporting From a Dataset
	Getting a Complete Listing

	Sorting the Data
	Formatting Options
	Selective Reporting

	Reporting from Multiple Datasets

	2� Using Character Mode I/O
	Adding Data to a Dataset
	Updating Data in a Dataset

	Looping Structures
	Command Mode

	3� Using VPLUS and IMAGE
	Adding Data to a Dataset
	Updating Data in a Dataset
	Reporting Data from a Dataset
	Setting Up a Menu-Driven System

	4� Using KSAM and MPE
	Using KSAM
	Adding Records

	Using MPE Files
	Adding Records
	Updating Records

	5� Automatic Error Handling and Prototyping
	6� Data Structures
	7� Using Transact Without a Dictionary
	IMAGE
	MPE
	KSAM
	VPLUS

	8� Special Topics
	Interface to Report/V
	Arrays
	Subprograms
	Intrinsics
	Test Facility

	9� Creating Custom Applications
	Rearranging the Form
	Form Independence
	Adding, Deleting, and Changing Elements
	User Exits
	Transactions Across Multiple Datasets

	A� Building the Dictionary
	B� Entering the Database Definition
	C� Loading Definitions from IMAGE
	D� Creating the Physical Database
	E� Entering Form Definitions
	F� Loading Form Definitions
	G� Element and File Dictionary Reports
	H� Application Forms Formats

