
HP COBOL II/XL Reference Manual

Series 900 HP 3000 Computer Systems

ABCDE

HP Part No. 31500-90001

Printed in U.S.A. July 1991

E0791

Notice

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced or translated to
another language without the prior written consent of Hewlett-Packard Company

Copyright c 1987, 1988, 1991 by HEWLETT-PACKARD COMPANY

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 for DoD agencies, Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Printing History

New editions are complete revisions of the manual. Update packages, which are issued
between editions, contain additional and replacement pages to be merged into the manual by
the customer. The dates on the title page change only when a new edition or a new update
is published. No information is incorporated into a reprinting unless it appears as a prior
update; the edition does not change when an update is incorporated.

The software code printed alongside the data indicates the version level of the software
product at the time the manual or update was issued. Many product updates and �xes
do not require manual changes and, conversely, manual corrections may be done without
accompanying product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

First Edition November 1987 31500A.00.12
Second Edition October 1988 31500A.01.06
Third Edition July 1991 31500A.04.03

iii

iv

Preface

This reference manual documents the HP COBOL II language for programming on
Hewlett-Packard computer systems. HP COBOL II is based on the 1974 and ANSI
COBOL'1985 Standard X3.23-1985.

This manual is a reference text for programmers who have a working knowledge of COBOL.
The objective of the HP COBOL II Reference Manual is to guide you in writing source
programs in HP COBOL II, compiling them into object programs, preparing and executing
them.

Note The information in the main body of this manual is generic. Machine-
dependent information is in Appendix H, \MPE XL System Dependencies."

This manual is organized as follows:

Chapter 1 Introduces HP COBOL II. Summarizes standard capabilities, HP
extensions, and new features.

Chapter 2 Describes constructs of COBOL.

Chapter 3 Describes COBOL program elements.

Chapter 4 Explains how data is described and referenced in COBOL.

Chapter 5 Describes the Identi�cation Division.

Chapter 6 Describes the Environment Division.

Chapter 7 Describes the Data Division.

Chapter 8 Gives a general description of the Procedure Division.

Chapter 9 Describes speci�c Procedure Division statements.

Chapter 10 Describes all the COBOL functions and how to call them.

Chapter 11 Explains interprogram communication in COBOL.

Chapter 12 Describes SORT-MERGE operations.

Chapter 13 Describes the COBOL debugging facility.

Chapter 14 Describes source-text manipulation statements.

Appendix A Lists the error messages produced by the COBOL compiler and by
COBOL programs.

Appendix B Lists preprocessor commands and $CONTROL options.

Appendix C Describes di�erences between COBOL'85 and COBOL'74 and lists
incompatibilities and obsolete features of the language.

Appendix D De�nes the ASCII and EBCDIC character sets.

Appendix E Contains the COBOL glossary.

v

Preface

Appendix F Lists COBOL reserved words.

Appendix G Describes the COBEDIT program and COPY libraries.

Appendix H Describes machine-dependent information for MPE XL systems.

Additional Documentation

More information on HP COBOL II/XL is in the following manuals:

HP COBOL II/XL Programmer's Guide (31500-90002)
HP COBOL II/XL Quick Reference Guide (31500-90003)

This manual references the following manuals:

HP Toolset/XL Reference Manual (36044-90001)
HP Symbolic Debugger/XL Reference Manual (31508-90003)
Using KSAM/XL (32650-90168)
KSAM/3000 Reference Manual (30000-90079)
MPE XL Intrinsics Reference Manual (32650-90028)
MPE XL Commands Reference Manual (32650-90003)
Account Structure and Security Reference Manual (32650-90041)
Native Language Programmer's Guide (32650-90022)
System Startup, Con�guration, and Shutdown Reference Manual (32650-90042)
HP Screen Management Intrinsic Library Reference Manual (32424-90002)
HP System Dictionary/XL General Reference Manual (32256-90004)
HP SQL/XL COBOL Application Programming Guide (36216-90006)
Link Editor/XL Reference Manual(32650-90030)
System Debug Reference Manual (32650-90013)
TurboIMAGE/XL Reference Manual (30391-90001)
Compiler Library/XL Reference Manual (32650-90029)
Trap Handling Programmer's Guide (32650-90026)

The following book, not available from HP, contains more information about the COBOL
functions:

COBOL Functions: An Introduction, by Donald A. Sordillo, published in 1990 by Prentice
Hall, Inc.

Information on migrating COBOL programs from HP COBOL II/V to HP COBOL II/XL is
in the following manual:

HP COBOL II/XL Migration Guide (31500-90004)

vi

Preface

What's New in This Release

This section briey describes what is new in this release of HP COBOL II/XL and where to
�nd more information.

vii

Addendum to ANSI COBOL'85: Built-In COBOL FunctionsAddendum to ANSI COBOL'85: Built-In COBOL Functions

This version of the HP COBOL II/XL compiler introduces the 42 built-in COBOL functions
recently de�ned by Addendum 1 of the ANSI COBOL'85 standard. Chapter 10, \COBOL
Functions," describes all the functions.

viii

Compatibility and the $CONTROL POST85 OptionCompatibility and the $CONTROL POST85 Option

To use the new COBOL functions, you must use the $CONTROL option POST85.

This option was added because the COBOL functions introduce a new reserved word,
FUNCTION. If your existing COBOL programs use the word FUNCTION as an identi�er,
those programs will continue to compile without $CONTROL POST85. However, if you want
to use the new COBOL functions in a program that uses the word FUNCTION, you must
change the word to another word and use $CONTROL POST85. For more information, see
Chapter 10, \COBOL Functions."

ix

The TZ Environment VariableThe TZ Environment Variable

Use the TZ environment variable to set the time zone. The COBOL functions
CURRENT-DATE and WHEN-COMPILED use the value of this variable and the value of the
hardware clock when reporting their results. For more information, see Chapter 10, \COBOL
Functions."

x

HP COBOL II/XL Reference Manual SupplementHP COBOL II/XL Reference Manual Supplement

The HP COBOL II/XL Reference Manual Supplement (31500-90005) is no longer a separate
manual. It has been moved into Appendix H of this manual.

xi

Previous HP COBOL II/XL DocumentsPrevious HP COBOL II/XL Documents

Information from the HP COBOL II/XL Technical Addendum, published in April, 1990 for
MPE XL Release 2.1 and the HP Communicator article, published for MPE XL Release 3.0
have been incorporated into this manual.

These documented the following features:

The $CONTROL NLS option. See Appendix H, \MPE XL System Dependencies," for more
information.

Dynamic �le assignment with the USING phrase of the ASSIGN clause. See the \ASSIGN
Clause" in chapter 6 for more information.

An additional position in the COBRUNTIME variable for handling run-time errors. See
Appendix H, \MPE XL System Dependencies" for more information.

The RETURN-CODE special register. See Chapter 11 \Interprogram Communication" for
more information.

Appendix G, \Summary of COBOL II Syntax," in the previous edition of this manual was
duplicated in the HP COBOL II/XL Quick Reference Guide. It has been removed. See the
Quick Reference Guide for this information.

Appendix H, \HPTOOLSET Program Development System," in the previous edition of this
manual has been moved to the HP COBOL II/XL Programmer's Guide.

xii

Acknowledgement

At the request of the American National Standards Institute (ANSI), the following
acknowledgement is reproduced in its entirety:

Any organization interested in reproducing the COBOL standard and speci�cations
in whole or in part, using ideas from this document as the basis for an instruction
manual or for any other purpose, is free to do so. However, all such organizations are
requested to reproduce the following acknowledgement paragraphs in their entirety as
part of the preface to any such publication (any organization using a short passage
from this document, such as in a book review, is requested to mention \COBOL" in
acknowledgement of the source, but need not quote the acknowledgement):

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein have speci�cally
authorized the use of this material in whole or in part, in the COBOL speci�cations.
Such authorization extends to the reproduction and use of COBOL speci�cations in
programming manuals or similar publications.

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the Univac++
I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM, FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

xiii

Conventions

Notation Description

Change bars in the margin show where substantial changes have been
made to this manual since the last edition. (Chapter 10 and Appendix H
are new to this manual, but are not marked with change bars.)

UPPERCASE and
UNDERLINING

Within syntax statements, characters in uppercase must be entered
in exactly the order shown. Uppercase words that are underlined are
keywords that are always required when the clause or statement in which
they appear is used in your program. Uppercase words that are not
underlined are optional, and may be included or omitted. They have
no e�ect on program execution and serve only to make source program
listings more readable. The following example illustrates this:

[FILE STATUS IS stat-item].

STATUS must be entered, FILE may be either included or omitted. See also
\Underlining in dialog" on the following page.

italics Within syntax statements, a word in italics represents a formal parameter,
argument, or literal that you must replace with an actual value. In the
following example, you must replace �lename with the name of the �le
you want to release:

RELEASE �lename

punctuation Within syntax statements, punctuation characters (other than brackets,
braces, vertical parallel lines, and ellipses) must be entered exactly as
shown.

{ } Within syntax statements, when several elements within braces are
stacked, you must select one. In the following equivalent examples, you
select ON or OFF:

{ON }

SETMSG {OFF}

SETMSG

�
ON

OFF

�

{| |} Within syntax statements, bars in braces are choice indicators. One or
more of the items within the choice indicators must be speci�ed, but a
single option may be speci�ed only once.

xiv

[] Within syntax statements, brackets enclose optional elements. In the
following example, brackets around ,TEMP indicate that the parameter and
its delimiter are not required:

PURGE �lename[,TEMP]

When several elements within brackets are stacked, you can select any one
of the elements or none. In the following equivalent examples, you can
select devicename or deviceclass or neither:

[devicename]

SHOWDEV [deviceclass]

SHOWDEV

�
devicename

deviceclass

�

Underlining in
dialog

When it is necessary to distinguish user input from computer output, the
input is underlined. See also underlining on the previous page.

NEW NAME? ALPHA

[] ... Brackets followed by a horizontal ellipsis indicate either that a previous
bracketed element may be repeated zero or more times, or that elements
have been omitted from the description.

[WITH DUPLICATES] ...

The ellipsis shows that the preceding clause may be repeated inde�nitely.

{ } ... Braces followed by a horizontal ellipses indicate either that the item
within braces may be repeated one or more times, or that elements have
been omitted from the description.

t Within syntax statements, the space symbol t shows a required blank. In
the following example, you must separate modi�er and variable with a
blank:

SET [(modi�er)]t(variable);

xv

<, >, =, <=,

>=, <>

These symbols are used in conditional statements to represent the
keywords LESS THAN, GREATER THAN, EQUAL TO, LESS THAN
OR EQUAL TO, GREATER THAN OR EQUAL TO, and NOT EQUAL
TO, respectively. Although these symbols represent keywords, they are
not underlined.

; The semicolon is used only to improve readability and is always optional.

, The comma is used only to improve readability, and is always optional.

. The period is a terminator or delimiter that is always required where
shown; it must always be entered at the end of every division name,
section name, paragraph name, and sentence.

^ The caret is occasionally used in examples to represent an implied decimal
point in computer memory.

NNNNNNNNNNNNNNNNNNNNNNN
Shading Features that are part of the 1985 ANSI standard are

NNNNNNNNNNNNNNNNNNNN
shaded . They are

accessible through the ANSI85 entry point.

LG200026 198 In some diagrams and tables, a number appears in the lower left
corner. This number is for HP control purposes only and should not be
interpreted as part of the diagram or table.

xvi

Contents

1. Introduction
ANSI Standard Compliance . 1-1
ANSI COBOL'85 Features in HP COBOL II 1-5
ANSI Features Added Since ANSI COBOL'85 1-5

Compatibility Considerations . 1-6
Compatibility between ANSI COBOL'74 and ANSI COBOL'85 1-6
Compatibility of COBOL Functions 1-6
HP Extensions . 1-6
Portability to HP from Other Vendors 1-7
Portability between HP COBOL II/V and HP COBOL II/XL 1-7

2. Program Structure
Structural Hierarchy . 2-1
Divisions . 2-4
Division Format . 2-4
Division Header Format . 2-4

Sections . 2-5
Section Format . 2-5
Section Header Format . 2-5

Paragraphs . 2-7
Paragraph Format . 2-7
Paragraph Header and Name Format 2-8

Sentences, Statements, and Clauses 2-9

3. Program Elements
Character Strings . 3-2
Words . 3-2
Reserved Words . 3-2
Keywords . 3-3
Optional Words . 3-3
Special Register Words . 3-3
Figurative Constants . 3-6
Special Character Words . 3-8

User-De�ned Words . 3-8
System Names . 3-11
Function-Names . 3-12

Literals . 3-12
Numeric Literals . 3-13
Octal Literals . 3-13
Examples . 3-14

Nonnumeric Literals . 3-15
Single and Double Quotation Marks in Nonnumeric Literals 3-15

Contents-1

Embedded Quotation Marks in Nonnumeric Literals 3-16
PICTURE Character Strings . 3-17
Comment Entries . 3-18
Comment Lines . 3-18

Separators . 3-19
Character Set . 3-20
Coding Rules . 3-22
Sequence Number (Columns 1 through 6) 3-22
Program Text (Columns 8 through 72) 3-22
Continuation Lines . 3-23
Debugging Lines . 3-24
Identi�cation Code (Columns 73-80) 3-24

4. Describing and Referencing Data
Files . 4-1
Records . 4-1
Logical Versus Physical Records 4-2
Record Descriptions . 4-2
Level 66, 77, and 88 Items . 4-4

Data Items - Classes and Categories 4-4
Classes of Data Items . 4-4
Categories of Data Items . 4-5

Algebraic Signs . 4-6
Operational Signs . 4-6
Editing Signs . 4-6

Data Alignment . 4-7
Identi�ers . 4-9
Uniqueness of Reference . 4-10
Quali�ers . 4-10

Tables . 4-14
De�ning a Table . 4-14
Referencing Table Items with Subscripting 4-15
Referencing Table Items with Indexing 4-18
Condition Names . 4-18

Function-Identi�ers . 4-19
Reference Modi�cation . 4-20
Reference Modi�cation Rules . 4-21

5. IDENTIFICATION DIVISION
IDENTIFICATION DIVISION Format 5-1
IDENTIFICATION DIVISION Syntax Rules 5-2
Paragraphs . 5-2
PROGRAM-ID Paragraph . 5-2
DATE-COMPILED Paragraph . 5-4
Other Paragraphs . 5-5

Contents-2

6. ENVIRONMENT DIVISION
ENVIRONMENT DIVISION Format 6-1
ENVIRONMENT DIVISION Syntax Rules 6-2
CONFIGURATION SECTION . 6-2
SOURCE-COMPUTER Paragraph 6-4
OBJECT-COMPUTER Paragraph 6-5
MEMORY-SIZE Clause . 6-5
PROGRAM COLLATING SEQUENCE Clause 6-6
SEGMENT-LIMIT Clause . 6-6

SPECIAL-NAMES Paragraph . 6-7
Feature-name, Switch-name, or Device-name Clause 6-10
Software Switches . 6-12
Line Printer Features . 6-13
CONDITION-CODE Features 6-13
SYSIN, SYSOUT, and CONSOLE Devices 6-13

ALPHABET Clause . 6-14
STANDARD-1, STANDARD-2 and NATIVE Phrases 6-15
EBCDIC and EBCDIK Phrases 6-15
LITERAL Phrase . 6-15
De�ning Your Own Collating Sequence 6-16

SYMBOLIC CHARACTERS Clause 6-19
CLASS Clause . 6-21
CURRENCY SIGN IS Clause . 6-22
DECIMAL POINT IS COMMA Clause 6-23

INPUT-OUTPUT SECTION . 6-24
FILE-CONTROL Paragraph . 6-25
Sequential Files . 6-25
Random Access Files . 6-25
Relative Files . 6-26
Sequential Access . 6-27
Random Access . 6-27
Dynamic Access . 6-27

Indexed Files . 6-28
Sequential Access . 6-28
Random Access . 6-28
Dynamic Access . 6-29

Sort-Merge Files . 6-29
File Status . 6-30
Fixed Length Records . 6-30
Variable Length Records . 6-30

File Control Clauses . 6-31
SELECT Clause . 6-34
OPTIONAL Phrase . 6-34

ASSIGN Clause . 6-35
File Status Code . 6-36

ACCESS MODE Clause . 6-37
ACTUAL KEY Clause (an HP extension to the ANSI COBOL standard) . 6-39
ALTERNATE RECORD KEY Clause 6-40
DUPLICATES Phrase . 6-40

FILE STATUS Clause . 6-41
ORGANIZATION Clause . 6-46

Contents-3

RECORD KEY Clause . 6-47
DUPLICATES Phrase . 6-47

RESERVE Clause . 6-48
I-O-CONTROL Paragraph . 6-50
SAME Clause . 6-51
SAME AREA Clause . 6-51
SAME RECORD AREA Clause 6-51
SAME SORT AREA and SAME SORT-MERGE AREA Clauses 6-52

MULTIPLE FILE Clause . 6-53

7. DATA DIVISION
DATA DIVISION Format . 7-2
DATA DIVISION Syntax Rules . 7-2
FILE SECTION . 7-3
WORKING-STORAGE SECTION 7-5
LINKAGE SECTION . 7-6
DATA DIVISION Clauses . 7-7
File Description Clauses . 7-7
FD Level Indicator - For Data File Descriptions 7-9
SD Level Indicator - For Sort File Descriptions 7-9
BLOCK CONTAINS Clause . 7-10
CODE-SET Clause . 7-12
DATA RECORDS Clause . 7-13
EXTERNAL Clause . 7-14
GLOBAL Clause . 7-15
LABEL RECORDS Clause . 7-16
LINAGE Clause . 7-17
FOOTING Phrase . 7-19
LINES AT TOP and LINES AT BOTTOM Phrases 7-19
Use of Data Names Versus Use of Integers 7-20
LINAGE-COUNTER . 7-21

RECORD CONTAINS Clause . 7-22
Fixed Length Records . 7-23
Variable Length Records . 7-23

RECORDING MODE Clause . 7-27
VALUE OF Clause . 7-29

Data Description Entries . 7-31
77 Level Description Entries . 7-31
Record Description Entries . 7-32
Data Name or FILLER Clause . 7-35
BLANK WHEN ZERO Clause . 7-36
EXTERNAL Clause . 7-37
GLOBAL Clause . 7-38
JUSTIFIED Clause . 7-39
OCCURS Clause . 7-40
PICTURE Clause . 7-44
Alphabetic Data . 7-44
Numeric Data . 7-45
Alphanumeric Data . 7-47
Alphanumeric-Edited Data . 7-47
Numeric-Edited Data . 7-48

Contents-4

Size of Elementary Data Items 7-50
Editing Rules . 7-51
Simple Insertion Editing . 7-51
Special Insertion Editing . 7-52
Fixed Insertion Editing . 7-53
Floating Insertion Editing . 7-53
Zero Suppression Editing . 7-55
Precedence Rules . 7-55

REDEFINES Clause . 7-57
SIGN Clause . 7-59
SYNCHRONIZED Clause . 7-61
Slack Bytes . 7-61

USAGE Clause . 7-64
USAGE IS DISPLAY . 7-65
USAGE IS BINARY or COMPUTATIONAL 7-66
USAGE IS PACKED-DECIMAL or COMPUTATIONAL-3 7-66
USAGE IS INDEX . 7-68

VALUE Clause . 7-69
Restrictions on the Use of the VALUE Clause 7-70
Literals in the VALUE Clause 7-70

RENAMES Clause . 7-71
Condition Names . 7-73

8. PROCEDURE DIVISION
PROCEDURE DIVISION Header . 8-2
USING Clause . 8-2

PROCEDURE DIVISION Format 8-3
PROCEDURE DIVISION Syntax Rules 8-5
Declarative Sections . 8-5
Procedures . 8-6
Sections and Section Headers . 8-7
Segmentation . 8-7
Segment Numbers . 8-7

PROCEDURE DIVISION Statements and Sentences 8-9
Conditional Statements and Sentences 8-9
Compiler Directing Statements and Sentences 8-9
Imperative Statements and Sentences 8-10
Categories of Statements . 8-11
Scope Terminators . 8-13

Arithmetic Expressions . 8-14
Arithmetic Operators . 8-14
Hierarchy of Operations . 8-15
Use of Parentheses . 8-16
Valid Combinations in Arithmetic Expressions 8-17
Exponentiation . 8-17

Conditional Expressions . 8-18
Simple Conditions . 8-18
Sign Condition . 8-19
Class Condition . 8-20
Switch-Status Condition . 8-22
Relation Conditions . 8-23

Contents-5

ANSI Standard Relation Conditions 8-23
Comparison of Numeric Operands. 8-24
Comparisons Using Index Names and Index Data Items. 8-25
Comparison of Nonnumeric Operands. 8-25

Condition Name Conditions . 8-27
Intrinsic Relation Conditions . 8-28
Correct Example . 8-29
Incorrect Examples . 8-29

Complex Conditions . 8-30
Combined Conditions . 8-30
Negated Simple Conditions . 8-32

Condition Evaluation Rules . 8-33
Abbreviated Combined Relation Conditions 8-38
Common Phrases . 8-40
NOT Phrases . 8-40
ROUNDED Phrase . 8-41
SIZE ERROR Phrase . 8-41
CORRESPONDING Phrase . 8-43

Common Features of Arithmetic Statements 8-45
Overlapping Operands and Incompatible Data 8-46
Variable-Length Receiving Items 8-46

Input-Output Error Handling Procedures 8-47

9. PROCEDURE DIVISION Statements
ACCEPT Statement . 9-1
ACCEPT Statement - Formats 1 and 2 9-3
FREE and INPUT ERROR Phrases 9-3
ACCEPT Statement Without the FREE Phrase 9-5
Programming Considerations . 9-6
ACCEPT Statement - Format 3 9-9

ADD Statement . 9-10
ALTER Statement . 9-13
Segmentation Considerations . 9-13

CALL Statement . 9-14
CANCEL Statement . 9-14
CLOSE Statement . 9-15
Sequential Files - Format 1 . 9-15
REEL/UNIT and REMOVAL Phrases 9-16
NO REWIND Phrase . 9-16
WITH LOCK Phrase . 9-16

Random, Relative and Indexed Files - Format 2 9-17
COMPUTE Statement . 9-18
Calculation of Intermediate Results 9-19

CONTINUE Statement . 9-21
DELETE Statement . 9-22
DISPLAY Statement . 9-25

Length of Data Being Displayed 9-26
The WITH NO ADVANCING Phrase 9-26

DIVIDE Statement . 9-28
ENTER Statement . 9-32
ENTRY Statement . 9-32

Contents-6

EVALUATE Statement . 9-33
Subjects and Objects . 9-34
Correspondence Between Subjects and Objects 9-34
Evaluation of Subjects and Objects 9-34

Comparison Operation of EVALUATE 9-35
Execution of EVALUATE . 9-35

EXAMINE Statement . 9-38
TALLYING Phrase . 9-39
REPLACING Phrase . 9-39

EXCLUSIVE Statement . 9-40
EXIT Statement . 9-42
EXIT PROGRAM Statement . 9-43
GOBACK Statement . 9-43
GO TO Statement . 9-44
IF Statement . 9-46
INITIALIZE Statement . 9-49
Initializing Data Fields . 9-50

INSPECT Statement . 9-52NNN
CONVERTING Phrase . 9-54
How the Comparison Operation Occurs 9-55
BEFORE and AFTER Phrases . 9-58
LEADING Phrase . 9-59
ALL Phrase . 9-59
CHARACTERS Phrase . 9-59
FIRST Phrase . 9-59

MOVE Statement . 9-61
Rules For Moving Data . 9-62
Rules For Elementary Moves . 9-62
Alphanumeric or Alphanumeric-Edited Receiving Item 9-63
Numeric or Numeric-Edited Receiving Item 9-63
Alphabetic Receiving Item . 9-63

MULTIPLY Statement . 9-67
OPEN Statement . 9-69
Label Records . 9-70
EXTEND, REVERSE, and NO REWIND Phrases 9-72
Permissible Statements . 9-72
FILE STATUS Data Item . 9-74

PERFORM Statement . 9-75
Variation of a Single Identi�er . 9-80
Out-of-Line PERFORM . 9-81
In-Line PERFORM . 9-82
General Rules of PERFORM . 9-82
Range of the PERFORM Statement 9-83
Nested PERFORM Statements . 9-83
PERFORM Constructs . 9-84
Variation of Two or More Identi�ers 9-87
ANSI COBOL'74 . 9-88
ANSI COBOL'85 . 9-90
Variation of More than Two Identi�ers 9-94

Incompatibility Between ANSI COBOL'74 and ANSI COBOL'85 9-94
READ Statement . 9-97

Contents-7

READ Statement - Format 1 . 9-99
READ Statement - Format 2 . 9-100
READ Statement - Format 3 . 9-101

RELEASE Statement . 9-102
RETURN Statement . 9-102
REWRITE Statement . 9-103
FROM Phrase . 9-105

SEARCH Statement . 9-106
SEARCH Statement - Format 1 . 9-108
VARYING Phrase . 9-108
SEARCH Statement - Format 2 . 9-110

SEEK Statement . 9-113
SET Statement . 9-114
SET Statement - Format 1 . 9-115
SET Statement - Format 2 . 9-116NN
SET Statement - Format 3 . 9-116NN
SET Statement - Format 4 . 9-116

START Statement . 9-117
STOP Statement . 9-120
STRING Statement . 9-121
Execution of the STRING Statement 9-122

SUBTRACT Statement . 9-125
UN-EXCLUSIVE Statement . 9-128
UNSTRING Statement . 9-129
Execution of the UNSTRING Statement 9-131
Overow Conditions . 9-132
Subscripting or Indexing of Identi�ers 9-132

USE Statement . 9-135
USE Statement - Format 1 . 9-136
USE Statement - Format 2 . 9-137

WRITE Statement . 9-139
FROM Phrase . 9-141
WRITE Statement - Format 1 . 9-141
ADVANCING Phrase . 9-141
END-OF-PAGE Phrase . 9-143
Bounds Overow . 9-144
Multiple Reel/Unit Files . 9-145
Print Files . 9-145
Carriage Control Codes . 9-146

WRITE Statement - Format 2 . 9-146
Random Access Files . 9-146
Relative Files . 9-147
INVALID KEY Conditions For a Relative File 9-147
Indexed Files . 9-147
INVALID KEY Conditions For Indexed Files 9-148

Contents-8

10. COBOL Functions
The $CONTROL POST85 Option 10-3
ANSI85 Entry Point . 10-3
Function Types . 10-4
Function Parameters . 10-5
Using ALL as a Table Subscript 10-5
Precision of Numeric Functions . 10-5

Calling COBOL Functions . 10-6
Examples . 10-6

ACOS Function . 10-7
ANNUITY Function . 10-8
ASIN Function . 10-9
ATAN Function . 10-10
CHAR Function . 10-11
COS Function . 10-12
CURRENT-DATE Function . 10-13
Setting the TZ Environment Variable 10-14

DATE-OF-INTEGER Function . 10-18
DAY-OF-INTEGER Function . 10-20
FACTORIAL Function . 10-22
INTEGER Function . 10-23
INTEGER-OF-DATE Function . 10-24
INTEGER-OF-DAY Function . 10-26
INTEGER-PART Function . 10-28
LENGTH Function . 10-29
LOG Function . 10-31
LOG10 Function . 10-32
LOWER-CASE Function . 10-33
MAX Function . 10-34
MEAN Function . 10-36
MEDIAN Function . 10-37
MIDRANGE Function . 10-38
MIN Function . 10-39
MOD Function . 10-41
NUMVAL Function . 10-42
NUMVAL-C Function . 10-43
ORD Function . 10-45
ORD-MAX Function . 10-46
ORD-MIN Function . 10-47
PRESENT-VALUE Function . 10-48
RANDOM Function . 10-49
RANGE Function . 10-51
REM Function . 10-52
REVERSE Function . 10-53
SIN Function . 10-54
SQRT Function . 10-55
STANDARD-DEVIATION Function 10-56
SUM Function . 10-57
TAN Function . 10-58
UPPER-CASE Function . 10-59
VARIANCE Function . 10-60

Contents-9

WHEN-COMPILED Function . 10-61
Setting the TZ Environment Variable 10-62

11. Interprogram Communication
Transfer of Control . 11-2
Reference to Common Data and Files 11-2
Reference to Common Data through Parameter Passing 11-3
Reference to Common Data and Files through External Objects 11-4
PROGRAM-ID Paragraph . 11-5
COMMON Clause . 11-5

EXTERNAL Clause . 11-6
GLOBAL Clause . 11-9

Types of Subprograms . 11-10
Non-Dynamic Subprograms . 11-10
Dynamic Subprograms . 11-11
ANSISUB Subprograms . 11-11

END PROGRAM Header . 11-12
CALL Statement . 11-13
Calling Intrinsics . 11-17
Execution-Time Loading . 11-19
Pseudo-Intrinsics . 11-20
.LOC. Pseudo-Intrinsic . 11-20
.LEN. Pseudo-Intrinsic . 11-20

USING Phrase (COBOL Subprograms) 11-21
BY REFERENCE Phrase . 11-22
BY CONTENT Phrase . 11-22

USING Phrase (Non-COBOL Subprograms) 11-23
GIVING Phrase When Calling COBOL Subprograms 11-24
RETURN-CODE Special Register 11-24

GIVING Phrase When Calling Non-COBOL Subprograms 11-26
CANCEL Statement . 11-27
ENTRY Statement . 11-28
EXIT PROGRAM Statement . 11-31
GOBACK Statement . 11-32

12. SORT/MERGE Operations
MERGE Statement . 12-2
COLLATING SEQUENCE Phrase 12-4
GIVING and OUTPUT PROCEDURE Phrases 12-5
Segmentation Considerations . 12-6

RELEASE Statement . 12-7
RETURN Statement . 12-8
INTO Phrase . 12-9
AT END Phrase . 12-9

SORT Statement . 12-10
DUPLICATES Phrase . 12-14
ASCENDING and DESCENDING Phrases 12-14
COLLATING SEQUENCE Phrase 12-14
USING and INPUT PROCEDURE Phrases 12-14
GIVING and OUTPUT PROCEDURE Phrases 12-15
Sorting Large Files . 12-16

Contents-10

Segmentation Considerations . 12-18

13. Debug Module
WITH DEBUGGING MODE Clause 13-2
USE FOR DEBUGGING statement 13-3
Debugging Lines . 13-6
The ANSI Debug Module Example 13-7
Using the ANSI Debug Module Example 13-8

14. Source Text Manipulation
COPY Statement . 14-2
REPLACING Phrase . 14-4

REPLACE Statement . 14-6

A. HP COBOL II Error Messages
Reading Error Messages from COBCAT A-1
Example . A-1

Compile-Time Error Messages . A-2
Run-Time Error Messages . A-3
Warnings . A-4
Questionable Errors . A-9
Serious Errors . A-31
Disastrous Errors . A-35
Nonstandard Warnings . A-39
Run-Time Errors . A-41
Informational Messages . A-49

B. Preprocessor Commands and $CONTROL Options
Types of Processes . B-1
Preprocessor Programming Language B-2
Description . B-3
Continuation Lines . B-3

$COMMENT Command . B-4
De�ning and Using Macros . B-5
$DEFINE Command . B-5
Formal Parameters . B-7
Macro Calls . B-8
Relationship of Formal Parameters to Actual Parameters B-9
Nested Macro Calls . B-11

$PREPROCESSOR Command . B-12
Conditional Compilation . B-13
$SET Command . B-13
$IF Command . B-13

File Insertion, and Merging and Editing Operations B-15
$INCLUDE Command . B-15
Merging Files and the $EDIT Command B-17
Merging Files . B-17
Sequence Field Checking . B-18

$EDIT Command . B-19
VOID Parameter . B-19
SEQNUM Parameter . B-19

Contents-11

NOSEQ Parameter . B-20
INC Parameter . B-20

Compiler-Dependent Options . B-21
$COPYRIGHT Command . B-21
$PAGE Command . B-22
$TITLE Command . B-23
$VERSION Command . B-24
$CONTROL Command . B-25
ANSISORT . B-26
ANSISUB . B-26
BOUNDS . B-26
CHECKSYNTAX . B-26
CODE . B-26
NOCODE . B-26
CROSSREF . B-27
NOCROSSREF . B-27
DEBUG . B-27
DIFF74, DIFF74=OBS, and DIFF74=INC B-27
DYNAMIC . B-27
ERRORS=number . B-27
LINES=number . B-27
LIST . B-28
NOLIST . B-28
LOCKING . B-28
LOCOFF . B-28
LOCON . B-28
MAP . B-28
NOMAP . B-29
MIXED . B-29
NOMIXED . B-29
QUOTE = f" 'g . B-29
SOURCE . B-29
NOSOURCE . B-29
STAT74 . B-29
STDWARN . B-30
NOSTDWARN . B-31
SUBPROGRAM . B-31
SYMDEBUG . B-31
SYNC16 and SYNC32 . B-32
USLINIT . B-32
VERBS . B-32
NOVERBS . B-32
WARN . B-33
NOWARN . B-33

The COBCNTL FILE . B-33

Contents-12

C. Di�erences Between ANSI COBOL'74 and ANSI COBOL'85
ANSI74 Entry Point Di�erences . C-1
Incompatibilities between ANSI COBOL'74 and ANSI COBOL'85 C-3
Syntax Incompatibilities . C-3
Run-time Incompatibilities . C-3

Obsolete Features . C-6

D. ASCII and EBCDIC Character Sets
How to Use This Table . D-1

E. COBOL Glossary
De�nitions . E-1

F. COBOL Reserved Word List

G. COBEDIT Program and COPY Libraries
The COBEDIT Program . G-1
COPY Libraries . G-2
COBEDIT Commands . G-3
BUILD Command . G-4
COPY Command . G-7
EDIT Command . G-8
EXIT Command . G-12
HELP Command . G-14
KEEP Command . G-15
LIBRARY Command . G-19
LIST Command . G-21
PURGE Command . G-24
SHOW Command . G-26

H. MPE XL System Dependencies
Introduction . H-1
Compiling, Linking, and Executing Programs H-3
Overview . H-3
Command Files . H-4

Compiling Your Program With the RUN Command H-7
Linking Your Program . H-10
Executing Your Program with the RUN Command H-10
Setting Software Switches . H-10
Setting the Object-Time Debug Module Switch H-11

Control Options . H-12
MPE XL-Speci�c Control Options H-12
CALLINTRINSIC . H-12
CMCALL . H-13
INDEX16 and INDEX32 . H-13
NLS . H-13
Limitations . H-14

OPTFEATURES . H-17
OPTIMIZE . H-18
POST85 . H-18
RLFILE and RLINIT . H-19

Contents-13

SYMDEBUG=XDB . H-19
VALIDATE and NOVALIDATE H-20

Control Options that Work Di�erently H-20
ANSISUB . H-20
BOUNDS . H-21
CODE . H-21
USLINIT . H-21

Obsolete Control Options . H-21
Data Alignment and Limits on MPE XL H-22
Alignment . H-22
Limits on Data Items . H-22

HP COBOL II/XL Language Dependencies H-23
IDENTIFICATION DIVISION . H-23
ENVIRONMENT DIVISION . H-23
DATA DIVISION . H-24
PROCEDURE DIVISION . H-24

Interprogram Communication . H-27
External Names . H-27
Subprogram Types . H-27
Calling Intrinsics . H-28
.LOC. Pseudo-Intrinsic . H-28

Parameter Alignment . H-28
Run-Time Trap Handling . H-29
Supported Traps . H-29
Handling Run-Time Errors with COBRUNTIME H-30
Setting COBRUNTIME . H-31

The COBOL Trap Mechanism and Other Languages H-33
Example HP COBOL II/XL Program H-39

Index

Contents-14

Figures

2-1. COBOL Structure Hierarchy . 2-2
2-2. Program Structure Example . 2-3
4-1. Record Desctiption Entry . 4-3
7-1. Example of the LINAGE Clause and its Logical Representation 7-18
8-1. Evaluation of the hierarchical level condition-1 and condition-2 and . . .

condition-n . 8-34
8-2. Evaluation of the hierarchical level condition-1 or condition-2 or . . .

condition-n . 8-35
8-3. Evaluation of condition-1 or condition-2 and condition-3 8-36
8-4. Evaluation of (condition-1 or not condition-2) and condition-3 and condition-4 8-37
8-5. Input-Output Error Handling . 8-48
9-1. Valid PERFORM Constructs . 9-84
9-2. Variation of a Single Identi�er with TEST BEFORE 9-85
9-3. Variation of a Single Identi�er with TEST AFTER 9-86
9-4. Variation of Two Conditions (ANSI COBOL'74) 9-89

9-5.
NNN
Variation of Two Conditions with TEST BEFORE (ANSI COBOL'85) . . 9-91

9-6.
NN
Variation of Two Conditions with TEST AFTER (ANSI COBOL'85) . . 9-93

9-7. Execution of Format 1 SEARCH Statement 9-109
12-1. Determining Local File Size (SIZE-PARM) Used in FOPEN 12-17
H-1. Relationships between HP COBOL II/XL and the ANSI Standards

COBOL'74 and COBOL'85 . H-1
H-2. How a Source Program Becomes an Executing Program H-3
H-3. Invalid PERFORM Constructs . H-26

Contents-15

Tables

1-1. ANSI COBOL'85 Organization . 1-2
1-2. HP COBOL II Compiler Conformity Levels 1-3
1-3. Terms Used in This Manual . 1-4
3-1. Special Register Words . 3-3
3-2. Extensions to Special Register Words 3-4
3-3. Figurative Constant Words . 3-6
3-4. Figurative Constants Examples . 3-7
3-5. Special Character Words . 3-8
3-6. User-De�ned Word Types . 3-9
4-1. Data Item Classes and Categories 4-5
4-2. Data Alignment . 4-8
4-3. Reference Modi�cation Results . 4-22
4-4. Reference Modi�cation Without Subscripting 4-22
6-1. HP COBOL II Feature, Switch, and Device Names 6-11
6-2. ANSI COBOL'85 File Status Codes 6-43
6-3. ANSI COBOL'74 File Status Codes 6-45
7-1. Values of the LABEL INFO and DATA NAME Parameters in the VALUE OF

Clause . 7-30
7-2. Editing Picture Characters . 7-49
7-3. Allowable Types of Editing For Categories of Data Items 7-51
7-4. E�ects of Sign Control Symbols on Receiving Items 7-53
7-5. PICTURE Character Precedence Chart 7-56
7-6. Overpunch Characters for Rightmost Digit in ASCII Coded Decimal Numbers 7-65
7-7. Number of Bytes Used to Contain a

NNNNNNNNNNNNNNNNNNNN
BINARY Data Item 7-66

7-8. COMPUTATIONAL-3 or
NN
PACKED-DECIMAL Sign Con�guration 7-67

7-9.
NN
PACKED-DECIMAL Fields in Memory or in a File 7-67

8-1. Imperative Verbs . 8-10
8-2. Categories of Statements . 8-11
8-3. Valid Combinations of Symbols in Arithmetic Expressions 8-17
8-4. Valid Combinations of Conditions, Logical Operators, and Parentheses . . . 8-31
8-5. NOT Phrases and Associated Verbs 8-40
8-6. Input-Output Statements and Exception Condition Options 8-47
9-1. Results of INSPECT Statement Execution 9-60
9-2. Permissible Moves . 9-64
9-3. Sequential Organization . 9-72
9-4. Relative and Indexed Organization 9-73
9-5. Random Organization . 9-73
9-6. Validity of Di�erent Combinations of Operands in the SET Statement . . . 9-116
9-7. Carriage Control Codes and Their Meanings 9-146
10-1. Date Functions . 10-1
10-2. String Functions . 10-1
10-3. General Functions . 10-2

Contents-16

10-4. Arithmetic Functions . 10-2
10-5. Financial and Statistical Functions 10-2
10-6. Trigonometric Functions . 10-3
10-7. Time Zones and TZ Environment Variable Values 10-15
11-1. Types of Subprograms and How to Specify Them 11-10
11-2. Relationship Between EXIT PROGRAM, STOP RUN and GOBACK

Statements . 11-32
A-1. Kinds of Error Messages . A-2
B-1. Preprocessor Commands . B-2
B-2. $CONTROL Options . B-25
B-3. FIPS COBOL Subsets . B-31
C-1. New I-O Status Codes . C-4
D-1. ASCII and EBCDIC Character Sets D-2
F-1. COBOL Reserved Words . F-1
G-1. COBEDIT Commands . G-3
H-1. Subsystems that Interface with HP COBOL II/XL H-2
H-2. Command Files . H-4
H-3. PARM Values and Their Meanings H-8
H-4. Values for NLDATALANG Environment Variable H-14
H-5. $CONTROL OPTIMIZE Parameters H-18
H-6. Run-Time Error Handling Options H-30
H-7. Character Position in Speci�c Traps H-31

Contents-17

1

Introduction

COBOL (Common Business Oriented Language) is the most widely used programming
language for commercial applications. Hewlett-Packard's COBOL II is based on ANSI
COBOL as speci�ed in the American National Standard Programming Language COBOL
(ANSI X3.23a-1989). It o�ers the following important features:

Compatibility with American National Standards Institute (ANSI) COBOL at the highest
level of all the required COBOL modules. The optional Report Writer and Communication
modules are not supported. See \ANSI Standard Compliance" later in this chapter.

Communication with programs written in other languages, including RPG, FORTRAN,
SPL, C, and Pascal.

Communication with other operating subsystems through intrinsic calls, including data
management (TurboIMAGE), screen management (VPLUS), graphics (DSG), and program
development tools (HPToolset/Dictionary).

ANSI Standard Compliance

The standards for COBOL were originally developed and de�ned by a national committee
of computer manufacturers and users known as the Conference On Data Systems Languages
(CODASYL). In 1960, under the guidance of this committee, the �rst o�cial version of
COBOL was designed, called COBOL'60. Since then subsequent versions were developed that
signi�cantly extended the power of the language. Later versions, ANSI COBOL'68, ANSI
COBOL'74, and ANSI COBOL'85, followed the standards published and sanctioned by ANSI.
In 1989, ANSI published an addendum that adds intrinsic functions to the language.

ANSI COBOL'85 and the functions addendum are organized on the basis of one nucleus and
11 functional processing modules. These elements are summarized in Table 1-1. Each module
contains either two or three functional levels. In all cases, the lower levels are proper subsets
of the higher level within the same module. The lowest levels supply elements needed for basic
or elementary operations; the higher levels supply more extensive or sophisticated capabilities.
The full ANSI COBOL is composed of the highest level of the nucleus and of each module.

Introduction 1-1

Introduction

Table 1-1. ANSI COBOL'85 Organization

Module Function

Nucleus Contains language elements necessary for internal processing.

Sequential I/O Module Provides language elements for de�nition and access of sequentially
organized external �les.

Relative I/O Module Provides capability for de�ning and accessing mass storage �les in which
records are identi�ed by relative record number.

Indexed I/O Module Provides capability for de�ning and accessing mass storage �les in which
records are identi�ed by the value of a key and accessed through an index.

Sort/Merge Module Provides sorting and merging operations in a COBOL program.

Report Writer Module Provides for semi-automatic production of printed reports. Not
implemented in HP COBOL II.

Segmentation Module Provides overlaying of PROCEDURE DIVISION sections at object time.

Source Text
Manipulation

Allows you to include prede�ned COBOL text into your program.

Debug Module O�ers a way to specify a debugging algorithm|the conditions under which
data or procedure items are monitored during the execution of the program.

Interprogram
Communication Module

Allows a program to communicate with other programs.

Communication Module Provides ability to access, process, and create messages or portions of
messages and to communicate through a message control system with local
and remote communication devices. Not implemented in HP COBOL II.

Intrinsic Function
Module

Provides 42 intrinsic or \built-in" COBOL functions including date and
string functions, �nancial and statistical functions, trigonometric and other
arithmetic functions. (These are not MPE intrinsics.)

1-2 Introduction

Introduction

Hewlett-Packard's COBOL II compiler conforms to the high level of the ANSI COBOL
X3.23-1974 speci�cation and to the high level of the ANSI COBOL X3.23a-1989 speci�cation.
It meets the corresponding level of the United States Government Federal Information
Processing Standard as described in FIPS PUB 21-3. Some of the individual modules meet
the high level requirements as described in Table 1-2.

Table 1-2. HP COBOL II Compiler Conformity Levels

ANSI COBOL'85 Module
Level Supported by
HP COBOL II

FIPS PUB 21-3
Requirements for

High Level

Nucleus 2 2

Sequential I/O 21 2

Relative I/O 2 2

Indexed I/O 2 2

Source Text Manipulation 2 2

Interprogram Communication 2 2

Sort/Merge 1 1

Debug 1 22

Segmentation 2 22

Report Writer Not supported 12

Communication Not supported 22

Intrinsic Functions 1 1

1 Exceptions are PADDING CHARACTERS and RECORD DELIMITER.

2 These are optional modules that are not required for high-level implementation.

The HP COBOL II compiler is two compilers in one. That is, it contains two entry points:
ANSI74 and ANSI85. The ANSI74 entry point accepts ANSI COBOL'74 syntax and
semantics. The ANSI85 entry point provides an ANSI COBOL'85 compiler. To use any of the
ANSI COBOL'85 features, use the ANSI85 entry point.

Note Use the option $CONTROL POST85 for intrinsic functions.

Hereafter in this manual, intrinsic functions will be referred to as COBOL
functions .

Introduction 1-3

Introduction

Table 1-3 lists the terms used in this manual.

Table 1-3. Terms Used in This Manual

This Term Refers To

ANSI COBOL'74 The 1974 ANSI COBOL standard.

ANSI COBOL'85 The 1985 ANSI COBOL standard.

ANSI74 The compiler entry point used to invoke COBOL features of ANSI
COBOL'74 plus HP extensions.

ANSI85 The compiler entry point used to invoke COBOL features of ANSI
COBOL'85 plus COBOL functions and HP extensions.

HP COBOLII Refers to the HP compiler that implements ANSI COBOL'74, ANSI
COBOL'85, and HP extensions on MPE systems.

1-4 Introduction

Introduction

ANSI COBOL'85 Features in HP COBOL II

Features in the X3.23a-1989 American National Standard Programming Language COBOL
that are in HP COBOL II are shown below. These features provide structured programming
capabilities to make coding and maintenance easier. They also provide capabilities to enhance
the manipulation of data initialization and extend I/O status codes for reporting I/O errors.

EVALUATE statement.
In-line PERFORM.
Scope-delimited statements.
CONTINUE statement.
Optional FILLER clause.
INITIALIZE statement.
Reference modi�cation.
De-edited MOVE operations.
BY CONTENT argument passing.
Symbolic characters.
CLASS clause.
SET statement.
NOT phrases.
REPLACE statement.
Alphabetic tests.
EXTERNAL clause.
GLOBAL clause.

Note Use the ANSI85 entry point to the HP COBOL II compiler whenever you use
any ANSI COBOL'85 features. Throughout this manual,

NNNNNNNNNNNNNNNNNNNNNNN
shading identi�es

those features that are available through the ANSI85 entry point.

ANSI Features Added Since ANSI COBOL'85

42 built-in functions have been added to ANSI standard COBOL. For more information on
the COBOL functions, see Chapter 10, \COBOL Functions."

Note Use the option $CONTROL POST85 for the COBOL functions.

Introduction 1-5

Introduction

Compatibility Considerations

There are several compatibility issues to consider when using the HP COBOL II compiler.

Compatibility between ANSI COBOL'74 and ANSI COBOL'85

The HP COBOL II compiler is compatible with the ANSI COBOL'74 standard. Through
the use of entry points to the compiler you can choose which standard to execute, thereby
avoiding any conversion issues between the two standards. Some incompatibilities between
ANSI COBOL'74 and ANSI COBOL'85, such as reserved words, allow you to preserve
existing source code while doing new development using the ANSI COBOL'85 standard. Or
if you choose to move all of your applications to the ANSI COBOL'85 standard, the compiler
ags the syntax changes, allowing you to modify, recompile, and execute using the ANSI
COBOL'85 entry point.

For a complete list of the incompatibilities between ANSI COBOL'74 and ANSI COBOL'85,
as well as obsolete features to consider when upgrading, refer to Appendix C.

Compatibility of COBOL Functions

The COBOL functions add the reserved word FUNCTION to the COBOL language. HP
COBOL II maintains compatibility with existing programs. Your existing programs will
continue to compile without change. If you want to use the COBOL functions, you must use
$CONTROL POST85 and you must not use the word FUNCTION as an identi�er anywhere
in your program. If you have used the word FUNCTION as an identi�er, you must change it
to another word before you can call any COBOL functions. Otherwise, the compiler gives an
error message.

HP Extensions

HP extensions are features added to HP COBOL II that are not part of the ANSI standard.
These features make COBOL easier to use on the MPE operating system and ease the
conversion from previous versions of the ANSI standard.

You can use the HP extensions with either the ANSI74 or ANSI85 entry points unless one of
the following is true:

The HP extension if part of a ANSI COBOL'85 feature.
The HP extension contains a ANSI COBOL'85 reserved word.
The description of the HP extension speci�cally mentions that it can be used only with the
ANSI85 entry point.

$CONTROL STDWARN ags features that are HP extensions. HP extensions are generally
not portable to other systems. For a list of HP extensions, see the HP COBOL II/XL
Programmer's Guide.

1-6 Introduction

Introduction

Portability to HP from Other Vendors

If you are transferring COBOL source programs and data to an HP computer system from
another system, ANSI standard features are compatible. Any extension to accommodate
vendor operating systems and �le systems need to be examined for conversion e�orts. Consult
your HP representative for assistance and advice.

Portability between HP COBOL II/V and HP COBOL II/XL

For portability from HP COBOL II/V to HP COBOL II/XL, compiler options provide
16-bit or 32-bit alignment for synchronized items and allow passing of parameters on byte
boundaries, as well as word boundaries. These features allow compatibility with 32-bit or
16-bit architectures. For more information, refer to the HP COBOL II/XL Migration Guide.

Introduction 1-7

2

Program Structure

COBOL is similar to the English language in both structure and content. Structurally, for
example, COBOL programs are made up of such familiar constructs as paragraphs, sentences,
statements, and clauses. These constructs, in turn, contain such elements as words, names,
verbs, and symbols. Program constructs are described in this chapter of the manual; program
elements are described in Chapter 3.

Within the context of COBOL, constructs and elements all have very speci�c meanings. In
this manual, all such terms are de�ned at or near the point where they are introduced. For
additional convenience, their de�nitions appear in the glossary in Appendix E.

The concept of program modules is also described in this chapter. These modules make up a
superset into which all other constructs fall; they contain almost all of the program constructs.

Structural Hierarchy

All COBOL programs are organized in a structure that consists of divisions, sections,
paragraphs, sentences, statements, clauses, and phrases. This structure is hierarchical|that
is, as a general rule, a COBOL program is made up of divisions; a division is made up of
sections; a section is made up of paragraphs; a paragraph is made up of either sentences
or clauses (depending upon the division); a sentence can contain one or more statements;
a statement or clause can contain one or more phrases. The general hierarchy appears
schematically in Figure 2-1. Those COBOL constructs with English language counterparts
(paragraphs, sentences, clauses, and phrases) generally resemble their corresponding
counterparts. From the standpoint of the compiler, each construct is treated as a logical entity
within your program.

In describing the COBOL constructs, this manual begins with the highest level construct
within a program, and proceeds to the lowest level.

Program Structure 2-1

Program Structure

Figure 2-1. COBOL Structure Hierarchy

2-2 Program Structure

Program Structure: Divisions

Figure 2-2 is an example of the COBOL program structure. The numbers indicate speci�c
parts of the program. They are described in more detail later in this chapter as \item". For
example, under the section \Division Header Format", the phrase \items 1 through 4" refers
to the circled numbers 1 through 4.

Figure 2-2. Program Structure Example

The items shown in Figure 2-2 are:

1. Identi�cation Division.
2. Environment Division.
3. Data Division.
4. Procedure Division.
5. Working-Storage Section.
6. Program-Id Paragraph.
7. Author Paragraph.
8. A paragraph in the Procedure Division.
9. A user-de�ned paragraph name.
10. A sentence in the Procedure Division.
11. The program name.
12. The author's name.

Program Structure 2-3

Program Structure: Divisions

Divisions

A division is the �rst level (highest) construct in a COBOL program. COBOL programs are
partitioned into the following four divisions, which appear in the order listed:

IDENTIFICATION DIVISION: Speci�es the program name and other items used to
uniquely identify the program. This division is required in every COBOL program.
ENVIRONMENT DIVISION: Describes the computer and peripheral devices
used to compile and execute the program, and the data �les used by the program.NN
This division is optional.

DATA DIVISION: Describes and de�nes the data items referenced by the program,
including their names, lengths, decimal point locations (if applicable), and storage formats.NN
This division is optional.

PROCEDURE DIVISION: Speci�es the operations that the program must perform,
describing how the data de�ned in the DATA DIVISION should be processed.NN
This division is optional.

More information about the functions of these divisions appears later in this manual, where
the divisions are described individually.

Division Format

Each division begins with a header entry, which is sometimes followed by one or more sections
(in the ENVIRONMENT, DATA, and PROCEDURE DIVISIONs) or paragraphs (in the
IDENTIFICATION DIVISION) called the division body. A division is terminated by the
next division header in the program, or by the end of the program in the PROCEDURE
DIVISION. The IDENTIFICATION DIVISION requires a body that speci�es the name of the
program.

Division Header Format

The division header consists of the division name, followed by the word DIVISION, followed
by a period and a space. In the PROCEDURE DIVISION only, the optional USING phrase
may also appear in the header between the word DIVISION and the period. In any COBOL
program, only the following division headers are allowed:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION [USING {data-name-1...}].

Note Remember that the terminating periods shown in construct format
descriptions must be included. Otherwise, the compiler generally misinterprets
the construct.

The IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE DIVISIONs,
including appropriate headers, appear in Figure 2-2 as items 1 through 4, respectively.

2-4 Program Structure

Program Structure: Sections

Sections

A section is the second level construct in a COBOL program. In the source program, sections
allow you to group logically related items together within a division. In the PROCEDURE
DIVISION, you can organize logically related functions into the same sections in such a way
that often used routines reside in main memory for longer periods of time than routines used
infrequently. This minimizes the total number of input-output operations that the operating
system must perform on the code segments belonging to the program. It also facilitates
program debugging. In other divisions, the features that a program uses determine which
sections must be speci�ed in the program.

Sections are optional in the PROCEDURE DIVISION. If you do not specify sections in a
division, the entire division is treated as a single section. Sections are not used, however, in
the IDENTIFICATION DIVISION.

Section Format

Each section begins with a header entry that is optionally followed by zero, one, or more
paragraphs (in the ENVIRONMENT or PROCEDURE DIVISION) or clauses (in the DATA
DIVISION). The paragraphs or clauses comprise the section body. A section is terminated by
the next section header, the next division header, the END DECLARATIVES keywords (in
the declarative portion of the PROCEDURE DIVISION), or the physical end of the program.

Section Header Format

In the ENVIRONMENT and DATA DIVISIONs, the section header consists of a COBOL
reserved word that identi�es the section, followed by the word SECTION, followed by a period
and a space. In the ENVIRONMENT DIVISION, only the following section headers are
permitted:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

In the DATA DIVISION, only the following section headers are allowed:

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

Program Structure 2-5

Program Structure: Sections

In the PROCEDURE DIVISION, the section header consists of a user-de�ned section name
that identi�es the section, followed by the word \SECTION", followed by an optional segment
number, followed by a period and a space. In the PROCEDURE DIVISION, unlike the
ENVIRONMENT and DATA DIVISIONs, names are not restricted to speci�c words, so you
can supply any section names you desire. Here are some examples of section headers that
might be used in the PROCEDURE DIVISION:

INITIALIZATION SECTION.

HOUSEKEEPING SECTION 3.

In the second example above, the number 3 represents the segment number. This number
is used in program segmentation (partitioning of a program into distinct code segments.)
Segmentation is described in Chapter 8.

For clarity, programmers usually write a section header on a line by itself, although you are
not formally required to do so.

In Figure 2-2, the WORKING-STORAGE SECTION (item 5) appears in the DATA
DIVISION. Because no section is speci�ed in the PROCEDURE DIVISION, the whole
division is regarded as a section by the compiler.

2-6 Program Structure

Program Structure: Paragraphs

Paragraphs

A paragraph is the third level construct in a COBOL program. Paragraphs allow you to
break your program into even more elementary units. One paragraph (the PROGRAM-ID
paragraph) is required in the IDENTIFICATION DIVISION. Paragraphs are optional in
the ENVIRONMENT and PROCEDURE DIVISIONs. They are not used in the DATA
DIVISION.

Paragraph Format

In the IDENTIFICATION and ENVIRONMENT DIVISIONs, each paragraph begins with
a header entry, optionally followed by one or more words or clauses that comprise the
paragraph body. In the PROCEDURE DIVISION, a paragraph begins with a paragraph
name, optionally followed by one or more sentences comprising the paragraph body. In any
division, a paragraph is terminated by one of the following:

The next paragraph header or name.

The next section or division header.

The physical end of the program in the PROCEDURE DIVISION.

The words END DECLARATIVES in the PROCEDURE DIVISION.
NNN
The words END PROGRAM in the PROCEDURE DIVISION.

Program Structure 2-7

Program Structure: Paragraphs

Paragraph Header and Name Format

The paragraph header, used in the IDENTIFICATION and ENVIRONMENT DIVISIONs,
consists of a COBOL reserved word identifying the paragraph, followed by a period and a
space. In the IDENTIFICATION DIVISION, only the following headers are permitted:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

REMARKS. (This is an HP extension to the ANSI COBOL standard.)

In the ENVIRONMENT DIVISION, only these headers are allowed:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O-CONTROL.

The paragraph name, used in the PROCEDURE DIVISION, is a user-de�ned word that
identi�es the paragraph and is always terminated by a period and a space. It must be unique
within a section or in a program if no sections are de�ned. If sections are used, however, the
same paragraph name may appear in di�erent sections. When referencing such a paragraph,
you can use the section name to qualify the paragraph name, and you must do so if you are
referencing it from within a section other than the section in which it is de�ned.

The paragraph header or name must be the �rst item on a coding line, but may be followed
by other items on the same line.

In Figure 2-2, the IDENTIFICATION DIVISION contains paragraphs identi�ed by the
headers PROGRAM-ID (item 6) and AUTHOR (item 7). The PROCEDURE DIVISION
includes one paragraph (item 8) identi�ed by the user-de�ned name ENTER-ROUTINE (item 9).

2-8 Program Structure

Program Structure: Sentences, Statements, Clauses

Sentences, Statements, and Clauses

Within a paragraph, sentences (in the PROCEDURE DIVISION) and entries (in the
IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs) may appear. Within a
sentence, in turn, one or more statements can be written. These items provide a further
syntactic breakdown of your program. In structure, they closely resemble their English
language counterparts.

A sentence is a sequence of one or more statements, with the last statement terminated by a
period followed by a space.

A statement is a syntactically valid combination of words and symbols, beginning with a verb
such as ADD, READ, or DISPLAY.

An entry is any descriptive set of consecutive clauses terminated by a separator period
and written in the IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA
DIVISION of a COBOL program.

All of these items are explained further in the descriptions of the divisions in which they
appear.

In Figure 2-2, the PROCEDURE DIVISION begins with a sentence that contains a single
statement: MOVE ZEROS TO TOTAL COST. (item 10). Another example is the sentence shown
below, which contains two statements:

A clause is an ordered set of character strings (sequences of characters) that specify an
attribute of an entry in the program.

In Figure 2-2, the IDENTIFICATION DIVISION contains the clauses COBOL-F1D3 (item 11)
and ARTHUR-JONES (item 12).

Statements and entries may also include phrases and clauses. A phrase is a sequence of one
or more consecutive character strings that form a portion of a statement or clause. In the
example below, the characters RED-DATA OF COLOR-DATA form a phrase:

MOVE RED-DATA OF COLOR-DATA TO FORM-DATA.

Program Structure 2-9

3

Program Elements

All COBOL language constructs are made up of basic elements comprised of character strings
and separators. A character string is a character or sequence of characters that forms a
COBOL word, literal, PICTURE character string, or comment entry (as de�ned later in
this chapter). Every character string is enclosed by a separator that is either a single special
character (such as a period, comma, semicolon, or blank) or a sequence of special characters.
The characters that you can use in character strings and separators are selected from the
COBOL character set, described in this chapter under \Character Set."

Program Elements 3-1

Program Elements

Character Strings

Character strings may form:

Words.

Literals.

PICTURE character strings.

Comment entries.

Words

In COBOL, a word is generally the name of some entity such as a function, paragraph,
register, section, data item, constant, or other syntactical term used in a format description.
There are four types:

Reserved words.

User-de�ned words.

System names.

Function-Names.

Each word is limited to a maximum length of 30 characters. Certain types of words, such as
user-de�ned words, may be restricted to a shorter length.

Reserved Words

A COBOL reserved word is a word that has a prede�ned meaning (see Appendix F for a
complete list) that is always consistent within all COBOL programs. Thus, reserved words
are always interpreted in the same way by the compiler. For instance, the reserved word
SECTION always denotes a COBOL section header. As a programmer, you may not de�ne
your own reserved words. You can use the following types of reserved words in your program:

Keywords.

Optional words.

Special register words.

Figurative constant words.

Special character words.

3-2 Program Elements

Program Elements

Keywords. A keyword is a reserved word that is required in a statement or clause. You
must enter the keywords where they are used. In the division header below, the words
PROCEDURE, DIVISION, and USING are keywords. (In the format descriptions in this
manual, all keywords are denoted by underlined upper case letters.) The USING clause is
optional, as indicated by the brackets. But if you use this clause in your program, you must
include the keyword USING.

PROCEDURE DIVISION [USING fdata-name-1g . . .].

Optional Words. An optional word is a reserved word that you can include in or omit from a
statement or clause. It has no e�ect on program execution and serves only to make source
program listings more readable. In the following clause, the words MODE and IS are optional.
(In the format descriptions, all optional reserved words are denoted by upper case letters that
are not underlined.)

Special Register Words. A special register is a storage area in main memory that contains
information primarily used in connection with speci�c COBOL features. The content of
this area is generated automatically by the compiler. In a COBOL program, such an area
is referenced by a special register word . Those special register words that are part of ANSI
COBOL are indicated in Table 3-1.

Table 3-1. Special Register Words

Word Contents

LINAGE-COUNTER An unsigned number used to keep track of the number of
lines written to each page of a printed report. It is
generated for each output �le whose description in the
DATA DIVISION contains a LINAGE clause (which
de�nes the number of lines permitted per page). The
register is initialized to zero and then updated each time a
line is written with the WRITE statement in the
PROCEDURE DIVISION. When this value exceeds the
number speci�ed by integer-1 or data-name-1 in the
LINAGE clause, the program skips to the next page and
resets the register to one.

DEBUG-ITEM A data item used in support of the COBOL DEBUG
facility. The compiler automatically generates one
DEBUG-ITEM register for each program.

Program Elements 3-3

Program Elements

Table 3-2 lists the HP COBOL II special register words that are an HP extension to the ANSI
COBOL standard.

Table 3-2. Extensions to Special Register Words

Word Contents

TALLY A 5-digit unsigned integer typically used to store
information produced by the EXAMINE statement in the
PROCEDURE DIVISION. (This statement counts the
occurrences of a particular character within a data item
and optionally replaces all instances of that character with
another character.) This register may also be used as a
data name for an unsigned numeric value with no decimal
positions, for instance, as a subscript.

CURRENT-DATE An 8-digit alphanumeric item used only as the sending
�eld in a MOVE or DISPLAY statement in the
PROCEDURE DIVISION. These statements send data to
another �eld or to an output device, respectively. This
item is always stored in this format:

mm/dd/yy

Here, mm indicates the month, dd indicates the day of the
month, and yy indicates the last two digits of the year.
The slash marks are automatically included in the data;
you need not insert them.

The date and time are obtained from the software clock.
The date and time obtained by the COBOL function
CURRENT-DATE are obtained from the hardware clock.
See Chapter 10 for more information about the COBOL
function CURRENT-DATE.

WHEN-COMPILED An 18-character alphanumeric item that represents the
date and time that the program is compiled. It may be
used only in MOVE and DISPLAY statements of the
PROCEDURE DIVISION. This �eld is automatically
stored as follows, with slash marks inserted:

mm/dd/yytthh:mm:ss
As in the CURRENT-DATE format, mm means current
month, dd means day of month, and yy indicates the year.
The hh:mm:ss means hours, minutes and seconds, as in
TIME-OF-DAY.

The date and time are obtained from the software clock.
The date and time obtained by the COBOL function
WHEN-COMPILED are obtained from the hardware
clock. See Chapter 10 for more information about the
COBOL function WHEN-COMPILED.

3-4 Program Elements

Program Elements

Table 3-2. Extensions to Special Register Words (continued)

Word Contents

RETURN-CODE A prede�ned numeric data name in the PROCEDURE
DIVISION of a subprogram, RETURN-CODE is used to
pass a value back to the calling program. For complete
information, see \GIVING Phrase (COBOL
Subprograms)" in Chapter 11.

TIME-OF-DAY A six-character numeric item accessed only as the
transmitting �eld of a MOVE or DISPLAY statement in
the PROCEDURE DIVISION to access the time of day.
This data may be used to determine the clock time
required to run a COBOL program; this is done by
printing the contents of this register at the beginning and
end of the program. Remember however, that clock time
in a multiprogramming environment is not necessarily
related to the central-processor time used by the program;
it varies according to the current mix of active programs.
The data is always stored in this format:

hhmmss

hh indicates the current hour, mm the current minute, and
ss the current second, relative to midnight. The data is
unedited. However, the statement DISPLAY
TIME-OF-DAY results in the edited format:

hh:mm:ss

Program Elements 3-5

Program Elements

Figurative Constants. Figurative constants are values that have been used so often that
they have been assigned �xed data names within the COBOL language. For example, the
�gurative constant consisting of a string of zeros is the �gurative constant ZERO. The values
for �gurative constants are generated automatically by the compiler. The �gurative constants
that you can use are shown in Table 3-3. Singular and plural forms of these words are
identical.

Table 3-3. Figurative Constant Words

Word Constant Value

ALL literal The character string denoted by the variable literal. This
string may be either a nonnumeric literal (as de�ned later
in this chapter), or another �gurative constant (such as
ZERO). If a literal is used, it must be enclosed in
quotation marks. If a �gurative constant is used, the word
ALL is redundant.

HIGH-VALUE
HIGH-VALUES

One or more occurrences of the character with the highest
possible value in the program collating sequence. The
default program collating sequence is the ASCII Collating
Sequence. The ASCII equivalent of this character is not
used on the HP computers, but this bit con�guration is
equivalent to the hexadecimal character FF. (all eight bits
on)

LOW-VALUE
LOW-VALUES

One or more occurrences of the character with the lowest
possible value in the program collating sequence. This is
the nonprinting character NULL. The default program
collating sequence is the ASCII Collating Sequence. (all
eight bits o�)

QUOTE
QUOTES

One or more quotation marks. This constant is used to
code the quotation mark as a literal in statements such as
MOVE QUOTES. However, the word QUOTE or
QUOTES cannot be used in place of an explicit quotation
mark (") to delimit a nonnumeric literal. Thus, QUOTE
ABD QUOTE cannot be substituted for the nonnumeric
literal \ABD".

SPACE
SPACES

One or more spaces.

ZERO
ZEROS
ZEROES

One or more occurrences of the digit zero.

NNNNNNNNNNNNNNNN
[ALL]NNN
symbolic-character

User-de�ned �gurative constants which are de�ned using
the SYMBOLIC CHARACTERS clause of the
ENVIRONMENT DIVISION.

3-6 Program Elements

Program Elements

Figurative constants are not enclosed in quotation marks or apostrophes. The number of
characters for a �gurative constant is determined by the size of the �eld to which the constant
is moved or with which it is associated, as follows.

1. When the constant is associated with another data item, as in a VALUE clause or when
the constant is moved to or compared with another item, the constant assumes the same
length as the associated item. The string of characters represented by the constant is
repeated, character by character, until the size of the resultant string equals that of the
associated data item. Thus, when the constant word group ALL literal is used, the literal
speci�ed is repeated until the associated data item is �lled with the value of the literal. For
example, if FIELD-A is de�ned as a ten-character item, the statement:

MOVE ALL "123" TO FIELD-A

produces the following result:

1231231231

2. When the constant is not associated with some other item, as when used in a DISPLAY,
STRING, UNSTRING, EXAMINE, or STOP statement, the constant assumes a length of
one character or the length of the literal.

A �gurative constant may be referenced wherever a literal appears in a format description,
except that literals restricted to numeric characters only may be replaced by the �gurative
constant words ZERO, ZEROS, OR ZEROES only.

Use of �gurative constant words is demonstrated in Table 3-4 with MOVE and STRING
statements, which transmit the value of the constants referenced to the storage areas denoted
by STORE-n.

Table 3-4. Figurative Constants Examples

Example Comment

MOVE QUOTES TO

STORE-1

Suppose STORE-1 is an area six character positions long.
When this statement is executed, STORE-1 contains:

" " " " " "

MOVE ALL "NEGATIVE"

TO STORE-2

Suppose STORE-2 is twelve positions long. It contains:

NEGATIVENEGA

MOVE SPACES TO

STORE-3

Suppose STORE-3 is nine positions long. It contains all
spaces.

STRING QUOTE "BETA"

QUOTE DELIMITED BY

SIZE INTO STORE-4

Suppose STORE-4 is six positions long. It contains:

"BETA"

Note that quotation marks delimit the literal value BETA
in the program. These, however, are not transmitted to
STORE-4. Instead, the quotation marks in STORE-4 are
supplied by the �gurative constant QUOTE.

Program Elements 3-7

Program Elements

Special Character Words. A special character word is a reserved word, grouping of reserved
words, or character that represents an arithmetic or relational operator. These words are
listed in Table 3-5.

Table 3-5. Special Character Words

Arithmetic
Operators

Relational
Operators

+ IS [NOT] GREATER THAN
IS [NOT] >

- IS [NOT] LESS THAN
IS [NOT] <

* IS [NOT] EQUAL TO
IS [NOT] =

/ IS <> (<> is an HP extension to the ANSI COBOL standard.)
IS GREATER THAN OR EQUAL TO

** IS >=
IS LESS THAN OR EQUAL TO
IS <=

User-Defined Words

A user-de�ned word is a word that you must supply to satisfy the format of a statement or
clause. Such words act as arbitrary variables that name or identify various program items.
These words include such elements as program names, section names, paragraph names, and
data names. In the PROCEDURE DIVISION header below, data-name-1 is a user-de�ned
word. (In the format descriptions, all user-de�ned words are denoted by italic lower case
letters.)

PROCEDURE DIVISION [USING fdata-name-1g . . .].

The following shows a PROCEDURE DIVISION header with the data names ALPHA, BETA,
and GAMMA:

PROCEDURE DIVISION USING ALPHA, BETA, GAMMA.

User-de�ned data names, procedure names, and section names can contain up to 30
characters. These include letters (A through Z), digits (0 through 9) and the hyphen
(-). Except for paragraph names, section names, segment numbers, and level numbers,
all user-de�ned words must contain at least one alphabetic character (letter). However,
user-de�ned words cannot begin or end with a hyphen, include an embedded space, or have
the same spelling as any reserved word.

Note For more information on internal naming conventions, refer to \System
Dependencies" in Appendix H.

In speci�c formats, the rules covering user-de�ned words may be more restrictive. Where such
rules apply, they are explained in the description of the statement or clause in which the word
appears.

3-8 Program Elements

Program Elements

In ANSI COBOL'85, 15 types of user-de�ned words are permitted. These are de�ned in
Table 3-6. Fourteen of these word types are implemented in HP COBOL II. routine-name is
not, but it is accepted by the compiler and treated as a comment.

Table 3-6. User-Defined Word Types

Word Type De�nition

Alphabet-name Word that identi�es (names) a speci�c character set or
collating sequence to be used by the program. De�ned in
SPECIAL-NAMES paragraph of ENVIRONMENT
DIVISION; used in CODE-SET clause of DATA DIVISION
and in COLLATING SEQUENCE phrase of SORT and
MERGE statements in PROCEDURE DIVISION. Must also
be named in the PROGRAM COLLATING SEQUENCE
clause of the CONFIGURATION SECTION in the
ENVIRONMENT DIVISION in order to specify a collating
sequence to be used throughout your program.

Condition-name Word that identi�es a speci�c value, or subset or range of
values, within a complete set of values that a data item may
assume. (This data item is called a conditional variable.) It
may be de�ned in the DATA DIVISION, where the
condition name is preceded by the level number 88 and
followed by a VALUE clause. In the following example, the
condition names FIRST-CONST, SECOND-CONST, and
THIRD-CONST appear:

02 CONST PICTURE 99.

88 FIRST-CONST VALUE IS 10.

88 SECOND-CONST VALUE IS 20.

88 THIRD-CONST VALUE IS 30.

A condition name may also appear in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION, where it is assigned to denote the status of
switches or as an abbreviation for speci�c conditions.

Data-name Word that identi�es a data item. De�ned in data description
entries in the DATA DIVISION. Cannot be subscripted,
indexed, or quali�ed unless speci�cally permitted by the
format description in which it appears.

File-name Word that identi�es a data �le. De�ned in a �le description
entry or a sort-merge �le description entry in DATA
DIVISION.

Index-name Word that identi�es an index associated with a speci�c
table, and used to select an item from that table. Used in
DATA and PROCEDURE DIVISIONs.

Program Elements 3-9

Program Elements

Table 3-6. User-Defined Word Types (continued)

Word Type De�nition

Level-number Word that indicates the position of a data item in the
hierarchical structure of a logical record, or that indicates
special properties of a data description entry. Level numbers
1 through 49 indicate the position in a record structure; level
numbers 66, 77, and 88 identify special properties. In the
example that appears in the condition-name description
above, level numbers 02 and 88 are used. In single-digit level
numbers, a leading zero may be optionally added. Used in
the DATA DIVISION.

Library-name Word that identi�es a COBOL library (containing source
text) used as input by the compiler during a particular
compilation. Used in all divisions.

Mnemonic-name Word equated to a name that identi�es a special feature of
the computer system on which the program is compiled or
run. This relationship is established in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION.

Paragraph-name Word that identi�es and begins a paragraph in the
PROCEDURE DIVISION.

Program-name Word that identi�es a COBOL language source program.
Used in the IDENTIFICATION DIVISION.

Record-name Word that identi�es a logical record in a data �le. Used in a
record description entry in the DATA DIVISION and
WRITE statement in the PROCEDURE DIVISION.

Routine-name Word that identi�es a procedure written in a language other
than COBOL. Used in PROCEDURE DIVISION in ANSI
COBOL, but HP COBOL II treats it as a comment.

Section-name Word that identi�es and begins a section in the
PROCEDURE DIVISION.

Segment-number Word that classi�es sections in the PROCEDURE
DIVISION for purposes of program segmentation. Must be
one of the numbers zero through 99; leading zeros are
optional.

Text-name Word that identi�es text within a source library. Used in all
divisions.

3-10 Program Elements

Program Elements

All user-de�ned words within the same program, except segment numbers and level numbers,
can belong to only one of the following disjoint sets.

Alphabet names.
Condition names, data names, and record names.
File names.
Index names.
Library names.
Mnemonic names.
Paragraph names.
Program names.
Section names.
Text names.

For example, if the word TEST-1 is used as a program name, it cannot also be used as a
routine name. Furthermore, all such words must be unique within a disjoint set, either
because no other user-de�ned word in the set is spelled and punctuated the same way or
because uniqueness is ensured by quali�cation. In other words, a program cannot include two
paragraphs both named PAR-A unless special quali�cation is made.

Note The general term procedure-name is often used to refer to either a section
name or a paragraph name in the PROCEDURE DIVISION.

Following are examples of user-de�ned names:

END-OF-SCHOOL-AVERAGE

PAGECTR

123B

System Names

This is an obsolete feature of the 1985 ANSI COBOL standard.

A system name is a word that is used to de�ne the operating environment in which the
COBOL program is compiled or run. It permits communication between the program and this
environment. There are two types of system names:

Computer name, used to identify the computer on which the program is to be compiled or
run. This name appears in the CONFIGURATION SECTION of the ENVIRONMENT
DIVISION.

Language name, used to specify the language in which the program is written. This name is
used in the ENTER statement of the PROCEDURE DIVISION.

In HP COBOL II, all system names are treated as comments. They appear on source program
listings but do not a�ect compilation or execution. Nevertheless, when present, system names
can only contain letters (A through Z), digits (0 through 9), or hyphens. The �rst character of
a system name must be alphabetic and the last character in the name cannot be a hyphen.

Program Elements 3-11

Program Elements

Function-Names

A function-name is a word that names a function you can call from your COBOL source
program. Except for CURRENT-DATE, LENGTH, RANDOM, and WHEN-COMPILED,
which are already reserved words, you can use function-names in a di�erent context as
user-de�ned words or system-names. See Chapter 10, \COBOL Functions," for more
information about the COBOL functions.

Literals

A literal is a character string that de�nes itself, rather than representing some other value.
The value of the literal is the character string composing the literal.

Literals are always constant values that cannot be changed during program execution.
Because literals are self-de�ning, you do not de�ne them in the DATA DIVISION. Instead,
you code them directly into your program.

In COBOL, two types of literals are used, numeric and nonnumeric.

3-12 Program Elements

Program Elements

Numeric Literals

A numeric literal is essentially a number (numeric value) that is speci�ed directly in a
program. It is comprised of characters selected from the digits 0 through 9, the plus sign (+),
the minus sign (-), and a decimal point (.). As an example, the literal 1 appears in the ADD
statement below:

ADD 1 TO PAGE-NUMBER.

The speci�c value of the literal is the algebraic quantity represented by the characters that
compose the literal. In the format descriptions, literals are indicated by the word literal-n.
For example, literal-1 and literal-2 . Every numeric literal must contain:

At least one digit.

No more than 18 digits.

No more than one arithmetic sign (+ or -). If a sign is used, it must appear as the leftmost
character in the literal. If no sign is used, the literal is treated as a positive value by the
compiler.

No more than one decimal point. If a decimal point is used, it may appear anywhere in
the literal except as the rightmost character. (Any decimal point used as the rightmost
character is interpreted as a period that terminates a sentence.) If no decimal point is used,
the literal is treated as an integer.

Note If a character string follows the rules for the formation of a numeric literal,
but is enclosed in quotation marks, it is treated by the compiler as a
nonnumeric literal. (See \Nonnumeric Literals" below.) As such, it cannot be
used in arithmetic operations.

Following are examples of numeric literals:

1670037627 3.415

+2 -30.06

Octal Literals

Octal literals are an HP extension to the ANSI COBOL standard.

You can use octal literals in your program. Octal literals are always preceded by a percent
sign (%). Following are examples of octal literals:

%17 %37777777777 %456

Program Elements 3-13

Program Elements

Tip Try using the SYMBOLIC CHARACTERS clause to de�ne constants instead
of using octal literals.

Caution For octal literals used in VALUE clauses, it is recommended that you only use
nonnumeric items or items with USAGE BINARY. For other types that are
used in level 88 values, the octal literal is converted to decimal before it is
used. Otherwise, no conversion is done for octal literals. When no conversion
is done, the octal literal is right-justi�ed with NULL �ll.

No conversion is done for octal literals in the PROCEDURE DIVISION except
in arithmetic statements. You must make sure the octal literal is a valid value
for the particular way you are using it.

In IF statements, a nonnumeric compare is performed without conversion of
the octal literals. The DISPLAY, EXAMINE, INSPECT, SEARCH ALL,
STRING, and UNSTRING statements interpret the octal constants as
nonnumeric literals.

Examples. The following program uses octal literals:

WORKING-STORAGE SECTION.

01 ITEM-ALPHA PIC XX VALUE %40502. Octal literal is \AB".

01 ITEM-NUMERIC PIC 99 BINARY VALUE %47. Octal literal is 39.

01 ITEM-NUM PIC 99 VALUE %30462. Octal literal is ASCII 12.
...

DISPLAY %54131. Octal literal is \XY".

DISPLAY ITEM-ALPHA. Displays \AB".

DISPLAY ITEM-NUMERIC. Displays 39.

DISPLAY ITEM-NUM. Displays the value 12.

ADD %23 TO ITEM-NUM. Adds octal 23 (decimal 19).

DISPLAY ITEM-NUM. Displays the sum, 31.

When the above program runs, it displays the following:

XY

AB

39

12

31

See also the SYMBOLIC CHARACTERS clause in Chapter 6, \ENVIRONMENT
DIVISION."

3-14 Program Elements

Program Elements

Nonnumeric Literals

A nonnumeric literal is a character string containing letters, digits, or special characters that
is coded directly into a program. It is formed by entering:

A quotation mark or apostrophe that denotes the beginning of the literal.

The character string that comprises the literal.

A matching quotation mark or apostrophe that delimits the end of the literal.

A character string may be from 1 to 255 characters long (an HP extension to the ANSI
COBOL standard), and may consist of any of the characters from the ASCII collating
sequence. (The ANSI COBOL standard allows a maximum length of 160 characters.) See
Appendix D for a list of these characters.

Note The delimiting quotation marks or apostrophes are not considered part of the
literal.

All punctuation marks within a nonnumeric literal are treated as ordinary
punctuation marks, not as delimiters or separators.

Single and Double Quotation Marks in Nonnumeric Literals

You can use either quotation marks or apostrophes as delimiters. There is no restriction
on which set of delimiters can be used at a given time. This allows you a great amount of
freedom in forming nonnumeric literals. For example, to display the following message on your
terminal screen:

PLEASE ENTER "AGE UNDETERMINED" IF UNSURE

You can use the following DISPLAY statement:

DISPLAY 'PLEASE ENTER "AGE UNDETERMINED" IF UNSURE'

As an example of invalid usage, the character string, 'I DON'T KNOW', is interpreted by the
HP COBOL II compiler as being the string, 'I DON', followed by the characters, T KNOW'.
In this case, a syntax error would be generated. Since you can use quotation marks and
apostrophes throughout your program to delimit nonnumeric literals, the above string could
be made valid by using quotation marks:

DISPLAY "I DON'T KNOW"

Program Elements 3-15

Program Elements

Embedded Quotation Marks in Nonnumeric Literals

You can use two consecutive quotation marks, or two consecutive apostrophes, within the
characters of a nonnumeric literal to represent a single quotation mark or apostrophe. For
example, the DISPLAY statement above could also have been written as follows:

DISPLAY 'I DON''T KNOW'

The results of executing this statement would be the following message on your terminal
screen or line printer:

I DON'T KNOW

If you use double apostrophes in a nonnumeric literal, and the literal is bounded by quotation
marks, then both apostrophes are used as part of the literal. The opposite is also true. For
example:

DISPLAY "DOUBLE APOSTROPHES, '', ARE PART OF THIS LITERAL"

The above statement results in the following:

DOUBLE APOSTROPHES, '', ARE PART OF THIS LITERAL

Following is another example:

DISPLAY 'DOUBLE QUOTES, "", ARE PART OF THIS LITERAL'

The above statement results in the following:

DOUBLE QUOTES, "", ARE PART OF THIS LITERAL

Notice that the �gurative constant words QUOTE and QUOTES cannot be used to supply
delimiting quotation marks for nonnumeric literals.

For how to continue nonnumeric literals onto a second line, see \Continuation Lines" later in
this chapter.

3-16 Program Elements

Program Elements

PICTURE Character Strings

The PICTURE character string appears in the PICTURE clause of the DATA DIVISION.
This clause describes the characteristics and editing requirements of data that is typically
destined for some external output device such as a terminal or line printer. Speci�cally, the
PICTURE clause determines the appearance of the �eld that is actually output by specifying:

The size of the �eld.

The class (type) of data that can be written into the �eld (alphabetic, numeric, or
alphanumeric).

The appearance of a numeric sign, if any, in the �eld.

The position of the decimal point, if any, in the �eld.

The editing required to insert, suppress, or replace characters in the �eld.

The PICTURE clause supplies currency signs, leading or trailing zeros, commas, plus or minus
signs, and other punctuation stated in the PICTURE string. Often, for example, it is used
to suppress leading zeros on checks, replacing them with asterisks or spaces. As an example,
if the data to be printed was comprised of the digits 8765432123 and you wished to print it
as a dollar value with appropriate punctuation, you could specify the following PICTURE
character string in the PICTURE clause:

$99,999,999.99

In this string, the \9" digits are used as special symbols to specify the character positions
that are �lled with numeric data. The dollar sign, commas, and decimal point indicate the
positions of the punctuation characters. The PICTURE character string is superimposed on
the output data so that the following information is printed:

$87,654,321.23

Complete details about PICTURE character strings appear in Chapter 7.

Program Elements 3-17

Program Elements

Comment Entries

This is an obsolete feature of the 1985 ANSI COBOL standard.

You should use comment lines instead of comment entries. A comment entry is used in the
IDENTIFICATION DIVISION to include comments or remarks in the program. These
comments appear on the source program listing but do not a�ect program compilation or
execution. They denote such items as program author, installation name, date written, date
compiled, security requirements, and other general remarks. They may include any printable
character from the ASCII Character Set.

All comment entries are optional. When included, however, they must also conform to the
rules for paragraph and sentence structure described in this manual.

Comment Lines

A comment line is any line with an asterisk in the continuation indicator area (column 7) of
the line.

A comment line can appear anywhere in your program following the IDENTIFICATION
DIVISION header. It can be made up of any combination of characters from the ASCII
collating sequence, with all characters (except the asterisk in column 7) contained in columns
8 through 72 of the line.

Additionally, you can use a special form of comment line to cause page ejection prior to
printing the comment. This special comment line is the same as the general one described
above, except you put a slash character (/) in column 7 instead of an asterisk.

3-18 Program Elements

Program Elements

Separators

A separator is a punctuation character that delimits a character string. Separators include:

Spaces (one or more).

A comma or semicolon immediately followed by a space, except when the comma is used in
a PICTURE character string.

A period that is followed by a space. The period must be used only to indicate the end of a
sentence, or as shown in formats.

Left and right parentheses. These must only appear as balanced pairs used to delimit
subscripts, indices, arithmetic expressions, conditions, reference-modi�ers, or a list of
function arguments.

Quotation marks or apostrophes. These delimit nonnumeric literals, and must appear as
balanced pairs (except as noted under \Continuation Lines" later in this chapter). An
opening quotation mark or apostrophe must be immediately preceded by a space or left
parenthesis. A closing quotation mark or apostrophe must be immediately followed by a
space, comma, semicolon, period, or right parenthesis.

Sets of two contiguous equal signs (==), used to delimit pseudo-text. (Pseudo-text is text
incorporated into, or replaced in, a COBOL program by the COPY or fREPLACEgg
statement.) An opening delimiter must be immediately preceded by a space; a closing
delimiter must be immediately followed by a space, comma, semicolon, or period. These
delimiters must appear in balanced pairs.

Any of the above separators may, at your option, be immediately preceded by one or more
spaces, except if speci�cally prohibited by format rules. (A space preceding a closing
quotation mark is treated as part of the literal enclosed by this and the preceding quotation
mark.)

Any of the above separators, except the opening quotation mark, may be optionally followed
immediately by one or more spaces. (A space following an opening quotation mark is
considered as part of the literal enclosed by this and the next following quotation mark.)

Note The above rules do not apply to punctuation characters within nonnumeric
literals, comment entries, comment lines, or PICTURE character strings.
Those characters are not regarded as separators.

Program Elements 3-19

Program Elements

Character Set

Most character strings and all delimiters in a COBOL program are formed from characters
selected from the COBOL character set. This character set includes upper case letters A
through Z, lower case letters a through z, digits 0 through 9, and certain special characters:

Special
Character Meaning

+ Plus sign

- Minus sign

* Asterisk

/ Slash

= Equal sign

$ Currency sign

, Comma

; Semicolon

:
NNNNNNNNNNNNNNNN
Colon

. Period (decimal point)

" Quotation mark

' Apostrophe This is an HP extension to the ANSI COBOL standard.

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

Space

% Percent sign This is an HP extension to the ANSI COBOL standard.

@ At sign This is an HP extension to the ANSI COBOL standard.

n Back slash This is an HP extension to the ANSI COBOL standard.

In the case of nonnumeric literals, comment entries, and comment lines, additional characters
may be used. These characters are selected from the ASCII Character Set listed in
Appendix D, (which includes the COBOL Character Set).

3-20 Program Elements

Program Elements

Note When lower case letters appear outside of literals, the HP COBOL II compiler
automatically converts them to upper case letters.

Each character in the ASCII Character Set has a unique value that establishes its order in the
collating sequence of this character set. In Appendix D, the characters are listed in order of
ascending value.

Note When COBOL programs originally written for other systems are run on an
HP Computer System, variations between the collating sequences for both
systems may cause variations in output. For example, the Binary Coded
Decimal (BCD) and Extended Binary Coded Decimal Information Interchange
Code (EBCDIC) both collate the letters of the alphabet before (lower than)
the digits 0 through 9. This di�ers from the ASCII Collating Sequence, where
digits are collated before letters. In addition, several special characters collate
di�erently in various sequences. To permit valid processing when a di�erent
collating sequence is used, you may specify the appropriate sequence in the
ALPHABET and PROGRAM COLLATING SEQUENCE clauses of the
ENVIRONMENT DIVISION.

Program Elements 3-21

Program Elements

Coding Rules

The following paragraphs state the standards that you should follow when coding COBOL
source programs. These coding rules are known in COBOL as the reference format.

Sequence Number (Columns 1 through 6)

Sequence numbers appear in columns 1 through 6 of the source record. They identify the
order of the record with respect to other records in your program. When you enter a program
through EDIT/3000, the sequence numbers are supplied automatically by that subsystem.
When you write the program on a coding form, however, these numbers are optional. When
you choose to use them, you enter them in columns 1 through 6 of the coding sheet. Any
character may be used in the sequence numbers, though sequential numbers are recommended.

When you compile your program, you may request the compiler to use the sequence numbers
to check the sequence of the source statements in the program. You may also request the
compiler to renumber these statements. You select these options with the $EDIT command
(refer to Appendix B for descriptions of the $EDIT options).

Sequence numbers are also useful if you must recompile the program. They allow you to
merge new text with the originally compiled text stored on disk, according to sequence
number. Thus, you need to enter only additional or changed statements for this compilation.

Note If you intend to use this feature, increment the sequence numbers by 10 or 100
to allow space for possible new statements.

Program Text (Columns 8 through 72)

Program text appears in columns 8 through 72. This group of columns is divided into
Areas A and B. The coding sheet provides both column and area headings. All Area A and
Area B coding conventions presented throughout this manual represent the ANSI standard
speci�cations for COBOL. In many instances the HP COBOL II compiler allows variations
from these standards. In order to enhance the readability of source programs, and ensure
compatibility with standard ANSI COBOL, you are encouraged to follow the rules presented
here.

In Area A (columns 8 through 11), you begin all division headings, section headers, paragraph
headers, paragraph names, level indicators FD and SD, and level numbers 01 and 77. These
entries may, where necessary, be continued into Area B.

In Area B (columns 12 through 72), you enter all other COBOL text. For example, the
following elements must appear in Area B: all sentences and procedural statements; data
description entries (including their names), whether or not associated with level indicators and
numbers.

3-22 Program Elements

Program Elements

Continuation Lines

Any sentence or entry that requires more than one line, must be continued in Area B of the
next line. Your program can contain any number of continuation lines.

When a word or numeric literal is broken from one line to the next, you must enter a hyphen
(-) in column 7 of the continuation line. This hyphen indicates that the �rst nonspace
character in Area B is part of the word or literal broken on the previous line.

When a nonnumeric literal is broken from one line to the next, you again must place a hyphen
in column 7, and you must enter a quotation mark or apostrophe before the continuation of
the literal. In any case, the continuation of the word or literal can begin anywhere within
Area B of the continuation line. All spaces at the end of the continued line are considered
part of the end of the word or literal. In any continuation line, Area A must contain spaces
only.

Examples

The following example shows a continuation line where the data item ITEM-NUMBER-FOUR
is continued onto the second line:

ADD ITEM-NUMBER-ONE, ITEM-NUMBER-TWO, ITEM-NUMBER-THREE TO IT

- EM-NUMBER-FOUR. "
" " Column 72

Columns 7 and 14.

All characters of the �rst line up to column 72 are considered part of the line. On the second
line, the continuation hyphen is in column 7. The continuation text begins in column 14.

The following example shows a nonnumeric literal continued onto a second line. The literal is:

"Name 1A Number 1A Name 2A Number 2A Name 3A Number 3A Name 4A Number 4A"

MOVE "Name 1A Number 1A Name 2A Number 2A Name 3A Number 3A N

- "ame 4A Number 4A" TO RECORD-ITEM. "
" " Column 72

Columns 7 and 12.

All characters of the �rst line up to column 72 are considered part of the literal. Notice that
there is no closing quotation mark on the �rst line. Once again, the continuation hyphen is in
column 7, and the continuation text begins in column 12. The continuation of the literal must
start and end with quotation marks or apostrophes.

The following example shows that the continued line can start anywhere in Area B. It also
shows apostrophes instead of quotation marks. This example is equivalent to the previous
example:

MOVE 'Name 1A Number 1A Name 2A Number 2A Name 3A Number 3A N

- 'ame 4A Number 4A' TO RECORD-ITEM. "
" " Column 72

Column 7. Continuation text starts in column 17.

Program Elements 3-23

Program Elements

The following example shows that all characters of the �rst line are used in the nonumeric
literal:

Columns 68 through 72 are blank
and considered part of the literal.

#
MOVE "Name 1A Number 1A Name 2A Number 2A Name 3A Number

- "3A Name 4A Number 4A" TO RECORD-ITEM. "
" " Column 72.

Columns 7 and 12.

When the above MOVE statement is executed, the following literal is moved to
RECORD-ITEM:

"Name 1A Number 1A Name 2A Number 2A Name 3A Number 3A Name 4A Number 4A"

There are �ve spaces between \Number" and \3A" in the literal, which correspond to the �ve
spaces in columns 68 through 72 of the �rst line. This literal contains a total of 75 characters.

Debugging Lines

A debugging line is any line with a \D" in column 7. Refer to Chapter 13, for more
information on rules and use of debugging lines.

Identification Code (Columns 73-80)

An optional identi�cation code may appear in columns 73 through 80. This feature can be
used to identify di�erent versions of a program. It also serves as the library name for source
statements placed in a COBOL copy library. All statements in such a library require an
identi�cation code.

3-24 Program Elements

4

Describing and Referencing Data

The data used by a COBOL program is de�ned and described in the DATA DIVISION, and
referenced and operated upon in the PROCEDURE DIVISION. This data is stored in, read
from, and written to �les (collections of information) that reside on various peripheral devices.
For instance, a payroll processing program might accept input from a �le that contains wage
and salary information for all employees on the company payroll; this program might also
write new output to this same �le during updating operations.

Within a �le, all information is organized into units of related data called logical records.
These records are similar in form, purpose, and content. For example, in a payroll �le, each
logical record could contain the wage and salary data related to a particular employee. In
other words, there would be one record for each employee.

Within each record, individual elements of data, or groups of such elements, are called data
items. As an example, a payroll record for an employee might contain the following data
items: the employee's name, social security number, marital status, gross pay, tax exemptions,
individual deductions, and net pay. The individual deductions data item might itself contain
subordinate data items, such as federal income tax, state income tax, insurance premiums,
bond payments, and charity contributions.

Files

In COBOL, a �le is a collection of records that is identi�ed by a unique name and is currently
recognizable by your program. The name allows you to reference the �le in your program.
Other speci�cations de�ne how records are organized within the �le with respect to the
physical device on which the �le is stored. The speci�cations for the �le are de�ned in the
INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION and the FILE SECTION of
the DATA DIVISION.

Records

Each logical record constitutes a group of related information, uniquely identi�able
and treated as a unit. A record is actually the most inclusive data item in a �le. Each
input-output statement in the PROCEDURE DIVISION accesses one logical record, although
it can also extract subordinate data items from that record.

Describing and Referencing Data 4-1

Describing and Referencing Data

Logical Versus Physical Records

A physical record is one or more logical records and is commonly called a block. A block is
the physical unit used by the operating system to read data from a �le, or write data to it; it
is the basic unit transferred between the device on which the �le resides and main memory
each time a program executes an input or output operation.

You can use the BLOCK CONTAINS clause to specify the size of (that is, the number of
logical records contained in) a physical record. For �les on magnetic tape or disk, a block
consists of either one logical record or a group of several logical records. For instance, 2, 16,
or 256 logical records could be grouped into one block. For tape �les, blocking is normally
done to improve execution time or to conserve �le space by reducing the number of gaps on
the tape. For �les on card readers and punches, line printers, and terminals, each block is
identical to each logical record, and its length is determined by the type of device. Thus,
each block/logical record read from a card reader consists of one 80-character punched card;
each block/logical record written to a line printer consists of one line of print; typically 132
characters. The size of a block has no relation to the size of the data �le contained on the
device to or from which the block is transferred.

A single storage device can hold one or more logical records.

Note In this manual, the term record refers to logical records unless the term block
or physical record is speci�cally used.

COBOL allows you to de�ne logical records in main memory as well
as in �les stored on peripheral devices. This de�nition is done through
the WORKING-STORAGE SECTION of the DATA DIVISION (refer
to Chapter 7).

Record Descriptions

Each record in a �le is de�ned by a record description entry in the DATA DIVISION. This
entry, in turn, consists of one or more data description entries that collectively de�ne the
characteristics of the record. Each data description entry consists of the following elements in
the order listed:

Level number that indicates a subdivision or portion of the logical record.

Data name that allows you to identify and reference the data item.

Independent clauses that describe the attributes of the data item.

To reference portions of the information in a logical record, you must subdivide the record
into corresponding data items. You must also identify each data item that you wish to
reference with a name. Once you specify any data item, you can further subdivide it into
subordinate data items to permit more detailed data reference. You can also reference data
using

NN
reference modification (described later in this chapter). The level number indicates

the hierarchical order of a data item within the record structure. Figure 4-1 contains some
examples. Since a record is the most inclusive data item your program can reference, it is
assigned the level number 01. Less inclusive data items are assigned numerically higher level
numbers, ranging from 02 through 49. These numbers need not be successive.

The most basic subdivisions of a record (those data items that have no further subdivisions)
are called elementary items . Items with subdivisions are called group items , or simply groups.

4-2 Describing and Referencing Data

Describing and Referencing Data

Within the record description entry, each group includes all following group and elementary
items until an item with a level number greater than or equal to the level number of that
group is encountered.

A record is considered a single elementary item if it is not subdivided; otherwise, it is regarded
as a sequence of elementary items that may or may not be organized into groups. Because of
the hierarchical structure of the record, a basic element can belong to its immediate group
and higher level groups that contain that group. In the PROCEDURE DIVISION, your
program can refer to the entire record, to any group of any level within that record, or to an
elementary item.

In Figure 4-1, a record named PERSONNEL-RECORD (line 11) is de�ned in the DATA DIVISION.
This record is divided into the various group items:

Two main group items, named EMPLOYEE-ID (line 12) and ADDRESS (line 15).

The EMPLOYEE-ID group item is subdivided into two elementary items: EMPLOYEE-NUMBER
(line 13) and SOCIAL-SECURITY-NUMBER (line 14). The ADDRESS group item is subdivided
into three items: STREET (line 16), LOCATION (line 17), and ZIP (line 20).

The LOCATION group item is further subdivided into two elementary items: CITY (line 18)
and STATE (line 19).

In this example, the following data items are all elementary items: EMPLOYEE-NUMBER,
SOCIAL-SECURITY-NUMBER, STREET, CITY, STATE, and ZIP. If your program accesses the group
item ADDRESS, it implicitly accesses STREET, LOCATION, CITY, STATE, and ZIP.

Notice that the level numbers used in this example are not successive, and that the
descriptions of all elementary items include PICTURE clauses. The �rst entry in this example
begins with the word FD, which is a level indicator that indicates the entire �le; this entry is a
�le description entry, which must always precede any group of record description entries in the
FILE SECTION. File description entries are described completely in Chapter 7.

...
0010 FD PAYROLL-FILE.

0011 01 PERSONNEL-RECORD.

0012 03 EMPLOYEE-ID.

0013 05 EMPLOYEE-NUMBER PIC 9(5).

0014 05 SOCIAL-SECURITY-NUMBER PIC 9(9).

0015 03 ADDRESS.

0016 05 STREET PIC X(20).

0017 05 LOCATION.

0018 07 CITY PIC X(20).

0019 07 STATE PIC X(20).

0020 05 ZIP PIC 9(5)....

Figure 4-1. Record Desctiption Entry

Describing and Referencing Data 4-3

Describing and Referencing Data

Level 66, 77, and 88 Items

Programs can contain special level numbers that do not actually apply to hierarchical levels.
Instead, they indicate special properties of entries in the DATA DIVISION. These level
numbers are described below:

Level Number Purpose

66 speci�es group or elementary items introduced by a RENAMES clause. This
clause permits the regrouping of data.

77 speci�es noncontiguous data items that are not subdivisions of other
items and are not themselves subdivided. These items are de�ned in the
WORKING-STORAGE SECTION and typically reference internal counters
and accumulators.

88 speci�es condition names associated with particular values of a conditional
variable.

Refer to the description of the DATA DIVISION in Chapter 7 for speci�c rules on coding the
above entries.

Data Items - Classes and Categories

Data items in a COBOL program are speci�ed and referenced very precisely. The various
restrictions governing data items are outlined below.

Classes of Data Items

COBOL has three general classes of data items:

Alphabetic, which can contain letters (A through Z) or spaces, in any combination.

Numeric, which can contain digits (0 through 9) in any combination, optionally including
an operational sign. This is the only class of data item that can be used in arithmetic
operations.

Alphanumeric, which can contain any characters from the ASCII character set, in any
combination.

Note For complete compatibility with all ANSI COBOL compilers, use only
members of the COBOL character set.

4-4 Describing and Referencing Data

Describing and Referencing Data

Categories of Data Items

The three classes of data items are subdivided into �ve categories:

Alphabetic, which is synonymous with the alphabetic class.

Numeric, which is synonymous with the numeric class.

Alphanumeric, which can contain any characters from the ASCII character set in any
combination, not edited by a PICTURE clause.

Alphanumeric-edited, which can contain any characters from the ASCII character set in any
combination, plus editing symbols supplied by a PICTURE clause.

Numeric-edited, which can contain any digits (0 through 9), plus editing symbols supplied
by a PICTURE clause.

Note More precise de�nitions of these categories appear under the description of the
PICTURE clause in Chapter 7.

These classes and categories are independent of the external or internal storage formats of the
data items. The relation of classes to categories are summarized in Table 4-1. For alphabetic
and numeric data items, the classes and categories are synonymous. For alphanumeric data
items, the relation of class to category depends on the level (group or elementary) of the data
item within the record structure. Every elementary item (except an index data item) belongs
to one of these classes and categories. During program execution, every group item is treated
as an alphanumeric item regardless of the class of the elementary items subordinate to that
group item.

Table 4-1. Data Item Classes and Categories

Level of Item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Numeric Edited

Alphanumeric Edited

Alphanumeric

Group Alphanumeric Alphabetic

Numeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

Describing and Referencing Data 4-5

Describing and Referencing Data

Algebraic Signs

Numeric data can have two types of algebraic signs: operational signs and editing signs.

Operational Signs

These signs are associated with signed numeric data items and signed numeric literals, to
indicate their algebraic properties. In regular (default) internal format, they are represented
in storage as noted in the description of the USAGE clause of the DATA DIVISION (see
Chapter 7). However, you can optionally override this format by explicitly specifying the
location of the signs with the SIGN clause of the DATA DIVISION.

Note Using the SIGN clause to force operation signs into a representation di�erent
from the regular (default) format typically causes the compiler to create less
e�cient object code.

Editing Signs

These signs typically appear on edited reports, and are used to denote the positive or negative
value of data. They are inserted into the data through sign/control symbols in the PICTURE
clause.

4-6 Describing and Referencing Data

Describing and Referencing Data

Data Alignment

In a COBOL program, data is moved from one area of storage (sending data item) to
another (receiving data item) through use of the MOVE, ACCEPT, STRING, UNSTRING,
arithmetic, or other statements in the PROCEDURE DIVISION. When aligning data within
the receiving item, the compiler follows speci�c rules. These rules depend upon the category
of that item, as noted below. Table 4-2 contains some examples.

For data items in the numeric category, the compiler aligns the data by the decimal point
and places it in the receiving data item. The compiler also truncates excess characters on
either end of the sending data item, and �lls unused positions in the receiving data item
with zeros.

Note The decimal point is never actually stored in a numeric data item; instead, the
compiler de�nes and keeps track of an assumed decimal point that appears
in the data item only when it is read or written or output. Any stored data
item that contains a combination of digits and editing characters such as the
decimal point, comma, and so forth, does not belong to the numeric category
and cannot be used in arithmetic operations except as a receiving �eld.

When your program does not explicitly specify a decimal point for a numeric
data item, the compiler de�nes an assumed decimal point immediately after
the rightmost digit and aligns the item as described above.

For data items in the numeric-edited category, the compiler aligns the data by decimal point
with zero-�ll or truncation at either end (as with numeric data items), except where editing
replaces leading zeros with another character.

Note The decimal point in a numeric-edited data item, unlike that in a numeric
data item, is actually stored in the item.

For data items in the alphabetic, alphanumeric, and alphanumeric-edited categories,
the compiler aligns the data at the leftmost character position. It also truncates excess
characters to the right of the sending item and �lls unused positions to the right of the
receiving item with spaces.

Note If your program speci�es the JUSTIFIED clause for the receiving data item in
the DATA DIVISION, the above rules are modi�ed as directed by that clause.

Describing and Referencing Data 4-7

Describing and Referencing Data

Level-01 (record) and level-77 data items are always aligned on word boundaries unless
they are in the LINKAGE SECTION. Refer to \System Dependencies" in Appendix H for
more information. In Table 4-2, a space character is represented by the symbol t, and an
assumed decimal point position is represented by the symbol ^. The receiving data items
for alphabetic and alphanumeric data items are each 11 positions long. The receiving data
item for the alphanumeric-edited data item is six positions long. The receiving data items for
numeric and numeric-edited data items may each contain up to 18 digits. The speci�cations
for the PICTURE format are explained in Chapter 7.

Table 4-2. Data Alignment

Category Data to be Stored
Receiving Item
before Transfer

Receiving Field after Transfer

PICTURE
Clause

Content

Alphabetic ABC PQRSTUVWXYZ A(11) ABC

ABCDEFGHIJK PQRSTUVWXYZ A(11) ABCDEFGHIJK

ABCDEFGHIJKLMN PQRSTUVWXYZ A(11) ABCDEFGHIJK

Numeric 1^2 987654 9(3)V9(3) 001^200
123^456 987654 9(3)V9(3) 123^456
12345^67890 987654 9(3)V9(3) 345^678

Numeric Edited 1.2 987.654 9(3).9(3) 001.200

123.456 987.654 9(3).9(3) 123.456

12345.67890 987.654 9(3).9(3) 345.678

Alphanumeric Edited ABCDE ZZZ/ZZZ XXX/XXX ABC/DEt
Alphanumeric A2C PQRSTUVW123 X(11) A2Ctttttttt

A2C?E!G*I5K PQRSTUVW123 X(11) A2C?E!G*I5K

A2C?E!G*I5K@M7 PQRSTUVW123 X(11) A2C?E!G*I5K

4-8 Describing and Referencing Data

Describing and Referencing Data

Identifiers

Data names that are uniquely identi�ed by quali�ers, subscripts, indexes, or
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
referenceNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

modifiers are known collectively as identi�ers . Function-identi�ers are also identi�ers .

The syntax for identi�ers is summarized in the general format:

The syntax for a function-identi�er is:

FUNCTION function-name-1 [({parameter-1} ...)] [reference-modi�er]

Function-identi�ers are described later in this chapter.

The following are restrictions on the use of identi�ers:

Where subscripting is prohibited, indexing is also prohibited.

You can alter the value of an index only by using the SET, SEARCH, and PERFORM
statements in the PROCEDURE DIVISION.

You can store values referenced by index names into data names that are described by the
USAGE IS INDEX clause of the DATA DIVISION. These data items are index data items .

Describing and Referencing Data 4-9

Describing and Referencing Data

Uniqueness of Reference

To ensure that the basic elements de�ned in the various program divisions can be properly
referenced in the PROCEDURE DIVISION, the compiler places several restrictions on some
of these elements. These restrictions cover quali�ers, subscripts, indexes, and identi�ers as
they apply to data names, condition names, paragraph names, and text names.

Qualifiers

Each data name, condition name, paragraph name, and text name must be unique within
the program in which it appears. Such a name is unique if either of the following conditions
applies:

No other name in the program has the same spelling and hyphenation.

If the same name is used for two di�erent elements in a program, it must be made unique
through quali�cation. For instance, if two paragraphs are both identi�ed by the name
PAR-MSG, they must be members of di�erent sections, called perhaps SEC-1 and SEC-2.
In the PROCEDURE DIVISION, you might then reference one of these paragraphs by
specifying:

PAR-MSG OF SEC-1.

In a hierarchy of names such as this, the higher-level names are called quali�ers. Speci�cally, a
quali�er is one of the following:

A data name used in a reference together with another data name or with a condition name
at a lower level in the same hierarchy.

A section name used in a reference together with a paragraph name speci�ed in that
section.

A library name used in a reference together with a text name associated with that library.

In a program, you qualify a data name, condition name, paragraph name, or text name by
entering one or more phrases composed of the following: the name to be quali�ed, followed by
the reserved word IN or OF, followed by a quali�er. Four formats are possible, depending on
the type of name:

4-10 Describing and Referencing Data

Describing and Referencing Data

Note In these format descriptions, the keywords OF and IN are logically equivalent
and can be used interchangeably.

In all cases, you must use su�cient quali�ers to make the name unique. It is not always
necessary, however, to mention all levels in a particular hierarchy.

Within the DATA DIVISION, all data names used as quali�ers must be associated with
a level indicator or level number. Thus, you cannot specify two identical data names as
subordinate entries in a group item unless you can make them unique through quali�cation.
In the quali�cation hierarchy, names associated with a level indicator are the most signi�cant;
names associated with level number 01 are the next most signi�cant; names associated with
level numbers 02 through 49 are then ranked in descending order of signi�cance.

Describing and Referencing Data 4-11

Describing and Referencing Data

In the PROCEDURE DIVISION, two identical paragraph names must not appear in the same
section. A section name is the highest and only quali�er for a paragraph name.

Note The most signi�cant name in any hierarchy must be unique and cannot be
quali�ed.

Subscripted or indexed data names and conditional variables can be made unique through
quali�cation. The name of a conditional variable can be used as a quali�er for any of its
condition names. Regardless of the available quali�cation, no name can be both a data name
and a procedure name.

In using quali�cation, the following speci�c rules apply:

For all names:

You must make sure that each quali�er belongs to a successively higher level and falls
within the same hierarchy as the name it quali�es.

You cannot use the same name at two or more levels in the same hierarchy.

You can use any combination of quali�ers to reference the name if more than one
combination of quali�ers ensures uniqueness.

You can qualify a name even if it does not require quali�cation.

For data names and condition names:

If you assign a data name or condition name to more than one data item, you must qualify
this name each time it is referenced in the ENVIRONMENT, DATA, and PROCEDURE
divisions.

Note This rule does not apply to the REDEFINES clause of the DATA DIVISION,
where quali�cation is prohibited.

4-12 Describing and Referencing Data

Describing and Referencing Data

For data names:

You cannot subscript a data name that is used as a quali�er.

You cannot specify, as the complete set of quali�ers for one data name, a partial set of
quali�ers used for another data name.

You must qualify data names if more than one �le contains a LINAGE clause.

For paragraph names:

You cannot duplicate a paragraph name within a section.

You cannot use the reserved word SECTION in the quali�cation of a paragraph when the
paragraph name is quali�ed by a section name.

You need not qualify a paragraph name that is referenced within the same section.

For text names:

You must qualify all text names each time they are referenced in the program if more than
one COBOL library is used during compilation.

Example

The following example illustrates quali�cation. The name DATA-GRAY is duplicated in the
program, where it actually refers to two di�erent data items. In each case, the name can be
quali�ed as DATA-GRAY OF DATA-BLACK or DATA-GRAY OF DATA-GREEN.

DATA DIVISION....
01 RECORD-1.

03 DATA-BLACK.

05 DATA-GRAY.

10 DATA-BLUE PIC X(06).

10 DATA-YELLOW PIC X(06).

05 DATA-BROWN PIC X(12).

03 DATA-WHITE.

05 DATA-GREEN.

10 DATA-GRAY PIC X(06)....

Describing and Referencing Data 4-13

Describing and Referencing Data

Tables

Quite frequently in business applications, data is arranged in the form of tables. This is
because of the logical arrangement of data and because it is easier to both describe and select
elements of a table than it is to write all the components of the table as one record.

Tables composed of contiguous data items are de�ned in COBOL by using the OCCURS
clause in a record description entry. The OCCURS clause states how many elements there are
in a table, gives these elements a common name, tells whether the elements are arranged in
ascending or descending order, and whether to use subscripting or indexing to access elements
of the table.

You must use subscript or index names to access table elements because they share the same
name.

Defining a Table

In HP COBOL II, you can de�ne a table containing up to
NN
seven dimensions . This is

accomplished by using the OCCURS clause once for each dimension within di�erent level
numbers (other than 01) of the description. In ANSI COBOL'74, the maximum number of
dimensions is three.

To de�ne a one dimensional table, use an OCCURS clause as part of the data description for
the table itself. If you do not use the OCCURS clause as part of the �rst level description
following the table name, the elements described before the OCCURS clause are not part of
the table. For example, in the program fragment below, TABLE1-HEADER is not a table element,
whereas ELEMENT, TIME-ADJUSTER, and DATE-ADJUSTER are table elements.

01 TABLE-1.

02 TABLE1-HEADER PIC X(20) VALUE "TABLE ONE".

02 ELEMENT OCCURS 100 TIMES.

03 TIME-ADJUSTER PIC X(10).

03 DATE-ADJUSTER PIC X(10).

To de�ne a two dimensional table, you must build it from a one dimensional table. That is,
to de�ne a two dimensional table, you must use an OCCURS clause twice, once in an element
of the �rst table, and a second time in the description of a group item containing that table
element. For example:

01 SHOW-TABLE.

11 FIRST-DIM OCCURS 10 TIMES.

22 DIM1-HEAD PIC X(20)

22 SECOND-DIM OCCURS 10 TIMES.

25 TWODIM-ELEMENTS.
30 MORE-ONE PIC X(10).

30 MORE-TWO PIC X(07).

30 MORE-THREE PIC X(16).

The table element, SECOND-DIM, of the �rst table dimension (FIRST-DIM) uses the OCCURS
clause to de�ne a second dimension of SHOW-TABLE, while the group item FIRST-DIM de�nes
the �rst dimension.

4-14 Describing and Referencing Data

Describing and Referencing Data

De�ning a three dimensional table is analogous to de�ning a two dimensional table. Simply
extend the table elements of the two dimensional table to include an element that uses the
OCCURS clause. For example:

01 SALES-ORGANIZATION-TABLE.

11 REGION-TABLE OCCURS 4 TIMES.

22 SALES-REGION PIC X(05).

22 STATE-TABLE OCCURS 13 TIMES.

33 STATE PIC X(20).

33 REP-TABLE OCCURS 4 TIMES.

34 REP-INFO.

35 REPRESENTATIVE PIC X(20).

35 LOCATION-INFO PIC X(60).

The table above, named SALES-ORGANIZATION-TABLE, has one dimension for REGION-TABLE, a
second dimension for STATE-TABLE, and a third dimension for REP-TABLE.

SALES-ORGANIZATION-TABLE contains 472 data items. There are four data items for
REGION-TABLE, 52 data items for STATE-TABLE (4 times 13), and 416 data items for
REP-TABLE (52 times 4, twice, one for each element name).

Referencing Table Items with Subscripting

Elements in a table of like elements can be uniquely referenced through subscripts. A
subscript is an integer that corresponds to a speci�c element in the table. You can only
use subscripts for elements that have not been assigned individual data names. The lowest
possible subscript value is 1, which identi�es the �rst element in the table. The next
ascending values (2, 3, 4 . . .) point to the second, third, and fourth elements, and so forth.
The highest possible value is speci�ed by the OCCURS clause of the DATA DIVISION.

The table is identi�ed by a table element data name or referenced by a condition name.
Individual elements in the table are identi�ed by one, two, three,

NN
or up to seven subscripts.

The subscript, or set of subscripts, is enclosed in a pair of balanced parentheses following any
quali�cation for the table element data name. (Any data name written in this format is called
a subscripted data name.) When two or more subscripts are used, they are written in order of
successively decreasing inclusiveness. Subscripted data names have the following format:

Describing and Referencing Data 4-15

Describing and Referencing Data

The subscript can be represented by the reserved word ALL, a numeric literal, a data name,
or an index name.

The subscript ALL can be used only when the subscripted identi�er is a parameter to a
COBOL function. ALL cannot be used with condition-name-1 . ALL speci�es that each
table element associated with that subscript position is a parameter to the function. See
Chapter 10, \COBOL Functions", for more information on calling COBOL functions.

Literals and data names must represent an integer, optionally preceded by a plus (+) sign.
If a data name is used, it must specify an elementary item; the data name can be quali�ed
but cannot itself be subscripted. The plus or minus sign must be preceded and followed by a
space.

An index is a special register containing a binary value that corresponds to an occurrence
number of an element of the table to which it is associated. The implementation of an index is
machine dependent for e�ciency.

The index is de�ned for the table and assigned an index name through the INDEXED BY
phrase in the table de�nition in the DATA DIVISION. In the PROCEDURE DIVISION,
you use the index name to reference the index. The index name must correspond to a data
description entry in the hierarchy of the table being referenced that contains an INDEXED
BY phrase specifying that index name. Before you can use the index as a table reference,
however, you must assign the index an initial value. You do this by using the SET, SEARCH
ALL, or PERFORM statement.
NN
Indices, data-names, integers, and the word ALL can be combined toNN
reference a multidimensional table.

Two subscripting techniques are available:

Direct subscripting , where the element desired is speci�ed by the contents of the subscript.

Relative subscripting , where the element desired is speci�ed by the contents of the subscript
plus or minus a speci�c value.

Direct subscripting is speci�ed by using a subscript after the table element data name. For
example:

DATA-1 (INDEX-A)

Relative subscripting is speci�ed by using the subscript, followed by a plus or minus sign,
followed by an unsigned integer speci�ed as a numeric literal, all enclosed in balanced
parentheses and following the table element data name.

4-16 Describing and Referencing Data

Describing and Referencing Data

The compiler determines the sequential location of the element in the table by incrementing
(for the plus sign) or decrementing (for the minus sign) the value in the index or data item by
the value of the literal.

The following illustrates direct subscripted data items.

DAY (1)

DATE (1 2)

BENCHMARK (ALPHA BETA GAMMA)

CANDY (20 FILEZ-01 +3)

The following illustrates relative subscripting.

TABLE-1 (BETA + 1)

TABLE-2 (THETA - 1 MU)

ARRAY-3 (STORE-1 + 1 STORE-2 + 1 STORE-3 + 1)

In the �rst of the above examples, if TABLE-1 is the table name and the value of BETA is 15,
the program accesses the 16th element. The second example demonstrates that both direct
and relative subscription are permitted in the same subscripted data name.

Subscripting uses an occurrence number (that is, the number of where in a particular
dimension an element occurs) for each dimension of a table. To illustrate, using the three
dimensional table SALES-ORGANIZATION-TABLE described under \De�ning a Table", the
following refers to the third occurrence of REPRESENTATIVE in the �rst state of the fourth sales
region:

REPRESENTATIVE (4, 1, 3)

Thus, if the fourth sales region is the western sales region, and the �rst state in that region is
California, then the name of the third representative for that state is accessed by the above
subscripted reference.

Of course, if you wish only to access a state entry, you can do so by using only two subscripts.
For example, the following references the 12th state in the fourth sales region:

STATE(4, 12)

Note that data names could as easily have been used to perform all or just part of the
subscripting above. Generally, these data items are de�ned in working storage, and have no
restrictions on them except that they cannot be index data names.

Describing and Referencing Data 4-17

Describing and Referencing Data

Referencing Table Items with Indexing

Indexing requires more coding in the OCCURS clause, since you must specify at least one
name to be used for the indexing. To illustrate, the SALES-ORGANIZATION-TABLE has been
modi�ed for indexing:

01 SALES-ORGANIZATION-TABLE.

11 REGION-TABLE OCCURS 4 TIMES.

22 SALES-REGION PIC X(05).

22 STATE-TABLE OCCURS 13 TIMES.

33 STATE PIC X(20).

33 REP-TABLE OCCURS 4 TIMES

INDEXED BY RPINDX.

34 REP-INFO.
35 REPRESENTATIVE PIC X(20).

35 LOCATION-INFO PIC X(60).

Once the index names have been de�ned, you must use the SET statement of the
PROCEDURE DIVISION to initialize the index names to a value within the range of from 1
to the highest occurrence number associated with the dimension in which the index name was
de�ned. See \OCCURS Clause" in Chapter 7 for more details.

Once an index name has been set, you can use it to access table elements. Assuming that
RPINDX has been set to 2, the following example accesses the information about the second
representative in the �rst state of the fourth sales region:

REP-INFO(4, 1, RPINDX)

Referring to the use of this same data base in the subscript example above, note that this
accesses the information about the second sales representative in California.

You can use index names in conjunction with the SEARCH statement of the PROCEDURE
DIVISION to search for occurrences of table items within a given table. For information and
restrictions on searching tables, refer to \SEARCH Statement" in Chapter 9.

Condition Names

Condition names made unique through quali�cation, indexing, or subscripting have the
same overall syntax for identi�ers as the two formats above. In these formats, however, the
user-de�ned word condition-name-1 replaces data-name-1 .

The restrictions that apply to the combined use of quali�cation, subscripting, and indexing of
identi�ers also apply to condition names. In addition, these further restrictions apply:

1. If a condition name is made unique through quali�cation, you can use either the hierarchy
of names associated with the related conditional variable or the conditional variable itself
as the �rst quali�er.

2. If references to a conditional variable require indexing or subscripting, you must use the
same indexing or subscripting for references to any condition name associated with that
variable.

4-18 Describing and Referencing Data

Describing and Referencing Data

Note In the format descriptions appearing throughout this manual, condition-name
refers to a condition name that can be quali�ed, indexed, or subscripted as
necessary.

Function-Identifiers

A function-identi�er is a syntactically correct combination of character strings and separators
that references a function.

Syntax

The format of a function-identi�er is:

FUNCTION function-name-1 [({parameter-1} ...)] [reference-modi�er]

Parameters

function-name-1 Any of the COBOL functions listed in Chapter 10, \COBOL
Functions."

parameter-1 Must be an identi�er, a literal, or an arithmetic expression. Speci�c
rules for parameters are listed with each function in Chapter 10.

reference-modi�er A reference-modi�er can only be used with alphanumeric functions.
See \Reference Modi�cation" later in this chapter for more
information.

Description

You can use a function-identi�er anywhere an identi�er of the same class and category is
allowed except where it is speci�cally disallowed. However, a function-identi�er cannot be
used as a receiving item in any statement. An integer or numeric function identi�er can only
be used in an arithmetic expression.

Evaluation of Function Parameters. When you call a function, its parameters are evaluated
individually from left to right. A parameter can itself be a function-identi�er or an expression
containing a function-identi�er.

For more information on the COBOL functions, see Chapter 10, \COBOL Functions."

Describing and Referencing Data 4-19

Describing and Referencing Data

Reference Modification
NN
Reference modification is a feature of the 1985 ANSI COBOL standard.

Reference modi�cation is a method of referencing data by specifying a leftmost character and
length for the data item.

Syntax

The format of a reference modi�er is:

(leftmost-character-position: [length])

You use a reference modi�er with a data item or a function identi�er. The general format for
reference modi�cation is:

data-name-1 (leftmost-character-position: [length])

The format for reference modi�cation with COBOL functions is:

FUNCTION function-name-1 [({parameter-1} ...)] (leftmost-character-position: [length])

Parameters

data-name-1 must reference a data item whose usage is DISPLAY.
data-name-1 can be quali�ed or subscripted.

leftmost-character-position must be an arithmetic expression.

length must be an arithmetic expression.

function-name-1 must be an alphanumeric COBOL function. For a list of
COBOL functions, see Chapter 10, \COBOL Functions."

parameter-1 is any parameter to the function function-name-1 .

Reference modi�cation is allowed wherever an identi�er referencing an alphanumeric data item
or alphanumeric function is permitted, except in identi�er-3 of the STRING statement and
identi�er-1 of the UNSTRING statement.

4-20 Describing and Referencing Data

Describing and Referencing Data

Reference Modification Rules

The following rules apply when using reference modi�cation:

Each character of a data item referenced by data-name-1 or by function-name-1 and its
parameters, if any, is assigned an ordinal number according to its position. The leftmost
position is assigned the number one and the number of each successive position to the right
is incremented by one. If the data description entry for data-name-1 contains a SIGN IS
SEPARATE clause, the sign position is assigned an ordinal number within that data item.

If data-name-1 or function-name-1 is numeric, numeric-edited, alphabetic, or
alphanumeric-edited, reference modi�cation operates upon the item as if it were rede�ned as
an alphanumeric data item of the same size.

For an operand, reference modi�cation is evaluated as follows:

If you specify subscripting for an operand, the reference modi�cation is evaluated
immediately after the subscripts. If you specify an ALL subscript for an operand, the
reference-modi�er is applied to each element of the table. (Using ALL as a subscript is
only allowed when the operand is a parameter to a function.)

If subscripting is not speci�ed for the operand, the reference modi�cation is evaluated at
the time subscripting would be evaluated if subscripts had been speci�ed.

If you specify reference modi�cation for a function reference, the reference modi�cation is
done immediately after the function is evaluated.

Reference modi�cation creates a unique data item that is a subset of the data item
referenced by data-name-1 or function-name-1 and its arguments, if any.

This unique data item is de�ned as follows:

The leftmost-character-position speci�es the ordinal position of the leftmost character
of the unique data item in relation to the leftmost character of data-name-1 or
function-name-1 . Evaluation of the leftmost-character-position must result in a positive
nonzero integer less than or equal to the number of characters in the data item.

The length speci�es the size of the data item to be used in the operation. The result must
be a positive nonzero integer. The sum of leftmost-character-position and length minus 1
must be less than or equal to the number of characters in the data item data-name-1 or
function-name-1 .

If length is not speci�ed, the unique data item extends from the leftmost-character-
position through the rightmost character of the data item.

The unique data item is considered an elementary data item without the JUSTIFIED
clause. When a function is referenced, it has the class and category of alphanumeric.
When data-name-1 is speci�ed, the unique data item has the same class and category as
data-name-1 except that the categories numeric, numeric-edited, and alphanumeric-edited
are considered class and category alphanumeric.

Describing and Referencing Data 4-21

Describing and Referencing Data

Examples

Based upon the following example, Table 4-3 shows the result of reference modi�cation upon
four statements:

01 TAB.

05 ELEMENT PIC X(5)

OCCURS 5 TIMES VALUE "12345".

01 X PIC X(3).

Table 4-3. Reference Modification Results

Statement Result

MOVE "ABC" TO ELEMENT (3) (2:) Changes the third element of ELEMENT
table to 1ABCt.

MOVE "ABC" TO ELEMENT (2) (4:) Changes the second element of ELEMENT
table to 123AB.

MOVE "ABC" TO ELEMENT (1) (1:4) Changes the �rst element to ABCt5.
MOVE ELEMENT (5) (2:2) TO X. Changes X to 23t.

Based on the following example, Table 4-4 shows the result of reference modi�cation without
subscripting upon three statements:

01 Y PIC XXXX VALUE SPACES.

Table 4-4. Reference Modification Without Subscripting

Statement Result

MOVE "AB" TO Y(2:) tABt
MOVE "XYZ" TO Y(2:) tXYZ
MOVE "F" TO Y(2:1) tFYZ

4-22 Describing and Referencing Data

Describing and Referencing Data

The following program shows reference modi�cation on function calls:

10 $CONTROL POST85

11 IDENTIFICATION DIVISION.
12 PROGRAM-ID. FUNC-EXAMPLE.

13 ENVIRONMENT DIVISION.

14 DATA DIVISION.

15 WORKING-STORAGE SECTION.

16 01 TAB.

17 05 ELEMENT PIC X(5) USAGE DISPLAY

18 OCCURS 5 TIMES VALUE "12345".

19 PROCEDURE DIVISION.

20 FIRST-PARA.

21 DISPLAY FUNCTION WHEN-COMPILED

22 DISPLAY FUNCTION WHEN-COMPILED (9:2)

23 DISPLAY FUNCTION CURRENT-DATE

24 DISPLAY FUNCTION CURRENT-DATE (1:4)

25 MOVE "93843" TO ELEMENT (2)

26 MOVE "38103" TO ELEMENT (3)

27 MOVE "49382" TO ELEMENT (4)

28 MOVE "78397" TO ELEMENT (5)

29 DISPLAY FUNCTION MAX (ELEMENT (ALL))

30 DISPLAY FUNCTION MAX (ELEMENT (ALL)) (2:2)

31 STOP RUN.

The above program displays the following kind of output:

1991011612272700-0500 Output from WHEN-COMPILED, line 21.

12 Output from reference-modi�ed WHEN-COMPILED, line 22.

1991011612283000-0500 Output from CURRENT-DATE, line 23.

1991 Output from reference-modi�ed CURRENT-DATE, line 24.

93843 Output from MAX, line 29.

38 Output from reference-modi�ed MAX, line 30.

Describing and Referencing Data 4-23

5

IDENTIFICATION DIVISION

Every HP COBOL II program begins with the IDENTIFICATION DIVISION. This division
speci�es information that identi�es both the source program and related listings produced by
the HP COBOL II compiler. Among this information, you must always include the name of
your program. In addition, you may optionally identify:

The author of the program.

The installation where the program is compiled.

The date that the program is written.

The date that the program is compiled.

Any security restrictions governing the program.

IDENTIFICATION DIVISION Format

The IDENTIFICATION DIVISION has the following format:

In this format, the paragraph headers identify the kind of information that each paragraph
contains. Thus, in the PROGRAM-ID paragraph, you specify the name of your program; in
the AUTHOR paragraph, you generally enter your own name.

IDENTIFICATION DIVISION 5-1

IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION can not be abbreviated to ID DIVISION in the contained
programs within a nested program. Only the outermost containing program can abbreviate
IDENTIFICATION to ID.

IDENTIFICATION DIVISION Syntax Rules

The PROGRAM-ID paragraph is always required, but all other paragraphs are optional.
When any optional paragraphs are included, they must always appear in the order shown in
the format description.

Begin the division header in Area A of the �rst line. Begin each paragraph header in
Area A of a new line. In each paragraph, begin the paragraph body (program-name or
comment-entry) either on the same line as the paragraph header or in Area B of a new line
following the header. When you must continue a lengthy entry, begin the continuation in Area
B of the next available line. The PROGRAM-ID paragraph must be terminated by a period
followed by a space.

Paragraphs

The IDENTIFICATION DIVISION contains the following paragraphs: PROGRAM-ID,
AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY. A
description of these paragraphs follow. All paragraphs in the IDENTIFICATION DIVISION
except the PROGRAM-ID paragraph are obsolete features of the 1985 ANSI COBOL
standard.

PROGRAM-ID Paragraph

This paragraph must appear in every program and must include the program's name. This
name identi�es your source program and appears on the listings associated with it. It must
be a unique name with respect to all program units (HP COBOL II main program or
subroutines) compiled in a particular instance. The name must begin with a letter and cannot
contain more than 30 characters, including hyphens.
NN
The INITIAL clause specifies that when the program is called, that programNN
and any other programs it contains are in their initial state. The initialNN
state of a program is the state of the program the first time it is calledNN
as a run unit. Using the INITIAL clause sets $CONTROL DYNAMIC and is onlyNN
useful for subprograms.

For a description of the
NNNNNNNNNNNNNNNNNNNN
COMMON clause, see Chapter 11, \Interprogram Communication."

The program names of a run unit do not need to be unique. When two program names in
a run unit are the same, at least one of the two programs must be directly or indirectly
contained within another separately compiled program that does not contain the other of the
two programs.

5-2 IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

Example

The following example shows parts of several programs. Only the IDENTIFICATION
DIVISION, PROGRAM-ID, and END PROGRAM are shown for each program. For clarity,
the lines are appropriately indented. However, in practice, IDENTIFICATION DIVISION,
PROGRAM-ID, and END PROGRAM must start in margin A.

Program Structure Scope

IDENTIFICATION DIVISION.

PROGRAM-ID. A. Callable by separately compiled program (G below).
...

IDENTIFICATION DIVISION.

PROGRAM-ID. B. Callable by A.
...

END PROGRAM B.

IDENTIFICATION DIVISION.

PROGRAM-ID. C COMMON. Callable by B, A, D and E.
...

END PROGRAM C.

IDENTIFICATION DIVISION.

PROGRAM-ID. D. Callable by A.
...

IDENTIFICATION DIVISION.

PROGRAM-ID. E. Callable by D.
...

END PROGRAM E.

END PROGRAM D.

END PROGRAM A.

IDENTIFICATION DIVISION.

PROGRAM-ID. F. Callable by separately compiled programs (A above or

G below).
...

IDENTIFICATION DIVISION.

PROGRAM-ID. A. Callable by F. Note that a call to A from F will call
the nested program A, not the separately compiled
program A (above).

...

END PROGRAM A.

IDENTIFICATION DIVISION.

PROGRAM-ID. B. Callable by F.
...

END PROGRAM B.

END PROGRAM F.

IDENTIFICATION DIVISION.

PROGRAM-ID. G.
...

END PROGRAM G.

IDENTIFICATION DIVISION 5-3

IDENTIFICATION DIVISION

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph is an obsolete feature of the 1985 ANSI COBOL standard.

When you enter the DATE-COMPILED paragraph in your source program, the compiler
prints the current date and time on the �rst line of this paragraph as it appears on the source
program listing. Generally, you include only the paragraph header (and do not specify a
body) when you enter the source program. On the source listing, the date and time appear in
the following format:

No additional data, either on the same line as the paragraph header or on subsequent lines, is
printed on the source listing.

5-4 IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

Other Paragraphs

The remaining paragraphs of the IDENTIFICATION DIVISION, AUTHOR,
INSTALLATION, DATE-WRITTEN, and SECURITY, are obsolete features of the 1985
ANSI COBOL standard.

In the other paragraphs of the IDENTIFICATION DIVISION, which are optional, the
paragraph bodies are treated as comments. Thus, you may enter any information you wish
in any of them. For example, you may use the AUTHOR paragraph for data other than
someone's name.

To continue any of these comment entries onto two or more lines, simply enter the desired
information in Area B of the necessary lines. However, in this case, do not enter the hyphen
continuation indicator in column 7.

The following illustrates a complete IDENTIFICATION DIVISION, showing all required and
optional paragraphs:

IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE-ID-SECTION.

AUTHOR. MANUAL-J-WRITER.

INSTALLATION. GSD-CUST-TRAINING-AND-DOC-GROUP.

DATE-WRITTEN. 07/11/86.

DATE-COMPILED.

SECURITY. NONE.

IDENTIFICATION DIVISION 5-5

6

ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION allows you to de�ne those aspects of a data processing
application that depend on the physical characteristics of the processing environment.NN
The ENVIRONMENT DIVISION is optional. It always follows the IDENTIFICATION
DIVISION.

This division consists of two sections:

CONFIGURATION SECTION, for specifying the hardware characteristics of the system on
which you will compile and run your program.

INPUT-OUTPUT SECTION, for specifying the data �les used by your program, and
various input-output control elements.

Each of these sections may contain several paragraphs.

ENVIRONMENT DIVISION Format

The ENVIRONMENT DIVISION has the following general format:

ENVIRONMENT DIVISION 6-1

CONFIGURATION SECTION

ENVIRONMENT DIVISION Syntax Rules

The CONFIGURATION and INPUT-OUTPUT SECTIONs are optional. In nested programs,
the CONFIGURATION SECTION is not allowed, because the information in the containing
program is global across the contained programs. In separate programs, or in concatenated
programs when included, they must appear in the order shown in the format description.NN
Within each section, all paragraphs are optional.

CONFIGURATION SECTION

The CONFIGURATION SECTION may include the following paragraphs:

SOURCE-COMPUTER paragraph, for de�ning the characteristics of the computer system
on which your HP COBOL II source program will be compiled.

OBJECT-COMPUTER paragraph, for specifying the characteristics of the computer system
on which the resulting object program will be run.

SPECIAL-NAMES paragraph, for specifying symbolic characters and the relationship of
special function names to mnemonic names appearing in the source program.

The CONFIGURATION SECTION format is shown on the next page, and each paragraph is
described on the following pages.

6-2 ENVIRONMENT DIVISION

CONFIGURATION SECTION

ENVIRONMENT DIVISION 6-3

CONFIGURATION SECTION

SOURCE-COMPUTER Paragraph

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph denotes the computer system on which you plan to
compile your source program, and whether or not to set the debugging mode switch on at
compile time.

Syntax

This paragraph has the following format:

[SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE].]]

where computer-name is any valid user-de�ned COBOL word. That is, any combination of
alphanumeric characters and hyphens you choose, with the restriction that the �rst character
must be alphabetic and that there must be no blanks between the �rst and last characters.

HP COBOL II assumes that all programs are compiled on an HP computer system. If you
specify a computer-name in the SOURCE-COMPUTER paragraph, the compiler treats this
name as a comment.

For further details on the WITH DEBUGGING MODE clause, refer to Chapter 13.

6-4 ENVIRONMENT DIVISION

CONFIGURATION SECTION

OBJECT-COMPUTER Paragraph

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph denotes the computer system on which the object
program is executed. HP COBOL II assumes that all COBOL programs are executed on an
HP computer system.

The only clause in the OBJECT-COMPUTER paragraph that is not treated as a comment is
the PROGRAM COLLATING SEQUENCE clause.

Syntax

Parameters

computer-name any combination of alphanumeric characters and hyphens you
choose, with the restriction that the �rst must be alphabetic,
and that there must be no blanks between the �rst and the last
characters in the name.

integer-1 any positive integer.

alphabet-name-1 any name you choose, with the same rules and restrictions as
computer-name above. This name must appear in the alphabet
clause of the SPECIAL-NAMES paragraph.

segment-number any nonnegative integer in the range 1 to 49.

MEMORY-SIZE Clause

The MEMORY-SIZE clause is an obsolete feature of the 1985 ANSI COBOL standard.

The MEMORY-SIZE clause speci�es the amount of main memory required by your program.
In HP COBOL II, however, memory is allocated automatically through the operating system.
Thus, any entry in this clause is treated as a comment.

ENVIRONMENT DIVISION 6-5

CONFIGURATION SECTION

OBJECT-COMPUTER Paragraph

PROGRAM COLLATING SEQUENCE Clause

On an HP computing system, the following operations are performed on the basis of the
ASCII collating sequence:

Determining the truth value of nonnumeric comparisons explicit in relation or condition
name conditions.

Using nonnumeric sort or merge keys (unless the COLLATING SEQUENCE clause of the
respective SORT or MERGE statement is speci�ed in the PROCEDURE DIVISION, and
the alphabet name used in it speci�es a non-ASCII collating sequence).

The COLLATING SEQUENCE clause can be used in relation with the SPECIAL-NAMES
paragraph to de�ne a di�erent collating sequence to be used in these operations.

That is, in the SPECIAL-NAMES paragraph, you can relate alphabet-name to the speci�c
collating sequence desired.

An example of the COLLATING SEQUENCE clause is shown under the SPECIAL-NAMES
paragraph later in this chapter.

The PROGRAM COLLATING SEQUENCE clause applies only to the program in which it
appears. If you omit this clause, the ASCII collating sequence is used.

SEGMENT-LIMIT Clause

The SEGMENT-LIMIT clause is an obsolete feature of the 1985 ANSI COBOL standard.

The SEGMENT-LIMIT clause is used to de�ne the number of permanent segments in a
COBOL program. However, since the concept of a permanent segment has no meaning on an
HP computer system, this clause, if speci�ed, is treated as a comment.

6-6 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph allows you to relate certain COBOL-supplied feature,
switch, or device names to mnemonic names. By specifying these mnemonic names in your
program, you can invoke these functions. It allows you to relate the alphabet name speci�ed
in the PROGRAM COLLATING SEQUENCE clause to a particular collating sequence or
character set, and to de�ne other collating sequences with di�erent alphabet names. The
SPECIAL-NAMES paragraph also allows you to specify symbolic characters and to relate
class names to sets of characters.

Syntax

ENVIRONMENT DIVISION 6-7

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

Parameters

feature-name-1 a COBOL reserved word having a speci�c meaning. Table 6-1
lists these feature names and describes their meanings.

switch-name-1 a COBOL reserved word having a speci�c meaning. Table 6-1
lists these switch names and describes their meanings.

device-name-1 a COBOL reserved word having a speci�c meaning. Table 6-1
lists these device names and describes their meanings.

mnemonic-name-1 and
mnemonic-name-2

names you choose to represent feature-name-1 , switch-name-1 ,
or device-name-1 within your program. These names can be
any valid user-de�ned COBOL words.

condition-name-1 and
condition-name-2

each are any valid user-de�ned COBOL words.

alphabet-name-1 either the name (if any) speci�ed in the PROGRAM
COLLATING SEQUENCE clause of the OBJECT-
COMPUTER paragraph, or any valid user-de�ned COBOL
word.

literal-1 through literal-5 are each nonnumeric or numeric literals. If any such literal is a
numeric literal, it must be a positive integer from the range 1
to 256.

If any nonnumeric literal is used in a THROUGH or ALSO
phrase, it must be only one character long. Note that no
ASCII character can be speci�ed more than one time as a
literal in any given ALPHABET clause. Literals 1 through 5
must not be nonnumeric �gurative constants.
NNN
ANSI COBOL'85 allows literals 1 through 5 to be figurativeNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
constants.

STANDARD-1 and STANDARD-2 represent the ASCII collating sequence.

NATIVE currently de�ned as representing the ASCII collating sequence.
However, it may be changed to represent another character set
(for example, the KATAKANA character set).

EBCDIC speci�es that the EBCDIC collating sequence is to be used.
Note that this does not enable any conversion of data. It only
allows data to be (for example) sorted or merged according to
the EBCDIC collating sequence.

EBCDIK speci�es the Japanese version of the EBCDIC collating
sequence.

6-8 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

literal-6 a single character, chosen from a speci�c set. This set is shown
later in this chapter, when the CURRENCY SIGN clause is
described.

THROUGH and THRU are equivalent and may be used interchangeably.

symbolic- character-1 a name you choose to represent the user-de�ned constant
within your program. This name can be any valid user-de�ned
COBOL word.

integer-1 the ordinal position speci�ed by integer-1 must exist in
the ASCII character set. If the IN phrase is speci�ed, the
ordinal position must exist in the character set named by
alphabet-name-2.

alphabet-name-2 the name speci�ed in the ALPHABET clause of the
SPECIAL-NAMES paragraph.

class-name-1 a name you choose to represent a user-de�ned class; this name
can be any valid user-de�ned COBOL word.

Each clause of the SPECIAL-NAMES paragraph is described on the following pages.

Note The SPECIAL-NAMES clause must follow the order shown in the syntax
diagram.

ENVIRONMENT DIVISION 6-9

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

Feature-name, Switch-name, or Device-name Clause

Feature-name, Switch-name, or Device-name Clause

In the Feature-name, Switch-name, or Device-name clause, you relate various COBOL
functions to mnemonic names used in your program. You do this by equating the speci�c
function name to the desired mnemonic name.

Syntax

Parameters

feature-name-1 a COBOL reserved word having a speci�c meaning. Table 6-1
lists these feature names and describes their meanings.

switch-name-1 a COBOL reserved word having a speci�c meaning. Table 6-1
lists these switch names and describes their meanings.

device-name-1 a COBOL reserved word having a speci�c meaning. Table 6-1
lists these device names and describes their meanings.

mnemonic-name-1 and
mnemonic-name-2

names you choose to represent feature-name-1 , switch-name-1 ,
or device-name-1 within your program. These names can be
any valid user-de�ned COBOL words.

condition-name-1 and
condition-name-2

each are any valid user-de�ned COBOL words.

Description

The feature, switch, and device names and corresponding functions are listed in Table 6-1.
All names except the software switches (SW0 through SW15) and the CONDITION-CODE
feature may be referenced by using the assigned mnemonic-name in the ACCEPT, DISPLAY,
or WRITE statements of the PROCEDURE DIVISION. The CONDITION-CODE feature is
related to the special MPE intrinsic relation condition. Refer to the description of relation
conditions in Chapter 8 for more information.

6-10 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

Feature-name, Switch-name, or Device-name Clause

Table 6-1. HP COBOL II Feature, Switch, and Device Names

Feature Name Function

CONDITION-CODE Refers to condition codes returned by operating system
intrinsics when they have been called through the
CALL statement.

NO SPACE CONTROL When included in the ADVANCING clause of the
WRITE statement, this prevents the line printer from
advancing vertically or horizontally.

TOP When included in the ADVANCING clause of the
WRITE statement, the mnemonic name assigned to
TOP causes the line printer to perform a page eject.

C01
through
C16

Used in the ADVANCING clause of the WRITE
statement for sequential �les. Each directs the line
printer to skip to a particular channel (1 through 16)
on the carriage control tape. Refer to Chapter 9 for
details.

Switch Name Function

SW0
through
SW15

Refer to software switches associated with condition
names. (Software switches are described in the next
section of this chapter.)

Device Name Function

SYSIN Refers to the operating system standard input device.
In an interactive session, this is your terminal. In a
batch job, it is either the card reader or operator's
console.

SYSOUT Refers to the operating system standard output device.
In an interactive session, this is your terminal. In a
batch job, it is the line printer

CONSOLE Refers to the computer operator's console (not your
terminal).

ENVIRONMENT DIVISION 6-11

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

Feature-name, Switch-name, or Device-name Clause

Software Switches

The software switches are external switches known to COBOL, the status of which is available
to each object program functioning within the entire run unit.

Each of the 16 software switches (SW0 through SW15) used in a given program has at least
one condition name associated with it.

A condition name and the SET statement are the means by which you can reference one of
these switches. For example,

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. HPCOMPUTER

OBJECT-COMPUTER. HPCOMPUTER

SPECIAL-NAMES.

SW0 IS SORT-SWITCH ON STATUS IS SORT-ON.

PROCEDURE DIVISION....
IF SORT-ON

THEN CALL "SORTER"....

In the above example, the actual reference to SW0 is done in the IF statement in the
PROCEDURE DIVISION, where SORT-ON is tested in a condition name condition.
(Chapter 8 has information on condition name conditions.) If SORT-ON is in an \on"
condition, the subprogram SORTER is called. If it is in an \o�" condition, the next executable
sentence is executed.

Software switches are always considered to be OFF at the beginning of the execution of
a program unless you turn them on before execution begins. To turn switches on or o�
after execution begins, use the SET statement. Refer to Appendix H, \MPE XL System
Dependencies", for information on setting software switches before execution begins.

6-12 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

Feature-name, Switch-name, or Device-name Clause

Line Printer Features

The TOP, NO SPACE CONTROL, and C01 through C16 switches are all related to line
printer control. Since there is no way for a COBOL II program to explicitly check for the
condition of a line printer, you cannot use condition names with these functions. You must,
however, specify mnemonic names for these functions if you intend to reference them later in
your program. For example:

SPECIAL-NAMES.

TOP IS TOP-OF-FORM, C09 IS TO-END-OF-FORM....
PROCEDURE DIVISION....

WRITE REC-OUT FROM FOOT-NOTE

AFTER ADVANCING TO-END-OF-FORM....
WRITE REC-OUT FROM TITLE

AFTER ADVANCING TOP-OF-FORM....

CONDITION-CODE Features

The CONDITION-CODE function allows you to check the condition code returned by MPE
intrinsics. This function is itself a form of conditional variable, with an integer value. Thus,
no condition name can be associated with it, and a mnemonic name must be used if you wish
to check condition codes returned by intrinsics called from your program. Refer to the section
on relation conditions in Chapter 8 for an example and more information.

SYSIN, SYSOUT, and CONSOLE Devices

The SYSIN, SYSOUT, and CONSOLE functions are used in the ACCEPT and DISPLAY
statements of the PROCEDURE DIVISION. Since these names refer to terminals, line
printers, card readers, and the operator's console, you cannot associate condition names with
them. Also, because of the formats of the ACCEPT and DISPLAY statements, you need not
specify mnemonic names for them in the SPECIAL-NAMES paragraph. You may, however,
choose to do so. Refer to the ACCEPT and DISPLAY statement descriptions in Chapter 9 for
more information.

ENVIRONMENT DIVISION 6-13

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

ALPHABET Clause

ALPHABET Clause

The ALPHABET clause has three functions:

1. To de�ne a program collating sequence to be used in sort and merge operations, and
nonnumeric comparisons.

2. To de�ne an alphabet name and relate this name to either the ASCII, EBCDIK, or the
EBCDIC collating sequence. This alphabet name can later be used in the CODE-SET
clause of the DATA DIVISION to specify whether records of a sequential �le are written in
ASCII or EBCDIC code.

3. To de�ne an alternate collating sequence separate from the program collating sequence to
be used (optionally) in sort and merge operations.

Syntax

The ALPHABET clause has the following format:

Parameters

alphabet-name-1 either the name (if any) speci�ed in the PROGRAM COLLATING
SEQUENCE clause of the OBJECT-COMPUTER paragraph, or any
valid user-de�ned COBOL word.

literal-1 through
literal-3

each are alphabetic or numeric literals. If any such literal is a numeric
literal, it must be a positive integer from the range 1 to 256. If any
nonnumeric literal is used in a THROUGH or ALSO phrase, it must
be only one character long. Note that no ASCII character can be
speci�ed more than one time as a literal in any given ALPHABET
clause.

STANDARD-1 and
STANDARD-2

represents the ASCII collating sequence.

NATIVE represents the ASCII collating sequence.

EBCDIC speci�es that the EBCDIC collating sequence is to be used. Note that
this does not enable conversion of data. It only allows data to be

6-14 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

ALPHABET Clause

(for example) sorted or merged according to the EBCDIC collating
sequence.

EBCDIK speci�es the Japanese version of the EBCDIC collating sequence.

THROUGH and THRU equivalent and may be used interchangeably.

To de�ne a program collating sequence, you must relate the alphabet-name speci�ed in the
PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph to
either the words NATIVE, STANDARD-1, STANDARD-2, EBCDIC, EBCDIK, or a list of
literals.

STANDARD-1 and STANDARD-2 refer to the ASCII collating sequence, which is used
on all HP computer systems. Therefore, you need not specify alphabet-name in either the
PROGRAM COLLATING SEQUENCE clause or the SPECIAL-NAMES paragraph if this is
your choice for a program collating sequence.

STANDARD-1, STANDARD-2 and NATIVE Phrases

To specify the ASCII collating sequence used on HP computer systems, enter either the
STANDARD-1, STANDARD-2, or NATIVE phrase in the ALPHABET clause. For example,

SPECIAL-NAMES.

ALPHA-NAME IS STANDARD-1.

Note Although NATIVE is currently de�ned as being the ASCII collating sequence,
it may be changed in future releases of HP COBOL II. Thus, to avoid the
possibility of having to change your program in the future, you should always
use the STANDARD-1 or STANDARD-2 phrase, rather than the NATIVE
phrase.

EBCDIC and EBCDIK Phrases

To specify the EBCDIC collating sequence, enter EBCDIC in the ALPHABET clause:

SPECIAL-NAMES.

ALPHA-NAME IS EBCDIC.

To specify the Japanese version of the EBCDIC collating sequence, use EBCDIK.

LITERAL Phrase

The literal phrase allows you to rearrange the ASCII collating sequence to suit your needs.
However, if you specify the literal phrase in an ALPHABET clause, you may not reference
that name in a CODE-SET clause.

ENVIRONMENT DIVISION 6-15

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

ALPHABET Clause

Defining Your Own Collating Sequence

To de�ne your own collating sequence, you must follow the rules listed below.

1. If you specify a nonnumeric literal, it represents the equivalent character in the ASCII
collating sequence. For instance, the literal \A" represents an ASCII A.

If the literal consists of several characters, each character is assigned successive ascending
positions in the collating sequence, beginning with the leftmost character. For example,

ALPHA-NAME IS "0A9B8C7D".

Results in the following collating sequence:

0

A

9

B

8

C

7

D...

2. If you specify a numeric literal, it represents the ordinal number of the corresponding
character in the ASCII collating sequence. Therefore, if you specify 66, this represents the
66th character in the ASCII collating sequence|an uppercase A.

3. The order in which the literals appear in the ALPHABET clause determines, in ascending
sequence, the ordinal numbers of the corresponding characters in the new collating
sequence.

4. Any ASCII characters not explicitly speci�ed in the literal phrase assume positions in the
new collating sequence numerically higher than any explicitly speci�ed characters. The
relative order of the unspeci�ed characters, with respect to each other, is the same as in the
ASCII collating sequence.

5. If you use the THROUGH phrase, the new collating sequence consists of contiguous
characters from the ASCII character set, beginning with the value of literal-1 and ending
with the value of literal-2 . These characters are assigned successive ascending positions in
the new character set. As an example, the following ALPHABET clause creates a collating
sequence consisting of all uppercase alphabetic characters (letters) from the ASCII collating
sequence:

ALPHA-NAME IS "A" THROUGH "Z"

With the THROUGH phrase, you can also specify and assign ASCII characters in
descending sequence:

ALPHA-NAME IS "Z" THROUGH "A".

Note If a nonnumeric literal is used in a THROUGH phrase, it must be only one
character long.

6-16 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

ALPHABET Clause

6. If you use the ALSO phrase, the ASCII characters speci�ed by literal-1 and literal-3
are assigned to the same relative positions in the new collating sequence. If you use a
nonnumeric literal in an ALSO phrase, it must be only one character long.

7. The character with the highest ordinal position in the new collating sequence may be
referenced by the �gurative constant, HIGH-VALUE. If more than one character shares the
highest ordinal position, the last character speci�ed in the ALPHABET clause is referenced
by HIGH-VALUE.

8. The character with the lowest ordinal position in the new collating sequence may be
referenced by the �gurative constant LOW-VALUE. If more than one character shares the
lowest ordinal position, the �rst character speci�ed in the ALPHABET clause is referenced
by LOW-VALUE.

9. Within the SPECIAL-NAMES paragraph, the �gurative constants HIGH-VALUE and
LOW-VALUE are those positions in the native collating sequence, ASCII. If you rede�ne
HIGH-VALUE or LOW-VALUE in the SPECIAL-NAMES paragraph, the new values will
not take e�ect until after the SPECIAL-NAMES paragraph.

Example

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

OBJECT-COMPUTER. HP3000

PROGRAM COLLATING SEQUENCE IS ASCII.

SPECIAL-NAMES.

ASCII IS STANDARD-1

IBMCODE IS EBCDIC

SORT-SEQ IS "A" THROUGH "Z"

"a" THROUGH "z".

DATA DIVISION.

FILE SECTION.

FD EBCDICIN

CODE-SET IS IBMCODE....
FD EBCDOUT

CODE-SET IS IBMCODE....
PROCEDURE DIVISION.

SORT SFILE ON ASCENDING LEFT-CHR

COLLATING SEQUENCE IS SORT-SEQ

USING INFILE

GIVING OUTFILE.

SORT SFILE ON ASCENDING LEFT-CHAR

COLLATING SEQUENCE IS IBMCODE

USING EBCDICIN

OUTPUT PROCEDURE IS SORT-OUT-PARA THROUGH END-OUT....
SORT-OUT-PARA.

GET-NEXT-REC.

RETURN SFILE INTO CHK-REC AT END GOTO END-OUT.

IF DATA-FIELD-2 OF CHK-REC IS NOT ALPHABETIC

ENVIRONMENT DIVISION 6-17

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

ALPHABET Clause

THEN DISPLAY "ERROR IN SORTED RECORD "

DISPLAY CHK-REC

ELSE MOVE CHK-REC TO EBCDOUT.
GO GET-NEXT-REC.

END-OUT.

In the above example, the program collating sequence is speci�ed as STANDARD-1. Because
this is the default, the PROGRAM COLLATING SEQUENCE clause and the ASCII IS
STANDARD-1 phrase serve only as documentation.

The alphabet-name, IBMCODE is used in two �le description entries to indicate that the records
of the �les EBCDICIN and EBCDOUT are in EBCDIC code. Thus, when the records are read
in, they are translated to ASCII, and when they are written out, they are translated back to
EBCDIC.

The use of IBMCODE in the second SORT statement causes the ASCII records of SFILE
(obtained from EBCDICIN) to be sorted using the EBCDIC collating sequence. Since EBCDOUT
also names IBMCODE as its code-set, the sorted records are translated back from ASCII to
EBCDIC when they are written to EBCDOUT. Thus, the result of this sorting operation is an
EBCDIC �le sorted with the EBCDIC collating sequence. It is not necessary to translate the
records from EBCDIC to ASCII, unless you want the ability to display an erroneous record.
The results of sorting the records without using a translation are the same. However, since,
in the output procedure, any erroneous record is displayed, and since it appears as the ASCII
equivalent of EBCDIC characters, the CODE-SET clause is required in the �le description of
EBCDICIN to translate the records into ASCII.

In the �rst SORT statement, the collating sequence is speci�ed as SORT-SEQ. The result of
this is that the records of OUTFILE are arranged in such a way that all records containing
alphabetic characters in their leftmost positions precede records containing nonalphabetic
characters in corresponding positions. This is di�erent from the standard ASCII collating
sequence, since, in the standard sequence, all numerals and 55 other characters precede the
letters of the alphabet name.

6-18 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

SYMBOLIC CHARACTERS Clause

SYMBOLIC CHARACTERS Clause

The
NNN
SYMBOLIC CHARACTERS clause is a feature of the 1985 ANSI COBOL standard.

A symbolic character is a user-de�ned word that speci�es a user-de�ned �gurative constant.
This feature is useful for unprintable characters. For example, a symbolic character can be
used to produce audible output from the terminal.

Syntax

Parameters

symbolic-character-1 name you choose to represent a user-de�ned �gurative constant.
The same symbolic-character-1 must appear only once in a
SYMBOLIC CHARACTERS clause.

integer-1 must be a positive integer in the range of 1 to 256.

alphabet-name-2 must be an alphabet name speci�ed in the ALPHABET clause.

The following rules apply to the SYMBOLIC CHARACTERS clause:

The relationship between each symbolic-character-1 and the corresponding integer-1 is by
position in the SYMBOLIC CHARACTERS clause. The �rst symbolic-character-1 is paired
with the �rst integer-1 , the second symbolic-character-1 is paired with the second integer-1 ,
and so on.

There must be a one-to-one correspondence between occurrences of symbolic-character-1
and integer-1 .

The ordinal position speci�ed by integer-1 must exist in the ASCII character set. If the IN
phrase is speci�ed, integer-1 speci�es the ordinal position of the character set named by
alphabet-name-2 .

If the IN phrase is not speci�ed, symbolic-character-1 represents the character whose ordinal
position in the ASCII character set is speci�ed by integer-1 .

The internal representation of symbolic-character-1 is the internal representation of the
character that is represented in the ASCII character set.

ENVIRONMENT DIVISION 6-19

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

SYMBOLIC CHARACTERS Clause

For example, the following SYMBOLIC CHARACTERS clause declares the words BELL,
CARRIAGE-RETURN, and ESCAPE:

SYMBOLIC CHARACTERS BELL IS 8, CARRIAGE-RETURN IS 14, ESCAPE IS 28.

With the above declaration you can use the following DISPLAY statements. The �rst
DISPLAY makes a sound on the terminal before displaying the message. The second displays
the message in inverse video on certain terminals:

DISPLAY BELL " JOB COMPLETED ".

DISPLAY ESCAPE "&dB" "Enter a number: ".

6-20 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

CLASS Clause

CLASS Clause

The
NNNNNNNNNNNNNNNNN
CLASS clause is a feature of the 1985 ANSI COBOL standard.

The CLASS clause is used to create a user-de�ned class and provides a means for relating a
name to the speci�ed set of characters it lists.

Syntax

Parameters

class-name-1 can only be referenced in a class condition. (Refer to Chapter 8 for more
information about class conditions.)

literal-4 and
literal-5

specify values that de�ne the exclusive set of characters contained in
class-name-1 .

THROUGH and THRU equivalent.

The following rules apply to the literal speci�ed in the CLASS clause:

A numeric literal must be an unsigned integer and must have a value within the range of
one through the maximum number of characters in the ASCII character set (256).

A nonnumeric literal that is associated with a THROUGH phrase must be one character
in length. If a nonnumeric contains multiple characters, each character is included in
class-name-1 .

If the THROUGH phrase is speci�ed, the contiguous characters in the ASCII character
set beginning with literal-4 and ending with literal-5 , are included in class-name-1 . In
addition, the contiguous characters speci�ed by a given THROUGH phrase may specify the
characters of the ASCII character set in either ascending or descending sequence.

Example

SPECIAL-NAMES.

CLASS VALID-GRADE IS "A" "B" "C" "D" "F"....
WORKING-STORAGE.

01 GRADE-LIST.

05 CLASS-GRADES PIC X OCCURS 5 TIMES....
IF GRADE-LIST IS NOT VALID-GRADE THEN

PERFORM ERROR-ROUTINE.

ENVIRONMENT DIVISION 6-21

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

CURRENCY SIGN IS Clause

CURRENCY SIGN IS Clause

The CURRENCY SIGN IS clause is used to specify a literal whose value is later referenced in
the PICTURE clause of the DATA DIVISION to denote a currency symbol.

Syntax

Parameters

literal-6 a single character, chosen from a speci�c set. The literal cannot be any of
the following characters:

The digits 0 through 9.

The letters A B C D P R S V X Z a b c d p r s v x z

A space

Note
NNN
ANSI COBOL'85 allows the letter L, but does not allow lowercase letters.

The special characters:

* (asterisk)
+ (plus sign)
- (minus sign)
, (comma)
. (period or decimal point)
; (semicolon)
((left parentheses)
) (right parentheses)
" (quotation mark)
/ (slash mark)
= (equal sign)

The literal must not be a �gurative constant.

Description

If the CURRENCY SIGN IS clause is omitted, the dollar sign ($) must be used as the
currency symbol in the PICTURE clause.

Example

To specify the percent sign (%) as the currency symbol, enter the following clause:

CURRENCY SIGN IS "%"

6-22 ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

DECIMAL POINT IS COMMA Clause

DECIMAL POINT IS COMMA Clause

The DECIMAL POINT IS COMMA clause allows you to request the exchange of the function
of the comma and decimal point (or period) in numeric literals or PICTURE-CLAUSE
character strings.

Syntax

[DECIMAL-POINT IS COMMA].

Description

This clause has some e�ect on pictures for edited data items. Refer to Chapter 7, under
\PICTURE-CLAUSE," for details. This clause also has an e�ect on the ACCEPT FREE
verb. When entering data for the ACCEPT FREE verb, use a comma instead of a decimal
point.

ENVIRONMENT DIVISION 6-23

INPUT-OUTPUT SECTION

INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECTION allows you to specify information needed to control the
transmission and handling of data between the object program and various input-output
devices. Speci�cally, it permits you to de�ne the names of data �les, and the devices on which
they reside, and special control techniques to be used in the object program.

The INPUT-OUTPUT SECTION can include the following paragraphs:

FILE-CONTROL paragraph (required), for specifying the names of �les used by your
program and other �le-related information.

I-O-CONTROL paragraph (optional), for de�ning special storage techniques.

The INPUT-OUTPUT SECTION has the following format:

Each paragraph of the INPUT-OUTPUT SECTION is described on the following pages.

6-24 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph is used to name �les to be used in your program, and to
de�ne certain properties of these �les that are necessary for their use by your program. Each
�le named in the FILE-CONTROL paragraph must be described in the DATA DIVISION of
your program. Conversely, each �le described in the DATA DIVISION must be named once in
the FILE-CONTROL paragraph.

An overview of the types of �les that can be used in HP COBOL II is presented on the
following pages. Following this overview, the various clauses of the FILE-CONTROL
paragraph are described.

In HP COBOL II, there are �ve ways to access and use �les:

Sequential access

Random access

Relative access

Indexed access

Sort-merge access

Each type of �le described must be named, and certain features speci�ed, in the
INPUT-OUTPUT SECTION. The organization of the �les and their logical records must be
described in an SD entry (for sort-merge �les), or an FD entry (for any other type of �les) in
the FILE SECTION of the DATA DIVISION.

Sequential Files

Sequential �les are generally �les residing on, or being written to, a serial access device (such
as a magnetic tape or a serial disk). Of course it is possible to access disk �les sequentially
also.

A sequentially accessed �le means the records of that �le can only be accessed in the order in
which the records were written to the �le. Because of the nature of serial access devices, these
types of �les can only be written to or read from in a single operation. However, on direct
access discs, �les being accessed sequentially can be read from and written to at the same
time, as well as have a record brought in, modi�ed, and returned to the same storage area.

Random Access Files

Random access �les must reside on disk. Through the use of a key, you can read or write a
record anywhere within a random access �le, regardless of whether data has been written on
previous records.

The only limitation on where you can write a record is the externally de�ned boundaries of
the �le. For example, if a random access �le has been de�ned to contain a maximum of three
thousand records, you cannot write data to record number 3010, although you can write data
to record number 2000 without having written data to any preceding records.

Record access of random access �les is controlled by the data item de�ned in the ACTUAL
KEY clause of the FILE-CONTROL paragraph. This data item is described anywhere
other than in records associated with this �le. It is most e�cient if de�ned as a signed
integer of �ve to nine digits whose usage should be described as COMPUTATIONAL

ENVIRONMENT DIVISION 6-25

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

SYNCHRONIZED. However, any numeric data item of a su�cient size for the records in a �le
can be used.

The ACTUAL KEY data item is used by placing a number into it that corresponds to the
logical record number in the �le. Logical records in a random access �le begin with record
zero. Thus, to access the tenth record in a random access �le, your program must move the
integer 9 into the ACTUAL KEY data item, and then execute the input-output statement.

Execution of an input-output statement for random access �les does not update the ACTUAL
KEY data item. For example, if the ACTUAL KEY data item contains a value of one before
reading or writing takes place, the second record is accessed when the READ or WRITE
statement is executed. Following execution of the statement, any subsequent WRITE
statement or READ statement (without the NEXT phrase) also accesses record one, unless
the value in the ACTUAL KEY data item has been changed.

When your program writes data to a record of a random access �le, and previous record areas
have had no data written to them, these records are �lled with blanks or zeroes. Blank �ll is
used when the records of the �le are designated as ASCII records. Zero �ll is used when the
records are designated as binary records.

The implication of this blank/zero �lling is that you can read records of the �le for which no
WRITE statement has been executed. In such a case, the data moved into your program is
either a blank record, or a zero-�lled record. This capability does not exist for any other type
of �le.

Relative Files

Relative �les are similar to random access �les in that you access records of such a �le through
the use of a record number. The only real di�erence in the two keys used for random access
and relative �les is that record numbers on a relative �le begin with one, rather than with
zero as in random access �les.

The major functional di�erence between random access and relative �les is that you can
always reuse record areas in a random access �le by simply writing new data in them. In
relative �les, you must use the DELETE statement to purge data from record areas. Once a
record has been deleted, you can no longer access the area it occupied except to write a record
into it again.

Relative �les opened in dynamic mode use a data item named in the RELATIVE KEY clause
of the FILE-CONTROL paragraph to access records. This data item is later described in the
WORKING-STORAGE SECTION. Although the ANSI standard allows only an unsigned
integer value for this data item, it is most e�cient if de�ned as a signed integer of �ve to nine
digits whose usage should be described as COMPUTATIONAL SYNCHRONIZED. However,
any numeric data item of a su�cient size for the records in a �le can be used.

Relative �les opened in sequential mode do not need to use the RELATIVE KEY data item to
access records. You can simply execute input-output operations on them as though they were
sequential �les. If, however, you wish to position the �le by using the START statement, you
must specify the RELATIVE KEY data item, since the START statement uses this data item
to �nd the record you want.

Your program can access a relative �le in one of the following ways.

6-26 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

Sequential Access

Sequential WRITE statements for a relative �le release data to the �le, starting with the
�rst record on the �le, and proceeding to the second, third, and so forth in turn. If the
RELATIVE KEY data item has been speci�ed, it is updated each time a sequential WRITE
statement is executed.

Note Even though you may already have data on these records, a sequential
WRITE statement will cause the new data to replace it.

Sequential READ statements for relative �les start with a particular record, read it, and
proceed to the next existing record.

The record that is read depends upon the type of the last input-output statement executed
before the READ statement is encountered. If a DELETE or READ statement is executed,
the READ statement reads the next existing record following the record just read or deleted.
If an OPEN statement is executed, the �rst existing record is read. If a successful START
statement is executed, the record pointed to is read.

Sequential DELETE statements require the use of the READ statement to position the �le
to the record to be deleted. This READ statement must be the last input-output operation
performed on the �le before the DELETE statement is encountered.

Sequential REWRITE statements require the use of the READ statement to position the �le
to the record to be rewritten. This READ statement must be the last input-output statement
performed on the �le before the REWRITE statement is encountered.

Random Access

Random access input-output statements use the required RELATIVE KEY data item to select
the record for the READ, WRITE, REWRITE, and DELETE statements. Thus, to perform
a random access input-output operation on a relative �le, you must place the number of the
record to be accessed into the RELATIVE KEY data item before executing the input-output
statement.

When the random access input-output operation is executed, an implicit seek is performed to
�nd the record, and the speci�ed input-output operation is performed if possible.

Dynamic Access

A relative �le open in dynamic access mode allows you to access your �le in either random or
sequential mode.

The only permissible sequential access that can be performed on a relative �le opened in
dynamic access mode is the READ NEXT form of the READ statement. This statement
allows you to access the records of the �le, starting with the record pointed to (if valid) by
the current record pointer. If the record is invalid (that is, has been deleted), the next valid
record in the �le is read.

ENVIRONMENT DIVISION 6-27

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

Indexed Files

Indexed �les use data items that are integral parts of the records to control accessing of the
records.

For a given indexed �le, each record contains a single prime record key, and zero or more
alternate record keys. Each key must be described as alphanumeric within the record
description entry of the associated indexed �le. To indicate which key is the prime record key
and which, if any, are the alternate keys, you must specify their names in the RECORD KEY
and ALTERNATE RECORD KEY clauses, respectively, in the FILE-CONTROL paragraph of
the ENVIRONMENT DIVISION.

The prime record key is used in writing, deleting, or updating records of an indexed �le.
Alternate record keys are used only in reading records.

The values of both prime and alternate record keys may be duplicated within an indexed �le.
Note however, that since the prime record key must be used for all input-output operations
except reading, you should be very careful to make sure that if you are deleting a record
whose prime key has duplicates, it is the record you wish to delete, and not some other record
with the same prime record key value.

When a prime record key has duplicates, and you use such a key to access a record on an
indexed �le, the �le is searched in a chronological order. That is, the �le is searched according
to which record was written �rst. Thus, the record accessed is the �rst record containing the
speci�ed record key value that is still active.

As with relative �les, an indexed �le can be accessed in random, dynamic, or sequential mode.
The actions taken for a speci�c access mode and a speci�c input-output operation are listed
below.

Sequential Access

A sequential access READ statement for an indexed �le uses the current record pointer to
read records from the �le. The record selected to be read is determined in essentially the same
way as for relative �les opened in sequential mode. See the description of sequential access of
relative �les, above.

A sequential access WRITE statement for an indexed �le uses the prime record key to place
records in the �le. Records must be written in ascending order according to these keys. Since
the prime record key (and all alternate keys as well) must be alphanumeric, this means that
the records must be written using the ASCII collating sequence to determine ascending order.

A sequential access REWRITE or DELETE statement requires that a READ statement be
the last executed input-output statement for the �le being referenced.

Random Access

The READ ... KEY IS form requires that you place a key value into one of the record key
data items (prime or alternate). This data item is then speci�ed in the READ statement, and
the indexed �le is searched until a record having the same value in the same record key is
found. This record is then brought into your program.

A random access WRITE, REWRITE, or DELETE statement uses the contents of the
RECORD KEY data item to select the record to be written or deleted.

6-28 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

Dynamic Access

When dynamic access is used for indexed �les, you can use either the READ NEXT or the
READ . . . KEY IS form of the READ statement.

The READ NEXT form is used when you wish to read records in a sequential manner. This
statement allows you to access the records of the �le starting with the record pointed to by
the current record pointer (if valid). If the record is invalid, the next valid record in the �le is
read.

A dynamic access WRITE, REWRITE, or DELETE statement uses the contents of the
RECORD KEY data item to select the record to be written or deleted.

As an extension to ANSI COBOL'85, HP COBOL II allows the use of alphanumeric,
computational, numeric display (without the optional SIGN clause) and COMPUTATIONAL-
3 data types for RECORD KEY and ALTERNATE RECORD KEY clauses respectively, in
the FILE-CONTROL paragraph of the ENVIRONMENT DIVISION.

Indexed �les are processed with Hewlett-Packard's KSAM subsystem in HP COBOL II. Refer
to the KSAM/XL Reference Manual for information such as creation and deletion of this �le
type. Programmatic creation and deletion of these �les can be accomplished by calling the
appropriate intrinsics described in the above manual using the CALL statement. Opening,
closing, and reading of these �les is accomplished through the normal COBOL OPEN,
CLOSE, and READ statements.

Sort-Merge Files

The ability to arrange records in a particular order is often required in COBOL applications.
This ability is provided by the sort and merge features of HP COBOL II.

The sort facility allows you to arrange the records of one or more �les in a speci�ed sequence.
The merge facility merges two or more previously sorted �les.

Sort-merge �les are the �les acted upon by the sort and merge operations. These �les can
never be accessed directly, except in input and output routines associated with a SORT or
MERGE statement.

When a SORT or MERGE statement is issued, the records are taken from the named input
�le or procedure and then placed in the sort/merge work�le. Finally, the sorted/merged
records are placed in the output �le, �les, or procedure.

Refer to Chapter 12, \SORT-MERGE Operations", for more information on sort-merge �les
and operations.

ENVIRONMENT DIVISION 6-29

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

File Status

Every type of �le described above (except sort-merge �les) may have a �le status data
item associated with it. This data item can be used to check on the success or failure of an
input-output operation involving the �le with which it is associated. File status data items are
described in more detail later in this chapter.

Fixed Length Records

Fixed length records must contain the same number of character positions for all the records
in the �le. Only one record size can be processed by all input-output operations on the �le.
Fixed length records may be explicitly selected by specifying format 1 of the RECORD clause
in the �le description entry for the �le, regardless of the individual record descriptions. Refer
to Chapter 7 for more information on the RECORD clause.

Variable Length Records

Variable length records can contain di�ering numbers of character positions among the
records on the �le. To de�ne variable length records explicitly, specify the VARYING phrase
in the RECORD clause of the �le description entry or the sort-merge �le description entry
for the �le. The length of a record is either a�ected by: the data item referenced in the
DEPENDING phrase of the RECORD clause, the DEPENDING phrase of an OCCURS
clause, or the length of the record description entry for the �le.

6-30 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

SELECT clause

File Control Clauses

The various clauses of the FILE-CONTROL paragraph can be speci�ed in �ve separate
formats, depending upon the type of �le being described. These formats follow:

ENVIRONMENT DIVISION 6-31

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

SELECT clause

6-32 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

SELECT clause

In the FILE-CONTROL paragraph body, the SELECT clause must be speci�ed �rst. The
remaining clauses may appear in any order.

Each of the clauses of the FILE-CONTROL paragraph are described on the following pages
in alphabetical order, except the SELECT and ASSIGN clauses. Since these clauses must be
speci�ed �rst for any �le type, they are discussed �rst.

ENVIRONMENT DIVISION 6-33

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

SELECT clause

SELECT Clause

The SELECT clause is used to identify a �le to be used in your program.

Syntax

The SELECT clause has two formats:

Parameters

�le-name-1 any valid user-de�ned COBOL word.

File-name-1 is the name you use later in OPEN, CLOSE, USE, and other statements in
the PROCEDURE DIVISION. It must also be used in an FD or an SD entry in the DATA
DIVISION.

OPTIONAL Phrase

The purpose of the OPTIONAL phrase is to allow you to specify an input �le in the SELECT
statement that may not be present during a particular execution of the program in which it
is named. If the �le is not present and the OPTIONAL phrase has been speci�ed, when the
�rst READ statement naming that �le is executed, the imperative statement in the associated
AT END phrase is executed. If no AT END phrase has been speci�ed, then a USE procedure
must be de�ned, either explicitly or implicitly, and this procedure is executed.
NNN
When the file is not present and it is opened in I-O or extend mode with theNNN
OPTIONAL phrase, a new file is created. Otherwise, file status 35 is returned.

6-34 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

ASSIGN clause

ASSIGN Clause

The ASSIGN clause associates a �le with the storage medium on which the �le resides. With
the USING phrase, you can assign logical �les to physical �les dynamically (that is, at run
time).

Syntax

ASSIGN f [TO �le-info-1] [USING data-name-1] g

Parameters

�le-info-1 a nonnumeric literal of the form:

name [,[class] [,[recording mode] [, [device [(CCTL)]]

[,[�le-size] [, [formsmessage.] [,L]]]]]]

The meanings of each parameter of �le-info-1 are given below.

name the operating system �le designator. Refer to Appendix H,
\MPE XL System Dependencies", for detailed information
about this �le designator.

If you use the USING phrase of the ASSIGN clause, this
parameter is ignored. The operating system �le designator
must be supplied in data-name-1 instead.

class the class of device on which the �le resides. This
parameter is not used by the �le system and is ignored if it
is speci�ed. However, if speci�ed, the class parameter can
be one of the following three mnemonics:

DA, implying a mass-storage device.

UT, implying a utility device such as a tape drive.

UR, implying a unit-record device, such as a card reader.

If the class parameter is omitted, DA is assigned by
default.

recording mode the recording mode of the �le. It may be either ASCII or
binary. If the �le is an ASCII �le, recording mode must
be A. If the �le is binary, the recording mode must be
B. If the recording mode parameter is omitted, ASCII is
assigned by default.

device the type of device on which the �le resides. Refer to
Appendix H, \MPE XL System Dependencies", for further
details.

CCTL the carriage control option for an output �le, indicating
that carriage control directives are supplied in write
operations referencing line printer �les. If omitted, your
program uses the �le system default for the device or �le.

�le-size the number of records in the �le. Refer to Appendix H,
\MPE XL System Dependencies", for further details.

ENVIRONMENT DIVISION 6-35

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

ASSIGN clause

formsmessage for a listing device, a request for the operator to provide
special forms, such as blank checks or inventory report
forms, on the printer. For any other device, this parameter
is ignored. This entry may contain a maximum of 49
characters and must be terminated with a period.

L enables your program to dynamically lock and unlock a
disk �le. However, this feature is provided only to assist in
the conversion of COBOL'68 programs to COBOL II. It is
recommended that the EXCLUSIVE and UN-EXCLUSIVE
statements be used instead for �le locking and unlocking.
L is not a required parameter if the EXCLUSIVE and
UN-EXCLUSIVE statements are used. Otherwise, it
enables your program to dynamically lock and unlock a
disk �le.

data-name-1 an alphanumeric data item containing the operating system �le designator
(see name above). data-name-1 must not be subordinate to the �le
description entry for the �le described in the enclosing SELECT clause. If the
TO phrase is also speci�ed, all the information in �le-info-1 except the �le
designator, name, is used when the �le is opened.

See Appendix H, \MPE XL System Dependencies," for detailed information
about this �le designator.

The USING data-name-1 form of the ASSIGN clause is an HP extension to
the ANSI COBOL standard.

Description

You associate a �le with a storage medium in the ASSIGN clause. When you use the TO
phrase, this association occurs at compile time and cannot be changed unless you modify
your program and recompile it. When you use the USING phrase, the association occurs at
run time. You can change the association in the PROCEDURE DIVISION by changing the
contents of data-name-1 . data-name-1 contains the operating system �le designator for the
�le. See the HP COBOL II/XL Programmer's Guide for an example of the USING clause.

If you use both the TO and USING phrases, the name parameter of �le-info-1 is ignored.
The name speci�ed in data-name-1 is used instead. Any other parameters speci�ed in
�le-info-1 also apply to the �le named in data-name-1 .

File Status Code

File status code 31 indicates a permanent error where an OPEN, SORT, or MERGE of a �le
speci�ed in data-name-1 has failed. The operation may have failed because the contents of
data-name-1 were not consistent with the contents of �le-info-1 in the TO phrase. This error
also occurs if data-name-1 contains an invalid �le name.

6-36 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

ACCESS MODE clause

ACCESS MODE Clause

The ACCESS MODE clause speci�es the way in which your program is to access the
associated �le.

Syntax

There are four formats of this clause, depending upon the type of �le being described. This
clause cannot be used for sort-merge �les. The four formats are shown below.

Parameters

data-name-1 a data item that must not be de�ned in the record description entry
for the relative �le being described. Furthermore, the item must be
de�ned as an unsigned integer. Such a data item might be de�ned as
the following where n is an integer in the range 5 to 9:

USAGE COMPUTATIONAL SYNCHRONIZED PIC 9(n),

ENVIRONMENT DIVISION 6-37

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

ACCESS MODE clause

Note The ANSI standard de�nes the relative key value as an unsigned integer
data item; however, HP COBOL II extends the standard and allows the
use of signed integers for e�ciency of code. Because a 32-bit integer is used
for relative record numbers, a de�nition of \USAGE COMPUTATIONAL
SYNCHRONIZED PIC S9(9)" would allow for maximum code e�ciency and
record access.

Even if you want to access a relative �le sequentially, you must specify the RELATIVE KEY
phrase in order to reference the associated �le in a START statement.

For three of the four �le types to which this clause pertains (sequential, relative, and indexed),
you must specify an ACCESS MODE clause or sequential access is assumed. You must specify
the ACCESS MODE clause exactly as it is shown for random access �les.

The three access modes are de�ned as follows:

Sequential access means that existing records are accessed in ascending order. The relative
key is used for relative �les, and a prime or alternate record key is used for indexed �les.
Random access �les may not be accessed sequentially.

Dynamic access means that your program may alternate between sequential and random
access modes by selectively using di�erent forms of various input-output statements. This
type of access may only be used for relative and indexed �les.

Random access means that the records are accessed directly by using a record key data
item (for indexed �les) or by using the relative record numbers of records (for relative and
random access �les).

For details on how sequential, dynamic, and random access is performed on the various �le
types, refer to the overview on preceding pages of this chapter.

6-38 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

ACTUAL KEY clause

ACTUAL KEY Clause (an HP extension to the ANSI COBOL standard)

The ACTUAL KEY clause names the data item to be used in accessing records of a random
access �le and applies only to random access �les.

Syntax

This clause has the following format:

ACTUAL KEY IS data-name-1

Parameters

data-name-1 an integer item of one to nine digits.

Example

For greatest e�ciency, the variable data-name-1 should have a PICTURE clause in the
following form:

PIC S9(9) USAGE COMPUTATIONAL SYNCHRONIZED.

This data item must be de�ned in either the FILE SECTION or the WORKING-STORAGE
SECTION of the DATA DIVISION. It corresponds to a relative record number. Record
numbers in random access �les begin with 0. To ensure the accessibility of all records, the
data item must be large enough to contain the greatest record number in the �le.

ENVIRONMENT DIVISION 6-39

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

ALTERNATE RECORD KEY clause

ALTERNATE RECORD KEY Clause

Each use of the ALTERNATE RECORD KEY clause names an alternate record key for an
indexed �le. The number of alternate keys for a �le must be the same as the number used
when the �le was created.

Syntax

This clause has the following format:

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] . . .

Parameters

data-name-2 the name of a data item described as alphanumeric in a record
description entry for the �le with which it is associated. It must not
reference an item whose �rst character begins in the same position as
the �rst character of any other key, whether alternate or prime.

DUPLICATES Phrase

The DUPLICATES phrase speci�es that the named alternate key may be duplicated within
any of the records of the �le. If this phrase is unused, the contents of the data item referenced
by data-name-2 must be unique among records of the �le.

As an extension to ANSI COBOL'85, HP COBOL II also allows the use of computational,
numeric display (without the optional SIGN clause), COMPUTATIONAL-3,NN
BINARY, and PACKED-DECIMAL data types for data-name-2 .

6-40 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

FILE STATUS clause

FILE STATUS Clause

The FILE STATUS clause allows you to name a data item to be used in obtaining information
about the success or failure of input-output operations performed using the �le being
described. This clause is optional, and may be used for all types of �les except sort-merge
�les.

Syntax

The FILE STATUS clause has the following format:

[FILE STATUS IS stat-item].

Parameters

stat-item a two character alphanumeric data item de�ned in the
WORKING-STORAGE SECTION of the DATA DIVISION.

Description

When an input or output operation has been performed on a �le that has a FILE STATUS
data-item associated with it, the data item is updated with two characters that indicate the
status of the operation. These two characters are the �le status code. The leftmost character
of this data item is called status-key-1 . The rightmost character is called status-key-2 . The
values that can be placed in status-key-1 and status-key-2 , and their meanings, are shown in
Table 6-2 and Table 6-3.

Table 6-2 and Table 6-3, respectively contain information about the ANSI COBOL'85 and
ANSI COBOL'74 I-O status-codes. Key terms used in those tables are de�ned below.

EOF The program attempted to read a record following the last record in the �le.

AT END A sequential READ statement was unsuccessfully executed as a result of an
AT END condition.

INVALID KEY The input-output operation failed because a duplicate key existed, a
boundary violation occurred, the record sought could not be found, or a
sequence error occurred (for indexed �les only).

PERMANENT

ERROR

The input-output statement was unsuccessfully executed as the result of an
error that precluded further processing of the �le.

LOGIC ERROR The input-output statement was unsuccessfully executed as a result of an
improper sequence of input-output operations that were performed on the
�le, or as a result of violating a user-de�ned limit.

IMPLEMENTOR

DEFINED

The implementor de�ned codes are 9x . When status-key-1 is set to 9, an
unexpected error has occurred. In this case, the value placed in status-key-2
is a binary integer quantity corresponding to a �le system error. Since
this quantity can range from 0 to 255, and since the status key item is
alphanumeric, your program will interpret this integer as some character
from the ASCII collating sequence. For an example, see the section \File
Status Codes" in Chapter 5 of the HP COBOL II/XL Programmer's Guide.

ENVIRONMENT DIVISION 6-41

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

FILE STATUS clause

FIXED FILE

ATTRIBUTE

Information about a �le that is established when a �le is created and cannot
subsequently be changed during the �le's existence. These attributes include
the following:

Organization of the �le (sequential, relative, or indexed).

Prime record key.

Alternate record keys.

Code-set.

Minimum and maximum record size.

Record type (�xed or variable).

Collating sequence of the keys for indexed �les.

Blocking factor.

Padding character.

Record delimiter.

The ANSI COBOL'85 �le status codes are potentially incompatible with the ANSI COBOL'74
status codes.

Some 9x values have been changed to other codes. For example, the ANSI COBOL'85 �le
status 38 was previously a 9x code.

In order to provide more information to you, some additional values have been speci�ed for
status-key-2 .

6-42 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

FILE STATUS clause

Table 6-2. ANSI COBOL'85 File Status Codes

SEQUENTIAL
RANDOM ACCESS or

RELATIVE INDEXED

S

U

C

C

E

S

S

F

U

L

00-Successful. No

more information

available.

04-READ length of

record doesn't

match file.

05-OPEN. Optional

file not present,

created.

07-File is not a

tape as the OPEN/

CLOSE phrase

implies.

00-Successful. No

more information

available.

04-READ length of

record doesn't

match file.

05-OPEN. Optional

file not

present, created.

00-Successful. No

more information

available.

02-READ current key

= next key value

-WRITE or REWRITE

creates duplicate

key for alternate

key in which

duplicates are

allowed.

04-READ length of

record doesn't

match file.

05-OPEN. Optional

file not present,

created.

A

T

E

N

D

10-EOF or optional

file not present

on READ.

10-EOF or optional

file not present

on READ.

14-Record number too

big for relative

key data item on

READ.

10-EOF or optional

file not present

on READ.

I

N

V

A

L

I

D

K

E

Y

22-WRITE a duplicate

key. *

23-Record does not

exist.

-START OR READ on

missing optional

file.

24-WRITE beyond file

boundary.

-Sequential WRITE

record number too

big for relative

key data item.

21-Sequence error.

22-WRITE OR REWRITE

a duplicate key.

23-Record does not

exist.

-START OR READ on

missing optional

file.

24-WRITE beyond file

boundary.

* Does not apply to random �les.

ENVIRONMENT DIVISION 6-43

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

FILE STATUS clause

Table 6-2. ANSI COBOL'85 File Status Codes (continued)

SEQUENTIAL
RANDOM ACCESS or

RELATIVE INDEXED

P

E

R

M

A

N

E

N

T

E

R

R

O

R

30-No more informa-

tion available.

31-OPEN, SORT, or

MERGE of dynamic

file failed due to

file attribute

conflict.

34-Boundary

violation.

35-Nonoptional file

not present for

OPEN.

37-EXTEND or OUTPUT

on unwritable

file.

-I-O for file that

does not support

it.

-INPUT on invalid

device for input.

38-OPEN on file

closed with LOCK.

39-OPEN unsuccessful

due to fixed file

attribute

conflict.

30-No more

information

available.

31-OPEN, SORT, or

MERGE of dynamic

file failed due to

file attribute

conflict.

35-Nonoptional file

not present for

OPEN.

37-EXTEND or OUTPUT

on unwritable file.

-I-O for file that

does not support

it.

-INPUT on invalid

device for input.

38-OPEN on file

closed with LOCK.

39-OPEN unsuccessful

due to fixed file

attribute

conflict.

30-No more

information

available.

31-OPEN, SORT, or

MERGE of dynamic

file failed due to

file attribute

conflict.

35-Nonoptional file

not present for

OPEN.

37-EXTEND or OUTPUT

on unwritable

file.

-I-O for file that

does not support

it.

-INPUT on invalid

device for input.

38-OPEN on file

closed with LOCK.

39-OPEN unsuccessful

due to fixed file

attribute

conflict.

L

O

G

I

C

E

R

R

O

R

41-OPEN on file that

is already open.

42-CLOSE for file

not open.

43-No READ before

REWRITE.

44-Boundary

violation.

-Record too big or

too small.

-Rewrite record

not same size.

46-READ after AT END

or after

unsuccessful

READ.

47-READ on file not

open for input.

48-WRITE on file

not open for

output.

49-REWRITE on file

not open for I-O.

41-OPEN on file that

is already open.

42-CLOSE for file

not open.

43-No READ before

REWRITE/DELETE.

44-Boundary

violation.

-Record too big or

too small.

46-READ after AT END

or after

unsuccessful

READ or START.

47-READ or START on

file not open for

input or I-O.

48-WRITE on file not

open for output

or I-O.

49-REWRITE or DELETE

on file not open

for I-O.

41-OPEN on file that

is already open.

42-CLOSE for file

not open.

43-No READ before

REWRITE/DELETE.

44-Boundary

violation.

-Record too big or

too small.

46-READ after AT END

or after

unsuccessful

READ or START.

47-READ or START on

file not open for

input or I-O.

48-WRITE on file not

open for output

or I-O.

49-REWRITE/DELETE

on file not

open for I-O.

6-44 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

FILE STATUS clause

Table 6-3. ANSI COBOL'74 File Status Codes

SEQUENTIAL
RANDOM ACCESS or

RELATIVE INDEXED

S

U

C

C

E

S

S

F

U

L

00-Successful. NO

more information

available.

00-Successful. No

more information

available.

00-Successful. No

more information

available.

02-READ current key

= next key value.

-WRITE or REWRITE

creates duplicate

key for alternate

key in which

duplicates are

allowed.

A

T

E

N

D

10-EOF or optional

file not present.

10-EOF or optional

file not present.

10-EOF or optional

file not present.

I

N

V

A

L

I

D

K

E

Y

22-WRITE

a duplicate key.

23-Record does not

exist.

-START OR READ on

missing optional

file.

24-WRITE beyond file

boundary.

-Sequential WRITE

record number too

big for relative

key data item.

21-Sequence error.

22-WRITE OR REWRITE

a duplicate key.

23-Record does not

exist

-START OR READ on

missing optional

file.

24-WRITE beyond file

boundary.

P

E

R

M

A

N

E

N

T

E

R

R

O

R

30-No more

information

available.

34-Boundary

violation.

30-No more

information

available.

30-No more

information

available.

ENVIRONMENT DIVISION 6-45

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

ORGANIZATION clause

ORGANIZATION Clause

The ORGANIZATION clause speci�es the logical structure of the �le being described. It can
be used in sequential, relative, and indexed �les.

Syntax

The three formats of the ORGANIZATION clause are shown below.

[ORGANIZATION IS] SEQUENTIAL

[ORGANIZATION IS] RELATIVE

[ORGANIZATION IS] INDEXED

Description

The ORGANIZATION clause is required for relative and indexed �les. It is optional for
sequential �les. This clause cannot be used for sort-merge and random access �les.

6-46 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

RECORD KEY clause

RECORD KEY Clause

The RECORD KEY clause is used for indexed �les only. It is required, because it provides
the means (data-name-1) by which the associated indexed �le is accessed.

Syntax

RECORD KEY IS data-name-1 [WITH DUPLICATES]

The WITH DUPLICATES phrase in the record key clause is an HP extension to the ANSI
COBOL standard.

Parameters

data-name-1 the name of an alphanumeric data item de�ned in a record description
entry associated with the �le being described. As an HP extension to
ANSI COBOL'85, HP COBOL II also allows the use of computational,
numeric display (sign overpunched on least signi�cant digit),

COMPUTATIONAL-3,
NN
BINARY, and PACKED-DECIMAL data types for

data-name-1 .

Data-name-1 is the prime record key for the �le. The data-description for data-name-1 , and
its relative position within a record must be the same as that used when the �le was created.

DUPLICATES Phrase

The DUPLICATES phrase speci�es that the named prime record key may be duplicated
within any of the records of the �le. If, however, you do not specify that duplicates may exist,
then the value of the key must be unique among records of the �le.

Note If an indexed �le has the DUPLICATES phrase speci�ed for its primary key,
the REWRITE/DELETE statement should be used only when the indexed
�le is in sequential access mode. This is because a REWRITE/DELETE
statement issued for a �le whose access mode is dynamic or random only
rewrites/deletes the �rst record of a DUPLICATE primary key chain.

ENVIRONMENT DIVISION 6-47

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

RESERVE clause

RESERVE Clause

The RESERVE clause allows you to indicate the number of input-output bu�ers to be
allocated for the �le being described. Its use is optional. If you do not specify it, the number
of bu�ers allocated is the operating system default.

This clause may be used for sequential, relative, indexed, and random access �les. It may not
be used for sort-merge �les.

Syntax

The format of the RESERVE clause is shown below.

Parameters

integer-1 a nonnegative integer in the range zero to 16.

AREA and
AREAS

each are equivalent, and can be used interchangeably.

Description

If you specify zero, the operating system still allocates the default number. Also, although you
can specify more than two, any more than three bu�ers does not usually increase input-output
e�ciency. See your operating system reference manual for more information on bu�ers.

6-48 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FILE-CONTROL Paragraph

RESERVE clause

Example

The following example shows a FILE-CONTROL paragraph for an indexed �le and a
sequential �le, as well as important data items associated with the �les.

ENVIRONMENT DIVISION....
INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INDXFILE

ASSIGN TO "KFILE,DA,A,DISC,5000,,L"

RESERVE 3 AREAS

ORGANIZATION IS INDEXED

ACCESS MODE IS DYNAMIC

RECORD KEY IS FIRST-CHARS

ALTERNATE RECORD KEY IS SECOND-CHARS WITH DUPLICATES

FILE STATUS IS CHECK-KFILE.

SELECT TAPEIN

ASSIGN TO "READTAPE,UT,TAPE,,HANG TAPE 001."

RESERVE 2 AREAS

FILE STATUS IS CHECK-TAPE....
DATA DIVISION.

FILE SECTION.

FD INDXFILE

LABEL RECORDS ARE OMITTED.

01 RECORD-IN.

02 FIRST-CHARS PIC X(8).

02 SECOND-CHARS PIC X(24)....
FD TAPEIN

LABEL RECORDS ARE OMITTED.

01 TAPE-REC PIC X(80)....
WORKING-STORAGE SECTION.

77 CATCHNUM PIC 9(4) USAGE DISPLAY.

01 CHECK-KFILE.

02 STAT-KEY-1 PIC X.

02 STAT-KEY-2 PIC X.

01 CHECK-TAPE.

02 STAT-KEY-1 PIC X.

02 STAT-KEY-2 PIC X.

ENVIRONMENT DIVISION 6-49

INPUT-OUTPUT SECTION

IO-CONTROL Paragraph

I-O-CONTROL Paragraph

The I-O-CONTROL paragraph is an optional paragraph that speci�es the areas of memory
(bu�ers) to be shared by di�erent �les and the locations of �les on a multi-�le tape reel.

Syntax

This paragraph has the following format:

6-50 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

IO-CONTROL Paragraph

SAME Clause

SAME Clause

The SAME clause has three formats, whose meanings and restrictions are described below.

Syntax

SAME AREA Clause

The SAME AREA clause allows you to conserve main memory space by permitting two or
more non-sort or non-merge �les to use the same area of main memory for processing the �le.

Because the area shared includes all storage areas assigned to the �les speci�ed, only one �le
can be open at any given time.

Also, a �le name can appear in only one SAME AREA clause within a program. However,
this does not exclude the possibility of the �le name appearing in a SAME RECORD AREA,
SAME SORT AREA, or SAME SORT-MERGE AREA clause.

The restrictions on �le names appearing in more than one SAME RECORD, SAME SORT
AREA, or SAME SORT-MERGE AREA are listed on the following pages under the headings
SAME RECORD AREA clause, SAME SORT AREA, and SAME SORT-MERGE AREA
clauses.

The �les referenced in the SAME AREA clause need not all have the same organization or
access.

An external �le can not be referenced in a SAME AREA clause.

To specify that FILEA, FILEB, and FILEC share the same processing area, enter the following:

SAME AREA FOR FILEA, FILEB, FILEC.

SAME RECORD AREA Clause

The SAME RECORD AREA clause speci�es that two or more �les (of any kind) be allowed
to share the same area of main memory for processing the current logical record.

If none of the �les in this clause appears in a SAME AREA clause, then all of the �les can be
open at the same time.

A logical record in this shared record area is considered a logical record of each open output
�le named in the SAME RECORD AREA clause. It is also considered a record of the most
recently opened input �le named in the SAME RECORD AREA clause. This is equivalent
to an implicit rede�nition of the shared area. That is, records are aligned on the leftmost
character position.

ENVIRONMENT DIVISION 6-51

INPUT-OUTPUT SECTION

IO-CONTROL Paragraph

SAME Clause

If any �le appears in the SAME RECORD AREA clause and in the SAME AREA clause,
then all other �les appearing in the SAME AREA clause must also appear in the SAME
RECORD AREA clause. Of course, �les not named in the SAME AREA clause can also
appear in the SAME RECORD clause. Because of this restriction, and since only one �le
named in a SAME AREA clause can be open at any given time, if any �le in the SAME
RECORD AREA clause also appears in a SAME AREA clause, then the rule that only one
�le at one time may be open takes precedence over the rule that all �les named in the SAME
RECORD AREA clause can be open at the same time.

As with �les named in the SAME AREA clause, �les named in the SAME RECORD AREA
clause can have di�erent organizations and access modes. Also, if a �le name appears in a
SAME RECORD AREA clause, it can not appear in any other SAME RECORD AREA
clause within the program.

External �les can not appear in a SAME RECORD AREA clause.

SAME SORT AREA and SAME SORT-MERGE AREA Clauses

The SAME SORT AREA and SAME SORT-MERGE AREA clauses are equivalent. Both
specify that the area used in main memory for sorting or merging sort-merge �les is shared.

No sort or merge �le can appear in a SAME AREA clause; However, it is not necessary for all
�les named in a SAME SORT AREA or SAME SORT-MERGE AREA clause to be sort or
merge �les. Only one must be. Furthermore, any sort or merge �le that appears in a SAME
SORT AREA or SAME SORT-MERGE AREA clause can not appear in another SAME
SORT or SAME SORT-MERGE AREA clause within the same program.

If a non-sort or non-merge �le appears in a SAME AREA clause and in one or more SAME
SORT AREA or SAME SORT-MERGE AREA clauses, then all �les named in that SAME
AREA clause must appear in the SAME SORT AREA or SAME SORT-MERGE AREA
clauses.

During the execution of a SORT or MERGE statement that refers to a �le named in a SAME
SORT AREA or SAME SORT-MERGE AREA clause, those �les that are not sort or merge
�les, but are named in the SAME SORT AREA or SAME SORT-MERGE AREA clauses,
must not be open.

The �les named in a SAME SORT AREA or SAME SORT-MERGE AREA clause need not
have the same organization or access mode.

External �les can not appear in a SAME SORT AREA clause or a SAME SORT-MERGE
AREA clause.

Note Because only one �le can be OPEN at any given time, there is no implied
rede�nition of the record storage area, unless the SAME RECORD AREA
clause is also used. Therefore, any access of the record area through
non-OPEN'ed �le data items yields unde�ned results.

6-52 ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

IO-CONTROL Paragraph

MULTIPLE FILE Clause

MULTIPLE FILE Clause

The MULTIPLE FILE clause is an obsolete feature of the 1985 ANSI COBOL standard.

The MULTIPLE FILE clause speci�es the location of �les on a multiple �le reel.

Syntax

[MULTIPLE FILE TAPE CONTAINS f�le-name-5 [POSITION integer-3] g . . .] . . .

Description

When the �le referenced by your program shares a labeled tape with other �les, you must
enter the MULTIPLE FILE clause. Regardless of the number of �les on the reel, you need
specify only those used by your program. If you specify the �les in chronological order, you
need only enter the �le names in the MULTIPLE FILE clause:

MULTIPLE FILE TAPE CONTAINS FILEA, FILEC, FILEF

But if you specify the �les in random order, you must indicate their positions by using the
POSITION clause:

MULTIPLE FILE TAPE CONTAINS FILEC POSITION 3

FILEF POSITION 6, FILEA POSITION 1

In the second example, the �rst position, in relation to the beginning of the reel, is position
one.

No more than one �le on the same tape device can be open at the same time.

The �les speci�ed in this clause cannot be external �les.

Note The MULTIPLE FILE clause applies to labeled sequential �les only. This is
because of the intrinsically sequential nature of magnetic tape devices.

ENVIRONMENT DIVISION 6-53

7

DATA DIVISION

The DATA DIVISION describes all data that your program is to use. That is, it describes any
data to be read from or written to a �le, data developed internally and held in temporary or
working storage, and any constants that are used.

NN
The DATA DIVISION is optional. When

included, however, it must follow the ENVIRONMENT DIVISION.

There are three sections within the DATA DIVISION:

FILE SECTION: de�nes the structure of data �les.

WORKING-STORAGE SECTION: describes data items used as constants by the object
program, as well as records and noncontiguous data items that are developed and used
internally, and are not part of external data �les.

LINKAGE SECTION: describes data items within subprograms that are referenced
by both the calling and the called program. This section appears only in programs
that will be called by some other program. Its format is the same as the format of the
WORKING-STORAGE SECTION.

DATA DIVISION 7-1

DATA DIVISION

DATA DIVISION Format

The DATA DIVISION has the following general format;

The format of each section is described separately on the following pages, followed by an
explanation of record description entries.

DATA DIVISION Syntax Rules

All sections within the DATA DIVISION are optional. When included, however, they must
appear in the order shown in the format description.

Each DATA DIVISION entry begins with a level indicator or a level number, followed by
a space, the name associated with the level indicator or level number, and a sequence of
independent description clauses. The last clause must be terminated by a period.

The division header must begin in Area A (the eighth through eleventh character positions of
each record). It consists of the words DATA DIVISION and is followed by a period.

7-2 DATA DIVISION

DATA DIVISION

FILE SECTION

FILE SECTION

The FILE SECTION de�nes the structure of any sequential, indexed, relative, random access,
or sort-merge �le appearing in your program.

Each �le is de�ned by a �le description entry and one or more record descriptions.

A �le description entry always begins with the letters SD (for sort-merge �les), or FD (for any
other type of �le as mentioned above) in Area A. It is followed by a space, the name of the �le
being described, and a sequence of input-output description clauses.

An FD �le description furnishes information concerning the physical structure, identi�cation,
and record names pertaining to any type of �le except a sort-merge �le.

An SD �le description provides information about the size and names of the data records
in a �le to be sorted or merged. Because you cannot control label procedures and because
the blocking for the internal storage of sort-merge records is controlled by the SORT and
MERGE operations, the only two clauses allowed in a �le description for a sort-merge �le are
the RECORD CONTAINS and DATA RECORD IS clauses.

A record description always begins with a level number which, in the FILE SECTION, may
be any number from 1 to 49, or the numbers 66 and 88. Level numbers of 66 and 88 have
special usages associated with them, as described in Chapter 4. Record description entries are
described in Chapter 4.

Note that record description entries can be used in every section and must be used in the
FILE SECTION, following each �le description appearing in that section. For a complete
description of the FILE SECTION format refer to the \File Description Clauses" section later
in this chapter.

DATA DIVISION 7-3

DATA DIVISION

FILE SECTION

7-4 DATA DIVISION

DATA DIVISION

WORKING-STORAGE SECTION

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION consists of a section header, \WORKING-STORAGE
SECTION", and one or more data description entries for noncontiguous data items, as well as
record description entries. The general format of the WORKING-STORAGE SECTION is:

Each data description entry within WORKING-STORAGE allocates memory space for the
data item and associates a data name with the item.

You can use the WORKING-STORAGE SECTION to assign initial values to data items,
de�ne report headings, set up tables with initial values, de�ne counters and accumulators, and
so forth.

Level 77 and other data description entries are described in the following paragraphs.

DATA DIVISION 7-5

DATA DIVISION

LINKAGE SECTION

LINKAGE SECTION

The LINKAGE SECTION consists of the header, \LINKAGE SECTION", and one or more
data description entries for noncontiguous data items, as well as record description entries.

The LINKAGE SECTION in a program is meaningful only if the object program is
to be called from another object program through a CALL statement, and the CALL
statement in the calling program contains a USING phrase. See Chapter 11, \Interprogram
Communication", for more information on how calling programs and called programs operate.

The LINKAGE SECTION is used to describe the data that is available from the calling
program, but is to be used in both the calling program and the called program.

No space is allocated in the program containing a LINKAGE SECTION entry for the data
items described in such an entry. PROCEDURE DIVISION references to these data items are
resolved at object time by equating the reference in the called program to the location used in
the calling program.

In the case of index names, no such correspondence is established. Index names are always
local to their programs. Therefore, such names in the called and calling program always
refer to separate indices. If index names are to be passed between programs, they should
�rst be saved in a data item described in the WORKING-STORAGE SECTION as an index
data item. A SET statement in the PROCEDURE DIVISION accomplishes this. Next, the
index data item should be passed to the called program by the USING option of the CALL
statement in the PROCEDURE DIVISION. Once the index data item is passed, a SET
statement in the called program can be used to set the index value to the index name declared
in the LINKAGE SECTION of the called program.

Data items de�ned in the LINKAGE SECTION of the called program may be referenced
within the PROCEDURE DIVISION of the called program only under the following
conditions:

If they are speci�ed as operands of the USING phrase of the PROCEDURE DIVISION
header or ENTRY statement or are subordinate to such operands.

If the object program is under the control of a CALL statement that speci�es the USING
phrase.

All data description clauses may be used in the LINKAGE SECTION, with the restriction
that a VALUE clause can only be used in a condition name (level 88) entry.

The VALUE clause cannot be used in any other type of entry because no memory space is
allocated for LINKAGE SECTION data items.

The LINKAGE SECTION has the following format:

7-6 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

DATA DIVISION Clauses

There are two distinct sets of clauses in the DATA DIVISION: �le description clauses and
data description clauses. File description clauses apply only to data �les (FD level entries)
and sort-merge �les (SD level entries). Data description clauses can be used in any of the
three sections allowed by HP COBOL II within the DATA DIVISION. They must be used in
conjunction with each �le description entry.

File Description Clauses

Each clause described on the following pages, if used, must be part of a �le description entry.
However, several of the clauses do not apply to sort-merge �les (that is, to SD level indicator
entries). Those that do not apply to SD level entries are noted as they are described.

The FILE SECTION must begin in Area A with the words FILE SECTION followed by a
period. The header is followed by a level indicator (either FD or SD) and the name of the �le
being described. One or more record description entries must follow each �le description entry.
A �le description entry is terminated by a period.

The general formats for the �le description clauses are:

DATA DIVISION 7-7

FILE SECTION

File Description (FD, SD) Clauses

7-8 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

FD Level Indicator - For Data File Descriptions

The FD level indicator names the data �le being described. It must be the �rst clause in a
data �le description entry.

Syntax

The data �le description clause has the following format:

FD �le-name-1

Parameters

FD indicates that the clauses that follow are data �le description clauses.

�le-name-1 the name of the data �le being described.

Description

The characters FD must begin in Area A. These characters are followed by a space and the
name of the data �le being described. Following the name, several clauses, mostly optional,
are used to describe the �le. At least one record description entry must follow the �le
description entry.

SD Level Indicator - For Sort File Descriptions

An SD level indicator names the �le to be sorted or merged. It must be the �rst entry in a
sort-merge �le description entry.

Syntax

The format of the SD level indicator is:

SD �le-name-1

Parameters

SD indicates that the clauses that follow are used to describe a �le to be
sorted and/or merged.

�le-name-1 the name of the �le being described.

Description

The characters SD must begin in Area A. These characters are followed by a space and the
name of the data �le being described. The name may then be followed by a RECORD
CONTAINS clause or DATA RECORDS clause, and must be followed by at least one record
description entry.

DATA DIVISION 7-9

FILE SECTION

File Description (FD, SD) Clauses

BLOCK CONTAINS Clause

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause allows you to specify the blocking factor of the �le being
described. This clause should be used if the actual blocking factor of the �le being described
cannot be determined by the operating system.

For example, this clause is optional when the physical record contains exactly one complete
logical record or, for sequential �les only, when the physical device associated with the �le is a
unit-record device (such as a card reader).

When the BLOCK CONTAINS clause is omitted, the default blocking factor from the
operating system is automatically assigned.

This clause does not apply to sort-merge �les (SD level descriptions).

Syntax

Parameters

integer-1 optional and must be positive. It refers to the minimum blocking factor
size or to the minimum size of the physical record, depending upon
whether the keyword RECORDS or CHARACTERS is used. Due to the
way in which the operating system determines �le attributes, this phrase
is treated as a comment.

integer-2 required and must be positive. If used in conjunction with integer-1 , it
speci�es the maximum size of the physical record; used alone, however, it
speci�es the exact size of the physical record, or the exact blocking factor.

RECORDS speci�es that the physical record size of the �le is determined by its
blocking factor.

CHARACTERS when speci�ed, is used to determine the blocking factor by dividing the
value of integer-2 by the logical record size. Refer to the RECORD
CONTAINS clause description in this chapter.

Description

When the word CHARACTERS is used, the physical record size should be speci�ed as a
multiple of the maximum logical record size. Note that this logical record size must include
any slack bytes generated by the compiler. Refer to the SYNCHRONIZED clause description
in this chapter.

If logical records of di�ering size are grouped into one physical record, they are treated
di�erently, according to the �le's organization:

Sequential or indexed �le - The size of a logical record is variable, and is equal to the size of
the record currently being accessed.

7-10 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

BLOCK CONTAINS Clause

Random and relative �les require �xed length records.

To illustrate the use of the BLOCK CONTAINS clause:

A magnetic tape �le contains variable length logical records with a maximum of 120
characters, blocked with a minimum of four logical records per physical record. There is a
maximum of 480 characters (bytes) per physical record, and a minimum of 60 bytes per
physical record.

In this case, you can use either:

BLOCK CONTAINS 4 RECORDS.

or:

BLOCK CONTAINS 60 TO 480 CHARACTERS.

Note The �gures speci�ed above are only used as estimates by the operating
system. The actual blocking factor varies depending on the logical records,
and the physical record size for variable records contains control information.
Therefore, it is larger than speci�ed in the BLOCK CONTAINS clause. This
applies to relative �les as well. Refer to the MPE File System Manual for
more information on blocking factors.

A random access disk �le contains �xed length logical records of 206 bytes (103 words) each.
Therefore, there are 50 unused bytes per sector. To minimize this waste, a blocking factor of
six records can be used:

BLOCK CONTAINS 6 RECORDS.

A serial access disk �le contains variable length logical records, ranging from 256 to 2560
bytes per record. The blocking factor is 10.

You can use either:

BLOCK CONTAINS 256 TO 2560 CHARACTERS.

or:

BLOCK CONTAINS 10 RECORDS.

DATA DIVISION 7-11

FILE SECTION

File Description (FD, SD) Clauses

CODE-SET Clause

CODE-SET Clause

The CODE-SET clause speci�es the character code convention that represents data stored in
sequential �les. This clause may be speci�ed for all �les with sequential organization. This
clause is optional, with ASCII being the default if it is not speci�ed.

Syntax

Parameters

alphabet-name-1 a previously de�ned name related to either EBCDIC, EBCDIK,
STANDARD-1,

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
STANDARD-2 or NATIVE. It must be speci�ed in

the ALPHABET clause of the SPECIAL-NAMES paragraph in the
ENVIRONMENT DIVISION.

Description

If the CODE-SET clause is speci�ed, alphabet-name-1 indicates the character code convention
used to represent the data on the related �le. It further indicates the conversion routine to be
used in translating the data into ASCII (when reading it) and translating data back into its
original character code (when writing it from your program).

When the CODE-SET clause is used for a �le, all data in that �le must be described as
USAGE IS DISPLAY, and any signed numeric data must be described with the SIGN IS
SEPARATE clause.

Note The HP utility FCOPY can be used to translate EBCDIC �les containing
records with elements that are other than USAGE DISPLAY. Refer to the
FCOPY Reference Manual for more information.

7-12 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

DATA RECORDS Clause

DATA RECORDS Clause

The DATA RECORDS clause is an obsolete feature of the 1985 ANSI COBOL standard.

For any type of �le (random, sequential, sort-merge, and so forth) the DATA RECORDS
clause serves only to document the names of data records associated with a �le. This clause
is, therefore, optional for both FD and SD level �le descriptions.

Syntax

Parameters

data-name-2 and its subsequent occurrences are the names of data records.

Description

Use of more than one data name in this clause indicates that the �le contains more than one
type of data record. For instance, they might be of di�erent size or format.

DATA DIVISION 7-13

FILE SECTION

File Description (FD, SD) Clauses

EXTERNAL Clause

EXTERNAL Clause

The
NNNNNNNNNNNNNNNNNNNNNNNNNN
EXTERNAL clause is a feature of the 1985 ANSI COBOL standard.

The EXTERNAL clause speci�es the external attributes of a �le connector, the associated
data records, and the associated data items.

Syntax

IS EXTERNAL

Description

If the �le description entry for a sequential �le contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. FILLER
cannot be speci�ed for any record descriptions associated with a �le description entry that
contains the EXTERNAL clause. See Chapter 11, \Interprogram Communication", for more
detailed information.

7-14 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

Global Clause

GLOBAL Clause

The
NNNNNNNNNNNNNNNNNNNN
GLOBAL clause is a feature of the 1985 ANSI COBOL standard.

The GLOBAL clause speci�es that the �le connector, the data records and associated data
items are available to the contained programs within a nested program in which the �le is
declared global.

Syntax

IS GLOBAL

Description

The GLOBAL clause can only be speci�ed in the FD clause of the FILE SECTION. Refer to
Chapter 11, \Interprogram Communication," for more detailed information.

DATA DIVISION 7-15

FILE SECTION

File Description (FD, SD) Clauses

LABEL RECORDS Clause

LABEL RECORDS Clause

The LABEL RECORDS clause is an obsolete feature of the 1985 ANSI COBOL standard.

The LABEL RECORDS clause speci�es whether one or more labels exist on the �le and,
optionally, the names of the records containing the label. This clause does not apply to
sort-merge �les. This clause is optional.

Syntax

Parameters

OMITTED speci�es that no explicit labels exist for the �le or the device to which the
�le is assigned.

STANDARD speci�es that labels exist for the �le or the device to which it has been
assigned, and that the labels conform to the operating system's label
speci�cation.

data-name-1 the name of the label record which must be described in a record
description entry associated with the �le. This record must not appear in
the DATA RECORDS clause associated with the �le. Use of this option
indicates that user labels, as well as standard labels, are to be processed.
All PROCEDURE DIVISION references to these names, or to any
subordinate items, must appear within USE procedures. Label records for
all �les share the same area of memory.

Data-name-1 cannot be an external record. The data-name-1 parameter
is an HP extension to the ANSI COBOL standard.

Description

With HP COBOL II, it does not matter whether you specify that labels are STANDARD
or OMITTED because the operating system processes standard labels before making the
associated �le available to your COBOL program.

If the �le being described is an external �le, all programs describing this �le must have
consistent LABEL RECORDS clauses.

7-16 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

LINAGE Clause

LINAGE Clause

The purpose of the LINAGE clause is to describe the format of a logical page. It is used in
conjunction with sequential �les opened for output. Although there is not necessarily any
relation between a logical and a physical page, it is advisable (particularly when writing a
logical page to the line printer) to consider the size of a physical page when you are de�ning a
logical one.

The LINAGE clause applies only to sequential �les. It has no meaning for relative, random,
indexed, or sort-merge �les.

Its use is optional with sequential �les, but it must be used if you intend to write records to
the �le using the END-OF-PAGE (or EOP) phrase of the WRITE statement.

A logical page consists of a top margin, page body, footing area, and bottom margin. Within
a �le, logical pages are contiguous. Figure 7-1 shows the concept of a logical page.

Syntax

Parameters

data-name-4
through
data-name-7

each reference an elementary unsigned integer data item.

integer-6 greater than zero.

integer-7 greater than or equal to zero and not greater than integer-6.

integer-8 and
integer-9

each greater than or equal to zero.

Description

The LINAGE clause uses data-name-4 or integer-6 to de�ne the number of lines in the page
body. The page body is the area of the logical page in which lines can be written or spaced.
Because a page size is being de�ned, integer-6 (or the value associated with data-name-4)
must be greater than 0.

If the �le being described is an external �le, and any �le description entries for this �le have
a LINAGE clause, all �le description entries in the run unit that describe this �le must have
a LINAGE clause. Also, the parameters must be either constants or external data items.
Corresponding parameters must be the same in all LINAGE clauses for this �le.

DATA DIVISION 7-17

FILE SECTION

File Description (FD, SD) Clauses

LINAGE Clause

Figure 7-1. Example of the LINAGE Clause and its Logical Representation

7-18 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

LINAGE Clause

FOOTING Phrase

The FOOTING phrase is optional. If speci�ed, however, it uses integer-7 or data-name-5 to
de�ne the FOOTING AREA of the page body.

The entire page body can be the footing area. That is, integer-7 (or, the value of
data-name-5) may be 1, in which case the footing area is all of the page body.

The footing area is used in conjunction with the END-OF-PAGE phrase of the WRITE
statement. It signi�es that the end of the logical page has been reached.

If you do not use the FOOTING phrase, then the only way that an end of page condition can
occur is for a WRITE statement to attempt to write a record beyond the end of the logical
page body (that is, when a page overow condition exists).

LINES AT TOP and LINES AT BOTTOM Phrases

The LINES AT TOP and LINES AT BOTTOM phrases are optional. They are used to
specify a top margin and a bottom margin, respectively, for the logical page. If neither phrase
is used, the margins are assumed to be zero.

If THE LINES AT TOP phrase is speci�ed, it uses integer-8 or data-name-6 to specify the
number of lines in the top margin.

If THE LINES AT BOTTOM phrase is speci�ed, it uses data-name-7 or integer-9 to specify
the number of lines in the bottom margin.

The top and bottom margins are distinct from the page body; therefore, no data may be
written into them.

DATA DIVISION 7-19

FILE SECTION

File Description (FD, SD) Clauses

LINAGE Clause

Use of Data Names Versus Use of Integers

The use of integers in a LINAGE clause allows for less exibility than does the use of data
names.

When an integer (either integer-6, integer-7, or integer-8) is speci�ed, it is used when the �le
associated with the LINAGE clause is opened for output. This value is used for every logical
page written for the �le and cannot change during a particular execution of the program in
which it appears.

The values of data names, on the other hand, can vary during the execution of a program.
Therefore, the values are checked and used not only when the associated �le is open for
output, but also whenever a WRITE statement containing an ADVANCING PAGE phrase is
executed, or a WRITE statement is executed and a page overow condition occurs.

Taking each of these cases in turn:

When the �le is opened for output, the current values of data-name-4, data name-5 ,
data-name-6 , and data-name-7 are used to de�ne their associated sections of the FIRST
logical page only.

When a WRITE statement is executed, and the ADVANCING PAGE phrase is activated,
the current values of data-name-4, data name-6 and data-name-7 are used to de�ne the
page body, top and bottom margins of the next logical page.

If a footing area has been de�ned, the ADVANCING PAGE phrase is activated when the
WRITE statement in which it appears attempts to write data into the footing area. In this
case, the data is written into the footing area of the current logical record and the current
value of data-name-5 is then used to de�ne the footing area for the next logical page.

When a WRITE statement is executed and a page overow condition occurs, thus forcing
an end-of-page condition, the current values of data-name-4, data name-6 , and data-name-7
are used to de�ne their associated parts of the next logical page.

This type of end-of-page condition implies that either the value of data-name-5 is the same as
that of data-name-4 or that a footing area was not de�ned (the two are equivalent).

In either case, the data to be written is placed in the �rst available line of the next logical
record (depending upon whether the BEFORE or AFTER ADVANCING phrase was used in
the WRITE statement).

If a footing area has been de�ned, the current value of data-name-5 is then used to de�ne the
footing area of this logical record.

7-20 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

LINAGE Clause

LINAGE-COUNTER

Any time a LINAGE clause is speci�ed for a �le, a LINAGE-COUNTER is supplied for the
�le.

Because you can have more than one �le whose description contains a LINAGE clause, you
must qualify the LINAGE-COUNTER of each �le by using the �le name.

The value of a LINAGE-COUNTER at any given time is the current line number of the
associated page body. This value ranges from one, for the �rst line of a page body, to
integer-6 (or the value of data-name-4). You can reference a LINAGE-COUNTER in the
PROCEDURE DIVISION, but cannot change it.

Each time a record is written to a logical page, the associated LINAGE-COUNTER is
incremented according to the following rules:

When the �le associated with LINAGE-COUNTER is �rst opened, LINAGE-COUNTER is
set to one.

If the ADVANCING phrase of the WRITE statement is not speci�ed, LINAGE-COUNTER
is incremented by one when the WRITE statement is executed.

If the ADVANCING phrase is used with a WRITE statement, and

is of the form, ADVANCING integer-1 or ADVANCING identi�er-2 , LINAGE-
COUNTER is incremented by integer-1 (or the value of identi�er-2) when the WRITE
statement is executed.

is of the form ADVANCING PAGE, LINAGE-COUNTER is reset to one.

If a new logical page is to be written upon, LINAGE-COUNTER is reset to one.

DATA DIVISION 7-21

FILE SECTION

File Description (FD, SD) Clauses

RECORD CONTAINS Clause

RECORD CONTAINS Clause

The RECORD CONTAINS clause speci�es the size, in characters, of data records in a �le.
Because each data record of a �le is completely de�ned in a record description entry, this
clause is optional for any �le description entry.

Syntax

The RECORD CONTAINS clause has the following three formats:

Parameters

integer-1 speci�es the number of characters contained in each record of the �le.

integer-2 speci�es the minimum number of character positions to be contained in
any record of the �le.

integer-3 speci�es the maximum number of character positions to be contained in
any record of the �le.

integer-4 speci�es the minimum number of characters in the smallest size data
record.

integer-5 speci�es the maximum number of characters in the largest size data
record.

data-name-1 must be an elementary unsigned integer in the WORKING-STORAGE or
LINKAGE section.

7-22 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

RECORD CONTAINS Clause

Description

The size of a record is determined by taking the sum of the numbers of all characters in all
�xed length elementary items, and adding to that sum the maximum number of characters in
any variable length item subordinate to the record.

This sum may di�er from the actual size of the record because of slack bytes. Refer to the
SYNCHRONIZED and USAGE clause descriptions appearing later in this chapter.

If the RECORD clause is not speci�ed in all formats, the size of each data record is
completely de�ned in the record description entry.

Fixed Length Records

Format 1 is used to specify �xed length records. integer-1 speci�es the number of character
positions contained in each record in the �le.

Variable Length Records

Format 2 is used to specify variable length records.

The number of character positions associated with a record description is determined by the
sum of the number of character positions in all elementary data items excluding rede�nitions
and renamings, plus any implicit FILLER due to synchronization.

If a table is speci�ed, the minimum or maximum number of table elements described in the
record is used in the summation above to determine the minimum or maximum number of
character positions associated with the record description.

If integer-2 is not speci�ed, the minimum number of character positions to be contained in
any record of the �le is equal to the least number of character positions described for a record
in that �le.

If integer-3 is not speci�ed, the maximum number of character positions to be contained in
any record of the �le is equal to the greatest number of character positions described for a
record in that �le.

If data-name-1 is speci�ed, the number of character positions in the record must be placed
into the data item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE
statement is executed for the �le.

If data-name-1 is speci�ed, the execution of a DELETE, RELEASE, REWRITE, START, or
WRITE statement or the unsuccessful execution of a READ or RETURN statement does not
alter the content of the data item referenced by data-name-1 .

DATA DIVISION 7-23

FILE SECTION

File Description (FD, SD) Clauses

RECORD CONTAINS Clause

During execution of a RELEASE, REWRITE, or WRITE statement, the number of character
positions in the record is determined by the following three conditions:

If data-name-1 is speci�ed, by the content of the data item referenced by data-name-1 .

If data-name-1 is not speci�ed and the record does not contain a variable occurrence data
item, by the number of character positions in the record.

If data-name-1 is not speci�ed and the record does contain a variable occurrence data item,
by the sum of the �xed portion and that portion of the table described by the number of
occurrences at the time of execution of the output statement.

If data-name-1 is speci�ed, after the READ or RETURN statement for the �le successfully
executes, the contents of the data item referenced by data-name-1 indicate the number of
character positions in the record just read.

If the INTO phrase is speci�ed in the READ or RETURN statement, the number of character
positions in the current record that participate as the sending data items in the implicit
MOVE statement are determined by the following two conditions:

If data-name-1 is speci�ed, by the content of the data item referenced by data-name-1 .

If data-name-1 is not speci�ed, by the value that would have been moved into the data item
referenced by data-name-1 .

Format 2 is the preferable way to specify variable length records. If format 3 is used, the
RECORDING MODE clause must also be speci�ed.

In format 3 of the RECORD clause, the size of each data record is completely de�ned in the
record description entry.

The size of each data record is speci�ed in terms of the number of character positions required
to store the logical record, regardless of the types of characters used to represent the items
within the logical record. The size of a record is determined by the sum of the number of
characters in all �xed length elementary items plus the sum of the maximum number of
characters in any variable length item subordinate to the record. This sum can be di�erent
from the actual size of the record.

7-24 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

RECORD CONTAINS Clause

Example

The following example illustrates use of the RECORD VARYING clause.

IDENTIFICATION DIVISION.

PROGRAM-ID. COBVAR.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IFILE ASSIGN TO "IFILE".

SELECT IFILE2 ASSIGN TO "IFILE".

DATA DIVISION.

FILE SECTION.

FD IFILE

RECORD IS VARYING FROM 10 TO 50 DEPENDING ON LEN.

01 IREC.

05 FILLER PIC X OCCURS 10 TO 50 TIMES DEPENDING ON LEN.

FD IFILE2

RECORD IS VARYING FROM 10 TO 50.

01 IREC2 PIC X(50).

WORKING-STORAGE SECTION.

01 LEN PIC S9(4) BINARY.

01 LEN-ED PIC ++++9.

01 WREC PIC X(50).

PROCEDURE DIVISION.

P1.

DISPLAY "EXAMPLE 1 ODO REC"

OPEN INPUT IFILE

PERFORM UNTIL LEN = -1

READ IFILE

AT END MOVE -1 TO LEN

NOT AT END
DISPLAY IREC

MOVE LEN TO LEN-ED

DISPLAY "Length is ", LEN-ED

END-READ

END-PERFORM

CLOSE IFILE

DISPLAY SPACE

DISPLAY "EXAMPLE 2 FIXED REC"

OPEN INPUT IFILE2

MOVE ALL "X" TO IREC2

READ IFILE2 AT END MOVE -1 TO LEN

END-READ

DISPLAY IREC2

DISPLAY SPACE

DISPLAY "EXAMPLE 3 READ INTO WREC"

MOVE ALL "X" TO IREC2 WREC

READ IFILE2 INTO WREC AT END MOVE -1 TO LEN

END-READ

DATA DIVISION 7-25

FILE SECTION

File Description (FD, SD) Clauses

RECORD CONTAINS Clause

DISPLAY IREC2

DISPLAY WREC

CLOSE IFILE2.

If IFILE contains the following data:

1234567890

123456789*123456789*

123456789*123456789*123456789*

The program will produce the following output:

EXAMPLE 1 ODO REC

1234567890

Length is +10

123456789*123456789*

Length is +20

123456789*123456789*123456789*

Length is +30

EXAMPLE 2 FIXED REC

1234567890XX

EXAMPLE 3 READ INTO WREC

123456789*123456789*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

123456789*123456789*

7-26 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

RECORDING MODE Clause

RECORDING MODE Clause

The RECORDING MODE clause is an HP extension to the ANSI COBOL standard.

The RECORDING MODE clause speci�es how logical records are contained in the �le, and
whether or not the logical record being read or written spans more than one physical record
(generally because of hardware constraints or for I-O e�ciency). This clause does not apply to
sort-merge �les. This clause is optional.

Syntax

Parameters

F speci�es �xed length logical records. This implies that no OCCURS DEPENDING on
clause can be associated with any record description entry for the �le. Also, if more
than one record description entry is supplied for the �le, all record lengths calculated
from the record descriptions must be the same. This option is the only one that is
valid for random access and relative �les.

V speci�es variable length logical records.

U speci�es unde�ned length logical records. This kind of �le cannot be blocked.
Therefore, the BLOCK CONTAINS clause need not be used for this kind of �le.

S enables the MULTI-RECORD (or more accurately, \multi-block") option. This
option allows the reading or writing of a single logical record across more than one
physical record.

DATA DIVISION 7-27

FILE SECTION

File Description (FD, SD) Clauses

RECORDING MODE Clause

Description

If none of the above codes is speci�ed, an F is the default value.

Logical records are contained in �les as either �xed, variable, or unde�ned in length.

A �xed length record �le contains logical records whose lengths are all the same.

A variable length record �le contains logical records whose lengths may vary. In such a �le,
each record is preceded by a two-byte count, which speci�es the length of that particular
record.

An unde�ned length record �le contains logical records of undetermined length. In such a �le,
each logical record is equivalent to one physical record, and a physical record is as long as the
longest possible logical record in the �le.

To clarify the case of logical records spanning more than one physical record, assume you want
to read logical records of 128 characters each from a card reader.

Each card represents a physical record of 80 characters. Therefore, to read one logical record,
you must read two physical records.

In such a case, you could specify the recording mode as equal to S, the operating system's
multi-record option.

7-28 DATA DIVISION

FILE SECTION

File Description (FD, SD) Clauses

VALUE OF Clause

VALUE OF Clause

The VALUE OF clause is an obsolete feature of the 1985 ANSI COBOL standard.

The VALUE OF clause allows you to access existing �les on labeled tapes or to create a new
labeled tape. A label contains identi�cation, whether the label is in IBM or ANSI standard
format, the expiration date of the �le protection, and the position of the �le on the tape. This
clause does not apply to sort-merge �les.

Syntax

Parameters

label-info-1 speci�es one of the following �elds: VOL, LABELS, SEQ, or EXDATE.
Each of these �elds is described in Table 7-1 on the following page.

data-name-2 must be described in the WORKING-STORAGE SECTION. This name
can be quali�ed, but cannot be subscripted, indexed, or described with the
USAGE IS INDEX clause in a data description. It is used to specify the
value of the associated label-info entry. The possible values are shown in
Table 7-1 on the following page.

literal-1 a COBOL literal or a �gurative constant.

Description

The data name associated with VOL can specify a data item of any category, but must
consist of a maximum of six characters or digits. The data name associated with SEQ can
also specify a data item of any category, but must consist of a maximum of four digits or
characters. The data names associated with LABELS and EXDATE must name alphanumeric
data items; the respective picture strings for LABELS must describe data that is three
characters long, EXDATE that is eight characters long and of the form, mm/dd/yy.

All VALUE OF clauses for each external �le in the run unit must be consistent.

DATA DIVISION 7-29

FILE SECTION

File Description (FD, SD) Clauses

VALUE OF Clause

Table 7-1.

Values of the LABEL INFO and DATA NAME Parameters

in the VALUE OF Clause

label-info-n Meaning data-name-n or literal-n

VOL Volume identi�cation. Any combination of one to six characters from the
set A through Z, and 0 through 9.

LABELS ANSI standard or IBM format. ANS or IBM.

SEQ Relative position of �le on a
magnetic tape.

0 to 9999, NEXT, or ADDF.

EXDATE Date when �le may be written
over. Until that time, the �le is
protected.

Date, in the form month/day/year. The default is
00/00/00.

Example

DATA DIVISION.

FILE SECTION.

FD TAPEFL

VALUE OF VOL IS "JTAPE1", LABELS IS "ANS",

SEQ IS 10, EXDATE IS "02/25/85"....
FD NEW-TAPE

VALUE OF VOL IS "JTAPE2", LABELS IS "ANS",

SEQ IS "ADDF", EXDATE IS "02/25/85"....
PROCEDURE DIVISION.

DISPLAY "PLEASE MOUNT NEW TAPE FOR JTAPE2" UPON CONSOLE.

OPEN OUTPUT NEW-TAPE, INPUT TAPEFL.

.

.

.

Assuming that NEW-TAPE names a new �le, when the OPEN statement above is executed, the
information given in the VALUE OF clause is used to write a label for the tape volume.

When TAPEFL is opened, the speci�cation of 10 for the SEQ value causes the tape to
automatically be placed at the beginning of the tenth �le on the volume named JTAPE1.

Note that a message requesting that the volumes JTAPE2 and JTAPE1 be mounted is displayed
on the operator's console. Because JTAPE2 is a new volume, the DISPLAY statement above
was used to tell the operator that JTAPE2 does not already exist.

7-30 DATA DIVISION

DATA DIVISION

FILE SECTION

Data Description Entries

Data Description Entries

A data description entry is composed of a level number followed by a data name, and then
followed by a set of data clauses.

The level numbers can be 01 to 49 for record description entries, 77 for unrelated data items,
66 for alternative groupings of elementary items in the preceding record description entry, and
88 for condition names.

A level number is required for each data description entry, and must be the �rst element of
such an entry.

The level numbers 01 and 77 must begin in Area A. Other level numbers may begin in either
Area A or Area B.

All data description entries are discussed in the following pages, beginning with level 77
entries.

77 Level Description Entries

Noncontiguous data items are data items or constants that are not subdivided and bear no
hierarchical relationship to one another. That is, noncontiguous data items are unrelated data
items.

These data items are only de�ned in the WORKING-STORAGE and LINKAGE SECTIONs,
and have level numbers of 77. Recall, however, that those items de�ned in the LINKAGE
SECTION do not have any storage allocated for them.

Each name used for a noncontiguous data item must be unique since it cannot be quali�ed.
For example,

WORKING-STORAGE SECTION.

77 COUNTER PICTURE 9(4) VALUE 0.

77 MID-TOTALS PICTURE 9(6)V99 VALUE O.

COUNTER is an accumulator, and MID-TOTALS is an intermediate storage variable. Because they
are not subdivided, and they have no immediate relationship to any other data items, they are
described using level 77 entries.

DATA DIVISION 7-31

DATA DIVISION

FILE SECTION

Data Description Entries

Record Description Entries

At least one record description entry must follow each FD or SD �le description entry. This
discussion of record description entries is applicable to either type of �le description, as well as
for the LINKAGE and WORKING-STORAGE SECTIONS.

A record description consists of one or more data description entries.

Associated with each data description entry is a level number chosen from the set 01 to 49, 66,
or 88. The level number for the �rst data description entry of any record description must be
01 (or simply 1). Succeeding level numbers of data description entries for the same record
description may range from 01 to 49, or may be 66. If, however, multiple 01 entries are used
for a given level indicator (FD, or SD) they represent implicit rede�nitions of the same area.
The 02 to 49 level numbers are used to specify subsets of the characters of a record.

The level number 66 is used only when the data description uses the RENAMES clause to
regroup data items. Refer to the description of the RENAMES clause later in this chapter.

The level number 88 is used only for a condition name data description. It is always
associated with a VALUE clause. Refer to \Condition Names" later in this chapter.)

Data names subordinate to record names can be nonunique, provided they can be made
unique by quali�cation.

The three general formats for data description entries are shown below and described in the
following paragraphs.

7-32 DATA DIVISION

DATA DIVISION

FILE SECTION

Data Description Entries

DATA DIVISION 7-33

DATA DIVISION

FILE SECTION

Data Description Entries

In the �rst format, the level number may be any number from 01 to 49, or 77. It cannot be 66
or 88.

If it is used, the data name or FILLER clause must immediately follow the level number, and
the REDEFINES clause (if used) must immediately follow the data-name-1 clause. Except for
these two conditions, all other clauses, if used, may be written in any order.

The PICTURE clause must be used for every elementary item except an index data item. A
PICTURE clause must not be used for an index data item.

Data elements and constants bearing a de�nite hierarchic relationship to one another must be
grouped into records.

The initial value of any data item except an index data item is speci�ed by using the VALUE
clause in the description of that item. Because the VALUE clause does not apply to index
data items, the initial value of any such item is unknown.

You may not use the SYNCHRONIZED, PICTURE, JUSTIFIED, or BLANK WHEN ZERO
clauses for any but elementary data items.

Except for the data name or �ller clause, which is described �rst, all other data description
clauses are described in alphabetical order on the following pages.

7-34 DATA DIVISION

DATA DIVISION

FILE SECTION

Data Name or FILLER Clause

Data Name or FILLER Clause

A data name clause speci�es the name of the data being described. The keyword, FILLER,
implies that you are specifying an elementary item of the logical record being described that
cannot be referenced explicitly. If this clause is omitted, the record is treated as though
FILLER had been speci�ed.

In the FILE, WORKING-STORAGE, and LINKAGE SECTIONS, a data name must be the
�rst word following the level number in each data description entry.

Syntax

level-number

�
data-name-1

FILLER

�

Parameters

data-name-1 must be a valid user-de�ned COBOL word.

Description

Although you may not refer to a FILLER item explicitly, the keyword FILLER may be used
as a conditional variable (format 3) because the use of it in this manner does not require
explicit reference to the FILLER item, but to its value.

DATA DIVISION 7-35

DATA DIVISION

Record Descriptions

BLANK WHEN ZERO Clause

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause causes a numeric or numeric-edited data item to be �lled
with spaces when the value of the data item is zero.

This clause is optional. If used, it may refer only to a numeric or numeric-edited elementary
data item. When this clause is used with a numeric data item, the category of the data item
is considered to be numeric-edited.

Syntax

[BLANK WHEN ZERO]

Note This clause cannot be used for a numeric-edited data item whose PICTURE
uses asterisks for zero suppression and replacement.

7-36 DATA DIVISION

DATA DIVISION

Record Descriptions

EXTERNAL Clause

EXTERNAL Clause

The
NNNNNNNNNNNNNNNNNNNNNNNNNN
EXTERNAL clause is a feature of the 1985 ANSI COBOL standard.

The EXTERNAL clause speci�es external attributes of a WORKING-STORAGE SECTION
data description entry, the associated data record, and its subordinate data items.

Syntax

IS EXTERNAL

Description

The EXTERNAL clause can only be speci�ed in data description entries in the
WORKING-STORAGE SECTION whose level number is 01.

The EXTERNAL clause and the REDEFINES clause must not be speci�ed in the same data
description entry.

FILLER cannot be speci�ed for any entry containing the EXTERNAL clause. Refer to
Chapter 11, \Interprogram Communication", for more detailed information.

DATA DIVISION 7-37

DATA DIVISION

Record Descriptions

GLOBAL Clause

GLOBAL Clause

The
NNNNNNNNNNNNNNNNNNNN
GLOBAL clause is a feature of the 1985 ANSI COBOL standard.

The GLOBAL clause speci�es that a 01 record description and its subordinate data items are
available to all contained programs within a nested program in which the record is declared
global. Refer to Chapter 11, \Interprogram Communication," for more detailed information.

Syntax

IS GLOBAL

Description

The GLOBAL clause can be speci�ed in data description entries in the WORKING-
STORAGE SECTION where the level number is 01.

FILLER cannot be speci�ed for any entry containing the EXTERNAL clause. Refer to
Chapter 11, \Interprogram Communication", for more detailed information.

7-38 DATA DIVISION

DATA DIVISION

Record Descriptions

JUSTIFIED Clause

JUSTIFIED Clause

The JUSTIFIED clause allows you to right-justify alphabetic or alphanumeric data items. It
cannot be used with numeric or edited data items, and only applies to elementary data items
being used to receive data. This clause is optional.

Syntax

Parameters

JUST is an abbreviation for JUSTIFIED.

Description

Data is moved from a sending data item to the right justi�ed receiving data item starting with
the rightmost character of the sending data item. The rightmost character is placed in the
rightmost character of the receiving data item. The next rightmost data item of the sending
data item is then moved to the next rightmost character of the receiving data item. This
process continues until either all of the sending data item has been moved, or the receiving
data item is full. Note that a space in the sending data item is considered a valid character,
no matter where it is within the sending data item. That is, spaces are not stripped from the
sending item, even if they are in the rightmost positions of the sending item.

When a receiving data item is described using this clause, and the sending data item is larger
than the receiving item, the leftmost characters are truncated.

When the receiving data item is longer than a sending item, the data is aligned at the
rightmost character position in the receiving �eld, and unused characters to the left are �lled
with spaces.

If the JUSTIFIED clause is not used, standard rules for aligning data within an elementary
item are used.

Example

Sending data item: HEWLETT-PACKARD COBOL IItt

Receiving data item: 01 INFIRST PIC X(29) JUSTIFIED RIGHT.

Resulting data item: ttttHEWLETT-PACKARD COBOL IItt

Assuming the same sending data item, but using a new receiving data item:

Receiving data item: 01 NEWIN PIC X(14) JUSTIFIED RIGHT.

Resulting data item: KARD COBOL IItt

DATA DIVISION 7-39

DATA DIVISION

Record Descriptions

OCCURS Clause

OCCURS Clause

The OCCURS clause is used to de�ne a table containing up to seven dimensions. Its use
eliminates the need for separate entries to describe repeated data items, and provides
information required for the application of subscripts or indices.

Refer to Chapter 4, \Tables", for a description of the formation and use of tables.

Syntax

This clause has the following two general formats:

The two formats of the OCCURS clause are described in the following paragraphs. The �rst
format of the OCCURS clause is used to de�ne a table of �xed length data items.

Parameters to Format 1

integer-2 speci�es the exact number of occurrences of the item being described.

KEY IS phrase indicates that the repeated data is arranged in ASCENDING or
DESCENDING order according to the values contained in data-name-3 .

data-name-3 must either be the name of the entry containing the OCCURS clause or
the name of an entry subordinate to the entry containing the OCCURS
clause (when �rst speci�ed). Subsequent speci�cation of data-name-3
must be subordinate to the entry containing the OCCURS clause.
Data-name-3 may be quali�ed.

INDEXED BY speci�es one or more index names to be used when reference to the
subject of this entry or items subordinate to it is done by indexing.

index-name-1 not de�ned elsewhere in a program, and cannot be associated with any
data hierarchy. Index names must be unique within a given program.

The data names referred to by data-name-3 must be listed in their descending order of
signi�cance. If data-name-3 is not the same name as the item being described, then all of

7-40 DATA DIVISION

DATA DIVISION

Record Descriptions

OCCURS Clause

the items identi�ed by data names in this phrase must be within the group item that is the
subject of this entry, and must not contain an OCCURS clause.

There must not be any entry containing an OCCURS clause between the items identi�ed in
the KEY IS phrase and the subject of this entry.

The second format of the OCCURS clause is used to de�ne a variable length table.

Parameters to Format 2

integer-1 represents the minimum number of occurrences of the subject of the
OCCURS clause. Integer-1 must be less than integer-2 .

integer-2 represents the maximum number of occurrences. This implies that only
the number of occurrences is variable and not the length of the data item.

data-name-4 represents an integer used to determine the number of occurrences of
data items within the table. Therefore, the current value of the data item
referenced by data-name-4 represents the number of occurrences.

A data description entry containing this format of the OCCURS clause can only be followed,
within the one record description, by data description entries subordinate to it.

Data-name-4 must not be contained in that part of the record being described that starts at
the �rst character of the �rst element of the table and continues to the end of the record.

To illustrate, the two representations of records below show an allowable, and an unacceptable
placement of the item referenced by data-name-4 in a record.

DATA DIVISION 7-41

DATA DIVISION

Record Descriptions

OCCURS Clause

Data-name-4 , and its contents, must be described in a separate data description entry, and
may be quali�ed.

If the OCCURS clause is speci�ed in a data description entry included in a record description
entry containing the EXTERNAL clause, data-name-4 , if speci�ed, must reference a data item
possessing the external attribute that is described in the same DATA DIVISION.

If the OCCURS clause is speci�ed in a data description entry subordinate to one containing
the GLOBAL clause, data-name-4 , if speci�ed, must be a global name and must reference a
data item that is described in the same DATA DIVISION.

Because the current value of the data item referenced by data-name-4 represents the number
of occurrences of a data item, it must be an integer in the range of values from integer-1 to
integer-2 .

If the value of the integer represented by data-name-4 is reduced from a previous value,
the contents of those data items whose occurrence numbers exceed this new value are
unpredictable.

When a group item has a subordinate entry that speci�es format 2 of the OCCURS clause,
only that part of the group item speci�ed by the value of data-name-4 is used.

The KEY IS and INDEXED BY phrases follow the rules given for format 1.

The OCCURS clause cannot be speci�ed in a data description entry having an 01, 66, 77, or
88 level number.

The OCCURS clause cannot be used in a description entry for an item whose size is variable.
The size of an item is variable if the data description of any subordinate item contains format
2 of the OCCURS clause. In other words, this restriction means that no OCCURS clause
using the DEPENDING ON phrase can be used in the description of an item subordinate to
an item that also uses either format of the OCCURS clause.

Examples

For example, the following two records are allowed:

01 ROAD.

02 SURFACE OCCURS 1 TO 12 TIMES

DEPENDING ON SIZER.

03 SIDE OCCURS 10 TIMES PIC X(9). Allowed.

01 ROAD.

02 SURFACE OCCURS 10 TIMES.

03 SIDE OCCURS 4 TIMES PIC X(9).

7-42 DATA DIVISION

DATA DIVISION

Record Descriptions

OCCURS Clause

But, the following two records are not allowed:

01 ROAD. Not allowed.

02 SURFACE OCCURS 10 TIMES.

03 SIDE OCCURS 1 TO 8 TIMES

DEPENDING ON SIZER PIC X(9).

01 ROAD.

02 SURFACE OCCURS 1 TO 10 TIMES

DEPENDING ON SIZER. Not allowed.

03 SIDE OCCURS 1 TO 8 TIMES

DEPENDING ON SIZEUP PIC X(9).

The name of the data item being described must be either subscripted or indexed whenever
it is referred to in any way other than with the SEARCH or USE FOR DEBUGGING
statements. Also, if the name of the data item being described is the name of a group item,
then all data names belonging to the group must be subscripted or indexed whenever they are
used as operands, except as the object of a REDEFINES clause.

Except for the OCCURS clause itself, all data description clauses associated with an item
whose description includes an OCCURS clause apply to every occurrence of the item being
described.

If a data item possessing the global attribute includes a table accessed with an index, that
index also possesses the global attribute. See Chapter 11, \Interprogram Communication," for
more detailed information.

DATA DIVISION 7-43

DATA DIVISION

Record Descriptions

PICTURE Clause

PICTURE Clause

The PICTURE clause describes the category, length, and editing requirements for an
elementary item. It applies only to elementary data items and must be used for every
elementary data item. It is not allowed for an index data item.

Syntax

Parameters

PICTURE and PIC equivalent.

character-string a set of up to 30 characters, arranged in certain allowable
combinations; these combinations determine the category of the
elementary item.

Description

You can de�ne any of �ve categories of data with the PICTURE clause. The �ve categories of
data are:

Alphabetic
Numeric
Alphanumeric
Alphanumeric-edited
Numeric-edited

Alphabetic Data

Alphabetic data consists of upper and lowercase letters from the English alphabet, and one
or more blanks. When you wish to de�ne the characteristics of an alphabetic data item, the
character string must consist of a combination of the letters A and/or B and, optionally, one
or more nonnegative integers in parentheses.

The letter A represents a character of the alphabet or a space. The letter B represents a blank
(or a space).

The integers are repetition factors and are used to specify one or more occurrences of A or B
in the picture.

To describe an alphabetic data item that consists of six alphabetic characters, three spaces,
and then twelve more alphabetic characters (or blanks), the following PICTURE clauses could
be used, and are equivalent:

PICTURE IS AAAAAABBBAAAAAAAAAAAA

PIC A(6)B(3)A(12)

7-44 DATA DIVISION

DATA DIVISION

Record Descriptions

PICTURE Clause

Numeric Data

Numeric data consists of a combination of the Arabic numerals 0 through 9, optionally
including the positive or negative sign, or a representation of an operational sign as de�ned
in the SIGN clause. Note that a decimal point is not part of the possible set of characters
allowed in forming numeric data for a COBOL program.

You must specify the data without a decimal point. Use the V character of the PICTURE
clause to indicate where the decimal point belongs.

The size of a numeric data item can be from one to 18 digits long.

When you wish to de�ne the characteristics of a numeric data item, the picture clause you use
must consist of only the symbols 9, P, S, V, and (in conjunction with the 9 and P symbols
only) one or more repetition factors as described under the heading \Alphabetic Data", above.

The symbol 9 represents the character position that is to contain a numeral.

The symbol S indicates the presence of an operational sign, but not necessarily its position
within a numeric data item. It must be the leftmost character in the picture of the data item
being described and can appear only once in a given picture clause.

The S symbol is not counted in determining the size of an elementary data item unless the
data item is subject to a SIGN clause using the SEPARATE CHARACTER phrase.

The symbol V is used to indicate the location of the assumed decimal point in numeric data.
Like the S symbol, it may only appear once in any given picture clause.

Because the V does not represent a character position, it is not counted in the size of the
elementary data item. Note also that if the V appears as the rightmost character in a
character string, it is redundant.

DATA DIVISION 7-45

DATA DIVISION

Record Descriptions

PICTURE Clause

The symbol P indicates an assumed decimal scaling position and is used to specify the
location of an assumed decimal point when the point is not within the number appearing in
the data item.

That is, for each appearance of a P in the PICTURE of a data item, the data item is assumed
to be multiplied by 10, or by one tenth, depending upon whether the P symbol is on the right,
or on the left of the character string used to de�ne the �eld.

The P in a character string does not occupy a position in memory and does not add to the
size of the item. However, the P has the e�ect of the digit 0 whenever the item is accessed.
When the data item is used for arithmetic operations, the P must be counted as a digit to
determine whether the �eld exceeds the 18-digit maximum size for a numeric �eld.

One or more P symbols can only be placed at either the left or the right end of a character
string. Because P represents a decimal position, the use of the P symbol and the V symbol as
the left or rightmost symbol in the same string is redundant.

Therefore, if the V symbol is used with the P symbol, it is meaningful only if it appears as the
leftmost or rightmost symbol in the character string.

The following illustrates the use of the P symbol:

Input data: 241000

PICTURE clause: 999P(3)

Data stored as: 241

Data accessed as: 241000.

Using the following PICTURE clause for the number 00000241

PICTURE P(5)999

results in the data being stored as 241, but being accessed as .00000241.

A repetition factor may be used with the P symbol. Therefore, PPPPP99 is equivalent to
P(5)99.

All numeric literals used in a VALUE clause must have a value that is within the range of
values indicated in the PICTURE clause. For example, the range of values permitted for an
item with the PICTURE PPP999 are .000000 through .000999.

7-46 DATA DIVISION

DATA DIVISION

Record Descriptions

PICTURE Clause

Alphanumeric Data

Alphanumeric data is made up of any valid character used on an HP computer.

To de�ne an alphanumeric data item, you can use the symbols A, 9, or X. The PICTURE
clause for this type of data, however, must contain at least one X symbol, or a combination of
the A and 9 symbols to indicate that it represents an alphanumeric data item.

The A symbol can be used to represent alphabetic characters or a space, while the 9 symbol
can be used to represent numerals. However, the entire PICTURE clause is treated as if it
consists entirely of X symbols, where each X symbol can represent any single character used
on an HP computer.

Repetition factors may be used with all these symbols. For example,

77 FINISHER PICTURE A(5)9(8).

is equivalent to:

77 FINISHER PICTURE X(13).

Alphanumeric-Edited Data

Alphanumeric data is data consisting of any set of characters available on an HP computer.
This type of data can be edited by specifying where one or more spaces, strokes, or zeros are
to appear as part of the receiving data item.

You can use the A, X, 9, B, 0 (zero), and / symbols to de�ne a data item to receive an
edited alphanumeric data item. The A, X, 9, and B symbols are explained under the
headings \Alphabetic Data," \Numeric Data," \Alphanumeric Data," and \Numeric-edited,"
respectively.

The 0 symbol is used to specify where in the character string the numeral 0 is to be inserted.

The / (stroke) symbol represents where in the character string a stroke symbol is to be
inserted.

All of the symbols used in an alphanumeric-edited PICTURE clause may use a repetition
factor.

The PICTURE character string of an alphanumeric-edited data item is restricted to certain
combinations of the following symbols:

A, X, 9, B, 0, and /

The PICTURE clause must contain at least one A or X, and must contain at least one B, 0
(zero), or / (stroke).

For example,

Sending data item: 010685

PICTURE of receiving data item: 99/99/99

Receiving data item: 01/06/85

Sending data item: NAMEADDRESSPHONENUMBERZIPCODE

PICTURE of receiving data item: PICTURE A(4)B(5)A(7)B(5)A(5)BA(6)/A(7)

Receiving data item: NAMEtttttADDRESStttttPHONEtNUMBER/ZIPCODE

DATA DIVISION 7-47

DATA DIVISION

Record Descriptions

PICTURE Clause

Numeric-Edited Data

In standard data format, numeric-edited data consists of a combination of the numerals zero
through 9 and an optional decimal point.

Editing of this type of data in HP COBOL II consists of leading zero suppression, �lling or
replacement, placement and alignment of a decimal point and a currency symbol, insertion of
a sign, commas, blanks, or strokes. This is accomplished through use of the following symbols:

P, V, 9, B, /, r, Z, (,), (.), *, +, -, CR, DB

and the currency symbol as de�ned in the CURRENCY SIGN clause of the SPECIAL-
NAMES paragraph in the ENVIRONMENT DIVISION. To distinguish this type of data from
unedited numeric data, at least one of the above symbols (except the 9) must appear in the
PICTURE clause.

A maximum of 18 digit positions can be represented in this type of PICTURE.

The �rst three of the above symbols are described under the heading, \Numeric Data", and
the second set of three are described under the heading, \Alphanumeric-Edited Data". The
remaining symbols are described below.

The Z symbol is used for the suppression of leading zeros in the receiving data item. It can
only be used to represent the leftmost leading numeric character positions.

The comma symbol (,) represents where in the character string of the receiving data item a
comma is to be inserted. It cannot be the rightmost character in the PICTURE clause unless
followed by the period symbol (.).

The period symbol (.) represents the decimal point for aligning the sending and receiving
data items and also represents a character position into which a period (decimal point) is
to be inserted. It may not be used if the V symbol is used, and may only appear once in
a given PICTURE clause if the DECIMAL POINT IS COMMA clause is not speci�ed in
the SPECIAL-NAMES paragraph. Also, it may not appear as the rightmost element in the
PICTURE clause unless followed by the decimal point (.). The P symbol and the decimal
point (.) cannot be used in the same PICTURE character string.

If the DECIMAL POINT clause is speci�ed, the roles of the commas and period symbols are
reversed. Therefore, in such a case, only one comma symbol may appear in a numeric-edited
PICTURE clause, but several periods may appear. The plus (+), minus (-), CR (for CRedit),
and DB (for DeBit) are used as editing sign control symbols. Only one of these symbols may
appear in any given PICTURE clause, and when used, specify the position in the receiving
data item into which the editing sign control symbol will be placed.

The asterisk (*) symbol is used for replacing leading zeros. Each leading zero in the sending
data item is replaced in the receiving data item by an asterisk if there is an asterisk in the
PICTURE clause for the receiving data item whose position corresponds to the position of the
zero in the sending data item.

This symbol may not appear in a PICTURE clause for a data item which has the BLANK
WHEN ZERO clause speci�ed for it.

7-48 DATA DIVISION

DATA DIVISION

Record Descriptions

PICTURE Clause

The appearance of a currency symbol in a PICTURE clause represents the position into
which a currency symbol is to be placed. If you do not specify an alternative currency symbol
through the CURRENCY SIGN clause of the SPECIAL-NAMES paragraph, the dollar ($)
symbol is used.

This symbol must appear as the leftmost symbol in the character string, except that it may be
preceded by a plus (+) or minus (-) symbol.

With the exception of the symbols V, CR, DB, and period (.), all of the symbols described
above may be speci�ed using a repetition factor.

To illustrate edited numeric data:

Sending data item: -1234.59

PICTURE clause of the receiving data item: PICTURE 99,999.99DB

Receiving data item: 01,234.59DB

Note in the second example that the DECIMAL-POINT IS COMMA clause is assumed.

Sending data item: 345777.78

PICTURE clause of the receiving data item: PICTURE +$ZZZ,ZZZ,ZZZ,ZZZ.99

Receiving data item: +$ 345.777,78

Table 7-2 summarizes the editing picture characters and their function.

Table 7-2. Editing Picture Characters

Picture
Characters

Symbol
De�nition

Editing
Function

B Letter B Inserts a blank.

/ Slash Inserts a slash character.

0 Zero Inserts a zero digit.

. Decimal point Inserts a decimal point.

, Comma Inserts a comma.

+ Plus sign Inserts + or - sign.

- Minus sign Inserts - or blank.

CR Credit sign Inserts CR.

DB Debit sign Inserts DB.

$ Dollar sign Inserts currency symbol.

Z Letter Z Zero suppression by blank.

* Asterisk Zero suppression by *.

DATA DIVISION 7-49

DATA DIVISION

Record Descriptions

PICTURE Clause

Size of Elementary Data Items

The size of an elementary data item is de�ned as being the number of character positions
occupied by the elementary item in standard data format. This size is determined by counting
the number of allowable symbols used to represent character positions within a PICTURE
clause for that item.

With the exception of the S, V, period (.), CR and DB symbols, all symbols in the PICTURE
clause may use repetition factors. These repetition factors are represented by an integer
enclosed by parentheses following the symbol to which they pertain, and indicate the number
of consecutive occurrences of the symbol.

Furthermore, if the SEPARATE CHARACTER phrase of the SIGN clause is not speci�ed, the
V symbol and the S symbol do not participate in the count when you are determining the size
of the data item.

DB and CR each represent two character positions.

When you count occurrences of characters in an elementary data item description, you must
only count those symbols that appear without repetition factors, and add them to the sum of
all integers appearing in repetition factors for that PICTURE clause.

Examples

The size of the data item represented by the following PICTURE clause is 11 characters.

PICTURE ZZZ,999V99CR

The size of the data item represented by the next PICTURE clause is 17 characters.

PICTURE A(10)B(5)XX

In the next PICTURE clause, assume that the SIGN IS SEPARATE clause is NOT speci�ed
for the data item represented by the PICTURE clause below.

PICTURE S9(5)V99

The size of the item described above is 7 characters.

7-50 DATA DIVISION

DATA DIVISION

Record Descriptions

PICTURE Clause

Editing Rules

There are two general methods for performing editing in the PICTURE clause: insertion , and
zero suppression and replacement .

Editing takes place only when data is moved into an elementary data item whose PICTURE
clause speci�es editing (that is, whose PICTURE clause is alphabetic, alphanumeric-edited or
numeric-edited). Therefore, data moved into a numeric �eld is not edited.

You may perform simple insertion editing for an item belonging to the alphabetic or
alphanumeric-edited categories.

Three other types of insertion, as well as suppression and replacement, may be performed on
numeric-edited data: special , �xed , and oating insertion .

Table 7-3 below summarizes the type of editing permitted for each category.

Table 7-3. Allowable Types of Editing For Categories of Data Items

Category Type of Editing

Alphabetic Simple insertion B only

Numeric None

Alphanumeric None

Alphanumeric-Edited Simple insertion (0), (,), (B), and (/)

Numeric-Edited All

Simple Insertion Editing. The comma (,), space (B), zero (0), and stroke (/) symbols are used
in simple insertion editing. These insertion characters are counted in the size of the receiving
item and represent the position in the receiving item into which the character is inserted.

Simple insertion editing is so called because, other than inserting the particular symbol, no
other editing is done and the data sent is una�ected except for the placement of the simple
insertion characters between, before, or after the other characters received from the sending
data item.

An example of simple insertion editing is shown in the illustration under the heading,
\Alphanumeric-Edited Data", on the preceding pages.

DATA DIVISION 7-51

DATA DIVISION

Record Descriptions

PICTURE Clause

Special Insertion Editing. The period (.) is used in special insertion editing. In addition to
being an insertion character, it is also used for alignment purposes when the sending data item
is numeric and contains a decimal point. The result of this form of editing is the appearance
of the period in the same position as it appears in the PICTURE clause for the item.

When data is moved to an item de�ned with the special insertion character, COBOL
automatically provides truncation and zero �ll to both the left and the right of the decimal
point. However, if zero suppression or oating insertion editing is included in the PICTURE
clause of the receiving data item, zero �ll normally produced by special insertion editing is
overridden.

The following illustrates special editing:

Sending data item: 12345.678

PICTURE clause of receiving data item: 9(5).99

Receiving data item: 12345.67

Note that the rightmost digit, 8, was truncated. This was caused by the alignment of decimal
points.

Sending data item: .001

PICTURE clause of receiving data item: 9,999.9999

Receiving data item: 0,000.0010

Finally:

Sending data item: 658456.995

PICTURE clause of receiving data item: 999.99

Receiving data item: 456.99

7-52 DATA DIVISION

DATA DIVISION

Record Descriptions

PICTURE Clause

Fixed Insertion Editing. Fixed insertion editing uses the currency symbol and the editing sign
control symbols, +, -, CR, and DB.

Only one currency symbol and one editing sign control symbol can be used in a given
PICTURE clause when you wish to use �xed insertion editing. When the CR or DB symbol
is used, each represents two characters, and must be in the rightmost character positions
counted in determining the size of the receiving item.

When the + or - symbol is used, it must be either the leftmost or rightmost character in the
PICTURE clause for the receiving item, and is counted in the size of that item.

The currency symbol must be the leftmost character position to be counted in the size of the
item, except that it may be preceded by a + or a - symbol.

Fixed insertion editing results in the insertion character occupying the same character position
in the receiving item as it does in the character string used in the PICTURE clause.

The sign control symbols produce di�erent results, depending upon whether the sending data
item is positive or negative. These di�ering results are shown in Table 7-4 below.

Table 7-4. Effects of Sign Control Symbols on Receiving Items

Editing Symbol in
Character String

Result

Data Item Positive Data Item Negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing. Floating insertion editing uses the currency, +, or - symbol. Each
symbol is mutually exclusive of the others when you wish to perform this type of editing.

Also, zero suppression and replacement cannot be used in the same character string of a
PICTURE clause using oating insertion editing.

You can represent oating insertion editing in one of two ways. The �rst is to represent any or
all of the leading numeric positions to the left of the decimal point with your chosen oating
insertion character. The second way is to represent every numeric character position, on both
sides of the decimal point, with the insertion character.

Floating insertion editing is indicated by an occurrence of the same symbol used at least twice
in the same string. This is the major distinction between �xed and oating insertion editing.

Between or to the right of this oating insertion string, can be any of the simple insertion
characters. If such is the case, the simple insertion characters are a part of the oating
insertion character string.

The bounds of the oating insertion string (including the simple insertion characters, as noted
above) are formed by the leftmost and the rightmost elements of the oating string.

Nonzero numeric data can be stored in the receiving data item starting at the �rst character
to the right of the leftmost character in the oating string, and proceeding through the entire
oating string.

If the oating insertion characters are only to the left of the decimal point, insertion takes
place in a fashion analogous to the following algorithm:

DATA DIVISION 7-53

DATA DIVISION

Record Descriptions

PICTURE Clause

1. The leading character of the sending data item is checked to see if it has a zero value. If it
is zero, the oating insertion character is inserted in the corresponding character position
of the receiving data item and the preceding character of this data item is replaced with a
space.

2. The next character of the sending data item is then checked for a zero value, and if it is
zero, the action described in step 1 is repeated.

3. The process continues either until no numeral in the sending data item is nonzero (in which
case all the positions corresponding to the oating insertion string in the receiving data
item are replaced with spaces), or some nonzero numeral is found in the sending data item
and this numeral appears to the left of the decimal place.

If any simple insertion character appears as part of the oating insertion string, and no
nonzero character is encountered in the sending data item before the next oating insertion
character position is considered, one simple insertion character is replaced by the oating
insertion character, and the preceding oating insertion character is replaced by a space.

When a nonzero numeral is encountered in the data item, that numeral and all following it are
replaced in the positions corresponding to their positions in the oating insertion string.

If the oating insertion characters correspond to every numeric character position, including
those to the right of the decimal point, the algorithm is the same as above, with one
exception.

The exception is when the original data item is zero. In this case, the result of oating
insertion editing is that the data item referenced by the PICTURE clause contains only
spaces.

Note that to avoid truncation, your character string in the PICTURE clause for the receiving
data item must be, minimally, the size of the number of characters in the sending data item,
plus the number of nonoating insertion characters being inserted into the receiving data
item, plus one for the �rst oating insertion character. To illustrate oating insertion editing,
the following example uses a sending data item that is 00123.45, in standard data format and
uses the PICTURE clause to describe the receiving data item:

PICTURE $$$,$$$.99

Using the algorithm described above, the steps taken appear as follows:

1. First character equal to 0? Yes. Therefore, receiving data item appears as t$.

2. Second character equal to 0? Yes. Therefore, receiving data item appears as ttt$
(Because the comma preceded the �rst occurrence of a nonzero numeral).

3. Third character equal to 0? No. Therefore, receiving data item appears as ttt$123.45

Result: ttt$123.45

Note that if the PICTURE clause had been of the form:

PICTURE $$$.99

the result would be $23.45 because of truncation of the sending data item to allow for
insertion of the oating character, $, in the receiving data item.

7-54 DATA DIVISION

DATA DIVISION

Record Descriptions

PICTURE Clause

Zero Suppression Editing. Zero suppression editing allows you to replace leading zeros of the
sending data item with either spaces or asterisks in the receiving data item.

You can replace one or more leading zeros with spaces by placing a Z in the corresponding
positions of the PICTURE character string used to represent the receiving data item.

If you wish to replace leading zeros with asterisks (*), use a string of asterisks rather than Z's
in the PICTURE for the receiving data item.

You may use either the Z symbol or the * symbol, but not both, in any one PICTURE clause.

The algorithm used in zero suppression and replacement is essentially the same as the
algorithm used for oating insertion editing. That is, any simple insertion symbols may
appear between the �rst and last symbol or to the right of the last suppression symbol, and
are included as part of the suppression string.

Furthermore, if the suppression symbols appear only to the left of the decimal point, any
leading zero in the sending data item that corresponds to a suppression symbol is replaced
by that suppression symbol. Suppression terminates with the �rst occurrence of a nonzero
numeral in the sending data item or with the decimal point, whichever occurs �rst.

If all numeric character positions are represented by suppression symbols and the sending data
item is zero, the entire receiving data item consists of spaces (if Z's are used) or asterisks (if
asterisks are used), except for the decimal point.

If all numeric characters are represented in the receiving data item by suppression or
replacement symbols, and the sending data item is not zero, suppression and replacement
take place in the same manner as if the suppression symbols appeared only to the left of the
decimal place.

Note that you may not use oating insertion editing in the same PICTURE clause in which
you are using zero suppression and replacement. The following illustrates zero suppression and
replacement:

Sending data item in standard data format: 004053.67

Picture of receiving data item: PICTURE $ZZZ,ZZZ.ZZ

Result: $tt4,053.67

Using the same sending data item, but with the following picture of the receiving data item:

PICTURE $***,**9.99

results in:

$**4,053.67

Precedence Rules. Table 7-5 shows the order of precedence when using insertion, suppression,
or replacement symbols in a character string of a PICTURE clause.

An x at an intersection indicates that the symbol at the top of the column may precede the
symbol at the left of the row. Multiple symbols in a box (except for A and X) are mutually
exclusive. The leters \cs" indicate the currency symbol.

The +, -, Z, *, cs, and P symbols appear twice in the Non-Floating and Floating insertion
symbols sections of Table 7-5. The lefthand column and the upper row of each of these pairs
represents the use of the symbol to the left of the decimal point. The righthand column and
lower row represent the use to the right of the decimal point.

DATA DIVISION 7-55

DATA DIVISION

Record Descriptions

PICTURE Clause

Table 7-5. PICTURE Character Precedence Chart

Second
Symbol

First Symbol

Non-Floating
Insertion Symbols

Floating
Insertion Symbols Other Symbols

B 0 / , .
+
-

+
-

CR
DB cs

Z
*

Z
*

+
-

+
- cs cs 9

A
X S V P P

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

/ x x x x x x x x x x x x x x x x x

, x x x x x x x x x x x x x x x x

. x x x x x x x x x x

+ -

+ - x x x x x x x x x x x x x x

CR DB x x x x x x x x x x x x x x

cs x

Z * x x x x x x x

Z * x x x x x x x x x x x

+ - x x x x x x

+ - x x x x x x x x x x

cs x x x x x x

cs x x x x x x x x x x

9 x x x x x x x x x x x x x x x

A X x x x x x

S

V x x x x x x x x x x x x

P x x x x x x x x x x x x

P x x x x x

7-56 DATA DIVISION

DATA DIVISION

Record Descriptions

REDEFINES Clause

REDEFINES Clause

The REDEFINES clause allows you to de�ne the same storage area in main memory for
di�erent data items whose lengths are not described as variable in an OCCURS clause.

Syntax

Parameters

level-number and
data-name-1 and
FILLER

level number and data name of the data item being described; these are
not part of the REDEFINES clause. When the REDEFINES clause is
used in a data description entry, it must be immediately preceded by
level-number and data-name-1 .

data-name-2 data name used in a di�erent data description entry; it must have the
same level number associated with it as does data-name-1 . The level
number must not be 66 or 88, nor can it be 01, if the REDEFINES clause
is used in the FILE SECTION.

Description

Rede�nition of storage area begins at the data-name-1 entry and continues until a level
number less than or equal to that of data-name-1 (or data-name-2 since they are the same) is
found.

Because data-name-1 is a rede�nition of the storage area for data-name-2 , no entry having a
level number numerically lower than the level number of data-name-2 may occur between the
data description entries of data-name-2 and data-name-1 .

Furthermore, the description entry for data-name-2 cannot contain a REDEFINES or an
OCCURS clause, but may be subordinate to an entry that contains one of these clauses.

If the data description entry for an item to which data-name-2 is subordinate contains an
OCCURS clause, the reference to data-name-2 in the REDEFINES clause must not be
subscripted or indexed.

If the level number of data-name-1 and data-name-2 is other than 01 or data-name-2 is an
external record, the description of data-name-1 must specify

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
less than or the same number

of character positions as speci�ed for the data item referenced by data-name-2 .

Multiple rede�nitions of the same character positions are permitted in COBOL. However,
multiple rede�nitions of the same character positions must all use the data name of the entry
that was originally used to de�ne the area. The entries providing the new descriptions must
immediately follow the entries used to de�ne the area currently being rede�ned and the new
entries must not (except in the case of condition name entries) contain any VALUE clauses.

DATA DIVISION 7-57

DATA DIVISION

Record Descriptions

REDEFINES Clause

Examples

01 RECORD-IN PICTURE X(80).

01 RECORD-PARTS REDEFINES RECORD-IN.
02 NAME PICTURE X(30).

02 STREET PICTURE X(20).

02 CITY PICTURE X(20).

02 STATE PICTURE X(10).

01 PARTS-TABLE.

02 PART OCCURS 35 TIMES.

03 NAME PIC X(10).

03 QUANTITY PIC 9(04).

03 UNIT-PRICE PIC 9(06).

03 LOCALE PIC X(10).

03 SITE-INFO REDEFINES LOCALE.

04 BUILDING-NO PIC X(03).

04 FLOOR-NO PIC X(02).

04 SECTION-NO PIC X(02).

04 BIN-NO PIC X(03).

The above two uses of the REDEFINES clause are permissible, whereas the following two are
not.

05 VOCABULARY OCCURS 2000 TIMES PIC X(100).

05 WORDLIST REDEFINES VOCABULARY.

20 INITIAL PIC X(20).

20 SECOND PIC X(30).

20 THIRD PIC X(30).

20 FOURTH PIC X(20).

01 RECORD-IN.

02 FIRST-FIELD.
03 SUB-AA PIC X(15).

02 SECOND-FIELD.

03 SUB-BB REDEFINES SUB-AA PIC X(15) VALUE SPACES.

03 SUB-BB1 PIC X(05).

The �rst unacceptable usage above is because of the use of an OCCURS clause in the
description of VOCABULARY. The second is unacceptable because of the 02 level entry between
SUB-AA and SUB-BB. The new entry may not contain any value clauses.

7-58 DATA DIVISION

DATA DIVISION

Record Descriptions

SIGN Clause

SIGN Clause

The SIGN clause is only used with a signed numeric data description item or description entry
whose usage is DISPLAY, or a group item containing at least one such data description entry.

It states the position of the sign, whether leading or trailing, as well as whether the sign was
formed by overpunching in the �rst or last character of the data item (see the USAGE IS
DISPLAY clause, below) or was formed separately.

Syntax

Parameters

LEADING and
TRAILING

indicates that the sign is at the beginning or end, respectively, of the item.

SEPARATE indicates that the sign is not overpunched; that is, the sign exclusively
occupies the �rst or last character of this item.

Description

Only one sign clause may be used per given numeric data description entry.

Also, if the CODE-SET clause is speci�ed in a �le description, any signed numeric data
description entry associated with that �le must be described with the SIGN IS SEPARATE
clause.

Valid signs for data items, and their representations when overpunching is used, are shown in
the table under the USAGE IS DISPLAY heading on the following pages.

For a SIGN IS SEPARATE designation, the two valid operational signs (whether LEADING
or TRAILING) are + or - for positive and negative quantities, respectively.

For a signed numeric data description entry having no SIGN clause associated with it, the
default is equivalent to SIGN IS TRAILING. That is, the sign is assumed to be overpunched
in the last character of the item.

DATA DIVISION 7-59

DATA DIVISION

Record Descriptions

SIGN Clause

In either the default case, or the case when the optional SEPARATE CHARACTER phrase is
not used, the letter \S" in the PICTURE CLAUSE is not counted in determining the size of
the item when represented in standard data format. To illustrate the SIGN clause:

The data to be entered is 123489F

In this case, no SIGN clause is required because the default is SIGN IS TRAILING.
However, if the PICTURE clause for this data item is PICTURE S9(7), the size of the data
item is seven characters.

The data to be entered is +1409748

In this case, the SIGN clause should be: SIGN IS LEADING SEPARATE CHARACTER

Also, since the sign is separate, the PICTURE clause for this data item, PICTURE S9(7)

de�nes the data item to be eight characters long in order to hold the separate sign.

7-60 DATA DIVISION

DATA DIVISION

Record Descriptions

SYNCHRONIZED Clause

SYNCHRONIZED Clause

The SYNCHRONIZED clause is used to align items de�ned as USAGE IS
COMPUTATIONAL

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
or BINARY on word boundaries in order to facilitate arithmetic

operations. A word size is de�ned by the operating system environment (a word is 32 bits on
MPE XL).

All other items are aligned on byte boundaries. Because the character (byte) is the smallest
directly addressable unit within the COBOL language, the SYNCHRONIZED clause has
no meaning when applied to an item with any usage other than COMPUTATIONAL. It is
treated as a comment for items described as DISPLAY, INDEX, COMPUTATIONAL-3, orNN
PACKED-DECIMAL .

Syntax

Description

Because of the word structure used on HP computers, the LEFT and RIGHT options are
irrelevant and are treated as comments by the compiler.

The words SYNCHRONIZED and SYNC are equivalent.

The compiler always aligns all level 01 and level 77 items on word boundaries except in the
LINKAGE section (see the section \OPTFEATURES" in Appendix G for details).

When the SYNCHRONIZED clause is speci�ed for a data item whose description also
contains an OCCURS clause, or in a data description entry of a data item subordinate to
a description entry containing an OCCURS clause, each occurrence of the data item is
synchronized. Any implicit �ller (see \Slack Bytes", below) generated for other data items
within that same table are generated for each occurrence of those data items.

Slack Bytes

The SYNCHRONIZED clause speci�es that the data described is to be aligned on word
boundaries. If the SYNCHRONIZED item does not fall naturally on a word boundary, the
compiler assigns the next highest boundary address to the item.

The e�ect of adding a byte (or bytes) is equivalent to providing extra FILLER characters,
known as slack bytes, just before the SYNCHRONIZED item.

These slack bytes are not used for any other data item and are not counted in the size of
the items. They are, however, included in the size of any group item or items to which the
elementary item belongs, and are included in the character positions rede�ned when the
SYNCHRONIZED item is the object of a REDEFINES clause. Therefore, when you use the
REDEFINES clause in a data description that also contains a SYNCHRONIZED clause, you
must ensure that the rede�ned item has the proper boundary alignment for the item that
rede�nes it.

DATA DIVISION 7-61

DATA DIVISION

Record Descriptions

SYNCHRONIZED Clause

The computation of boundary addresses is a�ected by the $CONTROL SYNC option. This
option changes the alignment of SYNCHRONIZED data items, which a�ects the number of
slack bytes generated in a record. Items with the SYNC clause are aligned along 16-bit (2
characters) boundaries, if SYNC16 is in e�ect. Items with the SYNC clause are aligned along
32-bit (4 character) boundaries, if SYNC32 is in e�ect. (Refer to the description of DATA
DIVISION language dependencies and $CONTROL SYNC16/SYNC32 in \MPE XL System
Dependencies" in Appendix H for synchronization alignment speci�cs.) This option may be
coded more than once in a program to align one record along 16-bit boundaries, and another
record along 32-bit boundaries. Alignment cannot be changed within a record, only between
records.

This option is especially useful to develop �les to be used on other computer architectures, or
to read �les developed on other architectures.

Whenever a SYNCHRONIZED item is referenced in your program, the original size of the
item, as shown in the PICTURE clause, is used in determining any action that depends on
size. Such actions include justi�cation, truncation, or overow.

If the SYNCHRONIZED clause is not used, no space is reserved for slack bytes, and when
a computation is performed on a data item described as COMPUTATIONAL, the compiler
provides the code and space required to move the data item from its storage area to a work
area. This work area has the alignment required to perform the computation.

As an illustration of slack bytes (assuming 16-bit synchronization), consider the following data
description entries:

01 ITEM-LIST.

02 ITEM-NUMBER PICTURE X(3).

02 ITEM-1 PICTURE X(4).

02 ITEM-2 REDEFINES ITEM-1 PICTURE S9(6) USAGE COMP SYNC.

The above is an example of not taking into account the slack byte required because of the
REDEFINES clause. To correct it, the description of ITEM-LIST should include an extra byte
prior to ITEM-1:

01 ITEM-LIST.

02 ITEM-NUMBER PICTURE X(3).

02 SLACK-BYTE PICTURE X.

02 ITEM-1 PICTURE X(4).

02 ITEM-2 REDEFINES ITEM-1 PICTURE S9(6) USAGE COMP SYNC.

This change is all that was needed, since all 01 level entries are aligned on word boundaries
except in the LINKAGE section (see the section \OPTFEATURES" in Appendix H for
details).

7-62 DATA DIVISION

DATA DIVISION

Record Descriptions

SYNCHRONIZED Clause

Example

The following illustrates the use of $CONTROL SYNC:

$CONTROL SYNC32

01 OUT-REC.

05 A PIC X.

05 B PIC S9999 BINARY SYNC.

05 C PIC X.

$CONTROL SYNC16

01 IN-REC.

05 A PIC X.

05 B PIC S9999 BINARY SYNC.

05 C PIC X.

In the above example, three slack bytes are inserted before B of OUT-REC. One slack byte is
inserted before B of IN-REC.

Note Due to the $CONTROL SYNC option, boundary alignment within a record is
constant. It only changes between records.

DATA DIVISION 7-63

DATA DIVISION

Record Descriptions

USAGE Clause

USAGE Clause

The USAGE clause speci�es how the data item being described is stored internally. When
used with index, the USAGE clause speci�es that the data item being described contains a
value equal to the value of an index name associated with an occurrence number for a table
element.

Syntax

Parameters
NN
PACKED-DECIMAL ,
COMPUTATIONAL-3,
and COMP-3

equivalent; they specify packed-decimal format.

The words COMPUTATIONAL-3 and COMP-3 are an HP extension
to the 1985 ANSI COBOL standard.

NNNNNNNNNNNNNNNNNNNN
BINARY ,
COMPUTATIONAL, and
COMP

equivalent; they specify two's complement binary integer format.

DISPLAY the default usage if no USAGE clause is speci�ed. It speci�es that
data is to be stored internally as ASCII characters.

INDEX speci�es an index data item.

Description

This clause is optional, with a USAGE IS DISPLAY being used by your program for any data
item having no USAGE clause as part of its description, or as part of the description of a data
item to which it is subordinate.

You may use the USAGE clause at any level of organization. However, if written at a group
level, the USAGE clause applies to each elementary item in the group, and any USAGE clause
speci�ed at the elementary level must be the same as at the group level.

Although a USAGE clause does not a�ect the use of a data item, some of the statements in
the PROCEDURE DIVISION may restrict the USAGE clause of the operands used.

7-64 DATA DIVISION

DATA DIVISION

Record Descriptions

USAGE Clause

USAGE IS DISPLAY

When usage of a data item is de�ned (implicitly or explicitly) as DISPLAY, the data is stored
internally as ASCII characters.

This means that each character of data is stored as an 8-bit byte.

If you are using the data item in a noncomputational manner (that is, printing or displaying
it), this is the appropriate type of usage to be speci�ed.

However, for optimum use of your COBOL program, you should specify USAGE IS
COMPUTATIONAL, or

NNNNNNNNNNNNNNNNNNNN
BINARY , COMPUTATIONAL-3, or

NN
PACKED-DECIMAL for data

items intended for use in computations. This is because data items described as USAGE IS
DISPLAY must be converted to two's-complement binary or packed-decimal format before
they can be used in computations, and this conversion takes time. Also, if you intend to use
signed numeric data items for computational purposes, you must specify a sign (by using the
S symbol) in the PICTURE clause for that item (see USAGE IS COMPUTATIONAL on the
following page), whether its usage is speci�ed as DISPLAY or otherwise.

An unsigned numeric data item whose description speci�es the USAGE IS DISPLAY clause is
assumed to be positive.

Numeric DISPLAY items without a clause that designates SIGN IS SEPARATE are
represented in ASCII coded (8-bit) decimal digits (0 through 9) except for the units digit
which carries the sign of the data item. The units digit, with the sign of its associated number
being positive, negative, or no sign (absolute value) respectively, is represented in ASCII code
as shown in Table 7-6.

Note that using signed numeric DISPLAY data items for computational purposes is more
e�cient than using unsigned numeric data items.

Table 7-6.

Overpunch Characters for Rightmost Digit in ASCII Coded Decimal Numbers

Units Digit Internal Representation (ASCII)

Positive Negative No Sign

0 f g 0

1 A J 1

2 B K 2

3 C L 3

4 D M 4

5 E N 5

6 F O 6

7 G P 7

8 H Q 8

9 I R 9

Signed decimal �elds entered through punched cards are known as zone-signed �elds. To
represent a positive value, an overpunch is placed in the 12-zone above the rightmost digit
of the �eld. To represent a negative value, an overpunch is placed in the 11-zone above the
rightmost digit of the �eld. If no sign is desired, only the digits need be punched.

DATA DIVISION 7-65

DATA DIVISION

Record Descriptions

USAGE Clause

Zone signs cause the signed digit to have the same punch con�guration as certain other
characters. This is the purpose of the S symbol in the PICTURE clause; it informs the
compiler that the last digit in the �eld is to be interpreted as a number and a sign, and
not as the character that it would otherwise represent. Table 7-6 shows the data character
equivalents to each possible rightmost digit sharing a zone sign.

USAGE IS BINARY or COMPUTATIONAL

When usage of a data item is de�ned as
NNNNNNNNNNNNNNNNNNNN
BINARY or COMPUTATIONAL, the data must be

numeric. It is stored in two's-complement binary integer form, consisting of either two, four,
or eight bytes each. The number of bytes used depends upon the size of the data item, as
shown in Table 7-7 below.

Table 7-7. Number of Bytes Used to Contain a
NNNNNNNNNNNNNNNNNN
BINARY Data Item

PICTURE Number of Bytes

S9 to S9(4) 2

S9(5) to S9(9) 4

S9(9) to S9(18) 8

A data item whose usage is de�ned as
NNNNNNNNNNNNNNNNNNNN
BINARY or COMPUTATIONAL must have an unedited

numeric PICTURE clause associated with it. It may contain up to 18 digits plus a sign. Also,
if a group item is described as

NNNNNNNNNNNNNNNNNNNN
BINARY or COMPUTATIONAL, all of the elementary items

in the group are computational and may be used in computations. However, the group item
itself may not be used in computations because it is considered alphanumeric. A numeric data
item that does not have a sign associated with it is assumed to be positive.

As with numeric DISPLAY data items, a signed numeric data item whose USAGE IS
NNNNNNNNNNNNNNNNNNNN
BINARY

is more e�cient than an unsigned numeric data item with the same USAGE.

USAGE IS PACKED-DECIMAL or COMPUTATIONAL-3

Data items described as
NN
PACKED-DECIMAL or COMPUTATIONAL-3 are subject to the same

restrictions and are used in the same way as data items described as COMPUTATIONAL.
Such items are, however, stored in packed-decimal format. In this format, there are two digits
per byte, with a sign in the low order 4-bits of the rightmost byte.

Each
NN
PACKED-DECIMAL or COMPUTATIONAL-3 item may contain up to 18 digits plus

a sign. If the picture for the item does not contain a sign, the sign position in the data
�eld is occupied by a bit con�guration that is interpreted as positive. Table 7-8 illustrates
the bit con�gurations used to represent signs in packed-decimal �elds. Notice that the bit
con�guration 1100 speci�es a positive value and that the 4-bit con�guration 1111 represents
the unsigned (assumed positive) value when an unsigned picture is speci�ed. For negative
values, the 4-bit con�guration is 1101.

7-66 DATA DIVISION

DATA DIVISION

Record Descriptions

USAGE Clause

Table 7-8. COMPUTATIONAL-3 or
NN
PACKED-DECIMAL Sign Configuration

Sign
Bit

Con�guration
Hexadecimal

Value

+ 1100 C

- 1101 D

Unsigned 1111 F

Table 7-9 gives a graphic illustration of packed-decimal �elds as they might appear in
memory or in a �le. Notice that these items follow the normal rules for truncation, even
though the �eld may include an unused half-byte position. The contents of this half-byte are
unpredictable when data is interchanged with other computer systems. In the table below,
each box in the result column represents a byte.

Table 7-9.
NN
PACKED-DECIMAL Fields in Memory or in a File

Value to be Stored PICTURE of Result Result

+1234. S9999 01 23 4C

+12345. S99999 12 34 5C

12345 S9999 12 34 5F

-1.2 S999V999 00 01 20 0D

-.5 S999V999 00 00 50 0D

+1.22172 S999V999 00 01 22 1C

-12345. 99999 12 34 5F

Note that the third and last number in the table were stored as unsigned (assumed positive)
numbers because the receiving �eld is unsigned according to its PICTURE.

DATA DIVISION 7-67

DATA DIVISION

Record Descriptions

USAGE Clause

USAGE IS INDEX

An elementary data item whose usage is de�ned as INDEX is called an index data item. Its
purpose is to hold the contents of a table index while the table is being processed. Therefore,
any value within the index data item must correspond to an occurrence number of an element
in a table. An index data item is stored as a synchronized unsigned computational integer,
both internally and externally. (Refer to \System Dependencies" in Appendix H for the
correct size of an index data item.) An index data item cannot be a conditional variable,
and can only be referenced explicitly in a SEARCH or SET statement, a relation condition,
the USING phrase of the PROCEDURE DIVISION header, or USING phrase of a CALL
statement.

Do not use the SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN
ZERO clauses to describe a group of elementary items whose usage is de�ned as INDEX.
Index data items are automatically SYNCHRONIZED.

In ANSI COBOL'85, if a group item is described with a USAGE IS INDEX clause, all of its
elementary items are index data items, but the group itself is not an index data item and
cannot be used in the SEARCH or SET statements, or in an alphanumeric comparison in the
PROCEDURE DIVISION. As an HP extension to the ANSI COBOL standard, HP COBOL
II allows a group item described with USAGE IS INDEX to be used in an alphanumeric
comparison.

7-68 DATA DIVISION

DATA DIVISION

Record Descriptions

VALUE Clause

VALUE Clause

The VALUE clause is used to de�ne the values of constants and to initialize the values of
WORKING-STORAGE data items. For information on VALUE clauses in condition names,
refer to \Condition Names" later in this chapter.

Syntax

[VALUE IS literal-1]

Parameters

literal-1 the value assigned to the data item being described.

Description

The above format for the VALUE clause can only be used in the WORKING-STORAGE
SECTION. If used, the VALUE clause causes the item to which it is associated to assume the
speci�ed value at the start of the object program, irrespective of any BLANK WHEN ZERO
or JUSTIFIED clause. If the VALUE clause is not used in an item's description, the initial
value of the item is unde�ned.
NN
A VALUE clause may be used with data items (or descendants of data items)NN
containing an OCCURS clause to initialize tables.

NN
A VALUE clause (VALUE is literal-1) specified in a data descriptionNN
entry that contains an OCCURS clause, or in an entry that is subordinate toNN
an OCCURS clause, causes every occurrence of the associated data item to beNN
assigned the specific value.

NN
If a VALUE clause is specified in a data description entry of a data itemNN
that is associated with a variable occurrence data item, {{the initialization of the daNN
DEPENDING ON phrase in the OCCURS clause is set to the maximum numberNN
of occurrences specified by that OCCURS clause.

A data item is associated with a variable occurrence data item in any of the following cases:

When it is a group data item that contains a variable occurrence data item.

When it is a variable occurrence data item.

When it is a data item that is subordinate to a variable occurrence data item.

If a VALUE clause is associated with the data item referenced by a DEPENDING ON phrase,
that value is considered to be placed in the data item after the variable occurrence data item
is initialized.

DATA DIVISION 7-69

DATA DIVISION

Record Descriptions

VALUE Clause

Restrictions on the Use of the VALUE Clause

The following restrictions apply to the use of the VALUE clause. They also apply to the
VALUE clause in condition names.

The VALUE clause cannot be used in a data description entry containing a REDEFINES
clause (except when used with a condition name), or in an entry subordinate to an entry
containing a REDEFINES clause. Nor can it be used for a group containing items with
descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (except USAGE IS
DISPLAY).

The VALUE clause must not conict with any other clauses in the data description of the
item, or in the data description within the hierarchy of the item.

The VALUE clause must not be used with any external record, except for condition-name
entries associated with external records.

Literals in the VALUE Clause

The literals used in the VALUE clause are subject to the following rules:

Figurative constants may be substituted for literals.

A signed numeric literal must have a signed numeric PICTURE and character string
associated with it.

All numeric literals must have a value within the range of values indicated by the PICTURE
clause, and must not have a value which would require truncation of nonzero digits.
Nonnumeric literals must not exceed the size indicated by the PICTURE clause.

If the category of the item being described is numeric, all literals in the VALUE clause must
be numeric. If the literal de�nes the value of a working-storage item, the literal is aligned in
the data item according to the standard alignment rules.

If the category of the item being described is any other than numeric, all literals in the
VALUE clause must be nonnumeric. The literal is aligned in the data item as if the data
item had been described as alphanumeric. Editing characters in the PICTURE clause
are included in determining the size of the data item, but have no e�ect on initialization.
Therefore, the VALUE for an edited item must be presented in an edited form.

If the VALUE clause is used in an entry at the group level, the literal must be a �gurative
constant or a nonnumeric literal, and the group area is initialized without consideration
for the individual elementary or group items contained within the group. A VALUE clause
cannot be used for elements of a group that has a VALUE clause assigned to it at the group
level.

7-70 DATA DIVISION

DATA DIVISION

Record Descriptions

RENAMES Clause

RENAMES Clause

The RENAMES clause permits alternative, possibly overlapping groupings of elementary
items. This clause is always associated with a 66 level entry.

Syntax

The level number (66) and data-name-1 are not part of the RENAMES clause, but are used
to clarify the purpose of the clause.

Parameters

THROUGH and THRU equivalent.

data-name-1 the name used to rename the item or items referenced by data-name-2
and data-name-3 . It cannot be a quali�er, and can only be quali�ed by
the names of the associated 01, FD, or SD level entries.

data-name-2 and
data-name-3

must be names of elementary items or groups of elementary items in the
same logical record. They must not be the same name, and neither may
have an OCCURS clause in its data description, or be subordinate to an
item that has an OCCURS clause in its description. Furthermore, no
item within the range of the portion of the logical record being renamed
can be variable in size, or can contain such an item. Data-name-2 and
data-name-3 may be quali�ed.

If data-name-2 is used alone (that is, the optional THROUGH phrase is
unused), data-name-2 can be either a group or an elementary item.

Description

When data-name-2 is a group item, data-name-1 is treated as a group item; when
data-name-2 is an elementary item, data-name-1 is treated as an elementary item.

If the THROUGH phrase is used, data-name-1 is a group item that includes all elementary
items starting from data-name-2 and concluding with elementary item data-name-3 . Or,
if data-name-2 and data-name-3 are also group names, data-name-1 is a group name that
begins with the �rst elementary item in data-name-2 and concludes with the last elementary
item in data-name-3 .

Because of the way in which data-name-1 is de�ned, there are restrictions on the area
described by data-name-2 and data-name-3 . That is, the area described by data-name-3 must
not begin to the left of the �rst character in the area described by data-name-2 , and it must
end to the right of the last character of the area of data-name-2 .

DATA DIVISION 7-71

DATA DIVISION

Record Descriptions

RENAMES Clause

Example

01 STUDENT-REC.

03 NAME PIC X(20).
03 ID-NO PIC X(9).

03 MAJOR PIC X(3).

03 CLASSES OCCURS 5 TIMES.

05 CLASS-ID PIC X(3).

05 DEPT PIC X(3).

66 STUD-INFO RENAMES NAME THRU MAJOR.

66 MAJOR-DEPT RENAMES MAJOR.

In the above example, CLASSES, CLASS-ID, and DEPT may not be named in a RENAMES
clause because of the OCCURS clause.

Note The above paragraph implies that data-name-3 cannot be subordinate to
data-name-2 .

You can use more than one RENAMES entry for a single logical record. However, all
RENAMES entries referring to data items within a given logical record must immediately
follow the last data description entry of the associated record description entry. You cannot
use a level 66 entry to rename another level 66 entry or a 77, 88, or 01 level entry.

7-72 DATA DIVISION

DATA DIVISION

Record Descriptions

Condition Names

Condition Names

A condition name is always subordinate to another data item called the conditional variable.
The level number 88 is used to describe it. The characteristics of a condition name are
implicitly those of its conditional variable. This must be reected in the value or values
assigned to the condition name.

A condition name is assigned one or more values. The condition name can later be used to
specify comparison with the conditional variable (see Chapter 8, \PROCEDURE DIVISION",
for information on condition name conditions).

Syntax

The VALUE clause in a condition name has the following format:

Parameters

condition-name-1 any valid user-de�ned COBOL word.

literal-1 and
literal-2

the values assigned to the condition name.

THROUGH and THRU equivalent and can be used interchangeably.

Description

The VALUE clause and the condition name itself are the only two clauses permitted in the
data description entry.

The VALUE clause can be used in any of the sections of the DATA DIVISION and must be
used for condition names.

Wherever the THROUGH phrase is used, literal-1 must be less than literal-2 .

When a VALUE clause is used in a level 88 entry, you can specify no more than 127 ranges of
values for the related condition name. A range of values is either a single literal or two literals
related by the THROUGH (or THRU) keyword.

Additional rules applying to the VALUE clause in condition names are described under
the headings \Restrictions on the Use of the VALUE Clause" and \Literals in the VALUE
Clause", earlier in this chapter.

The condition name entries for a particular conditional variable must follow the entry
describing the item with which the condition name is associated (that is, the conditional
variable). Each condition name in your program must have a separate level 88 entry
associated with it. A condition name cannot be associated with any data description entry
containing a level number 66, another condition name, or a group item with descriptions
including JUSTIFIED, SYNCHRONIZED, or USAGE (other than DISPLAY).

DATA DIVISION 7-73

DATA DIVISION

Record Descriptions

Condition Names

Example

01 CONDVAR PIC 9(5) USAGE DISPLAY.

88 COND1 VALUE 10 THRU 25, 100 THRU 250.

01 ALPHAVAR PIC A.

88 ALPHACOND VALUE "A" , "M" THROUGH "Z".

7-74 DATA DIVISION

8

PROCEDURE DIVISION

The PROCEDURE DIVISION is the division that speci�es the operations to be carried out
by the program. It is an optional part of a COBOL program and may contain declarative as
well as nondeclarative procedures.

Generally, statements in the PROCEDURE DIVISION are executed by the compiler in the
order in which you enter them. However, you can alter this sequential ow by using one of the
following statements: IF, PERFORM, GO TO, or

NNNNNNNNNNNNNNNNNNNNNNNNNN
EVALUATE .

Also, through the use of the DECLARATIVES keyword coupled with the END
DECLARATIVES keywords, you can specify procedures to be executed only under special
circumstances.

PROCEDURE DIVISION 8-1

PROCEDURE DIVISION

PROCEDURE DIVISION Header

The PROCEDURE DIVISION header has the following format:

PROCEDURE DIVISION [USING fdata-name-1g . . .]

The PROCEDURE DIVISION header begins in Area A of the program. Note that the header
must be terminated by a period followed by a space.

USING Clause

The USING clause in the PROCEDURE DIVISION header is required only if the program
containing it is to be called by another COBOL program through the CALL statement.
The CALL statement itself includes a USING clause. That is, the USING clause in a
PROCEDURE DIVISION header identi�es the program in which it appears as a subprogram
that references data common to the program that calls it.

The data names in the USING clause must follow the rules listed below.

1. Each data item named in the USING phrase of a PROCEDURE DIVISION header must
be described as 01 or 77. In ANSI COBOL'85 a data item must not have a REDEFINES
clause in its description. HP COBOL II allows this as an HP extension to the ANSI
COBOL standard.

2. Data items are processed according to their descriptions in the called program, and not
according to their descriptions in the calling program. Note that although this implies that
common data may have di�erent usages, the data must, as a general rule, have the same
usage. Results may be unde�ned if usages are mixed. This is because data sharing is done
by passing an address of the data item (when passing by reference), with no conversion
from one data type to another.

3. The descriptions of data common to both programs must de�ne an equal number of
character positions.

4. Data is passed from one program to another according to the position of its name in the
USING phrase, and not by its name. Thus, data in the calling program may be known
to the calling program by a completely di�erent name. The same name can appear in
the USING phrase of the CALL statement, but each name in the USING phrase of a
PROCEDURE DIVISION header must be unique with respect to other names in that
phrase.

5. For the limit on the number of data names listed in the USING phrase, refer to \MPE XL
System Dependencies" in Appendix H for more information.

For a more general overview of passing data to and from two COBOL programs, refer to
Chapter 11, \Interprogram Communication."

8-2 PROCEDURE DIVISION

PROCEDURE DIVISION

PROCEDURE DIVISION Format

The body of the PROCEDURE DIVISION has two general formats:

The �rst format of the PROCEDURE DIVISION body can be used when you wish to use
no section names in your program. In such a case, only paragraph names are used to de�ne
procedures. This is generally not the best way to write a COBOL program, since it does
not allow for USE procedures or segmentation of the object program. It may be bene�cial,
however, if you are writing a very short, simple program.

PROCEDURE DIVISION 8-3

PROCEDURE DIVISION

The second format of the PROCEDURE DIVISION body is used when you wish to allow for
segmentation of your program or de�ne declarative procedures.

In the second format, section names may be used to de�ne procedures, with paragraph names
being used as subsections. If any part of the PROCEDURE DIVISION is written using a
section name, the entire PROCEDURE DIVISION must be written using section names.
Therefore, if a section name is used, either the entire PROCEDURE DIVISION is a single
section or the PROCEDURE DIVISION consists of several sections.

8-4 PROCEDURE DIVISION

PROCEDURE DIVISION

PROCEDURE DIVISION Syntax Rules

This section discusses syntax rules for the following areas:

Declarative Sections

Procedures

Sections and Section Headers

Segmentation

Declarative Sections

Declarative sections are optional. If used, they may appear in COBOL subprograms as well as
main programs.

When you de�ne declarative sections, they must be the �rst sections within the
PROCEDURE DIVISION, be preceded by the keyword DECLARATIVES beginning in
area A and followed by a period and a space, and be on a line by itself. To indicate where
declarative sections end and the remainder of the PROCEDURE DIVISION begins, you must
use the keywords END DECLARATIVES beginning in area A and followed by a period and
a space, and be on a line by itself. USE procedures consist of a section name followed by a
space and the keyword SECTION, followed by an optional segment number, a period and a
space, a declarative sentence, and one or more optional paragraphs.

A declarative sentence is one that contains a USE statement. The USE statements themselves
are not executed. They simply de�ne the conditions calling for the execution of the USE
procedures. The declarative procedures are the optional paragraphs following the declarative
sentence.

A single USE procedure is terminated in a source program by either a new section name,
which indicates the beginning of another declarative statement, or by the keywords END
DECLARATIVES, which indicate the end of the list of declarative sections.

As the preceding paragraph implies, you must de�ne a new section for each USE statement
entered in the source program.

Declarative procedures must not reference nondeclarative procedures, although you may use
a PERFORM statement in the nondeclarative portion of a program to refer to procedures
associated with a USE statement.

PROCEDURE DIVISION 8-5

PROCEDURE DIVISION

Below is an example of the declaratives portion of a COBOL program:

PROCEDURE DIVISION.

DECLARATIVES.
IN-FILE-ERR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON IN-FILE.

REPORT-ERR-PARA.

DISPLAY "ERROR IN IN-FILE. ".

DISPLAY "FILE-STATUS ITEM IS " FILE-STAT.

DISPLAY "WHAT ACTION?".

DISPLAY "ENTER C OR A FOR CONTINUE OR ABORT".

ACCEPT DECISION.

IF DECISION IS EQUAL TO "A" MOVE "ON" TO STOP-IT.

FILE-LABEL SECTION.

USE AFTER STANDARD BEGINNING FILE LABEL

PROCEDURE ON OUT-FILE.

WRITE-LABEL-PARA.

MOVE "HP 3000" TO LABEL-REC.

END DECLARATIVES.

In the above example, if an error occurs during execution of an OPEN, CLOSE, READ,
WRITE, REWRITE, EXCLUSIVE, or UN-EXCLUSIVE statement referencing IN-FILE, and
no AT END phrase is used in the statement, the USE procedure, IN-FILE-ERR, is executed.

When OUTFILE is opened, the second USE procedure called FILE-LABEL, is executed. This
procedure creates a user label, and as an implicit part of its operation, writes the label on the
�le.

For more information on USE procedures, refer to \USE Statement" in Chapter 9.

Procedures

A procedure consists either of one or more paragraphs or sections. A procedure name is a
word you choose that refers to a paragraph or section in the source program. A procedure
name consists of a section name or a paragraph name. A paragraph name may be quali�ed.

The physical end of the PROCEDURE DIVISION is that physical position in the source
program after which no further procedures appear.

8-6 PROCEDURE DIVISION

PROCEDURE DIVISION

Sections and Section Headers

A section consists of a section header followed by zero or more successive paragraphs. A
paragraph consists of a paragraph name followed by a period, a space, and zero or more
successive sentences. (Paragraphs, sentences, statements, and so forth are described in
Chapter 2.)

In the PROCEDURE DIVISION, a section header consists of a section name followed by the
word SECTION, an optional segment number, then a period. For example:

BEGIN-INITIALIZATION SECTION 05.

or:

END-INITIALIZATION SECTION.

If no section header is speci�ed, the entire PROCEDURE DIVISION constitutes one section.
Section names in both main programs and subprograms must be unique.

(For more information on section and paragraph names, refer to \MPE XL System
Dependencies" in Appendix H.)

The segment number appearing in a section header is used to segment the PROCEDURE
DIVISION. Thus, all sections with the same segment number constitute a program segment.
If no segment number is speci�ed, COBOL assumes it to be 0. Although sections with the
same segment numbers are a part of the same segment, they need not be physically contiguous
in the source program.

Segmentation

Segmentation is an obsolete feature of the 1985 ANSI COBOL standard.

Segmentation has no e�ect on the physical layout of the object program.

Segment Numbers

Sections in the DECLARATIVES portion of a PROCEDURE DIVISION must have segment
numbers less than 50.

The term initial state refers to the original setting of GO TO statements before they
are modi�ed at run time by the ALTER statement Refer to the \ALTER Statement" in
Chapter 9.

A segment with a segment number from 0 to 49 is in its initial state only when it is �rst used
in a given run-unit. Upon subsequent entries into such a segment, its state is the same as
when it was exited from a previous usage.

There are three exceptions where a segment with a segment number from 50 to 99 is always
in its initial state whenever control is transferred to that section. The �rst exception
concerns the appearance of a SORT, MERGE, or PERFORM statement, or any statement
that implicitly calls a USE procedure, in a section whose segment number is greater than
49. When one of these statements implicitly transfers control to a procedure outside of the
segment in which it appears, the segment is reentered in its last used state following the
execution of the procedure.

PROCEDURE DIVISION 8-7

PROCEDURE DIVISION

The second exception is when a subprogram is called from a section whose segment number
is greater than 49. In this case, if the EXIT PROGRAM or GOBACK statement is executed
in the called program, the calling program is reentered at the statement following the CALL
statement. If this statement is within the same segment as the CALL statement, the segment
is in its last used state when it is reentered.

The third exception is when a PERFORM statement is executed. If the sections or
paragraphs named in the PERFORM statement have segment numbers greater than 49,
then the segment of which they are a part is in its initial state the �rst time it is executed.
It remains in its last used state for all subsequent executions. Of course, following the
completion of the PERFORM, the associated segment is again in its initial state.

Since segment numbers greater than 49 are always (with the noted exceptions) in their initial
states when used, the compiler must initialize each section when control is passed to it, thus
lengthening execution time. Modifying a GO TO statement in such a section from outside by
using an ALTER statement in another section is impossible, since all GO TO statements in
that section are set to their initial state once control is passed to that section.

(For more information on segmentation and internal naming conventions, refer to \MPE XL
System Dependencies" in Appendix H.)

8-8 PROCEDURE DIVISION

PROCEDURE DIVISION

Statements and Sentences

PROCEDURE DIVISION Statements and Sentences

There are three types of statements and sentences in the PROCEDURE DIVISION:

Conditional statements and sentences.

Compiler directing statements and sentences.

Imperative statements and sentences.

Conditional Statements and Sentences

A conditional statement speci�es that a condition is to be tested, and depending upon the
truth value of the condition, determines the action of the object program.

HP COBOL II contains the following conditional statements:
NNNNNNNNNNNNNNNNNNNNNNNNNN
EVALUATE , IF, SEARCH, or RETURN statement.

READ statement specifying the AT END,
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NOT AT END , INVALID KEY,NNN

NOT INVALID KEY phrase.

WRITE statement specifying the INVALID KEY,
NNN
NOT INVALID KEY , END-OF-PAGE orNN

NOT AT END-OF-PAGE phrase.

START, REWRITE, or DELETE statement specifying the INVALID KEY, orNNN
NOT INVALID KEY phrase.

Arithmetic statements (ADD, COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT)

specifying the ON SIZE ERROR or
NNN
NOT ON SIZE ERROR phrase.

STRING or UNSTRING statements specifying the ON OVERFLOW or
NNN
NOT ON OVERFLOW

phrase.

CALL statement specifying the ON OVERFLOW, ON EXCEPTION, orNN
NOT ON EXCEPTION phrase.

ACCEPT statement specifying the ON INPUT ERROR, or
NN
NOT ON INPUT ERROR phrase.

A conditional sentence is a conditional statement, optionally preceded by an imperative
statement, terminated by a period followed by a space.

Compiler Directing Statements and Sentences

A compiler directing statement consists of a compiler directing verb (either COPY, USE orNNNNNNNNNNNNNNNNNNNNNNN
REPLACE) followed by the verb's operands. It causes the compiler to take a speci�c action
during compilation.

A compiler directing sentence is a single compiler directing statement terminated by a period
followed by a space.

PROCEDURE DIVISION 8-9

PROCEDURE DIVISION

Statements and Sentences

Imperative Statements and Sentences

An imperative statement either begins with an imperative verb and speci�es an unconditional
action to be taken, or it is a conditional statement that is delimited by its explicit scope
terminator (delimited scope statement). Scope terminators are described later in this chapter.

An imperative statement may consist of a sequence of one or more imperative statements.

Note that when the phrase imperative-statement appears in a format, it refers to that
sequence of consecutive imperative statements that must be ended in one of the following
ways:

By a period.
By an ELSE phrase associated with a previous IF statement.
By a WHEN phrase associated with a previous SEARCH statement.NNN
By the verb's explicit scope terminator.

An imperative sentence is an imperative statement terminated by a period followed by a
space. Verbs used in forming imperative statements are shown in Table 8-1 below.

Table 8-1. Imperative Verbs

ACCEPT1 EXCLUSIVE RELEASE

ADD2 EXAMINE REWRITE3

ALTER EXIT SET

CALL4 GO TO SORT

CANCEL GOBACK START3

CLOSE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
INITIALIZE STOP

COMPUTE2 INSPECT STRING5

NNNNNNNNNNNNNNNNNNNNNNNN
CONTINUE MERGE SUBTRACT2

DELETE3 MOVE TERMINATE

DISPLAY MULTIPLY2 UN-EXCLUSIVE

DIVIDE2 OPEN UNSTRING5

ENTER PERFORM WRITE6

NNNNNNNNNNNNNNNNNNNNNNNN
EVALUATE READ7

1 Without the optional ON INPUT ERROR and
FFF
NOT ON INPUT ERROR phrase.

2 Without the optional ON SIZE ERROR and
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
NOT ON SIZE ERROR phrases.

3 Without the optional INVALID KEY and
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
NOT INVALID KEY phrases.

4 Without the optional ON OVERFLOW, ON EXCEPTION, and
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
NOT ON EXCEPTION phrases.

5 Without the optional ON OVERFLOW and
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
NOT ON OVERFLOW phrases.

6 Without the optional INVALID KEY,
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
NOT INVALID KEY , END-OF-PAGE, and

FFF
NOT AT END-OF-PAGE

phrases.

7 Without the optional AT END,
FFFFFFFFFFFFFFFFFFFFFFFF
NOT AT END , INVALID KEY, and

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
NOT INVALID KEY phrases.

8-10 PROCEDURE DIVISION

PROCEDURE DIVISION

Statements and Sentences

Categories of Statements

HP COBOL II statements fall into 11 categories. These categories, and the verbs used in
them, are listed in Table 8-2.

Table 8-2. Categories of Statements

Category Verbs

Arithmetic ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

Compiler
Directing

COPYNNNNNNNNNNNNNNNNNNNNN
REPLACE

USE

Conditional ACCEPT (ON INPUT ERROR or
NNN
NOT ON INPUT ERROR)

ADD (SIZE ERROR or
NN
NOT ON SIZE ERROR)

CALL (ON OVERFLOW, ON EXCEPTION,
NN
NOT ON EXCEPTION)

COMPUTE (SIZE ERROR or
NN
NOT ON SIZE ERROR)

DELETE (INVALID KEY or
NNN
NOT INVALID KEY)

DIVIDE (SIZE ERROR or
NN
NOT ON SIZE ERROR)NNNNNNNNNNNNNNNNNNNNNNNN

EVALUATE

IF
MULTIPLY (SIZE ERROR or

NN
NOT ON SIZE ERROR)

READ (AT END,
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NOT AT END INVALID KEY,

or
NNN
NOT INVALID KEY)

RETURN (AT END or
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NOT AT END)

REWRITE (INVALID KEY or
NNN
NOT INVALID KEY)

SEARCH
START (INVALID KEY or

NNN
NOT INVALID KEY)

STRING (ON OVERFLOW or
NNN
NOT ON OVERFLOW)

SUBTRACT (SIZE ERROR or
NN
NOT ON SIZE ERROR)

UNSTRING (ON OVERFLOW or
NNN
NOT ON OVERFLOW)

WRITE (INVALID KEY,
NNN
NOT INVALID KEY , END-OF-PAGE,

or
NNN
NOT AT END-OF-PAGE)

Data
Movement

ACCEPT (DATE, DAY, DAY-OF-WEEK, or TIME)
EXAMINE (REPLACING)NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
INITIALIZE

INSPECT (REPLACING)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(CONVERTING)

MOVE
STRING
UNSTRING

PROCEDURE DIVISION 8-11

PROCEDURE DIVISION

Statements and Sentences

Table 8-2. Categories of Statements (continued)

Category Verbs

Ending STOP
STOP RUN
GOBACK (in main program)

Input-Output ACCEPT (identi�er)
CLOSE
DELETE
DISPLAY
EXCLUSIVE
OPEN
READ
REWRITE
SEEK
START
STOP (literal)
UN-EXCLUSIVE
WRITE

Interprogram
Communication

CALL
CANCEL
ENTRY
EXIT PROGRAM
GOBACK

Ordering MERGE
RELEASE
RETURN
SORT

Procedure
Branching

ALTER
CALL
EXIT
GO TO
PERFORM

Table
Handling

SEARCH
SET

No Operation
NNNNNNNNNNNNNNNNNNNNNNNN
CONTINUE

8-12 PROCEDURE DIVISION

PROCEDURE DIVISION

Statements and Sentences

Scope Terminators

Scope terminators mark the end of the PROCEDURE DIVISION statements that contain
them. There are two types of scope terminators:

NNNNNNNNNNNNNNNNNNNNNNNNNN
explicit and implicit.

NN
The explicit scope terminators are:

END-ACCEPT END-IF END-SEARCH

END-ADD END-MULTIPLY END-START

END-CALL END-PERFORM END-STRING

END-COMPUTE END-READ END-SUBTRACT

END-DELETE END-RETURN END-UNSTRING

END-DIVIDE END-REWRITE END-WRITE

END-EVALUATE

Examples

In the following example, the READ and IF statements have explicit scope terminators.

READ IN FILE

AT END

MOVE 'YES' TO EOF-SW

IF IN-COUNT = 0

DISPLAY "EMPTY FILE"

END-IF

END-READ

The implicit scope terminators are:

At the end of a sentence: the separator period, which terminates the scope of all previous
statements not yet terminated.

Within any statement containing another statement: the next phrase of the containing
statement following the contained statement terminates the scope of any unterminated
statement. ELSE, WHEN, and NOT AT END are examples of such phrases.

In the next example, the IF statement in line 2 is terminated by the ELSE clause on line 6.
The IF statement on line 1 is terminated by the period (.) on line 7.

1 IF HOURS > 40

2 IF PAYCODE = NONEXEMPT
3 PERFORM OVERTIME

4 ELSE

5 PERFORM NORMAL-PAY

6 ELSE

7 PERFORM NORMAL-PAY.

PROCEDURE DIVISION 8-13

PROCEDURE DIVISION

Arithmetic Expressions

Arithmetic Expressions

Arithmetic expressions are used in the COMPUTE statement and in relation conditions. They
enable you to use exponentiation, as well as the addition, subtraction, multiplication, division,
and negation operations that can be performed using arithmetic statements.

Arithmetic expressions allow you to combine arithmetic operations without the restrictions
on \composites of operands" and receiving data items that exist for arithmetic statements.
(See \COMPUTE Statement" in Chapter 9 for rules concerning calculation of intermediate
results.)

For machine speci�c limitations on the maximum number of digits in arithmetic expressions,
refer to the HP COBOL II/XL Programmer's Guide.

The number of decimal places used in evaluating an arithmetic expression is determined by
the maximum number of decimal places within the expression and within the operand of a
COMPUTE statement intended to receive the result.

An arithmetic expression can be any of the following:

An identi�er of a numeric elementary item or COBOL function.

A numeric literal.

Identi�ers and literals as described above, separated by arithmetic operators.

Two arithmetic expressions separated by an arithmetic operator.

An arithmetic expression enclosed in parentheses.

Any arithmetic expression may be preceded by a unary operator.

Arithmetic Operators

There are �ve binary and two unary arithmetic operators. Each is represented by a speci�c
character or characters. When an operator is used, it must be preceded and followed by a
space.

The binary operators are listed below:

+ symbolizes addition.

- symbolizes subtraction.

* symbolizes multiplication.

/ symbolizes division.

** symbolizes exponentiation.

8-14 PROCEDURE DIVISION

PROCEDURE DIVISION

Arithmetic Expressions

The following are unary operators:

+ is equivalent to multiplying by +1.

- is equivalent to multiplying by -1.

An arithmetic expression may only begin with a left parenthesis, a plus or minus sign, or an
identi�er or numeric literal. It may only end with an identi�er or numeric literal, or with a
right parenthesis.

Also, there must be a one-to-one correspondence between left and right parentheses, and each
left parenthesis must be to the left of its corresponding right parenthesis.

Hierarchy of Operations

When parentheses are not used or they do not entirely enclose an arithmetic expression, the
order in which the various operands are applied in evaluating the expression is determined in
the following manner:

1. Any unary operator (+ or-) is executed �rst.

2. Following the execution of a unary operator, any exponent speci�ed in the expression is
executed.

3. Next, if multiplication or division is speci�ed, the multiplication or division is executed. If
consecutive multiplications and/or divisions are speci�ed, each operation is performed in
turn, starting from the left and continuing until the rightmost multiplication or division has
been performed.

4. Following the execution of multiplication or division, any addition or subtraction speci�ed
in the expression is performed next. As with multiplication and division, if any consecutive
combination of these operators is used, evaluation begins with the leftmost and terminates
with the execution of the rightmost operator in the consecutive list.

In general, when the sequence of execution of an arithmetic expression is not speci�ed by
parentheses, the order of execution of consecutive operations of the same hierarchical level is
from left to right.

For example, the following arithmetic expression:

-5 + 3 ** 2 * 4 + 7 - 21

Is evaluated as follows:

-5 is evaluated, resulting in -5.

3 ** 2 is evaluated, resulting in 9.

9 * 4 is evaluated, resulting in 36.

-5 + 36 is evaluated, resulting in 31.

31 + 7 is evaluated, resulting in 38.

38 - 21 is evaluated, resulting in 17.

PROCEDURE DIVISION 8-15

PROCEDURE DIVISION

Arithmetic Expressions

Use of Parentheses

Parentheses may be used in arithmetic expressions to specify the order in which elements are
to be evaluated. Always use parentheses in pairs.

Expressions within parentheses are evaluated �rst. Within nested parentheses, evaluation
begins with the innermost set of parentheses, and continues outward until the expression
contained in the outermost set is evaluated.

Use of parentheses allows you to eliminate ambiguities in logic where consecutive operations of
the same hierarchical level appear, or to modify the normal hierarchical sequence of execution
in an arithmetic expression.

To illustrate the use of parentheses, the following example uses the previous arithmetic
expression. The following two expressions are equivalent:

-5 + 3 ** 2 * 4 + 7 - 21

(((-5 + ((3 ** 2) * 4)) + 7) - 21)

Both expressions result in 17. The following two expressions are also equivalent:

-5 + 3 ** (2 * 4) + 7 - 21

-5 + 3 ** 8 + 7 - 21

Both expressions result in 6542.

8-16 PROCEDURE DIVISION

PROCEDURE DIVISION

Arithmetic Expressions

Valid Combinations in Arithmetic Expressions

The ways in which operators, variables, and parentheses may be combined in an arithmetic
expression are summarized in Table 8-3 below. The word \Variable" means a numeric literal
or an identi�er of a numeric elementary item.

Table 8-3. Valid Combinations of Symbols in Arithmetic Expressions

First
Symbol

Second Symbol

Variable + - * / ** Unary + or - ()

Variable Not valid. Permissible Not valid. Not valid. Permissible.

+ - * / ** Permissible. Not valid. Permissible. Permissible. Not valid.

Unary + or - Permissible. Not valid. Not valid. Permissible. Not valid.

(Permissible. Not valid. Permissible. Permissible. Not valid.

) Not valid. Permissible. Not valid. Not valid. Permissible.

Exponentiation

ANSI COBOL'85 de�nes the following special cases of exponentiation:

If a value less than or equal to zero is raised to a power of zero, the size error condition
results.

If no real number exists as the result of the evaluation, the size error condition results.

PROCEDURE DIVISION 8-17

PROCEDURE DIVISION

Conditional Expressions

Conditional Expressions

Conditional expressions identify conditions to be tested to select one of alternate paths
of control. This selection is determined by the truth value of a condition. Conditional
expressions are used in the IF, SEARCH, EVALUATE, and PERFORM statements.

There are two categories of conditions associated with conditional expressions:

Simple conditions.

Complex conditions.

You can enclose either category within any number of paired parentheses without changing its
category. This section describes both simple conditions and complex conditions.

Simple Conditions

The six simple conditions are:

Sign condition.

Class condition.

Switch-status condition.

Relation condition.

Condition name condition.

Intrinsic relation conditions. Intrinsic relation conditions are an HP extension to the ANSI
COBOL standard.

8-18 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Sign Condition

The sign condition tests whether or not the algebraic value of an arithmetic expression is less
than, greater than, or equal to zero. The sign condition has the following format:

Parameters

arithmetic-expression any valid arithmetic expression, as described on the preceding
pages. It must contain at least one reference to a variable.

NOT coupled with one of the next keywords, algebraically tests
arithmetic-expression .

If NOT POSITIVE is speci�ed, return a value of \true" if
arithmetic-expression is negative or equal to zero; return a
value of \false" otherwise.

If NOT NEGATIVE is speci�ed, return a value of \true" if
arithmetic-expression is equal to zero or positive; return a
value of \false" otherwise.

If NOT ZERO is speci�ed, return a value of \true" if
arithmetic-expression is positive or negative; return a value of
\false" if arithmetic-expression is equal to zero.

POSITIVE, NEGATIVE, and
ZERO

each used without the NOT keyword, algebraically tests
arithmetic-expression .

If POSITIVE is speci�ed, return a value of \true" if
arithmetic-expression is greater than zero; return a value of
\false" otherwise.

If NEGATIVE is speci�ed, return a value of \true" if
arithmetic-expression is less than zero; return a value of \false"
otherwise.

If ZERO is speci�ed, return a value of \true" if arithmetic-
expression is equal to zero; return a value of \false"
otherwise.

Example

Assume that the variable A identi�es the numeric value -5.

IF A IS ZERO NEXT SENTENCE

ELSE DIVIDE A INTO SUMS.

In this example, because A is not zero, the statement DIVIDE A INTO SUMS is executed. If A
were zero, the sentence immediately following the condition sentence would be executed.

PROCEDURE DIVISION 8-19

PROCEDURE DIVISION

Conditional Expressions

Class Condition

The class condition determines whether an operand consists entirely of numbers and an
operational sign, or letters, or a user-de�ned class.

Syntax

Parameters

identi�er-1 names the operand to be tested. It must be described implicitly or
explicitly as USAGE IS DISPLAY. Other restrictions apply if the
keyword NUMERIC is used. HP COBOL II allows

NN
PACKED-DECIMAL

items to be tested for NUMERIC as an HP extension to the ANSI
COBOL standard. If identi�er-1 is a function-identi�er, it must
reference an alphanumeric function.

NOT coupled with one of the next keywords negates the condition.

ALPHABETIC means a value of \true" is returned if the operand consists entirely of
characters selected from the letters a through z, A through Z, and a
space. Otherwise a value of \false" is returned.

NUMERIC means a value of \true" is returned if the operand consists entirely of
numerals selected from the set 0 through 9 and a single operational
sign. Otherwise a value of \false" is returned.

NN
ALPHABETIC-LOWER

NN
means a value of "true" is returned if the operandNN
consists entirely of the lowercase letters a throughNN
z and space. Otherwise a value of "false" is returned.

NN
ALPHABETIC-UPPER

NN
means a value of "true" is returned if the operandNN
consists entirely of the uppercase letters A throuthNN
Z and space. Otherwise a value of "false" is returned.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
class-name-1

NNN
means a value of "true" is returned if the operandNNN
consists entirely of the characters listed in theNNN
definition of class-name-1 in the SPECIAL-NAMESNNN
paragraph of the ENVIRONMENT DIVISION.

8-20 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Description

You cannot use a NUMERIC test if the operand has a data description de�ning it as
alphabetic, or as a group item composed of elementary items whose data descriptions indicate
the presence of an operational sign or signs.

If the data description of the operand does not indicate the presence of an operational sign,
the operand is considered numeric only if it consists of numerals, and has no operational sign.

If the data description of the operand does indicate an operational sign, the operand is
considered numeric only if it consists of numerals from the set 0 through 9, and a single valid
operational sign.

Valid operational signs are determined by the presence or absence of the SIGN IS SEPARATE
clause in the data description of the operand.

If the SIGN IS SEPARATE clause is present, the valid operational signs are the standard data
format characters, + and -.

If the SIGN IS SEPARATE clause is not present, the valid operational signs in standard data
format are shown in Table 7-6 under the heading, USAGE IS DISPLAY.

The ALPHABETIC,
NNN
ALPHABETIC-LOWER, ALPHABETIC-UPPER, and class name tests cannot

be used with an operand whose data description describes it as numeric.

To illustrate the class condition, the following example uses an operand which, in standard
data format, is 35798D.

Data description of operand:

01 FIRST-NUMBER PIC S9(6) SIGN IS TRAILING.

Condition test:

FIRST-NUMBER IS NUMERIC

In this case, the test returns a value of \true", since D is a valid operational sign. D has the
value +4, thus making the numeral 35798D equivalent to +357984.

PROCEDURE DIVISION 8-21

PROCEDURE DIVISION

Conditional Expressions

Switch-Status Condition

A switch-status condition determines the on or o� status of a de�ned switch. The function
name and the on or o� value associated with the condition must be speci�ed in the
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. The Switch-Status
condition has the following format:

condition-name-1

Parameter

condition-name-1 the name associated with the function name in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION.

The result of the test is true if the switch is set to the speci�ed position corresponding to
condition-name-1 .

Example

ENVIRONMENT DIVISION

SPECIAL-NAMES.

SW0, OFF STATUS IS NOADD, ON STATUS IS ADDONE....
PROCEDURE DIVISION.

PRINT-ROUTINE.

IF NOADD THEN PERFORM OTHER-ACTION....

In the above example, if the status of switch SW0 is \o�", then a routine named
OTHER-ACTION is performed. If the status of switch SW0 is \on", then OTHER-ACTION is not
performed, and control passes to the next executable statement.

8-22 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Relation Conditions

There are two types of relation conditions in HP COBOL II. One is ANSI standard; the other
is used for checking condition codes after intrinsic calls. The intrinsic relation condition is
described following the description of ANSI standard relation conditions.

ANSI Standard Relation Conditions

A relation condition compares two operands, each of which may be a data item referenced by
an identi�er, a literal, or the value resulting from an arithmetic statement.

If a speci�ed relation exists between the two operands, the relation condition value is
\TRUE".

You may compare two numeric operands, regardless of their respective usages; however, if you
want to compare two operands and one of them is not numeric, then both must have the same
usage. Note that since group items are treated as alphanumeric, nonnumeric comparison rules
apply.

A relation condition must contain at least one reference to a variable. Relation conditions
have the following format:

Note The required relational characters '>' , '<' , '=' , '<=' , '>=' , and '<>' are
not underlined to avoid confusion with other symbols such as '�' (greater than
or equal to).

PROCEDURE DIVISION 8-23

PROCEDURE DIVISION

Conditional Expressions

Parameters

identi�er-1
or
literal-1
or
arithmetic-expression-1
or
index-name-1

the subject of the condition.

identi�er-2
or
literal-2
or
arithmetic-expression-2
or
index-name-2

the object of the condition.

[NOT] GREATER THAN equivalent to [NOT] >

[NOT] LESS THAN equivalent to [NOT] <

[NOT] EQUAL TO equivalent to [NOT] = or < > (< > is an HP extension to the ANSI
COBOL standard.)

NOT coupled with the next keyword or relation character has the following
meaning:

NOT GREATER or NOT > means less than or equal;

NOT LESS or NOT < means greater than or equal;

NOT EQUAL or NOT = means greater than or less than.
NNN
GREATER THAN OR EQUAL TO is equivalent to >=.

NN
LESS THAN OR EQUAL TO is equivalent to <=.

Comparison of Numeric Operands.

For operands belonging to the numeric class, a comparison is made with respect to the
algebraic values of the operands. The number of digits in an operand is not signi�cant. Also,
no distinction is made between a signed or unsigned value of zero.

Comparison of numeric operands is not a�ected by their usages. Unsigned numeric operands
are considered to be positive when they are used as operands in a comparison.

8-24 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Comparisons Using Index Names and Index Data Items.

Relation tests may be made using any of the index names and index data items described
below.

Two index names. The result is the same as if the corresponding occurrence numbers were
compared.

An index name and a data item (other than an index data item) or literal. The occurrence
number corresponding to the value of the index name is compared to the data item or
literal.

An index data item and an index name or another index data item. The actual values are
compared without conversion.

An index data item should only be compared with another index data item or an index name.
Comparison of an index data item with any other data item or a literal gives an unde�ned
result.

Comparison of Nonnumeric Operands.

For nonnumeric operands, or one nonnumeric operand and one numeric operand, a comparison
is made with respect to the speci�ed collating sequence (refer to \OBJECT-COMPUTER
Paragraph" in Chapter 6).

If one of the operands is numeric, it must be an integer data item or an integer literal. It must
also have the same usage as the nonnumeric operand.

If the nonnumeric operand is an elementary data item or a literal, the numeric operand is
treated as though it were moved to an elementary alphanumeric data item of the same size as
the numeric data item. The contents of this alphanumeric data item are then compared to the
nonnumeric operand.

If the nonnumeric operand is a group item, the numeric operand is treated as though it were
moved to a group item of the same size as the numeric data item. The contents of this group
item are then compared to the nonnumeric operand. Remember, a group item is always
classi�ed as alphanumeric.

Note In the previous paragraphs, \the same size as the numeric data item" means
the size of the numeric data item in standard data format. If the P character
of the PICTURE clause is included in the description for numeric operand, it
must not be included in determining the size of the operand.

PROCEDURE DIVISION 8-25

PROCEDURE DIVISION

Conditional Expressions

The size of an operand is the total number of standard data format characters in the operand.

When operands are of unequal size, comparison proceeds as though the shorter operand is
extended on the right by su�cient spaces to make the operands of equal size.

When operands are of equal size (or have been adjusted as described in the preceding
paragraph), the comparison proceeds on a character-by-character basis, starting with each
leftmost character and continuing until either the last character of each operand has been
compared, or a pair of unmatched characters is found.

The operands are considered equal if each pair of characters match, from the leftmost to the
rightmost.

The �rst time a pair of characters is found to be unequal (that is, do not match), their
positions in the program collating sequence, and the character having the numerically larger
index in the collating sequence, is considered to be greater than the other character.

Example

01 SUBJECT PIC X(06) VALUE 'FLAXEN'.

01 OBJECT PIC X(07) VALUE 'FLATTER'.

The relative condition is:

SUBJECT IS EQUAL TO OBJECT

The comparison takes place as follows:

F matches F; therefore, proceed.

L matches L; therefore, proceed.

A matches A; therefore, proceed.

X does not match T; therefore find the indices of each

in the ASCII collating sequence;

Index of X: 88

Index of T: 84

X is greater than T; thus, FLAXEN is greater than FLATTER, and the relation condition above
returns a \false" value.

8-26 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Condition Name Conditions

In a condition name condition, a conditional variable is tested to determine whether or not its
value is equal to one of the values associated with condition-name. Condition names have the
following format:

condition-name-1

Parameter

condition-name-1 an identi�er described under an 88 level data description entry
in the DATA DIVISION.

If condition-name is associated with a range of values, then the conditional variable is tested
to determine whether or not its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition name are the same as those
speci�ed for relation conditions.

The result of such a comparison is true if one of the values of condition-name equals the value
of its associated conditional variable.

Example

DATA DIVISION.

01 CON-VAR PICTURE 999.

88 CON-NAME1 VALUES ARE 001 THRU 100....
PROCEDURE DIVISION....

IF CON-NAME1 THEN PERFORM UNDER-VALUE

ELSE NEXT SENTENCE....

In the above example, the test is performed to see if CON-VAR has a value of 1, 100, or any
number between 1 and 100. If it does, a procedure named UNDER-VALUE is performed.
Otherwise, the next sentence is executed.

PROCEDURE DIVISION 8-27

PROCEDURE DIVISION

Conditional Expressions

Intrinsic Relation Conditions

Intrinsic relation conditions are an HP extension to the ANSI COBOL standard.

Intrinsic relation conditions are used only to test the condition codes returned by HP
operating system intrinsics after they have been called with the CALL INTRINSIC statement.

Syntax

Intrinsic relation conditions have the following format:

Note The required relational characters '>' , '<' , and '=' are not underlined to
avoid confusion with other symbols.

Parameter

mnemonic-name a user-de�ned name that represents the CONDITION-CODE
function. It must be de�ned in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION.

Description

If mnemonic-name is zero, execution of the intrinsic was successful. If mnemonic-name is
not zero, then an error probably occurred. Speci�c meanings are numerous, since they vary
from intrinsic to intrinsic. Refer to the MPE Intrinsics Reference Manual for your system
for meanings of the values returned. Mnemonic-name should be tested immediately after the
intrinsic call, since the value may be altered by the execution of subsequent instructions.

8-28 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Note When using CALLs to operating system intrinsics, the condition code returned
is not saved by COBOL and as such is only available until an instruction
is executed that changes the condition code. The condition code can be
successfully tested with the following examples that illustrate possible correct
and incorrect methods.

Examples

The following are correct and incorrect examples of intrinsic relation conditions.

Correct Example

The generated code for the example below causes control to branch to the following test only
if the test result is FALSE and to the next sentence if the test result is TRUE. This method
does not allow any intermediate operations, since such operations may cause the state of the
condition code to change, thereby causing incorrect program logic ow.

IF CC = 0 DISPLAY " CC = "

ELSE

IF CC > 0 DISPLAY " CC > "

ELSE

IF CC < 0 DISPLAY " CC < ".

Incorrect Examples

The generated code for the incorrect case below causes incorrect condition code status
branching for subsequent tests when the test result of the prior test is TRUE, causing
execution of the DISPLAY statement.

IF CC = 0 DISPLAY " CC = ".

IF CC > 0 DISPLAY " CC > ".

IF CC < 0 DISPLAY " CC < ".

The generated code for the incorrect case below causes incorrect condition code status
branching for subsequent tests when the OR condition test is required, as the operations
needed to test the condition causes changes to the condition code.

IF CC > 0 OR FLAG-TRUE

DISPLAY "CC > OR FLAG-TRUE"

ELSE

IF CC = 0 DISPLAY " CC = "

ELSE

IF CC < 0 DISPLAY " CC < ".

PROCEDURE DIVISION 8-29

PROCEDURE DIVISION

Conditional Expressions

Complex Conditions

A complex condition is formed by using the logical operators AND and OR to combine
simple, combined, and/or complex conditions, or by negating these conditions with the logical
negation operator, NOT.

The truth value of a complex condition, regardless of the use of parentheses, results from
the interaction of all the stated logical operators on the individual truth values of simple
conditions. It can also be the result of the intermediate truth values of conditions logically
connected or negated.

The meanings of the three logical operators are listed below.

Logical Operator Meaning

AND Logical conjunction; the truth value is \true" if both of the conjoined
conditions are true and \false" if one or both of the conjoined
conditions is false.

OR Logical inclusive OR; the truth value is \true" if one or both of the
included conditions is true and \false" if both included conditions are
false.

NOT Logical negation or reversal of truth value; the truth value is \true" if
the condition is false and \false" if the condition is true.

When a logical operator is used, it must be preceded and followed by a space.

Combined Conditions

You can form a combined condition by connecting conditions with one of the logical operators,
AND or OR. Combined conditions have the following format:

Parameter

condition-1 where condition-1 is one of �ve possible types of conditions:

A simple condition.

A negated simple condition.

A combined condition.

A negated combined condition (combined condition enclosed by
parentheses and preceded by the NOT logical operator).

Combinations of any of the four types listed above, as speci�ed in
Table 8-4.

8-30 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Although you do not need parentheses when you form a combined condition using AND or
OR, you may use parentheses to clarify and to a�ect the �nal result of a combined condition.

Table 8-4 indicates the ways in which conditions and logical operators can be combined and
parenthesized.

There must be a one-to-one correspondence between left and right parentheses. Any left
parenthesis must be to the left of its corresponding right parenthesis.

As an illustration of the use of the table, note that the pair OR NOT is acceptable, whereas
NOT OR is not acceptable.

Table 8-4.

Valid Combinations of Conditions, Logical Operators, and Parentheses

Given the
following element:

Location in
conditional
expression

In a left-to-right sequence of elements:

Element, when not �rst,
may be immediately
preceded by only:

Element, when not last,
may be immediately
followed by only:First Last

simple-condition Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No simple-condition,) simple-condition, NOT, (

NOT Yes No OR, AND, (simple-condition, (

(Yes No OR, NOT, AND, (simple-condition, NOT, (

) No Yes simple-condition,) OR, AND,)

PROCEDURE DIVISION 8-31

PROCEDURE DIVISION

Conditional Expressions

Negated Simple Conditions

The NOT operator can be used to negate simple conditions.

A negated simple condition has a value of \true" only if the value of the simple condition
is \false". Conversely, a negated simple condition has a value of \false" only if the simple
condition itself has a value of \true".

Negated simple conditions have the following format:

NOT condition-1

Parameter

condition-1 where condition-1 is one of �ve possible types of conditions:

A simple condition.

A negated simple condition.

A combined condition.

A negated combined condition (combined condition enclosed by
parentheses and preceded by the NOT logical operator).

Combinations of any of the four types listed above, as speci�ed in
Table 8-4.

Example

IF CON-NAME1 THEN PERFORM UNDER-VALUE

ELSE NEXT SENTENCE.

is equivalent to:

IF NOT CON-NAME1 THEN NEXT SENTENCE

ELSE PERFORM UNDER-VALUE.

8-32 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Condition Evaluation Rules

You may use parentheses to specify the order in which individual conditions of complex
conditions are to be evaluated when you wish to modify the precedence rules (as listed below)
for evaluating such conditions.

Conditions within parentheses are evaluated �rst. Within nested parentheses, the condition
bounded by the innermost set is evaluated �rst, followed by the condition within the
next innermost set. The process continues until the condition within the outermost set of
parentheses is evaluated.

When parentheses are not used, or when they completely contain a condition, the following
rules (in the order listed) are used to determine the truth value:

1. The order of precedence of logical operators is NOT, AND, OR. The order of precedence
establishes hierarchical levels of conditions at the same precedence level.

2. Conditions in the same hierarchical level are evaluated from left to right. Evaluation of
that level terminates as soon as a truth value for the level is determined, regardless of
whether all the constituent conditions within that level have been evaluated.

3. Values are established for arithmetic expressions if and when it is necessary to evaluate
them.

4. Negated conditions are evaluated if and when it is necessary to evaluate them.

Application of the above rules is illustrated in Figure 8-1 through Figure 8-4 on the following
pages.

PROCEDURE DIVISION 8-33

PROCEDURE DIVISION

Conditional Expressions

Figure 8-1.

Evaluation of the hierarchical level condition-1 and condition-2 and . . . condition-n

8-34 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Figure 8-2. Evaluation of the hierarchical level condition-1 or condition-2 or . . . condition-n

PROCEDURE DIVISION 8-35

PROCEDURE DIVISION

Conditional Expressions

Figure 8-3. Evaluation of condition-1 or condition-2 and condition-3

8-36 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Figure 8-4. Evaluation of (condition-1 or not condition-2) and condition-3 and condition-4

PROCEDURE DIVISION 8-37

PROCEDURE DIVISION

Conditional Expressions

Abbreviated Combined Relation Conditions

If you combine simple or negated simple relation conditions with logical connectives (AND
and OR) in a consecutive sequence in such a way that:

No parentheses are used in the consecutive sequence, and

A succeeding relation condition contains the same subject as the preceding relation
condition, or

A succeeding relation condition contains the same subject and the same relational operator,

you can abbreviate any relation condition, except the �rst, within the consecutive sequence.

There are two ways by which you can abbreviate such relation conditions. The �rst is by
omitting the subject of the relation condition; the second is by omitting the subject and the
relational operator of the relation condition. Abbreviated combined relation conditions have
the following format:

The e�ect of using such abbreviations is that the last preceding stated subject is inserted in
place of the omitted subject, and the last stated relational operator is inserted in place of the
relational operator.

In order to ensure that an abbreviated relation condition is valid, insert the omitted subject
and relational operator. If, after insertion, the combined relation condition is valid according
to the rules in Table 8-4 above, the abbreviated relation condition is valid.

The end of an abbreviated relation condition is signi�ed by the �rst occurrence of a complete
simple condition within a complex condition.

The word NOT can be used in two di�erent ways: as part of a relational operator or as
the logical negation operator. The rules for its usage in an abbreviated combined relation
condition are as follows:

If the word immediately following NOT is one of the following: GREATER, LESS,
EQUAL, or one of the equivalent symbols (>, <, =), then NOT participates as part of the
relational condition.

If the word immediately following NOT is not one of those listed in the above paragraph, it
is considered to be the negation operator. Thus, it negates only the �rst occurrence of the
abbreviated relation condition.

8-38 PROCEDURE DIVISION

PROCEDURE DIVISION

Conditional Expressions

Examples

A > B AND NOT < C OR D

is equivalent to:

((A > B) AND (A NOT < C))

OR (A NOT < D)

A NOT EQUAL B OR C

is equivalent to:

(A NOT EQUAL B) OR (A NOT EQUAL C)

NOT A = B OR C

is equivalent to:

(NOT (A = B)) OR (A = C)

NOT (A GREATER B OR < C)

is equivalent to:

NOT ((A GREATER B) OR (A < C))

NOT (A NOT > B AND C AND NOT D)

is equivalent to:

NOT ((((A NOT > B) AND (A NOT > C)) AND (NOT (A NOT > D))))

PROCEDURE DIVISION 8-39

PROCEDURE DIVISION

Common Phrases

Common Phrases

The
NNNNNNNNNNN
NOT , ROUNDED, SIZE ERROR, and CORRESPONDING phrases are common phrases

used in several PROCEDURE DIVISION statements. In order to avoid describing each of
these phrases each time they appear in a particular statement, they are described just once in
the following paragraphs.

In the description that follows, the term resultant identi�er means the identi�er associated
with a result of an arithmetic operation.

NOT Phrases

The
NNNNNNNNNNN
NOT phrases are a feature of the 1985 ANSI COBOL standard.

You can use NOT phrases with the statements that have conditionally executed exception
phrases. The imperative statements in the NOT phrases execute when the exception does not
occur. Table 8-5 lists the new NOT phrases and their associated verbs.

Table 8-5. NOT Phrases and Associated Verbs

Phrase Statement
NNN
NOT AT END-OF-PAGE WRITE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NOT AT END READ

RETURN
NNN
NOT INVALID KEY DELETE

READ
REWRITE
START
WRITE

NN
NOT ON EXCEPTION CALL
NNN
NOT ON OVERFLOW STRING

UNSTRING
NN
NOT ON SIZE ERROR ADD

COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

NNN
NOT ON INPUT ERROR ACCEPT

8-40 PROCEDURE DIVISION

PROCEDURE DIVISION

Common Phrases

ROUNDED Phrase

The ROUNDED phrase consists entirely of the keyword, ROUNDED.

In an arithmetic operation, if, after decimal point alignment, there are more decimal places in
the fraction of the result than is speci�ed for the resultant identi�er, truncation is performed
on the result. The number of digits truncated is dependent upon the number of decimal places
speci�ed for the fractional part of the resultant identi�er.

If you want to round the result before truncation occurs, you can use the ROUNDED option.

If the ROUNDED phrase is speci�ed in an arithmetic operation, the absolute value of the
resultant identi�er is increased by one whenever the most signi�cant digit of the excess
portion of the result is greater than or equal to 5. The excess portion is then truncated.

When the low-order integer positions in a resultant identi�er are represented by the P
character in the PICTURE clause of that resultant identi�er, rounding occurs relative to the
rightmost integer position for which storage is allocated.

SIZE ERROR Phrase

The SIZE ERROR phrase has the format

[ON SIZE ERROR imperative-statement]

where imperative-statement is one or more imperative statements.

If, after decimal point alignment, the number of digits in a result exceeds the number of digits
speci�ed for the associated resultant identi�er, a SIZE ERROR condition exists.

The imperative-statement is executed if a SIZE ERROR condition occurs.

The SIZE ERROR condition applies only to the �nal result of most arithmetic operations; it
applies to intermediate results, however, when the MULTIPLY, DIVIDE, and COMPUTE
statements are used.

Note that division by 0 (zero) and violation of the rules for exponentiation always forces a
SIZE ERROR condition.

If the ROUNDED phrase is speci�ed in an arithmetic operation, rounding is done before a
SIZE ERROR check is performed.

Note When a SIZE ERROR condition occurs and the SIZE ERROR phrase is not
speci�ed, the values of any resultant identi�ers a�ected are unde�ned.

If other resultant identi�ers are involved in a particular arithmetic operation for which a SIZE
ERROR condition occurs, their values are una�ected. Only the resultant identi�ers for which
the SIZE ERROR occurs have unde�ned values.

PROCEDURE DIVISION 8-41

PROCEDURE DIVISION

Common Phrases

Example 1

If the following arithmetic operation forces a SIZE ERROR condition for B, but not for C, only
B has an unde�ned value:

ADD A TO B, C

When the SIZE ERROR phrase is speci�ed for an arithmetic operation and a SIZE ERROR
condition exists for the values of one or more of the resultant identi�ers involved, their values
remain as they were before the operation was executed.

Values of other resultant identi�ers involved in the operation are una�ected by size errors.
Therefore, their values are changed according to the arithmetic operation speci�ed.

The SIZE ERROR phrase includes an imperative-statement following the words SIZE
ERROR. This statement is executed following the occurrence of a size error in an arithmetic
statement for which the SIZE ERROR phrase is speci�ed.

Example 2

WORKING-STORAGE SECTION.

01 SIZE-ERR.

02 NOTIFY PIC X(10) VALUE 'SIZE ERROR'.

02 PARAMETERS.

03 PARM-1 PIC Z(18) VALUE 0.

03 PARM-2 PIC Z(18) VALUE 0.

PROCEDURE DIVISION....
ADD A B TO C D ROUNDED

ON SIZE ERROR PERFORM NOTIFICATION....
NOTIFICATION.

MOVE C TO PARM-1.

MOVE D TO PARM-2.

WRITE SIZE-ERR AFTER ADVANCING 1 LINE....

If an ADD or SUBTRACT statement uses the CORRESPONDING phrase as well as the
SIZE ERROR phrase and an operation produces a size error condition, the imperative
statement in the SIZE ERROR phrase is not executed until all individual additions or
subtractions are completed.

8-42 PROCEDURE DIVISION

PROCEDURE DIVISION

Common Phrases

CORRESPONDING Phrase

The CORRESPONDING phrase consists entirely of the word CORRESPONDING, or of
the equivalent abbreviation, CORR. The purpose of the CORRESPONDING phrase is to
allow you to add, subtract, or move a data item subordinate to a group item to a data item
subordinate to some other group item.

Two data items are said to correspond if three conditions are met. For purposes of
description, assume that D1 and D2 are group items.

A data item from D1 is said to correspond to a data item from D2 if:

1. Both of the data items have the same name, the name is not FILLER, and both have the
same quali�ers up to, but not including D1 and D2.

2. When the CORRESPONDING phrase is being used in a MOVE statement, at least one of
the data items is an elementary data item; when the CORRESPONDING phrase is used in
an ADD or SUBTRACT statement, both data items are elementary data items.

3. The descriptions of D1 and D2 do not contain a 66, 77, or 88 level number and do not
contain a USAGE IS INDEX clause.

Any data item that is a candidate for use in a CORRESPONDING phrase is ignored if it
contains a REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clause, even if it
meets the conditions above. Furthermore, any data items subordinate to such a data item are
also ignored.

These restrictions do not apply to D1 and D2, except as noted in condition 3 above.

Example

01 FIRST-DATA.

02 ENTRY-1.

03 ENTRY-1A PIC 9(5)V99.

03 ENTRY-1B PIC 9(3)V99.

02 ENTRY-2 PIC X(30).

01 SECOND-DATA.

02 ENTRY-1.

03 ENTRY-1A PIC 99V99.

03 ENTRY-1B PIC 999.

02 FINISH PIC X(20).

ENTRY-1A of FIRST-DATA corresponds to ENTRY-1A of SECOND-DATA, and ENTRY-1B of
FIRST-DATA corresponds to ENTRY-1B of SECOND-DATA.

ENTRY-1 of FIRST-DATA does not correspond to ENTRY-1 of SECOND-DATA because of the
second condition of correspondence.

The ADD statement below uses the CORRESPONDING phrase to add ENTRY-1A of
FIRST-DATA to ENTRY-1A of SECOND-DATA, and ENTRY-1B of FIRST-DATA to ENTRY-1B of
SECOND-DATA. The results are stored in ENTRY-1A and ENTRY-1B of SECOND-DATA.

ADD CORRESPONDING FIRST-DATA TO SECOND-DATA.

PROCEDURE DIVISION 8-43

PROCEDURE DIVISION

Common Phrases

Note There is a limit of approximately 500 matching pairs allowed in a single
MOVE CORRESPONDING statement. Multiple MOVEs are necessary to
exceed this limit. Compiler errors 390 and 457 are given for this condition.

8-44 PROCEDURE DIVISION

PROCEDURE DIVISION

Common Arithmetic Features

Common Features of Arithmetic Statements

The �ve arithmetic statements, ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE
have the following features in common:

1. The data descriptions of operands in an arithmetic statement need not be the same.

If operands are of mixed types, the compiler generates any data conversion routines
necessary to format the data. Note that this does increase the size of the code space.

If the operands are already de�ned as COMPUTATIONAL SYNCHRONIZED, the
compiler does not have to generate conversion routines. This reduces the object program
size and its execution time. Therefore, to maximize e�ciency of arithmetic operations,
remember to de�ne the operands as being COMPUTATIONAL SYNCHRONIZED or with
a usage of COMPUTATIONAL-3.

For more information, see the HP COBOL II/XL Programmer's Guide.

2. The maximum size of each operand is 18 digits. The composite of operands must not
contain more than 18 decimal digits.

The composite of operands is the hypothetical data item resulting from the superimposition
of speci�ed operands in an arithmetic statement after the operands have been aligned on
their decimal points.

For example, in format 1 of the ADD statement, the composite of operands is determined
by using all of the operands in a given statement.

Therefore, if A = 1234.567, B = 1.2359, and C = 10340.77, the composite of operands of the
statement ADD A, B TO C is 10340.2359.

This number was arrived at by selecting the operand with the greatest number of digits to
the right of the decimal point (in this case, 1.2359), and then the operand with the greatest
number of digits to the left of the decimal point (which is 10340.77).

These two operands were then superimposed, with the larger number to the left or right of
the decimal point masking the smaller.

3. Arithmetic statements can have multiple results. For example, the following ADD
statement gives the multiple results, A + B, A + C, and A + D:

ADD A TO B, C, D.

Such statements behave as though they had been written in the following way:

a. A statement was �rst written that performs the speci�ed arithmetic operation, and
stores the results in a temporary location.

b. A sequence of statements was then written that transfers or combines the value in the
temporary location with each of the single data items speci�ed as a result in the original
arithmetic statement. This hypothetical sequence of statements was written to perform
the transferring or combining of the temporary value in the same left-to-right sequence
as the multiple results are listed.

PROCEDURE DIVISION 8-45

PROCEDURE DIVISION

Common Arithmetic Features

Example

The following example illustrates how a temporary location is used in an ADD statement:

ADD A, B, C TO C, D, E

The above ADD statement is equivalent to the following ADD statements, where TEMP is a
temporary location that stores the intermediate result:

ADD A,B,C GIVING TEMP

ADD TEMP TO C

ADD TEMP TO D

ADD TEMP TO E

Overlapping Operands and Incompatible Data

When a sending and a receiving data item in an arithmetic statement or an INSPECT,
MOVE, SET, STRING, or UNSTRING statement share a part of their storage areas, the
result of the execution of such a statement is unde�ned.

Furthermore, except for a class condition, when the contents of a data item are referenced in
the PROCEDURE DIVISION and the contents of that data item are not compatible with the
class, the sign, or the range of values speci�ed by its PICTURE clause, the result of such a
reference is unde�ned.

Variable-Length Receiving Items
NNN
In ANSI COBOL'85, when a receiving item is a variable-length data item andNN
contains the object of the DEPENDING ON phrase, the maximum length of theNNN
item is used.

In ANSI COBOL'74, the length is computed using the object of the DEPENDING ON
phrase.

8-46 PROCEDURE DIVISION

PROCEDURE DIVISION

I-O Error Handling

Input-Output Error Handling Procedures

Input-output error handling procedures are controlled by the following programming options
in the sequence shown.

First, the FILE STATUS item (if declared) is set for the associated �le.

Second, the INVALID KEY, AT END, or AT EOP phrases on selected I-O statements are
executed.

Third, if no INVALID KEY, AT END, or AT EOP is executed, a USE statement and its
associated procedure is executed.

Ten input-output statements allow exception condition processing with a USE procedure, a
FILE STATUS item, or the INVALID KEY, AT END, or AT EOP phrases. Table 8-6 lists
these statements and the kinds of exception condition processing each one can use.

Table 8-6. Input-Output Statements and Exception Condition Options

Statement USE Procedure
FILE STATUS

Item

INVALID KEY
AT END
AT EOP

CLOSE Yes Yes No

DELETE Yes Yes Yes

EXCLUSIVE Yes Yes No

OPEN Yes Yes No

READ Yes Yes Yes

RETURN No No Yes

REWRITE Yes Yes Yes

START Yes Yes Yes

UN-EXCLUSIVE Yes Yes No

WRITE Yes Yes Yes

If an exception condition occurs and:

Neither a FILE STATUS item, USE statement procedure, INVALID KEY or AT END
phrase is speci�ed, the program is aborted along with a �le system tombstone display.

An INVALID KEY or AT END phrase is speci�ed, with no USE statement speci�cation,
and an INVALID KEY or AT END condition occurs, the program continues executing
in-line code. If a USE procedure was speci�ed, it is executed.

There are any errors in DISPLAY, ACCEPT (without ON INPUT ERROR), SORT,
MERGE and RELEASE, the program aborts.

These precedence rules are also de�ned in Figure 8-5, which includes tests for the ANSI
COBOL'85 clauses NOT INVALID KEY and NOT AT END.

PROCEDURE DIVISION 8-47

PROCEDURE DIVISION

I-O Error Handling

Figure 8-5. Input-Output Error Handling

8-48 PROCEDURE DIVISION

9

PROCEDURE DIVISION Statements

All statements that can be used in the PROCEDURE DIVISION are described in alphabetical
order in this chapter.

ACCEPT Statement

The ACCEPT statement can be used for low volume input from a speci�ed device.

Syntax

ACCEPT has three general formats, as shown below:

PROCEDURE DIVISION Statements 9-1

ACCEPT

Parameters

identi�er a valid data name; it receives the data entered by the execution of the
ACCEPT statement.

SYSIN in a batch job, the input stream �le; in a session, this name indicates the
terminal used to initiate execution of your program. There is no indication
of a pending user response; thus, you should use the DISPLAY statement
immediately before the ACCEPT statement to indicate that the ACCEPT
statement is awaiting input. The SYSIN device for jobs (that is, in batch
mode), is the stream �le. For sessions, this is your terminal.

When the FROM option is not speci�ed, the compiler assumes the SYSIN
device.

Note Special care must be taken when the SYSIN device is used for the ACCEPT
statement, and the program is running in batch mode. In this case, the
ACCEPT statement simply reads the next record of the job stream. Without
careful planning, this record could be a data record, or an MPE command.

CONSOLE the operator's console. When an ACCEPT statement specifying the
FROM mnemonic name for CONSOLE option or FROM CONSOLE is
executed, the �eld speci�ed by identi�er must not exceed 31 characters
and the following actions result:

1. A system-generated message is automatically displayed at the console,
followed by the message, AWAITING REPLY.

2. Object program execution is suspended.

3. When the computer operator enters the input data requested, this
data is moved to the �eld speci�ed by the identi�er. Data positioning
and/or conversion is performed subject to whether the FREE phrase
speci�cation was included.

Note I-O errors that occur during execution of ACCEPT do not produce a
\tombstone" since the I-O is not done by the �le system.

mnemonic-name a name assigned in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. It must be a name for either SYSIN or
CONSOLE, and has the same e�ect as the device name to which it is
equated.

imperative-
statement

one or more imperative statements. The INPUT ERROR phrase in which
it appears can only be used if the FREE phrase is used.

DATE composed of the year of the century, month of year, and day of month, in
that order. Thus, for example, February 16, 1985 is transmitted as 850216.
COBOL moves this data as an unsigned elementary numeric integer data
item six digits in length.

9-2 PROCEDURE DIVISION Statements

ACCEPT

DAY composed of the year of the century and day of the year, in that order. For
example, February 16, 1985 is accessed as 85047. COBOL moves this data
as an unsigned elementary numeric integer data item �ve digits in length.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DAY-OF-WEEK composed of a single data element whose content represents the day of the

week. The value, 1 represents Monday, 2 represents Tuesday, . . . , and 7
represents Sunday. COBOL moves this data as an unsigned elementary
numeric data item one digit long.

TIME the time of day, taken from a 24 hour clock, in hours, minutes, seconds
and tenths of a second. The minimum value of time is 00000000, and the
maximum is 23595990. COBOL moves this data as an unsigned elementary
numeric integer data item eight digits long.

ACCEPT Statement - Formats 1 and 2

When formats 1 and 2 are used, data is accepted from an input spool �le (if your program is
running in batch mode), the terminal from which your program is executed (if it is running in
session mode), or from the operator's console (if the CONSOLE option is used). This data is
then used to replace the contents of the data item named by identi�er .

FREE and INPUT ERROR Phrases

The FREE and INPUT ERROR phrases are HP extensions to the 1985 ANSI COBOL
standard.

The FREE phrase allows you to use free-�eld format to enter data.

The INPUT ERROR phrases may also be used if the FREE phrase has been speci�ed. They
may not, however, be speci�ed if the FREE phrase is not. This is the distinction between
formats 1 and 2 of the ACCEPT statement.

Free-�eld format uses the pound sign (#) to indicate the end of data. The ampersand (&),
if used as the last nonblank character in a record, indicates a continuation of data from one
record or line to another. An ampersand takes precedence over the pound sign.

If the ACCEPT statement is issued against a terminal (operator's console or otherwise), the
pound sign is not required to terminate data. The pound sign need only be used to indicate
the end of data on a terminal when the last nonblank character of data to be read is an
ampersand. Otherwise, simply pressing the RETURN key on the terminal indicates the end of
data.

If you want to enter a pound sign as part of your data, you must use two consecutive pound
signs, in which case, your program takes a single pound sign as a data character. Thus, for
example, if you enter the characters, ABC##&, a single pound sign is treated as part of the
data, and the ampersand is assumed to indicate a continuation of the data to the next line.

In free-�eld format, alphanumeric data is left justi�ed (or right justi�ed if
JUSTIFIED [RIGHT] is speci�ed in the PICTURE clause for the receiving data item), with
blank �ll for any unused character positions. Numeric data is aligned on the decimal point,
with zero �ll for unused character positions.

PROCEDURE DIVISION Statements 9-3

ACCEPT

If the identi�er named in the ACCEPT statement names a numeric or numeric-edited
data item, the input must be a numeric value, with an optional leading separate sign. Any
necessary conversion takes place automatically as in elementary moves (see the \MOVE
Statement").

In any case other than numeric or numeric-edited data, input is assumed to be alphanumeric.
No conversion takes place, but justi�cation and space �lling is performed as described above.

If you use the FREE phrase, you can also specify the ON INPUT ERROR andNN
NOT ON INPUT ERROR phrases. These phrases allow you to handle the following three input
error conditions:

An illegal digit or illegal sign in a numeric item, or too many digits. The input data will not
�t without left or right truncation.

A physical I-O error or an end-of-�le error.

An input string that is too long for the receiving �eld.

When such an error condition occurs and the ON INPUT ERROR phrase is speci�ed, control
is passed to the imperative statement of that phrase. If none of these conditions occurs, the
ON INPUT ERROR phrase is ignored and control is transferred to the end of the ACCEPT
statement, or to the imperative statement speci�ed in the NOT ON INPUT ERROR if it is
used.

Note The maximum input record length for the ACCEPT statement with the
FREE phrase is 256 characters. Use of the ampersand (&) continuation
character, as the last nonblank character in the data record line input, allows
the record length to be continued to the de�ned length of the identi�er, which
is then only limited by the available user stack space to contain the identi�er.

Example

DATA DIVISION.

01 IN-DATA PICTURE X(19) VALUE SPACES....
PROCEDURE DIVISION....

ACCEPT IN-DATA FREE;

ON INPUT ERROR DISPLAY "DATA TOO LONG".

DISPLAY "'", IN-DATA, "'"....

9-4 PROCEDURE DIVISION Statements

ACCEPT

The following is user input to the above program:

DOUBLE&

TROUBLE &
BUBBLE GUM

The result of the above user input would be:

DATA TOO LONG

'DOUBLETROUBLE BUBBL'

And if the following were user input to the above program:

ADD & GET ## OF SUM#

The result would be:

'ADD & GET # OF SUMt'

In the �rst response above, the message DATA TOO LONG was returned because the user
response exceeded 19 characters. Note that the data stored did not include the �ve characters,
E GUM. If the ON INPUT ERROR had not been speci�ed, there would have been no indication
that the data had been truncated. In the second example, the user response was 18 characters
so the compiler adds a trailing character blank.

ACCEPT Statement Without the FREE Phrase

If a format 1 ACCEPT statement is used without the FREE phrase and the receiving data
item requires fewer characters than the hardware imposed maximum, when the input data is
transferred and it is the same length as the receiving data item, no problems arise.

If a hardware device is not capable of transferring data of the same size as the receiving data
item, two cases must be considered.

First, if the size of the receiving data item exceeds the size of the transmitted data, the
transmitted data is stored in the leftmost characters of the receiving data item. Additional
data is then requested. The next group of data elements transmitted (if any) is aligned to the
right of the rightmost character already occupying positions in the receiving data item. This
process continues until either the receiving data item is full or the RETURN key is depressed
(in session mode).

Refer to \MPE XL System Dependencies" in Appendix H for more information on the
ACCEPT statement and the receiving data item.

PROCEDURE DIVISION Statements 9-5

ACCEPT

Note An ACCEPT operation prematurely terminated by a :EOD or :EOJ (in job
mode) causes a read error condition and abort of the program.

You can use the linefeed key to continue the transmission of characters from your screen after
you have reached the right margin. This allows you to enter up to 256 characters per line
before you press the RETURN key. In most cases, this avoids the necessity of sending only
part of the characters required to �ll the receiving data item at a given time.

In the second case, if the size of the transferred data exceeds the size of the receiving
data item, or of the portion of the receiving data item not yet occupied, only the leftmost
characters of the transferred data are stored in the area available in the receiving data item.
The remaining characters are ignored.

Programming Considerations

The ACCEPT statement does not signal that it is waiting for a response. Therefore, a
DISPLAY statement should usually precede an ACCEPT statement. This DISPLAY
statement serves the dual purposes of warning you that a response is required to continue the
program, and to indicate what the expected response might be.

The maximum number of characters that can be read by an ACCEPT statement is 256;
however, certain hardware constraints apply to the ACCEPT statement. For example, when
the SYSIN device is a card reader, the maximum number of characters that can be transferred
is 80. The maximum number of characters that can be transferred from a terminal depends on
the width of the device's carriage; you must terminate responses from these devices.

The ACCEPT statement issues multiple requests for data until su�cient data is read. If the
identi�er speci�es 60 characters and the SYSIN device is a card reader, the last 20 characters
on the card(s) are ignored.

When numeric data is to be input through the ACCEPT statement, you must resolve the
problems of decimal point alignment and negative input values as well as leading and trailing
zero �ll. The following conventions should be observed:

Identi�er must be de�ned as X-type data or as a group item.

The number of characters input should always be equal to the length de�ned for the
identi�er.

If the period character is entered as a decimal point along with the signi�cant data, the
program must strip out the period before the numeric data can be used in arithmetic
operations. This technique simpli�es the task of data entry (and is, therefore, less error
prone) at the cost of programming overhead.

9-6 PROCEDURE DIVISION Statements

ACCEPT

Examples

The following coding is a typical example of an ACCEPT statement. Notice the use of the
DISPLAY statement before the ACCEPT statement.

DISPLAY "IS THIS END-OF-MONTH? REPLY YES OR NO".

ACCEPT E-O-M-FLAG.

The following example presents one technique for removing a period entered as a part of a
numeric �eld that must be used for subsequent arithmetic operations. The following data
description coding appears in the WORKING-STORAGE SECTION:

01 INPUT-AMOUNT.

02 FIELD-1 PIC XX.

02 FILLER PIC X.
02 FIELD-2 PIC XX.

01 HOLD-AMOUNT.

02 FIELD-A PIC 99.

02 FIELD-B PIC 99.

01 CALC-AMT REDEFINES HOLD-AMOUNT.

02 CALC-AMOUNT PIC 99V99.

The following coding appears in the PROCEDURE DIVISION:

GET-AMOUNT.

DISPLAY "ENTER AMOUNT. FORMAT EQUALS 99.99.".

DISPLAY "SUPPLY LEADING ZERO IF REQUIRED.".

ACCEPT INPUT-AMOUNT.

ERROR-CHECK.

MOVE FIELD-1 TO FIELD-A.

MOVE FIELD-2 TO FIELD-B.

IF CALC-AMOUNT IS NOT NUMERIC GO TO BAD-AMOUNT.

ADD CALC-AMOUNT TO FACTOR-X....
BAD AMOUNT.

DISPLAY "AMOUNT ENTERED INCORRECTLY. TRY AGAIN.".

GO TO GET-AMOUNT.

The following two examples present possible techniques for handling the input of negative
values.

PROCEDURE DIVISION Statements 9-7

ACCEPT

Example 1: Minus sign conversion method

This example illustrates a method whereby the person entering the data precedes the quantity
with a minus sign, and the program checks for the character and converts the value to an
internal negative value.

ID DIVISION.

PROGRAM-ID. JUNK-1.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 IN-DATA.
02 SIGN-BYTE PIC X.

02 DATA-BYTES PIC 9(6).

01 DATA-VAL PIC S9(6).

PROCEDURE DIVISION.

01-ENTER-DATA.

DISPLAY "ENTER SIGN FOLLOWED BY SIX-DIGIT NUMBER".

ACCEPT IN-DATA.

02-VALIDATE DATA.

IF DATA-BYTES NOT NUMERIC THEN

DISPLAY "ILLEGAL DIGITS IN INPUT--PLEASE RE-ENTER"

GO TO 01-ENTER-DATA

ELSE

MOVE DATA-BYTES TO DATA-VAL

IF SIGN-BYTE = "-" THEN

COMPUTE DATA-VAL = - DATA-BYTES

ELSE IF SIGN-BYTE NOT EQUAL TO "+" THEN

DISPLAY "ILLEGAL SIGN IN INPUT--PLEASE RE-ENTER"

GO TO 01-ENTER-DATA.

03-DISPLAY-RESULTS.

DISPLAY "DATA-VAL = ", DATA-VAL.

STOP RUN.

Example 2: Use of SIGN IS LEADING SEPARATE phrase

This example illustrates a method whereby the person entering the data precedes the quantity
with a plus or minus sign.

01 IN-DATA-2 PIC S9(6) SIGN IS LEADING SEPARATE.

ACCEPT IN-DATA-2.

MOVE IN-DATA-2 TO DATA-VAL.

9-8 PROCEDURE DIVISION Statements

ACCEPT

ACCEPT Statement - Format 3

Format 3 is used to transmit the date, day,
NNN
day of the week , or time from the internal

software clock of the system to the identi�er named in the ACCEPT statement. The
hardware clock is not used for these items.

Example

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.

FROM-TERMINAL IS SYSIN.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 NUMBER-IN PIC 999V99.

01 DATE-IN.

02 YR PIC X(2).

02 MO PIC X(2).

02 DY PIC X(2).

01 DATE-OUT.

02 MONTH-OUT PIC X(2).

02 FILLER PIC X VALUE '/'.
02 DAY-OUT PIC X(2).

02 FILLER PIC X VALUE '/'.

02 YEAR-OUT PIC X(2)....
PROCEDURE DIVISION....

ACCEPT DATE-IN FROM DATE.

MOVE DY TO DAY-OUT.

MOVE MO TO MONTH-OUT.

MOVE YR TO YEAR-OUT.

WRITE DATE-OUT AFTER ADVANCING 1 LINES....
ACCEPT NUMBER-IN.

IF NUMBER-IN IS LESS THAN 125.50 THEN PERFORM BILL-LOW.

PROCEDURE DIVISION Statements 9-9

ADD

ADD Statement

The ADD statement computes the sum of two or more operands and stores the result.

Syntax

9-10 PROCEDURE DIVISION Statements

ADD

Parameters

In format 1 and 2, identi�er-1 , identi�er-2 , and so forth must refer to elementary numeric
items, except that in format 2, each identi�er following the word GIVING may also be an
edited numeric data item. Also, the word literal means numeric literal.

In format 3, both identi�ers must refer to group items.

Description

When format 1 is used, the values of all identi�ers and literals to the left of the keyword TO

are added together and the resulting sum is added to the current contents of identi�er-2 .
The results are then stored into identi�er-2 . This process of adding the resulting sum to an
identi�er and then storing the results into the identi�er is continued until all identi�ers to the
right of the TO keyword have been used.

When format 2 is used, all literals and values of identi�ers to the left of the GIVING keyword
are added, and the result is stored into each identi�er named to the right of the GIVING
keyword.

When format 3 is used, data items in identi�er-1 are added to corresponding data items in
identi�er-2 . The results are stored in corresponding data items of identi�er-2 . Thus, format 3
is equivalent to using format 1 for each pair of corresponding data items.

See Chapter 8 for details on the ROUNDED, SIZE ERROR, and CORRESPONDING
phrases.

The composite of operands must not exceed 18 digits (see \Arithmetic Expressions" in
Chapter 8). In format 1, it is calculated by using all of the operands in the statement; in
format 2, it is calculated using all of the operands to the left of the GIVING phrase; in format
3, the composite of operands is calculated using pairs of corresponding data items.

During execution, the compiler always ensures that enough places are carried to avoid losing
any signi�cant digits.

For an example of format 3 usage, refer to \CORRESPONDING Phrase" in Chapter 8. For
an example of format 1 usage refer to \Arithmetic Expressions" in Chapter 8.

PROCEDURE DIVISION Statements 9-11

ADD

Example

Following is an example of the ADD statement using format 2.

The operands and their assumed values are:

01 SUM-IT PICTURE 9(9)V999. Assumed value is 329^182

01 SUM-AT PICTURE 999V9. Assumed value is 203^9

The receiving data items are:

01 TAKE-1 PICTURE 9(9)V999.

01 TAKE-2 PICTURE 9(8)V9.

The example ADD statement is:

ADD SUM-IT, SUM-AT GIVING TAKE-1

TAKE-2 ROUNDED

ON SIZE ERROR PERFORM

REPORT-IT.

The composite of operands is: 329^182

The results of the ADD statament are:

TAKE-1 has the value 533^082

TAKE-2 has the value 533^1 because of the ROUNDED phrase.

9-12 PROCEDURE DIVISION Statements

ALTER

ALTER Statement

The ALTER statement is an obsolete feature of the 1985 ANSI COBOL standard.

The ALTER statement allows you to modify a predetermined sequence of operations.

Syntax

ALTER fprocedure-name-1 TO [PROCEED TO] procedure-name-2g . . .

Parameters

procedure-name-1 a paragraph containing a single sentence consisting of a GO TO without
the DEPENDING phrase.

procedure-name-2 a paragraph or section in the PROCEDURE DIVISION.

Execution of an ALTER statement modi�es the GO TO statement in the speci�ed paragraphs
so that subsequent executions of the modi�ed GO TO statements cause transfer of control to
the section or paragraph named by procedure-name-2 .

For example, the paragraph:

GO-PARA.

GO TO CHECK-SECTION.

is altered to be equivalent to the paragraph:

GO-PARA.

GO TO FINISH-UP.

by the ALTER statement:

ALTER GO-PARA TO PROCEED TO FINISH-UP.

Segmentation Considerations

The ALTER statement must not refer to a GO TO statement that appears in a section whose
segment number is greater than 49 unless the ALTER statement is in the same segment.

Refer to \MPE XL System Dependencies" in Appendix H for more information.

PROCEDURE DIVISION Statements 9-13

CALL, CANCEL

CALL Statement

In ANSI COBOL, the CALL statement can be used to transfer control from one object
program to another within the same run-unit. HP COBOL II adds the ability to invoke
operating system intrinsics from within a given object program. For more information on the
CALL statement refer to Chapter 11, \Interprogram Communication".

CANCEL Statement

The CANCEL statement restores a program to its initial state and closes all �les currently
in open mode. For more information on the CANCEL statement refer to Chapter 11,
\Interprogram Communication."

9-14 PROCEDURE DIVISION Statements

CLOSE

CLOSE Statement

The CLOSE statement terminates the processing of sequential, random, relative, and indexed
�les. It can only be executed for an open �le.

Syntax

The CLOSE statement has two formats, depending upon whether you want to close a
sequential �le or one of the other three types of �les.

Sequential Files - Format 1

Description

Rules that apply to a CLOSE statement for any type of �le are described below. For
information on handling I/O errors, see \Input-Output Error Handling Procedures" in
Chapter 8.

A CLOSE statement can only be issued for a �le that is open, and has not yet been closed.

If a CLOSE statement has been successfully executed for a �le, no other statement can be
executed that references the closed �le, either explicitly or implicitly, unless an intervening
OPEN statement for that �le is executed. There is one exception to this rule. A sequential
�le that has been closed may be referred to in SORT and MERGE statements that use the
USING or GIVING phrases. In this case, the �le or �les named in the USING and GIVING
phrases must not be open.

Following the successful execution of the CLOSE statement (without the REEL or UNIT
phrases in the case of sequential �les), the record area associated with the name of the closed
�le is no longer available.

If a CLOSE statement is unsuccessful in its execution, the availability of the record area for
the speci�ed �le is unde�ned.

If a CLOSE statement has not been issued for an open �le when a STOP RUN statement (or
a GOBACK statement in a main program) is executed, the �le is automatically closed by the
COBOL run-time system.

If a called program has been canceled by the CANCEL statement, all open �les of that
program will be closed.

If the �le being closed is a new �le or a temporary �le, it is closed in the temporary �le
domain. If it is a permanent �le, it remains in the permanent �le domain when it is closed.

PROCEDURE DIVISION Statements 9-15

CLOSE

The FILE STATUS data item, if any, speci�ed for the �le named in the CLOSE statement is
updated to indicate the success or failure of the closing operation. Refer to \FILE STATUS
Clause" in Chapter 6 for valid status keys.

Using a format 1 CLOSE statement, as shown above, allows you to terminate the processing
of �les whose organization is sequential. It also provides you with the options of placing the
serial access device at its physical beginning and of locking the �le so that it cannot be opened
again during the execution of the current run-unit.

REEL/UNIT and REMOVAL Phrases

The REEL/UNIT phrase and the REMOVAL phrase are treated as comments in format 1
of the CLOSE statement. Furthermore, if the REEL/UNIT phrase is speci�ed in a format
1 CLOSE statement, the entire CLOSE statement is treated as a comment. Thus, the �le
speci�ed in the CLOSE REEL/UNIT statement remains open.

Each of the remaining optional phrases are described below.

If no optional phrases are used, that is, if the format 1 CLOSE statement consists entirely of
the statement,

CLOSE �le-name-1

then the system's closing operations are executed, no matter what kind of operations (input,
input-output, output or extend) the �le was opened for. If the �le resides on a magnetic tape,
the reel is rewound when the �le is closed.

NO REWIND Phrase

The NO REWIND phrase applies only to labeled magnetic tape �les.

Used without either a REEL or UNIT phrase, the NO REWIND phrase alters the execution
of the system's standard closing procedure. The tape device, instead of being rewound when
the �le is closed, remains in its current position.

This phrase should be used in the closing of a �le only if another �le residing near the end of
the same tape is to be opened later in the program. Upon completion of the program, the
tape is rewound by the operating system.

If the �le resides on a device that allows no rewinding, such as a line printer, the NO
REWIND phrase is ignored when speci�ed for that �le in a CLOSE statement; it has no e�ect
on the �le.

WITH LOCK Phrase

The WITH LOCK phrase can be used in the CLOSE statement to ensure that the �le being
closed cannot be opened again during the execution of the current run-unit.

This locking is accomplished by the program, following the successful closing of the �le.

9-16 PROCEDURE DIVISION Statements

CLOSE

Random, Relative and Indexed Files - Format 2

The second format of the CLOSE statement is:

CLOSE f�le-name-1 [WITH LOCK] g . . .

This form of CLOSE closes the �les named by �le-name-1 , and so forth, and optionally locks
the �les so that they cannot be opened again during execution of the current run-unit.

The �les named by �le-name-1 , and so forth need not all have the same organization or
access.

When a CLOSE statement without the LOCK phrase is issued for a relative, random, or
indexed �le, the MPE �le system closing procedures are used to close the �le or �les speci�ed,
no matter how the �les are used (that is, input, input-output, or output).

Additionally, if the LOCK phrase is used with a relative, random access, or indexed �le,
the compiler ensures that the �le cannot be opened again during execution of the current
run-unit.

Example
...

ENVIRONMENT DIVISION....
INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INDEXER

ASSIGN TO "FILE-INDX, DA, A, DISC"

ORGANIZATION IS INDEXED

ACCESS MODE IS DYNAMIC

RECORD KEY IS INDX-FOR-FL.

SELECT RNDM-FL

ASSIGN TO "RANDOM"

ACCESS MODE IS RANDOM

PROCESSING MODE IS SEQUENTIAL

ACTUAL KEY IS DATA-5....
PROCEDURE DIVISION....
CLOSE INDEXER WITH LOCK, RNDM-FL WITH LOCK....

In the above CLOSE statement, the �les named INDEXER and RNDM-FL are closed and locked
so that they may not be opened again during execution of the run-unit.

PROCEDURE DIVISION Statements 9-17

COMPUTE

COMPUTE Statement

The COMPUTE statement evaluates an arithmetic expression (Refer to Chapter 8, under
\Arithmetic Expressions"), and assigns the result to one or more data items.

Syntax

Parameters

identi�er-1 refers to either an elementary numeric, or an elementary
numeric-edited data item.

arithmetic-expression any valid COBOL arithmetic expression.

The ROUNDED and SIZE ERROR and
NNN
NOT ON SIZE ERROR phrases are described in

Chapter 8, as are multiple results and other information pertaining to arithmetic statements.

The COMPUTE statement allows you to combine arithmetic operations without the
restrictions on composites of operands or receiving data items imposed by the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

When the COMPUTE statement executes, the arithmetic expression is evaluated, and all of
the identi�ers to the left of the equal sign are assigned the value of the result. Rounding is
done where speci�ed and necessary. For example,

COMPUTE DAILY-RTE-1, DAILY-RTE-2 = (INT - RTE / 360) * DAYS

ON SIZE ERROR PERFORM RATE-ERROR-RTNE.

In the above statement, a daily interest rate is calculated, and the results are stored in the
two data items, DAILY-RTE-1 and DAILY-RTE-2. If a size error occurs, no data is stored in the
two receiving data items and the error handler, RATE-ERROR-RTNE, is performed.

9-18 PROCEDURE DIVISION Statements

COMPUTE

Calculation of Intermediate Results

The following description presents the conceptual compiler algorithms for determining the size
and number of decimal places reserved for intermediate results. This information is provided
since the manipulations performed on the intermediate results are not always obvious. These
algorithms apply to all arithmetic and compute statements.

The following abbreviations are used:

d number of decimal places carried for an intermediate result.

dmax maximum number of decimal places de�ned for any operand in a particular
statement including the result.

op1 �rst operand in a generated arithmetic statement.

op2 second operand in a generated arithmetic statement.

d1,d2 number of decimal places de�ned for op1 or op2 , respectively.

ir intermediate result �eld obtained from the execution of a generated arithmetic
statement or operation. Ir1, ir2 , etc., represent successive intermediate
results. Successive intermediate results may have the same location.

Most arithmetic statements generate intermediate results except for simple cases, (for
example, single pair of operands) where the result can be stored without decimal point
alignment or conversion.

The compiler treats the statement as a succession of operations. For example, consider the
following statement:

COMPUTE Y = A + B * C - D / E + F ** G

The above COMPUTE statement is replaced by the following:

MULTIPLY C BY B Yielding ir1

ADD ir1 TO A Yielding ir2

DIVIDE D BY E Yielding ir3

SUBTRACT ir3 FROM ir2 Yielding ir4

RAISE F TO THE POWER G Yielding ir5

ADD ir4 TO ir5 Yielding ir6

STORE ir6 TO Y

PROCEDURE DIVISION Statements 9-19

COMPUTE

The compiler determines the maximum value that the ir can contain by performing the
statement in which the ir occurs.

If an operand in this statement is a data name, the value for the data name is equal to the
numerical value of the PICTURE for the data name (for example, PICTURE 9V99 has the
value 9.99).

If an operand is a literal, the literal's actual value is used, except in case of DIVIDE.

If an operand is an intermediate result, the value determined for the intermediate result in a
previous arithmetic operation is used.

If the operation is division:

If op2 is a data name, the value used for op2 is the minimum nonzero value of the digit
in the PICTURE for the data name (for example, PICTURE 9V99 has the value 0.01).

If op2 is an intermediate result, the intermediate result is treated as though it had a
PICTURE, and the minimum nonzero value of the digits in this PICTURE is used.

When the maximum value exceeds the machine speci�c limit, a warning (#050) is generated
and the maximum size is set at that limit. For limitations on arithmetic expressions refer to
\MPE XL System Dependencies" in Appendix H for more information.

The number of decimal places contained in an ir is calculated as:

Operation Decimal Places

+ or - d1 or d2 , whichever is greater

* d1 + d2

/ d1-d2 or dmax , whichever is greater

** dmax

Note When any operand is an IEEE oating point (from the result of a COBOL
function), the resulting intermediate data item is also IEEE oating point.
The intermediate oating point data items always have 15 digits of precision.

9-20 PROCEDURE DIVISION Statements

CONTINUE

CONTINUE Statement

The CONTINUE statement indicates that no executable statement is present. It is a
no-operation statement and has no e�ect on the execution of the program.

Syntax

CONTINUE

Description

CONTINUE can be used anywhere a conditional statement or an imperative statement is
used.

Example

IF A < B THEN

IF A < C THEN

CONTINUE

ELSE
MOVE ZERO TO A

END-IF

ADD B TO C.

SUBTRACT C FROM D.

PROCEDURE DIVISION Statements 9-21

DELETE

DELETE Statement

The DELETE statement logically removes a record from a relative or indexed �le.

Syntax

Parameters

�le-name-1 the name of the �le from which the record is to be deleted. The
�le must be an indexed or relative �le opened in input-output
mode.

imperative-statement-1
and
imperative-statement-2

one or more imperative statements.

Description

If the speci�ed �le is being used in sequential access mode, the INVALID KEY orNNN
NOT INVALID KEY phrase must not be speci�ed. However, if the �le is being used in any
other access mode and there is no applicable USE procedure, these clauses must be speci�ed.
For information on handling I/O errors, see \Input-Output Error Handling Procedures" in
Chapter 8.

After a successful execution of a DELETE statement, the selected record has been logically
removed from the �le, and can no longer be accessed.

Note \Logically removed" means that the record has been marked for deletion, and
not physically removed. The contents of the record area associated with the
speci�ed �le are una�ected. The �le position indicator is also una�ected.

The execution of the DELETE statement causes the value of the FILE STATUS data item, if
speci�ed for the �le, to be updated. Refer to \FILE STATUS Clause" in Chapter 6 for valid
status keys.

Selection of the record to be deleted is accomplished in one of two ways, depending upon what
access mode is speci�ed for the �le.

9-22 PROCEDURE DIVISION Statements

DELETE

For �les being used in sequential access mode, the record to be deleted is the last record
read by a successfully executed READ statement. The READ statement must be the last
input-output operation performed on the �le prior to execution of the DELETE statement.

For �les in dynamic or random access mode, the record removed is that record identi�ed
by the contents of the RELATIVE KEY or RECORD KEY data item associated with the
speci�ed �le. If the �le does not contain the record speci�ed by the key, an INVALID KEY
condition exists.

If the INVALID KEY phrase has been speci�ed, and the execution of a DELETE statement
causes an INVALID KEY condition, the imperative statements speci�ed in the INVALID
KEY phrase are executed. Any USE procedure speci�ed for the �le is ignored.

When no INVALID KEY condition exists, control is transferred to the end of the
DELETE statement

NN
or to the imperative statement specified in theNN

NOT INVALID KEY phrase, if specified. For more information on handling I/O errors, see
\Input-Output Error Handling Procedures" in Chapter 8.

For indexed �les, if the primary record key has duplicates speci�ed for it, you should use the
DELETE statement only when the �le is open in sequential access mode. This is because a
DELETE statement for such �les open in dynamic or random access mode deletes the �rst
record written to the �le that has the same primary key value as the value placed in the
RECORD KEY data item. This �rst occurrence of the duplicate value may not be the record
you want to delete.

PROCEDURE DIVISION Statements 9-23

DELETE

Example

The following example shows the DELETE statement:
...

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT REL-FILE

ASSIGN TO "DATAFL1"

ORGANIZATION IS RELATIVE

ACCESS MODE IS SEQUENTIAL

FILE STATUS IS CHK-REL-FILE.

SELECT INDX-FILE
ASSIGN TO "DATAFL2"

ORGANIZATION IS INDEXED

ACCESS MODE IS RANDOM

RECORD KEY IS KEY-DATA

FILE STATUS IS CHK-INDX-FILE.

DATA DIVISION.

FILE SECTION.

FD REL-FILE.

01 REL-DATA

02 DATA-1 PIC 99.

FD INDX-FILE.

01 INDX-DATA.

02 KEY-DATA PIC X(5).

PROCEDURE DIVISION....
OPEN I-O REL-FILE INDX-FILE.

READ REL-FILE RECORD AT END STOP RUN.

IF DATA-1 IS EQUAL TO 0 THEN DELETE REL-FILE RECORD....
MOVE "MEYER" TO KEY-DATA.

DELETE INDX-FILE RECORD

INVALID KEY PERFORM CHECK-OUT....
CHECK-OUT.

DISPLAY "VALUE OF CHK-INDX-FILE IS" CHK-INDX-FILE.

DISPLAY "WHAT ACTION TO BE TAKEN?".
ACCEPT ACTION-ITEM.

9-24 PROCEDURE DIVISION Statements

DISPLAY

DISPLAY Statement

The DISPLAY statement can be used to transfer low volume data to the operator's console, a
terminal, or the line printer. If more than one name is speci�ed, each data item is listed in the
order speci�ed in the DISPLAY statement.

Syntax

Parameters

identi�er-1 and
literal-1

identi�ers of data items, unsigned numeric integer literals, the
special registers (TALLY, TIME-OF-DAY, CURRENT-DATE,
WHEN-COMPILED, LINAGE-COUNTER, and DEBUG-ITEM) and any
�gurative constant except ALL.

SYSOUT in batch mode, the line printer. In session mode, it is the terminal from
which the COBOL program was initiated. This is the default if the
UPON phrase is not used.

CONSOLE the operator's console.

mnemonic-name the name speci�ed by you, and de�ned under the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION as either SYSOUT or
CONSOLE.

Description

Note I-O errors that occur during execution of the DISPLAY statement do not
produce a \tombstone" since the I-O is not done by the �le system.

If an item is described as USAGE COMPUTATIONAL,
NNNNNNNNNNNNNNNNNNNN
BINARY , COMPUTATIONAL-3, orNN

PACKED-DECIMAL , the compiler translates it into a USAGE DISPLAY item for purposes of
displaying it.

If TIME-OF-DAY is used as an identi�er, the time is displayed in edited form. That is, in the
form, HH:MM:SS where HH is the hour taken from a 24 hour clock, MM is the number of
minutes after the hour, and SS is the number of seconds after the minute.

If a �gurative constant is speci�ed as an operand, only one occurrence of the constant is
displayed. This is true even when the �gurative constant ALL is speci�ed.

When a DISPLAY statement contains more than one operand, the size of the data to be
transmitted is the sum of the sizes of all the operands. The values of the operands are
transferred in the sequence in which the operands are listed.

PROCEDURE DIVISION Statements 9-25

DISPLAY

Length of Data Being Displayed

As with the ACCEPT statement, hardware record sizes determine the display of the data
speci�ed in the DISPLAY statement. The following methods are used, depending upon
whether the size of the sending item is equal to, shorter than, or longer than the hardware
device designated to receive the data:

If the sending item is the same length, no problem arises and the data is transmitted.

If the sending item is shorter than the device, the transferred data is displayed beginning
with the leftmost position of the device, continuing to the right until all data characters
have been displayed.

If the sending item is longer than can be displayed on one line of the device, the �rst line of
the device is �lled with as many characters as possible, then the next line is �lled, and so
forth until the entire sending item has been displayed. The order in which the sending data
is displayed is the same as the order in which it is transmitted.

The WITH NO ADVANCING Phrase
NN
The WITH NO ADVANCING phrase of the DISPLAY statement provides interactionNN
with a hardware device having vertical positioning. If the WITH NO ADVANCINGNN
phrase is specified, the positioning of the hardware device is not reset toNN
the next line or changed in any other way following the display of the lastNN
operand. If the hardware device can be set to a specific character position,NN
it remains set at the character position immediately following the lastNN
character of the last operand displayed. If the hardware device cannot be setNN
to a specific character position, only the vertical position, if applicable,NN
is affected. This may cause overprinting if the hardware supportsNN
overprinting. If you redirect STDLIST to a file, the file must use carriageNN
control (CCTL) or WITH NO ADVANCING has no effect.

If the WITH NO ADVANCING phrase is not speci�ed, the positioning of the hardware device
is reset to the leftmost position of the next line of the device after the last operand has been
transferred to the hardware device.

If vertical positioning is not applicable on the hardware device, the operating system ignores
the vertical positioning that is speci�ed or implied.

9-26 PROCEDURE DIVISION Statements

DISPLAY

Example 1

Following is an example DISPLAY statement:

WORKING-STORAGE SECTION.

01 BEGIN-MSG PIC X(21) VALUE "tPROGRAM BEGINNINGtt"....
PROCEDURE DIVISION....

DISPLAY CURRENT-DATE, BEGIN-MSG, TIME-OF-DAY UPON SYSOUT.

If the date is Tuesday, July 30, 1991 at exactly 10:45 a.m. and the above DISPLAY statement
is executed, the following message is displayed on the terminal where the program was run:

07/30/91tPROGRAM BEGINNINGtt10:45:00

Example 2

The following DISPLAY statement illustrates the WITH NO ADVANCING phrase:

DISPLAY "ENTER CLASS CODE" WITH NO ADVANCING.

ACCEPT CLASS-CODE.

When the above statement is executed, the cursor is left on the same line as ENTER CLASS

CODE on the screen:

ENTER CLASS CODE

"
Position of cursor following the display.

PROCEDURE DIVISION Statements 9-27

DIVIDE

DIVIDE Statement

The DIVIDE statement divides one numeric data item into one or more others, assigns the
result to a data item, and optionally assigns a remainder to another data item.

Syntax

There are �ve formats of the DIVIDE statement:

9-28 PROCEDURE DIVISION Statements

DIVIDE

Parameters

identi�er-1,
identi�er-2 ,
and so forth

names of elementary numeric items, except that those associated with a
GIVING or REMAINDER phrase may be elementary numeric-edited items.

literal-1,
literal-2 , and
so forth

numeric literals.

Description

The ROUNDED and SIZE ERROR phrases are described under the heading, \Common
Phrases", in Chapter 8.

The composite of operands for the DIVIDE statement is determined using all of the receiving
data items of a particular statement except the data item associated with the REMAINDER
phrase. This composite must not exceed 18 digits. Refer to Chapter 8, under \Arithmetic
Expressions" for details on how to determine the composite of operands.

PROCEDURE DIVISION Statements 9-29

DIVIDE

When format 1 of the DIVIDE statement is used, each identi�er following the INTO keyword
is divided, in turn, by the identi�er or literal to the left of the INTO keyword. Each result
is rounded if speci�ed and necessary, and is then stored in the data item referenced by the
identi�er that acted as the dividend in that particular division.

When format 2 is used, the literal or data item speci�ed by the identi�er between the
keywords INTO and GIVING is divided by the literal or data item speci�ed by identi�er-1 ,
and the result is stored in each identi�er listed in the GIVING phrase.

When the third format of the DIVIDE statement is used, the data item speci�ed by
identi�er-1 or literal-1 is divided by literal-2 or the contents of identi�er-2 . The result is
then stored in each identi�er following the GIVING phrase, with rounding being used where
speci�ed and needed.

Formats 4 and 5 can be used to obtain a remainder from a division operation. In COBOL, the
remainder is de�ned as the di�erence between the product of the quotient and the divisor and
the dividend.

For example, in format 4 of the DIVIDE statement:

DIVIDE A INTO B GIVING C REMAINDER D

" " "
divisor dividend quotient

The remainder D has the value determined by multiplying C times A and subtracting this
product from B. Thus, if A=7 and B=16, then C=2 and D=2 because 16-7*2=2.

If identi�er-3 (the quotient) is de�ned as numeric-edited, the quotient used to calculate the
remainder is an internal, intermediate �eld containing the unedited quotient.

Also, if the ROUNDED phrase is speci�ed, the quotient used to calculate the remainder is
kept in an intermediate �eld and is truncated rather than rounded.

Appropriate decimal alignment and truncation are performed on the remainder as needed.

When the SIZE ERROR phrase is speci�ed for a format 4 or 5 DIVIDE statement, and a size
error condition occurs for the quotient, the contents of data items referenced by identi�er-3
and identi�er-4 are unchanged. However, if the size error condition occurs for the remainder
and not the quotient, only the remainder is unchanged. Identi�er-3 still contains the new
quotient.

9-30 PROCEDURE DIVISION Statements

DIVIDE

Example

FILE SECTION.

FD PAY-FILE.

01 PAY-INFO.

02 EMP-NAME PIC X(30).

02 EMP-NUM PIC X(9).

02 PAY PIC 999V99.

02 HOURS PIC 99.
WORKING-STORAGE SECTION.

77 RATE PIC 99 VALUE ZERO.

77 CHECK PIC V99 VALUE ZERO....
PROCEDURE DIVISION.

MAIN-100.

DIVIDE PAY BY HOURS GIVING RATE REMAINDER CHECK

ON SIZE ERROR PERFORM SIZE-ERR....
SIZE-ERR.

IF RATE = 0 THEN

DISPLAY "SIZE ERROR IN RATE USING " PAY, HOURS

ELSE

DISPLAY "SIZE ERROR IN CHECK"....

The DIVIDE statement above uses format 5. If a size error occurs, the SIZE-ERR routine is
performed, and a check is made to determine whether the size error occurred because of RATE
or CHECK.

PROCEDURE DIVISION Statements 9-31

ENTER, ENTRY

ENTER Statement

The ENTER statement is an obsolete feature of the 1985 ANSI COBOL standard.

In ANSI COBOL'74, this statement provides a means of allowing the use of more than one
language in the same program. It is, however, not allowed in HP COBOL II. Thus, if speci�ed
in your program, it is treated as a comment. The format is listed below for information only.

The format of this statement is shown below:

ENTER language-name [routine-name].

ENTRY Statement

The ENTRY statement is an HP extension to the ANSI COBOL standard.

The ENTRY statement establishes a secondary entry point in an HP COBOL II subprogram.
For more information on the ENTRY statement refer to Chapter 11, \Interprogram
Communication".

9-32 PROCEDURE DIVISION Statements

EVALUATE

EVALUATE Statement

The EVALUATE statement adds a multi-condition case construct to COBOL. This statement
causes a set of subjects to be evaluated and compared with a set of objects. The results of
these evaluations determine the subsequent sequence of code execution.

Syntax

PROCEDURE DIVISION Statements 9-33

EVALUATE

Subjects and Objects

The operands or the words TRUE and FALSE that appear before the �rst WHEN phrase
of the EVALUATE statement are referred to individually as subjects. Collectively, they
are referred to as the set of subjects . The operands or the words TRUE, FALSE, and ANY
that appear in a WHEN phrase of an EVALUATE statement are individually called objects .
Collectively, they are called the set of objects .

The words THROUGH and THRU are equivalent. Two operands connected by a THROUGH
phrase must be of the same class. The two connected operands constitute a single object.

The number of objects within each set of objects must be equal to the number of subjects.

Correspondence Between Subjects and Objects

A subject-object pair consists of a subject and object having the same ordinal position within
each set. Each pair must conform to the following rules:

Identi�ers, literals, and arithmetic expressions must be valid operands for a comparison
between the subject and object.

Conditions or the words TRUE or FALSE appearing as an object must correspond to a
conditional expression or the words TRUE or FALSE.

The word ANY may correspond to a selection subject of any type.

Evaluation of Subjects and Objects

Execution of the EVALUATE statement operates as if each subject and object were evaluated
and assigned a numeric or nonnumeric value, a range of numeric or nonnumeric values, or a
truth value (TRUE or FALSE). These values are determined as follows:

Any subject or object speci�ed by an identi�er, without either the NOT or the THROUGH
phrases, is assigned the value and class of the data item referenced by the identi�er.

Any subject or object speci�ed by a literal, without either the NOT or the THROUGH
phrases, is assigned the value and class of the speci�ed literal. When an object is assigned
the �gurative constant ZERO, it is assigned the class of the corresponding subject.

Any subject or object in which an expression is speci�ed as an arithmetic expression
without either the NOT or the THROUGH phrases, is assigned a numeric value according
to the rules for evaluating an arithmetic expression. (Refer to Chapter 8, under \Arithmetic
Expressions".)

A subject or object speci�ed by a conditional expression is assigned a truth value (TRUE or
FALSE) according to the rules for evaluating conditional expressions. (Refer to Chapter 8,
\Conditional Expressions.")

A subject or object speci�ed by the words TRUE or FALSE is assigned the appropriate
truth value.

No further evaluation is done for an object speci�ed by the word ANY.

If the THROUGH phrase is speci�ed for an object, without the NOT phrase, the range of
values includes all values of the subject that are greater than or equal to the �rst operand
and less than or equal to the second operand.

9-34 PROCEDURE DIVISION Statements

EVALUATE

If the NOT phrase is speci�ed for an object, the values assigned to that item are all values
that are not equal to the value, or included in the range of values, that would have been
assigned to the item without the NOT phrase.

Refer to Chapter 8, \Relation Conditions," for more information on NOT phrases.

Comparison Operation of EVALUATE

The execution of the EVALUATE statement proceeds as if the values assigned to the subjects
and objects were compared, to determine if any WHEN phrase satis�es the set of subjects.
This comparison proceeds as follows:

1. A subject-object pair comparison is satis�ed if the following conditions are true:

a. If the items being compared are assigned numeric, nonnumeric, or a range of numeric or
nonnumeric values, the comparison is satis�ed if the value, or one of the range of values,
assigned to the object is equal to the value assigned to the subject.

b. If the items being compared are assigned truth values, the comparison is satis�ed if the
items are assigned the identical truth values.

c. If the object being compared is speci�ed by the word ANY, the comparison is always
satis�ed, regardless of the value of the subject.

2. If the above comparison is satis�ed for every object within the set of objects being
compared, the �rst WHEN phrase for which each subject-object pair comparison is satis�ed
is selected as the one that satis�es the set of subjects.

3. If the above comparison is not satis�ed for one or more objects within the set of objects
being compared, that set of objects does not satisfy the set of subjects.

4. This procedure is repeated for subsequent sets of objects in the order of their appearance in
the source program. The comparison operation continues until either a WHEN phrase that
satis�es the set of subjects is selected or until all sets of objects are exhausted.

Execution of EVALUATE

After the comparison operation is completed, execution of the EVALUATE statement
proceeds as follows:

1. If a WHEN phrase is selected, execution continues with the �rst imperative statement
following the selected WHEN phrase.

If a WHEN phrase is followed by other WHEN phrases with no intervening imperative
statement, the WHEN conditions are ORed together. In other words, if any of the WHEN
phrases is selected, the �rst imperative statement that follows is executed, even if that
imperative statement is part of a following WHEN phrase. See the following section for an
example.

Use the CONTINUE statement to indicate no operation on a WHEN clause. See the
following section for examples.

2. If no WHEN phrase is selected and a WHEN OTHER phrase is speci�ed, execution
continues with the imperative statement following the WHEN OTHER phrase.

3. The execution of the EVALUATE statement is terminated when execution reaches the end
of the imperative statement of the selected WHEN phrase, or when no WHEN phrase is
selected and no WHEN OTHER phrase is speci�ed.

PROCEDURE DIVISION Statements 9-35

EVALUATE

Examples

The following example shows an EVALUATE statement with two data items (HOURS-WORKED
and EXEMPT) as subjects:

EVALUATE HOURS-WORKED ALSO EXEMPT

WHEN 0 ALSO ANY PERFORM NO-PAY

WHEN NOT 0 ALSO "Y" PERFORM SALARIED

WHEN 1 THRU 40 ALSO "N" PERFORM HOURLY-PAY

WHEN NOT 1 THRU 40 ALSO "N" PERFORM OVERTIME-PAY

WHEN OTHER DISPLAY HOURS-WORKED

DISPLAY EXEMPT

MOVE 0 TO HOURS-WORKED

END-EVALUATE.

The following shows a relation condition (GRADE > 3.0) and a data item (COLLEGE-CODE) as
the subjects of an EVALUATE:

EVALUATE GRADE > 3.0 ALSO COLLEGE-CODE

WHEN TRUE ALSO "01" PERFORM DEANS-LIST-AGGIES

WHEN TRUE ALSO "02" PERFORM DEANS-LIST-S-AND-H

WHEN TRUE ALSO "03" PERFORM DEANS-LIST-ENG

WHEN TRUE ALSO ANY PERFORM MISC-LIST

END-EVALUATE.

The following shows two equivalent EVALUATE statements that illustrate that subjects and
objects must be of the same type. The �rst EVALUATE statement shows the truth value,
TRUE, as the subject and several condition name conditions as objects. The second shows the
data item INPUT-FLAG as the subject and nonnumeric literals as objects. Notice also that if
INPUT-FLAG is \C", the EVALUATE statement executes the CONTINUE statement, which
simply continues execution at the statement following the EVALUATE statement:

WORKING-STORAGE SECTION.

01 INPUT-FLAG PIC X VALUE SPACE.

88 INPUT-YES VALUE "Y".

88 INPUT-NO VALUE "N".

88 INPUT-QUIT VALUE "Q".

88 INPUT-CONTINUE VALUE "C"....
EVALUATE TRUE

WHEN INPUT-CONTINUE CONTINUE

WHEN INPUT-YES MOVE PROD-NO TO OUTPUT-REC

WHEN INPUT-NO MOVE SPACES TO OUTPUT-REC

WHEN INPUT-QUIT PERFORM TERMINATION-ROUTINE

WHEN OTHER PERFORM GET-INPUT

END-EVALUATE.

9-36 PROCEDURE DIVISION Statements

EVALUATE

EVALUATE INPUT-FLAG

WHEN "Y" MOVE PROD-NO TO OUTPUT-REC

WHEN "N" MOVE SPACES TO OUTPUT-REC
WHEN "Q" PERFORM TERMINATION-ROUTINE

WHEN "C" CONTINUE

WHEN OTHER PERFORM GET-INPUT

END-EVALUATE.

The following example shows two WHEN phrases without an intervening imperative
statement. If either the �rst or the second WHEN phrase is selected, that is, if
NUMBER-OF-THINGS is either 1 or 2, the DISPLAY statement after WHEN 2 is executed:

EVALUATE NUMBER-OF-THINGS

WHEN 1

WHEN 2 DISPLAY "The value is 1 or 2"

WHEN 3 STOP RUN

WHEN OTHER DISPLAY "Input again."

END-EVALUATE.

PROCEDURE DIVISION Statements 9-37

EXAMINE

EXAMINE Statement

The EXAMINE statement is an HP extension to the ANSI COBOL standard. It has been
replaced by the INSPECT statement, covered later in this chapter. Although HP COBOL II
includes the EXAMINE statement for compatibility with COBOL'68, it is advisable that you
use the INSPECT statement for coding new programs.

The EXAMINE statement replaces or counts the number of occurrences of a given character
in a data item.

Syntax

Parameters

identi�er names a data item whose usage is DISPLAY. It is this data item that is
examined.

literal-1,
literal-2,
and so forth

each a single character whose data type is the same as identi�er. Any or all of
these literals may be any �gurative constant except ALL.

Description

When the EXAMINE statement is executed, it acts di�erently depending upon whether
identi�er names a numeric or a nonnumeric data item.

If identi�er is a nonnumeric data item, examination begins with the leftmost character, and
proceeds to the right. Each character is examined in turn.

If identi�er is a numeric data item, the data item may contain a sign, and examination
proceeds on a digit by digit basis. This examination starts with the leftmost digit and
proceeds to the right. If a sign is included in the data item being examined, it is ignored
regardless of its physical location.

9-38 PROCEDURE DIVISION Statements

EXAMINE

TALLYING Phrase

When the TALLYING phrase is used in an EXAMINE statement, a count is placed in the
special HP COBOL II register named TALLY. This count is an integer and represents a value
that is dependent upon the keywords following the word TALLYING.

If TALLYING UNTIL FIRST is speci�ed, the integer in the TALLY register after execution
of an EXAMINE statement is the number of occurrences of characters in identi�er before the
�rst occurrence of literal-1 .

If TALLYING ALL is speci�ed, every occurrence of literal-1 is counted and the result of this
counting is placed in the TALLY register.

If TALLYING LEADING is speci�ed, only those occurrences of literal-1 that precede any
other characters in the data item named by identi�er are counted. For example, if the �rst
character of identi�er is not literal-1 , the EXAMINE statement ceases execution immediately.

If the REPLACING phrase is used in conjunction with the TALLYING phrase, then,
depending upon which keywords are used with the TALLYING phrase, those occurrences
of literal-1 that participate in the tallying are replaced by literal-2 . For example, if the
EXAMINE statement:

EXAMINE ABMASK TALLYING ALL A REPLACING BY B.

is executed and ABMASK contains the value ABBBBABBABAAAB before execution, when
execution of the EXAMINE statement is complete, the value in the TALLY register is 6 and
ABMASK contains the value BBBBBBBBBBBBBB.

REPLACING Phrase

The REPLACING phrase acts in the same manner as the REPLACING verb in the
TALLYING phrase. However, since no tallying takes place, the TALLY register remains
unchanged. The rules of the REPLACING phrase are stated below:

If REPLACING ALL is speci�ed, all occurrences of literal-3 in identi�er are replaced by
literal-4 .

If REPLACING LEADING is speci�ed, each occurrence of literal-3 is replaced by literal-4
until the �rst occurrence of a character other than literal-3 or the rightmost character of the
data item is examined.

If REPLACING UNTIL FIRST is speci�ed, every character of the data item represented by
identi�er is replaced by literal-4 until literal-3 is encountered in the data item. If literal-3
does not appear in the data item, the entire data item is �lled with literal-4 .

If REPLACING FIRST is speci�ed, only the �rst occurrence of literal-3 is replaced by
literal-4 . If literal-3 does not appear in the data item represented by identi�er , the data
item is unchanged after execution of the EXAMINE statement.

PROCEDURE DIVISION Statements 9-39

EXCLUSIVE

EXCLUSIVE Statement

The EXCLUSIVE statement is an HP extension to the ANSI COBOL standard.

The EXCLUSIVE statement provides you with a method for locking a �le that has been
opened for shared access.

Note Use of EXCLUSIVE within a program causes any OPEN of the associated �le
to enable the dynamic locking facility.

This \locking" does not stop anyone from accessing the �le. Locking and unlocking �les must
be done on a cooperative basis. That is, if all users who intend to access a shared �le agree
to attempt to lock the �le before accessing its records, then no problems arise. However, since
this form of \locking" only sets a ag on the �le, if other users do not check to see if the ag
is set (by attempting to lock it themselves), then they can do anything with the �le that other
�le security mechanisms allow.

A locked �le remains locked until an UN-EXCLUSIVE statement is issued for that �le.

Syntax

EXCLUSIVE �le-name [CONDITIONALLY]

Parameters

�le-name the name of the �le you want to lock. It must be opened before the
EXCLUSIVE statement is executed. Also, the �le may have a USE
procedure associated with it in case an error occurs during execution of
the EXCLUSIVE statement. If an error does occur, the USE procedure is
executed.

Description

If used without the CONDITIONALLY option, the EXCLUSIVE statement continues to try
to lock the �le until it succeeds. If the �le is already locked (for example, by another user),
this means your program will pause until the lock succeeds.

To prevent the above from occurring, you can use the CONDITIONALLY option. This option
attempts to lock the �le and, if unsuccessful, returns immediately to your COBOL program.

The FILE STATUS data item, if any, associated with the �le named in the EXCLUSIVE
statement is updated to indicate whether or not the attempt to lock the �le was successful. If
the lock was successful, the STATUS-KEYS are set to \00". If the �le is in use by another
process and the lock condition is FALSE, or �le options do not specify dynamic locking, or
the calling process does not have multiple RIN capability, STATUS-KEY-1 is set to \9" and
STATUS-KEY-2 contains the binary error code. For more information on handling I/O errors,
see \Input-Output Error Handling Procedures" in Chapter 8.

9-40 PROCEDURE DIVISION Statements

EXCLUSIVE

Programs that are to access an indexed �le concurrently, within an environment that includes
modi�cation of the �le, must include EXCLUSIVE/UN-EXCLUSIVE statements to maintain
data integrity.

Refer to \MPE XL System Dependencies" in Appendix H for more information.

Example

The following example shows the EXCLUSIVE statement:

ENVIRONMENT DIVISION.

FILE-CONTROL.

SELECT CUSTFILE ASSIGN TO "CUSTDATA" FILE STATUS IS CHECKER....
PROCEDURE DIVISION....

OPEN I-O CUSTFILE.

EXCLUSIVE CUSTFILE CONDITIONALLY.

IF CHECKER IS EQUAL TO "00" PERFORM CUSTOMER-UPDATE

ELSE PERFORM FIND-WHY.

PROCEDURE DIVISION Statements 9-41

EXIT

EXIT Statement

The EXIT statement provides a common end point for a series of procedures.

Syntax

paragraph-name.

EXIT.

paragraph/section-name.

Paragraph-name and paragraph/section-name are not a part of the EXIT statement. They are
shown to clarify the fact that:

EXIT must appear in a sentence by itself.

EXIT must be the only sentence in a paragraph.

An EXIT statement serves only to enable you to terminate a procedure and has no other
e�ect on the compilation or execution of the program.

Example

PROCEDURE DIVISION....
PERFORM FIX-IT THRU OUT....
PERFORM EXCESS THRU OUT....

FIX-IT.

IF CHARS IS ALPHABETIC THEN GO TO OUT....
EXCESS.

IF OVER-AMT IS EQUAL TO 0 THEN GO TO OUT....
OUT.

EXIT.

NEXT-PAR....

In the above illustration, both of the IF statements are the �rst lines of procedures executed
by PERFORM statements. If the condition in either of the IF statements returns a \true"
value, the statement branches to the OUT paragraph, the EXIT statement is executed, and
control passes to the statement following the PERFORM statement that called the procedure.

9-42 PROCEDURE DIVISION Statements

EXIT PROGRAM, GOBACK

EXIT PROGRAM Statement

The EXIT PROGRAM statement marks the logical end of a program. For more information
on the EXIT PROGRAM statement refer to Chapter 11, \Interprogram Communication".

GOBACK Statement

The GOBACK statement is an HP extension to the ANSI COBOL standard.

The GOBACK statement marks the logical end of a program. For more information on the
GOBACK statement refer to Chapter 11, \Interprogram Communication".

PROCEDURE DIVISION Statements 9-43

GO TO

GO TO Statement

The GO TO statement transfers control from one part of the PROCEDURE DIVISION to
another.

The optionality of procedure-name-1 of the GO TO statement is an obsolete feature of the
1985 ANSI COBOL standard. See the description below for more information.

Syntax

The GO TO statement has two formats:

GO TO [procedure-name-1]

GO TO fprocedure-name-1 g . . . DEPENDING ON identi�er-1

Parameters

procedure-name-1 and its subsequent occurrences are names of procedures within the
PROCEDURE DIVISION of your program.

identi�er-1 the name of a numeric elementary data item that has no positions to the
right of the decimal point.

Description

The �rst format of the GO TO statement transfers control to the procedure named by
procedure-name-1 or, if no procedure is named, to the procedure speci�ed in a previously
executed ALTER statement. An ALTER statement must be issued for this type of GO TO
statement before it is executed if no procedure is named in it. This also implies that a GO
TO statement without a procedure name speci�cation must make up the only sentence in a
paragraph. Refer to the ALTER statement description in this chapter for other restrictions.

Both the ALTER statement and the optionality of procedure-name-1 in the GO TO statement
are obsolete features of the 1985 ANSI COBOL standard.

If the �rst format of the GO TO statement does specify a procedure name and if it appears in
a sequence of imperative statements within a sentence, it must be the last statement in that
sentence.

In the second format of the GO TO statement, identi�er must be the name of a numeric
elementary item described with no positions to the right of the decimal point. It is used
to determine which procedure is to be executed. If the contents of identi�er is an integer
in the range one to n, where n is the number of procedure names appearing in the GO TO
statement, then control passes to the procedure in the position corresponding to the value of
identi�er . Otherwise, no transfer occurs and control passes to the next statement following
the GO TO statement.

9-44 PROCEDURE DIVISION Statements

GO TO

Examples

In the program below, the GO TO statement in the GO-PARA paragraph is equivalent to
GO TO WHICH because of the ALTER statement preceding it. This form of the GO TO
statement is an obsolete feature of the 1985 ANSI COBOL standard.

The second GO TO statement branches to UNDER, OVER, or EXACT, depending upon whether
SELECTOR has a value of 1, 2, or 3 respectively. If SELECTOR has any other value, the
DISPLAY statement is executed.

WORKING-STORAGE SECTION.

01 SELECTOR PIC 9(3)....
PROCEDURE DIVISION....

ALTER GO-PARA TO PROCEED TO WHICH....
GO-PARA. GO TO.

AFTER-GO-PARA....
GO TO UNDER, OVER, EXACT DEPENDING ON SELECTOR.

DISPLAY "SELECTOR OUT OF RANGE - VALUE IS ", SELECTOR....
UNDER....
OVER....
EXACT....
WHICH....

PROCEDURE DIVISION Statements 9-45

IF

IF Statement

The IF statement evaluates a condition and, depending upon the truth value of the condition,
determines the subsequent action of the program.

Syntax

Parameters

statement-1 and
statement-2

each are imperative or conditional statements, optionally followed by a
conditional statement.

condition-1 any valid COBOL condition as described under \Conditional Expressions" in
Chapter 8.

Description

You may omit the ELSE NEXT SENTENCE phrase if it immediately precedes the period
used to terminate the sentence.
NN
If the END-IF phrase is specified, the NEXT SENTENCE phrase must not beNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
specified.

The scope of the IF statement may be terminated by any of the following:
NNN
An END-IF phrase at the same level of nesting.

A separator period, which terminates IF statements at all levels of nesting.

If nested, by an ELSE phrase associated with an IF statement at a higher level of nesting.

9-46 PROCEDURE DIVISION Statements

IF

When an IF statement is executed, the following transfers of control occur:

If the truth value of the condition is \true" and statement-1 is speci�ed, then if statement-1
is a procedure branching or conditional statement, control is explicitly transferred according
to the rules for that statement. If statement-1 does not contain such a statement, then
statement-1 is executed and control passes to the end of the IF statement.

If the truth value of the condition is \true" and the NEXT SENTENCE phrase is used
instead of statement-1 , control immediately passes to the next executable sentence.

If the truth value of the condition is \false" and if statement-2 is speci�ed, then if
statement-2 is a procedure branching or conditional statement, control is explicitly
transferred according to the rules for that statement. If statement-2 is not such a
statement, then statement-2 is executed and control passes to the end of the IF statements.

If the truth value of the condition is \false" and statement-2 is not speci�ed, then the ELSE
NEXT SENTENCE phrase, if speci�ed, causes transfer of control to the next executable
sentence. If the condition is false and the ELSE phrase is not speci�ed then statement-1 is
ignored and control passes to the end of the IF statement.

Statement-1 or statement-2 may be (or may contain) an IF statement, according to their
description in the previous paragraphs. This is called a nested IF statement .

IF statements within IF statements may be considered as paired IF, ELSE, and
NNNNNNNNNNNNNNNNNNNN
END-IF

combinations, proceeding from left to right. Thus, any ELSE or
NNNNNNNNNNNNNNNNNNNN
END-IF encountered is

considered to apply to the immediately preceding IF that has not been already paired with an
ELSE or

NNNNNNNNNNNNNNNNNNNN
END-IF respectively.

To clarify, the IF/ELSE pairing is shown in the following illustration:

PROCEDURE DIVISION Statements 9-47

IF

Example

BEGIN SECTION.

DATA-IN.

READ REC-FILE RECORD INTO DATA-REC....
IF DATA-REC IS NOT ALPHABETIC

THEN

IF DATA-REC IS NOT NUMERIC
PERFORM ILLEGAL-CHARACTER

ELSE NEXT SENTENCE

ELSE PERFORM ALPHA-TYPE....

The IF statements above check that the data read into DATA-REC is either all alphabetic or all
numeric.

The �rst IF statement consists of the IF/ELSE pair:

IF DATA-REC IS NOT ALPHABETIC...ELSE PERFORM ALPHA-TYPE.

The second IF/ELSE pair is:

IF DATA-REC IS NOT NUMERIC...ELSE NEXT SENTENCE.

Thus, if DATA-REC has any nonnumeric character or characters not from the English alphabet,
the procedure ILLEGAL-CHARACTER is performed.

To clarify, the IF/ELSE and END-IF pairing is shown in the following illustration.

9-48 PROCEDURE DIVISION Statements

INITIALIZE

INITIALIZE Statement

The INITIALIZE statement sets selected types of data �elds to prede�ned values. For
example, INITIALIZE can set numeric data to zeros or alphanumeric data to spaces.

Syntax

Parameters

literal-1 and
identi�er-2

represent the sending area.

identi�er-1 represents the receiving area.

Description

The description of the data item referenced by identi�er-1 or any items subordinate to
identi�er-1 may not contain the DEPENDING phrase of the OCCURS clause.

The data description entry for the data item referenced by identi�er-1 must not contain a
RENAMES clause.

Each category stated in the REPLACING phrase must be a permissible category as a
receiving operand in a MOVE statement, where the corresponding data item referenced by
identi�er-2 or literal-1 is used as the sending operand. (See \MOVE Statement", later in this
chapter.)

The same category cannot be repeated in a REPLACING phrase.

An index data item may not be used as an operand in an INITIALIZE statement.

PROCEDURE DIVISION Statements 9-49

INITIALIZE

Initializing Data Fields

Following are rules for initializing data �elds:

The keyword following the word REPLACING corresponds to a category of data as de�ned
under \PICTURE Clause" in Chapter 7 of this manual.

INITIALIZE is executed as if a series of moves had been written. The receiving item of each
MOVE is always an elementary item even if identi�er-1 refers to a group item.

When the REPLACING phrase is speci�ed:

If identi�er-1 references a group item a move is executed from identi�er-2 or literal-1
to each elementary item of identi�er-1 that belongs to the category speci�ed by the
REPLACING phrase.

If identi�er-1 references an elementary item, a move is executed from identi�er-2 or
literal-1 to identi�er-1 , if it belongs to the category speci�ed by the REPLACING
phrase.

The only exceptions are those �elds speci�ed in the �rst two rules below.

Index data items and elementary FILLER data items are not a�ected by the execution of
INITIALIZE.

Any item that is subordinate to a receiving area identi�er and contains the REDEFINES
clause, or any item that is subordinate to such an item, is not initialized. However, a
receiving area identi�er may have a REDEFINES clause or be subordinate to a data item
with a REDEFINES clause.

When the statement is written without the REPLACING phrase, data items of the
categories alphabetic, alphanumeric, and alphanumeric-edited are set to spaces. Data items
of the categories numeric and numeric-edited are set to zeros. In this case, the operation is
as if each a�ected data item is the receiving area in an elementary MOVE statement with
the indicated source literal (that is, spaces or zeros).

In all cases, the content of the data item referenced by identi�er-1 is set to the indicated
value in the order of appearance of identi�er-1 (left to right) in the INITIALIZE statement.
Where identi�er-1 references a group item, a�ected elementary items are initialized in the
sequence of their de�nition within the group.

If identi�er-1 occupies the same storage area as identi�er-2 , the result of the execution of
this statement is unde�ned, even if both identi�ers are de�ned by the same data description
entry.

9-50 PROCEDURE DIVISION Statements

INITIALIZE

Example

WORKING-STORAGE SECTION.

01 A.

05 B PIC 999.

05 C REDEFINES B.

10 D PIC X.

10 E PIC XX....
PROCEDURE DIVISION....

INITIALIZE A.

INITIALIZE C.

INITIALIZE C A.

When the INITIALIZE statements in the example above are executed, the data items are
initialized as follows:

1. In the �rst INITIALIZE, B is set to zeroes, while C, D and E are ignored.

2. In the second INITIALIZE, D and E are set to blanks.

3. In the third INITIALIZE, D and E are set to blanks. B is set to zeroes. The net e�ect is
that D and E are set to zeroes.

PROCEDURE DIVISION Statements 9-51

INSPECT

INSPECT Statement

The INSPECT statement can be used to perform one of three actions:

It can count the number of occurrences of a given character or character substring within a
data item.

It can replace a given character or characters within a speci�ed data item with another
character or set of characters.

It can perform both of the functions described above in a single operation.

By using the LEADING, BEFORE, and AFTER phrases, you can use INSPECT to replace
only certain occurrences of characters within a data item. Also, by using CHARACTERS, you
can tally and replace every character (or subset of characters when used in conjunction with
LEADING, BEFORE, and AFTER) in a data item.

Syntax

The INSPECT statement has four formats as shown below.

Note
NNN
Format 4 (INSPECT CONVERTING) is a way to specify a translationNNN
table converting one set of characters into another. Format 4 isNNN
equivalent to format 2, but provides a concise way of achievingNNN
the same results.

9-52 PROCEDURE DIVISION Statements

INSPECT

Parameters

identi�er-1 a variable representing either a group item or any category of elementary
item described implicitly or explicitly as USAGE IS DISPLAY. This is the
data item to be inspected.

identi�er-2 names an elementary numeric data item. It is used to contain the results of
tallying occurrences of a character or characters in the data item represented
by identi�er-1 . Identi�er-2 is not initialized by the INSPECT statement;
therefore, if you want it initialized, you must do so programmatically before
the INSPECT statement is executed.

identi�er-3
through
identi�er-n

each must reference either an elementary alphabetic, alphanumeric, or
numeric data item described implicitly or explicitly as USAGE IS DISPLAY.

literal-1 through
literal-5

are each nonnumeric literals. Each may be any �gurative constant except
ALL.

If, in formats 1 and 3, literal-1 is a �gurative constant, that implicitly refers
to a single character constant.

PROCEDURE DIVISION Statements 9-53

INSPECT

In formats 2 and 3, the size of the data referenced by literal-3 or identi�er-5
must be equal to the size of the data item referenced by literal-1 or
identi�er-3 .

If literal-3 is a �gurative constant, its size is implicitly equal to the size of
literal-1 , or the size of the data item referenced by identi�er-3 .

If literal-1 is a �gurative constant, the data referenced by literal-3 or
identi�er-5 must be a single character.

When the CHARACTERS phrase is used, literal-3 (or literal-2), or the size
of the data item referenced by identi�er-5 (or identi�er-4) must be one
character in length.

No more than one BEFORE phrase and one AFTER phrase can be speci�ed
for any one ALL, LEADING, CHARACTERS, FIRST, or

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CONVERTING

phrase.

The size of literal-5 or the data item referenced by identi�er-7 must be
equal to the size of literal-4 or the data item referenced by identi�er-6 .
When a �gurative constant is used as literal-5 , the size of the �gurative
constant is equal to the size of literal-4 or the size of the data item
referenced by identi�er-6 .

The same character must not appear more than once either in literal-4 or in
the data item referenced by identi�er-6 .

Description

When inspection takes place, the data items referenced by identi�er-1 and identi�ers-3
through 5 are all considered to be character strings, regardless of whether they are
alphanumeric, alphanumeric-edited, numeric-edited, unsigned or signed numeric.

For any data item except signed numeric or alphanumeric, inspection is accomplished by
inspecting the items as though they have been rede�ned as alphanumeric, and the INSPECT
statement written to reference the rede�ned data item.

For signed numeric data items, inspection is accomplished by treating the data item as if it
had been moved to an unsigned numeric data item, and then inspecting it as described in the
preceding paragraph.

WWW
CONVERTING Phrase

A format 4 INSPECT statement is interpreted and executed as though a format 2 INSPECT
statement specifying the same identi�er-1 has been written. This is done with a series of ALL
phrases, one for each character of literal 4. The result is as if each of these ALL phrases
were referenced as literal-1, a single character of literal-4 and referenced, as literal-3, the
corresponding single character of literal-5. Correspondence between the characters of literal-4
and the characters of literal-5 is by ordinal position within the data item.

If identi�er-4, identi�er-6, or identi�er-7 occupy the same storage area as identi�er-1, the
result of the execution of this statement is unde�ned. This is true even if they are de�ned by
the same data description entry. Refer to \Overlapping Operands and Incompatible Data" in
Chapter 8 for more information.

9-54 PROCEDURE DIVISION Statements

INSPECT

Example

The following two INSPECT statements are equivalent:

INSPECT D-ITEM CONVERTING "ABCD" TO "XYZX" AFTER QUOTE BEFORE "#".

INSPECT D-ITEM REPLACING

ALL "A" BY "X" AFTER QUOTE BEFORE "#"

ALL "B" BY "Y" AFTER QUOTE BEFORE "#"

ALL "C" BY "Z" AFTER QUOTE BEFORE "#"

ALL "D" BY "X" AFTER QUOTE BEFORE "#".

The results of these statements are:

Initial value of D-ITEM: AC"AEBDFBCD#AB"D
Final value of D-ITEM: AC"XEYXFYZX#AB"D

How the Comparison Operation Occurs

To facilitate the following description of the comparison operation, the various groups of
identi�ers and literals are renamed. The names used and the identi�ers or literals they
represent are:

searchchars represents literal-1 or the contents of identi�er-3 and 5%.

initchars represents literal-2 or the contents of identi�er-4 .

replacechars represents literal-3 or the contents of identi�er-5 .

data represents the contents of identi�er-1 .

When inspection takes place, the elements of data are compared to searchchars. For each
properly matched occurrence of searchchars:

In formats 1 and 3, tallying occurs using identi�er-2 to contain the results.

In formats 2 and 3, each set of properly matched characters in data is replaced by
replacechars .

When the INSPECT statement is used in its simplest form, that is, without the LEADING,
BEFORE, and AFTER phrases, the inspection occurs as follows:

The �rst set of searchchars is compared with an equal number of characters in data, starting
with the leftmost character of data.

If no match occurs, the second set of searchchars is compared with an equal number of
characters in data , again starting with the leftmost character of data.

This process continues for each set of searchchars until either a match occurs or all sets of
searchchars are exhausted.

If all sets of searchchars are exhausted and no matches have occurred, comparison begins
again using the �rst set of searchchars, but starting this time with the character immediately
to the right of the leftmost character of data.

Again, comparison proceeds as described above until either a match occurs or all sets of
searchchars are used.

PROCEDURE DIVISION Statements 9-55

INSPECT

If all sets are used and no matches have occurred, comparison begins again, starting with the
character of data to the right of the leftmost character of data.

This continuing cycle of shifting one character to the right in the characters of data and using
all of the sets of searchchars is terminated when, if no matches have occurred, the rightmost
character of data has been used in a comparison with the last set of searchchars.

If a match does occur for some set of searchchars and TALLYING is speci�ed, identi�er-2 is
incremented by one. If REPLACING is speci�ed, the matched characters of data are replaced
by the replacechars that correspond to the set of searchchars being compared when the match
occurred.

When a match occurs for a particular set of searchchars, the characters of data that matched
are not compared with any following searchchars. Comparison begins again using the �rst
set of searchchars, but starting with the character immediately to the right of the leftmost
character of data that matched.

Inspection continues in the manner described above until the rightmost character of data has
been used as the �rst character in a comparison with the last set of searchchars, or has been
matched.

If TALLYING and REPLACING are both speci�ed in the INSPECT statement, two
completely separate comparisons, as described above, take place. The �rst comparison is used
for TALLYING, and the second is used for REPLACING.

Example

The following INSPECT statement illustrates this form of inspection:

INSPECT WORD TALLYING COUNTER FOR ALL "X"

REPLACING ALL "EE" BY "OX", "9" BY "E".

WORD contains the alphanumeric data, YEEXE9XY, and COUNTER is the variable used to hold the
tally. Since INSPECT does not initialize COUNTER, assume it is initialized to zero before the
INSPECT statement.

Following are the step-by-step comparisons that take place when this INSPECT statement
executes:

1. Initially, WORD=YEEXE9XY and COUNTER=0. Begin the comparison starting at the �rst
character of YEEXE9XY:

YEEXE9XY
"
=X?

2. No match occurred. Begin the comparison again, starting at the second character:

YEEXE9XY

"
=X?

3. No match occurred. Begin the comparison again, starting at the third character:

YEEXE9XY

"
=X?

9-56 PROCEDURE DIVISION Statements

INSPECT

4. No match occurred. Begin the comparison again, starting at the fourth character:

YEEXE9XY

"
=X?

5. A match occurred. Increment COUNTER by 1, and begin the comparison again, starting
with the �fth character of YEEXE9XY:

YEEXE9XY

"
=X?

6. No match occurred. Begin the comparison again, starting with the sixth character:

YEEXE9XY

"
=X?

7. No match occurred. Begin the comparison again, starting with the seventh character:

YEEXE9XY

"
=X?

8. A match occurred. Increment COUNTER by 1, and begin the comparison again, starting
with the eighth character of YEEXE9XY:

YEEXE9XY

"
=X?

9. No match occurred. The last character of YEEXE9XY has been used as the �rst element in
a comparison. The tallying cycle is complete. Begin the replacing cycle starting with the
�rst characters of YEEXE9XY:

YEEXE9XY ! YEEXE9XY

"" "
=EE? =9?

10. No match occurred. Begin the comparison again, starting with the second character:

YEEXE9XY

""
=EE?

11. A match occurred. Change EE to OX, and begin the comparison again, starting with the
fourth character of YOXXE9XY:

YOXXE9XY ! YOXXE9XY

"" "
=EE? =9?

12. No match occurred. Begin the comparison again, starting with the �fth character:

YOXXE9XY ! YOXXE9XY

"" "
=EE? =9?

PROCEDURE DIVISION Statements 9-57

INSPECT

13. No match occurred. Begin the comparison again, starting with the sixth character:

YOXXE9XY ! YOXXE9XY

"" "
=EE? =9?

14. A match occurred. Replace 9 by E in YOXXE9XY, and begin the comparison again, at the
seventh character of YOXXEEXY:

YOXXEEXY ! YOXXEEXY

"" "
=EE? =9?

15. No match occurred. Begin the comparison again, starting with the eighth character:

YOXXEEXY ! YOXXEEXY

"" "
=EE? =9?

16. No match occurred. The last character of YOXXEEXY has been used as the �rst character in
a comparison. The comparison cycle for REPLACING is complete. This ends execution of
the INSPECT statement.

The result of this INSPECT statement is summarized by the fact that WORD now contains the
character string, YOXXEEXY, and COUNTER now contains the integer 2.

BEFORE and AFTER Phrases

No more than one BEFORE phrase and one AFTER phrase can be speci�ed for any one ALL,
LEADING, CHARACTERS, FIRST, or

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CONVERTING phrase.

The comparison operation described on the preceding pages is a�ected by the BEFORE and
AFTER phrases in the following way:

If the BEFORE phrase is used, the associated searchchars are used only in those comparison
cycles that make comparisons of characters of data to the left of the �rst occurrence of the
associated initchars .

If initchars does not appear in data, the BEFORE phrase has no e�ect upon the comparison
operation.

If the AFTER phrase is used, the associated searchchars are used only in those comparison
cycles that make comparisons of characters of data to the right of the �rst occurrence of the
associated initchars .

If initchars does not appear in data, the associated searchchars are never used in the
comparison cycle. This is equivalent to not using the clause in which the AFTER phrase
appears.

Multiple occurrences of the BEFORE/AFTER phrase allow the TALLYING/REPLACING
operation to be initiated after the beginning of the inspection of data begins and/or is
terminated before the end of the inspection of data ends.

9-58 PROCEDURE DIVISION Statements

INSPECT

LEADING Phrase

If the LEADING phrase is used in an INSPECT statement, it causes identi�er-2 (the variable
used to hold the tally) to be incremented by one for each contiguous matching of searchchars
with a character of data, provided that the matching begins with the leftmost character of the
characters that make up data.

For replacing, the LEADING phrase has the e�ect of replacing each contiguous occurrence of
matched characters to be replaced by replacechars , provided that the matching begins with
the leftmost character of data .

If the �rst character (or characters) of data is not the same as searchchars, the clause in which
the LEADING phrase appears has no e�ect upon the data, or the variable used to hold the
tally.

ALL Phrase

When used in tallying, the ALL phrase causes the contents of identi�er-2 to be incremented
by one for each occurrence of searchchars within data. When used in replacing, the ALL
phrase causes each set of characters in data matched with the searchchars to be replaced.

CHARACTERS Phrase

When the CHARACTERS phrase is used in tallying, the contents of identi�er-2 are
incremented by 1 for each character in the set of characters used in the comparison cycle.
This does not necessarily imply that all characters are tallied, since the BEFORE and AFTER
phrases can limit comparison to only part of data.

When the CHARACTERS phrase is used in replacement, each character in the set of
characters used in the comparison cycle is replaced by replacechars , regardless of what the
character in data is. For example, this phrase can be used to initialize a data item by not
using the BEFORE or AFTER phrases to limit the part of data to be acted upon.
NNN
Multiple occurrences of the REPLACING CHARACTERS phrase are allowed.

FIRST Phrase

When the FIRST phrase is used in replacement, the leftmost occurrence in data of searchchars
is replaced by the associated replacechars .

Examples

Assuming that the variable THISONE has the data "WARNING" in it, the INSPECT statement,

INSPECT THISONE REPLACING ALL "N" by "P" BEFORE INITIAL "I".

results in THISONE having the data WARPING in it.

If REC has the data "JIMGIRAFFEEGAVEGUMDROPS" and ACUM is zero initially, the following
INSPECT statement results in ACUM being 2, and REC containing JIMRIRAFFEERAVERUMDROPS.

INSPECT REC TALLYING ACUM FOR ALL "F", REPLACING ALL "G" BY "R".

If PETE has the data "CBVFEET" before execution of the following INSPECT statement, then
following execution, PETE contains CBVFOOO.

PROCEDURE DIVISION Statements 9-59

INSPECT

INSPECT PETE REPLACING LEADING "BV" BY "AT",

CHARACTERS BY "0" AFTER INITIAL "F".

In the following example, COUNT-n is assumed to be zero immediately prior to execution of the
statement. Table 9-1 shows the result of executing the two successive INSPECT statements.

INSPECT ITEM TALLYING

COUNT-0 FOR ALL "AB" BEFORE "BC"

COUNT-1 FOR LEADING "B" AFTER "D"

COUNT-2 FOR CHARACTERS AFTER "A" BEFORE "C".

INSPECT ITEM REPLACING

ALL "AB" BY "XY" BEFORE "BC"

LEADING "B" BY "W" AFTER "D"

FIRST "E" BY "V" AFTER "D"

CHARACTERS BY "Z" AFTER "A" BEFORE "C".

Table 9-1. Results of INSPECT Statement Execution

Initial Value of Item COUNT-0 COUNT-1 COUNT-2 Final Value of Item

BBEABDABABBCABEE 3 0 2 BBEXYZXYXYZCABVE

ADDDDC 0 0 4 AZZZZC

ADDDDA 0 0 5 AZZZZZ

CDDDDC 0 0 0 CDDDDC

BDBBBDB 0 3 0 BDWWWDB

9-60 PROCEDURE DIVISION Statements

MOVE

MOVE Statement

The MOVE statement transfers data to one or more data areas in accordance with the rules of
editing.

Syntax

The MOVE statement has two general formats:

Parameters

identi�er-1
and literal-1

the sending areas. The special registers, TALLY, TIME-OF-DAY,
CURRENT-DATE, and WHEN-COMPILED may be used as sending items.

identi�er-2 and its subsequent occurrences, are the receiving areas.

CORR an abbreviation for CORRESPONDING. An index data item cannot be used
as an operand of a MOVE statement.

Description

If you use format 2, both identi�ers must be group items. Selected items are moved from
within identi�er-1 to selected items within identi�er-2 . The results are the same as
if you referred to each pair of corresponding identi�ers in separate MOVE statements.
The rules governing correspondence are presented in Chapter 8 under the heading,
\CORRESPONDING Phrase".

If you use format 1, the data designated by literal-1 , or by identi�er-1 is moved, in turn,
to identi�er-2 . Any subscripting or indexing associated with identi�ers to the right of the
keyword TO is evaluated immediately before the data is moved to the respective data items.

Any subscripting, indexing, reference modi�cation, or function associated with identi�er-1
is evaluated only once, immediately before the data is moved to the �rst of the receiving
operands.

For example, the result of the following statement:

MOVE A(B) TO B, C(B)

Is equivalent to the following three statements:

MOVE A(B) TO temp

MOVE temp TO B

MOVE temp TO C(B)

PROCEDURE DIVISION Statements 9-61

MOVE

Where temp is an intermediate result item used internally by the compiler. Note that the
move of A(B) to B a�ects the element of C to which A(B) is moved. That is, if B is initially
one and A(B) is 9, then after 9 is moved to B, A(1) is moved to C(9). It is not moved to C(1).

Rules For Moving Data

All data is moved according to the rules for moving elementary data items to elementary data
items. This is called an elementary move. Valid and invalid moves are determined by the
categories of the sending and receiving data items. Refer to \PICTURE Clause" in Chapter 7
for a description of the various categories.

Any move that is not an elementary move is treated exactly as if it were a move from one
alphanumeric elementary data item to another, except that there is no conversion from one
form of internal representation to another. In such a move, the receiving data item is �lled
without respect to the individual elementary or group items contained in either the sending
or receiving area, except when the sending data item contains a table whose OCCURS clause
uses the DEPENDING ON clause. In this case, only the area speci�ed by the DEPENDING
ON clause is �lled or moved.
NNN
When a receiving item is a variable length data item and contains the objectNN
of the DEPENDING ON phrase, the maximum length of the item is used.

If the move is from a group to an elementary item, justi�cation takes place if speci�ed in the
receiving item.

Rules For Elementary Moves

The following rules apply to an elementary move between data items belonging to one of the
�ve categories of data:

All numeric literals and the �gurative constant ZERO belong to the numeric category; all
nonnumeric literals, and all �gurative constants except SPACE and ZERO belong to the
alphanumeric category; SPACE belongs to the alphabetic category.

An alphanumeric-edited or alphabetic data item cannot be moved to a numeric or
numeric-edited data item.

A numeric or numeric-edited data item cannot be moved to an alphabetic data item.

A noninteger numeric literal or noninteger numeric data item cannot be moved to an
alphanumeric or alphanumeric-edited data item.

All other elementary moves are valid and are performed according to the rules listed below.

Any necessary conversion from one internal representation to another takes place during valid
elementary moves, as does any editing speci�ed for, or de-editing implied by, the receiving
data item.

9-62 PROCEDURE DIVISION Statements

MOVE

Alphanumeric or Alphanumeric-Edited Receiving Item

When an alphanumeric-edited or alphanumeric item is a receiving data item, alignment and
any necessary space �lling takes place as de�ned under \Data Alignment" in Chapter 4. If the
size of the sending item is larger than the receiving item, the excess characters are truncated
on the right after the receiving data item is �lled.

If the sending item is a signed numeric item, the sign is not moved, regardless of whether
the sign is separate or not. If the sign is separate, however, the sending item is considered
to be one character shorter than its actual size. If the sending operand is numeric-edited,
no de-editing takes place. If the usage of the sending operand is di�erent from that of the
receiving operand, the sending operand is converted to the internal representation of the
receiving operand. If the sending operand is numeric and contains the PICTURE symbol 'P',
all digit positions speci�ed with this symbol are considered to have the value zero and are
counted in the size of the sending operand.

Numeric or Numeric-Edited Receiving Item

When a numeric or numeric-edited item is the receiving item, alignment by decimal point
and any necessary zero �lling is performed as de�ned under \Data Alignment" in Chapter 4.
The exception to this rule is when zeros are replaced because of editing requirements of the
receiving data item.

For signed numeric receiving items, the sign of the sending item is placed in the receiving
item. An unsigned numeric sending item causes a positive sign to be generated for the
receiving item. Also, any conversion of the representation of the sign, such as from a zoned
overpunched sign to a separate sign, is done as necessary.

For an unsigned numeric receiving item, the absolute value of the sending item is moved and
no operational sign is generated for the receiving item.

For an alphanumeric sending item, data is moved as if the sending item were described as
an unsigned numeric integer. The ANSI limit for the length of a numeric item is 18 digits;
however, HP COBOL II extends the limit to the length of an intermediate result, as de�ned in
the COMPUTE statement.
NNN
When the sending operand is numeric-edited, de-editing is implied to establishNNN
the operand's unedited numeric value, which may be signed; then the uneditedNNN
numeric value is moved to the receiving field. This means that blanks areNNN
converted to zeros and insertion characters and floating characters areNNN
stripped. Any sign characters are translated into the proper internal formNNN
of the sign described by the USAGE clause.

Alphabetic Receiving Item

When a receiving �eld is described as alphabetic, justi�cation and any necessary space �lling
is performed as speci�ed under \Data Alignment" in Chapter 4. If the size of the sending data
item is larger than the receiving data item, the excess characters are truncated to the right
after the receiving item is �lled.

Table 9-2 summarizes the rules presented above.

PROCEDURE DIVISION Statements 9-63

MOVE

Table 9-2. Permissible Moves

9-64 PROCEDURE DIVISION Statements

MOVE

Example

FILE SECTION.

FD FILE-IN.

01 FILE-REC.

02 EMP-FIELD.

03 NAME PIC X(20).

03 AGE PIC 99.

03 EMP-NO PIC X(9).
02 LOCALE PIC X(35)....

WORKING-STORAGE SECTION.

01 FIELD.

02 SUB-F1 PIC BBXX VALUE SPACES.

02 SUB-F2 PIC XX/XX/XX VALUE SPACES.

01 NUM-IN PIC S9(3)V99 VALUE -12099.

01 CARD-NUM PIC S9(3)V99 SIGN IS TRAILING VALUE ZERO.

01 NUM-JUNK PIC S9(5) VALUE -12345

01 INFO-OUT.

02 EMP-FIELD.

03 NAME PIC X(20)BBB VALUE SPACES.

03 AGE PIC XXBBB VALUE SPACES.

03 EMP-NO PIC XXXBXXBXXXXBBB VALUE SPACES.

02 EXEMPTIONS PIC 99 VALUE ZERO.

Given the �elds described above, the MOVE statement:

MOVE NUM-IN TO FIELD

gives the result:

1209Rttttttt

A group move is done with no conversion.

The statement, MOVE NUM-JUNK TO SUB-F2, gives the result:

12/34/5t

The space to the right was supplied in order to �ll the �eld, and no operational sign was
moved.

PROCEDURE DIVISION Statements 9-65

MOVE

Assuming that the current contents of FILE-REC are in order:

NAME JASONtPENNYttttttttt
AGE AGE
EMP-NO 585241215

LOCALE WASHINGTONtDISTRICTtOFtCOLUMBIAtttt

and the current contents of INFO-OUT are all spaces for NAME, AGE, and EMP-NO, and zeros
for EXEMPTIONS, then the statement MOVE CORRESPONDING FILE-REC TO INFO-OUT gives the
following results in INFO-OUT,

NAME JASONtPENNYtttttttttttt
AGE 39ttt
EMP-NO 585t24t1215ttt
EXEMPTIONS 00

Finally, the MOVE statement:

MOVE NUM-IN TO CARD-NUM

results in the contents of CARD-NUM being 1209R, since R is the zoned overpunch character for
9 in a negative number.
NNN
The following example contains a de-edited MOVE statement.

Given:

01 NUM-ITEM PIC S9(5)V99.

01 EDITED-ITEM PIC $ZZZ,ZZZ.99-.

MOVE -23.00 TO EDITED-ITEM

The following is a valid de-edited MOVE:

MOVE EDITED-ITEM TO NUM-ITEM.

The results of the example above are the same as in the following example:

MOVE -23.00 TO NUM-ITEM

9-66 PROCEDURE DIVISION Statements

MULTIPLY

MULTIPLY Statement

The MULTIPLY statement multiplies a number by one or more other numbers and stores the
result in one or more locations.

Syntax

The MULTIPLY statement has the following two formats:

Parameters

identi�er-1 ,
identi�er-2 ,
and so forth

numeric elementary items, except that in format 2, each identi�er following
the GIVING keyword may be numeric-edited elementary items.

literal-1 and
literal-2

any numeric literal.

PROCEDURE DIVISION Statements 9-67

MULTIPLY

Description

The composite of operands (that is, the hypothetical data item resulting from the
superimposition of all receiving data items aligned on their decimal points) in any given
MULTIPLY statement must not contain more than 18 digits.

The ROUNDED, SIZE ERROR, and
NNN
NOT ON SIZE ERROR phrases, as well as multiple results

and overlapping operands, are described in Chapter 8.

When you use format 1 of the MULTIPLY statement, literal-1 or the contents of identi�er-1
is multiplied, in turn, by the identi�ers following the BY keyword. The result of each
multiplication is stored in each of the identi�ers following the BY keyword immediately after
that particular product is determined.

When format 2 is used, the value of identi�er-1 or literal-1 is multiplied by the value of
identi�er-2 or literal-2 , and the resulting product is stored in each identi�er following the
GIVING keyword.

Examples

MULTIPLY 2 BY ROOT, SQ-ROOT, ROOT-SQUARED.

If ROOT has the value 2, SQ-ROOT the value square root of 2 (1.41), and ROOT-SQUARED the
value 4, then the above MULTIPLY statement results in ROOT having the value 4, SQ-ROOT
having twice the value the square root of 2 (2.82), and ROOT-SQUARED having the value 8.

Assuming ROOT to be 2, the following MULTIPLY statement assigns the value 4 to
ROOT-SQUARED:

MULTIPLY ROOT BY ROOT GIVING ROOT-SQUARED.

9-68 PROCEDURE DIVISION Statements

OPEN

OPEN Statement

The OPEN statement opens a speci�ed �le or �les. It also performs checking and writing of
labels, and other input or output operations.

Syntax

Where �le-name-1 through �le-name-4 are the �les to be opened.

Description

The NO REWIND phrase can only be used for sequential �les. It has no meaning for indexed,
random, or relative �les and must not be used for such �les. When using ANSI74 entry point,
EXTEND can only be used for sequential �les.

The REVERSED phrase is not implemented in HP COBOL II. If used, it is treated as a
comment. The REVERSED phrase is an obsolete feature of the 1985 ANSI COBOL standard.

You can use a single OPEN statement to open several �les. The �les to be opened need not
have the same organization or access. However, each �le must have a description equivalent to
the description used for it when it was created.

Prior to the successful execution of an OPEN statement for a �le, the �le must not be
referenced implicitly or explicitly by the execution of a statement.

When a �le has been successfully opened, its associated record area is made available to the
program. However, execution of an OPEN statement does not obtain or release any data
record of the opened �le. The various input-output statements must be used to do this.

The INPUT, OUTPUT, I-O, or EXTEND phrases must only be used once in an OPEN
statement for any given �le. You may open a �le with any of the phrases in the same
program. However, the �le must be closed each time using a CLOSE statement without the
LOCK phrase (without the REEL/UNIT phrase in the case of sequential �les) before another
OPEN statement can be issued for that �le.

The INPUT phrase opens a �le for input operations. If the OPTIONAL phrase is speci�ed in
the SELECT clause of a �le and the �le is not present, the �rst READ statement for the �le
causes an AT END condition.

PROCEDURE DIVISION Statements 9-69

OPEN

The OUTPUT phrase creates a �le if it does not already exist and opens it for output
operations. When the output �le is opened, it contains no data records. The �le created is a
job or session temporary �le using the formal �le designator speci�ed in the SELECT clause.
For information about how INDEX �les are created, see Appendix H, \MPE XL System
Dependencies."

The I-O phrase permits the opening of a �le for both input and output operations. As an HP
extension to ANSI COBOL'74, HP COBOL II creates the �le if it does not already exist.
Under ANSI COBOL'85, the �le is not created unless the OPTIONAL keyword is speci�ed in
the SELECT clause. This also applies to the EXTEND phrase.

When �les are opened with the INPUT or I-O phrase, the OPEN statement (without the
EXTEND or NO REWIND phrases in the case of sequential �les) sets the �le position
indicator to the �rst record currently existing within the �le. (Indexed �les use the prime
record key to determine the �rst record to be accessed.) If no records exist in the �le, the �le
position indicator is set in such a manner that the next executed format 1 READ statement
for the �le results in an AT END condition.
NNN
For a relative or indexed file in the dynamic access mode, execution ofNNN
an OPEN I-O statement followed by one or more WRITE statements and thenNNN
a READ NEXT statement causes the READ NEXT statement to access the firstNNN
record in the file at the time the READ NEXT statement executes. This isNNN
an incompatible feature with ANSI COBOL'74.

In ANSI COBOL'74, the above sequence of events causes the READ NEXT statement to
access the record in the �le that was �rst when the OPEN statement executed, not necessarily
the record that is �rst when the READ NEXT executes. If one of the WRITE statements
inserts a record with a key or relative record number lower than any other record in the �le,
that record would not be read by the READ NEXT. This is the di�erence between ANSI
COBOL'74 and ANSI COBOL'85. For compatibility with ANSI COBOL'74, use the ANSI74
entry point.

If a CLOSE statement has not been issued for an open �le when a STOP RUN statement (or
a GOBACK statement in a main program) is executed, the �le is automatically closed by the
COBOL run-time system.

Label Records

The LABEL RECORDS clause of the �le description entry for a �le indicates whether label
records are present in the �le.

The following rules apply when label records are present:

1. When the INPUT phrase is used in the OPEN statement, standard labels are checked in
accordance with the conventions for input label checking. Any user labels speci�ed for the
�le are processed according to the procedure speci�ed by a format 2 USE statement.

2. When the OUTPUT phrase is used in the OPEN statement, standard labels are written in
accordance with the conventions for output label writing. Any user labels speci�ed for the
�le are written according to the procedure speci�ed by a format 2 USE statement.

3. When the I-O phrase is used in an OPEN statement, standard labels are checked in
accordance with the conventions for input-output label checking. New standard labels are

9-70 PROCEDURE DIVISION Statements

OPEN

written in accordance with input-output label writing. Any user labels speci�ed for the �le
are processed according to the procedure speci�ed by a format 2 USE statement.

PROCEDURE DIVISION Statements 9-71

OPEN

When label records are speci�ed, but are not present, and the �le was opened using the
INPUT phrase, an input-output routine error results.

When label records are present, but not speci�ed, and the �le was opened using the INPUT
phrase, the label records are ignored.

EXTEND, REVERSE, and NO REWIND Phrases

The REVERSE and NO REWIND phrases apply to sequential �les. When using the ANSI74
entry point, EXTEND can only be used for sequential �les.

The REVERSE and NO REWIND phrases are not recognized by the HP COBOL II compiler,
and are treated as comments if speci�ed.

The EXTEND phrase, when speci�ed in an OPEN statement, positions the �le immediately
following the last logical record of the �le. Subsequent WRITE statements for the �le add
records at the end of the �le as though the �le had been opened with the OUTPUT phrase.

If you specify the EXTEND phrase for multiple �le reels, a compilation error diagnostic
appears. This is done to conform to the 1974 ANSI COBOL standard. The object program
on an HP computer system allows the EXTEND operation to execute, even for multiple
�le reels. However, any �les following the referenced �le are written over and are made
inaccessible.

When the EXTEND phrase is speci�ed and the LABEL RECORDS clause of the �le
description for the �le indicates the existence of label records, the execution of the OPEN
statement includes the following steps:

1. The beginning �le labels are processed only if the �le resides on a single reel or unit. Any
user labels speci�ed for the �le are processed according to the procedure speci�ed by a
format 2 USE statement.

2. Processing then proceeds as though the �le had been opened with the OUTPUT phrase.

Permissible Statements

The following tables indicate the statements permitted to be executed for a �le of a given
organization opened in a given open mode.

Table 9-3. Sequential Organization

Statement
Open Mode

Input Output Input-Output Extend

Read X X

Write X X X

Rewrite X

WRITE with Input-Output mode is an HP extension to the ANSI COBOL standard.

9-72 PROCEDURE DIVISION Statements

OPEN

Table 9-4. Relative and Indexed Organization

File Access
Method Statement

Open Mode

Input Output Input-Output

Sequential READ X X

WRITE X

REWRITE X

START X X

DELETE X

SEEK (Rel. only)

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

SEEK (Rel. only) X X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

SEEK (Rel. only) X X

Note For ANSI, EXTEND can be used with the WRITE statement only if Access
Mode Sequential.

The SEEK statement is an HP extension to the ANSI COBOL standard.

Table 9-5. Random Organization

Statement
Open Mode

Input Output Input-Output

Seek X X

Read X X

Rewrite X

Write X X

PROCEDURE DIVISION Statements 9-73

OPEN

FILE STATUS Data Item

If the �le named in the OPEN statement has a FILE STATUS data item associated with it,
the FILE STATUS data item is updated following the execution of the OPEN statement to
indicate whether or not the attempt to open the �le was successful. Refer to \FILE STATUS
Clause" in Chapter 6 for valid combinations of status keys 1 and 2. For more information on
handling I/O errors, see \Input-Output Error Handling Procedures" in Chapter 8.

9-74 PROCEDURE DIVISION Statements

PERFORM

PERFORM Statement

The PERFORM statement transfers control explicitly to one or more procedures, and
implicitly returns control to the statement after the current PERFORM statement when
execution of the speci�ed procedure or procedures is complete. The PERFORM statement is
also used to control execution of one or more imperative statements that are within the scope
of that PERFORM statement.

These parameters are used by the four general formats of the PERFORM statement.

Parameters

procedure-name-1
and
procedure-name-2

names of procedures within the PROCEDURE DIVISION of the program
in which the PERFORM statement appears. If one of the procedures is a
declarative procedure, then both must be declarative.

identi�er-1
through
identi�er-7

numeric elementary items described in the DATA DIVISION.

literal-1 through
literal-4

numeric literals.

condition-1 and
condition-2

any valid COBOL condition.

THRU equivalent to THROUGH.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-PERFORM terminates the in-line PERFORM statement.

PROCEDURE DIVISION Statements 9-75

PERFORM

Syntax

Format 1 of the PERFORM statement is the basic PERFORM statement. The speci�ed set of
statements is executed once as described on the preceding pages. Control then passes to the
next executable statement following the PERFORM statement.

9-76 PROCEDURE DIVISION Statements

PERFORM

A format 2 PERFORM statement allows you to perform the speci�ed set of statements
the number of times speci�ed by integer-1 or the numeric integer named by identi�er-1 .
Following the execution of the statements, control is passed to the next executable statement
following the PERFORM statement.

If identi�er-1 is a negative integer or zero (0) when the PERFORM statement is executed,
control immediately passes to the next executable statement following the PERFORM
statement. Thus, a negative integer or zero value for identi�er-1 is equivalent to not having
the PERFORM statement in the code at the time of execution.

If identi�er-1 is referenced during execution of the PERFORM statement, it does not change
the number of times the speci�ed set of statements is executed, as indicated by the initial
value of identi�er-1 .

PROCEDURE DIVISION Statements 9-77

PERFORM

A format 3 PERFORM statement uses condition-1 to control the number of times the
speci�ed set of statements is performed. The statements are performed as long as condition-1
is false.

When condition-1 is true, control passes to the next executable statement after the
PERFORM.

Note Be sure that, within the speci�ed set of statements, condition-1 eventually has
a value of true.

NN
When TEST BEFORE is specified:NN
The condition is checked before the specified set of statements isNN
performed (the set of statements will be performed 0 or more times).NN
NN
When TEST AFTER is specified:NN
The condition is checked after the specified set of statements has beenNN
performed (the statements are always performed at least once).

If neither TEST BEFORE nor TEST AFTER is speci�ed, the TEST BEFORE phrase is
assumed.

Format 4 PERFORM Statement (PERFORM . . . VARYING)

A PERFORM . . . VARYING statement is used to augment the values referenced by one or
more identi�ers or index names in an orderly fashion during the execution of a PERFORM
statement.

For clarity, two versions of format 4 are presented below: the �rst is for an out-of-line
PERFORM and the second is for an in-line PERFORM.

9-78 PROCEDURE DIVISION Statements

PERFORM

PROCEDURE DIVISION Statements 9-79

PERFORM

Up to six AFTER phrases can be speci�ed in format 4. However, if procedure-name-1 is
omitted, the AFTER phrase cannot be speci�ed. Any literal used in the BY phrase, and data
items referenced by identi�er-4 , identi�er-7 , and identi�er-10 must not have a value of zero.
Also, if an index name is used in the VARYING or AFTER phrase, then the following is true:

If an identi�er or a literal is speci�ed in the associated FROM phrase, the data item
referenced by the identi�er or the value of the literal must be a positive integer.

If an identi�er is speci�ed in the associated BY phrase, it must name an integer data item.
If a literal is speci�ed, it must be a positive integer.

If an index name is speci�ed in the FROM phrase, the following is true:

If an identi�er is used in the associated VARYING or AFTER phrase, it must name an
integer data item.

If an identi�er or literal is used in the associated BY phrase, the literal or the data item
referenced by the identi�er must be an integer.

When an index name appears in a VARYING or an AFTER phrase, it is initialized and
subsequently augmented according to the rules of the SET statement. When an index
name appears in a FROM phrase, any identi�er appearing in an associated VARYING or
AFTER phrase is initialized according to the rules of the SET statement. It is subsequently
augmented using the SET statement rules as described below.

Variation of a Single Identifier

Variation of a single identi�er is accomplished by using a format 4 PERFORM statement of
the following form:

9-80 PROCEDURE DIVISION Statements

PERFORM

Out-of-Line PERFORM

When a PERFORM statement is executed, control is transferred to the �rst statement of the
procedure named procedure-name-1 . This transfer occurs only once for each execution of a
PERFORM statement.

An implicit transfer of control to the next executable statement following the PERFORM
statement is established as follows:

If procedure-name-1 is a paragraph name and procedure-name-2 is not speci�ed, then the
return occurs after the last statement of procedure-name-1 .

If procedure-name-1 is a section name and procedure-name-2 is is not speci�ed, then
the return occurs after the last statement of the last paragraph of the section named by
procedure-name-1 .

If procedure-name-1 and procedure-name-2 are speci�ed, and procedure-name-2 is a
paragraph name, the return occurs after the last statement of procedure-name-2 .

If procedure-name-2 is speci�ed, and is the name of a section, the return occurs after the
last statement of the last paragraph in the section named by procedure-name-2 .

No relationship is necessary between procedure-name-1 and procedure-name-2 , except that
a consecutive sequence of operations is to be executed beginning at procedure-name-1 , and
ending with the execution of procedure-name-2 .

If a procedure within the range of a format 2 PERFORM statement is contained in a section
(or is a section) whose section number is greater than 49, the section in which it is contained
is in its initial state only the �rst time the section is entered. Each time the section is
subsequently entered as a result of the PERFORM statement, it is in its last used state. After
the procedure has been executed the speci�ed number of times, it is entered in its initial state
the next time the procedure is referenced. The term initial state refers to the original setting
of GO TO statements before they are modi�ed at run time by the ALTER statement (refer to
\ALTER Statement" in Chapter 9).

The following is an example of an out-of-line PERFORM statement:

PERFORM READ-INPUT WITH TEST AFTER

UNTIL EOF-FLAG="YES"

The above example performs READ-INPUT at least once.

PROCEDURE DIVISION Statements 9-81

PERFORM

In-Line PERFORM

If an in-line PERFORM statement is speci�ed, an execution of the PERFORM statement is
completed after the last statement contained within it has been executed.

When an in-line PERFORM statement is executed, control is transferred to the �rst
statement of imperative-statement-1 . This transfer occurs only once for each execution of a
PERFORM statement.

Following is an example of an in-line PERFORM statement:

PERFORM

MOVE A TO B

ADD 1 TO B

END-PERFORM.

PERFORM VARYING I FROM 1 BY 1 UNTIL I > 4

WRITE P-FILE FROM HEADING(I)

END-PERFORM.

General Rules of PERFORM

The following rules apply to all four formats of the PERFORM statement.

When procedure-name-1 is speci�ed, the PERFORM statement is referred to as an
out-of-line PERFORM statement.

NN
When procedure-name-1 is omitted, the PERFORMNN

statement is referred to as an in-line PERFORM statement.

The statements contained within the range of procedure-name-1 (through procedure-name-2 ,
if speci�ed) for an out-of-line PERFORM statement, or those statements contained within
an in-line PERFORM statement itself, are referred to as the speci�ed set of statements .
NNN
If procedure-name-1 is omitted, imperative-statement-1 and the END-PERFORMNN
phrase must be specified. If procedure-name-1 is specified,NN
imperative-statement-1 and the END-PERFORM phrase must not be specified.

9-82 PROCEDURE DIVISION Statements

PERFORM

Range of the PERFORM Statement

The range of the PERFORM statement includes all statements that are executed as a result
of executing the PERFORM statement through an implicit transfer of control to the end of
the PERFORM statement.

The range includes all statements that are executed as the result of a transfer of control
by CALL, EXIT, GO TO and PERFORM statements within the range of the PERFORM
statement. The range also includes all statements in declarative procedures that are executed
as a result of executing statements in the range of the PERFORM statement. It is not
necessary that the statements in the range of a PERFORM statement appear in consecutive
order in the source program.

Statements executed as the result of a transfer of control caused by executing an EXIT
PROGRAM statement are not considered to be a part of the range of the PERFORM
statement when the following is true:

The EXIT PROGRAM statement is speci�ed in the same program in which the PERFORM
statement is speci�ed.

The EXIT PROGRAM statement is within the range of the PERFORM statement.

A PERFORM statement that appears in an independent program segment can have within
its range, in addition to any declarative segment executed within that range, only one of the
following:

Sections or paragraphs wholly contained in one or more nonindependent segments.

Sections or paragraphs wholly contained in the same independent segment as that
PERFORM statement.

A PERFORM statement that appears in a nonindependent program segment can have within
its range, in addition to the declarative sections executed within that range, only one of the
following:

Sections or paragraphs wholly contained in one or more nonindependent segments.

Sections or paragraphs wholly contained in a single independent segment.

Nested PERFORM Statements

If a procedure or sequence of procedures contains another PERFORM statement, the
procedure(s) associated with the nested PERFORM statement must be totally included in, or
totally excluded from, the procedures referenced by the �rst PERFORM statement.

PROCEDURE DIVISION Statements 9-83

PERFORM

PERFORM Constructs

Figure 9-1 gives three illustrations of valid PERFORM constructs.

Figure 9-1. Valid PERFORM Constructs

Note Refer to \MPE XL System Dependencies" in Appendix H for more
information on the PERFORM statement.

9-84 PROCEDURE DIVISION Statements

PERFORM

NN
When the TEST BEFORE phrase is specified or implied:NN
NN
Parameter-1 is set to the value of parameter-2 when the PERFORM statementNN
is initially executed. If condition-1 is true, control is transferred toNN
the next executable statement following the PERFORM statement. Otherwise,NN
the specified set of statements is executed once.NN
NN
The value of parameter-1 is then augmented by the increment or decrementNN
value specified by parameter-3, and condition-1 is evaluated. IfNN
condition-1 is false, the cycle of executing the specified set ofNN
statements, augmenting parameter-1, and evaluating condition-1 is repeated.NN
This cycle continues until condition-1 is true. At this time, control isNN
passed to the first executable statement after the PERFORM statement.

The owchart in Figure 9-2 illustrates variation of a single identi�er when TEST BEFORE is
speci�ed.

Figure 9-2. Variation of a Single Identifier with TEST BEFORE

PROCEDURE DIVISION Statements 9-85

PERFORM

NN
When the TEST AFTER phrase is specified:NN
NN
Parameter-1 is set to the current value of parameter-2 when the PERFORMNN
statement is executed. Then, the specified set of statements is executedNN
once and condition-1 is evaluated. If condition-1 is false, parameter-1 isNN
augmented by the specified increment or decrement value of parameter-3 andNN
the specified set of statements is executed again. The cycle continuesNN
until condition-1 is evaluated and found to be true. Control is thenNN
transferred to the end of the PERFORM statement.

The owchart in Figure 9-3 illustrates variation of a single identi�er when TEST AFTER is
speci�ed.

Figure 9-3. Variation of a Single Identifier with TEST AFTER

9-86 PROCEDURE DIVISION Statements

PERFORM

Variation of Two or More Identifiers

Variation of two or more identi�ers is accomplished using format 4 of the PERFORM
statement in the following form:

Note The format indicates that variation of two or more identi�ers only applies to
the out-of-line PERFORM; AFTER phrases are not included in the in-line
PERFORM.

There are three cases of the PERFORM . . . VARYING statement with two or more
identi�ers. The �rst case conforms to ANSI COBOL'74, and the other two cases conform to
ANSI COBOL'85.

Note The latter two forms of the PERFORM . . . VARYING statement are
incompatible with ANSI COBOL'74. For compatibility with ANSI
COBOL'74, use the ANSI74 entry point.

PROCEDURE DIVISION Statements 9-87

PERFORM

ANSI COBOL'74

In this case, parameter-1 and parameter-4 are set to the current values of parameter-2
and parameter-5 respectively. Following this, condition-1 is tested and if true, causes the
PERFORM statement to cease execution. Control is transferred to the next executable
statement following the PERFORM statement. If condition-1 is false, condition-2 is tested
with the same consequences as condition-1 if the result is true.

If condition-2 is false, the speci�ed procedures are executed once, parameter-4 is augmented
by parameter-6 and condition-2 is tested. This cycle continues until condition-2 is true. Then
parameter-4 is set to the value of parameter-5, parameter-1 is augmented by parameter-3 and
condition-1 is evaluated again. If condition-1 is true, the statement is complete. If it is false,
the cycle using parameter-4 and condition-2 is repeated.

These two cycles are repeated until, after the cycle using parameter-4 and condition-2 is
complete, condition-1 is true.

During execution of the procedures, any change in the values of parameter-1 , parameter-2 ,
or parameter-4 is taken into consideration, and a�ects the operation of the PERFORM
statement.

At the end of this type of PERFORM statement, parameter-4 has the current value of
parameter-5 , and parameter-1 di�ers in value from its last used setting by the value of
parameter-3 . This is always true except when condition-1 is true initially. In this case,
parameter-1 has the value of parameter-2 .

9-88 PROCEDURE DIVISION Statements

PERFORM

The owchart in Figure 9-4 illustrates PERFORM . . . VARYING with two conditions.

Figure 9-4. Variation of Two Conditions (ANSI COBOL'74)

PROCEDURE DIVISION Statements 9-89

PERFORM

ANSI COBOL'85
NN
When TEST BEFORE is specified:NN
NN
Parameter-1 and parameter-4 are set to parameter-2 and parameter-5.NN
Afterward, condition-1 is evaluated. If the condition is true, control isNN
transferred to the end of the PERFORM statement; if false, condition-2 isNN
evaluated.NN
NN
If condition-2 is false, the specified set of statements is executed once,NN
then parameter-4 is augmented by parameter-6, and condition-2 is evaluatedNN
again. This cycle of evaluation and augmentation continues until theNN
condition is true.NN
NN
When condition-2 is true, parameter-1 is augmented by parameter-3,NN
parameter-4 is set to parameter-5, and condition-1 is reevaluated. TheNN
PERFORM statement is completed if condition-1 is true; if not, the cycleNN
continues until condition-1 is true.

9-90 PROCEDURE DIVISION Statements

PERFORM

Figure 9-5 illustrates the PERFORM . . . VARYING statement with the TEST BEFORE
phrase having two conditions.

Figure 9-5.
NNN
Variation of Two Conditions with TEST BEFORE (ANSI COBOL'85)

PROCEDURE DIVISION Statements 9-91

PERFORM

NN
When TEST AFTER is specified:NN
NN
Parameter-1 and parameter-4 are set to parameter-2 and parameter-5, and theNN
specified set of statements is executed. Condition-2 is then evaluated; ifNN
false, parameter-4 is augmented by parameter-6, and the specified set ofNN
statements is again executed. The cycle continues until condition-2 isNN
again evaluated and found to be true, at which time condition-1 isNN
evaluated.NN
NN
If condition-1 is false, parameter-1 is augmented by parameter-3. Also,NN
parameter-4 is set to parameter-5, and the specified set of statements isNN
again executed. This cycle continues until condition-1 is again evaluatedNN
and found to be true, at which time control is transferred to the end ofNN
the PERFORM statement.NN
NN
After the completion of the PERFORM statement, each data item varied by anNN
AFTER or VARYING phrase contains the same value it contained at the end ofNN
the most recent execution of the specified set of statements.

9-92 PROCEDURE DIVISION Statements

PERFORM

Figure 9-6 illustrates the PERFORM . . . VARYING statement with the TEST AFTER
phrase having two conditions.

Figure 9-6.
NNN
Variation of Two Conditions with TEST AFTER (ANSI COBOL'85)

PROCEDURE DIVISION Statements 9-93

PERFORM

Variation of More than Two Identifiers

When data items referenced by two identi�ers are varied, the data item referenced by
identi�er-5 goes through a complete cycle (FROM, BY, UNTIL) each time the content of the
data item referenced by identi�er-2 is varied.

When the contents of three or more data items referenced by identi�ers are varied, the
mechanism is the same as for two identi�ers. The only exception is that the data item being
varied by each AFTER phrase goes through a complete cycle each time the data item being
varied by the preceding AFTER phrase is augmented. Thus the last AFTER phrase varies
fastest.

Incompatibility Between ANSI COBOL'74 and ANSI COBOL'85

The order of steps in a multi-conditional PERFORM . . . VARYING statement has been
changed. This change creates an incompatibility when there is a dependence between
identi�er-2 and identi�er-5 . The following example illustrates this di�erence:

PERFORM PARA3 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3

AFTER Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

Under ANSI COBOL'74, PARA3 is executed eight times with the following values:

X: 1 1 1 2 2 2 3 3

Y: 1 2 3 1 2 3 2 3

Under ANSI COBOL'85, PARA3 is executed six times with the following values:

X: 1 1 1 2 2 3

Y: 1 2 3 2 3 3

One would expect the above example to perform the same as the example below:

PERFORM PARA2 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3.

PARA2.

PERFORM PARA3 VARYING Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

Under ANSI COBOL'74, PARA3 is executed eight times, whereas under ANSI COBOL'85,
PARA3 is executed six times, as shown above.

9-94 PROCEDURE DIVISION Statements

PERFORM

Examples

The following program fragment shows several examples of PERFORM statements.

01 DISKIN-RECORD.

03 DI-DATA OCCURS 4 TIMES.

05 DI-NAME PIC X(20).

05 DI-ADDRESS PIC X(20).

05 DI-CTY-ST PIC X(20).

05 DI-ZIP PIC 9(05).

05 DI-AMOUNT PIC 9(03)V99 OCCURS 3 TIMES.

01 WS-FILE-CTR.

03 WS-AMOUNT PIC 9(06)V99 COMP VALUE 0.

03 SUB-1 PIC 9(01).
03 SUB-2 PIC 9(01).

03 WS-DISKIN-CTRL PIC 9(01) VALUE 0.

88 WS-DISKIN-TO-OPEN VALUE 0.

88 WS-DISKIN-OPEN VALUE 1.

88 WS-DISKIN-EOF VALUE 2.

PROCEDURE DIVISION.

200-PROGRAM-START.

** EXAMPLE OF PERFORM USING THRU OPTION ******************

PERFORM 300-GET-DISKIN-RTN THRU 300-GET-DISKIN-EXIT.

** EXAMPLE OF PERFORM USING UNTIL OPTION *****************

PERFORM 250-PROCESS-RECORD UNTIL WS-DISKIN-EOF.

STOP RUN.

250-PROCESS-RECORD.

** EXAMPLE OF PERFORM USING VARYING & UNTIL OPTIONS ******

PERFORM 260-UNBLOCK-RECORD

VARYING SUB-1 FROM 1 BY 1

UNTIL SUB-1 GREATER 5.

260-UNBLOCK-RECORD.

MOVE DI-NAME (SUB-1) TO P-NAME.

MOVE DI-ADDRESS (SUB-1) TO P-ADDRESS.

MOVE DI-CTY-ST (SUB-1) TO P-CTY-ST.

MOVE ZERO TO SUB-2.

PROCEDURE DIVISION Statements 9-95

PERFORM

** EXAMPLE OF PERFORM USING # OF TIMES OPTION ************

PERFORM 270-ACCUMULATE-AMOUNTS 3 TIMES.

270-ACCUMULATE-AMOUNTS.
ADD 1 TO SUB-2.

ADD DI-AMOUNT (SUB-1,SUB-2)TO WS-AMOUNT.

300-GET-DISKIN-RTN.

IF WS-DISKIN-TO-OPEN

OPEN INPUT DISKIN-FILE

MOVE 1 TO WS-DISKIN-CTRL.

READ DISKIN-FILE

AT END

CLOSE DISKIN-FILE

MOVE 2 TO WS-DISKIN-CTRL.

300-GET-DISKIN-EXIT.

EXIT.

9-96 PROCEDURE DIVISION Statements

READ

READ Statement

The READ statement makes a record of a �le available to your program.

Syntax

READ has three formats depending on the type of organization of the �le from which a record
is made available.

PROCEDURE DIVISION Statements 9-97

READ

Parameters

�le-name-1 name of the �le to be read.

identi�er-1 data item described in the WORKING-STORAGE or FILE SECTION.

imperative-
statement-1

one or more imperative statements, executed when an INVALID KEY or
AT END condition occurs.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
imperative-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
statement-2

NN
one or more imperative statements, executed when aNN
NOT INVALID KEY or NOT AT END condition occurs.

data-name-1 name of a data item, as speci�ed by either the RECORD KEY or
ALTERNATE RECORD KEY clause, of the associated �le. It may be
quali�ed.

Description

The following rules apply to any of the formats of the READ statement. Each format is
described separately following these common rules.

When a READ statement is executed for a �le, the �le must be open in the INPUT or I-O
mode.

The execution of a READ statement causes the FILE-STATUS data item (if speci�ed) of the
�le being read to be updated. Refer to Chapter 6, under \FILE STATUS Clause", for valid
status keys. For more information on handling I/O errors, see \Input-Output Error Handling
Procedures" in Chapter 8.

When the logical records of a �le are described with more than one record description,
these records automatically share the same storage area. This is equivalent to an implicit
rede�nition of the area. Those character positions of the current data record not �lled in by
the READ statement contain data items that are unde�ned at completion of the execution of
the READ statement.

If the INTO phrase is speci�ed, the input �le must not contain logical records whose sizes vary
according to their record descriptions. Also, the storage area associated with identi�er-1 , and
the record area associated with the �le being read must be distinct from one another. That is,
these areas must not be the same storage areas.

When the INTO phrase is used, the record being read is placed into the input record area of
the �le, and the data item contained in the input record area is copied into the storage area of
identi�er-1 according to the rules of the MOVE statement (without the CORRESPONDING
phrase). This implied MOVE does not occur if the execution of the READ statement is
unsuccessful.

Any subscripting or indexing associated with identi�er-1 is evaluated after the input record
has been read, and immediately before it is moved into the storage area of identi�er-1 .

If no exception exists, control is transferred to the end of the READ statement, or to
imperative-statement-2 , if speci�ed.

9-98 PROCEDURE DIVISION Statements

READ

READ Statement - Format 1

A format 1 READ statement may be used for sequential, relative, random, or indexed
�les. The READ statement must be used for relative or indexed �les whose access mode is
sequential (see the SELECT clause). It must also be used, including the NEXT phrase, when
the access mode for a relative or indexed �le is dynamic and records of the �le are being
accessed sequentially and to read records sequentially from a random access �le.

Note The NEXT phrase is optional for �les whose access mode is sequential.

For a sequential, relative, or indexed �le being accessed sequentially, the record to be made
available by a format 1 READ statement is determined as follows:

The record pointed to by the �le position indicator is made available provided that the �le
position indicator was positioned by a SEEK, START, or OPEN statement, and the record
is still accessible through the path indicated by the �le position indicator. If the record is
no longer available, the �le position indicator is updated to point to the next existing record
(within the established key of reference for indexed �les) and that record is then made
available.

Note A record may not be available because it was never written (for random access
�les), it was deleted (for relative �les), or because an alternate record key has
been changed (for indexed �les).

If the �le position indicator was positioned by the execution of a previous READ statement,
the �le position indicator is updated to point to the next existing record (with the
established key of reference for indexed �les) and that record is made available.

A format 1 READ statement for a random access �le, or for a relative or indexed �le whose
access mode is dynamic, uses the NEXT phrase to position the �le position indicator to
the next logical record of the �le. The record made available is then determined as for �les
opened in sequential access mode. If no next logical record exists for the �le and a READ
statement attempts to execute for that �le, the READ statement is unsuccessful and an AT
END condition occurs. The steps taken by the program in such a situation are essentially the
same as for a sequential �le.

That is,

1. The value of any FILE STATUS data item speci�ed for the �le is changed to indicate an
AT END condition.

2. If an AT END phrase is speci�ed in the READ statement, control is transferred to the
imperative statement following the AT END keywords and any USE procedure speci�ed for
the �le is ignored.

If no AT END phrase is speci�ed in the READ statement, a USE procedure must be speci�ed
either implicitly or explicitly for the �le, and that procedure is executed.

If no USE procedure is de�ned for the �le, the AT END phrase must be used in the READ
statement.

PROCEDURE DIVISION Statements 9-99

READ

Following the unsuccessful execution of any READ statement, the contents of the associated
record area and the position of the �le position indicator are unde�ned. For indexed �les, the
key of reference is also unde�ned.

When the AT END condition exists, a format 1 READ statement for the �le must not be
executed without �rst executing one of the following:

A successful CLOSE statement followed by a successful OPEN statement for that �le;

A successful START for that �le (if it is relative or indexed);

A successful format 2 READ statement for a relative or random access �le, or a format 3
READ statement for an indexed �le.

In the case of unlabeled magnetic tapes, the AT END condition indicates an EOF mark was
read. Subsequent READ statements cause reading of the next �le on the tape. Since this may
cause reading o� the end of the tape, the exact number of �les on the tape must be known.

If the end of a labeled magnetic tape reel is found during the execution of a READ statement,
and the logical end of the �le is not encountered, a reel swap is performed, and the �rst
record of the new reel is made available. Execution of a format 1 READ statement may be
unsuccessful for one of three reasons:

The position of the �le position indicator is unde�ned;

No next logical record exists in the �le (that is, the end-of-�le has been encountered).

The OPTIONAL phrase was used in the SELECT statement for the �le, and the �le was
not present at the time the �le was opened.

If the RELATIVE KEY phrase is speci�ed in the SELECT clause for a relative �le, successful
execution of a format 1 READ statement updates the contents of the RELATIVE KEY data
item so that it contains the relative record number of the record made available.

For a random access �le, the ACTUAL KEY data item is updated to contain the relative
record number of the record just read.

For an indexed �le being sequentially accessed, records having the same duplicate value in an
alternate record key being used for the key of reference are made available in the same order
in which they are released by WRITE statements, or by execution of REWRITE statements
that create duplicate values.

READ Statement - Format 2

Format 2 of the READ statement can be used for relative �les whose access mode is random,
or whose access mode is dynamic when records are to be retrieved randomly. It can also be
used for random access �les.

When a format 2 READ statement is executed for a relative �le, the current record pointer is
set to the record whose relative record number is contained in the data item named in the
RELATIVE KEY phrase for the �le (see the SELECT clause). This record is then made
available.

If the �le does not contain such a record, an INVALID KEY condition exists, and the READ
statement is unsuccessful.

When an INVALID KEY condition exists, two actions are performed. First, the data item
speci�ed by the FILE STATUS clause, if used, is updated to reect the condition.

9-100 PROCEDURE DIVISION Statements

READ

Next, if there is a USE procedure for the �le, and an INVALID KEY condition exists but the
INVALID KEY phrase was not speci�ed in the READ statement, the procedure named in the
USE statement is executed.

If there is no USE procedure speci�ed for the �le, the INVALID KEY phrase must be used
in the READ statement; when an INVALID KEY condition exists, control is passed to
imperative-statement-1 in the INVALID KEY phrase.

When a format 2 READ statement is executed for a random access �le, it is equivalent to
executing a SEEK statement for the �le, followed by the READ statement.

The contents of the data name speci�ed in the ACTUAL KEY clause of the SELECT
statement are used to set the �le position indicator to the record to be read. The record is
then made available unless an INVALID KEY condition exists.

An INVALID KEY condition exists for a random access �le if the contents of the ACTUAL
KEY data item do not point to a record within the �le. When this occurs, the imperative
statement in the INVALID KEY phrase is executed.

READ Statement - Format 3

Format 3 of the READ statement is used for indexed �les whose access mode is random, or is
dynamic and records are to be retrieved randomly.

If the KEY phrase is speci�ed, data-name-1 , as speci�ed by either the RECORD KEY or
ALTERNATE RECORD KEY clause, is established as the key of reference for this retrieval.
Also, if the access mode of the �le is dynamic, this key of reference is used for retrievals by
any subsequent executions of format 1 READ statements for the �le until a di�erent key of
reference is established for the �le.

If the KEY phrase is not speci�ed, the prime record key, as speci�ed by the RECORD KEY
clause of the SELECT statement, is established as the key of reference for retrieval. It acts
in the same manner as an alternate key when format 2 READ statements are subsequently
issued.

Execution of a format 3 READ statement causes the value of the key of reference to be
compared with the value contained in the corresponding data item of the stored records in the
�le.

The records used in the comparison are selected according to the ascending values of their
keys, and not by the order in which the records were written (called \chronological order").

The comparison continues either until the �rst record having the same value is found, or until
no such value is found.

If a value is found that matches the key of reference, the �le position indicator is positioned to
the record containing the matched value and that record is made available to your program.

If the comparison fails, an INVALID KEY condition exists and execution of the READ
statement is unsuccessful.

When an INVALID KEY condition occurs and no INVALID KEY phrase is speci�ed, a USE
procedure must be speci�ed, and is executed.

When an INVALID KEY condition occurs and the INVALID KEY phrase is speci�ed, control
is transferred to the imperative statement appearing in the INVALID KEY phrase; any USE
procedure that was speci�ed for the �le is ignored.

PROCEDURE DIVISION Statements 9-101

RELEASE, RETURN

RELEASE Statement

The RELEASE statement can be used in an input procedure of a SORT statement to transfer
records from your program to the initial phase of the sort operation. For more information on
the RELEASE statement refer to Chapter 12, \SORT/MERGE Operations".

RETURN Statement

The RETURN statement can be used in an output procedure of a SORT or MERGE
statement. It cannot be used in any other type of procedure. For more information on the
RETURN statement refer to Chapter 12, \SORT/MERGE Operations".

9-102 PROCEDURE DIVISION Statements

REWRITE

REWRITE Statement

The REWRITE statement logically replaces an existing record in a sequential, relative,
random, or indexed mass storage �le. The �le position indicator is una�ected by the
execution of a REWRITE statement. Variable length records are not allowed when using the
REWRITE statement.

Syntax

There are two formats of the REWRITE statement:

Parameters

record-name-1 name of a logical record in the FILE SECTION of the DATA DIVISION.
Record-name-1 can be quali�ed. It cannot refer to the same storage area
as that referred to by identi�er-1 .

identi�er-1 name of a data item in the program or a function-identi�er. When
identi�er-1 is not a function, it may be described in any section of
the DATA DIVISION, but must not refer to the same storage area as
record-name-1 . If identi�er-1 is a function, it must be an alphanumeric
function.

imperative-
statement-1

one or more imperative statements.

PROCEDURE DIVISION Statements 9-103

REWRITE

Description

The �le associated with record-name-1 must be a mass storage �le, and must be opened in I-O
mode when the REWRITE statement is executed.

The number of character positions in the record referenced by record-name-1 must be equal to
the number of character positions in the record being replaced.

For sequential �les, and for relative or indexed �les open in sequential access mode (see the
SELECT statement), the last input-output statement executed for the associated �le prior to
the execution of the REWRITE statement must have been a READ statement. The record
replaced by the REWRITE statement is the record accessed by the READ.

For indexed �les, this is accomplished by using the primary key. Thus, the value contained
in the primary record key data item of the record to be replaced must be equal to the value
of the primary record key of the last record read from the �le. If an indexed �le has the
DUPLICATES phrase speci�ed for its primary record key, the REWRITE statement should
be used only when the indexed �le is in sequential access mode. This is because a REWRITE
statement issued for such a �le whose access mode is dynamic or random will only rewrite the
�rst record having the duplicate primary key.

If the primary record key data item of the record to be replaced is not equal to the value of
the primary record key of the last record read from the �le, an INVALID KEY condition
exists. In such a case, the REWRITE operation fails and the record that was to be
replaced is una�ected. Also, if the INVALID KEY phrase is speci�ed, control is passed to
imperative-statement-1 of that phrase, whether a USE procedure s speci�ed for the �le or not.
If a USE procedure is not speci�ed for the �le, the INVALID KEY phrase must be speci�ed.
However, if a USE procedure is speci�ed and an INVALID KEY phrase is not, the USE
procedure is executed when an INVALID KEY condition exists for the �le.

If a relative �le is open in sequential access mode, the INVALID KEY phrase must not be
used.

If a random �le is open, or a relative �le is open in random or dynamic access mode, the
record to be logically replaced is speci�ed by the contents of the RELATIVE KEY or
ACTUAL KEY data item associated with the �le. If the �le does not contain the record
speci�ed by the key, an INVALID KEY condition exists. Thus, the operation does not succeed
and the data in the record area is una�ected. Also, if no USE procedure has been de�ned for
the �le, the INVALID KEY phrase must be speci�ed, and when an INVALID KEY condition
exists, control is transferred to imperative-statement-1 of that phrase. If a USE procedure
has been de�ned and the INVALID KEY phrase is not speci�ed, the USE procedure is
executed when an INVALID KEY condition exists. However, if both a USE procedure and an
INVALID KEY phrase are speci�ed, the USE procedure is ignored and control is transferred
to imperative-statement-1 of the INVALID KEY phrase.

For indexed �les open in dynamic or random access mode, the record to be replaced is
speci�ed by the primary record key data item. An INVALID KEY condition exists for this
type of REWRITE if the value of the primary record key in the record to be rewritten does
not equal that of any record stored in the �le. An INVALID KEY condition also exists for
this type of REWRITE when the value contained in an alternate record key data item equals
the value of an alternate record key of another record and the DUPLICATES clause has not
been speci�ed for that key in the SELECT statement for that �le. The action taken for the
occurrence of an INVALID KEY condition when an indexed �le is open in random or dynamic
access is the same as for when the indexed �le is open for sequential access.

9-104 PROCEDURE DIVISION Statements

REWRITE

For more information on handling I/O errors, see \Input-Output Error Handling Procedures"
in Chapter 8.

When an indexed �le is the object of a REWRITE statement, the contents of alternate
record key data items of the record being rewritten may di�er from those of the record being
replaced. These alternate keys are used during the execution of the REWRITE statement in
such a way that subsequent access of the record may be made based upon any of the speci�ed
record keys.

The logical record written by a successful REWRITE statement is no longer available in the
record area (memory) unless the associated �le (whether indexed, relative or sequential) is
named in the SAME RECORD AREA clause.

If the �le is named in the SAME RECORD AREA clause, the written logical record is
available to your program as a record of other �les named in the clause, as well as to the �le
associated with the record to be replaced (that is, it remains in memory).

When a REWRITE statement completes execution, whether successfully or not, the
value of the FILE STATUS data item, if any, associated with the �le being accessed
in the REWRITE statement is updated. If no exception exists, control is transferred
to the end of the REWRITE statement,

NN
or to the imperative statement of theNN

NOT INVALID KEY phrase, if specified. Refer to Chapter 6, \FILE STATUS Clause", for
valid combinations of status keys 1 and 2.

FROM Phrase

If the FROM phrase is used in a REWRITE statement, execution of the statement is
equivalent to the execution of the following MOVE statement, followed by the execution of the
same REWRITE statement without the FROM phrase:

MOVE identi�er-1 TO record-name-1

The contents of the record area prior to the execution of the implicit MOVE have no e�ect
upon the execution of the REWRITE statement. The REWRITE statement executed
following the implicit MOVE follows the rules and restrictions listed above.

PROCEDURE DIVISION Statements 9-105

SEARCH

SEARCH Statement

The SEARCH statement searches a table for an element that satis�es some condition, and sets
the table's index name to the value of the occurrence number of the element that was found.

Syntax

The two formats of the SEARCH statement are shown below:

9-106 PROCEDURE DIVISION Statements

SEARCH

Parameters

identi�er-1 name of a table. It must not be subscripted or indexed, and must
also contain an OCCURS and an INDEXED BY clause in its
description. If used in format 2, it must also contain a KEY IS
phrase in its OCCURS clause.

identi�er-2 if used, must be described either as USAGE IS INDEX, or as a
numeric elementary item with no positions to the right of the
assumed decimal point.

condition-1 and
condition-2

may be any condition as described under the heading,
\Conditional Expressions", in Chapter 8.

condition-name-1 and
condition-name-2

condition names whose descriptions (level 88) list only a single
value. The data name associated with a condition name must
appear in the KEY IS clause of identi�er-1 .

data-name-1 and
data-name-2

bmay each be quali�ed, and each must be indexed by the �rst
index name associated with identi�er-1 , as well as any other
indices or literals, as required. Each must also be referenced in
the KEY IS clause of identi�er-1 .

identi�er-3 and
identi�er-4

must not be referenced in the KEY IS clause of identi�er-1 or be
indexed by the �rst index name associated with identi�er-1 .

arithmetic-expression-1
and
arithmetic-expression-2

can be any arithmetic expression as described under the
heading, \Arithmetic Expressions", in Chapter 8. However, any
identi�ers appearing in any arithmetic expression in a SEARCH
statement are subject to the same restrictions as identi�er-3 and
identi�er-4 .

imperative-statement-1
and
imperative-statement-2

each one or more imperative statements.

Description

If identi�er-1 is a data item subordinate to a data item containing an OCCURS clause (that
is, a two or three dimensional table), an index name must be associated with each dimension
of the table represented by identi�er-1 . This is done through the INDEXED BY phrase of
the OCCURS clause for identi�er-1 . Only the setting of the index name associated with
identi�er-1 (and the data item named by identi�er-2 or index-name-1 , if used) is modi�ed by
the execution of the SEARCH statement.

To search an entire two or three dimensional table, you must execute a SEARCH statement
several times. You must also use SET statements to adjust index names to appropriate
settings.

PROCEDURE DIVISION Statements 9-107

SEARCH

SEARCH Statement - Format 1

When you use a format 1 SEARCH statement, a serial search is performed, starting with the
current index setting of the index name associated with identi�er-1 .

If the index name associated with identi�er-1 contains a value corresponding to an
occurrence number greater than the highest possible occurrence number of identi�er-1 ,
the SEARCH statement is terminated immediately. If an AT END phrase is speci�ed, the
imperative-statement-1 within the phrase is executed. If an AT END phrase is not speci�ed,
control passes to the next executable statement following the SEARCH statement.

If the index name associated with identi�er-1 contains a value corresponding to an occurrence
number within the range of identi�er-1 , the SEARCH statement evaluates each condition
in the order that it is written. If none of the conditions is satis�ed, the index name for
identi�er-1 is incremented to reference the next occurrence. The process of evaluating each
condition is then repeated using the new index name settings, provided the value of the index
name is within the permissible range of occurrences for identi�er-1 . If the new setting is not
within range, the search terminates in the manner described in the preceding paragraph.

If one of the conditions is satis�ed when it is evaluated, the search terminates and the
imperative-statement-1 associated with that condition is executed. The index name retains
the value at which it was set when the condition was satis�ed.

After execution of imperative-statement-1 , if it is not a GO TO statement, control passes to
the next executable sentence.

VARYING Phrase

If you use the VARYING phrase, index-name-1 may or may not appear in the INDEXED
BY phrase of identi�er-1 . If it does, index-name-1 is the index name used in the search. If
it does not, or if you speci�ed identi�er-2 instead, the �rst (or only) index name given in the
INDEXED BY phrase of identi�er-1 is used for the search.

If you specify VARYING index-name-1 , and index-name-1 is associated with a di�erent table
(that is, does not appear in the INDEXED BY phrase of identi�er-1), the occurrence number
represented by index-name-1 is incremented by the same amount as, and at the same time as,
the occurrence number represented by the index name associated with identi�er-1 .

If you specify VARYING identi�er-2 , and identi�er-2 is an index data item, the data item
represented by identi�er-2 is incremented in the same way as for index-name-1 in the
preceding paragraph.

If identi�er-2 is not an index data item, the data item referenced by identi�er-2 is
incremented by one (1) at the same time that the index referenced by the index name
associated with identi�er-1 is incremented.

If you do not specify the varying phrase, the index name used for the search operation is the
�rst (or only) index name appearing in the INDEXED BY phrase of identi�er-1 . Any other
index name for identi�er-1 remains unchanged.

9-108 PROCEDURE DIVISION Statements

SEARCH

The owchart in Figure 9-7 shows the execution of a format 1 SEARCH statement specifying
two WHEN phrases.

Figure 9-7. Execution of Format 1 SEARCH Statement

PROCEDURE DIVISION Statements 9-109

SEARCH

SEARCH Statement - Format 2

If you use a format 2 SEARCH statement, a binary search is done.

The index name used in the search is the �rst (or only) index name appearing in the
INDEXED BY phrase of identi�er-1 . Any other index names for identi�er-1 remain
unchanged.

The results of a format 2 SEARCH statement are predictable only under three conditions:

1. The data in the table is ordered in the same manner as described in the ASCENDING (or
DESCENDING) KEY clause associated with the description of identi�er-1 .

2. The contents of the key or keys referenced in the WHEN clause are su�cient to identify a
unique table element.

3. All entries in the table contain valid data. In other words, the table is �lled properly
depending on how it is de�ned. You can use the OCCURS DEPENDING ON clause to
control the size of the table and make sure all elements contain valid data. Alternatively,
if the table uses the ASCENDING KEY clause, any unused alphanumeric entries in the
table should be at the end of the table and �lled with HIGH-VALUES. If the table uses the
DESCENDING KEY clause, any unused alphanumeric entries in the table should be at the
end of the table and �lled with LOW-VALUES.

When a data name in the KEY clause of identi�er-1 is referenced, or when a condition name
associated with a data name in the KEY clause of identi�er-1 is referenced, all preceding data
names in the KEY clause of identi�er-1 or their associated condition names must also be
referenced. The maximum number of reference keys is 12.

When the search begins, the initial setting of the index name associated with identi�er-1 is
ignored and its setting is varied during the search in such a way as to make the search as
fast as possible. Of course, it is not set to a value outside of the possible range of occurrence
numbers for the table.

If there is no possible valid setting for the index name associated with identi�er-1 that
satis�es all the conditions speci�ed in the WHEN clause, control passes to the imperative
statement speci�ed in the AT END phrase if it has been speci�ed. If the AT END phrase is
not speci�ed, and the conditions cannot all be satis�ed, control passes to the next executable
sentence. In either case, the �nal setting of the index is not predictable.

If all conditions in the WHEN phrase can be satis�ed, the index indicates the occurrence that
allows the conditions to be satis�ed, and control passes to imperative-statement-2 .

After execution of imperative-statement-2 , providing that imperative-statement-2 does not
contain a GO TO statement, control passes to the next executable sentence.

The example below uses both formats of the SEARCH statement. In the format 1 SEARCH
statement, a search is performed to �nd out if a carton is part of the inventory. If it is part
of the inventory, its �rst dimensions (there are �ve possible) as well as its part number are
displayed.

The second SEARCH statement is a format 2 SEARCH. It is used to �nd a container of a
given volume whose height and width both equal 5.

9-110 PROCEDURE DIVISION Statements

SEARCH

Example

WORKING-STORAGE SECTION.

01 PARTS-TABLE.

02 PARTS-INFO OCCURS 10 TIMES INDEXED BY PT-INDX.

03 PART-NAME PIC X(20).

03 PART-NUMBER PIC X(10).

03 MEASURES OCCURS 5 TIMES

ASCENDING KEY IS VOLUME, HEIGHT, WIDTH
INDEXED BY IND-T2.

04 HEIGHT PIC 999V999.

04 WIDTH PIC 999V999.

04 LGTH PIC 999V999.

04 VOLUME PIC 999V999.

77 NEXT-NUM PIC 99 VALUE 1.

01 CONTAINER-INFO.

02 PT-NAME PIC X(20).

02 FILLER PIC X(5) VALUE SPACES.

02 PT-NO PIC X(10).

02 FILLER PIC X(3) VALUE SPACES.

02 DIMENSIONS.

04 H PIC 999V999.

04 W PIC 999V999.

04 L PIC 999V999.

04 V PIC 999V999....
PROCEDURE DIVISION.

SEARCH-PARTS-INFO.

SET IND-T2 PT-INDX TO 1.

SEARCH PARTS-INFO

AT END

PERFORM UNFOUND-RTN

WHEN PART-NAME (PT-INDX) = 'CARTON'

PERFORM FOUND-IT....
FOUND-IT.

MOVE MEASURES (PT-INDX, IND-T2) TO DIMENSIONS.
MOVE PART-NAME (PT-INDX) TO PT-NAME

MOVE PART-NUMBER (PT-INDX) TO PT-NO

DISPLAY HEADER.

DISPLAY CONTAINER-INFO.

DISPLAY SPACES....

PROCEDURE DIVISION Statements 9-111

SEARCH

CONTAINER-SELECTION.

DISPLAY "THIS SECTION SEARCHES FOR A CONTAINER".

DISPLAY "OF A SPECIFIED VOLUME WHOSE HEIGHT AND".
DISPLAY "WIDTH BOTH ARE FIVE. PLEASE SPECIFY THE VOLUME".

DISPLAY "REQUIRED (IN AN EVEN NUMBER OF CUBIC FEET.)".

ACCEPT NEEDED-VOLUME.

SEARCH-PARTS-TABLE.

MOVE 1 TO NEXT-NUM.

SET PT-INDX IND-T2 TO 1.

SEARCH ALL MEASURES

AT END

PERFORM NO-SUCH-CONTAINER.

WHEN VOLUME (PT-INDX, IND-T2) = NEEDED-VOLUME

AND WIDTH (PT-INDX, IND-T2) = 5

AND HEIGHT (PT-INDX, IND-T2) = 5

PERFORM FOUND-IT....
NO-SUCH-CONTAINER.

IF NEXT-NUM < 10

ADD 1 TO NEXT-NUM

SET PT-INDX TO NEXT-NUM

SET IND-T2 TO 1

PERFORM SEARCH-PARTS-TABLE

ELSE

DISPLAY "NO CONTAINER MEETS THESE REQUIREMENTS".

9-112 PROCEDURE DIVISION Statements

SEEK

SEEK Statement

The SEEK statement is an HP extension to the ANSI COBOL standard. It is provided for
COBOL'68 compatibility.

The SEEK statement initiates access to a relative �le whose access mode is dynamic or
random, and to a random access �le, prior to execution of a format 2 READ statement.

Syntax

SEEK �le-name RECORD

Description

The SEEK statement is valid only for input �les.

The �le speci�ed in a SEEK statement must be opened prior to the �rst SEEK statement.

The SEEK statement causes a transfer of the physical record containing the logical record to
be read in a subsequent READ statement from storage into main memory.

Using the SEEK statement before a format 2 READ statement may improve the performance
of your program. However, because the SEEK function is implicit in the READ statement, its
use is not mandatory in this case.

Two SEEK statements may logically follow each other. However, it is poor programming
practice to do this because of the time expended on input-output operations for data that will
not be accessed.

For relative �les, the SEEK statement uses the value of the data item named in the
RELATIVE KEY clause of the �le SELECT statement to �nd the desired record. Thus,
before a SEEK statement is executed for a relative �le, the relative record number of the
desired record must be moved to the RELATIVE KEY data item.

Similarly, for random access �les, the SEEK statement uses the value of the data item named
in the ACTUAL KEY clause of the �le's SELECT statement to �nd the desired record.

Thus, you must move the ACTUAL KEY value for the desired record to the data item named
by the ACTUAL KEY clause before executing a SEEK statement for the �le.

In either case, if the value moved to the data item named in a RELATIVE KEY or ACTUAL
KEY clause is invalid, the SEEK statement is ignored. If a subsequent format 2 READ
statement is executed for the �le, an INVALID KEY condition exists, and the appropriate
action is taken.

PROCEDURE DIVISION Statements 9-113

SET

SET Statement

The SET statement establishes reference points for table handling operations by setting index
names associated with table elements. This statement can also be used to alter the status of
external switches, and to alter the value of conditional variables.

Syntax

The formats of the SET statement are shown below:

9-114 PROCEDURE DIVISION Statements

SET

Parameters

identi�er-1 , identi�er-2 must each name either index data items or elementary items
described as integers.

identi�er-3 must be described as an elementary numeric integer.

integer-1 and integer-2 may be signed, with the restriction that integer-1 must be positive.

index-name-1 ,
index-name-2 , and so
forth

each related to a given table.

mnemonic-name-1 must be associated with a software switch, whose status can be
altered. This name is associated with a software switch in the
SPECIAL-NAMES paragraph in the ENVIRONMENT DIVISION.

condition-name-1 must be associated with a conditional variable.

Note The value of the index associated with an index name may be unde�ned
following the execution of a SEARCH or PERFORM statement in which it is
used. Also, when a sending and a receiving item share part of their storage
areas, the result of execution of a SET statement using them is unde�ned.

SET Statement - Format 1

If you use index-name-2 , the value of the associated index before execution of the SET
statement must correspond to an occurrence number of an element in the table whose index is
being set.

Index-name-1 , if used, is set to a value causing it to refer to the table element whose
occurrence number corresponds to the occurrence number of the table element referenced by
index-name-2 , identi�er-2 , or integer-1 .

The value to which index-name-1 is set must correspond to an occurrence number of an
element in the table to which index-name-1 is associated.

If identi�er-2 is an index data item, or if index-name-2 is related to the same table as
index-name-1 , no conversion takes place.

If identi�er-1 is an index data item, it may be set equal to the contents of either
index-name-2 or identi�er-2 if identi�er-2 is an index data item. No conversion takes place.
Identi�er-1 may not be set equal to integer-1 in this case.

If identi�er-1 is not an index data item, only index-name-2 may be used. The value to which
identi�er-1 is set is, in this case, an occurrence number that corresponds to the value of
index-name-2 .

Any indexing or subscripting associated with identi�er-1 is evaluated immediately before the
value of the indexed or subscripted data item is changed.

Any remaining identi�ers or index names are set in the same way, with the same restrictions
as identi�er-1 or index-name-1 . If index-name-2 or identi�er-2 has been speci�ed, its
associated value is used as it was at the beginning of the execution of the SET statement.

PROCEDURE DIVISION Statements 9-115

SET

Table 9-6 shows the validity of various operand combinations in the SET statement.

Table 9-6.

Validity of Different Combinations of Operands in the SET Statement

Sending Item
Receiving Item

Integer Data Item Index Name Index Data Item

Integer Literal Not allowed Valid Not allowed

Integer Data Item Not allowed Valid Not allowed

Index Name Valid Valid1 Valid2

Index Data Item Not allowed Valid2 Valid2

1 No conversion takes place if row sizes are equal.

2 No conversion takes place.

SET Statement - Format 2

When format 2 is used, the value of the index associated with an index name to be set must
correspond, before and after execution of the SET statement, to an occurrence number of an
element in the associated table.

The value of index-name-3 is incremented (if UP BY is used) or decremented (if DOWN BY
is used) by the value of integer-2 or the integer named by identi�er-3 .

If other index names are speci�ed, each is set up or down, as speci�ed, just as the �rst was.
The value of identi�er-3 is unchanged and is used as it was at the beginning of the execution
of the SET statement.

WWW
SET Statement - Format 3

In format 3, the status of each external software switch associated with mnemonic-name-1 is
modi�ed such that the truth value resultant from evaluation of a condition name associated
with that switch reects an \on status" if the ON phrase is speci�ed, or an \o� status" if the
OFF phrase is speci�ed.

WWW
SET Statement - Format 4

In format 4, the literal in the VALUE clause associated with condition-name-1 is placed in the
conditional variable according to the rules of the VALUE clause. If more than one literal is
speci�ed in the VALUE clause, the conditional variable is set to the value of the �rst literal
that appears in the VALUE clause.

If multiple condition names are speci�ed, the results are the same as if a separate SET
statement had been written for each condition-name-1 in the same order as speci�ed in the
SET statement.

9-116 PROCEDURE DIVISION Statements

START

START Statement

The START statement provides a basis for logical positioning within a relative or indexed �le,
in sequential or dynamic access mode, for subsequent retrieval of records.

Syntax

Note The required relational characters '>' , '<' , '>=' , and '=' are not underlined
to avoid confusion with other symbols such as '�' (greater than or equal to).

Parameters

�le-name-1 the name of a relative or indexed �le. The �le must be open in
INPUT or I-O mode when the START statement is executed.

data-name-1 for a relative �le, must be the data item named in the
RELATIVE KEY phrase of the SELECT statement for the �le.
For an indexed �le, data-name-1 may reference a data item
speci�ed as a record key associated with the named index �le, or
it may reference any alphanumeric data item subordinate to the
data name of a data item speci�ed as a record key of the named
�le, provided that its leftmost character position corresponds
to the leftmost character position of that record key data item.
Data-name-1 may be quali�ed.

imperative-statement-1
and
imperative-statement-2

one or more imperative statements. The INVALID KEY phrase
must be used in the START statement if no applicable USE
procedure is speci�ed for the �le.

PROCEDURE DIVISION Statements 9-117

START

Description

When the START statement executes, a comparison is made between a key associated with
�le-name-1 , and a data item. If the KEY phrase is unused, the relational operator, \IS
EQUAL TO" is assumed. The data item used in the comparison depends upon whether the
�le named in the START statement is a relative or an indexed �le.

If the �le is a relative �le, the comparison uses the data item referenced in the RELATIVE
KEY clause of the �le's SELECT statement. This data item is always used, whether the KEY
phrase is speci�ed or not. So, for example, the following statements cause the �le position
indicator to be positioned at the �fth record of REL-FILE if REL-KEY is the name speci�ed in
the RELATIVE KEY phrase of the SELECT statement for the relative �le REL-FILE:

MOVE 5 TO REL-KEY.
START REL-FILE.

If the �le named in the START statement is an indexed �le, the data item used in the
comparison depends upon whether the KEY phrase is used.

If the KEY phrase is not used for an indexed �le, the primary key, that is, the data item
named in the RECORD KEY clause of the �le, is used.

If the KEY phrase is used, the comparison uses the data item referenced by data-name-1 .
This data item must be either a primary or alternate key for the �le, or must be a data item
whose �rst character is the �rst character of one of the keys for the �le.

If the key associated with a record of an indexed �le di�ers from the size of the data item used
in the comparison, the comparison proceeds as though the longer of the two were truncated on
the right so that its length is equal to the length of the shorter. A nonnumeric comparison is
then performed following all the rules for such comparisons. The PROGRAM COLLATING
SEQUENCE, however, is not used for the comparison, even if it was speci�ed. The ASCII
collating sequence is always used on an HP computer system.

When comparison takes place for either type of �le, the �le position indicator is positioned to
the �rst logical record currently existing in the �le whose key satis�es the comparison.

If the comparison is not satis�ed by any record of the �le, an INVALID KEY condition exists,
the execution of the START statement is unsuccessful, and the imperative-statement of the
INVALID KEY phrase (if speci�ed) is executed. If the INVALID KEY phrase is not speci�ed,
then a USE procedure must be speci�ed and that procedure is executed. In such a case, the
position of the �le position indicator is unde�ned.

The execution of a START statement causes the value of the FILE STATUS data item, if any,
associated with the �le to be updated. Refer to Chapter 6, under \FILE STATUS Clause", for
valid combinations of status keys 1 and 2. For more information on handling I/O errors, see
\Input-Output Error Handling Procedures" in Chapter 8.

9-118 PROCEDURE DIVISION Statements

START

Upon completion of a successful START statement for an indexed �le, a key of reference is
established and used in subsequent format 1 READ statements.

If the KEY phrase is not speci�ed in an indexed �le START statement, the primary key is
established as the key of reference. If the KEY phrase is speci�ed, and data-name-1 is any
record key (primary or alternate) for the �le, that record key becomes the key of reference.

If the KEY phrase is speci�ed, and data-name-1 is not a record key of the �le, then the �rst
character of the data item contained in data-name-1 is the same as the �rst character of some
key for the �le, and that key becomes the key of reference.

If a START statement for an indexed �le is unsuccessful, then the key of reference and the �le
position indicator are unde�ned.

PROCEDURE DIVISION Statements 9-119

STOP

STOP Statement

The STOP statement provides a means of temporarily suspending execution of your object
program, as well as a means of stopping it completely.

Syntax

Parameters

RUN if speci�ed, causes the entire run-unit to cease execution when it is
encountered, regardless of whether the STOP RUN statement is in a
subprogram or a main program. Control is then returned to the operating
system.

literal-1 may be numeric, nonnumeric, or any �gurative constant except ALL. If the
literal is numeric, it must be an integer. Use of a literal in a STOP statement
temporarily suspends the object program.

The literal variation of the STOP statement is an obsolete feature of the 1985
ANSI COBOL standard.

Description

If the STOP RUN statement is used in a consecutive sequence of imperative statements within
a sentence, it must appear as the last statement in this sequence.

If STOP literal is used, the object program suspends and the literal is displayed at the
operator's console. A system generated message is then displayed, followed by the message
TYPE GO TO RESUME.

When the operator responds with \GO", program execution resumes with the next executable
statement following the STOP literal statement. For example:

STOP "MOUNT TAPE COBTEST"

OPEN INPUT COBTEST.

The STOP statement above is to instruct the operator to mount a magnetic tape to be used
as an input �le for the program. After the operator mounts the tape and makes appropriate
console responses, the program resumes execution when the word \GO" is typed in.

9-120 PROCEDURE DIVISION Statements

STRING

STRING Statement

The STRING statement concatenates the partial or complete contents of two or more data
items into a single data item.

Syntax

Parameters

literal-1 and literal-2 any �gurative constant or any nonnumeric literal except ALL;
none of them may be numeric literals.

identi�er-1 and
identi�er-2

described implicitly or explicitly as USAGE DISPLAY. If any
of these identi�ers represent an elementary numeric data item,
it must be described as an integer without the 'P' symbol in its
PICTURE character string.

identi�er-3 must represent an alphanumeric data item without editing
symbols or JUSTIFIED clause, and must have a USAGE IS
DISPLAY (implied or explicit) in its description. It may not be
reference modi�ed.

identi�er-4 must represent an elementary numeric integer data item of
su�cient size to contain a value equal to the size, plus 1, of the
area referenced by identi�er-3 . The symbol P must not be used in
the PICTURE of identi�er-4 .

imperative-statement-1
and
imperative-statement-2

one or more imperative statements.

PROCEDURE DIVISION Statements 9-121

STRING

Description

All references to identi�er-1 , identi�er-2 , identi�er-3 , literal-1 , and literal-2 apply equally
to identi�er-4 , respectively, and all recursions thereof. Thus, to aid in the description of the
STRING statement, the format is rewritten as follows:

First sending items and second sending items represent the groups of literals and the data
items named by the identi�ers appearing between the STRING and DELIMITED keywords,
or between a delimiter (or the keyword SIZE) and the next use of the DELIMITED keyword.
These are the items that are juxtaposed into identi�er-3 , the receiving data item.

Delimiter-1 and delimiter-2 indicate the character or characters delimiting the characters
moved from �rst sending items and second sending items, respectively. If the SIZE phrase is
used, the complete group of sending items is moved.

If a �gurative constant is used as a delimiter, it stands for single character numeric literal,
whose USAGE is DISPLAY. If a �gurative constant is used for a literal in a group of sending
items, it refers to an implicit one character data item whose USAGE is DISPLAY.

Execution of the STRING Statement

When the STRING statement executes, the characters in the �rst sending items are
transferred to the contents of identi�er-3 in accordance with the rules of alphanumeric to
alphanumeric moves, except that no space �lling takes place.

If the DELIMITED phrase is speci�ed using delimiter-1 , the contents of the �rst sending
items are moved to the contents of identi�er-3 in the sequence speci�ed in the STRING
statement, starting with the leftmost character and continuing until all character positions of
identi�er-3 have been �lled, or until the character or characters that make up delimiter-1 are
encountered. The characters of delimiter-1 are not transferred.

If delimiter-1 is found in the �rst sending items before identi�er-3 is �lled, the second sending
items are processed in the same way as the �rst and transferring ceases in the same way, using
delimiter-2 rather than delimiter-1 .

If the DELIMITED phrase contains the word SIZE rather than delimiter-1 or delimiter-2 ,
then either all characters in the sending items are transferred to identi�er-3 , or as many
characters as possible are transferred before the end of the data area reserved for identi�er-3
has been reached.

9-122 PROCEDURE DIVISION Statements

STRING

The POINTER phrase is available for you to de�ne the starting position of identi�er-3 to
which data is to be moved. For example, if the phrase WITH POINTER COUNT is used and
the value of COUNT is 10, the �rst character transferred from the sending items is placed in
the tenth character position (from the left) of identi�er-3 . Not using the POINTER phrase is
equivalent to specifying WITH POINTER 1.

After a character is moved into the data item referenced by identi�er-3 , the pointer value is
incremented by one. Thus, the value of identi�er-4 at the end of a STRING statement is
equal to its initial value, plus the number of characters transferred.

If the value of identi�er-4 is less than one, or exceeds the number of character positions in the
data item referenced by identi�er-3 , and execution of the STRING statement is not complete,
an overow condition occurs. At this point, regardless of whether or not any data has already
been moved to the data item referenced by identi�er-3 , no more data is moved.

Furthermore, if the ON OVERFLOW statement is speci�ed in the STRING statement, the
imperative statement in the phrase is executed.

If the ON OVERFLOW phrase is not speci�ed when an overow condition is encountered,
control is transferred to the end of the STRING statement,

NN
or to the end of theNN

NOT ON OVERFLOW phrase, if specified.

At the end of execution of the STRING statement, only the portion of the data item
referenced by identi�er-3 that was referenced during the execution of the STRING statement
is changed. All other portions of the data item contain the data that was present before this
execution of the STRING statement.

Examples

WORKING-STORAGE SECTION.

01 RECEIVER PIC X(20) VALUE SPACES.

01 SENDER-1 PIC X(5) VALUE "FIRST".

01 SENDER-2.

02 SUB-2A PIC A(3) VALUE "ONE".

02 SUB-2B PIC 99V99 VALUE ZERO.

O1 SENDER-A PIC X(15) VALUE "ALPHABETICALLY".

77 CHAR-COUNT PIC 99 VALUE 1.

77 LIMITER PIC X VALUE "T"....
PROCEDURE DIVISION....

ADD 1 TO CHAR-COUNT.

STRING SENDER-1, SPACE, SPACE DELIMITED BY SIZE,

SUB-2A, SENDER-A DELIMITED BY LIMITER

INTO RECEIVER WITH POINTER CHAR-COUNT

ON OVERFLOW DISPLAY "OVERFLOW IN RECEIVER",

" VALUE OF COUNTER IS ", CHAR-COUNT....

PROCEDURE DIVISION Statements 9-123

STRING

With the de�nitions of data names as described in the WORKING-STORAGE SECTION,
and with CHAR-COUNT set to 2, the STRING statement �lls RECEIVER as follows:

If the three statements below are used instead, an overow condition is caused.

MOVE SPACES TO RECEIVER.

MOVE 10 TO CHAR-COUNT

STRING SENDER-A DELIMITED BY SIZE

INTO RECEIVER WITH POINTER CHAR-COUNT

ON OVERFLOW DISPLAY "OVERFLOW IN RECEIVER"

DISPLAY "VALUE OF COUNTER IS ", CHAR-COUNT.

The STRING statement now �lls RECEIVER as follows:

When this overow occurs, the following message is sent to the terminal from which the
program was initiated:

OVERFLOW IN RECEIVER

VALUE OF COUNTER IS 21

9-124 PROCEDURE DIVISION Statements

SUBTRACT

SUBTRACT Statement

The SUBTRACT statement subtracts one or more numeric data items from one or more
numeric data items and stores the result in one or more data items.

Syntax

The SUBTRACT statement has three formats:

PROCEDURE DIVISION Statements 9-125

SUBTRACT

Parameters

identi�er-1 ,
identi�er-2 , and
so forth

elementary numeric data items, or if to the right of the keyword GIVING,
may be elementary numeric-edited data items.

The exception is in format 3, where identi�er-1 and identi�er-2 must be
group items.

literal-1 , literal-2 ,
and so forth

numeric literals.

CORR abbreviation for CORRESPONDING.

Description

The compiler always ensures that enough places are carried in order to avoid losing signi�cant
digits.

The ROUNDED, SIZE ERROR,
NN
NOT ON SIZE ERROR, and CORRESPONDING phrases, as

well as rules applying to multiple results and overlapping operands are described in Chapter 8.

The composite of operands, a hypothetical data item obtained by the superimposition of data
items, must not exceed 18 digits. This composite is determined for each format as follows:

Format 1: Composite is determined by using all of the operands in a given statement.

Format 2: Composite is determined using all of the operands in a given statement except
those following the GIVING phrase.

Format 3: Composite is determined using each pair of corresponding data items
separately.

When format 1 of the SUBTRACT statement is used, all literals or values of identi�ers
preceding the FROM phrase are added together, and the resulting sum is subtracted from the
value of each identi�er speci�ed in the FROM phrase. As each subtraction is completed, the
result is stored in the identi�er of the FROM phrase used as operand.

When format 2 is used, all literals or values of identi�ers preceding the FROM phrase are
added together, and then subtracted from literal-2 or the value of identi�er-3 . The result of
this subtraction is then stored in each identi�er following the GIVING keyword.

When format 3 is used, data items in identi�er-1 are subtracted from and stored in
corresponding data items of identi�er-2 .

9-126 PROCEDURE DIVISION Statements

SUBTRACT

Examples

SUBTRACT FIRST-YR, SECOND-YR FROM THIRD-YR.

SUBTRACT HIRE-DATE FROM AGE GIVING YEARS-OF-SERVICE.

In the �rst example above, the value of FIRST-YR is added to the value of SECOND-YR, and this
sum is subtracted from, and stored in THIRD-YR.

In the second example, the value of AGE is subtracted from the value of HIRE-DATE, and the
results are stored in YEARS-OF-SERVICE.

In the example below, QTY-1, QTY-2, and QTY-3 of PARTS-OUT are subtracted from QTY-1,
QTY-2, and QTY-3 of CURRENT-PARTS, and the results are stored in QTY-1, QTY-2, and QTY-3 of
CURRENT-PARTS.

FILE SECTION.

FD INVFILE.

01 PARTS-INV.

03 PARTS-OUT.

04 PARTS-NUM-1 PIC X(10).

04 QUANTITY PIC 9(6).

04 SUB-PARTS-OUT.

05 QTY-1 PIC 9(6).

05 QTY-2 PIC 9(6).

05 QTY-3 PIC 9(6).

03 CURRENT-PARTS.

04 PART-NUM-1 PIC X(10).

04 QUANTITY PIC 9(6).

04 CURRENT-SUB-PARTS.

05 QTY-1 PIC 9(5).

05 QTY-2 PIC 9(5).

05 QTY-3 PIC 9(5)....
PROCEDURE DIVISION....

SUBTRACT CORRESPONDING SUB-PARTS-OUT FROM CURRENT-SUB-PARTS.

PROCEDURE DIVISION Statements 9-127

UN-EXCLUSIVE

UN-EXCLUSIVE Statement

The UN-EXCLUSIVE statement is an HP extension to the ANSI COBOL standard.

The UN-EXCLUSIVE statement releases a �le that has been previously locked by the
EXCLUSIVE statement.

Syntax

UN-EXCLUSIVE �le-name-1

Parameter

�le-name-1 is the name of a �le that has been locked using the EXCLUSIVE statement.

Description

It is not necessary to unlock a locked �le before closing it. An implicit UN-EXCLUSIVE
statement is performed when you close the �le. However, if a user issues an unconditional
EXCLUSIVE statement naming the �le that you have locked, that user's program suspends
execution until the �le is available to be locked. Thus, you should use the UN-EXCLUSIVE
statement to unlock the �le as soon as the program has �nished accessing it.

If the unlock is successful or the �le is not locked, the STATUS-KEYs are set to \00". If the
�le options do not specify dynamic locking or the �le number is invalid, STATUS-KEY-1 is set
to \9" and STATUS-KEY-2 contains a binary error code.

A USE procedure may be speci�ed for the �le being unlocked. See \USE Statement" later in
this chapter and \Declarative Sections" in Chapter 8 for more details on USE procedures.
Also, for more information on handling I/O errors, see \Input-Output Error Handling
Procedures" in Chapter 8.

9-128 PROCEDURE DIVISION Statements

UNSTRING

UNSTRING Statement

The UNSTRING statement divides data in a sending �eld and places the segments of the data
into multiple receiving �elds.

Syntax

Parameters

literal-1 and
literal-2

nonnumeric literals; may also be any �gurative constants without the
optional word ALL.

identi�er-1 ,
identi�er-2 ,
identi�er-3 , and
identi�er-5 ,

must be described implicitly or explicitly as alphanumeric data items.
Identi�er-1 may not be reference modi�ed.

identi�er-4 may be described as alphabetic, alphanumeric, or numeric data items.

identi�er-7 must be described as an elementary numeric integer data item of su�cient
size to contain a value equal to 1 plus the size of the data item referenced
by identi�er-1 . The symbol 'P' may not be used in the PICTURE
character string of either identi�er-4 or identi�er-7 .

Note Edited receiving �elds are not permitted.

identi�er-6 and
identi�er-8

must be described as elementary numeric integer data items. The P
symbol may not be used in their descriptions.

PROCEDURE DIVISION Statements 9-129

UNSTRING

Description

No identi�er may name a level 88 entry.

If the DELIMITED BY phrase is not speci�ed, the DELIMITER IN and COUNT IN phrases
must not be used.

Identi�er-1 represents the sending item.

Identi�er-4 represents the receiving data item.

Identi�er-2 or its associated literal, and identi�er-3 or its associated literal, represent
delimiters on the sending item. If a �gurative constant is used as a delimiter, it stands for a
single character nonnumeric literal.

Identi�er-5 names the receiving item for the speci�ed delimiter.

Identi�er-6 is used to hold the count of the number of characters in the sending item moved
to the receiving item. This value does not include the count of the delimiter character(s).

A delimiter may be any character available in the ASCII collating sequences. Also, when
a delimiter contains two or more characters, all of the characters must be in contiguous
positions of the sending item, and be in the order speci�ed to be recognized as a delimiter.

When more than one delimiter is speci�ed, each delimiter is compared to the sending item in
turn. If a match occurs in one of these comparisons, examination of the sending �eld ceases.

Delimiters may not overlap. That is, no character or characters in the sending item can be
considered part of more than one delimiter.

When the ALL keyword is used in the DELIMITED phrase, and an associated delimiter is
encountered while examining the sending item, each contiguous occurrence of the delimiter,
beginning at the point where the delimiter �rst occurs, is considered as part of that delimiter.
If the DELIMITER IN phrase has been speci�ed, the entire string of contiguous delimiters is
moved to the appropriate delimiter receiver.

After a single delimiter (or a string of delimiters as described in the preceding paragraph)
has been found, if the next character or set of characters is a delimiter, the current receiving
item is space or zero �lled, depending upon how the receiving item is described. If the
DELIMITER IN phrase is speci�ed for that particular receiving item, the delimiter is then
moved to the corresponding delimiter receiver.

The data item represented by identi�er-7 contains an integer used to indicate the �rst
character, counting from the leftmost character of the sending item, to be examined. You are
responsible for setting the initial value of this item. If it is less than one or is greater than the
number of characters in the sending item when the UNSTRING statement is initiated, an
OVERFLOW CONDITION exists.

When an UNSTRING statement completes execution, if the POINTER phrase is speci�ed, the
value of identi�er-7 is equal to the initial value plus the number of characters examined in the
data item referenced by identi�er-1 .

The data item referenced by identi�er-8 is a counter that records the number of receiving
items acted upon during the execution of an UNSTRING statement. As with identi�er-7 ,
you must initialize the value of identi�er-8 . When the UNSTRING statement completes
execution, if the TALLYING phrase has been speci�ed, the value of identi�er-8 is the initial
value of identi�er-8 plus the number of data receiving items acted upon.

9-130 PROCEDURE DIVISION Statements

UNSTRING

Execution of the UNSTRING Statement

When the UNSTRING statement is initiated, the current receiving item is the �rst receiving
item.

If the POINTER phrase is speci�ed, the sending item is examined beginning with the
character position indicated by the contents of the data item referenced by identi�er-7 . If this
phrase is not used, examination begins with the leftmost character of the sending item.

If the DELIMITED BY phrase is speci�ed, the examination proceeds left to right until either
a delimiter is found or no delimiters are found, and the last character of the sending item is
examined.

If the DELIMITED BY phrase is not speci�ed, the number of characters in the current
receiving item is used to determine how many characters of the sending item are to be
examined. That is, the number of characters examined is equal to the size of the receiving
data item. However, if the receiving data item is a numeric data item described with the
SIGN IS SEPARATE clause, the number of characters examined is one less than the size of
the receiving data item.

When examination is complete, the examined characters, excluding any delimiters
encountered, are treated as an elementary alphanumeric data item, and are moved into
the receiving data item according to the rules for an alphanumeric MOVE. Refer to the
description of the MOVE statement, earlier in this chapter.

If the DELIMITER IN phrase is speci�ed for the current receiving item and a delimiter
was encountered, the character (or characters) making up the delimiter are treated as an
elementary alphanumeric data item and is moved into the delimiter receiver according to the
rules of the MOVE statement. If the examination of the sending item ceased for a reason
other than the occurrence of a delimiter, the delimiter receiver is �lled with spaces.

If the COUNT IN phrase is speci�ed for the current receiving item, a value equal to the
number of characters examined, excluding any delimiter characters, is moved to the count
receiver according to the rules for an elementary move. This completes the initial phase of
execution of the UNSTRING statement.

If all characters of the sending item (beginning from the position speci�ed by identi�er-7
if the POINTER phrase is speci�ed) have been examined, the UNSTRING statement is

complete and control passes to the next executable statement,
NN
or to the imperativeNNN

statement of the NOT ON OVERFLOW phrase, if specified.

If all characters have not been used and another receiving item is speci�ed, examination of the
sending item begins again. This second examination begins with the character immediately
to the right of the delimiter (if any) that caused termination of the initial examination. If no
delimiter was speci�ed, meaning that examination ceased because the number of characters
in the current receiving item had been examined, examination begins with the character
immediately to the right of the last character transferred. The contents of the data item
referenced by identi�er-7 are incremented by one for each character examined in the sending
item.

A new phase of examination and transfer is executed for each receiver item speci�ed, or until
all characters in the sending item have been examined. Each new phase of the UNSTRING
statement is executed in the same way.

PROCEDURE DIVISION Statements 9-131

UNSTRING

Overflow Conditions

An overow condition is caused by one of two situations.

The �rst, described under the parameters description above, is caused by an invalid value for
the data item represented by identi�er-7 .

The second situation is when all receiving items have been acted upon, but there remain
unexamined characters in the sending item.

When an overow condition occurs, execution of the UNSTRING condition ceases.

If the ON OVERFLOW phrase is speci�ed and an overow condition occurs, the imperative
statement in the ON OVERFLOW phrase is executed.

If the ON OVERFLOW phrase is not speci�ed, control is passed to the next executable
statement following the UNSTRING statement.

Subscripting or Indexing of Identifiers

Subscripting or indexing of an identi�er is evaluated only once, immediately before any data is
transferred as the result of the initial phase of the UNSTRING statement.

9-132 PROCEDURE DIVISION Statements

UNSTRING

Example

DATA DIVISION.

WORKING-STORAGE SECTION.

01 ID-INFO PIC X(35).

01 EMPLOYEE-TABLE.

02 EMPLOYEE-STATS OCCURS 30 TIMES.

03 NAME PIC X(40).

03 BIRTH-DATE PIC X(6).
03 HAIR-COLOR PIC X(12).

03 EYE-COLOR PIC X(12).

03 HEIGHT PIC X(2).

01 SUBSCRIPTOR PIC X.

01 SUBSCRIPT PIC 99 VALUE 1.

01 INCREMENT PIC X VALUE ";".

01 CHARS PIC S9(4) USAGE COMP.

01 COMPLETE-INFO PIC S9(4) USAGE COMP....
MOVE 1 TO CHARS.

MOVE 0 TO COMPLETE-INFO.

UNSTRING ID-INFO

DELIMITED BY "," OR INCREMENT

INTO NAME (SUBSCRIPT)

BIRTH-DATE (SUBSCRIPT)

HAIR-COLOR (SUBSCRIPT)

EYE-COLOR (SUBSCRIPT)

HEIGHT (SUBSCRIPT)

DELIMITER IN SUBSCRIPTOR

WITH POINTER CHARS

TALLYING IN COMPLETE-INFO

ON OVERFLOW PERFORM FIND-CAUSE.

If ID-INFO is in standard data format:

WILSON JAMES,030250,BLONDE,BLUE,59;

and the initial value of CHARS is 1, and of COMPLETE-INFO is 0, when the UNSTRING
statement above is executed it goes through the phases described below.

Phase 1:

WILSON JAMES,

" "
Initial delimiter

pointer found

Move \WILSON JAMES" into NAME(1) �lling in spaces to the left of the rightmost
character. Increment the value of CHARS by 13, giving 14.

PROCEDURE DIVISION Statements 9-133

UNSTRING

Phase 2:

WILSON JAMES,030250,

" "
new pointer delimiter found

Move 030250 into BIRTH-DATE(1). Increment the value of CHARS by 7, giving 21.

Phase 3:

WILSON JAMES,030250,BLONDE,

" "
new pointer delimiter found

Move \BLONDE" into HAIR-COLOR(1), �lling in spaces to the left of the rightmost
character. Increment the value of CHARS by 7, giving 28.

Phase 4:

WILSON JAMES,030250,BLONDE,BLUE,

" "
new pointer delimiter found

Move \BLUE" into EYE-COLOR(1). Increment the value of CHARS by 5, giving 33.

Phase 5:

WILSON JAMES,030250,BLONDE,BLUE,59;

"
new pointer; first delimiter not found.

WILSON JAMES,030250,BLONDE,BLUE,59;

" "
new pointer second delimiter found.

Move \59" to HEIGHT(1), and \;" to SUBSCRIPTOR. Increment the value of CHARS by 3,
giving 36.

Since all receiving items have been used, this completes the execution of the UNSTRING
statement. The value of CHARS is 36 and the value of COMPLETE-INFO is 5, since �ve receiving
items were acted upon.

9-134 PROCEDURE DIVISION Statements

USE

USE Statement

The USE statement speci�es procedures for input-output error handling, user label processing,
and debugging. These procedures are an addition to the standard procedures provided by the
input-output control system.

Syntax

There are three general formats of the USE statement:

For a description of format 3, refer to Chapter 12, \Debug Module".

Parameters

�le-name-1
and
�le-name-2

the names of �les to be acted upon by the appropriate procedures when
an input-output error has occurred, or when a user label is to be processed.
These names must not name sort-merge �les.

ERROR and
EXCEPTION

synonymous and may be used interchangeably.

PROCEDURE DIVISION Statements 9-135

USE

Description

The rules below apply to both formats of the USE statement.

A USE statement, when speci�ed, must immediately follow a section header in the
declaratives section and must be followed by a period and a space. The remainder of the
section must consist of zero, one, or more procedural paragraphs that de�ne the procedures
to be used. These paragraphs make up the procedures that are executed when required.
The USE statement itself is never executed. It merely de�nes the conditions calling for the
execution of the USE procedures.

Within a USE procedure, there must not be any reference to any nondeclarative procedures.
Conversely, in the nondeclarative portion there must not be any reference to procedure names
in the declarative portion, except that PERFORM statements may refer to a USE statement
or to the procedures associated with such a USE statement.

Within a USE procedure, no statement can be executed that would cause the execution of
a USE procedure that has been previously invoked, but has not yet returned control to the
invoking routine.

In a USE statement, the �les a�ected by the procedures related to the USE statement may be
explicitly or implicitly speci�ed.

They are explicitly speci�ed by using their names in the USE statement itself.

To implicitly specify a �le, the words, INPUT, OUTPUT, I-O, and EXTEND are used. For
example, if a USE statement uses the word INPUT, any �le opened for input, as opposed to
output or input-output, is implicitly speci�ed in that USE statement.

The same �le name may appear in di�erent USE statements. However, the appearance of a
�le name in a USE statement may not cause the simultaneous request for execution of more
than one USE procedure.

USE Statement - Format 1

The �rst format of the USE statement is for error handling procedures.

The �le implicitly or explicitly referenced in a format-1 USE statement need not have the
same organization or access.

When a format 1 USE statement is speci�ed for a �le, and an input or output error occurs,
the input-output system performs any applicable USE procedures either after completing the
standard input-output error routine, or upon recognition of the INVALID KEY or AT END
condition.

If a
NNNNNNNNNNNNNNNNNNNN
GLOBAL phrase is speci�ed in the declarative statement, the USE procedure can be

invoked from any program contained within the program in which the declarative statement is
de�ned.

When an INVALID KEY or AT END condition occurs, the appropriate USE procedures are
executed provided only that an AT END or INVALID KEY phrase has not been speci�ed in
the input-output statement that generated the error.

9-136 PROCEDURE DIVISION Statements

USE

USE Statement - Format 2

This format of the USE statement is an HP extension to the ANSI COBOL standard.

The format 2 USE statement is for reading and writing user labels on a �le, starting
immediately after the operating system label at the beginning of a �le.

There may be as many as eight user labels following an operating system label, and each label
may consist of 80 characters.

When user labels are read by your program, only one location is made available for them in
memory. Thus, only one may be read at a time, requiring only a single description of a label
record data item per �le.

Whether a �le is explicitly or implicitly referenced in a USE statement, that statement
does not apply and is ignored if the referenced �le includes the LABEL RECORDS ARE
OMITTED clause in its description.

The transfer of control to USE procedures occurs when a �le is opened, as follows:

INPUT, I-O, and EXTEND - control is passed to the appropriate USE procedure after a
beginning input label check procedure is executed.

OUTPUT - control is transferred after a beginning output label is created, but before it is
written.

Using the INPUT keyword allows you to read labels, while using I-O allows you to both read
and write them. The use of the OUTPUT or EXTEND keywords only allows you to write
user labels.

Using a �le name allows you to either read or write, or both, depending upon how the �le is
opened. Thus, for example, a �le opened in I-O mode allows you to read and write user labels.

Within a format 2 USE procedure, no statements are explicitly written in order to read or
write a user label.

For an input or input-output �le, a corresponding USE procedure automatically reads the user
label into the label record of the �le. The USE procedure may then be written to check that
the label has the form and content desired.

All format 2 USE procedures have an exit mechanism appended to them by the compiler.
This exit mechanism follows the last statement of the procedure and is used to write user
labels out to the appropriate �le.

Therefore, a format 2 USE procedure for a �le opened in OUTPUT, I-O, or EXTEND
mode may use the label record data item to de�ne the contents of a label. When the exit
mechanism is reached, the label is automatically written to the �le.

With a single exception, all logical paths within a declarative procedure must lead to this exit
point, thus terminating the procedure. This implies that with one execution of a format 2
USE procedure, only a single user label may be read or written.

PROCEDURE DIVISION Statements 9-137

USE

The purpose of the exception mentioned above is to allow you to read or write more than one
user label (up to eight). The exception is the use of the GO TO MORE-LABELS statement
within a format 2 USE procedure.

The function of this statement varies according to how the �le was opened:

Input �les - Control returns to the software that reads an additional user label, and then
transfers control back to the �rst statement of the USE procedure. The last statement in
the USE procedure must be executed in order to terminate label processing.

Output and EXTEND �les - Control returns to the software that writes out the current user
label, and then transfers control back to the �rst statement of the USE procedure so that
additional user labels can be created. The last statement in the USE procedure must be
executed in order to terminate label processing.

Input-Output and EXTEND �les - Control returns to the software that writes out the
current label and then reads the next label. The software then transfers control back to the
�rst statement of the USE procedure. The last statement in the USE procedure must be
executed in order to write out the last user label and to terminate label processing.

9-138 PROCEDURE DIVISION Statements

WRITE

WRITE Statement

The WRITE statement releases a logical record. To use the WRITE statement for a
sequential �le, the �le must be opened in the OUTPUT or EXTEND mode. To use the
WRITE statement with an indexed, relative, or random �le, the �le must be opened in either
OUTPUT, I-O mode, or EXTEND for access mode sequential.

For sequential �les, the WRITE statement may additionally be used for vertical positioning of
lines within a logical page (refer to the LINAGE clause in the File Description Entry of the
DATA DIVISION in Chapter 7).

Syntax

There are two formats for the WRITE statement:

PROCEDURE DIVISION Statements 9-139

WRITE

Parameters

record-name-1 the name of a logical record in the FILE SECTION of the
DATA DIVISION. It may be quali�ed. Record-name-1 must not
reference the same storage area as identi�er-1 . Additionally for
random access �les, record-name-1 must not be part of a SORT
�le.

identi�er-1 the name of a data item described within the DATA DIVISION,
or a function-identi�er. If it is a function, it must be an
alphanumeric function. If it is not a function, identi�er-1 and
record-name-1 must not reference the same storage area.

identi�er-2 the name of an elementary integer data item. The value of the
data item must be greater than or equal to zero.

integer-1 a nonnegative integer.

mnemonic-name-1 a name related to the functions, TOP, NO SPACE CONTROL,
and C01 through C16. This relation is provided by the
SPECIAL-NAMES clause to the CONFIGURATION SECTION
of the ENVIRONMENT DIVISION.

END-OF-PAGE and EOP equivalent.

imperative-statement-1
and
imperative-statement-2 ,

each one or more imperative statements.

Description

The rules stated below apply to both formats of the WRITE statement.

The successful execution of a WRITE statement releases a logical record number of character
positions de�ned by the logical description of that record in the program.

If the �le's records are longer than the data being written to it, the �le is padded with blanks
or zeros, depending upon whether the �le is an ASCII or binary �le, respectively. If the �le's
records are shorter than the data being written to it, the data being written is truncated.

Whether execution of the WRITE statement was successful or not, the FILE STATUS data
item, if any, is updated following the execution of the WRITE statement. Refer to Chapter 6,
under \FILE STATUS Clause", for valid status keys. For more information on handling I/O
errors, see \Input-Output Error Handling Procedures" in Chapter 8.

The logical record released by the execution of the WRITE statement is no longer available
in memory unless the associated �le is named in a SAME RECORD AREA clause, or the
execution of the WRITE statement was unsuccessful because of a boundary violation (for
sequential �les) or an INVALID KEY condition (for relative, indexed or random access �les).

The logical record is also available to the program as a record of other �les referenced in that
SAME RECORD AREA clause.

9-140 PROCEDURE DIVISION Statements

WRITE

FROM Phrase

The results of executing a WRITE statement using the FROM phrase is equivalent to
executing the statement,

MOVE identi�er-1 TO record-name-1

and then executing the same WRITE statement without the FROM phrase.

Unlike the record area for record-name-1 , the data in identi�er-1 always remains in memory
and is available after execution of the WRITE statement, regardless of whether a SAME
RECORD AREA clause was used for any �le in which identi�er-1 names a data item.

Note that the maximum record size of a �le is established at the time the �le is created, and
must not subsequently be changed.

WRITE Statement - Format 1

A format 1 WRITE statement, used for sequential �les only, allows you to use vertical
positioning of a line within a logical page.

This is done through the ADVANCING and END-OF-PAGE phrases.

Either or both of these phrases may be used in a format 1 WRITE statement. However, if the
END-OF-PAGE phrase is used, the LINAGE clause must appear in the �le description entry
for the associated �le. Also, if the LINAGE phrase is present in the �le's description, and the
ADVANCING phrase is used, it cannot be used in the form ADVANCING mnemonic-name-1 .

If neither phrase is used, automatic advancing equivalent to AFTER ADVANCING 1 LINE is
provided.

Whenever the execution of a given format 1 WRITE statement cannot be fully accommodated
within the current page body, an automatic page overow condition occurs. If neither the
ADVANCING nor the END-OF-PAGE phrase is speci�ed, and a page overow condition
occurs, the WRITE statement uses an implicit AFTER ADVANCING PAGE to position the
data on the next logical page.

ADVANCING Phrase

When the ADVANCING phrase is used in a format 1 WRITE statement, the line to be
written is presented to the page either before or after the representation of the page is
advanced. Whether it is presented before or after advancing the logical page is determined by
the use of the BEFORE or AFTER keyword, respectively.

The amount of advancement of the logical page is determined by integer-1 , identi�er-2 ,
PAGE, and mnemonic-name-1 as follows:

Integer-1 causes the representation of the logical page to be advanced the number of lines
equal to the value of integer.

Identi�er-2 causes the representation of the logical page to be advanced the number of lines
equal to the current value of the data item represented by identi�er-2 .

PAGE causes the logical page to be advanced to the next logical page. If the record to
be written is associated with a �le whose description includes a LINAGE clause, the
repositioning is to the �rst line that can be written on the new logical page as speci�ed by
the LINAGE clause. If the record to be written is associated with a �le whose description

PROCEDURE DIVISION Statements 9-141

WRITE

does not contain a LINAGE clause, the repositioning is to the �rst line of the next logical
page.

If PAGE is speci�ed for a device to which it has no meaning, advancing is provided that is
equivalent to ADVANCING 1 LINE.

If mnemonic-name-1 is speci�ed, the �le receiving the record must not contain a LINAGE
clause in its description and must be a line printer device �le. Mnemonic-name-1 can
be equivalent to TOP, in which case it is equivalent to specifying PAGE for a �le whose
description does not contain a LINAGE clause.

Mnemonic-name-1 may also be equivalent to one of C01 to C16, or NO SPACE CONTROL.

The C01 through C16 options are related to the VFU (Vertical Form Unit) holes punched into
a paper tape of a line printer. For an HP line printer, C01 through C16 have the following
meanings:

c01: Page eject (skip to top of next page).
c02: Skip to the bottom of the form.
c03: Single spacing with automatic page eject.
c04: Single space on the next odd-numbered line with automatic page eject.
c05: Triple space with automatic page eject.
c06: Space a half page with automatic page eject.
c07: Space one quarter of a page with automatic page eject.
c08: Space one sixth of a page with automatic page eject.
c09: Space to the bottom of the form.
c10: User option.
c11: User option.
c12: User option.
c13: User option.
c14: User option.
c15: User option.
c16: User option.

Note The C13 through C16 options may not be functionally operable on all printer
devices; for example, printer devices that only provide 12 VFU channels.

9-142 PROCEDURE DIVISION Statements

WRITE

END-OF-PAGE Phrase

The END-OF-PAGE phrase can be used only in conjunction with the LINAGE clause of a
sequential �le description entry.

To clarify the following description, the concept of a logical page is illustrated below:

PROCEDURE DIVISION Statements 9-143

WRITE

Two conditions may occur that cause the execution of the END-OF-PAGE phrase.

The �rst occurs when a footing area has been de�ned using integer-2 or data-name-2 of
the LINAGE Clause. In this case, when a WRITE statement using the END-OF-PAGE
phrase is executed, and this execution causes printing or spacing within the footing area, an
end-of-page condition occurs. This is controlled by the value of the LINAGE-COUNTER for
the associated �le. Thus, when LINAGE-COUNTER equals or exceeds the value of integer-2
or the data item speci�ed by data-name-2 , an end-of-page condition occurs. The data is
written into the footing area, and the imperative-statement-1 of the END-OF-PAGE phrase is
executed.

Note An end-of-page condition does not automatically cause the next line of data
to be written on the next logical page; it is your responsibility to control this
using the LINAGE-COUNTER of the �le, the ADVANCING phrase, or the
automatic page overow condition.

The second condition that causes the execution of an END-OF-PAGE phrase is an automatic
page overow. An automatic page overow occurs when the LINAGE-COUNTER for the
�le associated with the WRITE statement exceeds integer-1 or the data item referenced by
data-name-1 . In this case, if an ADVANCING phrase using the BEFORE keyword is present
in the WRITE statement, the record is written the speci�ed number of lines below the end of
the page body, and the device used to contain the logical pages is repositioned to the �rst
line that can be written on the next logical page. If an ADVANCING phrase is speci�ed
(implicitly or explicitly) that uses the AFTER keyword, the device used to contain the logical
pages is repositioned to the �rst line that can be written on the next logical page, and the
record is written.

No matter whether ADVANCING BEFORE or ADVANCING AFTER is speci�ed, when
the record has been written, control is transferred to the imperative-statement-1 of the
END-OF-PAGE phrase.

If integer-2 or the data item referenced by data-name-2 of the LINAGE clause is not
speci�ed (thus, no footing area has been de�ned), or if integer-2 or the data item referenced
by data-name-2 is equal to integer-1 or the data item referenced by data-name-1 of the
LINAGE clause, no end-of-page condition distinct from a page overow is detected. Thus, an
end-of-page condition is, in this case, equivalent to a page overow condition.

Bounds Overflow

When an attempt is made to write beyond the boundaries of a sequential �le, an exception
condition exists. The contents of the record area speci�ed by record-name-1 are una�ected by
such a condition and the following actions take place:

The FILE STATUS data item, if any, of the associated �le is set to indicate a boundary
violation.

If a USE AFTER STANDARD EXCEPTION declarative is speci�ed (explicitly or
implicitly) for the �le, the associated procedure is executed. If no USE statement is
speci�ed for the �le, the program aborts, supplying a �le error message.

For more information on handling I/O errors, see \Input-Output Error Handling Procedures"
in Chapter 8.

9-144 PROCEDURE DIVISION Statements

WRITE

Multiple Reel/Unit Files

After an end-of-reel condition has been recognized for a multiple reel labeled tape, the
WRITE statement performs the standard ending reel or unit procedure, requests a reel or unit
swap, and then performs the standard reel or unit label procedure. The record is then written
according to the speci�cations of the WRITE statement.

Print Files

A print �le is organized like a sequential organization �le and has carriage control. The
carriage control option cannot be changed after the �le is created.

The three ways to create a print �le are:

1. Use the MPE :BUILD command with the carriage control option CCTL. For example:

:BUILD �lename;CCTL
2. Use the MPE :FILE command to cause COBOL to create a print �le. For example:

:FILE �lename;CCTL
3. Cause the compiler to enable the CCTL option. The following conditions cause the

compiler to enable the CCTL option:
a. The SELECT . . . ASSIGN clause includes the device name parameter CCTL.
b. The SELECT . . . ASSIGN clause speci�es the actual �le $STDLIST.
c. The WRITE statements include the BEFORE/AFTER ADVANCING clause.
d. A �le equation for the actual �le speci�es CCTL.

You can disable CCTL by any of the following:

1. Avoiding the conditions that enable CCTL (see above).
2. Specifying NOCCTL in the �le equation.
3. Using a disc �le that did not have CCTL when it was built.

When CCTL is enabled, the compiler does the following:

1. Enables the �le for CCTL operations when it is opened.
2. Writes the following two control records to the �le, before the �rs data record (even if the

�le is opened in EXTEND mode).
a. Record one contains an ASCII \A" (%101) in the �rst byte, which sets the printer

spacing mode to PRE-SPACE, the COBOL default. PRE-SPACE is equivalent to
AFTER ADVANCING.

b. Record two contains an ASCII \C" (%103) in the �rst byte, which sets the printer to
the single-space option, without automatic page eject. This allows you to control the
page size.

3. Prepends to each record a character that contains carriage control code. This character is
transparent so you need not allow space for it when you de�ne the record.

PROCEDURE DIVISION Statements 9-145

WRITE

Carriage Control Codes. The carriage control codes that COBOL uses are de�ned within the
MPE FWRITE intrinsic. They are written in the �rst byte of each data record or passed
through the control parameter. The carriage control codes and their meanings are shown in
Table 9-7.

Table 9-7. Carriage Control Codes and Their Meanings

Code Meaning

%2n Space n lines (no automatic page eject). The number n is in the range 0 through %77 (63).

%3n Channel options C01 through C16. The number n is in the range 0 through %17 (15).

%61 Eject a page (go to the top of the next page; equivalent to TOP).

%100 Set printer spacing mode to POST-SPACE (equivalent to BEFORE ADVANCING).

%101 Set printer spacing mode to PRE-SPACE (equivalent to AFTER ADVANCING).

%103 No automatic page eject.

%320 No space control.

If a �le has carriage control due to the MPE :FILE command or disc label, but has no
ADVANCING clause, you must put a carriage control code in the �rst byte of each record
yourself.

If a �le has at least one ADVANCING clause, then all other WRITE statements for that �le
are treated as if AFTER ADVANCING 1 were speci�ed.

WRITE Statement - Format 2

A format 2 WRITE statement can be used for random access, relative, or indexed �les.

In a format 2 WRITE statement, if no applicable USE statement has been issued for the
referenced �le, the INVALID KEY phrase of the WRITE statement must be used.

Also, the INVALID KEY phrase must always be used when a format 2 WRITE statement is
issued for a random access �le.

Random Access Files

When a format 2 WRITE statement is issued for a random access �le, the contents of the
ACTUAL KEY data item associated with the �le are used in an implicit seek to �nd the
record into which the data speci�ed by record-name-1 is to be written. If the address speci�ed
by the ACTUAL KEY data item is invalid, an INVALID KEY condition exists, no data is
written, the data in the record area is una�ected, and the imperative-statement-1 in the
INVALID KEY phrase is executed.

The address can be invalid for one of three reasons, as follows:

It contains a negative value.

It is greater than the highest possible relative record number in the �le.

The value moved to the ACTUAL KEY data item contains more than nine digits.

9-146 PROCEDURE DIVISION Statements

WRITE

Relative Files

When a format 2 WRITE statement is issued for a relative �le, and the �le is open for output
in sequential mode, the �rst execution of a WRITE statement for the �le releases a record
to that �le, assigning a relative record number of 1 to it. Subsequent WRITE statements
assign relative record numbers of 2,3,4, and so on as records are released to the �le. If the
RELATIVE KEY data item has been speci�ed in the �le control entry for the associated �le,
it is updated during each execution of the WRITE statement to indicate the relative record
number of the record being written.

If a relative �le is open in random or dynamic access mode, regardless of whether it is open
for output only or input-output operations, your program must set the value of the relative
key data item to specify where the record is to be placed in the �le.

Provided that the relative key data item is a valid relative key, the data in the record area is
released to the �le.

INVALID KEY Conditions For a Relative File

An INVALID KEY condition exists for a relative �le when an attempt is made to write
beyond the externally de�ned boundaries of the �le, or when the �le is in dynamic or random
access mode and the RELATIVE KEY data item speci�es a record that already exists in the
�le.

When this condition occurs, execution of the WRITE statement is unsuccessful, the contents
of the record area are una�ected, and the FILE STATUS data item, if any, is updated to
indicate the cause of the condition.

If the INVALID KEY phrase was speci�ed in the WRITE statement, control passes to the
imperative statement appearing in the phrase. If no INVALID KEY phrase was speci�ed, then
a USE procedure must have been speci�ed (either implicitly or explicitly), and is executed.

If both a USE procedure and an INVALID KEY phrase are speci�ed, the USE procedure is
ignored.

For more information on handling I/O errors, see \Input-Output Error Handling Procedures"
in Chapter 8.

Indexed Files

A format 2 WRITE statement for an indexed �le uses the primary record key data item to
write records to the �le; therefore, the value of the primary record key must be unique within
the records of the �le unless the DUPLICATES phrase has been used in the RECORD KEY
clause of the ENVIRONMENT DIVISION.

If alternate record keys have been speci�ed, they must also be unique within the �le unless
the DUPLICATES phrase has been used in the ALTERNATE RECORD KEY clause of the
ENVIRONMENT DIVISION.

If the DUPLICATES phrase is used, then after records containing duplicate keys have been
written to the �le, if they are later accessed sequentially, they are retrieved in the same order
as they were written.

PROCEDURE DIVISION Statements 9-147

WRITE

Note A WRITE statement for an indexed �le open in sequential access mode must
write records to the �le in ascending order of prime record key values.

A WRITE statement for an indexed �le in random or dynamic access mode writes a record to
the �le in whatever order your program speci�es.

When a WRITE statement is successfully executed for an indexed �le, all keys of the record
are used in such a way that subsequent access of the record may be made based upon any of
the speci�ed record keys.

INVALID KEY Conditions For Indexed Files

There are three conditions under which an INVALID KEY condition can occur for an indexed
�le WRITE statement:

When the �le is open for output in sequential access mode, and the value of the prime
record key is not greater than the value of the prime record key of a previous record.

When the �le is open for output or input-output operations in any access mode, and the
value of the primary or an alternate record key for which duplicates are not allowed, equals
the value of the corresponding record key of a record already existing in the �le.

When an attempt is made to write beyond the externally de�ned boundaries of the �le.

In any case, when an INVALID KEY condition occurs, execution of the WRITE statement
is unsuccessful, the record area is una�ected, and the FILE STATUS data item, if any,
associated with the �le is set to a value that indicates the cause of the condition.

If an INVALID KEY phrase was speci�ed in the WRITE statement, control is transferred to
the imperative statement appearing in the phrase, and any USE procedure speci�ed for the
�le is ignored.

If no INVALID KEY phrase was speci�ed, then a USE procedure must have been speci�ed,
implicitly or explicitly, and that procedure is executed.

For more information on handling I/O errors, see \Input-Output Error Handling Procedures"
in Chapter 8.

9-148 PROCEDURE DIVISION Statements

10

COBOL Functions

This chapter describes the built-in COBOL functions and how to call them. These functions
were de�ned in 1989 by Addendum 1 of the ANSI COBOL '85 standard. The built-in
functions provide the capability to reference a data item whose value is derived automatically
at the time of reference during the execution of the program.

The following tables list and briey describe each function:

Table 10-1. Date Functions

Function Type Value Returned

CURRENT-DATE Alphanumeric Current date and time and di�erence from Greenwich Mean Time.

DATE-OF-INTEGER Integer Standard date equivalent (YYYYMMDD) of integer date.

DAY-OF-INTEGER Integer Julian date equivalent (YYYYDDD) of integer date.

INTEGER-OF-DATE Integer Integer date equivalent of standard date (YYYYMMDDD).

INTEGER-OF-DAY Integer Integer date equivalent of Julian date (YYYYDDD).

WHEN-COMPILED Alphanumeric Date and time program was compiled.

Table 10-2. String Functions

Function Type Value Returned

CHAR Alphanumeric The character in a speci�ed position of the program collating sequence.

LENGTH Integer Length, in character positions, of the parameter.

LOWER-CASE Alphanumeric The same parameter with all uppercase letters replaced by lowercase
letters.

NUMVAL Numeric Numeric value of a simple numeric string.

NUMVAL-C Numeric Numeric value of a numeric string with optional commas and currency
sign.

ORD Integer Ordinal position of the parameter in collating sequence.

REVERSE Alphanumeric Same parameter with characters in reverse order.

UPPER-CASE Alphanumeric Same parameter with all lowercase letters replaced by uppercase letters.

COBOL Functions 10-1

COBOL Functions

Table 10-3. General Functions

Function Type Value Returned

MAX Depends on
parameters.

Maximum value of all parameters.

MIN Depends on
parameters.

Minimum value of all parameters.

ORD-MAX Integer Ordinal position of maximum parameter.

ORD-MIN Integer Ordinal position of minimum parameter.

Table 10-4. Arithmetic Functions

Function Type Value Returned

INTEGER Integer The greatest integer not greater than the given numeric value.

INTEGER-PART Integer Integer part of the given numeric value.

LOG Numeric Natural logarithm of a numeric value.

LOG10 Numeric Logarithm to base 10 of a numeric value.

MOD Integer Modulo of two integer parameters.

RANDOM Numeric Pseudo-random number.

REM Numeric Remainder after division.

SQRT Numeric Square root of a numeric value.

SUM Integer or
Numeric

Sum of parameters.

Table 10-5. Financial and Statistical Functions

Function Type Value Returned

ANNUITY Numeric Ratio of an annuity paid for a speci�ed number of periods at a
speci�ed interest rate, to an initial investment of one.

FACTORIAL Integer Factorial of an integer value.

MEAN Numeric Arithmetic mean of parameters.

MEDIAN Numeric Median of parameters.

MIDRANGE Numeric Mean of smallest and largest parameters.

PRESENT-VALUE Numeric Present value of a series of future period-end amounts at a
given discount rate.

RANGE Integer or
Numeric

Value of largest parameter minus value of smallest parameter.

STANDARD-DEVIATION Numeric Standard deviation of parameters.

VARIANCE Numeric Variance of parameters.

10-2 COBOL Functions

COBOL Functions

Table 10-6. Trigonometric Functions

Function Type Value Returned

COS Numeric Cosine of an angle in radians.

SIN Numeric Sine of an angle in radians.

TAN Numeric Tangent of an angle in radians.

ACOS Numeric Arccosine, in radians, of a numeric value.

ASIN Numeric Arcsine, in radians, of a numeric value.

ATAN Numeric Arctangent, in radians, of a numeric value.

The $CONTROL POST85 Option

You must specify $CONTROL POST85 in any program that calls a COBOL function.
$CONTROL POST85 enables the COBOL functions and makes the word FUNCTION a
reserved word. If you have used the word FUNCTION as an identi�er, you must change it
to another word before you can call any COBOL functions. Otherwise the compiler gives an
error message.

ANSI85 Entry Point

You must use the ANSI85 entry point of the HP COBOL II/XL compiler to call any COBOL
functions.

COBOL Functions 10-3

COBOL Functions

Function Types

Functions are treated like temporary, elementary data items. Use them wherever you would
use an elementary data item, with the exceptions noted below. Functions cannot be receiving
operands. Functions return alphanumeric, numeric, or integer values, as follows:

Alphanumeric functions are of the class and category alphanumeric, and have an implicit
usage of DISPLAY.

Numeric functions are of the class and category numeric and always have an operational
sign. Numeric functions can only be used in arithmetic expressions (such as in COMPUTE
statements, relation conditions, or reference modi�cation) and cannot be used where an
integer operand is required, even if the function call might yield an integer value.

Integer functions are of the class and category numeric and always have an operational sign.
The de�nition of an integer function provides that all digits to the right of the decimal point
are zero in the returned value for any possible evaluation of the function. Integer functions
can only be used in arithmetic expressions. For example, the statement

MOVE FUNCTION SIN(5) TO A

is illegal, whereas the statement

COMPUTE A = FUNCTION SIN(5)

is legal.

10-4 COBOL Functions

COBOL Functions

Function Parameters

Some of the functions require one or more parameters. Function parameters can be identi�ers,
arithmetic expressions, or literals. See the description of each function for speci�c information
about its parameters.

If a function requires parameters and you do not supply any, or if the parameters supplied do
not comply with all restrictions for parameters to that function, the value returned by the
function is unde�ned.

Using ALL as a Table Subscript

Some functions allow a variable number of arguments, for example MAX, MEAN, and SUM.
You can pass all the elements of a table to one of these functions by specifying the table as a
parameter with ALL as the table subscript. See the examples under these functions. See also
\Referencing Table Items with Subscripting" in Chapter 4. In multi-dimensional tables, ALL
may occur in one or more subscripts.

Precision of Numeric Functions

Some of the numeric functions convert the parameters you pass to intermediate oating
point values to calculate the function result. The precision of these functions is limited to 15
signi�cant digits. Also, fractional values may have rounding errors even if the total size of the
argument is less than or equal to 15 digits. For example, using the SUM function on a table of
dollars and cents values, such as PIC S9(9)V99, might not produce the correct answer. Use of
the ROUNDED phrase is recommended.

See the HP COBOL II/XL Programmer's Guide for more information on performance and the
precision of functions.

COBOL Functions 10-5

COBOL Functions

Calling COBOL Functions

To call any of the COBOL functions, simply put the function call in any statement where a
data item of the function type is valid. You must use $CONTROL POST85 and the ANSI85
entry point to the HP COBOL II/XL compiler when calling any COBOL function.

Examples

To change all the characters in a string to lower case, use the LOWER-CASE function in a
MOVE statement:

77 MY-NAME PIC X(5) VALUE "STEVE"....
DISPLAY MY-NAME.

MOVE FUNCTION LOWER-CASE (MY-NAME) TO MY-NAME.
DISPLAY MY-NAME.

The above example displays the following:

STEVE

steve

To calculate the cosine of an angle, you can use the COS function in a COMPUTE statement:

77 ANGLE-RADIANS PIC S99V9(5) VALUE 3.14159.

77 COS-OF-ANGLE PIC S9V9(5) VALUE ZERO....
COMPUTE COS-OF-ANGLE = FUNCTION COS (ANGLE-RADIANS).

DISPLAY ANGLE-RADIANS.

DISPLAY COS-OF-ANGLE.

The above example displays the following:

+03.14159

-0.99999

The rest of this chapter explains each of the COBOL functions.

10-6 COBOL Functions

ACOS

ACOS Function

The ACOS function returns the arccosine of the parameter. The function type is numeric.

Syntax

FUNCTION ACOS (parameter-1)

Parameters

parameter-1 Must be class numeric and must be between -1 and 1, inclusive.

Return Value

The value returned is the approximation of the arccosine of parameter-1 and is between 0 and
�, inclusive. The return value is a numeric value in radians.

Example

77 COS-OF-ANGLE PIC S9V9(5) VALUE +0.70711.

77 ANGLE-RADIANS PIC S99V9(5) VALUE ZERO....
COMPUTE ANGLE-RADIANS = FUNCTION ACOS (COS-OF-ANGLE).

DISPLAY COS-OF-ANGLE.

DISPLAY ANGLE-RADIANS.

The above example displays the following:

+0.70711

+00.78539

COBOL Functions 10-7

ANNUITY

ANNUITY Function

The ANNUITY function (annuity immediate) returns a numeric value that is the ratio of an
annuity paid at the end of each period for the number of periods speci�ed by parameter-2 to
an initial investment of one. Interest is earned at the rate speci�ed by parameter-1 and is
applied at the end of the period before the payment. The function type is numeric.

Syntax

FUNCTION ANNUITY (parameter-1 parameter-2)

Parameters

parameter-1 Must be class numeric and must be greater than or equal to zero.

parameter-2 Must be a positive integer.

Return Value

When the value of parameter-1 is zero, the value of the function is

1

parameter-2

When the value of parameter-1 is not zero, the value of the function is

parameter-1

(1 - (1 + parameter-1) ** (- parameter-2))

Example

WORKING-STORAGE SECTION.

77 NUM-RATE PIC S9V9999 VALUE 0.08.

77 MONTHLY-RATE PIC S9V9999 VALUE ZERO.

77 NUM-PERIODS PIC 99 VALUE 36.

77 NUM-ANNUITY PIC S9V9999 VALUE ZERO.

PROCEDURE DIVISION.

010-PARA.

COMPUTE MONTHLY-RATE ROUNDED = NUM-RATE / 12

COMPUTE NUM-ANNUITY ROUNDED =

FUNCTION ANNUITY (MONTHLY-RATE NUM-PERIODS)

DISPLAY MONTHLY-RATE

DISPLAY NUM-PERIODS
DISPLAY NUM-ANNUITY.

The above example displays the following:

+0.0067

36

+0.0314

10-8 COBOL Functions

ASIN

ASIN Function

The ASIN function returns the arcsine of the parameter. The function type is numeric.

Syntax

FUNCTION ASIN (parameter-1)

Parameters

parameter-1 Must be class numeric and must be between -1 and 1, inclusive.

Return Value

The value returned is the approximation of the arcsine of parameter-1 and is between -�/2
and �/2, inclusive. The return value is a numeric value in radians.

Example

77 SIN-OF-ANGLE PIC S9V9(5) VALUE +0.70710.

77 ANGLE-RADIANS PIC S99V9(5) VALUE ZERO....
COMPUTE ANGLE-RADIANS = FUNCTION ASIN (SIN-OF-ANGLE).

DISPLAY SIN-OF-ANGLE.

DISPLAY ANGLE-RADIANS.

The above example displays the following:

+0.70710

+00.78538

COBOL Functions 10-9

ATAN

ATAN Function

The ATAN function returns the arctangent of the parameter. The function type is numeric.

Syntax

FUNCTION ATAN (parameter-1)

Parameters

parameter-1 Must be class numeric.

Return Value

The value returned is the approximation of the arctangent of parameter-1 and is between -�/2
and �/2, inclusive. The return value is a numeric value in radians.

Example

77 TAN-OF-ANGLE PIC S9(5)V9(5) VALUE +00000.99998.

77 ANGLE-RADIANS PIC S99V9(5) VALUE ZERO....
COMPUTE ANGLE-RADIANS = FUNCTION ATAN (TAN-OF-ANGLE).

DISPLAY TAN-OF-ANGLE.

DISPLAY ANGLE-RADIANS.

The above example displays the following:

+00000.99998

+00.78538

10-10 COBOL Functions

CHAR

CHAR Function

The CHAR function returns a one-character alphanumeric value that is a character in the
program collating sequence having the ordinal position equal to the value of parameter-1 . The
function type is alphanumeric.

Syntax

FUNCTION CHAR (parameter-1)

Parameters

parameter-1 Must be an integer. Must be greater than zero and less than or equal to the
number of positions in the collating sequence.

Return Value

If more than one character has the same position in the program collating sequence, the
character returned as the function value is that of the �rst literal speci�ed for that character
position in the ALPHABET clause.

If the current program collating sequence was not speci�ed by an ALPHABET clause, the
ASCII collating sequence is used. See Appendix D, \ASCII and EBCDIC Character Sets," for
a listing of the ASCII character set.

Example

DISPLAY FUNCTION CHAR(50).

DISPLAY FUNCTION CHAR(64).

DISPLAY FUNCTION CHAR(88).

The above example displays the following:

1

?

W

COBOL Functions 10-11

COS

COS Function

The COS function returns the cosine of an angle. The function type is numeric.

Syntax

FUNCTION COS (parameter-1)

Parameters

parameter-1 The size of an angle in radians. Must be class numeric.

Return Value

The value returned is the approximation of the cosine of parameter-1 and is between -1 and 1,
inclusive. The value returned is numeric.

Example

77 ANGLE-RADIANS PIC S99V9(5) VALUE 3.14159.

77 COS-OF-ANGLE PIC S9V9(5) VALUE ZERO....
COMPUTE COS-OF-ANGLE = FUNCTION COS (ANGLE-RADIANS).

DISPLAY ANGLE-RADIANS.

DISPLAY COS-OF-ANGLE.

DIVIDE ANGLE-RADIANS BY 4 GIVING ANGLE-RADIANS.

COMPUTE COS-OF-ANGLE = FUNCTION COS (ANGLE-RADIANS).

DISPLAY ANGLE-RADIANS.

DISPLAY COS-OF-ANGLE.

The above example displays the following:

+03.14159

-0.99999

+00.78539

+0.70711

10-12 COBOL Functions

CURRENT-DATE

CURRENT-DATE Function

The CURRENT-DATE function returns the calendar date, time of day, and the di�erence
between the local time and Universal Coordinated Time (UTC), or Greenwich Mean Time. To
get the correct time di�erential, you need to set the environment variable TZ to your local
time zone. See below for more information. The function type is alphanumeric.

This function is di�erent from the CURRENT-DATE special register word (described in
Chapter 3). One di�erence is that the CURRENT-DATE function provides a four-digit year.

Syntax

FUNCTION CURRENT-DATE

Return Values

This function returns a 21-character alphanumeric string with each character position de�ned
as follows:

Character
Positions

Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past the second, in the range
00 through 99. The value 00 is returned because your system cannot provide the
fractional part of a second.

17 One of the following:

Value When Returned

- Returned if the local time in the previous character positions is
behind Greenwich Mean Time.

+ Returned if the local time indicated is the same or is ahead of
Greenwich Mean Time.

0 Returned on non-MPE XL systems that do not have the facility to
provide the local time di�erential factor.

COBOL Functions 10-13

CURRENT-DATE

Character
Positions

Contents

18-19 Depending on the value of character position 17, one of the following:

Position 17 Contents

- Two numeric digits in the range 00 through 12 indicating the
number of hours that the reported time is behind Greenwich
Mean Time.

+ Two numeric digits in the range 00 through 13 indicating the
number of hours that the reported time is ahead of Greenwich
Mean Time.

0 The value 00 is returned.

20-21 Depending on the value of character position 17, one of the following:

Position 17 Contents

- Two numeric digits in the range 00 through 59 indicating the
number of additional minutes that the reported time is behind of
Greenwich Mean Time.

+ Two numeric digits in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of
Greenwich Mean Time.

0 The value 00 is returned.

Setting the TZ Environment Variable

To get the correct di�erence between local time and Greenwich Mean Time, you must set
the environment variable TZ to your local time zone. To set TZ, use the MPE XL SETVAR
command. For example, the following command sets the time zone to Central Standard Time
and Central Daylight Time, which would be correct for Chicago, Illinois:

:SETVAR TZ 'CST6CDT'

The following table lists some time zones. Check your local time zone to be sure you use the
correct one.

10-14 COBOL Functions

CURRENT-DATE

Table 10-7. Time Zones and TZ Environment Variable Values

TZ Value Time Zone Geographic Area

HST10 Hawaiian Standard Time, Hawaiian Daylight
Time.

Unites States: Hawaii.

AST10ADT Aleutian Standard Time, Aleutian Daylight
Time.

United States: Alaska (parts).

YST9YDT Yukon Standard Time, Yukon Daylight Time. United States: Alaska (parts).

PST8PDT Paci�c Standard Time, Paci�c Daylight Time. Canada: British Columbia. United States:
California, Idaho (parts), Nevada, Oregon
(parts), Washington.

MST7MDT Mountain Standard Time, Mountain Daylight
Time.

Canada: Alberta, Saskatchewan (parts).
United States: Colorado, Idaho (parts), Kansas
(parts), Montana, Nebraska (parts), New
Mexico, North Dakota (parts), Oregon (parts),
South Dakota (parts), Texas (parts), Utah,
Wyoming.

MST7 Mountain Standard Time. United States: Arizona.

CST6CDT Central Standard Time, Central Daylight
Time.

Canada: Manitoba, Ontario (parts),
Saskatchewan (parts). United States:
Alabama, Arkansas, Florida (parts), Illinois,
Iowa, Kansas, Kentucky (parts), Louisiana,
Michigan (parts), Minnesota, Mississippi,
Missouri, Nebraska, North Dakota, Oklahoma,
South Dakota, Tennessee (parts), Texas,
Wisconsin.

EST6CDT Eastern Standard Time, Central Daylight
Time.

United States: Indiana (most).

EST5EDT Eastern Standard Time, Eastern Daylight
Time.

Canada: Ontaria (parts), Quebec (parts).
United States: Connecticut, Delaware, District
of Columbia, Florida, Georgia, Kentucky,
Maine, Maryland, Massachusetts, Michigan,
New Hampshire, New Jersey, New York, North
Carolina, Ohio, Pennsylvania, Rhode Island,
South Carolina, Tennessee (parts), Vermont,
Virginia, West Virginia.

AST4ADT Atlantic Standard Time, Atlantic Daylight
Time.

Canada: Newfoundland (parts), Nova Scotia,
Prince Edward Island, Quebec (parts).

NST3:30NDT Newfoundland Standard Time, Newfoundland
Daylight Time.

Canada: Newfoundland (parts).

WET0WETDST Western European Time, Western European
Time Daylight Savings Time.

Great Britain, Ireland.

PWT0PST Portuguese Winter Time, Portuguese Summer
Time.

MEZ-1MESZ Mitteleuropaeische Zeit, Mitteleuropaeische
Sommerzeit.

MET-1METDST Middle European Time, Middle European
Time Daylight Savings Time.

Belgium, Lexembourg, Netherlands, Denmark,
Norway, Austria, Poland, Czechoslovakia,
Sweden, Switzerland, Germany, France, Spain,
Hungary, Italy, Yugoslavia.

COBOL Functions 10-15

CURRENT-DATE

Table 10-7. Time Zones and TZ Environment Variable Values (continued)

TZ Value Time Zone Geographic Area

SAST-2SADT South Africa Standard Time, South Africa
Daylight Time.

South Africa.

JST-9 Japan Standard Time. Japan.

WST-8:00 Australian Western Standard Time. Australia: Western Australia.

CST-9:30 Australian Central Standard Time. Australia: Northern Territory.

CST-9:30CDT Australian Central Standard Time, Australian
Central Daylight Time.

Australia: South Australia.

EST-10 Australian Eastern Standard Time. Australia: Queensland.

EST-10EDT Australian Eastern Standard Time, Australian
Eastern Daylight Time.

Australia: New South Wales, Tasmania,
Victoria.

NZST-12NZDT New Zealand Standard Time, New Zealand
Daylight Time.

New Zealand.

If TZ is not set, CURRENT-DATE assumes Eastern Standard Time (EST5EDT).

The time di�erential is automatically adjusted for daylight savings time according to the
values in the time and zone adjustment table (the �le TZTAB.LIB.SYS).

Note Make sure your system administrator has correctly set the hardware clock.
The hardware clock must be set to Greenwich Mean Time (Universal
Coordinated Time or UTC) for CURRENT-DATE to return the correct
local date and time. See the System Startup, Con�guration, and Shutdown
Reference Manual for how to set the hardware clock with the CLKUTIL
utility.

10-16 COBOL Functions

CURRENT-DATE

Example

01 FULL-CURRENT-DATE.

05 C-DATE.

10 C-YEAR PIC 9(4).

10 C-MONTH PIC 99.

10 C-DAY PIC 99.

05 C-TIME.

10 C-HOUR PIC 99.
10 C-MINUTES PIC 99.

10 C-SECONDS PIC 99.

10 C-SEC-HUND PIC 99.

05 C-TIME-DIFF.

10 C-GMT-DIR PIC X.

10 C-HOUR PIC 99.

10 C-MINUTES PIC 99....
MOVE FUNCTION CURRENT-DATE TO FULL-CURRENT-DATE.

DISPLAY "Full date is: ", FULL-CURRENT-DATE.

DISPLAY "Year is: ", C-YEAR.

DISPLAY "Month is: ", C-MONTH.

DISPLAY "Day is: ", C-DAY.

DISPLAY "Hour is: ", C-HOUR OF C-TIME.

DISPLAY "Minute is: ", C-MINUTES OF C-TIME.

DISPLAY "Second is: ", C-SECONDS.

DISPLAY "Hundredths of seconds is: ", C-SEC-HUND.

DISPLAY "Difference from GMT is: ", C-GMT-DIR.

DISPLAY "Hours from GMT is: ", C-HOUR OF C-TIME-DIFF.

DISPLAY "Minutes from GMT is: ", C-MINUTES OF C-TIME-DIFF.

With TZ set to PST8PDT, the above example displays the following:

Full date is: 1991022017152900-0800

Year is: 1991

Month is: 02

Day is: 20

Hour is: 17

Minute is: 15
Second is: 29

Hundredths of seconds is: 00

Difference from GMT is: -

Hours from GMT is: 08

Minutes from GMT is: 00

COBOL Functions 10-17

DATE-OF-INTEGER

DATE-OF-INTEGER Function

The DATE-OF-INTEGER function converts a date in the Gregorian calendar from integer
date form to standard date form (YYYYMMDD). The function type is integer.

Syntax

FUNCTION DATE-OF-INTEGER (parameter-1)

Parameters

parameter-1 Is a positive integer that represents a number of days succeeding
December 31, 1600 in the Gregorian calendar.

Return Value

The returned value represents the ISO Standard date equivalent of the integer speci�ed in
parameter-1 .

The returned value is in the form YYYYMMDD, where YYYY represents a year in the
Gregorian calendar, MM represents the month of that year, and DD represents the day of that
month.

For example, the value 19910723 represents July 23, 1991.

10-18 COBOL Functions

DATE-OF-INTEGER

Example

The following example shows both the INTEGER-OF-DATE and DATE-OF-INTEGER
functions. First, the year-month-day form of the date is converted to an integer using
INTEGER-OF-DATE. This integer represents the number of days since December 31, 1600.
Then, 30 is added to this number and it is converted back to the year-month-day form.

01 INT-DATE PIC 9(8) VALUE ZERO.

01 DATE-TODAY PIC 9(8) VALUE ZERO.

01 DUE-DATE PIC 9(8) VALUE ZERO....
MOVE 19910220 TO DATE-TODAY.

COMPUTE INT-DATE = FUNCTION INTEGER-OF-DATE (DATE-TODAY).

DISPLAY DATE-TODAY.
DISPLAY INT-DATE.

ADD 30 TO INT-DATE.

COMPUTE DUE-DATE = FUNCTION DATE-OF-INTEGER (INT-DATE).

DISPLAY INT-DATE.

DISPLAY DUE-DATE.

The above example displays the following values. The �rst two lines represent the date
February 20, 1991 and the last two lines represent March 22, 1991, 30 days later:

19910220

00142484

00142514

19910322

COBOL Functions 10-19

DAY-OF-INTEGER

DAY-OF-INTEGER Function

The DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer date
form to Julian date form (YYYYDDD). The function type is integer.

Syntax

FUNCTION DAY-OF-INTEGER (parameter-1)

Parameters

parameter-1 Is a positive integer that represents a number of days succeeding
December 31, 1600 in the Gregorian calendar.

Return Value

The returned value represents the Julian equivalent of the integer speci�ed in parameter-1 .

The returned value is an integer of the form YYYYDDD, where YYYY represents a year in
the Gregorian calendar and DDD represents the day of that year.

10-20 COBOL Functions

DAY-OF-INTEGER

Example

The following example shows both the INTEGER-OF-DAY and DAY-OF-INTEGER
functions. First the year-day form of the date is converted to an integer using INTEGER-OF-
DAY. This integer represents the number of days since December 31, 1600. Then 30 is added
to the integer form and it is converted back to the year-day form using DAY-OF-INTEGER.

01 INT-DATE PIC 9(8) VALUE ZERO.

01 DATE-TODAY PIC 9(7) VALUE ZERO.

01 DUE-DATE PIC 9(7) VALUE ZERO....
MOVE 1991051 TO DATE-TODAY.

COMPUTE INT-DATE = FUNCTION INTEGER-OF-DAY (DATE-TODAY).

DISPLAY DATE-TODAY.
DISPLAY INT-DATE.

ADD 30 TO INT-DATE.

COMPUTE DUE-DATE = FUNCTION DAY-OF-INTEGER (INT-DATE).

DISPLAY INT-DATE.

DISPLAY DUE-DATE.

The above example displays the following values. The �rst two lines represent the date
February 20, 1991. February 20 is the 51st day of 1991. The last two lines represent March
22, 1991, 30 days later. March 22 is the 81st day of 1991:

1991051

00142484

00142514

1991081

COBOL Functions 10-21

FACTORIAL

FACTORIAL Function

The FACTORIAL function returns an integer that is the factorial of parameter-1 . The
function type is integer.

Syntax

FUNCTION FACTORIAL (parameter-1)

Parameters

parameter-1 Must be an integer greater than or equal to zero. (The largest value
parameter-1 can be is 20 in order for the result to �t in 18 digits.)

Return Value

If the value of parameter-1 is zero, the value one is returned.

If the value of parameter-1 is positive, the factorial of parameter-1 is returned.

Example

77 NUM-FACTORIAL PIC 9(5) VALUE ZERO....
COMPUTE NUM-FACTORIAL = FUNCTION FACTORIAL (4).

DISPLAY NUM-FACTORIAL.

The above example displays the following:

00024

10-22 COBOL Functions

INTEGER

INTEGER Function

The INTEGER function returns the greatest integer value that is less than or equal to the
argument. The function type is integer.

Syntax

FUNCTION INTEGER (parameter-1)

Parameters

parameter-1 Must be class numeric.

Return Value

The returned value is the greatest integer less than or equal to the value of parameter-1 .
For example, if the value of parameter-1 is -1.5, a value of -2 is returned. If the value of
parameter-1 is +1.5, the value of +1 is returned.

Example

77 NUM-FRACT PIC S99V99 VALUE 12.94.

77 NUM-INT PIC S99V99 VALUE ZERO.

77 NUM-NEG PIC S99V99 VALUE -12.94....
COMPUTE NUM-INT = FUNCTION INTEGER (NUM-FRACT).

DISPLAY NUM-FRACT.

DISPLAY NUM-INT.

COMPUTE NUM-INT = FUNCTION INTEGER (NUM-NEG).

DISPLAY NUM-NEG.

DISPLAY NUM-INT.

The above example displays the following:

+12.94

+12.00

-12.94

-13.00

COBOL Functions 10-23

INTEGER-OF-DATE

INTEGER-OF-DATE Function

The INTEGER-OF-DATE function converts a date in the Gregorian calendar from standard
date form (YYYYMMDD) to integer date form. The function type is integer.

Syntax

FUNCTION INTEGER-OF-DATE (parameter-1)

Parameters

parameter-1 Must be an integer of the form YYYYMMDD, whose value is determined as
follows:

(YYYY * 10000) + (MM * 100) + DD

where YYYY represents the year in the Gregorian calendar and must be an
integer greater than 1600. MM represents a month and must be a positive
integer less than thirteen. DD represents a day and must be a positive integer
less than 32 ; DD must be valid for the speci�ed month and year combination.

Return Value

The returned value is an integer that is the number of days the date represented by
parameter-1 succeeds December 31, 1600 in the Gregorian calendar.

10-24 COBOL Functions

INTEGER-OF-DATE

Example

The following example shows both the INTEGER-OF-DATE and DATE-OF-INTEGER
functions. First the year-month-day form of the date is converted to an integer using
INTEGER-OF-DATE. This integer represents the number of days since December 31, 1600.
Then 30 is added to this number and it is converted back to the year-month-day form.

01 INT-DATE PIC 9(8) VALUE ZERO.

01 DATE-TODAY PIC 9(8) VALUE ZERO.

01 DUE-DATE PIC 9(8) VALUE ZERO....
MOVE 19910220 TO DATE-TODAY.

COMPUTE INT-DATE = FUNCTION INTEGER-OF-DATE (DATE-TODAY).

DISPLAY DATE-TODAY.
DISPLAY INT-DATE.

ADD 30 TO INT-DATE.

COMPUTE DUE-DATE = FUNCTION DATE-OF-INTEGER (INT-DATE).

DISPLAY INT-DATE.

DISPLAY DUE-DATE.

The above example displays the following values. The �rst two lines represent the date
February 20, 1991 and the last two lines represent March 22, 1991, 30 days later:

19910220

00142484

00142514

19910322

COBOL Functions 10-25

INTEGER-OF-DAY

INTEGER-OF-DAY Function

The INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian date
form (YYYYDDD) to integer date form. The function type is integer.

Syntax

FUNCTION INTEGER-OF-DAY (parameter-1)

Parameters

parameter-1 Must be an integer of the form YYYYDDD, whose value is obtained as
follows:

(YYYY * 1000) + DDD

where YYYY represents the year in the Gregorian calendar and must be an
integer greater than 1600. DDD represents the day of the year and must be a
positive integer less than 367. DDD must be valid for the year speci�ed.

Return Value

The returned value is an integer that is the number of days the date represented by
parameter-1 succeeds December 31, 1600 in the Gregorian calendar.

10-26 COBOL Functions

INTEGER-OF-DAY

Example

The following example shows both the INTEGER-OF-DAY and DAY-OF-INTEGER
functions. First the year-day form of the date is converted to an integer using INTEGER-OF-
DAY. This integer represents the number of days since December 31, 1600. Then 30 is added
to the integer form and it is converted back to the year-day form using DAY-OF-INTEGER.

01 INT-DATE PIC 9(8) VALUE ZERO.

01 DATE-TODAY PIC 9(7) VALUE ZERO.

01 DUE-DATE PIC 9(7) VALUE ZERO....
MOVE 1991051 TO DATE-TODAY.

COMPUTE INT-DATE = FUNCTION INTEGER-OF-DAY (DATE-TODAY).

DISPLAY DATE-TODAY.
DISPLAY INT-DATE.

ADD 30 TO INT-DATE.

COMPUTE DUE-DATE = FUNCTION DAY-OF-INTEGER (INT-DATE).

DISPLAY INT-DATE.

DISPLAY DUE-DATE.

The above example displays the following values. The �rst two lines represent the date
February 20, 1991. February 20 is the 51st day of 1991. The last two lines represent March
22, 1991, 30 days later. March 22 is the 81st day of 1991:

1991051

00142484

00142514

1991081

COBOL Functions 10-27

INTEGER-PART

INTEGER-PART Function

The INTEGER-PART function returns an integer that is the integer portion of parameter-1
(parameter-1 is truncated). The function type is integer.

Syntax

FUNCTION INTEGER-PART (parameter-1)

Parameters

parameter-1 Must be class numeric.

Return Value

One of the following, depending on the value of parameter-1 :

parameter-1 Return Value

0 0

Positive The greatest integer less than or equal to the value of parameter-1 .
For example, if the value of parameter-1 is +1.5, the value +1 is
returned.

Negative The least integer greater than or equal to the value of parameter-1 .
For example, if the value of parameter-1 is -1.5, the value -1 is
returned.

Example

77 NUM-INT PIC S99V99 VALUE ZERO.

77 NUM-FRACT PIC S99V99 VALUE 12.94.

77 NUM-NEG PIC S99V99 VALUE -12.94....
COMPUTE NUM-INT = FUNCTION INTEGER-PART (NUM-FRACT).

DISPLAY NUM-FRACT.

DISPLAY NUM-INT.

COMPUTE NUM-INT = FUNCTION INTEGER-PART (NUM-NEG).

DISPLAY NUM-NEG.

DISPLAY NUM-INT.

The above example displays the following:

+12.94

+12.00

-12.94

-12.00

10-28 COBOL Functions

LENGTH

LENGTH Function

The LENGTH function returns an integer equal to the length of the argument in character
positions (bytes). To conform to ANSI standard COBOL, you can use the LENGTH function
instead of the .LEN. pseudo-intrinsic (see Chapter 11, \Interprogram Communication," for
details on .LEN.). The function type is integer.

Syntax

FUNCTION LENGTH (parameter-1)

Parameters

parameter-1 A nonnumeric literal or a data item of any class or category.

If parameter-1 or any data item subordinate to parameter-1 is described with
the DEPENDING phrase of the OCCURS clause, the contents of the data
item referenced by the data-name speci�ed in the DEPENDING phrase are
used at the time the LENGTH function is evaluated.

Return Values

If parameter-1 is a nonnumeric literal or an elementary data item or parameter-1 is a group
data item that does not contain a variable occurrence data item, the value returned is an
integer equal to the length of parameter-1 in character positions.

If parameter-1 is a group data item containing a variable occurrence data item, the returned
value is an integer determined by evaluation of the data item speci�ed in the DEPENDING
phrase of the OCCURS clause for that variable occurrence data item. This evaluation is
accomplished according to the rules in the OCCURS clause dealing with the data item as a
sending data item. See the OCCURS clause for additional information.

The returned value includes implicit �ller items, if any.

Example 1

77 CITY PIC X(9) VALUE "CHICAGO".
77 ID-LENGTH PIC 99 VALUE ZERO....
COMPUTE ID-LENGTH = FUNCTION LENGTH (CITY).

DISPLAY CITY.

DISPLAY ID-LENGTH.

The above example displays the following:

CHICAGOtt
09

COBOL Functions 10-29

LENGTH

Example 2

77 SIZER PIC 99.

77 NUM PIC 999.

01 TAB-REC.

05 TAB-ELEMENT OCCURS 1 TO 10 TIMES

DEPENDING ON SIZER.

10 TAB-ITEM-1 PIC X(3).

10 TAB-ITEM-2 PIC S9(9) COMP SYNC.
PROCEDURE DIVISION.

010-PARA.

MOVE 5 TO SIZER.

COMPUTE NUM = FUNCTION LENGTH (TAB-ELEMENT (1)).

DISPLAY "TAB-ELEMENT LENGTH = " NUM.

COMPUTE NUM = FUNCTION LENGTH (TAB-REC).

DISPLAY "TAB-REC LENGTH = " NUM.

STOP RUN.

The above example displays the following:

TAB-ELEMENT LENGTH = 008

TAB-REC LENGTH = 040

The length of TAB-ELEMENT is 8 because of the implicit 1-byte �ller between TAB-ITEM-1
and TAB-ITEM-2. If SYNC is removed from TAB-ITEM-2, the length of TAB-ELEMENT is
7.

10-30 COBOL Functions

LOG

LOG Function

The LOG function returns a numeric value that is the logarithm to the base e (natural log) of
parameter-1 . The function type is numeric.

Syntax

FUNCTION LOG (parameter-1)

Parameters

parameter-1 Must be class numeric and greater than zero.

Return Value

The value returned is the approximation of the logarithm to the base e of parameter-1 .

Example

77 NUM-LOG PIC 9(3)V9(5) VALUE ZERO....
COMPUTE NUM-LOG = FUNCTION LOG (10).

DISPLAY NUM-LOG.

The above example displays the following:

002.30258

COBOL Functions 10-31

LOG10

LOG10 Function

The LOG10 function returns a numeric value that is the logarithm to the base 10 of
parameter-1 . The function type is numeric.

Syntax

FUNCTION LOG10 (parameter-1)

Parameters

parameter-1 Must be class numeric and greater than zero.

Return Value

The value returned is the approximation of the logarithm to the base 10 of parameter-1 .

Example

77 NUM-LOG10 PIC 9(3)V9(5) VALUE ZERO....
COMPUTE NUM-LOG10 = FUNCTION LOG10 (50).

DISPLAY NUM-LOG10.

The above example displays the following:

001.69897

10-32 COBOL Functions

LOWER-CASE

LOWER-CASE Function

The LOWER-CASE function returns a character string that is the same length as parameter-1
with each uppercase letter replaced by the corresponding lowercase letter. The function type
is alphanumeric.

Syntax

FUNCTION LOWER-CASE (parameter-1)

Parameters

parameter-1 Must be class alphabetic or alphanumeric and must be at least one character
in length.

Return Value

The value returned is the same character string as parameter-1 , except that each uppercase
letter is replaced by the corresponding lowercase letter.

The character string returned has the same length as parameter-1 .

Example

77 CITY PIC X(7) VALUE "CHICAGO"....
DISPLAY CITY.

DISPLAY FUNCTION LOWER-CASE (CITY).

The above example displays the following:

CHICAGO

chicago

COBOL Functions 10-33

MAX

MAX Function

The MAX function returns the content of the parameter-1 that contains the maximum value.
The function type depends on the parameter type, as follows:

Parameter Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All parameters integer Integer
Numeric (some parameters may be integer) Numeric

Syntax

FUNCTION MAX ({parameter-1}...)

Parameters

parameter-1 If more than one parameter-1 is speci�ed, all parameters must be of the same
class.

Return Values

The returned value is the content of the parameter-1 having the greatest value. The greatest
values are determined by the rules for simple conditions. See the section \Simple Conditions"
in Chapter 8 for additional information.

If more than one parameter-1 has the same greatest value, the content of the parameter-1
returned is the leftmost parameter-1 having that value.

If the type of the function is alphanumeric, the size of the returned value is the same as the
size of the selected parameter-1 .

10-34 COBOL Functions

MAX

Example

77 A PIC X VALUE "A".

77 B PIC X VALUE "Z".

77 C PIC X VALUE "m".

77 D PIC X VALUE "9".

77 I PIC 9 VALUE 8.

77 J PIC 9 VALUE 3.
77 K PIC 9 VALUE 6.

77 L PIC 9 VALUE 1.

77 MAX-VALUE PIC 9 VALUE ZERO.

77 MAX-VALUE-2 PIC S999V99 VALUE 0.

01 TAB.

05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO....
DISPLAY FUNCTION MAX (A B C D).

COMPUTE MAX-VALUE = FUNCTION MAX (I J K L).

DISPLAY MAX-VALUE.

MOVE 1.25 TO ELEMENT (1).

MOVE 3.50 TO ELEMENT (2).

MOVE 8.75 TO ELEMENT (3).

MOVE 0.25 TO ELEMENT (4).

COMPUTE MAX-VALUE-2 = FUNCTION MAX (ELEMENT (ALL)).

DISPLAY MAX-VALUE-2.

The above example displays the following:

m

8

+008.75

COBOL Functions 10-35

MEAN

MEAN Function

The MEAN function returns a numeric value that is the arithmetic mean (average) of its
parameters. The function type is numeric.

Syntax

FUNCTION MEAN ({parameter-1}...)

Parameters

parameter-1 Must be class numeric.

Return Value

The value returned is the arithmetic mean of the parameter-1 series.

The value returned is de�ned as the sum of the parameter-1 series divided by the number of
occurrences referenced by parameter-1 .

Example

01 TAB.

05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO.

01 MEAN-VALUE PIC S999V99 VALUE ZERO....
MOVE 1.25 TO ELEMENT (1)

MOVE 3.50 TO ELEMENT (2)

MOVE 8.75 TO ELEMENT (3)

MOVE 0.25 TO ELEMENT (4)

COMPUTE MEAN-VALUE = FUNCTION MEAN (1 7 9 23 85)

DISPLAY MEAN-VALUE

COMPUTE MEAN-VALUE = FUNCTION MEAN (ELEMENT (ALL))

DISPLAY MEAN-VALUE

The above example displays the following:

+025.00

+003.43

10-36 COBOL Functions

MEDIAN

MEDIAN Function

The MEDIAN function returns the content of the parameter whose value is the middle value
in a list formed by arranging the parameters in sorted order. The function type is numeric.

Syntax

FUNCTION MEDIAN ({parameter-1}...)

Parameters

parameter-1 Must be class numeric.

Return Value

The value returned is the content of parameter-1 having the middle value in a list formed by
arranging all the parameter-1 values in sorted order.

If the number of occurrences referenced by parameter-1 is odd, the returned value is such
that at least half of the occurrences referenced by parameter-1 are greater than or equal to
the returned value and at least half are less than or equal. If the number of occurrencces
referenced by parameter-1 is even, the returned value is the arithmetic mean of the values
referenced by the two middle occurrences.

The comparisons used to arrange the parameter-1 values in sorted order are made according
to the rules for simple conditions. See the section \Simple Conditions" in Chapter 8 for
additional information.

Example

01 TAB.

05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO.

01 NUM-MEDIAN PIC S999V99 VALUE ZERO....
MOVE 1.25 TO ELEMENT (1).

MOVE 3.50 TO ELEMENT (2).

MOVE 8.75 TO ELEMENT (3).

MOVE 0.25 TO ELEMENT (4).

COMPUTE NUM-MEDIAN = FUNCTION MEDIAN (1, 7, 9, 23, 85).

DISPLAY NUM-MEDIAN.

COMPUTE NUM-MEDIAN = FUNCTION MEDIAN (ELEMENT (ALL)).

DISPLAY NUM-MEDIAN.

The above example displays the following:

+009.00

+002.37

COBOL Functions 10-37

MIDRANGE

MIDRANGE Function

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean
(average) of the value of the minimum parameter and the maximum parameter. The function
type is numeric.

Syntax

FUNCTION MIDRANGE ({parameter-1}...)

Parameters

parameter-1 Must be class numeric.

Return Value

The returned value is the arithmetic mean of the greatest parameter-1 value and the least
parameter-1 value. The comparisons used to determine the greatest and least values are made
according to the rules for simple conditions. See the section \Simple Conditions" in Chapter 8
for additional information.

Example

01 TAB.

05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO.

01 NUM-MIDRANGE PIC S999V99 VALUE ZERO....
MOVE 1.25 TO ELEMENT (1)

MOVE 3.50 TO ELEMENT (2)

MOVE 8.75 TO ELEMENT (3)

MOVE 0.25 TO ELEMENT (4)

COMPUTE NUM-MIDRANGE = FUNCTION MIDRANGE (1 7 9 23 85).

DISPLAY NUM-MIDRANGE

COMPUTE NUM-MIDRANGE = FUNCTION MIDRANGE (ELEMENT (ALL))

DISPLAY NUM-MIDRANGE

The above example displays the following:

+043.00
+004.50

10-38 COBOL Functions

MIN

MIN Function

The MIN function returns the content of the parameter-1 that contains the minimum value.
The function type depends on the parameter type, as follows:

Parameter Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All parameters integer Integer
Numeric (some parameters may be integer) Numeric

Syntax

FUNCTION MIN ({parameter-1}...)

Parameters

parameter-1 If more than one parameter-1 is speci�ed, all parameters must be of the same
class.

Return Value

The returned value is the content of the parameter-1 having the least value. The comparisons
used to determine the least value are made according to the rules for simple conditions. See
the section \Simple Conditions" in Chapter 8 for additional information.

If more than one parameter-1 has the same least value, the content of the parameter-1
returned is the leftmost parameter-1 having that value.

If the type of the function is alphanumeric, the size of the returned value is the same as the
size of the selected parameter-1 .

COBOL Functions 10-39

MIN

Example

77 A PIC X VALUE "A".

77 B PIC X VALUE "Z".

77 C PIC X VALUE "m".

77 D PIC X VALUE "9".

77 I PIC 9 VALUE 8.

77 J PIC 9 VALUE 3.
77 K PIC 9 VALUE 6.

77 L PIC 9 VALUE 1.

77 MIN-VALUE PIC 9 VALUE ZERO.

01 TAB.

05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO....
DISPLAY FUNCTION MIN (A, B, C, D).

COMPUTE MIN-VALUE = FUNCTION MIN (I, J, K, L).

DISPLAY MIN-VALUE.

MOVE 1.25 TO ELEMENT (1).

MOVE 3.50 TO ELEMENT (2).

MOVE 8.75 TO ELEMENT (3).

MOVE 0.25 TO ELEMENT (4).

COMPUTE MIN-VALUE = FUNCTION MIN (ELEMENT (ALL)).

DISPLAY MIN-VALUE.

The above example displays the following:

9

1

0

10-40 COBOL Functions

MOD

MOD Function

The MOD function returns an integer value that is parameter-1 modulo parameter-2 . The
function type is integer.

Syntax

FUNCTION MOD (parameter-1 parameter-2)

Parameters

parameter-1 Must be an integer.

parameter-2 Must be a non-zero integer.

Return Value

The returned value is parameter-1 modulo parameter-2 . The returned value is de�ned as:

parameter-1 - (parameter-2 * FUNCTION INTEGER(parameter-1/parameter-2))

The following table illustrates expected results for some values of parameter-1 and
parameter-2 .

Parameter-1 Parameter-2 Result

11 5 1

-11 5 4

11 -5 -4

-11 -5 -1

Example

01 NUM-MOD PIC 99 VALUE 0....
COMPUTE NUM-MOD = FUNCTION MOD (12 5).

DISPLAY NUM-MOD.

The above example displays the following:

02

COBOL Functions 10-41

NUMVAL

NUMVAL Function

The NUMVAL function returns the numeric value represented by the character string speci�ed
by parameter-1 . Leading and trailing spaces are ignored. The function type is numeric.

Syntax

FUNCTION NUMVAL (parameter-1)

Parameters

parameter-1 Must be a nonumeric literal or alphanumeric data item whose content has one
of the following formats:

where space is a string of zero or more spaces and digits is a string of one
to eighteen digits. The total number of digits in parameter-1 must not exceed
18.

If the DECIMAL-POINT IS COMMA clause is speci�ed in the SPECIAL-
NAMES paragraph, a comma must be used in parameter-1 rather than a
decimal point.

Return Value

The returned value is the numeric value represented by parameter-1 .

Example

77 ALPHA-NUM PIC XXX VALUE "753".

77 NUM PIC 999 VALUE ZERO....
COMPUTE NUM = FUNCTION NUMVAL (ALPHA-NUM).

DISPLAY ALPHA-NUM.

DISPLAY NUM.

The above example displays the following:

753

753

10-42 COBOL Functions

NUMVAL-C

NUMVAL-C Function

The NUMVAL-C function returns the numeric value represented by the character string
speci�ed by parameter-1 . Any optional currency sign speci�ed by parameter-2 and any
optional commas preceding the decimal point are ignored. The function type is numeric.

Syntax

FUNCTION NUMVAL-C (parameter-1 {parameter-2})

Parameters

parameter-1 Must be a nonumeric literal or alphanumeric data item whose content has one
of the following formats:

where space is a string of zero or more spaces, cs is the string of one or more
characters speci�ed by parameter-2 , and digit is a string of one or more
digits.

If the DECIMAL-POINT IS COMMA clause is speci�ed in the
SPECIAL-NAMES paragraph, the functions of the comma and decimal point
in parameter-1 are reversed.

The total number of digits in parameter-1 must not exceed 18.

parameter-2 If speci�ed, must be a nonnumeric literal or alphanumeric data item.

If parameter-2 is not speci�ed, the character used for cs is the currency
symbol speci�ed for the program.

Return Value

The returned value is the numeric value represented by parameter-1 .

COBOL Functions 10-43

NUMVAL-C

Example 1

77 ALPHA-NUM PIC X(16) VALUE "$ 123.45 CR ".

77 NUM PIC S9(5)V99.

PROCEDURE DIVISION.

010-PARA.

COMPUTE NUM = FUNCTION NUMVAL-C (ALPHA-NUM).

DISPLAY ALPHA-NUM.

DISPLAY NUM.
STOP RUN.

The above example displays the following:

$ 123.45 CR

-00123.45

Example 2

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.

DECIMAL-POINT IS COMMA.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 ALPHA-NUM PIC X(16) VALUE SPACES.

77 NUM PIC S9(5)V99.

PROCEDURE DIVISION.

010-PARA.

MOVE "DM 1.150,25" TO ALPHA-NUM.

COMPUTE NUM = FUNCTION NUMVAL-C (ALPHA-NUM "DM").

DISPLAY ALPHA-NUM.

DISPLAY NUM.

STOP RUN.

The above example displays the following:

DM 1.150,25

+01150,25

10-44 COBOL Functions

ORD

ORD Function

The ORD function returns an integer value that is the ordinal position of parameter-1 in the
collating sequence for the program. The lowest ordinal position is 1. The function type is
integer.

Syntax

FUNCTION ORD (parameter-1)

Parameters

parameter-1 Must be one character in length and must be class alphabetic or
alphanumeric.

Return Value

The returned value is the ordinal position of parameter-1 in the collating sequence for the
program.

Example

77 NUM PIC 999 VALUE ZERO....
COMPUTE NUM = FUNCTION ORD ("A").

DISPLAY NUM.

The above example displays the following:

066

COBOL Functions 10-45

ORD-MAX

ORD-MAX Function

The ORD-MAX function returns a value that is the ordinal number of the parameter-1 that
contains the maximum value. The function type is integer.

Syntax

FUNCTION ORD-MAX ({parameter-1}...)

Parameters

parameter-1 If more than one parameter-1 is speci�ed, all parameters must be of the same
class.

Return Value

The returned value is the ordinal number that corresponds to the position of the parameter-1
having the greatest value in the parameter-1 series.

The comparisons used to determine the greatest valued argument are made according to the
rules for simple conditions. See the section \Simple Conditions" in Chapter 8 for additional
information.

If more than one parameter-1 has the same greatest value, the number returned corresponds
to the position of the leftmost parameter-1 having that value.

Example

77 NUM PIC 999 VALUE ZERO....
COMPUTE NUM = FUNCTION ORD-MAX ("M", "C", "Z", "A", "M").

DISPLAY NUM.

The above example displays the following. The greatest value is \Z", which is in the third
position:

003

10-46 COBOL Functions

ORD-MIN

ORD-MIN Function

The ORD-MIN function returns a value that is the ordinal number of the argument that
contains the minimum value. The function type is integer.

Syntax

FUNCTION ORD-MIN ({parameter-1}...)

Parameters

parameter-1 If more than one parameter-1 is speci�ed, all arguments must be of the same
class.

Return Value

The returned value is the ordinal number that corresponds to the position of the parameter-1
having the least value in the parameter-1 series.

The comparisons used to determine the least valued parameter-1 are made according to the
rules for simple conditions. See the section \Simple Conditions" in Chapter 8 for additional
information.

If more than one parameter-1 has the same least value, the number returned corresponds to
the positions of the leftmost parameter-1 having that value.

Example

77 NUM PIC 999 VALUE ZERO....
COMPUTE NUM = FUNCTION ORD-MIN ("M", "C", "Z", "A", "M").

DISPLAY NUM.

The above example displays the following. The least value is \A", which is in the fourth
position:

004

COBOL Functions 10-47

PRESENT-VALUE

PRESENT-VALUE Function

The PRESENT-VALUE function returns a value that approximates the present value of a
series of future period-end amounts speci�ed by parameter-2 at a discount rate speci�ed by
parameter-1 . The function type is numeric.

Syntax

FUNCTION PRESENT-VALUE (parameter-1 {parameter-2}...)

Parameters

parameter-1 Must be of the class numeric; must be greater than -1.

parameter-2 Must be of the class numeric.

Return Value

The returned value is an approximation of the summation of a series of calculations with each
term in the following form:

parameter-2

(1 + parameter-1) ** n

There is one term for each occurrence of parameter-2 . The exponent n is incremented one by
one for each term in the series.

Example

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 NUM-RATE PIC S9V9999 VALUE 0.08.

01 TAB.

05 ELEMENT PIC S9999V99

OCCURS 4 TIMES VALUE ZERO.

01 NUM-P-VAL PIC S9(6)V99.

PROCEDURE DIVISION.

010-PARA.

MOVE 2012.54 TO ELEMENT (1)

MOVE 2008.29 TO ELEMENT (2)

MOVE 2015.05 TO ELEMENT (3)

MOVE 2014.87 TO ELEMENT (4)

COMPUTE NUM-P-VAL ROUNDED =

FUNCTION PRESENT-VALUE (NUM-RATE ELEMENT (ALL))

DISPLAY NUM-RATE

DISPLAY NUM-P-VAL.

The above example displays the following:

+0.0800

+006665.85

10-48 COBOL Functions

RANDOM

RANDOM Function

The RANDOM function returns a numeric value that is a pseudo-random number for a
rectangular distribution. The function type is numeric.

Syntax

FUNCTION RANDOM [(parameter-1)]

Parameters

parameter-1 parameter-1 is used as the seed value to generate a sequence of pseudo-
random numbers. If speci�ed, must be in integer between zero and 999999999,
inclusive.

If a subsequent reference speci�es parameter-1 , a new sequence of
pseudo-random numbers is started.

If the �rst reference to this function in the run unit does not specify
parameter-1 , the seed value is zero. In each case, subsequent references
without specifying parameter-1 returns the next number in the current
sequence.

If parameter-1 is speci�ed, parameter-1 determines a sequence of
pseudo-random numbers. Each time a value is returned, that 32-bit value is
used in place of parameter-1 to continue the pseudo-random sequence.

For details on the RANDOM function, refer to the Compiler Library/XL
Reference Manual .

Return Value

The returned value is greater than or equal to zero and less than one. For a given seed value,
the sequence of pseudo-random numbers is always the same.

COBOL Functions 10-49

RANDOM

Example

77 RANDOM-NUMBER PIC V99999 VALUE ZERO....
COMPUTE RANDOM-NUMBER = FUNCTION RANDOM (1)

DISPLAY RANDOM-NUMBER

COMPUTE RANDOM-NUMBER = FUNCTION RANDOM

DISPLAY RANDOM-NUMBER

COMPUTE RANDOM-NUMBER = FUNCTION RANDOM
DISPLAY RANDOM-NUMBER

COMPUTE RANDOM-NUMBER = FUNCTION RANDOM (2893)

DISPLAY RANDOM-NUMBER

COMPUTE RANDOM-NUMBER = FUNCTION RANDOM

DISPLAY RANDOM-NUMBER

COMPUTE RANDOM-NUMBER = FUNCTION RANDOM

DISPLAY RANDOM-NUMBER

The above example displays the following:

.04163

.36480

.73704

.40190

.06571

.61402

10-50 COBOL Functions

RANGE

RANGE Function

The RANGE function returns a value that is equal to the value of the maximum parameter
minus the value of the minimum parameter. The function type is either integer or numeric
depending on the type of the parameters, as follows:

Parameter Type Function Type
All parameters integer Integer
Numeric (some parameters may be integer) Numeric

Syntax

FUNCTION RANGE ({parameter-1}...)

Parameters

parameter-1 Must be class numeric.

Return Value

The returned value is equal to the greatest value of parameter-1 minus the least value of
parameter-1 . The comparisons used to determine the greatest and least values are made
according to the rules for simple conditions. See the section \Simple Conditions" in Chapter 8
for additional information.

Example

01 TAB.
05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO.

01 NUM-RANGE PIC S999V99 VALUE ZERO....
MOVE 1.25 TO ELEMENT (1).

MOVE 3.50 TO ELEMENT (2).

MOVE 8.75 TO ELEMENT (3).

MOVE 0.25 TO ELEMENT (4).

COMPUTE NUM-RANGE = FUNCTION RANGE (1, 7, 9, 23, 85).

DISPLAY NUM-RANGE.

COMPUTE NUM-RANGE = FUNCTION RANGE (ELEMENT (ALL)).

DISPLAY NUM-RANGE.

The above example displays the following:

+084.00

+008.50

COBOL Functions 10-51

REM

REM Function

The REM function returns a numeric value that is the remainder of parameter-1 divided by
parameter-2 . The function type is numeric.

Syntax

FUNCTION REM (parameter-1 parameter-2)

Parameters

parameter-1 Must be class numeric.

parameter-2 Must be class numeric; must not be zero.

Return Value

The returned value is the remainder of parameter-1 / parameter-2 . The value is de�ned as the
following expression:

parameter-1 - (parameter-2 * FUNCTION INTEGER-PART (parameter-1 / parameter-2))

The following table illustrates expected results for some values of parameter-1 and
parameter-2 .

Parameter-1 Parameter-2 Result

13 6 +1.0

13.55 -6 +1.55

-13 6 -1.0

-13.55 -6 -1.55

Example

01 NUM-REM PIC 99 VALUE 0....
COMPUTE NUM-REM = FUNCTION REM (17 3).

DISPLAY NUM-REM.

The above example displays the following:

02

10-52 COBOL Functions

REVERSE

REVERSE Function

The REVERSE function returns a character string of exactly the same length as parameter-1
and whose characters are exactly the same as those of parameter-1 , except that they are in
reverse order. The function type is alphanumeric.

Syntax

FUNCTION REVERSE (parameter-1)

Parameters

parameter-1 Must be class alphabetic or alphanumeric and must be at least one character
in length.

Return Value

If parameter-1 is a character string of length n, the returned value is a character string
of length n such that for 1 � j � n, the character in position j of the returned value is the
character from position n-j+1 of parameter-1 .

Example

77 CITY PIC X(7) VALUE "CHICAGO"....
DISPLAY CITY.

DISPLAY FUNCTION REVERSE (CITY).

The above example displays the following:

CHICAGO

OGACIHC

COBOL Functions 10-53

SIN

SIN Function

The SIN function returns the sine of an angle, expressed in radians. The function type is
numeric.

Syntax

FUNCTION SIN (parameter-1)

Parameters

parameter-1 The size of an angle in radians. Must be class numeric.

Return Value

The value returned is the approximation of the sine of parameter-1 and is between -1 and 1,
inclusive. The value returned is numeric.

Example

77 ANGLE-RADIANS PIC S99V9(5) VALUE 3.14159.

77 SIN-OF-ANGLE PIC S9V9(5) VALUE ZERO....
COMPUTE SIN-OF-ANGLE = FUNCTION SIN (ANGLE-RADIANS).

DISPLAY ANGLE-RADIANS.
DISPLAY SIN-OF-ANGLE.

DIVIDE ANGLE-RADIANS BY 4 GIVING ANGLE-RADIANS.

COMPUTE SIN-OF-ANGLE = FUNCTION SIN (ANGLE-RADIANS).

DISPLAY ANGLE-RADIANS.

DISPLAY SIN-OF-ANGLE.

The above example displays the following:

+03.14159

+0.00000

+00.78539

+0.70710

10-54 COBOL Functions

SQRT

SQRT Function

The SQRT function returns a numeric value that is the square root of parameter-1 . The
function type is numeric.

Syntax

FUNCTION SQRT (parameter-1)

Parameters

parameter-1 Must be class numeric; the value must be zero or positive.

Return Value

The returned value is the absolute value of the approximation of the square root of
parameter-1 .

Example

01 A-NUMBER PIC 99 VALUE 35.

01 NUM-SQ-ROOT PIC 999V999 VALUE ZERO....
COMPUTE NUM-SQ-ROOT = FUNCTION SQRT (81).

DISPLAY NUM-SQ-ROOT.

COMPUTE NUM-SQ-ROOT = FUNCTION SQRT (A-NUMBER).

DISPLAY NUM-SQ-ROOT.

The above example displays the following:

009.00

005.916

COBOL Functions 10-55

STANDARD-DEVIATION

STANDARD-DEVIATION Function

The STANDARD-DEVIATION function returns a numeric value that approximates the
standard deviation of its arguments. The function type is numeric.

Syntax

FUNCTION STANDARD-DEVIATION ({parameter-1}...)

Parameters

parameter-1 Must be class numeric.

Return Value

The returned value is the approximation of the standard deviation of the parameter-1 series.

The returned value is calculated as follows:

1. The di�erence between each parameter-1 value and the arithmetic mean of the parameter-1
series is calculated and squared.

2. The values obtained are added together. This quantity is divided by the number of values
in the parameter-1 series.

3. The square root of the quotient obtained is calculated. The returned value is the absolute
value of this square root.

If the parameter-1 series consists of only one value, or if the parameter-1 series consists of all
variable occurrence data items and the total number of occurrences for all of them is one, the
returned value is zero.

Example

01 TAB.

05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO.

01 NUM-STD-DEV PIC S999V99 VALUE ZERO....
MOVE 1.25 TO ELEMENT (1).

MOVE 3.50 TO ELEMENT (2).

MOVE 8.75 TO ELEMENT (3).

MOVE 0.25 TO ELEMENT (4).

COMPUTE NUM-STD-DEV = FUNCTION STANDARD-DEVIATION (1, 7, 9, 23, 85).

DISPLAY NUM-STD-DEV.

COMPUTE NUM-STD-DEV = FUNCTION STANDARD-DEVIATION (ELEMENT (ALL)).

DISPLAY NUM-STD-DEV.

The above example displays the following:

+030.85

+003.28

10-56 COBOL Functions

SUM

SUM Function

The SUM function returns a value that is the sum of the parameters. The function type is
either integer or numeric depending on the type of the parameters, as follows:

Parameter Type Function Type
All parameters integer Integer
Numeric (some parameters may be integer) Numeric

Syntax

FUNCTION SUM ({parameter-1}...)

Parameters

parameter-1 Must be class numeric.

Return Value

The returned value is the sum of the parameters.

If the parameter-1 series are all integers, the value returned is an integer.

If the parameter-1 series are not all integers, a numeric value is returned.

Example

01 TAB.

05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO.

01 TOTAL PIC S999V99 VALUE ZERO....
MOVE 1.25 TO ELEMENT (1).

MOVE 3.50 TO ELEMENT (2).

MOVE 8.75 TO ELEMENT (3).

MOVE 0.25 TO ELEMENT (4).

COMPUTE TOTAL = FUNCTION SUM (1, 7, 9, 23, 85).

DISPLAY TOTAL.

COMPUTE TOTAL = FUNCTION SUM (ELEMENT (ALL)).

DISPLAY TOTAL.

The above example displays the following:

+125.00

+013.75

COBOL Functions 10-57

TAN

TAN Function

The TAN function returns the tangent of an angle, expressed in radians. The function type is
numeric.

Syntax

FUNCTION TAN (parameter-1)

Parameters

parameter-1 The size of an angle in radians. Must be class numeric.

Return Value

The value returned is the approximation of the tangent of parameter-1 . The value returned is
numeric.

Example

77 ANGLE-RADIANS PIC S99V9(5) VALUE 3.14159.

77 TAN-OF-ANGLE PIC S9(5)V9(5) VALUE ZERO....
COMPUTE TAN-OF-ANGLE = FUNCTION TAN (ANGLE-RADIANS).

DISPLAY ANGLE-RADIANS.
DISPLAY TAN-OF-ANGLE.

DIVIDE ANGLE-RADIANS BY 4 GIVING ANGLE-RADIANS.

COMPUTE TAN-OF-ANGLE = FUNCTION TAN (ANGLE-RADIANS).

DISPLAY ANGLE-RADIANS.

DISPLAY TAN-OF-ANGLE.

The above example displays the following:

+03.14159

+00000.00000

+00.78539

+00000.99998

10-58 COBOL Functions

UPPER-CASE

UPPER-CASE Function

The UPPER-CASE function returns a character string that is the same length as parameter-1
with each lowercase letter replaced by the corresponding uppercase letter. The function type
is alphanumeric.

Syntax

FUNCTION UPPER-CASE (parameter-1)

Parameters

parameter-1 Must be class alphabetic or alphanumeric and must be at least one character
in length.

Return Value

The same character string as parameter-1 is returned, except that each lowercase letter is
replaced by the corresponding uppercase letter.

The character string returned has the same length as parameter-1 .

Example

77 CITY PIC X(7) VALUE "chicago"....
DISPLAY CITY.

MOVE FUNCTION UPPER-CASE (CITY) TO CITY.

DISPLAY CITY.

The above example displays the following:

chicago

CHICAGO

COBOL Functions 10-59

VARIANCE

VARIANCE Function

The VARIANCE function returns a numeric value that approximates the variance of its
parameters. The function type is numeric.

Syntax

FUNCTION VARIANCE ({parameter-1}...)

Parameters

parameter-1 Must be class numeric.

Return Value

The returned value is the approximation of the variance of the parameter-1 series.

The returned value is de�ned as the square of the standard deviation of the parameter-1
series. See the description of the STANDARD-DEVIATION function in this chapter for
additional information.

If the parameter-1 series consists of only one value or if the parameter-1 series consists of all
variable occurrence data items and the total number of occurrences for all of them is one, the
returned value is zero.

Example

01 TAB.

05 ELEMENT PIC S999V99

OCCURS 4 TIMES VALUE ZERO.

01 NUM-VARIANCE PIC S999V99 VALUE ZERO....
MOVE 1.25 TO ELEMENT (1).

MOVE 3.50 TO ELEMENT (2).

MOVE 8.75 TO ELEMENT (3).

MOVE 0.25 TO ELEMENT (4).

COMPUTE NUM-VARIANCE = FUNCTION VARIANCE (1, 7, 9, 23, 85).

DISPLAY NUM-VARIANCE.

COMPUTE NUM-VARIANCE = FUNCTION VARIANCE (ELEMENT (ALL)).

DISPLAY NUM-VARIANCE.

The above example displays the following:

+952.00

+010.79

10-60 COBOL Functions

WHEN-COMPILED

WHEN-COMPILED Function

The WHEN-COMPILED function returns the date and time the system compiled your
program and the di�erence between the local time when your program was compiled and
Universal Coordinated Time (UTC) or Greenwich Mean Time. To get the correct time
di�erential, you need to set the environment variable TZ to your local time zone before
compiling programs that contain this function. See below for more information. The function
type is alphanumeric.

This function is di�erent from the WHEN-COMPILED special register word (described in
Chapter 3). One di�erence is that the WHEN-COMPILED function provides a four-digit
year.

Syntax

FUNCTION WHEN-COMPILED

Return Value

This function returns a 19-character alphanumeric string with each character position de�ned
as follows:

Character
Positions

Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past the second, in the range
00 through 99. The value 00 is returned because your system cannot provide the
fractional part of a second.

17 One of the following:

Value When Returned

- Returned if the local time of compilation in the previous character
positions is behind Greenwich Mean Time.

+ Returned if the local time indicated is the same as or ahead of
Greenwich Mean Time.

0 Returned on non-MPE XL systems that do not have the facility to
provide the local time di�erential factor.

COBOL Functions 10-61

WHEN-COMPILED

Character
Positions

Contents

18-19 Depending on the value of character position 17, one of the following:

Position 17 Contents

- Two numeric digits in the range 00 through 12 indicating the
number of hours that the reported time is behind Greenwich
Mean Time.

+ Two numeric digits in the range 00 through 13 indicating the
number of hours that the reported time is ahead of Greenwich
Mean Time.

0 The value 00 is returned.

20-21 Depending on the value of character position 17, one of the following:

Position 17 Contents

- Two numeric digits in the range 00 through 59 indicating the
number of additional minutes that the reported time is behind of
Greenwich Mean Time.

+ Two numeric digits in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of
Greenwich Mean Time.

0 The value 00 is returned.

The returned value is the date and time of compilation of the source program that contains
this function. If the program is a contained program, the returned value is the compilation
date and time of the separately compiled program in which it is contained.

Setting the TZ Environment Variable

To get the correct di�erence between local time and Greenwich Mean Time, you must set
the environment variable TZ to your local time zone. To set TZ, use the MPE XL SETVAR
command. For example, the following command sets the time zone to Central Standard Time
and Central Daylight Time, which would be correct for Chicago, Illinois:

:SETVAR TZ 'CST6CDT'

See the function CURRENT-DATE earlier in this chapter for a table of time zones. Check your
local time zone to be sure you use the correct one.

10-62 COBOL Functions

WHEN-COMPILED

Example

01 FULL-COMPILED-DATE.

05 C-DATE.

10 C-YEAR PIC 9(4).

10 C-MONTH PIC 99.

10 C-DAY PIC 99.

05 C-TIME.

10 C-HOUR PIC 99.
10 C-MINUTES PIC 99.

10 C-SECONDS PIC 99.

10 C-SEC-HUND PIC 99.

05 C-TIME-DIFF.

10 C-GMT-DIR PIC X.

10 C-HOUR PIC 99.

10 C-MINUTES PIC 99....
MOVE FUNCTION WHEN-COMPILED TO FULL-COMPILED-DATE.

DISPLAY "Full date is: ", FULL-COMPILED-DATE.

DISPLAY "Year is: ", C-YEAR.

DISPLAY "Month is: ", C-MONTH.

DISPLAY "Day is: ", C-DAY.

DISPLAY "Hour is: ", C-HOUR OF C-TIME.

DISPLAY "Minute is: ", C-MINUTES OF C-TIME.

DISPLAY "Second is: ", C-SECONDS.

DISPLAY "Hundredths of seconds is: ", C-SEC-HUND.

DISPLAY "Difference from GMT is: ", C-GMT-DIR.

DISPLAY "Hours from GMT is: ", C-HOUR OF C-TIME-DIFF.

DISPLAY "Minutes from GMT is: ", C-MINUTES OF C-TIME-DIFF.

The above example displays the following:

Full date is: 1991022016512900-0800

Year is: 1991

Month is: 02

Day is: 20

Hour is: 16

Minute is: 51
Second is: 29

Hundredths of seconds is: 00

Difference from GMT is: -

Hours from GMT is: 08

Minutes from GMT is: 00

COBOL Functions 10-63

11

Interprogram Communication

Program modules consist of separately compiled,but logically coordinated programs, which,
at execution time, are subdivisions of a single process. This approach to programming lends
itself to making a large problem more easily programmed and debugged, by breaking a
problem into logical modules and coding each module separately.

In COBOL terminology, a program is either a source or an object program. The distinction
between the two is that a source program is simply a syntactically correct set of COBOL
statements, whereas an object program is the set of instructions, constants, and other data
resulting from the compilation of a source program.

A run unit is de�ned as being the total machine language necessary to solve a given generated
data processing problem.

One run unit may contain several object programs, some of which may not have been
generated by the COBOL compiler.

A run unit, then, is a combination of one main program with, optionally, one or more
subprograms. Each subprogram may itself use one or more subprograms.

The state of a program the �rst time it is called in a run unit is the initial state of a program.
The initial state of a program is characterized as follows:

The program's internal data contained in the WORKING-STORAGE SECTION is
initialized. If a VALUE clause is used in the description of the data item, the data item is
initialized to the de�ned value. If a VALUE clause is not associated with a data item, the
initial value of the data item is unde�ned.

Internal �les associated with the program are not in open mode.

The control mechanisms for all PERFORM statements contained in the program are set to
their initial states.

A GO TO statement referenced by an ALTER statement within the same program is set to
its initial state.

In COBOL, a program can transfer control to one or more subprograms, whether or not the
names of the subprograms are known at compile time. Also, it is possible for the compiler to
determine the availability of that subprogram.

When a run unit contains more than one object program, there must be communication
between them. Interprogram communication takes two forms: transfer of control from one
object program to another; and reference to common data.

Interprogram Communication 11-1

Interprogram Communication

Transfer of Control

The CALL statement is the means used in COBOL programs to pass control from one object
program to another, and there are no restrictions on a called program itself calling another
object program. Caution should be used, however, to avoid calling a program that preceded,
in the calling chain, the program currently having control. Otherwise, results of the run unit
are unpredictable.

When control is passed to a called program, execution begins either at the �rst PROCEDURE
DIVISION statement or at a secondary entry point of the PROCEDURE DIVISION.
Secondary entry points are described later in this chapter under the ENTRY statement, an
HP extension to ANSI COBOL'85. Program execution begins at the point of entry to the
called program in the normal, line-by-line sequence, following the same conventions used
for COBOL main programs. Termination takes place in a COBOL subprogram under two
possible conditions.

The �rst condition that causes termination is when an EXIT PROGRAM or GOBACK
statement is encountered. When this occurs, control reverts to the calling program, which
begins execution at the line immediately following the CALL statement that originally passed
control.

The second condition that causes termination in a COBOL program is when a STOP RUN
statement is encountered. In this case, the entire run unit is terminated.

In summary, the EXIT PROGRAM and GOBACK statements terminate only the program in
which they appear, while the STOP RUN statement terminates the entire run unit.

An exception to this is when a GOBACK statement appears in a main program. In this case,
it is equivalent to issuing a STOP RUN statement.

If the called program is not a COBOL program, termination of the run unit, or the return
of control to the calling program, must be performed in accordance with the rules of the
language in which the called program is written.

Reference to Common Data and Files

Two or more programs can reference common data in the following situations:

The data content of an external data record can be referenced from any program provided
that the program describes that data record.

The mechanism in which a parameter value is passed by reference from a calling program
to a called program establishes a common data item. The called program, which can use a
di�erent identi�er, can refer to a data item in the calling program.

Two or more programs can reference a common �le in the following situation:

An external �le connector can be referenced from any program that describes that �le
connector.

11-2 Interprogram Communication

Interprogram Communication

Reference to Common Data through Parameter Passing

Because a called program often accesses data that is also used by the calling program, both
programs must have access to the same data items if you wish to pass data to, or return data
from, the called program.

In the calling program, it does not matter which section in the DATA DIVISION is used to
describe the common data.

In the called COBOL program, however, common data must be described in the LINKAGE
SECTION of the DATA DIVISION under 01 or 77 level description entries. Unlike the data
in the calling program, no storage is allocated for LINKAGE SECTION items when the
calling program is compiled.

Communication between the called COBOL program and the common data items stored
in the calling program is provided by the USING clauses in both the calling and the called
program.

The USING clause in the calling program is part of the CALL statement. It lists the names of
common data items described in the DATA DIVISION.

In the called COBOL program, the USING clause appears as part of the PROCEDURE
DIVISION header, or of the ENTRY statement. The common data items, which must be
described in the LINKAGE SECTION, are listed by this clause.

Despite how the data items are described in the calling program, they are processed according
to how they are described in the LINKAGE SECTION of the called program.

The only restriction is that descriptions of common data items must de�ne an equal number
of character positions.

Common data items are related to each other in the calling and called COBOL programs by
their positions in the USING clauses, not by their names.

This implies that you may use entirely di�erent names in the called program to represent
common data items of the calling program.

For example, if EMP-INFO is the fourth name in the USING clause of a calling program and
FOURTH-PASSED is the fourth name in the USING clause of the called program, then any
reference to FOURTH-PASSED is treated as if it were a reference to the corresponding data item
EMP-INFO in the calling program.

Also, although you may not use the same name twice within the USING phrase of a called
program, you may do so in the USING phrase of the calling program. This allows you to have
a data item in the calling program related to more than one data name in the called program.

Interprogram Communication 11-3

Interprogram Communication

Reference to Common Data and Files through External Objects

This is a feature of the 1985 ANSI COBOL standard

Accessible data items usually require that certain representations of data be stored. File
connectors usually require that certain information concerning �les be stored. The storage
associated with a data item or a �le connector can be external or internal to the program in
which the object is declared.

A data item or �le connector is external if the storage associated with that object is
associated with the run unit rather than with any particular program within the run unit.
An external object may be referenced by any program in the run unit which describes the
object. References to an external object from di�erent programs using separate descriptions of
the object are always to the same object. In a run unit, there is only one representative of an
external object.

An object is internal if the storage associated with that object is associated only with the
program that describes the object.

A data record described in the WORKING-STORAGE SECTION is given the external
attribute by the presence of the

NNNNNNNNNNNNNNNNNNNNNNNNNN
EXTERNAL clause in its data description entry. Any data

item described by a data description entry subordinate to an entry describing an external
record also attains the external attribute. If a record or data item does not have the external
attribute, it is part of the internal data of the program in which it is described.

A �le connector is given the external attribute by the presence of the
NNNNNNNNNNNNNNNNNNNNNNNNNN
EXTERNAL clause in the

associated �le description entry. If the �le connector does not have the external attribute, it is
internal to the program in which the associated �le name is described.

The data records described subordinate to a �le description entry that does not contain theNNNNNNNNNNNNNNNNNNNNNNNNNN
EXTERNAL clause or a sort-merge �le description entry, as well as any data items described
subordinate to the data description entries for such records, are always internal to the
program describing the �le name. If the

NNNNNNNNNNNNNNNNNNNNNNNNNN
EXTERNAL clause is included in the �le description

entry, the data records and the data items attain the external attribute.

A �le connector is given a global attribute by the presence of the
NNNNNNNNNNNNNNNNNNNN
GLOBAL clause in the �le

description entry. By specifying the �le connector
NNNNNNNNNNNNNNNNNNNN
GLOBAL , all the data records associated

with the �le are automatically given a global attribute and the record description entries do
not need to have a

NNNNNNNNNNNNNNNNNNNN
GLOBAL clause. However, if a

NNNNNNNNNNNNNNNNNNNN
GLOBAL clause is speci�ed in the record

description entry and not in the �le description entry, only the record name is given a global
attribute. For example, the contained programs are not able to reference the �le connector
(no �le I/O is allowed), but are able to reference the record in which a

NNNNNNNNNNNNNNNNNNNN
GLOBAL clause was

speci�ed.

Data records, subordinate data items, and various associated control information described in
the linkage of a program are always considered to be internal to the program describing that
data. Special considerations apply to data described in the LINKAGE SECTION whereby an
association is made between the data records described and other data items accessible to
other programs.

If a data item possessing the external attribute includes a table accessed with an index, that
index does not possess the external attribute.

11-4 Interprogram Communication

Interprogram Communication

PROGRAM-ID Paragraph

De�ne a subprogram using the PROGRAM-ID paragraph of the IDENTIFICATION
DIVISION.

Syntax

Description

For more information on the PROGRAM-ID paragraph, see Chapter 5, \IDENTIFICATION
DIVISION."

COMMON Clause
NNN
The COMMON clause specifies that the program is common, a program containedNNN
in another program. A common program is one which, though contained withinNNN
another program, may be called by any program directly or indirectlyNNN
contained in that other program. This clause is used in nested andNNN
concatenated programs. It facilitates the writing of subprograms which areNNN
to be used by all the programs contained within a program.

Interprogram Communication 11-5

Interprogram Communication

EXTERNAL Clause

The
NNNNNNNNNNNNNNNNNNNNNNNNNN
EXTERNAL clause is a feature of the 1985 ANSI COBOL standard

The EXTERNAL clause speci�es that a data item or a �le connector is external. The
corresponding data items and data group items of an external data record are available to
every program in the run unit that describes that record.

Syntax

IS EXTERNAL

Description

The EXTERNAL clause can only be speci�ed in �le description entries or in record
description entries in the WORKING-STORAGE SECTION.

The data-name speci�ed as the subject of an entry with a level-number of 01 that includes the
EXTERNAL clause must not be the same data-name speci�ed for any other data description
entry that includes the EXTERNAL clause.

The VALUE clause must not be used in any data description entry that includes, or is
subordinate to, an entry that includes the EXTERNAL clause. The VALUE clause can be
speci�ed for condition-name entries associated with these data description entries.

The data contained in the record named by the data-name clause is external. It can be
accessed and processed by any program in the run unit that describes and, optionally,
rede�nes it according to the following rules.

Within a run unit, if two or more programs describe the same external data record, each
record-name of the record description entries must be the same. The records must de�ne
the same number of standard data format characters.

However, a program describing an external record can contain a data description entry that
includes the REDEFINES clause. The REDEFINES clause then rede�nes the complete
external record. This complete rede�nition does not need to occur identically in other
programs in the run unit.

The �le connector associated with this description entry is an external �le connector.

11-6 Interprogram Communication

Interprogram Communication

Example

The following example illustrates interprogram communication using EXTERNAL items. A
main program and a subprogram share an EXTERNAL �le and an EXTERNAL data item.

IDENTIFICATION DIVISION.

PROGRAM-ID. EXTITEMS.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT SOUT ASSIGN TO "FILEOUTP".

DATA DIVISION.

FILE SECTION.

*

* THE EXTERNAL FILE SPECIFICATION

*

FD SOUT EXTERNAL.

01 REC-OUT.

05 NAME PIC X(20).

05 LOCN PIC X(10).

WORKING-STORAGE SECTION.

*

* THE EXTERNAL DATA-ITEM SPECIFICATION

*

* NOTE THAT SINCE THE ITEM IS 'EXTERNAL' THE VALUE

* CLAUSE MAY NOT BE USED EXCEPT WITHIN A CONDITION-NAME

* ASSOCIATED WITH THE DATA ITEM.

*

01 EXTERNAL-DATA-ITEM EXTERNAL PIC X(18).

88 X-ITEM VALUE "EXTERNAL-DATA-ITEM".

PROCEDURE DIVISION.
START-IT.

SET X-ITEM TO TRUE.

OPEN OUTPUT SOUT.

MOVE "JOHN DOE" TO NAME.

MOVE "BLDG 48 N" TO LOCN.

DISPLAY "DISPLAY OF EXT-DATA-ITEM FROM MAIN ** "

EXTERNAL-DATA-ITEM.

WRITE REC-OUT.

*

* CALL SUB1 TO WRITE A RECORD TO THE FILE. NOTE THAT

* THE EXTERNAL-DATA-ITEM VARIABLE IS NOT PASSED TO SUB1.

*

CALL "SUB1".

CLOSE SOUT.

Interprogram Communication 11-7

Interprogram Communication

*

* READ/DISPLAY THE SHARED FILE CONTENTS

*
OPEN INPUT SOUT.

READ-FILE-RECS.

READ SOUT AT END

CLOSE SOUT

STOP RUN.

DISPLAY REC-OUT.

GO TO READ-FILE-RECS.

$CONTROL SUBPROGRAM

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB1.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT SOUT ASSIGN TO "FILEOUTP".

DATA DIVISION.

FILE SECTION.

FD SOUT EXTERNAL.

01 REC-OUT.

05 NAME PIC X(20).

05 LOCN PIC X(10).

WORKING-STORAGE SECTION.

01 EXTERNAL-DATA-ITEM EXTERNAL PIC X(18).

PROCEDURE DIVISION.

*

* NOTE THAT SUB1 DOES NOT REQUIRE A 'USING' CLAUSE TO
* ACCESS THE EXTERNAL DATA ITEM OR A FILE 'OPEN' TO

* ACCESS THE OUTPUT FILE.

*

START-IT.

MOVE "MARY JANE" TO NAME.

MOVE "BLDG 66 W" TO LOCN.

DISPLAY "DISPLAY OF EXT-DATA-ITEM FROM SUB1 ** "

EXTERNAL-DATA-ITEM.

WRITE REC-OUT.

GOBACK.

When this example is compiled using the ANSI85 entry point, and run, it produces the
following output:

DISPLAY OF EXT-DATA-ITEM FROM MAIN ** EXTERNAL-DATA-ITEM

DISPLAY OF EXT-DATA-ITEM FROM SUB1 ** EXTERNAL-DATA-ITEM

JOHN DOE BLDG 48 N

MARY JANE BLDG 66 W

11-8 Interprogram Communication

Interprogram Communication

GLOBAL Clause

The
NNNNNNNNNNNNNNNNNNNN
GLOBAL clause is a feature of the 1985 ANSI COBOL standard

The GLOBAL clause speci�es that the data item or �le connector can be referenced by the
contained programs within a nested program in which the item is declared global.

Syntax

IS GLOBAL

Description

The following rules should be observed when using GLOBAL clause:

The GLOBAL clause can only be speci�ed in the �le description entries in the FILE
SECTION or in the 01 record description entries in the FILE SECTION and the
WORKING-STORAGE SECTION.

The GLOBAL clause can be speci�ed in the record description entries which have unique
names.

If the SAME RECORD AREA clause is speci�ed for several �les, the record description
entries or the �le description entries for these �les must not include a GLOBAL clause.

If the GLOBAL clause is used in a record description entry that contains a REDEFINES
clause, only the subject of the REDEFINES clause will be given the global attribute.

If the GLOBAL clause is used in a record description entry that contains a table and index
name, the index name is automatically given the global attribute.

If the GLOBAL clause is used in a record description entry that contains a condition name
de�ned with a level 88, the condition name is automatically given the global attribute.

Interprogram Communication 11-9

Interprogram Communication

Types of Subprograms

HP COBOL II has three kinds of subprograms:

1. Non-Dynamic.
2. Dynamic.
3. ANSISUB.

Specify which kind of subprogram you want by using one of the following:

Table 11-1. Types of Subprograms and How to Specify Them

Subprogram
Type

Option or Clause

Non-
Dynamic.

$CONTROL
SUBPROGRAM

Dynamic. $CONTROL DYNAMIC or
the INITIAL clause of the
PROGRAM-ID paragraph.

ANSISUB $CONTROL ANSISUB

See Appendix B, \$CONTROL Options," and Appendix H, for more information on these
options.

If you do not use one of these $CONTROL options and the source program contains a
LINKAGE SECTION, it is compiled as a non-dynamic subprogram. A program containing no
LINKAGE SECTION is considered a main program unless $CONTROL SUBPROGRAM,
DYNAMIC, or ANSISUB

NN
or PROGRAM IS INITIAL clause is used for that program.

Non-Dynamic Subprograms

Use $CONTROL SUBPROGRAM to specify a non-dynamic subprogram. The data of a
non-dynamic subprogram is declared as OWN. That is, the subprogram data retain their
values between calls to the subprogram.

In other words, when you exit a called non-dynamic subprogram, its state is maintained.
Thus, data items not common to the calling program or a program that called the calling
program retain their values when the program in which they are used is exited.

11-10 Interprogram Communication

Interprogram Communication

Dynamic Subprograms

Use $CONTROL DYNAMIC or the INITIAL clause of the PROGRAM-ID paragraph to
specify a dynamic subprogram. The INITIAL clause is part of the ANSI standard. Dynamic
subprograms are equivalent to PROGRAM IS INITIAL and have local data storage and
are always in their initial state when called. This implies that any �les opened in dynamic
subprograms should be closed before exiting. Otherwise, the �le is closed for you.

ANSISUB Subprograms

Ansisub subprograms are the 1985 ANSI COBOL standard type of subprogram. Use
$CONTROL ANSISUB to specify an ansisub subprogram. Ansisub subprograms are a
combination of the dynamic and non-dynamic types. The data area of an ansisub subprogram
retains its values between calls unless you explicitly reinitialize the data area. To reinitialize
an ANSISUB subprogram, use the CANCEL statement in the calling program after the EXIT
PROGRAM or GOBACK statement has been executed in the ansisub subprogram. See
\MPE XL System Dependencies" in Appendix H for more information about using ansisub
subprograms.

For more information on subprograms, see the HP COBOL II/XL Programmer's Guide.

Interprogram Communication 11-11

END PROGRAM

END PROGRAM Header

The
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END PROGRAM header is a feature of the 1985 ANSI COBOL standard

The END PROGRAM header indicates the end of the named COBOL program. It must
begin in Area A.

Syntax

END PROGRAM program-name.

Description

The following rules should be observed when using the END PROGRAM header:

The program-name must be identical to the program-name declared in the preceding
PROGRAM-ID paragraph. In a nested program, the END PROGRAM header for the
contained program must precede the END PROGRAM header for the containing program.

It must be present in every program which either contains or is contained within another
program.

If the program being terminated by the END PROGRAM is contained within another
program, the next statement must be either the IDENTIFICATION DIVISION header or
another END PROGRAM header to terminate the containing program.

If the program terminated by the END PROGRAM header is not a contained program and
if the next statement is a COBOL statement, it must be an IDENTIFICATION DIVISION
header for the following COBOL program. These types of programs are called concatenated
programs.

If the END PROGRAM header is not followed by correct program name, the compiler will
issue an error message.

11-12 Interprogram Communication

CALL

CALL Statement

In ANSI COBOL, you can use the CALL statement to transfer control from one object
program to another within the same run unit. An HP extension to the 1985 ANSI COBOL
standard adds the ability to invoke operating system intrinsics from within a given object
program.

Syntax

Interprogram Communication 11-13

CALL

An HP extension to the 1985 ANSI COBOL standard adds the keyword INTRINSIC to the
following formats to specify that an intrinsic, not a program, is being called. Also added is the
capability to pass a data item by value. These can only be used when calling non-COBOL
programs.

The last format of the CALL statement is the GIVING identi�er-4 phrase. This phrase allows
you to name an identi�er that holds the result of a call to a typed procedure.

11-14 Interprogram Communication

CALL

Parameters

identi�er-1 names an alphanumeric data item whose value is a program
name. Refer to \CALL Identi�er" (below) for a description of
conditions that may occur when using this operation.

literal-1 nonnumeric literal that either names an operating system
intrinsic, or names a program. If an intrinsic is named by
literal-1 , the keyword, INTRINSIC, must precede it.

nn represents a null value passed as a parameter to an
intrinsic or to a Pascal procedure that includes OPTION
DEFAULT PARMS or EXTENSIBLE. The compiler assumes
a one-word parameter when the INTRINSIC option is not
speci�ed.

@ identi�er-2 @ is ignored; this is provided for compatibility with
HP COBOLII/V. identi�er-2 cannot be a function-identi�er.

identi�er-2 , the name of any data item in the calling program, or a �le
named in an FD level entry in the FILE SECTION of your
program.

identi�er-2 must be described in the FILE, WORKING-
STORAGE, or LINKAGE SECTIONs of your program.
When this value is passed to another program, it is passed by
reference.

If this parameter names a �le, the called program must not be
a COBOL program unless the BY CONTENT phrase is used.

identi�er-2 cannot be a function-identi�er.

nidenti�er-2n, and nliteral-2n, used to indicate that the literals or data items represented by
identi�ers enclosed by the back slashes are to be passed by
value to the called program or intrinsic. This may only be
used when the called program is not a COBOL program. If an
identi�er is used in this way, it must represent a numeric data
item of up to 18 digits.

identi�er-2 cannot be a function-identi�er.

identi�er-4 the name of a binary data item in the calling program. It is
used in calls to non-COBOL programs and in calls to COBOL
programs that return a value in the RETURN-CODE special
register (see the section \GIVING Phrase When Calling
COBOL Subprograms" later in this chapter for details.)

identi�er-4 cannot be a function-identi�er.

imperative-statement-1 one or more imperative statements.

Interprogram Communication 11-15

CALL

Description

A CALL statement may appear anywhere within a segmented program. The compiler
provides all controls necessary to ensure that the proper logic ow is maintained. When a
CALL statement to a subprogram appears in a section with a segment number greater than or
equal to 50, and when control is returned to this segment by the EXIT PROGRAM statement
in the called subprogram, this segment is in the same state as when it issued the CALL
statement.

Example

The ANSI COBOL'85 standard contains several rules that govern the scope of CALL
statements for nested, concatenated and mixed programs. The following example illustrates
several cases. In the example, only the PROGRAM-ID, CALL, and END PROGRAM are
shown for the COBOL program. For clarity, the lines are indented to illustrate the scope.
However, in practice, both PROGRAM-ID and END PROGRAM must start in margin A, and
a CALL statement should start in margin B.

Line Program Structure Scope

1 PROGRAM-ID. A. Start of program A.

2
...

3 PROGRAM-ID. C COMMON. Start of nested program C.

4
... Program C is contained within program A.

5 END PROGRAM C. End of nested program C.

6 END PROGRAM A. End of program A.

7

8 PROGRAM-ID. F. Start of program F.

9
...

10 CALL "A". Calls nested program A in line 11.

11 PROGRAM-ID. A. Start of nested program A.

12
... Program A is contained within program F.

13 END PROGRAM A. End of nested program A.

14

15 PROGRAM-ID. B. Start of nested program B.

16
... Program B is contained within program F.

17 CALL "A". Calls program A in line 1.

18 END PROGRAM B. End of nested program B.

19 END PROGRAM F. End of program F.

11-16 Interprogram Communication

CALL

Calling Intrinsics

The INTRINSIC phrase is used to indicate that the CALL statement in which it appears is
calling an operating system intrinsic rather than a subprogram. When the INTRINSIC phrase
is used, literal-1 must be used and must name an operating system intrinsic. The USING
phrase speci�es the various parameters to be passed to the intrinsic. When the intrinsic
is a \typed procedure", the GIVING phrase speci�es the parameter to be returned by the
intrinsic.

As with subprograms, the parameters passed to intrinsics are speci�ed by position. If a
parameter of an intrinsic is optional, and you do not want to pass a value for that parameter,
you must specify two consecutive back slashes (nn) in the position within the USING phrase of
the CALL statement that corresponds to that parameter's position within the intrinsic.

Unlike subprograms, if an intrinsic expects a parameter to be passed by value rather than by
reference, it is unnecessary to enclose the literal or identi�er with backslashes. The intrinsic
automatically assumes that the parameter is being passed by value.

The following special relation operator can be used after a call to an intrinsic to check the
condition code returned by an intrinsic:

This relation condition is described under \Relation Conditions" in Chapter 8.

For information on the condition codes and the types, number, and position of parameters
required to call a speci�c intrinsic, refer to the MPE Intrinsics Reference Manual and to
\System Dependencies" in Appendix H.

Interprogram Communication 11-17

CALL

Example

The following shows some calls to intrinsics:

SPECIAL-NAMES.

CONDITION-CODE IS C-C....
WORKING-STORAGE SECTION.

01 SHOWME.

02 MPE-COMMAND PIC X(07) VALUE "SHOWJOB".

02 CARRIAGE-RETURN PIC X VALUE %15.

01 ERR PIC S9999 USAGE IS COMP VALUE ZERO.

01 CATCHPARM PIC S9999 USAGE IS COMP VALUE ZERO.

01 REPLY PIC X(03) VALUE SPACES....
PROCEDURE DIVISION....

CALL INTRINSIC "COMMAND" USING SHOWME ERR CATCHPARM.

IF C-C NOT = 0 THEN

DISPLAY "COMMAND FAILED"

STOP RUN.

MOVE SPACES TO REPLY.

DISPLAY "DO YOU WISH TO COMMUNICATE WITH ANYONE?"

ACCEPT REPLY.

IF REPLY = "YES" PERFORM BREAK-FOR-COMM....
BREAK-FOR-COMM.

DISPLAY "TYPE RESUME WHEN READY TO RESUME PROGRAM".

CALL INTRINSIC "CAUSEBREAK"....

The �rst intrinsic call above uses the COMMAND intrinsic to issue the operating system
command SHOWJOB. This allows you to see who is currently logged on to your system. The
second call to an intrinsic is the programmatic equivalent to pressing the BREAK key, thus
suspending your program.

The intrinsics used in the above manner could allow you to see who is using the system and to
ask them, for example, to release a �le from their group to allow your program to access it.

When CALL INTRINSIC is used for intrinsics in a system �le:

1. The special symbols \@" and \n" are optional.

2. Data conversions for parameters passed by value are performed automatically.

11-18 Interprogram Communication

CALL

Execution-Time Loading

When you use the identi�er-1 form of the CALL statement, the value of identi�er-1
determines which subprogram is called. When the program is executed, an attempt is made to
load the subprogram. If the load fails, an exception condition occurs. For more information,
see \System Dependencies" in Appendix H.

If the ON EXCEPTION or ON OVERFLOW phrase is speci�ed, control is passed to the
imperative statement of that phrase.

If no ON EXCEPTION or ON OVERFLOW phrase is speci�ed and the CALL statement
causes an exception condition, the entire run unit is aborted.

The identi�er-1 form of CALL may be useful for calling a procedure used optionally and
infrequently by your program or for a procedure whose name is not known at load time.

Caution Indiscriminate use of ON EXCEPTION or ON OVERFLOW may adversely
a�ect the performance level of an active system or a system where multiple
users are running the same program utilizing this capability. Do not use these
phrases when using a literal to name the program to be called because the call
is treated the same as a CALL identi�er.

Interprogram Communication 11-19

CALL

Pseudo-Intrinsics

The following pseudo-intrinsics are an HP extension to the ANSI COBOL standard.

Caution Pseudo-intrinsics are highly machine-dependent and should not be used in
programs that may be run on di�erent machines and architectures now or in
the future.

.LOC. Pseudo-Intrinsic

The .LOC. pseudo-intrinsic allows you to call several useful operating system intrinsics, such
as GENMESSAGE, CREATEPROCESS, MYCOMMAND, and other intrinsics that require
identi�ers to contain addresses. Input to this intrinsic is the name of an identi�er for which an
address is desired. The address of this identi�er is returned in the GIVING identi�er. Refer to
\System Dependencies" in Appendix H for the correct size of the GIVING identi�er.

.LEN. Pseudo-Intrinsic

The .LEN. pseudo-intrinsic can be used to calculate the length of items, groups or tables.
.LEN. returns the length in bytes of its parameter, or the current length of a table whose
length has an OCCURS DEPENDING ON clause.

Example. One important use of .LEN. is to calculate the length of records passed to intrinsics
like VPLUS. For example:

01 V-REC.

05 FIELD-1 PIC XX.

05 FIELD-2 PIC X(10)....
77 V-REC-LEN PIC S9(4) COMP....

CALL INTRINSIC ".LEN." USING V-REC GIVING V-REC-LEN.

CALL INTRINSIC "VPUTBUFFER" USING COMAREA V-REC

V-REC-LEN.

The above code sequence has the advantage that the length of the record V-REC is not
hard coded, and additional �elds can be added to V-REC without having to change
the PROCEDURE DIVISION or a variable that contains the length. Also, with the
HP COBOL II compiler doing the calculation, there are no mistakes in adding up the
individual �eld lengths.

To conform to the 1985 ANSI COBOL standard, you can use the LENGTH COBOL function
instead of .LEN. (see Chapter 10 for details).

11-20 Interprogram Communication

CALL

USING Phrase (COBOL Subprograms)

The USING phrase speci�ed in a CALL statement to another program makes data and �les of
the calling program available to the called program.

If a CALL statement containing the USING phrase calls a COBOL program, then the called
COBOL program must contain a USING phrase in its PROCEDURE DIVISION header (or
in the ENTRY statement, if a secondary entry point name is used by the CALL statement).
The USING phrase of the called program must contain as many operands as does the USING
phrase of the calling program. The USING option makes data items (or FD �le names)
de�ned in the calling program available to a called subprogram. However, �le names cannot
be passed to a COBOL subprogram unless BY CONTENT is speci�ed. Note that the limit of
data items in the USING phrase also applies to the number of 01/77 level entries, excluding
rede�nitions, de�ned in the LINKAGE SECTION of the called subprograms. Refer to
\System Dependencies" in Appendix H for speci�cs on limitations.

The order of appearance of names of data items in the USING phrase is very important
(refer to \Reference to Common Data through Parameter Passing" at the beginning of this
chapter). To restate briey, data is passed from the calling program to the called program
on a positional basis, rather than by name. Therefore, the third name in a USING phrase of
a calling program corresponds to the third name in the USING phrase of the called COBOL
program.
NN
Both the BY CONTENT and BY REFERENCE phrases cause the parameters thatNN
follow them to be passed by content or reference until another BY CONTENTNN
or BY REFERENCE phrase is encountered. If neither the BY CONTENT nor theNN
BY REFERENCE phrase is specified prior to the first parameter, BY REFERENCENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
is assumed.

Note ANSI COBOL'74 parameters are always passed by reference.

Interprogram Communication 11-21

CALL

Index names in the calling and called programs always refer to di�erent indices. To pass an
index value from a calling program to a called program, you must �rst move the index value
associated with an index name to a data item that appears in the USING phrase of the calling
program. The corresponding data item in the called program can then be used to set an
equivalent index name to this value.

BY REFERENCE Phrase

The
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
BY REFERENCE phrase is a feature of the 1985 ANSI COBOL standard.

If the BY REFERENCE phrase is either speci�ed or implied for a parameter, the object
program operates as if the corresponding data item in the called program occupies the same
storage area as the data item in the calling program. The description of the data item in the
called program must describe the same number of character positions as the corresponding
data item in the calling program.

BY CONTENT Phrase

The
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
BY CONTENT phrase is a feature of the 1985 ANSI COBOL standard.

If the BY CONTENT phrase is speci�ed or implied for a parameter, the called program
cannot change the value of this parameter as referenced in the CALL statement's USING
phrase. However, the called program may change the value of the data item referenced by
the corresponding data name in the called program's division header. That is, if the called
program changes the value, the calling program never sees the change.

CALL "SUBP" USING BY CONTENT PARM1 PARM2

BY REFERENCE PARM3

BY CONTENT PARM4

Note Do not use the BY CONTENT phrase when calling non-COBOL subprograms
that contain value parameters. BY CONTENT is not the same as BY
VALUE.

11-22 Interprogram Communication

CALL

USING Phrase (Non-COBOL Subprograms)

This positional correspondence extends to non-COBOL called programs. Thus, for example, if
the called program is a Pascal program, then the names in the parameter list of the procedure
declaration in that program are identi�ed with those data items whose names appear in the
corresponding position of the USING phrase in the calling program.

As stated above in the description of identi�er-2 , identi�er-3 , and so forth, these identi�ers
may name �les to be passed to a called program. Furthermore, although you can enclose such
a �le identi�er between back slashes (which are ignored), preceding it with an @ sign results in
an error.

If the �le name from the FD is passed, the �le number of that �le is passed by value. If
the subprogram is an SPL procedure, the procedure parameter corresponding to the �le
name must be declared as type INTEGER or LOGICAL and it must be speci�ed as a value
parameter. The �le must be opened in the calling program.

To pass a data item by value, you must enclose the associated identi�er in back slashes. If the
value passed is a literal, the back slashes are optional. Passing a data item by value leaves the
data item in the calling program unchanged following execution of the called program.

If an identi�er is not passed by value (that is, is not enclosed in back slashes), it is passed as a
byte pointer (that is, by reference). Thus, the data in the calling program can be altered by
the called program if it is passed in this manner. In calls to COBOL programs, this is the
standard method of referencing common data.

Two consecutive back slashes (nn) may be speci�ed in a USING phrase of a CALL
statement if the called program is a Pascal procedure with OPTION DEFAULT PARMS or
EXTENSIBLE. Using two consecutive back slashes indicates that a parameter is not being
sent and should not be expected. Whenever an OPTION VARIABLE SPL procedure is
called, an additional parameter must be added to the end of the USING parameter list. This
parameter is called a \bit mask" and is used to tell the SPL procedure which parameters are
being passed; each bit represents a parameter. It must be a numeric data item and represents
the value derived from the bit mask. The bit mask is one or two 16-bit binary words, where
a \0" represents a missing parameter, and a \1" represents an existing parameter (allows up
to 32 parameters to be passed). Parameters are matched, starting from the right, in both the
bit mask and the USING list, excluding the value in the USING list used for the bit mask
parameter. For example,

CALL "SPLPROC" USING \TESTER\ \\ @RESULT \ERROR\ \%13\

The bit mask in this case is 0000000000001011, which is represented by the octal value n%13n,
showing that the fourth, third, and �rst parameters are being passed, while the second
parameter is not being passed.

The bit mask is generated automatically by the compiler if you specify the INTRINSIC
option.

Interprogram Communication 11-23

CALL

GIVING Phrase When Calling COBOL Subprograms

As an HP extension to the ANSI COBOL standard, you can return a value from a COBOL
subprogram using the RETURN-CODE special register in the subprogram and the GIVING
phrase in the calling program.

The data item in the GIVING phrase must be de�ned as PIC S9(9) BINARY. If it is not,
a type checking error may occur at link time. The value returned is the value placed into
the RETURN-CODE special register by the called program. If a value is not placed into
RETURN-CODE by the called program, or if RETURN-CODE is a user-de�ned data item in
the called program, the GIVING item will contain uninitialized data.

RETURN-CODE Special Register

RETURN-CODE is a prede�ned data name in the PROCEDURE DIVISION of a
subprogram. It can be used wherever an elementary data item can be used and is prede�ned
as PIC S9(9) BINARY.

The RETURN-CODE special register must be set before executing an EXIT PROGRAM or
GOBACK statement in the called program. The value in RETURN-CODE is made available
to the calling program in the GIVING phrase of the CALL statement.

If the program already contains a data item named RETURN-CODE, it takes precedence over
the special register and you cannot access the special register. To access the special register,
you must change your data item to something else.

11-24 Interprogram Communication

CALL

Example

The following example shows a main program and a subprogram with a secondary entry point.
The main program calls the subprogram twice and displays the value returned in the GIVING
phrase. Notice that the special register RETURN-CODE is not de�ned anywhere in the
DATA DIVISION of the subprogram.

IDENTIFICATION DIVISION.

PROGRAM-ID. RETURN-CODE-TEST.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 BUF PIC S9(9) BINARY VALUE 99.

01 RESULT PIC S9(9) BINARY VALUE -99.

PROCEDURE DIVISION.

START-IT.

CALL "SUB-MAIN-ENTRY" USING BUF GIVING RESULT.

DISPLAY RESULT.

CALL "SECOND-ENTRY" GIVING RESULT.

DISPLAY RESULT.

END PROGRAM RETURN-CODE-TEST.

$CONTROL DYNAMIC

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB-MAIN-ENTRY.

DATA DIVISION.

LINKAGE SECTION.

01 BUF PIC S9(9) BINARY VALUE 99.

PROCEDURE DIVISION USING BUF.

PARA-01.

ADD 1 TO BUF GIVING RETURN-CODE.

EXIT PROGRAM.

PARA-02.
ENTRY "SECOND-ENTRY".

MOVE -5000 TO RETURN-CODE.

When this program runs it displays the following:

+000000100

-000005000

Interprogram Communication 11-25

CALL

GIVING Phrase When Calling Non-COBOL Subprograms

The GIVING phrase also allows you to call non-COBOL typed procedures.

A typed procedure (for example, a Pascal function declaration) must always return a value
when it completes execution. In HP COBOL II, this is assumed to be a 2-, 4-, or 8-byte
binary value of up to eighteen digits.

The purpose of the GIVING phrase is to provide for this returned value. Since identi�er-4
is used to hold the value returned by a typed procedure, its length must be su�cient to
accommodate the value returned.

Use of the keyword INTRINSIC allows the compiler to check the procedure information within
the system �le and adjust the generated code to correctly prepare and clean up the stack prior
to and following the execution of the CALL statement.

11-26 Interprogram Communication

CANCEL

CANCEL Statement

The CANCEL statement restores a program to its initial state and closes all �les currently in
open mode.

Syntax

Parameters

identi�er-1 de�ned as an alphanumeric data item whose contents name a
subprogram compiled by the HP COBOL II compiler.

literal-1 nonnumeric literal that names a COBOL subprogram compiled
by the HP COBOL II compiler.

Description

When a CANCEL statement is issued for a COBOL program, the program speci�ed in the
statement must have already executed a GOBACK or EXIT PROGRAM statement.

For both dynamic and non-dynamic subprograms in HP COBOL II, the CANCEL statement
has no e�ect. This occurs because automatic release of the memory areas accompanies
the exiting of the dynamic subprogram. For non-dynamic subprograms, the data area is
permanently assigned and the code segments are automatically released.

For ANSISUB subprograms, a CALL statement that is executed after a CANCEL statement
naming the same program causes that program to be brought into memory in its initial state.
Refer to Appendix B for details of the ANSISUB parameter.

If a CANCEL statement speci�es a program that has not been called, or has been called
but is presently canceled, the CANCEL statement is ignored and control passes to the next
executable statement.

The CANCEL statement causes an implicit CLOSE statement to be executed for every open
�le associated with the program being canceled. No USE procedures are executed.

Interprogram Communication 11-27

ENTRY

ENTRY Statement

The ENTRY statement is an HP extension to the ANSI COBOL standard.

The ENTRY statement establishes a secondary entry point in an HP COBOL II subprogram.
In nested programs, this statement must begin in Area A. However, like all other COBOL
statements in the PROCEDURE DIVISION, the ENTRY statement must be in a paragraph.

Syntax

ENTRY literal-1 [USING fdata-name-1g . . .]

Parameters

literal-1 nonnumeric literal. It must be formed according to the rules for
program names, but must not be the name of the called program in
which it appears. Furthermore, it must not be the name of any other
entry point or program name in the run unit.

data-name-1 as described and used in the USING phrase of the PROCEDURE
DIVISION header. Refer to Chapter 8 for details.

Description

The link between the calling program and a secondary entry point of a called program is
supplied by literal-1 . That is, literal-1 must be used in a CALL statement of the calling
program and must appear in an ENTRY statement in the called program.

When the called program is invoked using such CALL and ENTRY statements, the called
program is entered at the ENTRY statement that speci�es literal-1 .

When using secondary entry points the PROCEDURE DIVISION statements for each such
entry point may only reference passed parameters that are declared in the USING clause for
the respective entry point. Attempts to reference passed parameters declared in other entry
point USING clauses will produce a run-time bounds violation.

The USING option has the same format and meaning as in the USING phrase of the
PROCEDURE DIVISION header. Refer to Chapter 8 for details.

The entry name must be unique with respect to all program units (HP COBOL II main
program or subroutines) compiled in a particular instance unless contained in di�erent
programs. Refer to \System Dependencies" in Appendix H for information on the resulting
external name.

11-28 Interprogram Communication

ENTRY

Example

The following example shows a main program and a subprogram. The subprogram has a
secondary entry point named by the ENTRY statement.

The CALL statement in MAINPROG speci�es that SUBPRO1 is to be executed, starting at the
ENTRY statement rather than at the �rst line following the PROCEDURE DIVISION
header. Also, the data areas of INV-FILE and SALES-FILE are to be used in both programs.

Following is the main program:

IDENTIFICATION DIVISION.

PROGRAM ID. MAINPROG....
DATA DIVISION.
FILE SECTION.

FD INV-FILE.

01 INV-REC.

02 PT-NUM PIC X(10).

02 PT-NAME PIC X(30).

02 BEGIN-QTY PIC 9(6).

02 PRICE-WHSL PIC 9(3)V99.

02 PRICE-RETAIL PIC 9(4)V99.

FD SALES-FILE.

01 SALES-REC.

02 SOLD-PT-NO PIC X(10).

02 SOLD-PART PIC X(30).

02 SOLD-QTY PIC 9(6)....
PROCEDURE DIVISION.

MAIN-PARA-001....
IF SOLD-QTY IS NOT EQUAL TO ZERO

CALL "SUBPRO1-ENTRY" USING INV-REC, SALES-REC....
STOP RUN.

Interprogram Communication 11-29

ENTRY

Following is the subprogram:

IDENTIFICATION DIVISION.

PROGRAM-ID. SUBPRO1....
DATA DIVISION.

FILE SECTION.

FD PRINT-FILE.

01 P-REC PIC X(132)....
WORKING-STORAGE SECTION.

01 HEADER....
01 WRITE-SALES.

02 FILLER PIC X(15) VALUE SPACES.

02 NAME PIC X(30) VALUE SPACES.

02 FILLER PIC X(5) VALUE SPACES.

02 NUM-1 PIC X(10) VALUE SPACES.

02 FILLER PIC X(5) VALUE SPACES.

02 QUANTITY PIC Z(3)9(3) VALUE ZERO.

02 FILLER PIC X(5) VALUE SPACES.

02 GROSS-SALES PIC $Z(10).99 VALUE ZEROS.

02 FILLER PIC X(5) VALUE SPACES.

02 GROSS-PROFIT PIC $9(10).99....
LINKAGE SECTION.

01 ORIGINAL.

02 PT-NUM PIC X(10).

02 PT-NAME PIC X(30).

02 START-QTY PIC 9(6).

02 OUR-PRICE PIC 9(3)V99.

02 THEIR-PRICE PIC 9(4)V99.
01 SALES.

02 SOLD-NUM PIC X(10).

02 SOLD-NAME PIC X(30).

02 QTY-SOLD PIC 9(6).

PROCEDURE DIVISION.

SUB-PARA-001....
CALC-PARA-100.

ENTRY "SUBPRO1-ENTRY" USING ORIGINAL, SALES.

MULTIPLY QTY-SOLD BY THEIR-PRICE GIVING GROSS-SALES.

SUBTRACT START-QTY FROM QTY-SOLD GIVING QUANTITY.

COMPUTE GROSS-PROFIT =

(THEIR-PRICE - OUR-PRICE) * QTY-SOLD.

MOVE PT-NUM TO NUM-1.

MOVE PT-NAME TO NAME.

WRITE P-REC FROM HEADER AFTER ADVANCING 1 LINES.

WRITE P-REC FROM WRITE-SALES AFTER ADVANCING 3 LINES.

GOBACK....

11-30 Interprogram Communication

EXIT PROGRAM

EXIT PROGRAM Statement

The EXIT PROGRAM statement marks the logical end of a program.

Syntax

EXIT PROGRAM

Description

If you use an EXIT PROGRAM statement in a program (called or otherwise), it must
appear as the only statement in a sentence, and the sentence must be the only sentence in a
paragraph. Also, EXIT PROGRAM must not appear in a declarative procedure that has aNNNNNNNNNNNNNNNNNNNN
GLOBAL phrase.

When encountered in a called program, the EXIT PROGRAM statement causes control to
return to the statement of the calling program immediately following the CALL statement
used to pass control to the called program.

If the EXIT PROGRAM statement is used in a main program, it is treated as an EXIT
statement. Thus, in a main program, it serves only as a way of terminating a procedure.

Interprogram Communication 11-31

GOBACK

GOBACK Statement

The GOBACK statement is an HP extension to the ANSI COBOL standard.

The GOBACK statement marks the logical end of a program.

Syntax

GOBACK

Description

The GOBACK statement must be the only statement in a sentence. If used in a series of
imperative statements, it must be the last statement in the series.

If a GOBACK statement is encountered in a called program, control returns to the statement
in the calling program immediately following the CALL statement that initiated the called
program. Thus, in a subprogram, the GOBACK statement acts in the same way as an EXIT
PROGRAM statement.

If a GOBACK statement is used in a main program, it is equivalent to a STOP RUN
statement. Thus, it indicates the logical end of the run unit, and control is passed to the
operating system.

Table 11-2 shows the relationship between the EXIT PROGRAM, STOP RUN, and
GOBACK statements.

Table 11-2.

Relationship Between EXIT PROGRAM, STOP RUN and GOBACK Statements

Termination Statements In a Main Program: In a Subprogram:

EXIT PROGRAM Non-operational. Treated as
EXIT.

Returns to calling program.

STOP RUN Logical end of run. Returns
control to operating system.

Logical end of run for both
the subprogram and the
calling program. Returns
control to operating system.

GOBACK Logical end of run. Returns
control to operating system.

Returns to calling program.

11-32 Interprogram Communication

12

SORT/MERGE Operations

The sort/merge capabilities of HP COBOL II allow you to sort one or more �les of records, or
to combine two or more identically ordered �les of records one or more times within a given
execution of a COBOL program.

Additionally, you have the ability to specially process individual records by input or output
procedures that are part of the sort or merge operation. For a sort operation, this special
processing may be applied before, as well as after the records have been sorted. For a
merge operation, this processing may be applied after the records have been combined. The
RELEASE and RETURN statements are used in these input procedures to release or return
records that are to be, or have been sorted or merged.

SORT/MERGE Operations 12-1

MERGE

MERGE Statement

The MERGE statement combines two or more identically sequenced �les on a set of speci�ed
keys. As part of the merge operation, it makes records available in their merged order to an
output procedure or an output �le.

The records are made available following the actual merging of the �les. The output
procedure or the moving of records to an output �le is considered part of the merge process.

MERGE statements may appear anywhere within the PROCEDURE DIVISION except in the
declaratives portion or in an input or output procedure associated with a SORT or MERGE
statement.

Syntax

12-2 SORT/MERGE Operations

MERGE

Parameters

�le-name-1 sort/merge �le, and is described in a sort/merge �le description (SD level)
entry in the DATA DIVISION.

data-name-1 data items described in records associated with �le-name-1 . Each
may be quali�ed and may vary in length. None of these data names
can be described by an entry either containing an OCCURS clause, or
subordinate to an entry containing such a clause. If �le-name-1 has more
than one record description, then the data items represented by the data
names need be described in only one of the record descriptions.

alphabet-name either EBCDIC, STANDARD-1, NATIVE, or an alphabet name as de�ned
by you in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION.

language-name alphanumeric data item containing the name of the language whose
collating sequence should be used. This parameter is an HP extension to
the ANSI COBOL standard.

language-id integer data item containing the identi�cation number of the language to
use. This parameter is an HP extension to the ANSI COBOL standard.

�le-name-2
�le-name-3

�les to be merged. These �les must not be open at the time the MERGE
statement is executed. Each must be a �le described in an FD level �le
description in the DATA DIVISION. No more than one such �le name can
name a �le from a multiple �le reel. Any given �le name can be used only
once in any given MERGE statement.

The actual size of the logical record or records described for these �les
must be equal to the actual size of the logical record or records described
for �le-name-1 . If the data descriptions of the elementary items that
make up these records are not identical, it is your responsibility to
describe the corresponding records in such a way as to cause an equal
number of character positions to be allocated for the corresponding
records.

procedure-name-1 name of the �rst
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
paragraph or section in an output procedure.

procedure-name-2 name of the last
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
paragraph or section in an output procedure.

�le-name-4 names of output �les. These �les are subject to the same restrictions as
�le-name-2 .

SORT/MERGE Operations 12-3

MERGE

Description

The words THROUGH and THRU are equivalent, and can be used interchangeably.

The MERGE statement merges all records contained in the �les named in the USING phrase.
The �les to be merged are automatically opened and closed by the merge operation with all
implicit functions performed, such as the execution of any associated USE procedures. The
�les described by �le-name-2 and �le-name-3 must not be open when the MERGE verb is
executed, and may not be opened or closed during an output procedure if one is speci�ed.

Following the actual merging of the �les, but before they have been closed, the merged records
are released in the order in which they were merged. They are released to either the speci�ed
output procedure or the speci�ed output �le.

The results of a merge operation are predictable only when the records in the �les to be
merged are ordered as described in the ASCENDING or DESCENDING KEY phrase
associated with the MERGE statement.

The data names following the word KEY are listed from left to right in order of decreasing
signi�cance. This decreasing signi�cance is maintained from KEY phrase to KEY phrase.
Thus, in the format shown, data-name-1 is the most signi�cant, and each successive data
name is the next most signi�cant.

When the MERGE statement is executed, the records of �le-name-2 and �le-name-3 are
merged in the speci�ed order (ASCENDING or DESCENDING) using the most signi�cant
key data item. Within the records having the same value for the most signi�cant key data
item, the records are merged according to the next most signi�cant key data item; this kind of
merging continues until all key data items named in the MERGE statement have been used.

When the ASCENDING phrase is used, the merged records are in a sequence starting from
the lowest value of the key data items and ending with the highest value.

When the DESCENDING phrase is used, the merged records are in a sequence from the
highest value of the key data item to the lowest.

Merging takes place using the rules for comparison of operands of a relation condition. If all
corresponding key data items of records to be merged are equal, the records are written to
�le-name-4 , or returned to the output procedure, in the order that the input �les are speci�ed
in the MERGE statement.

COLLATING SEQUENCE Phrase

The COLLATING SEQUENCE phrase allows you to specify what collating sequence to use
in the merging operation. This phrase is optional. The program collating sequence is used if
none is speci�ed in the MERGE statement.

See the alphabet clause of the SPECIAL-NAMES paragraph for information on de�ning and
using collating sequences.

Refer to the Native Language Support Reference Manual for details about language names and
language id's.

12-4 SORT/MERGE Operations

MERGE

GIVING and OUTPUT PROCEDURE Phrases

You must specify either the GIVING or OUTPUT PROCEDURE phrase in a MERGE
statement.

If you specify the GIVING phrase, all merged records are automatically written to one or
more occurrences of �le-name-4 . Files named in the GIVING phrase can be sequential,NN
relative, or indexed .

If you use the OUTPUT PROCEDURE phrase, there are several rules you must follow in
writing the procedure.

The procedure must consist of one or more
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
paragraphs or sections that appear contiguously

in the source program, and that are not part of any other procedure.

Since the RETURN statement is the means of making sorted or merged records available for
processing, at least one such statement must appear in the procedure. The procedure may
consist of any procedures needed to select, modify, or copy records. The records are returned
one at a time in merged order from �le-name-1 .

Control must not be passed to a sort/merge output procedure except during the execution
of a SORT or MERGE statement. The procedure itself can contain no SORT or MERGE
statements, nor can it contain any explicit transfers of control to points outside its bounds;
ALTER, GO TO, and PERFORM statements in the output procedure must refer to
procedure names within the bounds of the output procedure. Note that implied transfers of
control to declarative procedures are permitted. Thus, for example, a WRITE statement
without an AT END phrase is permitted, and will transfer control to some associated
declarative procedure if an AT END condition occurs.

The remainder of the PROCEDURE DIVISION must not contain any transfers of control to
points inside sort/merge output procedures. No ALTER, GO TO, or PERFORM statements
outside an output procedure can refer to procedure names within the output procedure.

When an output procedure is speci�ed in a MERGE statement, the output procedure is
executed as part of the merge operation. The procedure is used after the records have been
merged.

At compile-time, the compiler inserts a return mechanism at the end of the last section in the
output procedure. When this return mechanism is reached, the merge operation is terminated,
and control passes to the next executable statement following the MERGE statement.

SORT/MERGE Operations 12-5

MERGE

Segmentation Considerations

The following restrictions apply to the MERGE statement when it is used in a segmented
program.

If the MERGE statement appears in a section whose segment number is less than 50, any
output procedure named in the MERGE statement must either be totally contained within
a segment (or segments) whose segment number (or numbers) is less than 50 or be wholly
contained in a single segment whose segment number is greater than 49.

If the MERGE statement appears in a section whose segment number is greater than 49, any
output procedure referenced by the MERGE statement must either be entirely contained
within the same segment or be entirely contained within segments whose segment numbers are
less than 50.

12-6 SORT/MERGE Operations

RELEASE

RELEASE Statement

The RELEASE statement can be used in an input procedure of a SORT statement to transfer
records from your program to the initial phase of the sort operation.

Syntax

RELEASE record-name-1 [FROM identi�er-1]

Parameters

record-name-1 the name of a logical record in the sort/merge �le description entry of the
�le referenced in the associated SORT statement. It may be quali�ed.
Record-name-1 must not refer to the same storage area as identi�er-1 .

identi�er-1 the name of a data item described in your program, or a function-
identi�er. If it is a function, it must be an alphanumeric function. If it is
not a function, identi�er-1 and record-name-1 must not refer to the same
storage area.

Description

A RELEASE statement may only be used within the range of an input procedure associated
with a SORT statement for a �le whose sort- merge �le description entry contains
record-name-1 .

When the RELEASE statement is executed, a single record is made available, from
record-name-1 , to the initial phase of the sort operation. After the execution of the
RELEASE statement, the logical record is no longer available in the record area named by
record-name-1 unless the associated sort/merge �le is named in a SAME RECORD AREA
clause. If the sort/merge �le is named in the clause, the logical record is available to the
program as a record of the other �les named in the SAME AREA clause, as well as to the
sort/merge �le.

If the FROM phrase is used in a RELEASE statement, the contents of identi�er-1 are moved
to record-name-1 , then the contents of record-name-1 are released to the sort �le.

Although the logical record named by record-name-1 might no longer be available, the data in
identi�er-1 remains available following execution of the RELEASE statement (as stated in the
preceding paragraph).

When control passes from the input procedure, the sort �le consists of all those records placed
in it by the execution of RELEASE statements.

SORT/MERGE Operations 12-7

RETURN

RETURN Statement

The RETURN statement can be used in an output procedure of a SORT or MERGE
statement. It cannot be used in any other type of procedure.

When used, the RETURN statement obtains either sorted records from the �nal phase of
a sort operation, or merged records during a merge operation. Each record is obtained by
a RETURN statement in the order speci�ed by the keys listed in the SORT or MERGE
statement. These records are made available for processing in the record area associated with
the sort or merge �le, and, optionally, to another data area.

Syntax

Parameters

�le-name-1 the name of the �le used as the sort or merge �le in the
SORT or MERGE statement associated with the output
procedure in which the RETURN statement appears. It
must be described in a sort/merge �le description entry
(SD level) in the DATA DIVISION.

identi�er-1 the name of a data item in your program. The storage area
referenced by identi�er-1 must not be the same as the
record area associated with �le-name-1 .

imperative-statement-1 and
imperative-statement-2

one or more imperative statements.

Description

When logical records of a sort/merge �le are described with more than one record description,
these records automatically share the same storage area. This is equivalent to an implicit
rede�nition of the area. The contents of any data items that lie beyond the range of the
current data record are unde�ned at the completion of the execution of the RETURN
statement.

12-8 SORT/MERGE Operations

RETURN

INTO Phrase

The INTO phrase, if speci�ed in the RETURN statement, moves the current record into the
record area associated with �le-name-1 , and then uses an implicit MOVE statement (without
the CORRESPONDING phrase) to move a copy of the data from the record area to the
storage area referenced by identi�er-1 . Thus, the data obtained from the SORT or MERGE
statement is available in the data area associated with identi�er-1 as well as to the input
record area.

Any subscripting or indexing associated with identi�er-1 is evaluated after the record has
been returned to the �le, and immediately before it is moved to the storage area referenced by
identi�er-1 .

The INTO phrase must not be used when the input �le contains logical records of various
sizes as indicated by their record descriptions.

AT END Phrase

If no next logical record exits for the �le at the time a RETURN statement executes, an AT
END condition occurs. The contents of the record areas associated with the �le when the AT
END condition occurs are unde�ned; however, if the INTO phrase was used, the contents of
identi�er-1 are the data moved into it by the preceding execution of the RETURN statement.

When the AT END condition occurs, the imperative-statement-1 in the AT END phrase is
executed. Following execution of imperative-statement-1 , no RETURN statement may be
executed as a part of the current output procedure. For more information on handling I/O
errors, see \Input-Output Error Handling Procedures" in Chapter 8.

SORT/MERGE Operations 12-9

SORT

SORT Statement

The SORT statement creates a sort �le either by executing an input procedure, or by
transferring records from another �le. The records of the sort �le are then sorted using a
speci�ed set of keys, and are made available in sorted order to either an output procedure or
an output �le.

Syntax

Parameters

�le-name-1 a sort/merge �le, and is described in a sort/merge �le
description entry in the DATA DIVISION.

data-name-1 data items described in records associated with �le-name-1 .
Each may be quali�ed and may vary in length. None of these
data names can be described by an entry that either contains
an OCCURS clause, or is subordinate to an entry containing
such a clause. If �le-name-1 has more than one record
description, then the data items represented by these named
need be described in only one of the record descriptions.

alphabet-name a name de�ned by you in the SPECIAL-NAMES paragraph of
the ENVIRONMENT DIVISION.

language-name an alphanumeric data item containing the name of the
language whose collating sequence should be used. This
parameter is an HP extension to the ANSI COBOL standard.

12-10 SORT/MERGE Operations

SORT

language-id an integer data item containing the identi�cation number of
the language to use. This parameter is an HP extension to the
ANSI COBOL standard.

�le-name-2 the �les whose records are to be sorted. These �les must not
be open at the time the SORT statement is executed. Each
must be a sequential,

NNNNNNNNNNNNNNNNNNNNNNNNNN
relative , or

NNNNNNNNNNNNNNNNNNNNNNN
indexed �le described in

an FD level �le description entry in the DATA DIVISION.
No more than one of these �le names may name a �le on a
multiple �le reel. Any given �le name can be used only once in
a given SORT statement.

The actual size of the logical record or records described by
these �les must be equal to the actual size of the logical record
or records described by �le-name-1 . If the data descriptions
of the elementary items that make up these records are not
identical, it is your responsibility to describe the corresponding
records in such a way as to cause an equal number of character
positions to be allocated for the corresponding records.

procedure-name-1 the name of the �rst
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
paragraph or section in an input

procedure.

procedure-name-2 the name of the last
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
paragraph or section in an input

procedure.

procedure-name-3 the name of the �rst
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
paragraph or section in an output

procedure.

procedure-name-4 the name of the last
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
paragraph or section in an output

procedure.

�le-name-3 the names of output �les. These are subject to the same
restrictions and rules as �le-name-2 above.

Description

The words THROUGH and THRU are equivalent, and can be used interchangeably.

The PROCEDURE DIVISION may contain more than one SORT statement appearing
anywhere except in a declarative procedure, or in the input and output procedures associated
with a SORT or MERGE statement. Files �le-name-2 and �le-name-3 must not be open
when the SORT verb is executed or be opened or closed during the execution of an input or
output procedure if such procedures are speci�ed.

The data names following the word KEY are listed from left to right in order of decreasing
signi�cance. This decreasing signi�cance is maintained from KEY phrase to KEY phrase.

When the SORT statement is executed, the records are �rst sorted in the speci�ed order
(ASCENDING or DESCENDING) using the most signi�cant key data item. Next, within
the groups of records having the same value for the most signi�cant key data item, the
records are sorted using the next most signi�cant key data item, again, in ASCENDING or
DESCENDING order as speci�ed for that key. Sorting continues in this fashion until all key
data items have been used.

SORT/MERGE Operations 12-11

SORT

Note Specifying the same �le for the USING and GIVING �le name is not
recommended. The �le contents may be contaminated if the SORT operation
is abnormally terminated, for any reason. If the same �le is to be used,
you should ensure that a backup copy exists in case a �le recovery becomes
necessary.

For example, assume that the records to be sorted use the �rst three key data items, and that
the unsorted records appear as shown below.

1 D U

0 A N

1 N S

1 F O

1 D R

0 X T

0 A E

0 B D

1 N R

0 X E

1 F C

1 C S

If the SORT statement uses the �rst character position as the most signi�cant, and the third
as the least signi�cant, and the records are to be sorted in ascending order for the �rst two
keys, and in descending order for the last key, then the results of each pass of the sort, as well
as the SORT statement, are shown in the following.

Examples

SORT TESTFILE ON ASCENDING KEY FIRSTCHAR, SECONDCHAR

ON DESCENDING KEY THIRDCHAR

USING INFILE

GIVING OUTFILE.

Where TESTFILE is, in part, described as:

SD TESTFILE.

01 TEST-REC.

03 FIRSTCHAR PIC 9.

03 SECONDCHAR PIC X.

04 THIRDCHAR PIC X....

12-12 SORT/MERGE Operations

SORT

and INFILE is described in part as:

FD INFILE.

01 IN-REC.
03 FIRST PIC 9.

03 SECOND PIC XX....

Note that the third pass of the sort left the records unchanged from their order in the result
of the second pass. The records are arranged in their proper sequences by chance. The SORT
statement would not actually go through this third pass, as it recognizes the records as
already being sorted. This saves execution time.

SORT/MERGE Operations 12-13

SORT

DUPLICATES Phrase

If the DUPLICATES phrase is speci�ed and the contents of all the key data items associated
with one data record are equal to the contents of the corresponding key data items associated
with one or more other data records, then the order of return of these records is:

1. The order of the associated input �les as speci�ed in the SORT statement. Within a given
input �le the order is that in which the records are accessed from that �le.

2. The order in which these records are released by an input procedure, when an input
procedure is speci�ed.

If the DUPLICATES phrase is not speci�ed and the contents of all the key data items
associated with one data record are equal to the contents of the corresponding key data items
associated with one or more other data records, then the order of return of these records is
unde�ned.

ASCENDING and DESCENDING Phrases

When the ASCENDING phrase is used, the sorted records are in a sequence starting from the
lowest value of the key data items, and continuing to the highest value.

When the DESCENDING phrase is used, the sorted records are in a sequence from the
highest value of the key data items to the lowest value.

Sorting takes place according to the rules for comparison of operands of a relation condition.

COLLATING SEQUENCE Phrase

The COLLATING SEQUENCE phrase allows you to specify what collating sequence to
use in the sorting operation. This phrase is optional. The program collating sequence
is used if none is speci�ed in the SORT statement. If you do not specify an alphabet
name in the PROGRAM COLLATING SEQUENCE clause of the ENVIRONMENT
DIVISION, the default is the ASCII collating sequence. See the alphabet name clause of the
SPECIAL-NAMES paragraph in Chapter 6 for information on de�ning and using collating
sequences.

USING and INPUT PROCEDURE Phrases

You must specify either the USING or the INPUT PROCEDURE phrase in a SORT
statement.

If you specify the USING phrase, all records from �le-name-2 are automatically transferred to
�le-name-1 . The �les named by �le-name-2 must not be open when the SORT statement is
executed. The �le named in the USING phrase can be either relative or indexed.

The SORT process automatically opens these �les, transfers their records, and then closes
them. If USE procedures are speci�ed for the �les, they are executed at the appropriate times
during these implicit operations. The �les are closed as though a CLOSE statement, without
any optional phrases, had been issued for them.

The records are then sorted in the �le named by �le-name-1 , and are released to �le-name-3
or the speci�ed output procedure during the �nal phase of the sort operation.

If you do not specify a USING phrase, then you must specify an INPUT PROCEDURE
phrase.

12-14 SORT/MERGE Operations

SORT

If you do so, then section-name-1 through section-name-2 must de�ne an input procedure.

Control is passed to this procedure before �le-name-1 is sorted. The compiler inserts a
return mechanism at the end of the last statement in the statement in the section named by
section-name-2 , and when control passes to the last statement in the input procedure, the
records that have been released to �le-name-1 are sorted.

The input procedure can consist of any procedure needed to select, modify, or copy the
records that are made available contiguously by the RELEASE statement to the �le referenced
by �le-name-1 . This includes all statements executed by CALL, EXIT, GO TO, and
PERFORM statements within the range of the input procedure. This also includes declarative
procedure statements that are executed as a result of the execution statements within the
range of the input procedure. The input procedure must not cause the execution of any
MERGE, RETURN, or SORT statement.

GIVING and OUTPUT PROCEDURE Phrases

You must specify either the GIVING or the OUTPUT PROCEDURE phrase in a SORT
statement.

If you specify the GIVING phrase, then, as a last step in the sort process, the sorted records
in �le-name-1 are automatically written to each of the �les referenced by �le-name-3 . The �le
can be relative or indexed.

File-name-2 and File-name-3 must not be open when the sort process is executed.

The sort process automatically opens, writes records to, and closes �le-name-3 . If there are
any USE procedures speci�ed (whether implicitly or explicitly) for �le-name-3 , they are
executed if and when appropriate, as part of the implicit function of the SORT statement.
When all records have been written to �le-name-3 , the �le is closed in a manner equivalent to
issuing a CLOSE statement, with no optional phrases, for the �le.

If you specify the OUTPUT PROCEDURE phrase, there are several rules you must follow in
writing the procedure.

The output procedure can consist of any procedure needed to select, modify, or copy
contiguously available records using the RETURN statement in sorted order from the �le
referenced by �le-name-1 . This includes all statements executed by CALL, EXIT, GO TO,
and PERFORM statements within the range of the output procedure. This also includes
declarative procedure statements executed as a result of executing statements within the range
of the output procedure. The input procedure must not cause the execution of any MERGE,
RELEASE, or SORT statement.

Since the RETURN statement is the means of making sorted or merged records available
for processing, at least one such statement must appear in the procedure. The procedure
may consist of any procedures needed to select, modify, or copy records. The records are
returned one at a time in sorted order from �le-name-1 . The procedure itself can contain no
RELEASE, SORT, or MERGE statements.

When an output procedure is speci�ed in a SORT statement, the output procedure is
executed as part of the sort operation. The procedure is used after the records have been
sorted.

Output procedures, like input procedures, should be considered \slave" procedures designed
exclusively for the use of the SORT statement. If the output procedures are not executed
under the control of the SORT statement, the RETURN statement causes the job to abort.

SORT/MERGE Operations 12-15

SORT

Sorting Large Files

Normally, the �le descriptions compiled into the object program (using information from the
SELECT, FD, and SD clauses) provide all the information required to execute the object
program. However, to override these �le descriptions, you can supply MPE commands when
executing the program. These commands are e�ective only for the current execution of the
program.

You can use a :FILE command to specify the �le size if the �le to be sorted is not a disk �le
and contains more than 10,000 records. In this case, the :FILE command speci�es the number
of records in the SORT-FILE (the �le named in the SD statement). For example, if a program
contains the following statements:

SELECT SORT-FILE ASSIGN TO "SORT,DA".

SELECT NAME-FILE ASSIGN TO "INTAPE,UT"....
SD SORT-FILE RECORD CONTAINS 100 CHARACTERS....

SORT SORT-FILE DESCENDING KEY DATA-ONE USING NAME-FILE GIVING

OUT-FILE.

And if the INTAPE magnetic tape �le contains 15,000 records, enter the following :FILE
command before executing the program:

:FILE SORT;DISC=15000 Maximum number of records SORT is expected to process.

You should also use this command if an input procedure passes more than 10,000 records to
SORT.

An alternate method for specifying the �le size is to include the �le size parameter in the
SELECT clause that de�nes the SORT-FILE (SD �le name).

For example:

SELECT SORT-FILE ASSIGN TO "SORT,DA,,,15000".

If you do not use either of these methods and you are sorting more than 10,000 records, a
\TOO MANY INPUT RECORDS" error condition results and the SORT program aborts. A disk �le
containing more than 10,000 records does not require a �le size speci�cation because SORT
programmatically determines the �le size.

Note To determine the �le size parameter value to be passed to the SORT
subsystem with a CALL to SORTINIT, the compiler-generated code opens the
speci�ed SORT-FILE using FOPEN. The actual �le size value that is used can
be derived from the algorithm illustrated in Figure 12-1. SIZE-PARM is a
temporary variable in Figure 12-1.

Once the �le size parameter is determined, any attempt to send more records
to the SORT subsystem with the RELEASE statement will cause a run-time
abort with the SORT error message:

SORTLIB: TOO MANY INPUT RECORDS

12-16 SORT/MERGE Operations

SORT

Note It is possible that a permanent �le with the same name as the SORT-FILE
within job streams may cause undesired aborts. To avoid this, include the
following command in the stream �le:

:FILE SORT;NEW; DISC=15000

The �le name used in the :FILE command is the one speci�ed in the SELECT
clause.

Figure 12-1. Determining Local File Size (SIZE-PARM) Used in FOPEN

SORT/MERGE Operations 12-17

SORT

Segmentation Considerations

The following restrictions apply to the SORT statement when it is used in a segmented
program.

If the SORT statement appears in a section whose segment number is less than 50, then any
output procedure named in the SORT statement either must be totally contained within
a segment (or segments) whose segment number (or numbers) is less than 50, or must be
entirely contained in a single segment whose segment number is greater than 49.

If the SORT statement appears in a segment whose segment number is greater than 49, then
any output procedure referenced by the SORT statement must either be entirely contained
within the same segment, or be entirely contained within segments whose segment numbers
are less than 50.

12-18 SORT/MERGE Operations

13

Debug Module

The Debug Module provides a means by which you can describe a debugging algorithm
including the conditions under which procedures are to be monitored during the execution of
the object program.

Note With the exception of debug lines, this module is an obsolete feature of the
1985 ANSI COBOL standard.

The decisions of what to monitor and what information to display on the output device are
explicitly yours. The COBOL debug facility simply provides a convenient access to pertinent
information.

The HP COBOL II Debug Module implements the level 1 characteristics of the ANSI
standard Debug Module. It provides a basic debugging capability, including the ability to
specify: (a) selective or full procedure monitoring, and (b) optionally compiled debugging
statements.

The features of the COBOL language that support the Debug Module are:

1. A compile-time switch: WITH DEBUGGING MODE

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER
paragraph. It serves as a compile-time switch over the debugging statements written in the
program.

When the WITH DEBUGGING MODE clause is speci�ed in a program, all debugging
sections and all debugging lines are compiled as speci�ed in that section of the document.
When the WITH DEBUGGING MODE clause is not speci�ed, all debugging lines and all
debugging sections are compiled as if they were comment lines.

2. An object-time switch: USE FOR DEBUGGING

This switch dynamically activates the debugging code inserted by the compiler. This
switch cannot be addressed in the program. It is controlled outside the COBOL
environment. If the switch is \on", all the e�ects of the debugging language written in
the source program are permitted. If the switch is \o�", all the e�ects of the USE FOR
DEBUGGING statement, are inhibited. Recompilation of the source program is required to
provide or take away this facility.

For information on setting the object-time debug module switch, refer to \System
Dependencies" in Appendix H.

This object-time switch has no e�ect on the execution of the object program if the WITH
DEBUGGING MODE clause was not speci�ed in the source program at compile time.

Debug Module 13-1

USE FOR DEBUGGING

Note The object-time switch does not control the debugging lines. Recompilation
without the \WITH DEBUGGING MODE" clause is necessary to disable the
debugging lines.

3. A special register: DEBUG-ITEM

The reserved word DEBUG-ITEM is the name for a special register generated
automatically by the compiler. Only one DEBUG-ITEM is allocated per program. The
names of the subordinate data items in DEBUG-ITEM are also reserved words.

4. Debugging lines

A debugging line is any line with a \D" in column 7. These lines are added anywhere
in the program after the OBJECT-COMPUTER paragraph and are used strictly for
debugging purposes. Such lines make use of common COBOL statements such as
\DISPLAY" in order to monitor program status.

The contents of a debugging line must be totally independent of the program itself, so that
a syntactically correct program is formed either with or without the debugging lines.

WITH DEBUGGING MODE Clause

The WITH DEBUGGING MODE clause indicates that all debugging sections and all
debugging lines are to be compiled. If this clause is not speci�ed, all debugging lines and
sections are compiled as if they were comment lines. The WITH DEBUGGING MODE clause
has the following format:

Syntax

The following general rules apply to the WITH DEBUGGING MODE clause:

1. If the WITH DEBUGGING MODE clause is speci�ed in the SOURCE-COMPUTER
paragraph of the CONFIGURATION SECTION of a program, all USE FOR
DEBUGGING statements and all debugging lines are compiled.

2. If the WITH DEBUGGING MODE clause is not speci�ed in the SOURCE-COMPUTER
paragraph of the CONFIGURATION SECTION of a program, any USE FOR
DEBUGGING statements, all associated debugging sections, and any debugging lines are
compiled as if they were comment lines.

13-2 Debug Module

USE FOR DEBUGGING

USE FOR DEBUGGING statement

The USE FOR DEBUGGING statement identi�es the user procedures that are to be
monitored by the associated debugging section. The USE FOR DEBUGGING statement has
the following format:

Syntax

The following syntax rules apply to the USE FOR DEBUGGING statement:

Debugging section(s), if speci�ed, must appear together immediately after the
DECLARATIVES header.

Except in the USE FOR DEBUGGING statement itself, there must be no reference to any
nondeclarative procedure within the debugging section.

Statements appearing outside of the set of debugging sections must not reference procedure
names de�ned within the set of debugging sections.

Except for the USE FOR DEBUGGING statement itself, statements appearing within a
given debugging section may reference procedure names de�ned within a di�erent USE
procedure only with a PERFORM statement.

Procedure names de�ned within debugging sections must not appear within USE FOR
DEBUGGING statements.

Any given procedure name may appear in only one USE FOR DEBUGGING statement and
may appear only once in that statement.

The ALL PROCEDURES phrase can appear only once in a program.

When the ALL PROCEDURES phrase is speci�ed, procedure-name-1 must not be speci�ed
in any USE FOR DEBUGGING statement.

References to the special register DEBUG-ITEM are restricted to references from within a
debugging section.

Debug Module 13-3

USE FOR DEBUGGING

The following general rules apply to the USE FOR DEBUGGING statement:

1. When procedure-name-1 is speci�ed in a USE FOR DEBUGGING statement that
debugging section is executed:

a. Immediately before each execution of the named procedure.

b. Immediately after the execution of an ALTER statement which references
procedure-name-1 .

2. The ALL PROCEDURES phrase causes the e�ects described in general rule #1 to occur
for every procedure name in the program, except those appearing within a debugging
section.

3. In the case of a PERFORM statement which causes iterative execution of a referenced
procedure, the associated debugging section is executed once for each iteration.

Within an imperative statement, each individual occurrence of an imperative verb
identi�es a separate statement for the purpose of debugging.

4. A reference to procedure-name-1 as a quali�er does not constitute reference to that item
for the debugging described in the general rules above.

5. Associated with each execution of a debugging section is the special register
DEBUG-ITEM, which provides information about the conditions that caused the
execution of a debugging section. DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.

02 DEBUG-LINE PICTURE IS X(6).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-NAME PICTURE IS X(30).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE.

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE.

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE.

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-CONTENTS PICTURE IS X(30).

6. Prior to each execution of a debugging section, the contents of the data item referenced by
DEBUG-ITEM are space �lled. The contents of data items subordinate to DEBUG-ITEM
are then updated, according to the following general rules, immediately before control
is passed to that debugging section. The contents of any data item not speci�ed in the
following general rules remains spaces.

Updating is accomplished in accordance with the rules for the MOVE statement, the
sole exception being the move to DEBUG-CONTENTS. In this case, the move is treated
exactly as if it was an alphanumeric to alphanumeric elementary move with no conversion
of data from one form of internal representation to another.

7. The contents of DEBUG-LINE is the number of a particular source statement.

8. DEBUG-NAME contains the �rst 30 characters of the name that caused the debugging
section to be executed.

All quali�ers of the name are separated in DEBUG-NAME by the word \IN" or \OF'".

13-4 Debug Module

USE FOR DEBUGGING

9. DEBUG-SUB-1, DEBUG-SUB-2, . . . are treated only as �ller items in HP COBOL II.

10. DEBUG-CONTENTS is a data item that is large enough to contain the data required by
the following general rules.

11. If the �rst execution of the �rst nondeclarative procedure in the program causes the
debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identi�es the �rst statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains \START PROGRAM".

12. If a reference to procedure-name-1 in an ALTER statement causes the debugging section
to be executed, the following conditions exist:

a. DEBUG-LINE identi�es the ALTER statement that references procedure-name-1 .

b. DEBUG-NAME contains procedure-name-1 .

c. DEBUG-CONTENTS contains the applicable procedure name associated with the TO
phrase of the ALTER statement.

13. If the transfer of control associated with the execution of a GO TO statement causes the
debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identi�es the GO TO statement whose execution transfers control to
procedure-name-1 .

b. DEBUG-NAME contains procedure-name-1 .

c. DEBUG-CONTENTS contains spaces.

14. If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a SORT or
MERGE statement causes the debugging section to be executed, the following conditions
exist:

a. DEBUG-LINE identi�es the SORT or MERGE statement that references
procedure-name-1 .

b. DEBUG-NAME contains procedure-name-1 .

c. DEBUG-CONTENTS contains:

1. \SORT INPUT", if the reference to procedure-name-1 is the INPUT phrase of a
SORT statement.

2. \SORT OUTPUT", if the references to procedure-name-1 is in the OUTPUT phrase
of a SORT statement.

3. \MERGE OUTPUT", if the reference to procedure-name-1 is in the OUTPUT
phrase of a MERGE statement.

15. If the transfer of control from the control mechanism associated with a PERFORM
statement caused the debugging section associated with procedure-name-1 to be executed,
the following conditions exist:

a. DEBUG-LINE identi�es the PERFORM statement that references procedure-name-1 .

b. DEBUG-NAME contains procedure-name-1 .

c. DEBUG-CONTENTS contains \PERFORM LOOP".

Debug Module 13-5

Debugging Lines

16. If procedure-name-1 is a USE procedure that is to be executed, the following conditions
exist:

a. DEBUG-LINE identi�es the statement that causes execution of the USE procedure.

b. DEBUG-NAME contains procedure-name-1 .

c. DEBUG-CONTENTS contains \USE PROCEDURE".

17. If an implicit transfer of control from the previous sequential paragraph to
procedure-name-1 causes the debugging section to be executed, the following conditions
exist:

a. DEBUG-LINE identi�es the previous executed statement at run time.

b. DEBUG-NAME contains procedure-name-1 .

c. DEBUG-CONTENTS contains \FALL THROUGH".

Debugging Lines

A debugging line is any line with a \D" in column 7. It is only permitted in the program after
the OBJECT-COMPUTER paragraph.

A debugging line will be considered to have all the characteristics of a comment line, if the
WITH DEBUGGING MODE clause is not speci�ed in the SOURCE-COMPUTER paragraph.
Any debugging line that consists solely of spaces from margin A to margin R is treated the
same as a blank line.

The contents of a debugging line must be such that a syntactically correct program is formed
with or without the debugging line.

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except
that each continuation line must contain a \D" in column 7, and character strings may not be
broken across two lines.

13-6 Debug Module

Debugging Lines

The ANSI Debug Module Example

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. EXAMPLE.

001200 ENVIRONMENT DIVISION.

001300 CONFIGURATION SECTION.

001400 SOURCE-COMPUTER. HP3000 WITH DEBUGGING MODE.

001500 OBJECT-COMPUTER. HP3000.

001600 DATA DIVISION.
001700 WORKING-STORAGE SECTION.

001800 01 GRP.

001900 05 N-1 PIC S9(4) VALUE 0

002000 SIGN IS LEADING SEPARATE.

002100 05 N-2 PIC S9(4) VALUE 0

002200 SIGN IS LEADING SEPARATE.

002300 05 N-3 PIC S9(4) COMP-3.

002400 PROCEDURE DIVISION.

002500 DECLARATIVES.

002600 DEBUG-SEC SECTION.

002700 USE FOR DEBUGGING ON ALL PROCEDURES.

002800 DEBUG-PAR-1.

002900 DISPLAY SPACE.

003000 DISPLAY "CURRENT PARA/SEC IS " DEBUG-NAME.

003100 DISPLAY "CONTROL FLOW WAS " DEBUG-CONTENTS.

003200 END DECLARATIVES.

003300 SEC-1 SECTION 01.

003400 BEGIN-HERE.

003500 DISPLAY "ENTER N-1, 4 DIGITS".

003600 ACCEPT N-1 FREE.

003700 DISPLAY "N-1 = " N-1.

003800 PERFORM PAR-2.

003900 STOP RUN.

004000 PAR-2.

004100 DISPLAY "ENTER N-2, 4 DIGITS".

004200 ACCEPT N-2 FREE.

004300 DISPLAY "N-2 = " N-2.

004400 MOVE N-2 TO N-3.
004500D DISPLAY "N-3 = " N-3.

Debug Module 13-7

Debugging Lines

Using the ANSI Debug Module Example

The above program displays the value of DEBUG-NAME and DEBUG-CONTENTS at the
start of each section and paragraph. Note the use of the following source lines:

1. Source line 001400 - the WITH DEBUGGING MODE clause enables compilation of the
debugging procedures and lines.

2. Source line 002700 - the USE FOR DEBUGGING ON ALL PROCEDURES sentence
enables control within the Declaratives portion of the program and upon execution of ALL
section and paragraph procedures.

3. Source line 004500 - the D, in column 7, declares a Source Debug Line. Debug lines are
useful to display speci�c identi�ers whenever the program is compiled with the WITH
DEBUGGING MODE clause. When the clause is not speci�ed, the lines are treated as
comments.

To activate the debugging procedures at run time, the object-time switch must be set to 1.
For example,

:RUN progname;PARM=1

CURRENT PARA/SEC IS SEC-1

CONTROL FLOW WAS START PROGRAM

CURRENT PARA/SEC IS BEGIN-HERE

CONTROL FLOW WAS FALL THROUGH

ENTER N-1, 4 DIGITS

123

N-1 = +0123

CURRENT PARA/SEC IS PAR-2

CONTROL FLOW WAS PERFORM LOOP

ENTER N-2, 4 DIGITS

-1

N-2 = -0001

N-3 = -0001

END OF PROGRAM

13-8 Debug Module

14

Source Text Manipulation

This chapter describes the source text manipulation module, which is made up of the COPY
statement

NN
and the REPLACE statement. These statements can function independently of or

in conjunction with each other to provide an extensive capability to insert and replace source
program text during source program compilation.

Note In this chapter, the term word implies text word .

Source Text Manipulation 14-1

COPY

COPY Statement

The COPY statement is the method by which source records in a COBOL library are copied
into your source program.

This statement may appear anywhere in your source program, from the IDENTIFICATION
DIVISION to the end of the PROCEDURE DIVISION. Aside from allowing you to copy
modules into your source �le, it also allows you to replace occurrences of a string of words, a
substring, an identi�er, a literal, or a word appearing in the module being copied.

Syntax

The COPY statement has the following format:

Parameters

text-name-1 the name of the module to be copied into your source program.

library-name-1 a name containing one to eight alphanumeric characters, the �rst
of which must be alphabetic. This name is used to specify the
library in which the module to be copied resides.

Library-name-1 must be used when you have more than one
COBOL library in your log-on group. If library-name-1 is not
used, the COBOL compiler assumes that the library name is
COPYLIB.

NOLIST if used, indicates that the text of the module named by
text-name-1 is not included in the list �le created by the
compilation process. The NOLIST parameter is an HP extension
to the ANSI COBOL standard.

==pseudo-text-1== a sequence of words, comment lines, and spaces delimited on either
end by double equal signs. It may consist of any text you wish,
except that it must not consist of null text (that is,= = = =), all
spaces, commas, semicolons, or all comment lines.

14-2 Source Text Manipulation

COPY

literal-1 and literal-2 each can be any COBOL literal.

identi�er-1 and
identi�er-2

can each be any COBOL identi�er and can be quali�ed.

word-1 and word-2 can each be any single COBOL word.

Note Where the sequence consists only of a single element, using the identi�er-1 ,
literal-1 , or word-1 format is more e�cient.

==pseudo-text-2== a sequence of words, comment lines, or spaces delimited on either
end by double equal signs. It may be any text you wish, including
null text (that is, it may be of the form, ====).

Character strings within pseudo-text-1 and pseudo-text-2 may be
continued. However, both equal signs forming the delimiters must
be on the same line.

Description

A COPY statement may appear in a source program anywhere a character string or a
separator is allowed. However, a COPY statement may not appear within another COPY
statement. When a COPY statement is used, it must be preceded by a space and terminated
by a period.

COPY statements are executed before source lines associated with them are sent to the
compiler. Thus, only the lines of the copied module, including any replaced words, identi�ers,
and so forth, are sent to the compiler. The COPY statement itself is not.

Although the COPY statement is not sent to the compiler, it appears in the listing sent to the
list �le, along with the records of the copied module (unless NOLIST was speci�ed).

If the REPLACING phrase is not used, the module is copied exactly as it appears in the
library, including its sequence �eld and text-name, which appears in columns 73 through 80 of
each record in the module.

Source Text Manipulation 14-3

COPY

REPLACING Phrase

To facilitate the following discussion, the REPLACING phrase is rewritten as shown below.

REPLACING text-to-replace BY replace-text

Before the comparison to determine which text, if any, is to be replaced in the copied module,
spaces, commas, and semicolons to the left of the �rst word in the records of the module are
moved into the source program. The �rst word of the record in a module is the �rst part of
the module to be compared.

Starting with the left most word in the module being copied, and the �rst text-to-replace
speci�ed in the REPLACING phrase, text-to-replace is compared to an equivalent number of
contiguous words in the module.

Text-to-replace matches the text in the module if and only if each character in text-to-replace
equals the character in the corresponding position of the text in the module.

For purposes of matching, each occurrence of a separator comma, or semicolon in
text-to-replace or in the text of the module is considered to be a single space. Each sequence
of one or more spaces is considered to be a single space.

If no match occurs, the comparison is repeated with each next successive text-to-replace, if
any, in the REPLACING phrase until either match is found or there is no next successive
text-to-replace.

When all occurrences of text-to-replace have been compared to the text in the module and no
match has occurred, the left most word in the text in the module is copied into your source
program.

The next word of the text in the module is then considered as the left most word of the text
in the module, and the comparison cycle is repeated, starting with the �rst text-to-replace in
the REPLACING phrase.

Whenever a match occurs between text-to-replace and text in the module, replace-text
is placed into the source program. The word immediately to the right of the text in the
module which participated in the match is then considered as the left most word of the text
in the module, and comparison begins again, starting with the �rst text-to-replace in the
REPLACING phrase.

The comparison operation continues until the rightmost word in the last line of the module
has either participated in a match or has been considered as the left most word of text in the
module and has participated in a complete comparison cycle.

A comment line in text-to-replace or in the module is interpreted, for purposes of matching, as
a single space. Comment lines appearing in replace-text and in the module are copied into the
source program unchanged.

The syntactic correctness of the lines in a module cannot be independently determined. Nor
can the syntactic correctness of the entire COBOL source program until all COPY statements
have been completely processed.

The following are two examples of the COPY statement.

14-4 Source Text Manipulation

COPY

Example 1

This example uses a module named RITESTUF in a library called UTIL to illustrate the COPY
statement.

001000 WRITE-ROUTINE. RITESTUF

001100 OPEN OUTPUT CHECKS. RITESTUF

002000 WRITE AMOUNT BEF-AFT ADVANCING X LINES RITESTUF

003000 AT EOP IMP-STAT. RITESTUF

The COPY statement appears as follows:

100000 PROCEDURE DIVISION....
102100 COPY RITESTUF OF UTIL
102200 REPLACING CHECKS BY FILEOUT

102300 ==AMOUNT== BY ==RECOUT==

102310 ==X== BY ==1==

102400 ==BEF-AFT== BY ==BEFORE==

102500 ==IMP-STAT== BY ==PERFORM PAGER==.

102600 CLOSE FILEOUT....

Results of the COPY statement:

102500

001000 WRITE-ROUTINE. RITESTUF

001100 OPEN OUTPUT FILEOUT. RITESTUF

002000 WRITE RECOUT BEFORE ADVANCING 1 LINES RITESTUF

003000 AT EOP PERFORM PAGER. RITESTUF

102600 CLOSE FILEOUT.

Example 2

This example illustrates how the COPY statement can copy substrings in library text. This is
done by putting parentheses around the substring to be replaced and around pseudo-text-1 .
The name of the module is PRODUCT1 in library MFG1.

001000 01 (FIRST)-RECORD PIC X(80). PRODUCT1

The COPY statement appears as follows:

COPY PRODUCT1 OF MFG1 REPLACING ==(FIRST)== BY ==MAIN-INPUT==.

Below are the results of the COPY statement:

001000 01 MAIN-INPUT-RECORD PIC X(80). PRODUCT1

You cannot use COPY REPLACING to replace substrings within nonnumeric literals. For
example, if the following DISPLAY statement were in a program, it would not be changed by
the COPY REPLACING statement above:

DISPLAY "(FIRST)-RECORD".

Source Text Manipulation 14-5

REPLACE

REPLACE Statement

The REPLACE statement is used to replace source program text. This statement may
appear anywhere in a program, from the IDENTIFICATION DIVISION to the end of the
PROCEDURE DIVISION. However, a better way to edit the source text permanently is by
using an editor.

Syntax

Parameters

==pseudo-text-1== a sequence of words, comments, or spaces delimited on either end
by double equal signs. It may consist of any text, except that
the text may not consist of null text (that is,====), all spaces,
commas, semicolons, or all comment lines.

Note Where the sequence consists only of a single element, using the identi�er-1,
literal-1 or word-1 format is more e�cient.

==pseudo-text-2== a sequence of words, comment lines, or spaces delimited on either
end by double equal signs. It can be any text, including null text
(that is, ====).

Character strings within pseudo-text-1 and pseudo-text-2 may be
continued. However, both equal signs forming the delimiters must
be on the same line.

14-6 Source Text Manipulation

REPLACE

Description

A REPLACE statement can appear in a source program anywhere a character string or a
separator can occur. However, a REPLACE statement cannot appear in another REPLACE
statement. When a REPLACE statement is used, it must be preceded by a space and
terminated by a period.

Any REPLACE statements contained in a source program are processed after the processing
of the COPY statements contained in a source program.

The text produced as a result of processing a REPLACE statement cannot contain a
REPLACE statement.

Note Although the REPLACE statement is not sent to the compiler, it appears in
the listing sent to the list�le.

To facilitate the following discussion, the REPLACE statement is rewritten as shown below.

REPLACE text-to-replace BY replace-text

The format 1 REPLACE statement speci�es the text of the source program to be replaced by
the corresponding text. Each matched occurrence of the text-to-replace in the source program
is replaced by the corresponding replace-text.

The format 2 REPLACE statement speci�es that any text replacement currently in e�ect is
discontinued.

A given occurrence of the REPLACE statement is in e�ect from the point at which it is
speci�ed until the next occurrence of the REPLACE statement or the end of the separately
compiled program, respectively. For example, a REPLACE statement could be in e�ect
until the END PROGRAM header of a program that is not contained in another program is
encountered.

Starting with the leftmost word in the source program and the �rst text-to-replace, the
corresponding text-to-replace is compared to an equivalent number of contiguous words in the
source program.

Text-to-replace matches the source program text only if each character in text-to-replace
equals the character in the corresponding position of the source program text.

For purposes of matching, each occurrence of a separator comma, or semicolon in
text-to-replace or in the source program text, is considered to be a single space. Each
sequence of one or more spaces is considered to be a single space.

If no match occurs, the comparison is repeated with each successive text-to-replace (if there is
any), until either a match is found or there is no successive text-to-replace.

The next word of the source program text is then considered as the leftmost word of the
source program text. The comparison is repeated, starting with the �rst text-to-replace.

Whenever a match occurs between text-to-replace and source program text, replace-text is
placed into the source program. The word immediately to the right of the matching source
program text is then considered as the leftmost word of the data. Comparison begins again,
starting with the �rst text-to-replace.

Source Text Manipulation 14-7

REPLACE

The comparison operation continues until the rightmost word in the source program text
(within the scope of the REPLACE statement) has either been matched or has been
considered as a leftmost word in the source program and completed a comparison cycle.

A comment line in text-to-replace or in the source program is interpreted as a single space for
purposes of matching.

The syntactic correctness of the lines in a source program cannot be independently
determined, neither can the syntactic correctness of the entire COBOL source program be
determined until all REPLACE statements have been completely processed.

The following are examples using the REPLACE statement.

Example 1

In this example, the 01 identi�er \TEST" is replaced, but not the \TEST" in the PERFORM
statement. This is due to the intervening REPLACE statement. A better way to produce the
same result is to edit the source text permanently using an editor.

Before REPLACE is executed:

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG1.

DATA DIVISION.

REPLACE ==TEST== BY ==TESTT==

==TRUE== BY ==TRUE-FLAG==.

01 NAME PIC X(30).

01 TEST PIC X.

88 TRUE VALUE "T".

PROCEDURE DIVISION.

P1.

ACCEPT TEST.

IF TRUE PERFORM P2.

REPLACE ==ALPHABETIC== BY ==ALPHABETIC-UPPER==.

IF NAME IS ALPHABETIC THEN

SET TRUE-FLAG TO TRUE.

REPLACE OFF.

PERFORM P3 WITH TEST AFTER

UNTIL NAME IS NOT ALPHABETIC....

14-8 Source Text Manipulation

REPLACE

The code sent to the compiler would be:

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG1.
DATA DIVISION.

01 NAME PIC X(30).

01 TESTT PIC X.

88 TRUE-FLAG VALUE "T".

PROCEDURE DIVISION.

P1.

ACCEPT TESTT.

IF TRUE-FLAG PERFORM P2.

IF NAME IS ALPHABETIC-UPPER THEN

SET TRUE-FLAG TO TRUE.

PERFORM P3 WITH TEST AFTER

UNTIL NAME IS NOT ALPHABETIC....

Example 2

This example shows how the REPLACE statement can be used to replace substrings. This is
done by putting parentheses around the substring to be copied and around pseudo-text-1 .

Assume the source program contains the following text before the replacement:

01 (FIRST)-RECORD PIC X(80).

After the following REPLACE statement

REPLACE COPY-MODULE REPLACING ==(FIRST)== BY ==INPUT==.

the resultant text is:

01 INPUT-RECORD PIC X(80).

Source Text Manipulation 14-9

A

HP COBOL II Error Messages

This appendix explains how to read compiler error messages that occur when using the
HP COBOL II compiler and run-time error messages that occur when your program is
running. Error messages and their explanatory text are in the �le named COBCAT.PUB.SYS.
This appendix contains a complete listing of the COBCAT error messages. You can also
obtain the most current listing of error messages for each compiler version update by listing
the �le COBCAT.PUB.SYS. For example, in MPE use the following command to list the �le on
the screen:

:PRINT COBCAT.PUB.SYS

Reading Error Messages from COBCAT

The �le COBCAT.PUB.SYS contains the most current list of HP COBOL II error messages.
Keep the following in mind when reading error messages from COBCAT:

The error messages appear on the same line number as the corresponding error message
numbers. For example, line number 23 contains the text for error message 23.

A \$" in the left margin indicates a comment line containing explanatory text.

An \!" indicates that an item is place holder. The speci�c item appears in the message text
when the message is emitted by the compiler.

Numbers within brackets \[]" indicate the corresponding �le status codes for the run-time
errors.

When two items appear in brackets like this: {xxx/yyy}, the �rst item (xxx) refers to the
HP COBOL II/XL compiler and the second item (yyy) refers to the HP COBOL II/V
compiler.

Example

001 ILLEGAL CHARACTER IN COLUMN 7.

$ Only space, *, -, $, D, or / allowed.

Note All requests to \contact HP" in error messages should be interpreted to mean
\Please submit a service request (SR) and the necessary source and object �les
to allow duplication of the problem being reported." For more details, see the
�le named COBCAT.PUB.SYS.

HP COBOL II Error Messages A-1

Run-Time Error Messages

HP COBOL II error messages have been divided into seven categories:

Table A-1. Kinds of Error Messages

Message
Number Classi�cation Meaning

1-99 Warnings (W) Something is incorrect in the code, but the compiler
can probably �x it to produce what you intended.

100-399 Questionable Errors (Q) An error has occurred that will be �xed, but the
compiler probably will not produce what you intended.

400-449 Serious Errors (S) The error is either too di�cult or impossible to �x. No
code is generated.

450-499 Disastrous Errors (D) The error makes further processing risky or impossible.
All �les are closed and processing is stopped
immediately.

500-539 Nonstandard Warnings (N) The program uses a construct that is not part of ANSI
COBOL'85 standard or is an obsolete or incompatible
feature.

540-899 Run-Time Errors These are errors that occur when your program is
executing.

900-999 Informational Messages (I) Other messages usually giving status after other errors.

Compile-Time Error Messages

Error messages numbered from 1 through 539 and 900 through 999 are compile-time errors.
Messages numbered from 540 through 899 are run-time errors. See the following section for
information about run-time errors.

HP COBOL II is a multiple pass compiler, which has the following implications for
compile-time error messages:

If the control option CHECKSYNTAX is used, errors checked in the last pass (the object
code generation phase) of the compiler are not diagnosed.

Serious errors found in the �rst pass inhibit code generation and the execution of the last
compiler pass. So if all serious errors are �xed and the program is recompiled, additional
errors may be diagnosed during the processing of the �nal pass.

Errors found by the �nal pass of the compiler show the line number of the statement in
error and a column number of 80. This occurs because column number information is not
carried along to the �nal pass, and it is often not meaningful for errors detected in this pass.

A-2 HP COBOL II Error Messages

Run-Time Error Messages

Run-Time Error Messages

Run-time error messages are numbered from 540 through 899. They are at the end of the
COBCAT.PUB.SYS �le within the $SET 30 and $SET 31 catalog sets. These error messages are
issued when run-time procedures encounter errors while performing the following:

Input-output functions.
Converting or moving illegal data.
Detecting invalid index, subscript, or reference modi�cation values.
Performing exponential computations.
When size error conditions occur and a SIZE ERROR clause has not been used.

Refer to \Run-Time Errors" later in this appendix for a complete list of run-time errors.

Note For additional information on error messages, refer to \System Dependencies"
in Appendix H.

HP COBOL II Error Messages A-3

Warnings

Warnings

1 ERROR

MESSAGE

ILLEGAL CHARACTER IN COLUMN 7.

CAUSE Only space, *, -, $, D, or / allowed.

2 ERROR

MESSAGE

DEBUGGING LINE ILLEGAL BEFORE OBJECT-COMPUTER PARAGRAPH.

CAUSE

3 ERROR

MESSAGE

TOO MANY CHARACTERS IN SYMBOL !.

CAUSE Symbol ! is limited to 30 characters.

4 ERROR

MESSAGE

MISSING SPACE.

CAUSE Separator space is needed here.

5 ERROR

MESSAGE

CONTINUATION RECORD NOT ALLOWED HERE.

CAUSE

6 ERROR

MESSAGE

MISSING QUOTE.

CAUSE QUOTE is needed in nonnumeric literal.

7 ERROR

MESSAGE

! NOT IMPLEMENTED

CAUSE MULTIPLE SYSTEM FILE NAMES or INTEGER preceding SYSTEM FILE
NAME or RERUN clause are all ignored.

8 ERROR

MESSAGE

CALL ! ASSUMED TO BE CALL INTRINSIC

CAUSE An intrinsic will be called instead of a subprogram. Only occurs when
$CONTROL CALLINTRINSIC speci�ed.

9 ERROR

MESSAGE

FILES IN MULTIPLE FILE TAPE CLAUSE MUST BE SEQUENTIAL.

CAUSE

13 ERROR

MESSAGE

ERROR CONVERTING THE WRITE ADVANCING COUNT TO AN INTEGER.

CAUSE A \WRITE ADVANCING" speci�ed a number of lines to advance that caused
an error when converting to integer. A value of one is used in this case.

15 ERROR

MESSAGE

DELETE VALID ONLY WITH RELATIVE OR INDEXED.

CAUSE The \DELETE" verb can only be used with RELATIVE or INDEXED I/O.

A-4 HP COBOL II Error Messages

Warnings

16 ERROR

MESSAGE

START VALID ONLY WITH RELATIVE, RANDOM OR INDEXED.

CAUSE The \START" verb can only be used with RELATIVE, INDEXED or
RANDOM I/O. Not valid with ACCESS mode RANDOM.

18 ERROR

MESSAGE

SEEK VALID ONLY WITH RELATIVE OR RANDOM.

CAUSE The \SEEK" verb can only be used with RANDOM or RELATIVE �les.

20 ERROR

MESSAGE

INVALID DATA TYPE FOR KEY.

CAUSE Sort or Merge keys may only be of the following types: ALPHABETIC,
ALPHANUMERIC, NUMERIC, or DISPLAY.

24 ERROR

MESSAGE

A SECTION NAME IS REQUIRED IN DECLARATIVES.

CAUSE Use of DECLARATIVES requires sections.

25 ERROR

MESSAGE

COLLATING SEQUENCE ! HAS NOT BEEN DEFINED.

CAUSE ALPHABET name for COLLATING SEQUENCE is not speci�ed.

26 ERROR

MESSAGE

HYPHEN NOT ALLOWED AT END OF WORD.

CAUSE

27 ERROR

MESSAGE

SPACE NOT ALLOWED IN THIS POSITION.

CAUSE Embedded space in numeric literal not allowed.

28 ERROR

MESSAGE

HIGH-VALUE/LOW-VALUE HAS NOT BEEN DEFINED.

CAUSE HIGH-VALUE/LOW-VALUE not de�ned because of unde�ned collating
sequence.

29 ERROR

MESSAGE

OPEN REVERSED NOT SUPPORTED.

CAUSE Open is generated but \REVERSED" is ignored.

30 ERROR

MESSAGE

NON-88 LEVEL ITEM IN FILE SECTION HAS VALUE CLAUSE.

CAUSE The value clause is accepted by this compiler.

31 ERROR

MESSAGE

VALUE CLAUSE ON NON-88 LEVEL ITEM IN LINKAGE SECTION OR ON

EXTERNAL ITEM, IGNORED.

CAUSE These items do not belong to the current program and so cannot be initialized
here with a VALUE clause.

HP COBOL II Error Messages A-5

Warnings

32 ERROR

MESSAGE

OCCURS CLAUSE USED ON 01 LEVEL ITEM.

CAUSE

33 ERROR

MESSAGE

VALUE CLAUSE IN AN ITEM SUBORDINATE TO AN OCCURS TABLE.

CAUSE The VALUE clause is not permitted within an entry subordinate to an
OCCURS. ANSI74 entry point only.

34 ERROR

MESSAGE

MISSING AT END/INVALID KEY PHRASE.

CAUSE AN AT END or INVALID KEY phrase is required since no applicable USE
procedure is speci�ed.

35 ERROR

MESSAGE

ILLEGAL INVALID KEY PHRASE.

CAUSE An INVALID KEY PHRASE is not legal with the access mode speci�ed for the
�le. Instead, use either FILE STATUS or a USE procedure.

36 ERROR

MESSAGE

PARAMETER # ! CONVERTED TO COMP.

CAUSE An alphanumeric item is passed by value to an INTEGER, LOGICAL or a
DOUBLE. The alphanumeric item is treated as numeric DISPLAY and is
converted to COMP (binary).

37 ERROR

MESSAGE

PARAMETER ! IS LITERAL PASSED BY REFERENCE.

CAUSE A literal is passed to an intrinsic which expects a reference parameter. The
literal is stored in a temporary location whose address is then passed to the
intrinsic.

38 ERROR

MESSAGE

\\ IGNORED FOR PARAMETER # !. INTRINSIC EXPECTS REFERENCE

PARAMETER.

CAUSE A parameter enclosed in nn is passed to an intrinsic which expects a reference
parameter. The nn are ignored and the parameter is passed by reference.

39 ERROR

MESSAGE

@ IGNORED FOR PARAMETER # !. INTRINSIC EXPECTS WORD ADDRESS.

CAUSE A parameter preceded by an @ is passed to an intrinsic which expects a word
address. The @ is ignored and the word address of the item is passed.

40 ERROR

MESSAGE

BLANK LINE WITH CONTINUATION CHARACTER WAS NOT PROCESSED.

CAUSE

41 ERROR

MESSAGE

MISSING PERIOD IN IDENTIFICATION DIVISION.

CAUSE

A-6 HP COBOL II Error Messages

Warnings

42 ERROR

MESSAGE

INVALID COMMENT ENTRY.

CAUSE Comment entry is not allowed here.

43 ERROR

MESSAGE

ILLEGAL IDENTIFICATION DIVISION PARAGRAPH.

CAUSE Check against legal IDENTIFICATION DIVISION paragraphs.

45 ERROR

MESSAGE

UNPROCESSED SOURCE ON SUBSYSTEM COMMAND LINE.

CAUSE Unprocessed source is ignored.

46 ERROR

MESSAGE

SUBSYSTEM COMMAND CHARACTER STRING WAS TRUNCATED.

CAUSE String exceeds maximum allowed length, which is approximately 110 characters
for $PAGE and $TITLE, 116 characters for $COPYRIGHT, and 255
characters for $VERSION.

47 ERROR

MESSAGE

SEQUENCING ERROR.

CAUSE Sequence numbers are out of order.

48 ERROR

MESSAGE

MISSING "BY" IN COPY OR REPLACE STATEMENT.

CAUSE COPY or REPLACE statement is incomplete.

49 ERROR

MESSAGE

INVALID SUBSYSTEM COMMAND DELIMITER; EXPECTED !.

CAUSE

50 ERROR

MESSAGE

ARITHMETIC OVERFLOW MAY OCCUR.

CAUSE An intermediate or �nal result may have more than 31 digits on HP COBOL
II/XL and 28 digits on HP COBOL II/V, when maximum operands and
intermediate results are assumed in the arithmetic statement.

51 ERROR

MESSAGE

REDEFINING ITEM ! IS SMALLER THAN REDEFINED ITEM.

CAUSE Except for level 01, a rede�ning item must be the same size as the item it
rede�nes. ANSI85 allows it to be smaller.

52 ERROR

MESSAGE

REDEFINING ITEM ! IS BIGGER THAN REDEFINED ITEM.

CAUSE Except for level 01, a rede�ning item must be the same size as the item it
rede�nes.

54 ERROR

MESSAGE

CODE-SET CLAUSE SPECIFIED FOR A MASS-STORAGE FILE.

CAUSE The code-set clause may not be speci�ed for mass-storage �les. ANSI74 entry
point only.

HP COBOL II Error Messages A-7

Warnings

55 ERROR

MESSAGE

LEFT TRUNCATION MAY OCCUR.

CAUSE This warning is generated whenever signi�cant digits will be truncated in a
numeric move.

56 ERROR

MESSAGE

VALUE OF CLAUSE NOT APPLICABLE TO NON-SEQUENTIAL FILES, IGNORED.

CAUSE The VALUE OF clause is meaningful only for sequential �les. If it occurs in
any other type of �le it is ignored.

57 ERROR

MESSAGE

REDEFINING ITEM ! CONTAINS A VALUE CLAUSE.

CAUSE An item with a VALUE clause contains a REDEFINES clause or is
subordinate to a REDEFINES clause. The latter VALUE clause is used.

58 ERROR

MESSAGE

UNABLE TO OPEN COBCNTL FILE.

CAUSE The �le COBCNTL.PUB.SYS was not found.

59 ERROR

MESSAGE

MISSING PROCEDURE DIVISION.

CAUSE No code will be generated. Syntax checking is done.

60 ERROR

MESSAGE

OVERLAPPING PARAMETERS IN CALL; CALLED SUBPROGRAM MUST NOT SPECIFY

$CONTROL PARMSNEVEROVERLAP.

CAUSE If overlapping parameters exist, the linkage section of called subprogram must
be aliased conservatively.

61 ERROR

MESSAGE

NO OPTIMIZATION DONE IF ALTER STATEMENT OCCURS.

CAUSE No alias sets constructed, optimization is turned o�.

62 ERROR

MESSAGE

NO OPTIMIZATION DONE IF SYMDEBUG IS SPECIFIED.

CAUSE Listing/object correspondence altered with optimization. Optimization turned
o�.

65 ERROR

MESSAGE

OCTAL LITERAL CONVERTED TO DECIMAL.

CAUSE A condition name value clause speci�es octal literal when numeric conditional
variable has usage display or comp-3. The literal was converted to an
equivalent base 10 number.

66 ERROR

MESSAGE

RECURSION DETECTED; CALL TO EXTERNAL PROGRAM ! ASSUMED.

CAUSE Illegal recursive call to a nested or batched program was encountered and the
compiler responded by generating code for a legal call to a separately compiled
program.

A-8 HP COBOL II Error Messages

Questionable Errors

Questionable Errors

100 ERROR

MESSAGE

ILLEGAL INTEGER.

CAUSE A non-integer literal or an integer which is too large has occurred in a context
where the compiler expects an integer.

101 ERROR

MESSAGE

ALPHABET-NAME IN CODE-SET CLAUSE MAY NOT SPECIFY LITERAL PHRASE.

CAUSE An alphabet-name which was de�ned using the literal phrase has been used in
a code set clause.

102 ERROR

MESSAGE

DATA-NAME ! IS NOT AN ALPHABET-NAME OR CLASS-NAME.

CAUSE The data-name must be declared to be alphabet-name or class-name.

103 ERROR

MESSAGE

ALPHABET-NAME OR CLASS-NAME ! IS NOT DECLARED.

CAUSE The data name must be declared to be alphabet-name or class-name.

104 ERROR

MESSAGE

NULL LITERAL NOT ALLOWED; REPLACED BY SPACE.

CAUSE A nonnumeric literal was found which did not contain any characters between
the opening and closing quotation marks. It was replaced with a one-character
literal consisting of the space character.

105 ERROR

MESSAGE

NUMBER OF SYMBOLIC CHARS ! INTEGERS.

CAUSE The number of symbolic characters must equal the # of integers.

106 ERROR

MESSAGE

CLAUSES IN SPECIAL-NAMES OUT OF ORDER.

CAUSE The clauses in SPECIAL-NAMES paragraph must be in order: mnemonic,
alphabet, symbolic character, class, currency and decimal-point.

107 ERROR

MESSAGE

ILLEGAL CONFIGURATION SECTION.

CAUSE Nested programs must not contain a CONFIGURATION SECTION.

108 ERROR

MESSAGE

ERROR ! GETTING NLS INFORMATION.

CAUSE Language not installed or system variable not set.

HP COBOL II Error Messages A-9

Questionable Errors

109 ERROR

MESSAGE

BAD RECORDING MODE SPECIFICATION!.

CAUSE The RECORDING MODE speci�cation must be \F", \V", \U", or \S".

112 ERROR

MESSAGE

NEGATIVE NUMBER OF OCCURRENCES SPECIFIED.

CAUSE A table may not contain a negative number of occurrences.

113 ERROR

MESSAGE

MINIMUM NUMBER OF OCCURRENCES IS GREATER THAN MAXIMUM NUMBER OF

OCCURRENCES.

CAUSE The minimum number of occurrences in a table must be greater than the
maximum number of occurrences of the table.

121 ERROR

MESSAGE

MORE THAN {500/123} PAIRS IN A VALUE CLAUSE.

CAUSE Level 88 value clauses can have at most 500 pairs on HP COBOL II/XL and
123 pairs on HP COBOL II/V.

122 ERROR

MESSAGE

MORE THAN 18 DIGITS IN A NUMERIC PICTURE.

CAUSE Numeric data items have at most 18 digits.

123 ERROR

MESSAGE

MULTIPLE OCCURRENCES OF !.

CAUSE For data items, only one BLANK WHEN ZERO, JUSTIFIED, OCCURS,
PICTURE, SYNCHRONIZED, USAGE, SIGN, or VALUE clause may appear.
For �le descriptions, only one BLOCK CONTAINS, DATA RECORDS,
LABEL RECORDS, RECORD CONTAINS, RECORDING MODE, REPORT,
VALUE OF, LINKAGE, or CODE-SET clause may appear. For the VALUE
OF clause, only one VOL, LABELS, SEQ, or EXDATE phrase may appear.
For the LINKAGE clause, only one FOOTING, TOP, or BOTTOM phrase may
appear. For a CD only one of each INPUT or OUTPUT clause may appear.

124 ERROR

MESSAGE

OCCURS DEPENDING ON ITEM FOLLOWED BY !.

CAUSE The OCCURS DEPENDING ON item must be the last item in a record.

A-10 HP COBOL II Error Messages

Questionable Errors

125 ERROR

MESSAGE

ILLEGAL EXTERNAL CLAUSE. (!)

CAUSE External clause must be on a FD or 01 in working storage section. The name
must be unique. (See error 351). The item must be contain a rede�nes or
renames clause. For �les, it must not have the same area or multiple �le clause.
Rede�ning a 01 external item can't be larger. (See warning 52.)

126 ERROR

MESSAGE

ILLEGAL GLOBAL CLAUSE. (!)

CAUSE Global clause must be a FD or on a 01 not in linkage section. The name must
be unique and can't be FILLER. For �les, it must not have the same record
area clause. A GLOBAL USE procedure is not allowed on a local �le. A
GLOBAL and a local USE procedure declared in the same scope may not
reference the same �le or io-mode.

132 ERROR

MESSAGE

88 LEVEL ON GROUP ITEM ! CONTAINING NON-DISPLAY USAGE, JUST, OR

SYNC

CAUSE A condition-name cannot be associated with a group containing items whose
descriptions include JUSTIFIED, SYNCHRONIZED, or USAGE other than
DISPLAY. The compiler treats the group as though there were no USAGE,
JUSTIFIED, or SYNCHRONIZED clause.

133 ERROR

MESSAGE

! CLAUSE MAY NOT BE SPECIFIED IN 88 LEVEL ENTRIES.

CAUSE A BLANK WHEN ZERO, JUSTIFIED, OCCURS, PICTURE,
SYNCHRONIZED, USAGE, or SIGN clause has been speci�ed for a
condition-name.

140 ERROR

MESSAGE

MULTIPLE SIGN DESIGNATORS IN PICTURE.

CAUSE \+", \-", \S", \CR", and \DB" are mutually exclusive in a picture string.

141 ERROR

MESSAGE

C NOT FOLLOWED BY R IN PICTURE.

CAUSE \C" must be immediately followed by a \R" in a picture string.

142 ERROR

MESSAGE

D NOT FOLLOWED BY B IN PICTURE.

CAUSE \D" must be immediately followed by a \B" in a picture string.

143 ERROR

MESSAGE

MULTIPLE POINT CHARACTERS IN PICTURE.

CAUSE The decimal point location may be speci�ed at most once in a picture string.

HP COBOL II Error Messages A-11

Questionable Errors

144 ERROR

MESSAGE

MULTIPLE FLOAT CHARACTERS IN PICTURE.

CAUSE Either *" or \Z" has been encountered in a picture string and some other
character has already been determined to be the oating insertion character
(*", \Z", \+" used as oating insertion character, \-" used as oating
insertion character, and currency sign used as oating insertion character, are
mutually in a picture string).

145 ERROR

MESSAGE

MULTIPLE REPETITION FACTORS IN PICTURE.

CAUSE \(" immediately follows \)" in a picture string.

146 ERROR

MESSAGE

MISSING ")" IN PICTURE REPETITION FACTOR.

CAUSE \(" has occurred in a picture string without a following \)".

147 ERROR

MESSAGE

ILLEGAL CHARACTER IN PICTURE REPETITION FACTOR.

CAUSE Only numeric digits (\0" - \9") may occur between \(" and \)" in a picture
string.

148 ERROR

MESSAGE

REPETITION FACTOR WITH NO CHARACTER TO REPEAT IN PICTURE.

CAUSE A picture string may not begin with the character \(".

149 ERROR

MESSAGE

REPETITION FACTOR IN PICTURE MAY NOT BE ZERO.

CAUSE The number between a \(" and a \)" in a picture string may not be zero.

150 ERROR

MESSAGE

ILLEGAL REPETITION FACTOR IN PICTURE.

CAUSE A repetition factor greater than one follows a character that may not occur
more than once in a picture string. Or the repetition factor is too big, that is,
more than 1G bytes on HP COBOL II/XL or 64K bytes on HP COBOL II/V.

151 ERROR

MESSAGE

ILLEGAL CHARACTER IN PICTURE.

CAUSE Only the characters \B", \0", \/", \,", \.", \+", \-", \C", \R", (following a
\C"), \D", \B" (following a \D"), the currency sign character, \Z", *", \9",
\A", \X", \S", \V", \P", \(", numeric digits following a \(", and \)" following
the numeric digits following a \(" may occur in a picture string.

152 ERROR

MESSAGE

MULTIPLE NON-FLOATING CURRENCY SIGNS IN PICTURE.

CAUSE More than one currency sign character has occurred in a picture string and
some other character has been determined to be the oat character.

A-12 HP COBOL II Error Messages

Questionable Errors

153 ERROR

MESSAGE

NO DIGIT OR CHARACTER POSITIONS IN PICTURE.

CAUSE At least one of the characters \A", \X", \Z", \9", or *" or at least two of the
characters \+", \-", or the currency symbol must occur in a picture string.

154 ERROR

MESSAGE

ILLEGAL COMBINATION OF PICTURE CHARACTERS.

CAUSE Certain combination of characters may not occur in a picture string.

155 ERROR

MESSAGE

ILLEGAL SEQUENCE OF PICTURE CHARACTERS.

CAUSE Certain sequences of characters may not occur in a picture string.

156 ERROR

MESSAGE

66-LEVEL ENTRY HAS NO RENAMES CLAUSE.

CAUSE 66-level data items must have a renames clause.

157 ERROR

MESSAGE

88-LEVEL ENTRY HAS NO VALUE CLAUSE.

CAUSE A value clause must be speci�ed for every condition-name.

158 ERROR

MESSAGE

ELEMENTARY ITEM HAS NO PICTURE.

CAUSE A 77-level or 49-level item is not usage index and has no picture clause or an
empty group description exists.

159 ERROR

MESSAGE

IMPROPER LEVEL NUMBER.

CAUSE The cause is one of the following:

1. A level number is not 66, 77, 88, or between 01 and 49.
2. A level number is immediately subordinate to a level whose subordinates are

not equal to it. For example, in the following, the level 04 is improper:

03...

05...

....

05...

....

04

3. A level 77 is in the �le section.
4. A level 88 is subordinate to an index item.
5. The �rst level number in a section is not 01 or 77.
6. The �rst level number subordinate to an FD or SD is not 01.
7. A level 88 is subordinate to a 66 level item.
8. A level 66 is subordinate to a 77 level item.

HP COBOL II Error Messages A-13

Questionable Errors

160 ERROR

MESSAGE

ILLEGAL CLAUSE FOR 66-LEVEL ENTRY.

CAUSE The only clause which may be speci�ed for a 66-level entry is the RENAMES
clause.

161 ERROR

MESSAGE

ILLEGAL REDEFINES CLAUSE.

CAUSE The item being rede�ned is not declared immediately subordinate to the item
containing the rede�nes clause, or the item being rede�ned is a table or
variable size item or, the item being rede�ned is a 66-level or 88-level item.

162 ERROR

MESSAGE

PICTURE CLAUSE IS ILLEGAL IN 66 AND 88 LEVEL ENTRIES.

CAUSE A picture clause has occurred in a 66-level or 88-level entry.

163 ERROR

MESSAGE

USAGE CLAUSE CONFLICTS WITH GROUP USAGE CLAUSE.

CAUSE The usage clause of an item must specify the same usage as any usage in any
group containing it.

164 ERROR

MESSAGE

SIGN CLAUSE CONFLICTS WITH GROUP SIGN CLAUSE.

CAUSE The sign clause may not be speci�ed for any item whose group contains a sign
clause. ANSI74 entry point only.

165 ERROR

MESSAGE

SIGN CLAUSE CONFLICTS WITH USAGE.

CAUSE The sign clause may only be speci�ed for items whose usage is display.

166 ERROR

MESSAGE

! CLAUSE IS ILLEGAL IN INDEX ITEMS.

CAUSE The JUSTIFIED, PICTURE, VALUE or BLANK WHEN ZERO clauses may
not be speci�ed for items whose usage is index.

167 ERROR

MESSAGE

REDEFINING ITEM ! DOES NOT IMMEDIATELY FOLLOW REDEFINED ITEM.

CAUSE Between an item containing a rede�ned clause and the item it rede�nes there
must be any entries which de�ne new character positions.

168 ERROR

MESSAGE

! CLAUSE IS ILLEGAL IN POINTER ITEMS

CAUSE The JUSTIFIED, PICTURE, SIGN, or BLANK WHEN ZERO clauses may
not be speci�ed for items whose usage is pointer.

A-14 HP COBOL II Error Messages

Questionable Errors

170 ERROR

MESSAGE

ILLEGAL RENAMES CLAUSE.

CAUSE A RENAMES clause may only be speci�ed in a 66-level item. The item(s) it
renames must be de�ned in the immediately preceding record and must be
special level (66,77,88) items, table items, table elements, or variable size items.
If the THRU phrase is used, the names must specify di�erent items, the
beginning of the second item may not be before the beginning of the �rst item,
and the end of the second item be after the end of the �rst item.

172 ERROR

MESSAGE

JUSTIFIED CLAUSE IS ILLEGAL IN DATA ITEMS WHICH ARE NOT EITHER

ALPHABETIC OR ALPHANUMERIC.

CAUSE The justi�ed clause may only be speci�ed for alphabetic and alphanumeric
items.

173 ERROR

MESSAGE

BLANK WHEN ZERO CLAUSE IS ILLEGAL FOR THIS ITEM.

CAUSE The blank when zero clause is legal only for items whose picture is numeric or
numeric edited and does not contain a *".

174 ERROR

MESSAGE

BLANK WHEN ZERO CLAUSE IS REDUNDANT FOR THIS ITEM.

CAUSE If all of the numeric character positions of a numeric edited item are
represented by \Z" then the item is implicitly BLANK WHEN ZERO.

175 ERROR

MESSAGE

EDIT PROGRAM FOR THIS PICTURE IS TOO BIG.

CAUSE If a picture is excessively complicated, it can generate an edit program which
will be too long to �t into a data table entry.

176 ERROR

MESSAGE

OCCURS CLAUSE IS ILLEGAL IN 77-LEVEL ITEMS.

CAUSE The occurs clause may not be speci�ed in 77 level items.

177 ERROR

MESSAGE

ILLEGAL PICTURE FOR NON-DISPLAY USAGE.

CAUSE If the usage of an item is comp, binary, packed-decimal, or comp-3 then the
picture must be numeric.

178 ERROR

MESSAGE

! CLAUSE IS ILLEGAL IN GROUP ITEMS.

CAUSE The BLANK WHEN ZERO, JUSTIFIED or SYNCHRONIZED clauses may
only be speci�ed for elementary items.

183 ERROR

MESSAGE

ILLEGAL SIGN IN LITERAL.

CAUSE A numeric literal in a value clause may not contain a sign if the corresponding
data item is an unsigned numeric data item.

HP COBOL II Error Messages A-15

Questionable Errors

184 ERROR

MESSAGE

ILLEGAL LITERAL.

CAUSE A literal has occurred in a value clause and either the corresponding data item
is an index item, the corresponding data item is numeric and the literal is
nonnumeric, or the corresponding data item is nonnumeric and the literal is
numeric.

185 ERROR

MESSAGE

MULTIPLE INITIAL VALUES FOR A DATA ITEM.

CAUSE When the value clause is used to specify an initial value for a data item it may
only specify one value. VALUE clause must not be speci�ed on a group and
also a subordinate item.

186 ERROR

MESSAGE

!! FOR !.

CAUSE This error message is for illegal or missing forward references. The insertions
are for the forward reference type, the name of the forward reference, and the
name of the �le or table containing the forward reference. The forward
reference types are table keys, alternate keys, depending on identi�ers, �le
status identi�ers, volume identi�ers, labels identi�ers, seq identi�ers, exdate
identi�ers, linage identi�ers, footing identi�ers, top identi�ers, bottom
identi�ers, padding character identi�ers and record varying identi�ers. Illegal
forward references could occur because the key or identi�er is in the wrong
section or has wrong usage or size. This error could also occur because it has
the wrong scope, that is, external �les must have external linage or padding
characters, depending on identi�ers must have global or external the same as
the table and be in the same DATA DIVISION.

188 ERROR

MESSAGE

LITERAL REQUIRES TRUNCATION OF NON-ZERO DIGITS.

CAUSE A numeric literal in a value clause speci�ed a value outside the range of values
possible for the associated data item.

189 ERROR

MESSAGE

LITERAL TOO LONG, TRUNCATED.

CAUSE A nonnumeric literal in a value clause is longer than the associated data item.

200 ERROR

MESSAGE

MULTIPLE OCCURRENCES OF FD-SD ENTRIES FOR FILENAME.

CAUSE The same name has been used in more than one FD or SD entry.

201 ERROR

MESSAGE

AREA A MUST BE BLANK IN A CONTINUATION RECORD.

CAUSE

A-16 HP COBOL II Error Messages

Questionable Errors

202 ERROR

MESSAGE

ILLEGAL COBOL CHARACTER IGNORED.

CAUSE Check list of legal COBOL characters.

205 ERROR

MESSAGE

RESERVED WORD ! NOT LEGAL IN THIS DIVISION.

CAUSE The speci�ed word is a Reserved word used in another division.

206 ERROR

MESSAGE

PICTURE CHARACTER STRING TOO LONG.

CAUSE Picture character string is limited to 30 characters.

207 ERROR

MESSAGE

ILLEGAL OCTAL DIGIT.

CAUSE

208 ERROR

MESSAGE

LITERAL TOO LONG.

CAUSE Nonnumeric or octal literal must not be longer than data item.

210 ERROR

MESSAGE

ILLEGAL DUPLICATION OF CLAUSES IN ! PARAGRAPH.

CAUSE In SPECIAL-NAMES OR OBJECT-COMPUTER paragraph.

211 ERROR

MESSAGE

ALPHABET-NAME ! HAS ALREADY BEEN USED.

CAUSE In program COLLATING SEQUENCE clause.

212 ERROR

MESSAGE

ILLEGAL IMPLEMENTOR-NAME !.

CAUSE An unknown name was used in mnemonic or alphabet clause.
Implementor-names are switch names, function names or alphabet names. Valid
function names are: SYSIN, SYSOUT, CONSOLE, C01-C16, TOP, or NO
SPACE CONTROL. Valid alphabet names are: EBCDIC, EBCDIK, NATIVE,
STANDARD-1 or STANDARD-2. Valid switch names are SW0 - SW15.

213 ERROR

MESSAGE

MNEMONIC-NAME ! HAS ALREADY BEEN USED.

CAUSE

214 ERROR

MESSAGE

ON-OFF CONDITION DOES NOT REFER TO A SWITCH.

CAUSE

216 ERROR

MESSAGE

NONNUMERIC LITERAL IN "!" PHRASE HAS MORE THAN ONE CHARACTER.

CAUSE The THRU or ALSO phrase in alphabet-name.

HP COBOL II Error Messages A-17

Questionable Errors

218 ERROR

MESSAGE

CURRENCY SIGN HAS MORE THAN ONE CHARACTER.

CAUSE

219 ERROR

MESSAGE

ILLEGAL SUBSTITUTE CURRENCY SIGN.

CAUSE

220 ERROR

MESSAGE

ILLEGAL COMBINATION OF FILE ORGANIZATION AND ACCESS METHODS.

CAUSE

221 ERROR

MESSAGE

MISSING FILE POSITION NUMBER(S).

CAUSE Missing �le position numbers in MULTIPLE FILE clause.

222 ERROR

MESSAGE

DUPLICATE FILE NAME ! IN MULTIPLE FILE TAPE CLAUSE.

CAUSE

223 ERROR

MESSAGE

DUPLICATE FILE POSITION IN MULTIPLE FILE TAPE CLAUSE.

CAUSE

224 ERROR

MESSAGE

FILE NAME ! NOT DEFINED IN SELECT CLAUSE.

CAUSE

225 ERROR

MESSAGE

FILE POSITION HAS MORE THAN 4 DIGITS.

CAUSE

226 ERROR

MESSAGE

FILE POSITION NUMBERS MUST START WITH 1.

CAUSE

227 ERROR

MESSAGE

FILE NAME ! IN MORE THAN ONE SAME RECORD AREA.

CAUSE

228 ERROR

MESSAGE

FILE NAME ! IN MORE THAN ONE SAME SORT/MERGE AREA.

CAUSE

229 ERROR

MESSAGE

FILE NAME ! IN MORE THAN ONE SAME AREA.

CAUSE

A-18 HP COBOL II Error Messages

Questionable Errors

230 ERROR

MESSAGE

FILE NAME ! HAS ALREADY BEEN USED.

CAUSE

232 ERROR

MESSAGE

DUPLICATE CHARACTER IN ALPHABET OR CLASS DEFINITION.

CAUSE

233 ERROR

MESSAGE

NUMERIC LITERAL IN ALPHABET/CLASS/SYMBOLIC CHARACTER HAS SIGN

,SIGN DROPPED.

CAUSE

234 ERROR

MESSAGE

NUMERIC LITERAL IN ALPHABET/CLASS/SYMBOLIC CHARACTER MUST BE 1

THRU !.

CAUSE For alphabets and classes the value is 256. For symbolic character the value
depends on the alphabet.

Note The term SYSTEM FILE NAME in ERROR MESSAGES 238 through 252 is
the same as the term FILE-INFO in the manual.

238 ERROR

MESSAGE

MISSING COMMA IN SYSTEM FILE NAME.

CAUSE See FILE-INFO for the ASSIGN clause.

239 ERROR

MESSAGE

ILLEGAL FORMAL FILE DESIGNATOR IN SYSTEM FILE NAME.

CAUSE See FILE-INFO for the ASSIGN clause.

240 ERROR

MESSAGE

FIRST CHARACTER OF FORMAL FILE DESIGNATOR MUST BE '$' OR

ALPHABETIC.

CAUSE See MPE restrictions for �le name.

241 ERROR

MESSAGE

FORMAL FILE DESIGNATOR ! HAS MORE THAN 8 CHARACTER !.

CAUSE See MPE restrictions for �le name.

242 ERROR

MESSAGE

ILLEGAL CHARACTER IN FORMAL FILE DESIGNATOR !.

CAUSE See MPE restrictions for �le name.

243 ERROR

MESSAGE

ILLEGAL DEVICE CLASS !.

CAUSE

HP COBOL II Error Messages A-19

Questionable Errors

244 ERROR

MESSAGE

ILLEGAL RECORDING MODE !.

CAUSE

245 ERROR

MESSAGE

ILLEGAL DEVICE NAME !.

CAUSE

246 ERROR

MESSAGE

DEVICE CODE MUST CONTAIN 3 DIGITS.

CAUSE

247 ERROR

MESSAGE

FILE SIZE HAS MORE THAN 9 DIGITS.

CAUSE

249 ERROR

MESSAGE

FORMS MESSAGE HAS MORE THAN 49 CHARACTERS.

CAUSE

250 ERROR

MESSAGE

FORMS MESSAGE MUST END WITH A PERIOD.

CAUSE

251 ERROR

MESSAGE

ILLEGAL LOCKING PARAMETER !.

CAUSE 'L' is locking parameter.

252 ERROR

MESSAGE

SYSTEM FILE NAME CONTAINS TOO MANY FIELDS.

CAUSE See FILE-INFO for the ASSIGN clause.

253 ERROR

MESSAGE

ILLEGAL COMBINATION OF SAME AREA AND SAME RECORD AREA FILES.

CAUSE Inconsistent combination of these clauses.

254 ERROR

MESSAGE

ILLEGAL COMBINATION OF SAME AREA AND SAME SORT AREA FILES.

CAUSE Inconsistent combination of these clauses.

258 ERROR

MESSAGE

! NOT IMPLEMENTED.

CAUSE MULTIPLE REEL/UNIT or REPORT WRITER, COMMUNICATION, or
level 2 DEBUG modules or the ENTER statement.

259 ERROR

MESSAGE

DEFAULT FILE NAME IS TEMPORARY NAMELESS FILE.

CAUSE

A-20 HP COBOL II Error Messages

Questionable Errors

260 ERROR

MESSAGE

FILE NAME ! IS NOT DEFINED IN THIS SCOPE.

CAUSE A �le access is being attempted in a scope in which the �le is not de�ned. The
'FD' may require the 'GLOBAL' clause.

262 ERROR

MESSAGE

KEY WORD "!" IGNORED.

CAUSE For CLOSE REEL/UNIT the close will not be performed. Otherwise the
keyword is ignored (END & BEFORE).

266 ERROR

MESSAGE

NAME OF "SD" ENTRY FOUND, EXPECTED "FD" ENTRY.

CAUSE I/O statements should reference an \FD" name.

267 ERROR

MESSAGE

NAME OF "FD" ENTRY FOUND, EXPECTED "SD" ENTRY.

CAUSE SORT and MERGE statements should reference an \SD" name.

268 ERROR

MESSAGE

LINAGE MUST BE SPECIFIED TO USE "WRITE AT END-OF-PAGE".

CAUSE A \WRITE AT END-OF-PAGE" was found for a �le without a LINAGE
clause speci�ed.

269 ERROR

MESSAGE

LINAGE MUST BE SPECIFIED TO USE "LINAGE-COUNTER."

CAUSE \LINAGE-COUNTER" was reference for a �le which does not have a LINAGE
clause.

272 ERROR

MESSAGE

INTRINSIC RETURN VALUE MISMATCH.

CAUSE The GIVING operand does not match intrinsic de�nition.

273 ERROR

MESSAGE

INCOMPATIBLE NUMBER OF PARAMETERS FOR INTRINSIC !.

CAUSE The number of parameters in the USING phrase of the CALL statement is
incompatible with the parameter count speci�ed for the intrinsic in the
SYSINTR �le. The intrinsic does not have OPTION
EXTENSIBLE/VARIABLE.

274 ERROR

MESSAGE

INVALID SCOPE FOR THIS $ COMMAND.

CAUSE This command is in e�ect for all programs in the �le and, therefore, must
appear within or before the IDENTIFICATION DIVISION of the �rst program
in the �le. This applies to the $CONTROL CODE, NOCODE, VERBS,
NOVERBS, SYMDEBUG, and OPTIMIZE options.

281 ERROR

MESSAGE

INVALID MACRO NAME, EXPECTED ! AS FIRST CHARACTER.

CAUSE

HP COBOL II Error Messages A-21

Questionable Errors

282 ERROR

MESSAGE

INVALID SUBSYSTEM COMMAND PARAMETER.

CAUSE Invalid or missing parameter.

283 ERROR

MESSAGE

INVALID SUBSYSTEM COMMAND.

CAUSE

284 ERROR

MESSAGE

TOO MANY PARAMETERS IN MACRO CALL.

CAUSE Check macro de�nition.

285 ERROR

MESSAGE

INVALID FILENAME IN $INCLUDE COMMAND.

CAUSE

286 ERROR

MESSAGE

INVALID CHARACTER IN $PREPROCESSOR COMMAND.

CAUSE

287 ERROR

MESSAGE

PSEUDO-TEXT CAN'T BE NULL, BLANK, COMMA, OR SEMICOLON.

CAUSE Pseudo-text-1 ignored in COPY REPLACING or REPLACE statement.

288 ERROR

MESSAGE

INVALID IDENTIFIER USED AS QUALIFIER.

CAUSE Quali�er in COPY REPLACING or REPLACE identi�er.

289 ERROR

MESSAGE

INVALID TOKEN IN COPY . . . REPLACING OR REPLACE CLAUSE.

CAUSE

290 ERROR

MESSAGE

ILLEGAL TERMINATION OF NONNUMERIC LITERAL !.

CAUSE

291 ERROR

MESSAGE

UNABLE TO FIND LIBRARY MODULE !.

CAUSE The speci�ed library module was not found in the COPYLIB �le. The speci�ed
name is not valid.

306 ERROR

MESSAGE

VOL MUST BE A NONNUMERIC LITERAL <= 6 CHARACTERS LONG.

CAUSE When the VOL phrase of the value of clause speci�es a literal, the literal must
be nonnumeric and no more than six characters long.

A-22 HP COBOL II Error Messages

Questionable Errors

307 ERROR

MESSAGE

LABELS MUST BE NONNUMERIC LITERAL = "IBM" OR "ANS".

CAUSE When the LABELS phrase of the value of clause speci�es a literal, the literal
must be \IBM" or \ANS".

308 ERROR

MESSAGE

SEQ MUST BE AN UNSIGNED NUMERIC LITERAL.

CAUSE When the SEQ phrase of the value of clause speci�es a literal, the literal must
be numeric and unsigned.

309 ERROR

MESSAGE

EXDATE MUST BE NONNUMERIC LITERAL OF THE FORM "MM/DD/YY".

CAUSE When the EXDATE phrase of the value of clause speci�es a literal, the literal
must be nonnumeric and of the form \MM/DD/YY".

310 ERROR

MESSAGE

LINAGE MUST BE AT LEAST 1.

CAUSE When the lines phrase of the LINAGE clause speci�es an integer it must be
>=1.

311 ERROR

MESSAGE

FOOTING MAY NOT BE LESS THAN 1.

CAUSE When the footing phrase of the LINAGE clause speci�es an integer, it is
necessary that 1<= footing integer <= LINAGE integer (if speci�ed).

312 ERROR

MESSAGE

FOOTING MAY NOT BE GREATER THAN LINAGE.

CAUSE When the footing phrase of the LINAGE clause speci�es an integer, it is
necessary that 1 <= footing integer <= LINAGE integer (if speci�ed).

314 ERROR

MESSAGE

! MAY NOT BE LESS THAN 0.

CAUSE When the TOP or BOTTOM phrase of the LINAGE clause speci�es an integer
it must be >=0.

318 ERROR

MESSAGE

FILE RECORD ! SMALLER THAN MINIMUM SIZE IN RECORD CONTAINS CLAUSE.

CAUSE When the record contains clause is speci�ed in an FD or SD every record
subordinate to that �le description must have a size that is within the speci�ed
bounds.

319 ERROR

MESSAGE

FILE RECORD ! LARGER THAN MAXIMUM SIZE IN RECORD CONTAINS CLAUSE.

CAUSE When the record contains clause is speci�ed in an FD or SD every record
subordinate to that �le description must have a size that is within the speci�ed
bounds.

HP COBOL II Error Messages A-23

Questionable Errors

320 ERROR

MESSAGE

FILE ! RECORD SIZE IS ZERO.

CAUSE When the largest record for a �le is 0 characters and there is a block contains
clause in the �le description which contains the characters phrase, it is
impossible to compute the blocking factor.

321 ERROR

MESSAGE

INTEGER-1 MUST BE <= INTEGER-2 IN 'TO' PHRASE.

CAUSE

322 ERROR

MESSAGE

INVALID REFERENCE MODIFICATION.

CAUSE Either the starting position or length is incorrect or the item is not USAGE
DISPLAY.

330 ERROR

MESSAGE

ILLEGAL INTRINSIC FUNCTION NAME !.

CAUSE The speci�ed name is not valid.

331 ERROR

MESSAGE

WRONG NUMBER OF ARGUMENTS FOR FUNCTION !.

CAUSE An incorrect number of arguments was speci�ed or the function doesn't take
ALL for subscripts.

337 ERROR

MESSAGE

NEXT SENTENCE IS ILLEGAL WITH END-IF OR END-SEARCH.

CAUSE The NEXT SENTENCE phrase must not be used when an explicit scope
terminator exists.

338 ERROR

MESSAGE

AFTER PHRASE IS ILLEGAL WITH INLINE PERFORM.

CAUSE

347 ERROR

MESSAGE

PROCEDURE ! HAS MORE THAN ONE DEBUGGING SECTION.

CAUSE The speci�ed procedure-name is included in more than one USE FOR
DEBUGGING Statement.

348 ERROR

MESSAGE

DEBUGGING SECTION AFTER NON-DEBUGGING SECTION.

CAUSE A Debugging Section was found after a non-debugging Section. If the ALL
PROCEDURES phrase is speci�ed, the sections prior to the Debugging Section
would not cause the Debugging Section to be executed.

A-24 HP COBOL II Error Messages

Questionable Errors

349 ERROR

MESSAGE

REFERENCE TO A DEBUG-ITEM OUTSIDE OF A DEBUG SECTION.

CAUSE A reference to DEBUG-ITEM or one of its subordinate items was made outside
of a Debugging Section.

350 ERROR

MESSAGE

NO CORRESPONDING OR INITIALIZE ITEMS FOUND.

CAUSE A CORRESPONDING statement has no CORRESPONDING pairs. An
INITIALIZE statement didn't �nd any items.

351 ERROR

MESSAGE

REFERENCE TO ! IS NOT UNIQUE.

CAUSE Reference needs additional quali�cation(s) to make it unique.

352 ERROR

MESSAGE

ILLEGAL CORRESPONDING OPERAND.

CAUSE The operands are of the wrong type, that is, non-numeric for ADD or
SUBTRACT.

354 ERROR

MESSAGE

COMPILER ERROR: INVALID SYMBOL/DATA TABLE REFERENCE.

CAUSE An invalid symbol or data table reference has occurred internal to compiler.
See directions on line .3 of the �le COBCAT.PUB.SYS if it is the only error or
warning.

355 ERROR

MESSAGE

SECTION HEADER MUST PRECEDE PARAGRAPH.

CAUSE The program has an improper construct, for example, it has a section
appearing in a PROCEDURE DIVISION starting with a paragraph.

356 ERROR

MESSAGE

UNDEFINED DATA NAME !.

CAUSE The referenced data name is unde�ned, replaced by TALLY.

357 ERROR

MESSAGE

DUPLICATE PARAGRAPH OR SECTION NAME: !.

CAUSE A duplicate paragraph or section name appears.

358 ERROR

MESSAGE

ILLEGAL PARAGRAPH OR SECTION NAME !.

CAUSE A paragraph or section name is illegal, for example, a signed numeric literal.

359 ERROR

MESSAGE

UNDEFINED OR IMPROPER PROCEDURE NAME: !.

CAUSE The referenced procedure name is unde�ned or improper, for example, data
name, signed numeric literal, or paragraph name where section name is
required. It could also occur if the paragraph name does not appear in the
current section and duplicate names appear in other sections. No code is
generated for the statement.

HP COBOL II Error Messages A-25

Questionable Errors

360 ERROR

MESSAGE

ILLEGAL GO TO STATEMENT.

CAUSE The GO TO statement is incorrect, for example, GO TO. appears, but it is not
the �rst statement in a paragraph, so it can't be ALTERed.

361 ERROR

MESSAGE

ILLEGAL ALTER STATEMENT.

CAUSE The ALTER statement references a non-existent paragraph name or it does not
reference an alterable GO TO.

362 ERROR

MESSAGE

ILLEGAL PERFORM TIMES COUNT.

CAUSE The count must be an unsigned, positive integer.

363 ERROR

MESSAGE

RECURSIVE PERFORM.

CAUSE The PERFORM statement is recursive through itself or its parent. Use of
recursive PERFORMs, although an ANSI extension in HP COBOLII, is not
recommended for upward compatibility to future HP systems.

364 ERROR

MESSAGE

TOO MANY PARAMETERS.

CAUSE A CALL statement or USING option contains too many parameters. The
maximum number of parameters on HP COBOL II/XL is 255. The maximum
number of parameters on HP COBOL II/V is 60.

365 ERROR

MESSAGE

ILLEGAL RELATIONAL COMPARE.

CAUSE For example, comparing CONDITION-CODE against non-zero literal. Also,
CLASS test on the wrong category operands, or abbreviated relation condition
without subjects.

366 ERROR

MESSAGE

COMPOSITE OF OPERANDS TOO BIG.

CAUSE The composite of operands for the statement is more than 18 digits.

367 ERROR

MESSAGE

ILLEGAL NUMERIC OPERAND !.

CAUSE The operand is not an allowed numeric operand. The reference is replaced with
a reference to TALLY.

368 ERROR

MESSAGE

REFERENCE TO ! BY ! IS NOT UNIQUE.

CAUSE The reference to the data item named requires further quali�cation to be
unique. Reference is used as a key or DEPENDING ON variable.

A-26 HP COBOL II Error Messages

Questionable Errors

369 ERROR

MESSAGE

ILLEGAL FUNCTION NAME !.

CAUSE Mnemonic-name is ACCEPT/DISPLAY statements may only be SYSIN,
SYSOUT or CONSOLE. The function name is changed to SYSIN/OUT.

370 ERROR

MESSAGE

ILLEGAL STATEMENT FORMAT.

CAUSE For example, PERFORM-VARYING statement with more than 7 levels.
ACCEPT . . . ON INPUT ERROR without the FREE option. SEARCH ALL
with missing keys or referencing the same key twice.

371 ERROR

MESSAGE

INTRINSIC ! NOT FOUND IN INTRINSIC FILE.

CAUSE The system intrinsic �le (SYSINTR.PUB.SYS) does not contain the intrinsic.

372 ERROR

MESSAGE

INVALID RECORD NAME !.

CAUSE The record name in this WRITE, REWRITE, or RELEASE statement is not
an \01" level item. No code is generated for this statement.

373 ERROR

MESSAGE

LINKAGE SECTION WITHOUT $CONTROL SUBPROGRAM/DYNAMIC; SUBPROGRAM

ASSUMED.

CAUSE A LINKAGE SECTION header was found in a program which does not
contain a $CONTROL command with either the SUBPROGRAM or
DYNAMIC parameter speci�ed. Compilation continues as if $CONTROL
SUBPROGRAM has been speci�ed.

374 ERROR

MESSAGE

UNINITIALIZED GO TO IN ! NOT REFERENCED IN AN ALTER STATEMENT.

CAUSE A GO TO statement without a procedure name speci�ed was found without a
corresponding ALTER statement.

377 ERROR

MESSAGE

CALL TO ! HAS A DIFFERENT PARAMETER COUNT THAN A PREVIOUS CALL.

CAUSE The number of parameters listed in the USING phrase of a CALL statement is
di�erent than a previous call to the same routine.

378 ERROR

MESSAGE

NON-UNIQUE INTERNAL (RBM) NAME !.

CAUSE Two non-contiguous sections have the same internal name. The internal name
is formed by taking the �rst 12 non-hyphen characters and adding the segment
number and a single quote ('). For example, PROCESS-INPUT-RECORD
SECTION 01 has the internal name PROCESSINPUT01'.

HP COBOL II Error Messages A-27

Questionable Errors

379 ERROR

MESSAGE

FROM/INTO IDENTIFIER ! SHARES SAME AREA AS RECORD-NAME.

CAUSE The compiler has found a READ, REWRITE, RELEASE, RETURN, or
WRITE statement that refers to the same area as the record-name reserved for
the �le.

380 ERROR

MESSAGE

INVALID USE OF A SEPARATOR CHARACTER.

CAUSE

381 ERROR

MESSAGE

MISSING PERIOD IN COPY OR REPLACE STATEMENT.

CAUSE The statement must be terminated by a period.

382 ERROR

MESSAGE

ERROR OR MISSING PROGRAM-ID PARAGRAPH.

CAUSE

383 ERROR

MESSAGE

INCORRECT TABLE REFERENCE OR IMPROPER SUBSCRIPTING.

CAUSE For example, illegal subscript is used, or table reference as simple variable, or
index-name does not belong to table-name or too many or too few subscripts,
or subscripts beyond 7. This will also occur when ALL is incorrectly used as a
subscript.

384 ERROR

MESSAGE

CODEGEN INTERNAL ERROR IN !.

CAUSE Some type of error occurred in the code generator of the compiler. Errors
5000-7999 are substituted for !. For 5209 through 5211, this is probably due to
some type of user error on the COBOBJ �le. For 7204 through 7207, the object
�le, COBOBJ, is too small or there was some kind of error writing to it, such
as $NULL. For errors 5213 through 5214, this is probably due to some type of
user error on the COBASSM �le. For errors 5380 through 5383, 5980 or 5985
through 5990, this is probably some type of user error on the COBOBJ �le as a
NMRL. For error 6305, and this occurs with $OPTIMIZE, this is a compiler
limitation; you must remove $OPTIMIZE. For all other errors, see directions
on line .3 of the �le COBCAT.PUB.SYS if it is the only error or warning.

387 ERROR

MESSAGE

ILLEGAL MOVE.

CAUSE A move statement (or an implied move statement, for example, a write from)
has an illegal combination of \from" and \to" operands, or the number of digits
to move is greater than 31 on HP COBOL II/XL or 28 on HP COBOL II/V.

388 ERROR

MESSAGE

ILLEGAL COMPARE.

CAUSE The subject and object of a relational operator are incompatible.

A-28 HP COBOL II Error Messages

Questionable Errors

389 ERROR

MESSAGE

PARAMETER ! IS NOT ALIGNED PROPERLY.

CAUSE A data item being passed by reference is required to be on a word or half-word
boundary. Use SYNC or move to 01/77. For CM, it is 16-bit word boundary
only.

390 ERROR

MESSAGE

COMPILER ERROR: UNIMPLEMENTED CASE ! IN PROCEDURE !.

CAUSE The compiler was not prepared for a given situation. See directions on line .3 of
the �le COBCAT.PUB.SYS if it is the only error or warning.

391 ERROR

MESSAGE

ENTRY STATEMENT NOT ALLOWED IN MAIN PROGRAM OR IN DECLARATIVES

SECTION.

CAUSE An ENTRY statement has been found in the Declaratives Section of the
program. The compiler ignores the ENTRY statement.

392 ERROR

MESSAGE

'DELIMITER IN' OR 'COUNT IN' PHRASE WITHOUT 'DELIMITED BY' PHRASE.

CAUSE The DELIMITER IN and COUNT IN phrases of the UNSTRING statement
may only be used if a DELIMITED BY phrase is speci�ed.

393 ERROR

MESSAGE

DUPLICATE ENTRY POINT NAME !.

CAUSE The same name is used in more than one ENTRY statement or the name used
in an ENTRY statement is the same as the name in the PROGRAM-ID
paragraph. Entry names are formed from the �rst 30 non-hyphen characters.

394 ERROR

MESSAGE

!! EXPECTED FOR PARAMETER #!.

CAUSE The parameter passed to the intrinsic cannot be mapped to the type of
parameter the intrinsic expects.

395 ERROR

MESSAGE

NUMBER OF SUBJECTS ! OBJECTS IN EVALUATE.

CAUSE The number of objects on each WHEN must match the number of subjects.

396 ERROR

MESSAGE

BEFORE/AFTER CLAUSE SPECIFIED TWICE IN INSPECT.

CAUSE

HP COBOL II Error Messages A-29

Questionable Errors

397 ERROR

MESSAGE

ILLEGAL OBJECT OPERAND FOR EVALUATE SUBJECT.

CAUSE The type of the object operand does not match its corresponding subject. For
example, comparing TRUE with an item instead of a condition. Or comparing
an item or literal with a condition.

398 ERROR

MESSAGE

ILLEGAL OPERAND ! FOR INITIALIZE.

CAUSE The operand does not exist or is illegal.

399 ERROR

MESSAGE

REPLACING CATEGORY IS SPECIFIED TWICE IN INITIALIZE.

CAUSE

A-30 HP COBOL II Error Messages

Serious Errors

Serious Errors

401 ERROR

MESSAGE

ASSIGN CLAUSE REQUIRED WITH SELECT STATEMENT.

CAUSE

402 ERROR

MESSAGE

MISSING ! KEY CLAUSE.

CAUSE RELATIVE, RECORD or ACTUAL KEY is missing.

403 ERROR

MESSAGE

FUNCTION NOT ALLOWED AS OPERAND.

CAUSE Functions are not allowed in the following cases:

1. Target of any statement.
2. Operand of a call.
3. Where speci�c rules of the statement disallow functions.

404 ERROR

MESSAGE

NUMERIC FUNCTION NOT ALLOWED AS OPERAND.

CAUSE Numeric functions are only allowed in arithmetic expressions.

405 ERROR

MESSAGE

TOO MANY KEY CLAUSES.

CAUSE More than one RELATIVE clause, or RECORD clause, or ACTUAL KEY
clause appears. Or the �le organization does not support keys. That is, the
organization is sequential.

406 ERROR

MESSAGE

! ! FOR !.

CAUSE This error message is for illegal or missing forward references. The insertions
are for the forward reference type, the name of the forward reference, and the
name of the �le or table containing the forward reference. The forward
reference types are relative keys, record keys, and actual keys.

409 ERROR

MESSAGE

ILLEGAL OPERAND ! IN SET STATEMENT.

CAUSE One of the operands must be an INDEX-NAME, MNEMONIC-NAME or
CONDITION-NAME. Any identi�ers must be numeric integers.

HP COBOL II Error Messages A-31

Serious Errors

410 ERROR

MESSAGE

SYNTAX ERROR. FOUND: !; EXPECTING ONE OF THE FOLLOWING:!!.

CAUSE An item appears in some context that the compiler cannot recognize. The
items which are allowed at this point are listed. EXPECTING . . .
Disabled reserved word probably means the wrong entry was used to invoke
the compiler. The compiler attempts to recover from this error.

412 ERROR

MESSAGE

PARAMETER ! MUST BE 01 OR 77 LEVEL ITEM IN LINKAGE SECTION.

CAUSE An illegal parameter was used in a PROCEDURE DIVISION USING
statement.

413 ERROR

MESSAGE

FILE NAME ! DOES NOT APPEAR IN A SELECT CLAUSE AND/OR FD/SD ENTRY

IS NOT UNIQUE.

CAUSE A name that appears in an FD or SD entry in the DATA DIVISION did not
appear in a SELECT clause in the ENVIRONMENT DIVISION or the the
name is not unique.

414 ERROR

MESSAGE

! IS AN ILLEGAL KEY.

CAUSE The data names identi�ed as sort/merge keys must be described within the
records associated with the Sort/Merge �le. For READ and START
statements, the KEY phrase must reference a valid key for the Relative or
Indexed �le.

415 ERROR

MESSAGE

INVALID LIBRARY OR TEXT-NAME.

CAUSE

416 ERROR

MESSAGE

COPYLIB OR $INCLUDE NESTED TOO DEEP.

CAUSE The maximum $INCLUDE/COPY nesting is 10.

417 ERROR

MESSAGE

MACRO DEFINITION MAXIMUM LENGTH EXCEEDED.

CAUSE Errors 417 and 418 may cause error 461.

418 ERROR

MESSAGE

PSEUDO-TEXT-BUFFER OVERFLOW.

CAUSE Errors 417 and 418 may cause error 461.

419 ERROR

MESSAGE

MOVE OR COMPARE >32 K BYTES.

CAUSE A MOVE statement or condition clause exceeds the maximum character limit.

A-32 HP COBOL II Error Messages

Serious Errors

420 ERROR

MESSAGE

SECTION MISPLACED OR DUPLICATED.

CAUSE FILE SECTION, WORKING-STORAGE SECTION and LINKAGE
SECTION must appear in that order when used.

421 ERROR

MESSAGE

OPERAND ! HAS ILLEGAL FORMAT FOR STATEMENT.

CAUSE This type of operand may not be used in the ACCEPT or DISPLAY
statements.

Bad identi�er-1 for CALL or identi�er for CALL INTRINSIC.

EXAMINE identi�er not usage DISPLAY or literals not one character.

GO TO . . . DEPENDING identi�er not an integer.

INSPECT operands not usage DISPLAY or literals. (All but tallying
identi�er-2, which must be numeric.)

INSPECT identi�er-1 not usage DISPLAY or a group.

CHARACTERS operands must be one character.

Replacing operands must be of the same size.

Invalid identi�er-1 or identi�er-2 for SEARCH. SEARCH ALL must have an
INDEXED or KEY clause.

SEARCH ALL must have a key referenced in each condition.

STRING and UNSTRING POINTER must be numeric and large enough.

STRING INTO operands must be alphanumeric without JUST.

STRING source and delimiter operands must be usage DISPLAY or
nonnumeric literals without ALL.

UNSTRING identi�er-1 must be usage DISPLAY.

UNSTRING DELIMITED BE operands must be usage DISPLAY or
nonnumeric literals without ALL.

UNSTRING identi�er-4 must be usage DISPLAY and not edited.

UNSTRING identi�er-5 must be usage DISPLAY and not edited.

POINTER, COUNT, TALLYING operands must be integers with no P.

Parameters to a FUNCTION must be of the correct type. That is, numeric
or integer passed to alphanumeric or numeric passed to integer.

422 ERROR

MESSAGE

SIZE OF DATA SEGMENT GREATER THAN {1G OR 64K} BYTES.

CAUSE The upper limit on the size of the data area has been reached. The maximum
is 1G bytes on HP COBOL II/XL and 64K bytes on HP COBOL II/V.

HP COBOL II Error Messages A-33

Serious Errors

423 ERROR

MESSAGE

MORE THAN 500 ENTRIES IN A GO TO DEPENDING ON STATEMENT.

CAUSE A GO TO DEPENDING ON statement has too many paragraph/section
names in the list.

424 ERROR

MESSAGE

MORE THAN {255/57} NON-REDEFINED 01/77 LEVEL ITEMS IN LINKAGE

SECTION.

CAUSE The limit of independent 01/77 level items in the LINKAGE SECTION has
been exceeded. The maximum is 255 on HP COBOL II/XL and 57 on HP
COBOL II/V. Use REDEFINES if possible.

425 ERROR

MESSAGE

PARAMETER #! MAY NOT BE A LITERAL.

CAUSE A literal is attempted to be passed to an intrinsic which expects an array or a
pointer.

426 ERROR

MESSAGE

ILLEGAL END PROGRAM HEADER.

CAUSE Check that the program-name here matches the one in the IDENTIFICATION
DIVISION.

427 ERROR

MESSAGE

PROGRAM-ID ! NOT UNIQUE.

CAUSE Program names in a compilation unit must be unique.

428 ERROR

MESSAGE

MISSING END PROGRAM HEADER FOR PROGRAM !.

CAUSE Batched or nested programs require END PROGRAM headers.

A-34 HP COBOL II Error Messages

Disastrous Errors

Disastrous Errors

450 ERROR

MESSAGE

USL FILE OVERFLOW.

CAUSE The USL �le may overow under the following conditions: A $CONTROL
USLINIT command may be missing, the default size of 1023 records may be
too small, or there may not be enough records left in the usl �le.

451 ERROR

MESSAGE

PARSE STACK OVERFLOW; POSSIBLE LIMIT EXCEEDED.

CAUSE The parse stack in compiler overowed. This may have been caused by too
many levels of nesting of IF . . . THEN . . . ELSE statements. This could also
be caused by error 410. This could occur instead of error 423.

452 ERROR

MESSAGE

EARLY END OF FILE ON COBOL SOURCE.

CAUSE This could occur with the following errors:

1. The syntax of a COPY or REPLACE statement is incorrect.
2. A syntax error in the program. For example, a period may be missing

making the IDENTIFICATION DIVISION paragraph incorrect.

453 ERROR

MESSAGE

BAD INTRINSIC FILE.

CAUSE The system intrinsic �le (SYSINTR.PUB.SYS) is not in the proper format.

454 ERROR

MESSAGE

READ ERROR ON IDS FILE.

CAUSE An error has occurred while trying to do a read on the IDS �le (an internal
temporary �le). The most likely cause is a serious compiler problem. See
directions on line .4 of the �le COBCAT.PUB.SYS.

455 ERROR

MESSAGE

WRITE ERROR ON IDS FILE.

CAUSE An error has occurred while trying to do a write to the IDS �le (an internal
temporary �le). See line .4 of the �le COBCAT.PUB.SYS, if compiler problem.
This can be caused by a serious compiler problem, an excessively large source
�le, or a lack of disk space.

456 ERROR

MESSAGE

OPEN ERROR ON IDS FILE.

CAUSE An error has occurred while trying to open the IDS �le (an internal temporary
�le). The most likely cause of this is lack of disk space.

457 ERROR

MESSAGE

COMPILER ERROR: OUT OF IDS FILE BUFFERS.

CAUSE This can be caused by a compiler problem or by statements too complex or
with too many operands.

HP COBOL II Error Messages A-35

Disastrous Errors

458 ERROR

MESSAGE

COMPILER ERROR: INVALID INTERNAL LABEL.

CAUSE The compiler has generated or referenced an invalid internal label number.
This could also be caused by too many VALUE clauses on table elements. If
the error is not in the DATA DIVISION or it is the only error, then see
directions on line .3 of the �le COBCAT.PUB.SYS.

459 ERROR

MESSAGE

TOO MANY VALUE CLAUSES.

CAUSE USL entry overows maximum size. Reduce the number of VALUE clauses, for
example, by combining at group level.

460 ERROR

MESSAGE

MISSING IDENTIFICATION DIVISION, COMPILATION TERMINATED.

CAUSE

461 ERROR

MESSAGE

DYNAMIC ARRAY ERROR, OUT OF SPACE.

CAUSE The number of macros, size of one macro or copylib member is too big. May be
caused instead of 417 and 418.

462 ERROR

MESSAGE

AVAILABLE MEMORY INSUFFICIENT FOR COMPILATION.

CAUSE Refer to error 471 for possible problem cause. If not applicable, see directions
on line .3 of the �le COBCAT.PUB.SYS.

463 ERROR

MESSAGE

READ ERROR ON SYMBOL TABLE FILE.

CAUSE An error has occurred while trying to read from the symbol table �le (an
internal temporary �le). See directions on line .4 of the �le COBCAT.PUB.SYS.
The most likely cause of this is a serious compiler error.

464 ERROR

MESSAGE

READ ERROR ON DATA TABLE FILE.

CAUSE An error occurred while trying to read from the data table �le (an internal
temporary �le). See directions on line .4 of the �le COBCAT.PUB.SYS. The most
likely cause of this is a serious compiler error.

465 ERROR

MESSAGE

WRITE ERROR ON SYMBOL TABLE FILE.

CAUSE An error has occurred while trying to write to the symbol table �le (an internal
temporary �le). See directions on line .4 of the �le COBCAT.PUB.SYS. This can
be caused by a compiler error or by a lack of disk space.

466 ERROR

MESSAGE

WRITE ERROR ON DATA TABLE FILE.

CAUSE An error has occurred while trying to write to the data table �le (an internal
temporary �le). See directions on line .4 of the �le COBCAT.PUB.SYS. This can
be caused by a compiler error or by a lack of disk space.

A-36 HP COBOL II Error Messages

Disastrous Errors

467 ERROR

MESSAGE

OPEN ERROR ON SYMBOL TABLE FILE.

CAUSE An error has occurred while trying to open the symbol table �le (an internal
temporary �le). See directions on line .4 of the �le COBCAT.PUB.SYS. The most
likely cause of this is a lack of disk space.

468 ERROR

MESSAGE

OPEN ERROR ON DATA TABLE FILE.

CAUSE An error has occurred while trying to open the data table �le (an internal
temporary �le). See directions on line .4 of the �le COBCAT.PUB.SYS. The most
likely cause of this is a lack of disk space.

470 ERROR

MESSAGE

USL FILE (DIRECTORY) OVERFLOW.

CAUSE The directory area of the USL �le does not have enough space for the current
entry.

471 ERROR

MESSAGE

CODE SEGMENT EXCEEDS 16 K.

CAUSE A compiled code segment is too large. Use COBOL SECTION entries to break
up the code segments. (If not in initialization section, that is, for VALUE
clauses.)

491 ERROR

MESSAGE

UNABLE TO OPEN FILE !.

CAUSE

492 ERROR

MESSAGE

UNABLE TO USE FILE !.

CAUSE

493 ERROR

MESSAGE

READ FAILURE ON FILE !.

CAUSE

494 ERROR

MESSAGE

WRITE FAILURE ON FILE !.

CAUSE This could occur on writes to COBXREF. The disc �le is not big enough to
contain all of its data. The �lesize can be increased with the �le equation

:FILE COBXREF;DISC=nnnnn

495 ERROR

MESSAGE

UNABLE TO CLOSE FILE !.

CAUSE

HP COBOL II Error Messages A-37

Disastrous Errors

496 ERROR

MESSAGE

EARLY END OF FILE ON FILE !.

CAUSE This could occur with the following errors:

Syntax of COPY or REPLACE statement is bad.
Syntax in program, such as a period is missing.
IDENTIFICATION DIVISION paragraph is incorrect.

This could occur on writes to COBLIST, COBTEMP, COBMAC, or
COBXDB. The disc �le is not big enough to contain all of its data. The �lesize
can be increased with a �le equation

:FILE COBTEMP;DISC=nnnnn

498 ERROR

MESSAGE

UNABLE TO SAVE FILE !.

CAUSE

A-38 HP COBOL II Error Messages

Nonstandard Warnings

Nonstandard Warnings

500 ERROR

MESSAGE

INTERNAL SORT/MERGE ERROR ! (COBERR 500)

CAUSE This is a run-time error. See the section \Run-Time Errors" later in this
appendix for more information.

503 ERROR

MESSAGE

NONSTANDARD ORDERING OF CLAUSES OBJECT-COMPUTER PARAGRAPH.

CAUSE

505 ERROR

MESSAGE

PROCESSING MODE CLAUSE IS NONSTANDARD.

CAUSE

509 ERROR

MESSAGE

STATEMENT MUST BEGIN IN AREA A IN STANDARD COBOL.

CAUSE

510 ERROR

MESSAGE

STATEMENT MUST NOT BEGIN IN AREA A IN STANDARD COBOL.

CAUSE

512 ERROR

MESSAGE

FILE LIMITS CLAUSE IS NONSTANDARD.

CAUSE

514 ERROR

MESSAGE

A SPACE IS REQUIRED AFTER COMMA (,) OR SEMICOLON (;).

CAUSE

515 ERROR

MESSAGE

! IS IN THE INTERMEDIATE FIPS LEVEL.

CAUSE

516 ERROR

MESSAGE

! IS IN THE HIGH FIPS LEVEL.

CAUSE

517 ERROR

MESSAGE

! IS A HEWLETT-PACKARD COBOL II EXTENSION.

CAUSE

519 ERROR

MESSAGE

! (OPTIONAL MODULE).

CAUSE Occurs for DEBUG and SEGMENTATION FIPS agging.

HP COBOL II Error Messages A-39

Nonstandard Warnings

520 ERROR

MESSAGE

ITEM REDEFINES AN ITEM CONTAINING A REDEFINES CLAUSE.

CAUSE An item may not rede�ne an item that contains a rede�nes clause.

See also error 520 ITEM REDEFINES AN ITEM CONTAINING A REDEFINES

CLAUSE in the section \Run-Time Errors."

521 ERROR

MESSAGE

REDEFINE OF FILE RECORD IGNORED.

CAUSE The rede�nes clause is illegal at the 01-level in the �le section.

522 ERROR

MESSAGE

!! FOR !.

CAUSE This error message is for non-standard forward references. The insertions are
for the forward reference type, the name of the reference, and the name of the
�le or table containing the forward reference. The forward reference types are
signed relative keys and depending on identi�ers, non-alphanumeric record
keys, and non-alphanumeric alternate record keys. These are incompatibility
warnings.

526 ERROR

MESSAGE

! IS AN OBSOLETE LANGUAGE ELEMENT FOR COBOL85.

CAUSE

527 ERROR

MESSAGE

USE OF ! FEATURE MAY BE INCOMPATIBLE IN COBOL85.

CAUSE

A-40 HP COBOL II Error Messages

Run-Time Errors

Run-Time Errors

Errors that can occur while your program is executing are listed here. Some error messages
include a number in square brackets. These numbers indicate the �le status codes.

Unless otherwise indicated, the following action is taken for a run-time I/O error (messages
520 through 699 are I/O errors).

The error message is printed.

If the error is �le related (most are) the �le system error is printed and a PRINTFILEINFO
is executed.

If a USE procedure, an AT END clause, an INVALID KEY clause, or a FILE STATUS
word is speci�ed (that is, you have some programmatic way to detect the error), then
execution is allowed to continue. In most cases the error message is suppressed. Otherwise a
QUIT is issued to terminate the program. For more information see \Input-Output Error
Handling Procedures" in Chapter 8.

See also Appendix H for more information on handling run-time errors.

HP COBOL II Error Messages A-41

Run-Time Errors

500 ERROR

MESSAGE

INTERNAL SORT/MERGE ERROR ! (COBERR 500)

CAUSE See previous errors, for the detailed HPSORT error. The substitution is the
status returned by HPSORT.

520 ERROR

MESSAGE

ATTEMPT TO CLOSE A FILE THAT IS NOT OPEN [42] (COBERR 520)

CAUSE An attempt was made to CLOSE a �le which is not open. This is usually the
result of a program logic error. Remove the redundant CLOSE statement or
insert any necessary OPEN statement and recompile the source program.

See also error 520 ITEM REDEFINES AN ITEM CONTAINING A REDEFINES

CLAUSE in the section \Nonstandard Warnings".

540 ERROR

MESSAGE

ATTEMPT TO OPEN A FILE THAT IS OPEN [41] (COBERR 540)

CAUSE An attempt was made to OPEN a �le which is currently open. This is usually
the result of a program logic error. Remove the redundant OPEN statement or
insert any necessary CLOSE statement and recompile the source program.

551 ERROR

MESSAGE

READ ERROR ON ACCEPT (COBERR 551)

CAUSE An attempt to execute a ACCEPT statement resulted in an error.

611 ERROR

MESSAGE

WRITE ERROR ON DISPLAY (COBERR 611)

CAUSE An attempt to execute a DISPLAY statement resulted in an error. IT could
also occur for ACCEPT from CONSOLE.

631 ERROR

MESSAGE

USER LABEL SPACE UNALLOCATED OR ATTEMPT TO WRITE BEYOND LABEL

LIMIT [9x] (COBERR 631)

CAUSE An error occurred while reading/writing a label. Refer to the �le system error.

A-42 HP COBOL II Error Messages

Run-Time Errors

632 ERROR

MESSAGE

READ MUST PRECEDE ! [43] (COBERR 632)

CAUSE In sequential access mode, a READ must be the previous operation on the �le,
before REWRITE or DELETE.

633 ERROR

MESSAGE

UNABLE TO CLOSE FILE, SEE FILE SYSTEM ERROR [9x] (COBERR 633)

CAUSE An error occurred while attempting to CLOSE a �le. Refer to the �le system
error.

636 ERROR

MESSAGE

RECORD NOT FOUND [23] ! (COBERR 636)

CAUSE An I/O statement was executed which addressed a nonexistent record.

637 ERROR

MESSAGE

DUPLICATE KEY [22] ! (COBERR 637)

CAUSE A WRITE statement was executed which would have created a duplicate key.
The record already exists.

638 ERROR

MESSAGE

FILE NOT OPENED OR MODE INCORRECT [47,48,49,9x] ! (COBERR 638)

CAUSE The �le was not open, or was open with the incorrect mode. For example,
trying to WRITE to a �le opened in INPUT mode. Or a DELETE or
REWRITE was executed for a �le which was not opened in I-O mode.

639 ERROR

MESSAGE

ATTEMPT TO ! A FILE THAT IS NOT OPEN [9x] (COBERR 639)

CAUSE An EXCLUSIVE, UN-EXCLUSIVE, or SEEK statement was executed for a �le
which was not OPEN. This is usually the result of a program logic error.
Remove the redundant statement or insert any necessary OPEN statement and
recompile the program.

640 ERROR

MESSAGE

ATTEMPT TO OPEN A FILE WITH AN INVALID DYNAMIC FILE NAME [31] &

(COBERR 640).

CAUSE The contents of the data item speci�ed as containing the dynamic �le name in
the USING phrase of the SELECT clause do not form a legal �le name or are
not consistent with the name or literal in the ASSIGN phrase of that SELECT
clause. This is usually the result of improper or missing initialization. Verify
that the data item is initialized to a valid �le name.

641 ERROR

MESSAGE

FILE IN USE BY ANOTHER PROCESS [9x] (COBERR 641)

CAUSE An EXCLUSIVE CONDITIONALLY was executed for a �le for which some
other process had already executed an EXCLUSIVE. No USE procedure or
FILE STATUS word was speci�ed.

642 ERROR

MESSAGE

FILE IS LOCKED BY A CLOSE [38] (COBERR 642)

CAUSE An OPEN statement was executed for a �le which was locked by a previous
CLOSE statement. The CLOSE WITH LOCK option prevents a �le from being
reopened within the current run-unit. Correct the program and recompile.

HP COBOL II Error Messages A-43

Run-Time Errors

644 ERROR

MESSAGE

UNABLE TO OPEN FILE, SEE FILE SYSTEM ERROR [9x] (COBERR 644)

CAUSE An attempt to execute an OPEN statement failed. Refer to the �le system
error.

645 ERROR

MESSAGE

I/O ERROR ON OPEN [9x] (COBERR 645)

CAUSE An I/O error occurred while attempting to write CCTL information during an
OPEN. Refer to the �le system error.

646 ERROR

MESSAGE

TOP TOO LARGE IN LINAGE CLAUSE (COBERR 646)

CAUSE The value of the TOP speci�cation within the LINAGE clause was larger than
63. Zero is assumed.

647 ERROR

MESSAGE

FILE NOT FOUND [35] (COBERR 647)

CAUSE An OPEN statement was executed for a �le that could not be found.

648 ERROR

MESSAGE

FILE'S FIXED ATTRIBUTES DIFFER FROM PROGRAM [39]! (COBERR 648)

CAUSE The �le organization declaration within the ENVIRONMENT DIVISION is
di�erent than the organization of the actual �le for which an OPEN statement
was executed. Compare the two organizations and adjust as necessary to
correct the problem. This could also occur if the record size does not match the
size of the FD records. It could also occur if the KEY types in an INDEXED
�le do not match or the presence or absence of the WITH DUPLICATES
clause does not match. Use the RECORD CONTAINS clause to specify the
minimum and maximum valid record sizes.

649 ERROR

MESSAGE

RECORDS MUST BE IN ASCENDING ORDER BY KEY [21] (COBERR 649)

CAUSE If a INDEXED �le was created by COBOL, then whenever a OPEN OUTPUT
with ACCESS MODE SEQUENTIAL is done, the key values must be written
in primary key order.

650 ERROR

MESSAGE

END OF FILE ENCOUNTERED UPON READ [10,46] (COBERR 650)

CAUSE A READ statement was executed and no record was found.

653 ERROR

MESSAGE

FILE ALREADY OPEN WITH SAME AREA OR IS MULTIPLE FILE (COBERR 653)

CAUSE An OPEN statement was executed for a �le which was speci�ed in a SAME
AREA clause that was in use or for a �le which was listed in a MULTIPLE
FILE clause which speci�ed a �le which was already open.

A-44 HP COBOL II Error Messages

Run-Time Errors

655 ERROR

MESSAGE

SEQ ERROR ON LABELED TAPE (COBERR 655)

CAUSE An OPEN statement resulted in a SEQ error for a labeled tape. Refer to the
�le system error.

658 ERROR

MESSAGE

RELATIVE KEY OVERFLOW [14,24] ! (COBERR 658)

CAUSE The value for a RELATIVE KEY item has overowed while attempting to
execute WRITE/READ statement to a relative �le. The PICTURE for the
RELATIVE KEY needs more digits.

659 ERROR

MESSAGE

FILE/ORG/DEVICE DOES NOT SUPPORT OPEN MODE [37] ! (COBERR 659)

CAUSE An attempt was made to execute an OPEN statement on a device that does
not support the OPEN mode speci�ed, for example, OPEN INPUT for a line
printer device. This could also occur if the �le system, possibly through a �le
equation or security, does not honor the open mode. Or, use of a :FILE
equation ACCESS= option conicts with the OPEN mode. (Such as OPEN
I-O versus ACCESS=IN.)

664 ERROR

MESSAGE

I/O ERROR ON ! [30,9x] (COBERR 664)

CAUSE An I/O error occurred. Refer to the �le system error. Or an attempt was made
to execute an EXCLUSIVE statement for more than one �le at a time. This
requires that you have the MR capability. Database locks are equivalent to
EXCLUSIVE.

665 ERROR

MESSAGE

END OF FILE ENCOUNTERED UPON WRITE [24] (COBERR 665)

CAUSE An attempt was made to WRITE beyond the end of �le. Refer to the �le
system error.

666 ERROR

MESSAGE

ERROR WHILE READING/WRITING USER LABEL [9x] (COBERR 666)

CAUSE An error occurred while reading/writing the label. Refer to the �le system
error.

668 ERROR

MESSAGE

LINAGE, TOP, BOTTOM, FOOTING > 32767 NOT ALLOWED, RESET TO 32767

(COBERR 68)

CAUSE Check the LINAGE, TOP, BOTTOM and FOOTING clauses.

671 ERROR

MESSAGE

RECORDS LARGER THAN FD DESCRIPTION, TRUNCATED [44] (COBWARN 671)

CAUSE The record length found when the input �le was opened was larger than the
amount of space speci�ed in the largest FD description for this �le. Any
records which are too long will be truncated.

672 ERROR

MESSAGE

RECORD SIZE DOES NOT MATCH FD DESCRIPTION [44] ! (COBERR 672)

CAUSE The record size of the �le does not match the minimum and maximum valid
sizes in the RECORD CONTAINS clause.

HP COBOL II Error Messages A-45

Run-Time Errors

673 ERROR

MESSAGE

FD DESCRIPTION LARGER THAN RECORD SIZE, TRUNCATED [44] (COBWARN

673)

CAUSE The record length found when the �le was opened for output was smaller than
the FD record description. Data written to this �le will be truncated.

706 ERROR

MESSAGE

UNDERFLOW IN EXPONENTIATE (COBERR 706)

CAUSE The result value of an exponentiation operation has resulted in an underow.
The result falls in the range -10**-28 to +10**-28.

707 ERROR

MESSAGE

OVERFLOW IN EXPONENTIATE (COBERR 707)

CAUSE The result value of an exponentiation operation has resulted in an overow.
The result has exceeded the range -10**-28 to +10**-28.

708 ERROR

MESSAGE

UNDEFINED RESULT FROM EXPONENTIATE (COBERR 708)

CAUSE The result value of an exponentiation operation is unde�ned. An attempt was
made to compile A**B, where A is EQUAL or LESS THAN 0 and B is not an
integer.

709 ERROR

MESSAGE

ILLEGAL DIGIT IN NUMERIC DATA ITEM, TREATED AS 0 ! (COBERR 709)

CAUSE There was a bad digit in an item input with ACCEPT FREE or in a source
item for UNSTRING. This digit was changed to zero.

710 * ERROR

MESSAGE

ILLEGAL DECIMAL DIGIT (COBERR 710)

CAUSE An illegal packed decimal digit was encountered in execution. Correct the data
and re-run the program.
NM : The invalid data and the location is printed. The program may abort or
continue to execute based on the VAR COBRUNTIME.
CM : Possible instructions are: ADDD, SUBD, CMPD, SLD, NSLD, SRD,
DIVD, MPYD. The invalid data and the instruction type is printed on the list
device and the program is aborted.

* See the section \Run-Time Trap Handling" in Appendix H for more information.

A-46 HP COBOL II Error Messages

Run-Time Errors

711 * ERROR

MESSAGE

ILLEGAL ASCII DIGIT (COBERR 711)

CAUSE An illegal ASCII digit was encountered in execution. The invalid data and the
location is printed. Correct the data, if necessary, and re-run the program.
NM : The program may abort or continue to execute based on the VAR
COBRUNTIME.
CM : Possible instructions are: CVDA, CVAD, CVDB, EDIT, CVND. The
invalid data and the instruction type is printed on the list device and the
program may abort or continue to execute based on the ability to successfully
FIXUP the bad digit. Refer to the article entitled \COBOL II/3000 Programs:
Tracing the Illegal Data Using Error 710/711 Documentation," published in
Issue #28 of the Communicator for additional details on error 710/711
processing.

745 ERROR

MESSAGE

BAD PARAMETER TO !, ERROR ! (COBERR 745)

CAUSE A bad input value was detected for NUMVAL or NUMVAL-C functions.
Check for comma, decimal point, and currency values.
A bad input value was detected for INTEGER-OF-DATE or
INTEGER-OF-DAY functions. Check that YYY is > 1600 and that MM
and DD or DDD are valid.
A bad input value was detected for DATE-OF-INTEGER or
DAY-OF-INTEGER functions. Check that the input value > 0.

Error Cause
1 Alpha char in beginning.
2 Embedded space in numeric string.
3 Too many signs (includes +, -, CR, and DB).
4 Too many decimal points.
5 Numbers and alphabetic characters mixed.
6 Number of digits > 18.
7 Something other than CR or DB found in string.
8 Illegal currency sign.
9 Illegal input format for the string.
11 Error in date.

746 ERROR

MESSAGE

NO EXCEPTION PHRASE ON CALL, ERROR ! (COBERR 746)

CAUSE An error occurred trying to dynamically load a procedure. The parameter is
the loader error number.

747 * ERROR

MESSAGE

NO SIZE ERROR PHRASE (COBERR 747)

CAUSE This message occurs for any SIZE ERROR condition on a verb that does not
have a SIZE ERROR phrase. It also may occur on MOVEs if the data in a
BINARY item does not match its picture. This error will also occur for any
type of IEEE oating point exceptions that occur when evaluating
FUNCTIONs. That is, divide by zero or taking a square root of a negative
number.

* See the section \Run-Time Trap Handling" in Appendix H for more information.

HP COBOL II Error Messages A-47

Run-Time Errors

748 * ERROR

MESSAGE

PARAGRAPH STACK OVERFLOW (COBERR 748)

CAUSE Recursive performs, or performs with common exit points. Or illegal GOTOs
out of a PERFORMed procedure.

749 ERROR

MESSAGE

COLLATING SEQUENCE NOT SUPPORTED, ERROR ! (COBERR 749)

CAUSE NLINFO (Native Language) returned an error.

750 ERROR

MESSAGE

DEPENDING-ON IDENTIFIER OUT OF BOUNDS (COBERR 750)

CAUSE The depending on identi�er was not between occurs-1 and occurs-2. This error
only occurs when you select the BOUNDS option of the $CONTROL compiler
subsystem command. Correct the program by removing the bounds violation.

751 * ERROR

MESSAGE

SUBSCRIPT/INDEX/REFMOD/DEP-ON OUT OF BOUNDS (COBERR 751)

CAUSE This error only occurs when you select the BOUNDS option of the
$CONTROL compiler subsystem command. Correct the program by removing
the bounds violation. For CM, only the �rst two errors apply. This could also
occur for the function CHAR.

752 ERROR

MESSAGE

REFERENCE MODIFICATION OUT OF BOUNDS (COBERR 752)

CAUSE This error only occurs when you select the BOUNDS option of the
$CONTROL compiler subsystem command. Correct the program by removing
the bounds violation.

753 * ERROR

MESSAGE

ADDRESS ALIGNMENT ERROR (COBERR 753)

CAUSE Parameter is not on a 32- or 16-bit boundary.

754 * ERROR

MESSAGE

INVALID GOTO (COBERR 754)

CAUSE GOTO. was not ALTERed before use. Could also occur for RETURN without
SORT/MERGE or GOTO MORE-LABELS without OPEN.

* See the section \Run-Time Trap Handling" in Appendix H for more information.

A-48 HP COBOL II Error Messages

Informational Messages

Informational Messages

980 ERROR

MESSAGE

ATTEMPTING TO RECOVER FROM SYNTAX ERROR.

CAUSE The indicated item is where the compiler is attempting to recover from the
previous syntax error. The items between the two messages were ignored by
the compiler.

981 ERROR

MESSAGE

DEBUGGING SECTION ! IGNORED, NO DEBUGGING MODE CLAUSE.

CAUSE The indicated Debugging Section is ignored because the WITH DEBUGGING
MODE clause was not speci�ed in the SOURCE-COMPUTER paragraph.

982 ERROR

MESSAGE

UNPREDICTABLE OPTIMIZATION RESULTS IF ERRORS OCCUR.

CAUSE

992 ERROR

MESSAGE

COMPILER ERROR: ERROR MESSAGE #! OVERFLOWS BUFFER.

CAUSE Only �rst ~500 bytes are printed.

993 ERROR

MESSAGE

FAILURE IN INTERNAL CALL TO INTRINSIC GENMESSAGE.

CAUSE See directions on line .3 of the �le COBCAT.PUB.SYS.

994 ERROR

MESSAGE

TOO MANY ERRORS FOR ERROR FILE. SOME ERRORS MAY NOT BE LISTED.

CAUSE

997 ERROR

MESSAGE

MISSING ERROR MESSAGE #!.

CAUSE Check compiler and COBCAT (this �le) for proper versions.

998 ERROR

MESSAGE

TOO MANY ERRORS.

CAUSE The number of errors has exceeded 100 or value in $ERRORS=.

999 ERROR

MESSAGE

UNABLE TO CONTINUE. COMPILATION TERMINATED.

CAUSE

HP COBOL II Error Messages A-49

B

Preprocessor Commands and $CONTROL Options

HP COBOL II contains special language independent compile-time features designed to
simplify the compilation process. These features allow you to modify input text, set certain
compilation options, or control the contents of the list output.

All these options are implemented by a simple compile-time language, consisting of
commands, statements, variables or identi�ers, and macro calls for text substitution.

Types of Processes

The compile-time processes are divided into three types. These types are edit processing,
source input modi�cation, and list and compilation options.

The �rst two processes mentioned above are independent of the compilation process. In e�ect,
they constitute a \�rst pass" on your source program. The output of these preprocessor
functions is released to the COBOL compiler. This output is referred to as the expanded
source program.

The editing process merges lines from an optional text�le into your master�le and provides
other functions such as deletion and replacement of lines of the master�le. The end product of
the editing process is a single input stream.

The operating system's COBOL command, as well as the $EDIT and $INCLUDE
preprocessor commands, are used to perform these editing operations.

The source input modi�cation process uses macros to modify your source code. This is done
by using the $DEFINE preprocessor command to de�ne the macros, and then placing the
macro name in your source code. When the source code is compiled, the de�nition of the
macro replaces the macro name.

List and compilation options are provided to allow you to obtain compiler listings, source
listings of the expanded source records, a symbol table map, the object code, a cross reference
listing of symbols and procedures used in the source program, and a listing of statements
appearing in the PROCEDURE DIVISION (as well as the line numbers in which they appear
in the source code and their code o�sets). These options are available through use of the
$CONTROL preprocessor command.

Compilation options include warnings of possible error conditions, limiting the number of
compilation errors before halting compilation, initializing the RL �le, identifying the compiled
code as being a subprogram (dynamic or nondynamic etc.), enabling the operating system's
debug facility, setting bounds checking on table indices, subscripts, and reference modi�cation,
and agging of HP extensions in the source program. These options are also available through
use of the $CONTROL preprocessor command.

Preprocessor Commands and $CONTROL Options B-1

Preprocessor

Preprocessor Programming Language

The preprocessor programming language is a simple language consisting of variables and
commands. All of the preprocesses are performed at compile-time. None is performed at
run-time.

Table B-1 lists all of the preprocessor commands. They are described in the remainder of this
appendix.

Table B-1. Preprocessor Commands

Command Purpose

$COMMENT Writing comment lines.

$DEFINE
$PREPROCESSOR

De�ning and using macros.

$IF
$SET

Conditional compilation.

$INCLUDE
$EDIT

File insertion, merging and editing operations.

$COPYRIGHT
$PAGE
$TITLE
$VERSION
$CONTROL

Options a�ecting compiler output (code and
listing).

The preprocessor commands have the following format:

$commandname [parameterlist]

Parameters

commandname one of the command names shown in the list above.

parameterlist a list of parameters for a given preprocessor command. The speci�c
parameters (if any) allowed for a given preprocessor command are
listed later in this section where the command is described. A list of
parameters in a command must be separated from the command by one
or more spaces, and each parameter speci�ed must be separated from any
succeeding parameter by a comma optionally followed or preceded by one
or more spaces.

B-2 Preprocessor Commands and $CONTROL Options

Preprocessor

Description

The required dollar sign is used to identify a preprocessor command. This symbol must
appear in the �rst column of a line of source code, immediately following the sequence number
�eld.

The second, optional, dollar sign is used to indicate that the preprocessor command of which
it is a part is to be executed, but is not to be copied (in a merging process) to the new�le.

Continuation Lines

A preprocessor command can be continued to the next line by using a continuation character
as the last nonblank character in the line where the command is. The continuation character
is the ampersand (&).

A continuation character can be used anywhere in a preprocessor command where a blank can
be used and will not change the e�ect of the command.

Example. The following is a valid use of the continuation character:

001000$CONTROL CROSSREF,&

002000$MAP,LIST

When you continue a preprocessor command to another line, the new line must contain a
single dollar sign in the �rst column following the sequence number �eld of that line, as shown
in the example above.

The e�ect of using a continuation character in a preprocessor command is equivalent
to replacing the continuation character and subsequent dollar sign with a blank, and
concatenating the two lines. So the example above is equivalent to the following:

001000$CONTROL CROSSREF,MAP,LIST

Continuation lines of a preprocessor command are not copied to a new�le during a merging
operation if the preprocessor command begins with two dollar signs.

Example. The following preprocessor command is executed but neither line 003000 nor line
004000 is copied to the new�le created by the merging process.

003000$$EDIT VOID=005000, &

004000$ SEQNUM=001000

Preprocessor Commands and $CONTROL Options B-3

Preprocessor

$COMMENT Command

The $COMMENT command has the following format:

$COMMENT [comment-text]

where comment-text is a string containing anything you want to enter. comment-text requires
no delimiters. It ends at the end of the line where the $COMMENT command is issued unless
a continuation character is used. Use of COBOL comments, *", is preferred.

The example below illustrates the $COMMENT command:

000100$COMMENT THIS LINE IS AN EXAMPLE OF THE $COMMENT PRE- &

000200$ PROCESSOR COMMAND.

B-4 Preprocessor Commands and $CONTROL Options

Using Macros

Defining and Using Macros

One of the most powerful facilities of the preprocessor is the macro processor. This processor
associates a macro name with a string of text. When the macro name is used by itself in a
COBOL sentence, the preprocessor sends the de�nition of the macro to the compiler. See also
the COPY and REPLACE statements.

Macros can have up to nine formal parameters. If formal parameters are used in the
de�nition, actual parameters are supplied to replace them when the macro is called in the
source program.

$DEFINE Command

Use the $DEFINE command to de�ne a macro. When you de�ne a macro, you associate a
macro name with a string of text.

The $DEFINE command can rede�ne a previously de�ned macro. However, all macro
de�nitions are global. If you use the $DEFINE command to rede�ne a macro, the old
de�nition is lost, and can only be recovered by issuing another $DEFINE command that
repeats the old de�nition.

Syntax

$DEFINE macro-name=[string-text]#

Parameters

macro-name the name of the macro being de�ned, and consists of an initial non-
alphanumeric character (default is the percent sign, %), followed by an
alphabetic character, followed by zero or more alphanumeric characters.

The length of the macro name may be any number of characters, but only the
�rst �fteen are recognized by the preprocessor. Note that care must be taken
to assure uniqueness of such names.

string-text can be any text you choose. However, because this text is sent to the
compiler, it must be a valid COBOL statement or sentence, with one
exception. This exception is the use of formal parameters in the string-text .
Formal parameters are described later in this section.

Description

Note that string-text is delimited by an equal sign and a pound sign. The pound sign is the
delimiter of the entire de�nition. This is a default delimiter, and can be changed by the
$PREPROCESSOR command.

Nested $DEFINE commands and recursive macros can be used; however, you must take
care in using recursive macros, as there is no speci�c method for terminating the macro call
sequence when used in this manner.

If a continuation character is used in a macro de�nition, it is assumed to be a part of the
macro de�nition, and not a continuation character. The following illustrates the use of a
continuation character in de�ning a macro.

Preprocessor Commands and $CONTROL Options B-5

Using Macros

Example.

000100 $DEFINE %INCA=ADD 1 TO ALPHA-COUNTER.

000200 ADD ALPHA-COUNTER TO BETA-COUNTER.
000300* INCREMENT THE VALUES OF COUNTERS ALPHA-COUNTER &

000400* BETA-COUNTER.#

In the above example, the entire de�nition of the macro, %INCA, is the following set of
sentences:

000100 ADD 1 TO ALPHA-COUNTER.

000200 ADD ALPHA-COUNTER TO BETA-COUNTER.

000300* INCREMENT THE VALUES OF COUNTERS ALPHA-COUNTER &

000400* BETA-COUNTER.#

The dollar symbol is not needed in continuation lines of a macro de�nition. The only time
that a dollar sign would appear in the �rst column after the sequence number �eld is when the
macro de�nition contains preprocessor commands.

When the $DEFINE command is processed, the string-text that makes up the de�nition of the
macro is stored exactly as it appears in the command. All end-of-line markers and sequence
numbers are saved. The only exception to this rule is that if all characters between the equal
sign in the macro de�nition and the end of the text line in which the de�nition begins are
blank, then only the end-of-line marker is saved, and the macro de�nition begins in the �rst
column of the next line. This allows you to control the initial column of the macro de�nition
without worrying about the column position of the macro name when it is called. Below is an
illustration:

Macro de�nition:

000300$DEFINE %ADDIT=MOVE SPACES TO DISPLY-ITM.#

000400 ...

Macro call:

001200 DISPLAY DISPLY-ITM. %ADDIT...

Expanded source code:

001200 DISPLAY DISPLY-ITM. MOVE SPACES TO DISPLY-ITM....

B-6 Preprocessor Commands and $CONTROL Options

Using Macros

Because the macro de�nition starts on the same line as the macro name, the de�nition of the
macro replaces the macro call starting in exactly the same column as the macro call.

000100$DEFINE %CHECKIF=
000200 IF STAT-ITEM EQUAL "10"

000300 THEN PERFORM STATUS-REPORT

000400 ELSE NEXT SENTENCE.#

In this case, because the characters between the equal sign and the end of line 000100 are
blanks, the macro de�nition begins on line 000200.

Thus, when the macro call to %CHECKIF is made, the expanded source appears as shown
below.

Macro call:

002400 WRITE FILE-OUT. %CHECKIF

002500
...

Replacement:

002400 WRITE FILE-OUT.

000200 IF STAT-ITEM EQUAL "10"

000300 THEN PERFORM STATUS-REPORT

000400 ELSE NEXT SENTENCE.

Formal Parameters

A macro de�nition may contain up to nine formal parameters. A formal parameter is
designated by an exclamation point followed immediately by an integer from the range 1 to 9.

Formal parameters in a macro de�nition are replaced by values you assign when you call the
macro in your source program, as illustrated below.

Source program:

000100$DEFINE %PERFORM=
000200 PERFORM !1

000300 VARYING !2 FROM !3 BY !4

000400 UNTIL !5.#...
001200 %PERFORM(CHEK-PARA#,CTROL#,INIT#,OFFSET#,A = B#)...

Expanded source program:
...

000200 PERFORM CHEK-PARA

000300 VARYING CTROL FROM INIT BY OFFSET

000400 UNTIL A = B....

Preprocessor Commands and $CONTROL Options B-7

Using Macros

Macro Calls

There are two di�erent forms of a macro call:

macro-name

and

macro-name(p1#,p2#,p3#,...,pn#)

Parameters

macro-name the name of a macro which has been previously de�ned in the source
program, using a $DEFINE command.

p1,p2,...,pn the actual parameters. Each of p1 , p2 , and so on may be either a null
string or any combination of characters and numerals, including spaces.
Each actual parameter begins with the �rst character after a preceding
comma (except p1 , which begins after the left parenthesis), and ends with
the pound sign.

If no characters are speci�ed for an actual parameter (that is, if an
actual parameter is speci�ed by \#"), then a null string replaces its
corresponding formal parameter in the macro de�nition.

Note from the above format that there can be no intervening spaces between the end of the
macro name and the left parenthesis of the actual parameter list.

Continuation of lengthy parameters in a macro call is established by starting the continued
line with a comma. The following illustrates this:

macro-name(p1#,p2#,p3#,p4#

,p5#,p6#,pn#)

The �rst method of calling a macro is used when the macro de�nition has no formal
parameters.

The second method must be used when formal parameters are speci�ed in the de�nition of the
macro.

When a macro name is encountered in a source program, it is deleted, and the associated
macro de�nition is sent to the compiler in place of the name. Any formal parameters are
replaced by actual parameters listed in the macro call.

With two exceptions, macro names are replaced wherever they occur in the source program,
including quoted strings. Macro names are not expanded 1) in a comment, unless the
comment itself is found in a macro, and 2) in list and compilation preprocessor commands
(such as $CONTROL), where they are not recognized.

B-8 Preprocessor Commands and $CONTROL Options

Using Macros

Relationship of Formal Parameters to Actual Parameters

The numeric value of a formal parameter determines which actual parameter in the macro call
is to replace it.

That is, for a formal parameter, !n (where n is 1 through 9), the nth actual parameter from
the left in the macro call replaces !n, as illustrated below.

Examples. Macro de�nition:

$DEFINE %OPENSTATE=

OPEN INPUT !1.

DISPLAY !2,!3.#

Macro call:

%OPENSTATE(FILE-IN#,"FILE STATISTICS"#, OPEN-STATS#)

Result of macro call:

OPEN INPUT FILE-IN.

DISPLAY "FILE STATISTICS", OPEN-STATS.

Macro de�nition:

090000$DEFINE %COMPUTESUM= COMPUTE !1 = !2 + !3.#

Macro call:

091000 %COMPUTESUM(INCREMEN#,OFFSETTER#,7#)

Result of macro call:

091000 COMPUTE INCREMEN=OFFSETTER + 7.

In the second example above, !3 is replaced by the third parameter in the macro call, which
is 7; !2 is replaced by the second parameter, OFFSETTER, and !1 is replaced by the �rst
parameter in the call, INCREMEN.

For a given macro de�nition, if there is a formal parameter, !n, and if there are less than
n actual parameters in the macro call, then any formal parameter whose numeric value is
greater than the number of parameters in the macro call is ignored. This is illustrated in the
following example.

Macro de�nition:

001100$DEFINE %SHOWIT= DISPLAY !1,!2,!3,!5.#

Macro call:

002500 %SHOWIT("A"#," WORD "#,"IS "#,"MISSING"#)

Result of macro call:

002500 DISPLAY "A"," WORD ","IS ", .

Preprocessor Commands and $CONTROL Options B-9

Using Macros

When you specify a formal parameter in a macro de�nition, you can choose not to use it in
the macro call by entering only a comma and a pound sign in the appropriate position within
the macro call. This is shown in the next example:

Macro de�nition:

000100$DEFINE %INITSTUFF=

000200 IDENTIFICATION DIVISION.

000300 PROGRAM-ID. !1

000400 AUTHOR. !2

000500 DATE-COMPILED. !3#

Macro call:

001000 %INITSTUFF(MACRO-TEST.#,#,#)

Result of macro call:

000200 IDENTIFICATION DIVISION.

000300 PROGRAM-ID. MACRO-TEST.

000400 AUTHOR.

000500 DATE-COMPILED.

The last two actual parameters were speci�ed by \,#". When the replacement code compiled,
no author name or compile date was supplied.

The format for a macro de�nition assures that the initial column of each line in the macro
de�nition maps onto the same column when the macro de�nition is inserted into the source
program at macro call time. This could cause a wraparound of the replacement text when
actual parameters are substituted in the de�nition. However, to ensure that this does not
happen, blanks are removed from the executable text �eld to make it the correct size. If there
are no trailing blanks to remove, the overow portion of the executable text �eld is used to
create a new record on the next line. The sequence number �eld is left blank for this new
record.

B-10 Preprocessor Commands and $CONTROL Options

Using Macros

Nested Macro Calls

You can pass the result of one macro call as an actual parameter to another macro by using
the $PREPROCESSOR command discussed in the next section. By rede�ning the macro
delimiter for the nested macro, you can use a call to that macro as a parameter to another
macro. The following examples illustrate two slightly di�erent ways of nesting macro calls.

Example 1. This example de�nes two macros, %M1 and %M2 . The macro %M2 is passed as
a parameter to %M1 .

Macro de�nition:

$PREPROCESSOR DELIMITER=? Change the delimiter to de�ne M1.

$DEFINE %M1= Start the de�nition of M1.

$PREPROCESSOR DELIMITER=~ Change the delimiter within M1.

DISPLAY "!1" Body of macro M1.

$PREPROCESSOR DELIMITER=# Restore the delimiter to # within M1.

? End of de�nition of M1.

$PREPROCESSOR DELIMITER=# Restore the delimiter to #.

$DEFINE %M2=ADD !1 TO !2 GIVING !3# De�ne macro M2.

In the following macro call, macro %M2 is passed as a parameter to macro %M1 . Notice that
the \~" character is the delimiter for the parameters to %M2 :

%M1(%M2(A~,B~,C~)#)

Result of macro call:

DISPLAY "ADD A TO B GIVING C"

Example 2. This example also de�nes two macros, %M1 and %M2 . The macro %M2 is
again passed as a parameter to %M1 . In this case, however, a third macro, %NESTEDM2 ,
is created that consists of the call to %M2 . This third macro is passed to %M1 instead of
passing %M2 directly.

Macro de�nition:

$DEFINE %M1=DISPLAY "!1"# De�ne macro M1.

$DEFINE %M2=ADD !1 TO !2 GIVING !3# De�ne macro M2.

In the following nested macro call, the delimiter is changed to create the third macro,
%NESTEDM2 . This third macro is passed to macro %M1 :

$PREPROCESSOR DELIMITER=~ Change the delimiter.

$DEFINE %NESTEDM2=%M2(A#,B#,C#)~ De�ne macro NESTEDM2.

$PREPROCESSOR DELIMITER=# Restore the delimiter to #.

%M1(%NESTEDM2#) Call M1, passing NESTEDM2.

Result of macro call:

DISPLAY "ADD A TO B GIVING C"

Preprocessor Commands and $CONTROL Options B-11

Using Macros

$PREPROCESSOR Command

The $PREPROCESSOR command allows you to change the default characters used in macro
de�nitions and names. The default characters are:

% used as the initial character in a macro name.

! used as the �rst character of a formal parameter in macro de�nitions.

used to delimit string-text in a macro de�nition, and actual parameters.

To specify a di�erent character to be used in place of one of these, use the
$PREPROCESSOR command in the following format:

$PREPROCESSOR parameter=subparameter [, parameter=subparameter]

Parameters

parameter one of the keywords shown below. Each may be used only once in a given
$PREPROCESSOR command.

KEYCHAR speci�es that the initial character of all macro names is to be
subparameter.

PARMCHAR speci�es that the initial character of all formal parameters
in macro de�nitions is to be subparameter.

DELIMITER speci�es that the delimiting character in a macro string-text
is to be subparameter.

subparameter the character to be used in replacing the currently used initial character or
delimiter.

Example

000100$PREPROCESSOR KEYCHAR= ,PARMCHAR=?,DELIMITER=^

000200$DEFINE MOVEIT=

000300 MOVE ?1 TO ?2.^

Note that care must be taken when you rede�ne the initial characters and the string-text
delimiter, because there may be cases when you use one of the newly de�ned characters in
your string-text as part of the string-text itself, and not as a delimiter or an initial character.

B-12 Preprocessor Commands and $CONTROL Options

Conditional Compilation

Conditional Compilation

Usually, when you compile a source �le, you want the entire program compiled. However,
there may be occasions when you want only part of the program compiled. Conditional
compilation, that is, compilation of source code contingent upon whether a switch is on or o�,
is accomplished by using the $SET and $IF preprocessor commands.

$SET Command

The $SET preprocessor command may be used to turn ten compilation switches on or o�.
The ten software switches are of the form, Xn, where n is an integer in the range 0 through 9.

The $SET command has the following format:

$SET

�
Xn=

�
ON

OFF

��
, Xr=

�
ON

OFF

��
. . .

�

where Xn and Xr are compilation switches as described above.

Initially, all compilation switches are set to OFF.

A $SET command may appear anywhere in the source text. If used without parameters, that
is, in the form $SET, it sets all switches to OFF.

$IF Command

The $IF command interrogates any of the ten compilation switches. If the condition speci�ed
in the $IF command is true, source records are sent to the compiler, beginning with the �rst
one following the $IF command, and continuing until another $IF command is encountered
which is false.

If the condition speci�ed by the $IF command is false, no source records are sent to the
compiler until a $IF command which is true is encountered. Note also, that during this
processing any $SET and $CONTROL commands encountered are ignored by the compiler.

The $IF command has the following format:

$IF

�
Xn=

�
ON

OFF

��

where Xn is a compilation switch as described under the $SET command in the preceding
paragraphs.

Preprocessor Commands and $CONTROL Options B-13

Conditional Compilation

The $IF command may appear anywhere in the source text.

The appearance of a $IF command always terminates the inuence of any preceding $IF
command.

When a $IF command is entered without a parameter, it has the same e�ect as a $IF
command whose condition is true. That is, the text following the command is compiled, and
any previous $IF command is canceled.

Note that the merging of a text and master source �le, and copying of this merged �le to a
new�le is una�ected by $IF commands. Also, the $EDIT, $PAGE, and $TITLE commands
are executed even when they appear in a portion of source code that is not to be sent to the
compiler. However, all other preprocessor commands are ignored in such a portion of source
code, that is, $SET, $CONTROL, etc.

If you do not want to list source records that are not compiled, you must use the CONTROL
preprocessor command, specifying the NOMIXED parameter.

Example

$SET X1=ON, X3=ON...
$IF X1=ON

$COMMENT SINCE X1 IS ON, CONTINUE SENDING RECORDS TO THE &

$ COMPILER....
$IF X3=OFF

$COMMENT THIS $IF COMMAND CANCELS THE PRECEDING ONE. SINCE &

$ X3 IS SET TO "ON", DO NOT SENT THE FOLLOWING RECORDS &

$ TO THE COMPILER.

$SET X2=ON

$CONTROL NOLIST.

$COMMENT NOTE THAT THE $SET AND $CONTROL COMMANDS ARE &
$ IGNORED, SINCE THE PREVIOUS $IF WAS FALSE.

$IF

$COMMENT PREVIOUS $IF CONDITION IS TERMINATED, AND COMPILATION &

$ RESUMES.

B-14 Preprocessor Commands and $CONTROL Options

$INCLUDE Command

File Insertion, and Merging and Editing Operations

There are essentially two types of �le merging functions available to you through the
preprocessor. The �rst uses the preprocessor command, $INCLUDE. The second merging
function is done using any of the operating system's COBOL commands, and optionally, the
$EDIT preprocessor command.

$INCLUDE Command

The $INCLUDE command allows you to specify an entire �le to be sent, line by line, to the
compiler as part of your source �le. See also COPY statement.

The $INCLUDE command has the following format:

$INCLUDE �lename

where �lename is the name of the �le whose records are to be sent to the compiler.

$INCLUDE commands may be nested. That is, the �le that is being included may itself have
an $INCLUDE command in it. This nesting may go to a depth of ten.

When the $INCLUDE command is encountered in a source �le, the following actions take
place:

1. The �le named in the $INCLUDE command is opened.

2. This �le then becomes the input �le. Each line of the �le is processed and the results are
sent to the compiler. If sequence numbers exist for the lines (records) of the �le, they are
preserved.

3. When the end-of-�le is reached for the included �le, it is closed.

4. The next line in the original source code is processed and sent to the compiler.

Note that the $INCLUDE command has no e�ect upon the text, master or new�les. The
$INCLUDE command, if used, and the included �le data is sent to the list�le, while only the
$INCLUDE command is sent to the new�le resulting from the compilation process.

Preprocessor Commands and $CONTROL Options B-15

$INCLUDE Command

Example

000100$INCLUDE INITFILE

001000 ENVIRONMENT DIVISION.

001100 CONFIGURATION SECTION....

If INITFILE contains the records,

000200$CONTROL SUBPROGRAM
000300 IDENTIFICATION DIVISION.

000400 PROGRAM-ID. SUBDUMMY.

000500 AUTHOR. JPW.

000600 INSTALLATION. GSD.

000700 DATE-WRITTEN. DUMMY-WRITTEN-05/08/85.

000800 DATE-COMPILED. WHEN-USED.

000900 SECURITY. NONE-ON-DUMMY.

Then when the $INCLUDE statement above is executed, the results are as follows.

000100$INCLUDE INITFILE

000200$CONTROL SUBPROGRAM

000300 IDENTIFICATION DIVISION.

000400 PROGRAM-ID. SUBDUMMY.

000500 AUTHOR. JPW.

000600 INSTALLATION. GSD.

000700 DATE-WRITTEN. DUMMY-WRITTEN-05/08/85.

000800 DATE-COMPILED. WHEN-USED.

000900 SECURITY. NONE-ON-DUMMY.
001000 ENVIRONMENT DIVISION.

001100 CONFIGURATION SECTION....

B-16 Preprocessor Commands and $CONTROL Options

Merging Files

Merging Files and the $EDIT Command

This section is obsolete and its use is not recommended.

Merging and editing operations are done prior to other preprocessor functions. The following
editing and merging operations are available to you at compile-time:

1. Merge corrections or additional source text in the text�le with an existing source program
(master�le) to produce a new source program and commands.

2. Omit sections of the old source program during merging.

3. Check source-record sequence numbers for ascending order.

Merging Files

Merging is done at compile-time by using the text�le, master�le, and new�le parameters of
the operating system's COBOL commands.

(For a detailed description of these commands, refer to \MPE XL System Dependencies" in
Appendix H.)

Prior to merging, the records in both text�le and master�le must be arranged in ascending
order according to the values in their sequence �elds, or sequence �elds may be blank.

The order of sequencing is based on the ASCII collating sequence.

The merging operation is based on nonblank ascending sequence �elds. During merging,
nonblank sequence �elds of records in both �les are checked for ascending order. If their order
is improper, the appropriate diagnostic messages are sent to your list�le.

Blank sequence �elds are never considered out of sequence. They are assumed to have the
same sequence value as the last preceding record which contains a nonblank sequence value.
The sequence �elds of some or all of the records in either �le may be blank, and such records
may appear anywhere in the �les.

During each comparison in the merging process, one record is read from each �le, and these
records are compared, with one of three results, depending upon whether the value of the �eld
in the record of the text�le is equal to, greater than, or less than the value of the sequence
�eld in the record of the master�le.

If the values of the sequence �elds are equal, the text�le record is sent to the compiler, and
the record of the master�le is ignored.

If the value of the sequence �eld in the text�le is greater than the value of the sequence �eld
in the master�le, the record of the master�le is sent to the compiler, and the record of the
text�le is retained for comparison with the next record of the master�le.

If the value of the sequence �eld in the text�le is less than the value of the sequence �eld in
the master�le, the record of the text�le is sent to the compiler, and the master�le record is
retained for comparison with the next text�le record.

Records with a blank sequence �eld (from either �le) are assumed to have the same sequence
�eld value as that of the last record with a nonblank sequence �eld read from the same �le.
If no record with a nonblank sequence �eld has yet been encountered, the blank records are
assumed to have a null sequence �eld.

Preprocessor Commands and $CONTROL Options B-17

Merging Files

The above description implies that records from the master�le with blank sequence �elds are
always compiled. This is because the records of the master�le with blank sequence �elds will
either eventually be less than a sequence �eld for a text�le record, or the entire text�le will
have been used.

When an end-of-�le condition is encountered on either text�le or master�le, merging
terminates (except for the continuing inuence of an unterminated VOID parameter in an
EDIT command). At this point, the subsequent records on the remaining �le are checked for
proper sequence, and are then compiled (except for master�le records within the range of a
VOID parameter in a $EDIT command).

Note that master�le records that were replaced in the merging process are not listed in your
list�le during compilation. Also, �les sent to the compiler by a $INCLUDE command have no
sequence �eld checking performed on them.

Sequence Field Checking

Sequence �elds are checked for proper order during the merging process provided that both a
text and a master�le are present.

If you do not have a text�le, or if you have no master�le, and you still wish to have sequence
�elds checked, you can equate the missing �le to $NULL. If the sequence �elds are out of
order, a warning message is generated and sent to the list�le. However, improperly arranged
sequence �elds will not cause the compilation of the speci�ed �le to fail.

B-18 Preprocessor Commands and $CONTROL Options

$EDIT Command

$EDIT Command

The $EDIT preprocessor command can be used to bypass all records of the master�le whose
sequence �elds contain a certain value, and renumber the numeric sequence �elds of records in
the new�le created by merging a text�le and a master�le.

The $EDIT command has the following format:

$EDIT [parameter=subparameter] [, parameter=subparameter] [. . .]

Parameters

parameter either VOID, SEQNUM, NOSEQ, or INC.

subparameter either a sequence value, a sequence number, or an increment number.
Which one is used depends on the parameter.

VOID Parameter

The VOID parameter is the only parameter of the $EDIT command that has any e�ect upon
the compilation process. The other parameters have an e�ect only upon the new�le created by
the merge process. If no new�le is speci�ed in the operating system command that initiates
the compilation process, all $EDIT commands other than $EDIT VOID=sequence value are
ignored.

If VOID is speci�ed, then the subparameter must be a sequence value. This parameter
indicates that all records on the master�le whose sequence values are less than or equal to the
speci�ed sequence value, and any subsequent records with blank sequence �elds, are to be
ignored. Thus, such records are not sent to the compiler.

This voiding of master�le records continues until a record of the master�le with a sequence
value higher than that speci�ed in the $EDIT VOID command is encountered. When this
occurs, the merging process continues as described on earlier pages.

The sequence value of the VOID parameter can be either a sequence number or a character
string. If the sequence value is less than the length of the sequence �eld for the master�le, it is
left �lled with zeroes (if a number), or it is left �lled with blanks (if a character string).

Note that if the sequence �elds for records in the master�le contain only numerals, and the
sequence value of the VOID parameter is a character string, all of the master�le is voided.

SEQNUM Parameter

SEQNUM allows you to renumber sequence �elds in the new�le. If SEQNUM is used as a
parameter in the $EDIT command, it has no e�ect upon the master or text�le.

Initially, renumbering of records in a new�le is disabled.

SEQNUM requires a sequence number as its subparameter. This sequence number is the value
used for the �rst record when resequencing begins. Subsequent records are renumbered using
an increment of 100, unless the INC parameter of $EDIT is used to specify a di�erent one.
The records to be renumbered start with the �rst record to be sent to the new�le following
the $EDIT SEQNUM command. This renumbering continues until a $EDIT NOSEQ
command is encountered in the �le where the $EDIT SEQNUM command appears.

Preprocessor Commands and $CONTROL Options B-19

$EDIT Command

If the sequence number subparameter of the SEQNUM command is of insu�cient length to
�ll the sequence �eld of the new�le, su�cient zeroes are appended to the left of the sequence
number to �ll the sequence �eld of the records in the new�le.

NOSEQ Parameter

The NOSEQ parameter of the $EDIT command is used to terminate the resequencing of a
new�le initiated by a $EDIT SEQNUM command. If a $EDIT NOSEQ command is issued
after a $EDIT SEQNUM command, resequencing of new�le records is terminated, and
remaining records sent to the new�le retain their old sequence values until a new $EDIT
SEQNUM command is encountered.

If a $EDIT NOSEQ command is issued when no resequencing has been speci�ed, it is ignored.
Therefore, because no resequencing takes place unless you issue a $EDIT SEQNUM command,
the $EDIT NOSEQ command is the default. In this case, sequence �elds are retained and
passed to the new�le as records are sent to the compiler.

INC Parameter

If INC is used as a parameter of the $EDIT command, it must have an increment value
associated with it. This increment value is used when a $EDIT SEQNUM command is issued
to renumber lines of the new�le. The increment value may range from 1 through 999999.
Note, however, that a very large increment is of limited value, because it may cause the
sequence number to be long for the sequence �eld.

If no $EDIT INC command is issued, the default value is 100. This default value stays in
e�ect until an INC parameter specifying a new increment value is encountered.

In general, if you wish to provide for a di�erent increment during a resequencing operation,
the $EDIT INC command must be speci�ed before the $EDIT SEQNUM command is
executed. As with the default value, the increment value speci�ed in the $EDIT INC
command stays in e�ect until a new increment value is speci�ed.

$EDIT commands are normally part of the text�le. You may use them in the master�le,
but it is not recommended because any $EDIT command using the VOID parameter in the
master�le could void its own continuation records. $EDIT commands themselves are never
sent to the new�le. While sequence �elds are allowed, and indeed usually necessary, on records
containing $EDIT commands, continuation records for such commands should have blank
sequence �elds.

During merging, a group of one or more master�le records with blank sequence �elds are never
replaced by lines from the text�le. They can only be deleted by using the VOID parameter
of $EDIT. This is accomplished by using a sequence value subparameter at least as great
as the contents of the last nonblank sequence �eld preceding the group of records with
blank sequence �elds. Because voided records are never passed to the compiler or new�le,
their sequence �elds are never checked for proper sequence, and they never generate an
out-of-sequence diagnostic message.

Any master�le record replaced by a text�le record is treated as if voided, except that following
records with blank sequence �elds are not also voided. If a replaced record is out of sequence,
the text�le record that replaces it produces an out-of-sequence diagnostic message.

In general, whenever a record sent to the new�le has a nonblank sequence �eld lower in value
than that of the last record with a nonblank sequence �eld, a diagnostic message is printed.

B-20 Preprocessor Commands and $CONTROL Options

$COPYRIGHT Command

Compiler-Dependent Options

This section covers the �ve preprocessor commands that are compiler-dependent. This means
that they are processed by the HP COBOL II compiler.

The compiler-dependent preprocessor commands are $COPYRIGHT, $PAGE, $TITLE,
$VERSION, and $CONTROL.

$COPYRIGHT Command

With the $COPYRIGHT command you can put a copyright string into your object �le.

Syntax

$COPYRIGHT [string [, string] . . .]

Parameter

string the data to be placed into the object �le. The characters of string must be
preceded and followed by a quotation mark. The total number of characters
used in the strings is limited to 116. This includes any blanks appearing in
strings, but does not include the quotation marks used to delimit the strings.

Description

$COPYRIGHT places the speci�ed strings into the object �le when the program is compiled
and linked. If you have more than one $COPYRIGHT command in your program, only the
last one is used. If multiple source �les make up a program �le and there is a $COPYRIGHT
for each, one $COPYRIGHT for each source �le is used.

Examples

The following is an example copyright string:

$COPYRIGHT "Copyright 1991 My Company, Inc. All rights reserved."

The following shows a copyright string continued onto a second line:

$COPYRIGHT "Copyright 1991 My Company, Inc. ",&

$"All rights reserved."

Preprocessor Commands and $CONTROL Options B-21

$PAGE Command

$PAGE Command

The $PAGE command allows you to replace the �rst line of the title portion of the standard
page heading in a list�le, and to advance to the next logical page of the list�le.

Syntax

$PAGE [string [, string] . . .]

Parameter

string the data to be used in replacing the �rst line of the title. The characters of
string must be preceded and followed by a quotation mark. The total number
of characters used in the strings is limited to 97. This includes any blanks
appearing in strings, but does not include the quotation marks used to delimit
the strings.

Description

The title line resulting from execution of the $PAGE command is a concatenation of all
characters in all strings used in the command, in the order in which the strings are speci�ed.

If no string is speci�ed, $PAGE does not change the �rst line of the title, but, if $CONTROL
LIST is in e�ect, causes the list�le to be advanced to the next logical page.

If the $CONTROL LIST command is in e�ect when the $PAGE command is encountered, the
list�le is advanced to the next logical page and the standard page heading, including the new
title, is printed, followed by one or two blank lines, depending upon whether the title is one or
two lines long.

If the $CONTROL NOLIST command is in e�ect when the $PAGE command is encountered,
the �rst line of the title is replaced with the speci�ed string (or strings), but no page is
advanced, and no listing of title or text occurs.

Note that $PAGE is never listed in the list�le.

B-22 Preprocessor Commands and $CONTROL Options

$TITLE Command

$TITLE Command

The $TITLE command is similar to $PAGE in that it can be used to replace the �rst line of a
title in the list�le. However, it can also be used to replace the second line of the title as well
as the �rst, or only the second line; unlike $PAGE, it does no page advancement on the logical
page of the list�le.

Syntax

$TITLE [(n)] [string [, string] . . .]

Parameters

n speci�es which line of the title is to be replaced. Thus, n can be either 1 or 2, and
must be preceded and followed by a space. The default is 1.

string has the same format, restrictions and use as in the $PAGE command.

Description

If the $TITLE command is used with no parameters, it is equivalent to replacing the �rst line
of the title with blanks.

Preprocessor Commands and $CONTROL Options B-23

$VERSION Command

$VERSION Command

With the $VERSION command you can put a version string into your object �le.

Syntax

$VERSION [string [, string] . . .]

Parameter

string the data to be placed into the object �le. The characters of string must be
preceded and followed by a quotation mark (") or an apostrophe ('). The
total number of characters used in the strings is limited to 255. This includes
any blanks appearing in strings, but does not include the quotation marks
used to delimit the strings.

Description

$VERSION places the speci�ed strings into the object �le when the program is compiled and
linked. If you have more than one $VERSION command in your program, only the last one is
used. If multiple source �les make up a program �le and there is a $VERSION command for
each, one $VERSION for each source �le is used.

To display the version strings from an object �le or a program �le, run the program
VERSION.PUB.SYS.

Examples

The following is an example version string:

$VERSION "ABC Application, XYZ Company, Revision D.01.12"

The following shows a version string continued onto a second line:

$VERSION "ABC Application, XYZ Company, ",&

$"Revision D.01.12"

The following shows how to add the $VERSION command using the INFO string (note the
use of an apostrophe instead of a quotation mark):

:COB85XL SRC,OBJ,$NULL;INFO="$VERSION 'REV'"

B-24 Preprocessor Commands and $CONTROL Options

$CONTROL Command

$CONTROL Command

The $CONTROL command controls compilation and list options. It has the following format:

$CONTROL option [, optionlist]

Parameters

optionlist one or more valid options, each separated from the preceding option by a
comma and zero or more optional spaces. See Table B-2 for a complete
list of $CONTROL options.

option a valid option for the $CONTROL command. Table B-2 lists all the
$CONTROL options.

The following lists all the $CONTROL options:

Table B-2. $CONTROL Options

ANSISORT
ANSISUB
BOUNDS
CALLINTRINSIC1

CHECKSYNTAX
CMCALL1

CODE
NOCODE
CROSSREF
NOCROSSREF
DEBUG
DIFF74
DIFF74=0BS
DIFF74=INC
DYNAMIC
ERRORS=number
INDEX161

INDEX321

LINES=number
LIST
NOLIST
LOCKING
LOCOFF
LOCON
MAP
NOMAP
NLS=options1

MIXED
NOMIXED
OPTFEATURES=options1

OPTIMIZE[=number]1

POST851

QUOTE=
RLFILE1

RLINIT1

SOURCE
NOSOURCE
STAT74
STDWARN[=level]
NOSTDWARN
SUBPROGRAM
SYMDEBUG
SYNC16
SYNC32
USLINIT
VALIDATE1

NOVALIDATE1

VERBS
NOVERBS
WARN
NOWARN

1 This option is available only on HP COBOL II/XL. See Appendix H, \MPE XL System Dependencies", for
more information.

The default $CONTROL options are shown below:

$CONTROL NOCODE, NOCROSSREF, ERRORS=100, LINES = 60, QUOTE=", LIST, LOCON, &

$ NOMAP, MIXED, SOURCE, NOSTDWARN, NOVERBS, WARN

Note For a description of other $CONTROL commands, refer to \MPE XL System
Dependencies" in Appendix H.

Preprocessor Commands and $CONTROL Options B-25

$CONTROL Options

ANSISORT

This option is provided to allow you to open the �les speci�ed in the USING or GIVING
clause of the SORT statement in the input or output procedure of the same SORT statement.
This capability will degrade the performance of SORT statements in the program. It is
also not recommended to use the USING �le as an output �le in the output procedure of
the SORT. If you do, you will not be able to recover the data that went into the sort if the
program should abnormally terminate.

ANSISUB

The ANSISUB option can be seen as a combination of the DYNAMIC and SUBPROGRAM
options. It determines that the expanded source code currently being compiled is to be a
subprogram which strictly conforms to the ANSI standard in the following ways:

1. It can be called with the CALL identi�er-1 form of the CALL statement (as with
DYNAMIC).

2. It maintains values of data items from one call to the next (as with SUBPROGRAM).

3. You can use the CANCEL statement to cause subsequent calls to the subprogram to reset
data items to their initial values.

Refer to \MPE XL System Dependencies" in Appendix H for more information.

BOUNDS

The BOUNDS option requests the compiler to generate code for both the validation of indices
and subscripts and the validation of start and length for reference modi�cation used in tables.
When an invalid index is detected, the program continues to execute, enabling you to continue
testing the program for other conditions. Initially, no bounds checking is enabled. This
option, if used, must appear in a $CONTROL command before the PROCEDURE DIVISION
is encountered. Refer to \MPE XL System Dependencies" in Appendix H for further details.

CHECKSYNTAX

The CHECKSYNTAX option checks the syntax of the program without producing an object
program. This option can also be used to produce a complete compiler listing that lists
COPYLIB modules called by the program.

CODE

The CODE option requests a copy of the object code to be included. This object code is a
listing of the machine code generated by the compilation of your expanded source code. This
option must appear before the IDENTIFICATION DIVISION. Refer to \MPE XL System
Dependencies" in Appendix H for more information.

NOCODE

The NOCODE option requests that no object code be included. NOCODE is the default. It is
used to negate a previously issued $CONTROL CODE command. This option must appear
before the IDENTIFICATION DIVISION. See \CODE" above.

B-26 Preprocessor Commands and $CONTROL Options

$CONTROL Options

CROSSREF

The CROSSREF option of $CONTROL requests a cross reference if symbols and procedures
used on the expanded source �le. This cross reference is sent to the list�le.

NOCROSSREF

The NOCROSSREF option of $CONTROL requests that no cross reference of symbols and
labels used in the expanded source �le be listed in the list�le.

This is the default; thus, its use is to cancel a previously issued $CONTROL CROSSREF
command.

DEBUG

The DEBUG option requests that HP COBOL II generate a call in the initialization segment
of your main program to the XCONTRAP intrinsic. This operating system intrinsic allows
you to transfer control to Debug at any time during execution of the prepared code. To
transfer control to Debug, you must press the control (CNTL) key, and while holding it down,
press the Y key.

DIFF74, DIFF74=OBS, and DIFF74=INC

The DIFF74 option turns on agging of di�erences between the ANSI COBOL'74 and the
ANSI COBOL'85 standards. Specifying DIFF74=OBS ags all obsolete features. Specifying
DIFF74=INC ags incompatible features that can be detected at compile-time, as well as the
obsolete features. Specifying DIFF74 has the same e�ect as specifying DIFF74=INC. Use this
option with COBOL'74 code that you want to migrate to COBOL'85.

See Appendix C, \Di�erences Between ANSI COBOL'74 and ANSI COBOL'85" for a list of
di�erences.

DYNAMIC

The DYNAMIC option indicates that the expanded source code currently being compiled is
to be a subprogram. This or the SUBPROGRAM option must be used if you are compiling a
subprogram; otherwise, the compiler assumes that the expanded source �le is a main program.

ERRORS=number

The ERRORS option uses an integer suboption, number , to specify the maximum number
of errors to be allowed before compilation of the expanded source �le is terminated. Thus,
for example, if number is set to 10, then when compilation of a source �le begins, it will
terminate either after all records have been compiled with less than ten errors, or after the
tenth compilation error has been found and listed to the list�le.

LINES=number

The LINES option of the $CONTROL command allows you to de�ne the number of lines to
be written on the logical page of your list�le. For example, if the line printer is your list�le,
then the command, $CONTROL LINES=30, causes thirty lines to be listed on each page of
the hard copy produced by the line printer.

Preprocessor Commands and $CONTROL Options B-27

$CONTROL Options

LIST

The LIST option of the $CONTROL command enables the listing of all source text, as well
as error and warning messages, subsystem initiation and completion messages, and all other
listings requested by the $CONTROL command (as for example, $CONTROL MAP).

Initially, this listing option is in e�ect by default. You might wish to use it to cancel a
previously issued $CONTROL NOLIST, or $CONTROL LOCOFF command.

NOLIST

The NOLIST option of $CONTROL disables the listing of source text, and all other listings
requested by previous $CONTROL commands. It does not, however, disable the listing
of erroneous source records, error and warning messages, and subsystem initiation and
completion messages.

LOCKING

This option is not required if the EXCLUSIVE and UN-EXCLUSIVE statements are used.
The LOCKING option of the $CONTROL option enables dynamic locking of all �les opened
during the execution of your program. Note that a $CONTROL LOCKING command does
not lock your �le; it simply makes it possible for you to do so from within your program.

LOCOFF

The LOCOFF option of $CONTROL has the same e�ect as the NOLIST option. Only error
and warning messages, and subsystem initiation and completion messages are listed.

A $CONTROL LOCOFF command remains in e�ect until either a $CONTROL LOCON, a
$CONTROL LIST option, or the last source line is encountered.

A $CONTROL LOCOFF command can be nested.

LOCON

The LOCON option of the $CONTROL command negates the e�ect of any $CONTROL
LOCOFF command issued previously. If a $CONTROL LIST command has been issued
before $CONTROL LOCOFF, then a following $CONTROL LOCON restores listing of
output to the list�le. If a $CONTROL NOLIST command was issued before a $CONTROL
LOCOFF, then a following $CONTROL LOCON has no e�ect upon the list�le.

$CONTROL LOCON and $CONTROL LOCOFF commands can be nested.

You can use $INCLUDE to copy a �le into your source �le, and $CONTROL LOCOFF
to suppress the listing of that �le. Use $CONTROL LOCOFF as the �rst command and
$CONTROL LOCON as the last command in the �le to be copied. This suppresses the listing
of the copied �le and restores the listing option in e�ect before the $INCLUDE command was
encountered.

MAP

The MAP option of $CONTROL requests a symbol table map to be included in your list�le.
When certain compile-time errors occur, the symbol table map is not printed.

B-28 Preprocessor Commands and $CONTROL Options

$CONTROL Options

NOMAP

The NOMAP option requests that no symbol table map be included in your list�le. This
is the default; thus, the purpose of the NOMAP option is to negate a previously issued
$CONTROL MAP command.

MIXED

The MIXED option of the $CONTROL command requests that the list�le include all
preprocessor commands used in the expanded source �le. Note that the $PAGE and $TITLE
preprocessor commands are not listed even if this option is in e�ect. This option is the
default; thus, if you do not wish to have preprocessor commands included as part of the
list�le, you should use the NOMIXED option of the $CONTROL command.

NOMIXED

The NOMIXED option of $CONTROL requests that no preprocessor commands be listed in
the list�le.

QUOTE = f" 'g

The QUOTE option in HP COBOL II is usually not necessary. It is provided only for the
purpose of de�ning �gurative constant QUOTE and simplifying conversion from COBOL/3000
source programs (based on ANSI COBOL'68) to HP COBOL II source programs.

SOURCE

The SOURCE option of $CONTROL command requests the listing of the expanded source �le
to the list�le.

Initially, this listing option is in e�ect by default; however, if the input �le is your terminal,
this option is disabled and NOSOURCE is initially the default, unless you explicitly request
SOURCE. Note that if you do request the SOURCE option while using your terminal as the
input device, the result is an echoing of each line entered.

NOSOURCE

The NOSOURCE option of $CONTROL disables listing of the expanded source �le generated
by the preprocessor.

STAT74

This option allows you to specify that �le status codes should be returned in the manner
speci�ed in ANSI COBOL 1974 (the way the ANSI74 entry point works) when the ANSI85
entry point is used. This allows you to use the ANSI COBOL 1985 features together with the
old �le status codes.

Preprocessor Commands and $CONTROL Options B-29

$CONTROL Options

STDWARN

STDWARN

2
66666664
=

8>>>>>>><
>>>>>>>:

HIGH

INT

INTSG

MIN

MINDB

MINSG

9>>>>>>>=
>>>>>>>;

3
77777775

The STDWARN option requests that the compiler detect and ag features in your source
�le that are part of HP COBOL II but not part of one of three levels of Federal Standard
COBOL (FIPS). The three levels are minimum, intermediate, and high. The default, high,
ags HP COBOL II extensions. These agged features are listed in your list�le. STDWARN
is useful in converting your HP COBOL II source program to conform to one of the three
Federal Standard levels of COBOL. The INTSG, MINDB, and MINSG ags are used to ag
the minimum and intermediate levels of the optional modules Debug and Segmentation.

Table B-3 summarizes which of the subsets of the 12 standard COBOL modules are contained
in each of the three federal levels of the language.

To illustrate how to interpret the table, examine the Relative I-O module entry.

When you request that your program be compared to the minimum level federal standard,
any program construct using Relative I-O will be agged, because the minimum level federal
standard subset has no implementation of Relative I-O.

When compared to the intermediate federal standard, which has a level 1 subset of Relative
I-O, only level 2 constructs would be agged as not being part of the intermediate federal
standard. When your program is compared to the high level federal standard for COBOL,
no construct utilizing Relative I-O will be agged, because the high level federal standard
contains the level 2 subset of Relative I-O.

Note The HP COBOL II compiler does not implement every feature of all
the modules. Refer to Table 1-2 for a summary of the subunits that are
implemented in HP COBOL II.

B-30 Preprocessor Commands and $CONTROL Options

$CONTROL Options

Table B-3. FIPS COBOL Subsets

COBOL Module
Minimum
Level

Intermediate
Level

High
Level

Nucleus 1 1 2

Sequential I-O 1 1 2

Relative I-O - 1 2

Indexed I-O - 1 2

Interprogram Communication 1 1 2

Sort-Merge - 1 1

Source Text Manipulation - 1 2

Report Writer - - -

Segmentation - 11 21

Debug - 11 -

Communication - - -

Intrinsic Functions - - 1

1 Use INTSG, MINDB, or MINSG to ag

NOSTDWARN

The NOSTDWARN option requests that the compiler not ag nonstandard features of HP
COBOL II. This is the default condition of the compiler. Thus, if you want to have features
that are not part of Federal Standard COBOL noted, use the $CONTROL STDWARN
option.

SUBPROGRAM

The SUBPROGRAM option indicates that the expanded source code currently being compiled
is to be a subprogram using static storage. This option, or the DYNAMIC option, must
be used when you are compiling a subprogram, because the compiler otherwise assumes the
expanded source code to be the source for a main program.

SYMDEBUG

The SYMDEBUG option causes the compiler to put symbolic debug information into the
object �le for symbolic debugging. The main program should include this option if any
subprogram includes the option. Refer to the HP COBOL II/XL Programmer's Guide for
more information. This option must appear before the IDENTIFICATION DIVISION.

The SYMDEBUG option can output symbolic debug information into the program �le for the
HP Symbolic Debugger/XL. See Appendix H, \MPE XL System Dependencies," for more
information.

Preprocessor Commands and $CONTROL Options B-31

$CONTROL Options

Note With the SYMDEBUG option, the compiler places signi�cantly more
information in the object �le.

SYNC16 and SYNC32

This option changes the alignment of SYNCHRONIZED data items. This alignment a�ects
the number of slack bytes generated in a record.

If SYNC16 is in e�ect, index data items and items with the SYNCHRONIZED clause are
aligned along 16-bit boundaries. If SYNC32 is in e�ect, these items are aligned along 32-bit
boundaries.

This option can be used more than once in a program to align one record along 16-bit
boundaries, and another record along 32-bit boundaries. Alignment cannot be changed within
a record, only between records. This option is especially useful when developing �les to be
used on other computer architectures.

For information on the default, refer to \MPE XL System Dependencies" in Appendix H.

USLINIT

The USLINIT option initializes the USL �le into which the compiled code is stored. This
gives you a completely clear �le. You should not use this option if you are compiling a
source �le into a USL �le containing the object code of a main or subprogram to be used
with the object code currently being compiled. Refer to \MPE XL System Dependencies" in
Appendix H for more information.

VERBS

The VERBS option of the $CONTROL command requests that the listing of statements used
in the PROCEDURE DIVISION and their code o�sets be listed in the list�le.

This option must appear before the IDENTIFICATION DIVISION. When certain
compile-time errors occur, the verb map is not printed.

NOVERBS

The NOVERBS option of the $CONTROL command prohibits the listing of the verb map.
See \VERBS" above.

NOVERBS is the default and is used to cancel a previously issued $CONTROL VERBS
command. This option must appear before the IDENTIFICATION DIVISION.

B-32 Preprocessor Commands and $CONTROL Options

$CONTROL Options

WARN

The WARN option enables the agging of possible, but not clearly, erroneous conditions
within your expanded source �le. These agged conditions are listed in your list�le, along
with an appropriate warning message.

WARN is a default condition. Thus, you need only use it to negate the use of a previously
issued $CONTROL NOWARN command.

NOWARN

The NOWARN option disables the agging and listing of possible erroneous conditions and
their associated warning messages.

The COBCNTL FILE

The �le COBCNTL.PUB.SYS is used to override the compiler defaults for the compiler options.
The compiler automatically includes a �le named COBCNTL.PUB.SYS in each source text�le.
You can de�ne di�erent system-wide defaults by adding new $CONTROL commands to the
�le.

For example, to de�ne the defaults as SYNC32, MAP, and CROSSREF, change the
COBCNTL.PUB.SYS �le contents to the following:

000010$CONTROL SYNC32

000020$CONTROL MAP

000030$CONTROL CROSSREF

The contents of the INFO string override the COBCNTL.PUB.SYS �le. Also you can use a �le
equation for COBCNTL.PUB.SYS to another �le.

Preprocessor Commands and $CONTROL Options B-33

C
Differences Between ANSI COBOL'74 and ANSI
COBOL'85

This appendix describes the di�erences and incompatibilities between the 1974 ANSI COBOL
standard and the 1985 ANSI COBOL standard and identi�es obsolete features that will be
deleted from standard COBOL.

ANSI74 Entry Point Differences

The following is a list of the ANSI COBOL'74 features accessible through the ANSI74 entry
point.

Exponentiation has been corrected as de�ned in the 1985 standard for the following special
cases:

If a value less than or equal to zero is raised to a power of zero, the size error condition
results.

If no real number exists as the result of an evaluation, the size error condition results.

The CANCEL statement closes all �les.

The STOP RUN statement closes all �les.

The EXIT PROGRAM statement is executed when there is no next executable statement in
the called program.

The COPY statement follows ANSI COBOL'85 rules.

The following ANSI COBOL'85 features may be used with ANSI74. They are agged as
extensions if you specify $CONTROL STDWARN.

De-edited MOVE's

Non-numeric literals > 132 characters

Use of < > as a relational operator

Use of the double negative (NOT < >)

When compiling statements from the report writer or the communications module, the
compiler issues a syntax error message.

The following new $CONTROL options may be used: SYNC16/SYNC32, DIFF74.

Differences Between ANSI COBOL'74 and ANSI COBOL'85 C-1

Differences between ANSI COBOL'74 and ANSI COBOL'85

Note COBOL'68 syntax that was treated as comments by the compiler, is
implemented in the HP COBOL II compiler. However, use of this feature in
future programming is not suggested. (Refer to \System Dependencies" in
Appendix H for more information.) For example, the PROCESSING MODE
IS SEQUENTIAL phrase of the SELECT statement is COBOL'68 syntax that
is treated as comments .

C-2 Differences Between ANSI COBOL'74 and ANSI COBOL'85

Differences between ANSI COBOL'74 and ANSI COBOL'85

Incompatibilities between ANSI COBOL'74 and ANSI COBOL'85

The following paragraphs summarize the syntax and run-time incompatibilities between ANSI
COBOL'74 and ANSI COBOL'85.

Syntax Incompatibilities

Syntax incompatibilities are:

The keyword ALPHABET must precede each alphabet name within the ALPHABET-
NAME clause of the SPECIAL-NAMES paragraph.

New reserved words have been added. Refer to Appendix F for more information.

COPY REPLACING does not allow pseudo-text-1 to contain only a comma or semicolon.

Run-time Incompatibilities

Run-time incompatibilities are:

When a receiving item is a variable length data item and contains the object of the
DEPENDING ON phrase, the maximum length is used.

A data item appearing in the USING phrase of the PROCEDURE DIVISION header must
not have a REDEFINES clause in its data description entry.

The following cases of exponentiation are now de�ned:

If a value less than or equal to zero is raised to a power of zero, the size error condition
occurs.

If no real number occurs as a result of the evaluation, the size error condition occurs. For
example, -4**.5

The CANCEL statement closes all open �les.

When there is no next executable statement in a called program, an implicit EXIT
PROGRAM statement is executed.

Within the VARYING . . . AFTER phrase of the PERFORM statement, identi�er-2
is augmented before identi�er-5 is set. In HP COBOL II, identi�er-5 was set before
identi�er-2 was augmented.

New I-O status codes have been speci�ed. Refer to Table C-1 for more information.

STOP RUN closes all �les.

Differences Between ANSI COBOL'74 and ANSI COBOL'85 C-3

Differences between ANSI COBOL'74 and ANSI COBOL'85

Table C-1 describes the di�erence between the I/O status codes received using the ANSI74
and ANSI85 entry points. It shows the equivalent ANSI74 codes for the new ANSI85 codes
and any di�erence in execution for these codes as well as codes whose de�nition has changed.

Table C-1. New I-O Status Codes

ANSI85
Status Code

ANSI74
Status Code

New, Old, or
Changed

Execution Di�erences between
the Entry Points

00 Old

02 Old

04 00 New None

05 00 New None

07 00 New None

10 Old

14 00 New Using ANSI74, the READ
successfully executes. Using
ANSI85, the READ fails because
the value of the data item is
greater than the PICTURE that
describes the key.

21 Old

22 Old

23 Old

24 24 Changed In addition to the old causes for
24, ANSI85 returns this code when
the value of the data item is
greater than the PICTURE that
describes it.

30 Old

34 Old

35 9x New The �le is not created using
ANSI85, it is created in ANSI74
for an OPEN with the I-O or
EXTEND phrase.

37 00 New ANSI74 opens the �le and the
program continues to execute,
however the program might abort
later for another reason. ANSI85
does not open the �le and a
permanent error condition exists
for that �le.

C-4 Differences Between ANSI COBOL'74 and ANSI COBOL'85

Differences between ANSI COBOL'74 and ANSI COBOL'85

Table C-1. New I-O Status Codes (continued)

ANSI85
Status Code

ANSI74
Status Code

New, Old, or
Changed

Execution Di�erences between
the Entry Points

38 00 New Using ANSI74, the OPEN fails
and a message is printed even
though an error status code is not
returned. Using ANSI85, the
OPEN fails and a permanent error
condition exists for that �le.

39 00 New ANSI74 entry point successfully
opens the �le and may print an
error message. ANSI85 treats it as
a permanent error.

41 9x New None

42 9x New None

43 9x or 00 New No di�erence for a REWRITE
statement. ANSI74 entry point
executes a DELETE statement
successfully.

44 00 New ANSI74 executes the statement
successfully. In ANSI85 the
statement is unsuccessful due to a
logic error.

46 10 New ANSI74 entry point continues to
return AT END condition or read
error condition.

47 9x or 00 New Using ANSI74, if the �le is not
open then a 9x status is returned.
If the �le is opened with the
wrong mode, a 9x status is
sometimes returned; sometimes it
continues to execute correctly.

48 9x or 00 New Using ANSI74, if the �le is not
open then a 9x status is returned.
If the �le is opened with the
wrong mode, a 9x status is
sometimes returned; sometimes it
continues to execute correctly.

49 9x or 00 New Using ANSI74, if the �le is not
open then a 9x status is returned.
If the �le is opened with the
wrong mode, a 9x status is
sometimes returned; sometimes it
continues to execute correctly.

Differences Between ANSI COBOL'74 and ANSI COBOL'85 C-5

Differences between ANSI COBOL'74 and ANSI COBOL'85

Obsolete Features

Obsolete features are elements of the language that are now part of the 1985 ANSI COBOL
standard, but will be deleted from the full standard after ANSI COBOL'85. The ANSI85
entry point will continue to support these features.

The following items have been placed in the obsolete category:

AUTHOR, DATE-WRITTEN, DATE-COMPILED, and SECURITY paragraphs in the
IDENTIFICATION DIVISION.

MEMORY-SIZE clause of the OBJECT-COMPUTER paragraph.

RERUN clause of the I-O-CONTROL paragraph.

LABEL RECORDS clause of the �le description entry.

VALUE OF clause of the �le description entry.

DATA RECORDS clause of the �le description entry.

ALTER statement.

ENTER statement.

REVERSED phrase of the OPEN statement.

STOP literal statement.

Segmentation module.

Debug module.

C-6 Differences Between ANSI COBOL'74 and ANSI COBOL'85

D

ASCII and EBCDIC Character Sets

This appendix presents a table showing the ASCII (American Standard Code for Information
Interchange) and EBCDIC (Extended Binary Coded Decimal Interchange Code) character
sets.

How to Use This Table

1. The table is sorted by character code, each code being represented by its decimal, octal,
and hexadecimal equivalent.

2. Each row of the table gives the ASCII and EBCDIC meaning of the character code.

The following examples show ways of using the table:

Example 1

Suppose you want to determine the ASCII code for the $ character. Scan down the ASCII
column until you locate $, then look right on that row to �nd the character codes 36
(decimal), 044 (octal), and 24 (hexadecimal). This is the code used by an ASCII device (for
example, a terminal, printer, or computer) to represent the $ character.

Example 2

Suppose you want to determine the EBCDIC and ASCII codes for the hexadecimal character
code 5B. First locate 5B in the Hexadecimal Value column. Then move left on that row to
the EBCDIC column which shows a $ and further left to the ASCII column which shows a [.
These are the EBCDIC and ASCII characters represented by the hexadecimal character code
5B.

ASCII and EBCDIC Character Sets D-1

ASCII and EBCDIC Character Sets

Table D-1. ASCII and EBCDIC Character Sets

ASCII EBCDIC Character Code Values

Control/
Graphic

Control/
Graphic

Decimal
Value

Octal
Value

Hex
Value

NUL NUL 0 000 00

SOH SOH 1 001 01

STX STX 2 002 02

ETX ETX 3 003 03

EOT PF 4 004 04

ENQ HT 5 005 05

ACK LC 6 006 06

BEL DEL 7 007 07

BS 8 010 08

HT 9 011 09

LF SMM 10 012 0A

VT SI 11 013 0B

FF FF 12 014 0C

CR CR 13 015 0D

SO SO 14 016 0E

SI SI 15 017 0F

DLE DLE 16 020 10

DC1 DC1 17 021 11

DC2 DC2 18 022 12

DC3 TM 19 023 13

DC4 RES 20 024 14

NAK NL 21 025 15

SYN BS 22 026 16

ETB IL 23 027 17

CAN CAN 24 030 18

EM EM 25 031 19

SUB CC 26 032 1A

ESC CU1 27 033 1B

FS IFS 28 034 1C

GS IGS 29 035 1D

RS IRS 30 036 1E

US IUS 31 037 1F

ASCII EBCDIC Character Code Values

Control/
Graphic

Control/
Graphic

Decimal
Value

Octal
Value

Hex
Value

SP DS 32 040 20

! SOS 33 041 21

" FS 34 042 22

35 043 23

$ BYP 36 044 24

% LF 37 045 25

& ETB 38 046 26

' ESC 39 047 27

(40 050 28

) 41 051 29

* SM 42 052 2A

+ CU2 43 053 2B

, 44 054 2C

- ENQ 45 055 2D

. ACK 46 056 2E

/ BEL 47 057 2F

0 48 060 30

1 49 061 31

2 SYN 50 062 32

3 51 063 33

4 PN 52 064 34

5 RS 53 065 35

6 UC 54 066 36

7 EOT 55 067 37

8 56 070 38

9 57 071 39

: 58 072 3A

; CU3 59 073 3B

< DC4 60 074 3C

= NAK 61 075 3D

> 62 076 3E

? SUB 63 077 3F

D-2 ASCII and EBCDIC Character Sets

ASCII and EBCDIC Character Sets

Table D-1. ASCII and EBCDIC Character Sets (continued)

ASCII EBCDIC Character Code Values

Control/
Graphic

Control/
Graphic

Decimal
Value

Octal
Value

Hex
Value

@ SP 64 100 40

A 65 101 41

B 66 102 42

C 67 103 43

D 68 104 44

E 69 105 45

F 70 106 46

G 71 107 47

H 72 110 48

I 73 111 49

J /c 74 112 4A

K . 75 113 4B

L < 76 114 4C

M (77 115 4D

N + 78 116 4E

O 79 117 4F

P & 80 120 50

Q 81 121 51

R 82 122 52

S 83 123 53

T 84 124 54

U 85 125 55

V 86 126 56

W 87 127 57

X 88 130 58

Y 89 131 59

Z ! 90 132 5A

[$ 91 133 5B

n * 92 134 5C

]) 93 135 5D

^ ; 94 136 5E

^ 95 137 5F

ASCII EBCDIC Character Code Values

Control/
Graphic

Control/
Graphic

Decimal
Value

Octal
Value

Hex
Value

` - 96 140 60

a n 97 141 61

b 98 142 62

c 99 143 63

d 100 144 64

e 101 145 65

f 102 146 66

g 103 147 67

h 104 150 68

i 105 151 69

j j 106 152 6A

k , 107 153 6B

l % 108 154 6C

m 109 155 6D

n > 110 156 6E

o ? 111 157 6F

p 112 160 70

q 113 161 71

r 114 162 72

s 115 163 73

t 116 164 74

u 117 165 75

v 118 166 76

w 119 167 77

x 120 170 78

y ` 121 171 79

z : 122 172 7A

f # 123 173 7B

j @ 124 174 7C

g ' 125 175 7D

~ = 126 176 7E

DEL " 127 177 7F

ASCII and EBCDIC Character Sets D-3

ASCII and EBCDIC Character Sets

Table D-1. ASCII and EBCDIC Character Sets (continued)

ASCII EBCDIC Character Code Values

Control/
Graphic

Control/
Graphic

Decimal
Value

Octal
Value

Hex
Value

128 200 80

a 129 201 81

b 130 202 82

c 131 203 83

d 132 204 84

e 133 205 85

f 134 206 86

g 135 207 87

h 136 210 88

i 137 211 89

138 212 8A

139 213 8B

140 214 8C

141 215 8D

142 216 8E

143 217 8F

144 220 90

j 145 221 91

k 146 222 92

l 147 223 93

m 148 224 94

n 149 225 95

o 150 226 96

p 151 227 97

r 152 230 98

153 231 99

154 232 9A

155 233 9B

156 234 9C

157 235 9D

158 236 9E

159 237 9F

ASCII EBCDIC Character Code Values

Control/
Graphic

Control/
Graphic

Decimal
Value

Octal
Value

Hex
Value

160 240 A0

~ 161 241 A1

s 162 242 A2

t 163 243 A3

u 164 244 A4

v 165 245 A5

w 166 246 A6

x 167 247 A7

y 168 250 A8

z 169 251 A9

170 252 AA

171 253 AB

172 254 AC

173 255 AD

174 256 AE

175 257 AF

176 260 B0

177 261 B1

178 262 B2

179 263 B3

180 264 B4

181 265 B5

182 266 B6

183 267 B7

184 270 B8

185 271 B9

186 272 BA

187 273 BB

188 274 BC

189 275 BD

190 276 BE

191 277 BF

D-4 ASCII and EBCDIC Character Sets

ASCII and EBCDIC Character Sets

Table D-1. ASCII and EBCDIC Character Sets (continued)

ASCII EBCDIC Character Code Values

Control/
Graphic

Control/
Graphic

Decimal
Value

Octal
Value

Hex
Value

f 192 300 C0

A 193 301 C1

B 194 302 C2

C 195 303 C3

D 196 304 C4

E 197 305 C5

F 198 306 C6

G 199 307 C7

H 200 310 C8

I 201 311 C9

202 312 CA

203 313 CB

204 314 CC

205 315 CD

206 316 CE

207 317 CF

g 208 320 D0

J 209 321 D1

K 210 322 D2

L 211 323 D3

M 212 324 D4

N 213 325 D5

O 214 326 D6

P 215 327 D7

Q 216 330 D8

R 217 331 D9

218 332 DA

219 333 DB

220 334 DC

221 335 DD

222 336 DE

223 337 DF

ASCII EBCDIC Character Code Values

Control/
Graphic

Control/
Graphic

Decimal
Value

Octal
Value

Hex
Value

n 224 340 E0

225 341 E1

S 226 342 E2

T 227 343 E3

U 228 344 E4

V 229 345 E5

W 230 346 E6

X 231 347 E7

Y 232 350 E8

Z 233 351 E9

234 352 EA

235 353 EB

236 354 EC

237 355 ED

238 356 EE

239 357 EF

0 240 360 F0

1 241 361 F1

2 242 362 F2

3 243 363 F3

4 244 364 F4

5 245 365 F5

6 246 366 F6

7 247 367 F7

8 248 370 F8

9 249 371 F9

250 372 FA

251 373 FB

252 374 FC

253 375 FD

254 376 FE

255 377 FF

ASCII and EBCDIC Character Sets D-5

E

COBOL Glossary

The terms in this appendix are de�ned in accordance with their meaning as used in this
document describing COBOL and may not have the same meaning for other languages.

These de�nitions are also intended to be either reference material or introductory material
to be reviewed prior to reading the detailed language speci�cations. For this reason, these
de�nitions are, in most instances, brief and do not include detailed syntactical rules.

Definitions

Abbreviated Combined Relation Condition. The combined condition that results from the
explicit omission of a common subject or a common subject and common relational operator
in a consecutive sequence of relation conditions.

Access Mode. The manner in which records are to be operated upon within a �le.

Actual Decimal Point. The physical representation, using either of the decimal point
characters period (.) or comma (,), of the decimal point position in a data item.

Alphabet Name. A user-de�ned word, in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION, that assigns a name to a speci�c character set and/or collating
sequence.

Alphabetic Character. A character that belongs to the following set of letters: A,B,C, . . .
X,Y,Z, a,b,c . . . x,y,z and the space character.

Alphanumeric Character. Any character in the computer's character.

Alphanumeric Function. A function whose value is composed of a string of one or more
characters from the computer's character set.

Alternate Record Key. A key, other than the prime record key, whose contents identify a
record within an indexed �le.

Argument See Parameter.

Arithmetic Expression. An arithmetic expression can be an identi�er or a numeric elementary
item, a numeric literal, such identi�ers and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic expression
enclosed in parentheses.

Arithmetic Operation. The process caused by the execution of an arithmetic statement, or the
evaluation of an arithmetic expression, that results in a mathematically correct solution to the
arguments presented.

COBOL Glossary E-1

COBOL Glossary

Arithmetic Operator. A single character, or a �xed two-character combination, that belongs
to the following set:

Character Meaning
+ addition
- subtraction
* multiplication
/ division
** exponentiation

Arithmetic Statement. A statement that causes an arithmetic operation to be executed. The
arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT
statements.

Ascending Key. A key upon the values of which data is ordered starting with the lowest value
of key up to the highest value of key in accordance with the rules for comparing data items.

Assumed Decimal Point. A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has logical meaning but no
physical representation.

AT END Condition. A condition caused:

1. During the execution of a READ statement for a sequentially accessed �le.

2. During the execution of a RETURN statement, when no next logical record exists for the
associated sort or merge �le.

3. During the execution of a SEARCH statement, when the search operation terminates
without satisfying the condition speci�ed in any of the associated WHEN phrases.

Block. A physical unit of data that is normally composed of one or more logical records. For
mass storage �les, a block may contain a portion of a logical record. The size of a block has
no direct relationship to the size of the �le within which the block is contained or to the size
of the logical record(s) that are either contained within the block or that overlap the block.
The term is synonymous with physical record.

Body Group. Generic name for a report group of TYPE DETAIL, CONTROL HEADING, or
CONTROL FOOTING. This term has no meaning in HP COBOL II.

Bottom Margin. An empty area which follows the page body.

Called Program. A program which is the object of a CALL statement combined at object
time with the calling program to produce a run unit.

Calling Program. A program which executes a CALL to another program.

Cd-Name. A user-de�ned word that names an MCS interface area described in a
communication description entry within the COMMUNICATION SECTION of the DATA
DIVISION. This term has no meaning in HP COBOL II.

Character. The basic indivisible unit of the language.

E-2 COBOL Glossary

COBOL Glossary

Character Position. A character position is the amount of physical storage required to store a
single standard data format character described as usage is DISPLAY. Further characteristics
of the physical storage are de�ned by the implementor.

Character String. A sequence of contiguous characters which for COBOL word, a literal, a
PICTURE character string, or a comment entry.

Class Condition. The proposition, for which a truth value can be determined,
that the content of an item is wholly alphabetic or is wholly numeric,NN
or consists exclusively of those characters listed in the definition of theNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
class name.

Class Name. A user-de�ned word de�ned in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION that assigns a name to the proposition for which a truth value
can be de�ned that the content of a data item consists exclusively of those characters listed in
the de�nition of the class name.

Clause. A clause is an ordered set of consecutive COBOL character strings whose purpose is
to specify an attribute of an entry.

COBOL Character Set. The complete COBOL character set consists 79 characters listed
below:

Character Meaning
0,1, . . . ,9 digit

A,B, . . . ,a,b . . . ,z letter
space

+ plus sign
- minus sign (hyphen)
* asterisk
/ stroke (virgule, slash)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon
. period (decimal point)
" quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbolNNNNN
:

NNNNNNNNNNNNNNNN
colon

Note The HP extended COBOL character set includes the @ (at), n (back slash),
and % (percent) characters.

COBOL Word. A character string of not more than 30 characters which forms a user-de�ned
word, a system name, or a reserved word.

COBOL Glossary E-3

COBOL Glossary

Collating Sequence. The sequence in which the characters that are acceptable in a computer
are ordered for purposes of sorting, merging, and comparing.

Column. A character position within a print line. The columns are numbered from 1, by 1,
starting at the leftmost character position of the print line and extending to the rightmost
position of the print line.

Combined Condition. A condition that is the result of connecting two or more conditions with
the 'AND' or the 'OR' logical operator.

Comment Entry. An entry in the IDENTIFICATION DIVISION that may be any
combination of characters from the computer character set.

Comment Line. A source program line represented by an asterisk in the indicator area of the
line and any characters from the computer's character set in area A and area B of that line.
The comment line serves only for documentation in a program. A special form of comment
line represented by a stroke (/) in the indicator area of the line and any characters from
the computer's character set in area A and area B of that line causes page ejection prior to
printing the comment.

Common Program. A program which, despite being directly contained within another
program, may be called from any program directly or indirectly contained in that other
program.

Compile Time. The time at which a COBOL source program is translated, by a COBOL
compiler, to a COBOL object program.

Compiler Directing Statement. A statement, beginning with a compiler directing verb, that
causes the compiler to take a speci�c action during compilation. The compiler directing
statements are the COPY, ENTER,

NNNNNNNNNNNNNNNNNNNNNNN
REPLACE , and USE statements.

Complex Condition. A condition in which one or more logical operators act upon one or more
conditions.

Computer Name. A system name that identi�es the computer upon which the program is to
be compiled or run.

E-4 COBOL Glossary

COBOL Glossary

Concatenated Programs. A source �le that contains more than one COBOL program
appended to the previous program, of which at least one program is not a nested program.
The previous program must be terminated with

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END PROGRAM statement. In the following

example, PROGRAM-1 and PROGRAM-2 are concatenated programs. PROGRAM-3 is a
nested program.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGRAM-1....
END PROGRAM PROGRAM-1.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROGRAM-2....
IDENTIFICATION DIVISION.

PROGRAM-ID. PROGRAM-3.

END PROGRAM PROGRAM-3....
END PROGRAM PROGRAM-2.

Condition. A status of a program at execution time for which a truth value can be
determined. Where the term 'condition' (condition-1, condition-2, . . .) appears in these
language speci�cations in or in reference to 'condition' (condition-1, condition-2, . . .) of a
general format, it is a conditional expression consisting of either a simple condition optionally
parenthesized, or a combined condition consisting of the syntactically correct combination
of simple conditions, logical operators, and parentheses, for which a truth value can be
determined.

Condition Name. A user-de�ned word that assigns a name to a subset of values that
a conditional variable may assume; or a user-de�ned word assigned to a status of an
implementor de�ned switch or device. When 'condition name' is used in the general formats,
it represents a unique data item reference consisting of a syntactically correct combination
of a condition name, together with quali�ers and subscripts, as required for uniqueness of
reference.

Condition Name Condition. The proposition, for which a truth value can be determined, that
the value of a conditional variable is a member of the sets of values attributed to a condition
name associated with the conditional variable.

Conditional Expression. A simple condition or a complex condition speci�ed in an
NNNNNNNNNNNNNNNNNNNNNNNNNN
EVALUATE ,

IF, PERFORM, or SEARCH statement.

Conditional Phrase. A conditional phrase speci�es the action to be taken upon determination
of the truth value of a condition resulting from the execution of a conditional statement.

Conditional Statement. A conditional statement speci�es that the truth value of a condition is
to be determined and that the subsequent action of the object program is dependent on this
truth value.

Conditional Variable. A data item one or more values of which has a condition name assigned
to it.

COBOL Glossary E-5

COBOL Glossary

CONFIGURATION SECTION. A section of the ENVIRONMENT DIVISION that describes
overall speci�cation of source and object programs.

Containing and Contained Programs. Programs that are nested. For example, in the program
below, PROGRAM-1 and PROGRAM-2 are containing programs because PROGRAM-1 contains
PROGRAM-2 and PROGRAM-3, and PROGRAM-2 contains PROGRAM-3. PROGRAM-2 and PROGRAM-3

are contained programs.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROGRAM-1....
IDENTIFICATION DIVISION.

PROGRAM-ID. PROGRAM-2....
IDENTIFICATION DIVISION.

PROGRAM-ID. PROGRAM-3....
END PROGRAM PROGRAM-3.

END PROGRAM PROGRAM-2.

END PROGRAM PROGRAM-1.

Contiguous Items. Items that are described by consecutive entries in the DATA DIVISION,
and that bear a de�nite hierarchic relationship to each other.

Counter. A data item used for storing numbers or number representations in a manner that
permits these numbers to be increased or decreased by the value of another number, or to be
changed or reset to zero or to an arbitrary positive or negative value.

Currency Sign. The character '$' of the COBOL character set.

Currency Symbol. The character de�ned by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in a COBOL source
program, the currency symbol is identical to the currency sign.

Current Record. The record which is available in the record are associated with the �le.

Current Record Pointer. A conceptual entity that is used in the selection of the next record.

Data Clause. A clause that appears in a data description entry the DATA DIVISION and
provides information describing a particular attribute of a data item.

Data Description Entry. An entry in the DATA DIVISION that is composed of a level
number followed by a data name, if required, and then followed by a set of data clauses, as
required.

Data Item. A character or a set of contiguous characters (excluding in either case literals)
de�ned as a unit of data by the COBOL

Data Name. A user-de�ned word that names a data item described in a data description
entry in the DATA DIVISION. When used in the general formats, 'data name' represents a
word which can neither be subscripted, indexed, nor quali�ed unless speci�cally permitted by
the rules for that format.

E-6 COBOL Glossary

COBOL Glossary

Debugging Line. A debugging line is any line with 'D' in the indicator area of the line.

Debugging Section. A debugging section is a section that contains USE FOR DEBUGGING
statement.

Declaratives. A set of one or more special purpose sections, written at the beginning of the
PROCEDURE DIVISION, the �rst of which is preceded by the keyword DECLARATIVES
and the last of which is followed by the keywords END DECLARATIVES. A declarative is
composed of a section header, followed by a USE compiler directing sentence, followed by a set
of zero, one or more associated paragraphs.

Declarative Sentence. A compiler-directing sentence consisting of a single USE statement
terminated by the separator period.
NNNNNNNNNNNNNNNNNNNNNNNNNN
De-Edit. The logical removal of all editing characters from a numeric-edited data item in
order to determine that item's unedited numeric value.
NN
Delimited Scope Statement. Any statement which includes its explicit scope terminator.

Delimiter. A character or a sequence of contiguous characters that identi�es the end of
a string of characters and separates that string of characters from the following string of
characters. A delimiter is not part of the string of characters that it delimits.

Descending Key. A key upon the values of which data is ordered starting with the highest
value of key down to the lowest value of key, in accordance with the rules for comparing data
items.

Digit Position. A digit position is the amount of physical storage required to store a single
digit. This amount may vary depending on the usage of the data item describing the digit
position. Further characteristics of the physical storage are de�ned by the implementor.

Division. A set of zero, one or more sections or paragraphs, called the division body, that are
formed and combined in accordance with a speci�c set of rules. There are four (4) divisions in
a COBOL program: IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE.

Division Header. A combination of words followed by a period an space that indicates the
beginning of a division. The division headers are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION [USING data-name-1 [data-name-2]...] .

Dynamic Access. An access mode in which speci�c logical records can be obtained from or
placed into a mass storage �le in a nonsequential manner (see Random Access) and obtained
from a �le in a sequential manner (see Sequential Access), during the scope of the same
OPEN statement.

COBOL Glossary E-7

COBOL Glossary

Editing Character. A single character or a �xed two -character combination belonging to the
following set:

Character Meaning
B space
0 zero
+ plus
- minus
CR credit
DB debit
Z zero suppress
* check protect
$ currency-sign
, comma (decimal-point)
. period (decimal-point)
/ stroke (virgule, slash)

Elementary Item. A data item that is described as not being further logically subdivided.

End of PROCEDURE DIVISION. The physical position in a COBOL source program after
which no further procedures appear.

Entry. Any descriptive set of consecutive clauses terminated by a period and written in the
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a
COBOL source program.

Environment Clause. A clause that appears as part of an ENVIRONMENT DIVISION entry.

Execution Time. (See Object Time)
NN
Explicit Scope Terminator. A reserved word that terminates the scope of a particular
PROCEDURE DIVISION statement.

Expression. An arithmetic or conditional expression.

Extend Mode. The state of a �le after execution of an OPEN statement, with the EXTEND
phrase speci�ed for that �le, and before the execution of a CLOSE statement for that �le.

External Name. An external name is a name that is visible to other programs. It is visible
\outside" your program. External names are generated by the compiler using names in the
source program. The compiler generates external names for ENTRY literals, PROGRAM-ID
literals, and program names speci�ed in CALL and CANCEL statements.

External Naming Convention. These are the rules used by the compiler to convert the name
in the source program to the external name.

External Switch. A hardware or software device, de�ned and name by the implementor, which
is used to indicate that one of two alternate states exists.

Figurative Constant. A compiler-generated value referenced through the use of certain
reserved words.

E-8 COBOL Glossary

COBOL Glossary

File. A collection of records.

File Clause. A clause that appears as part of any of the follow DATA DIVISION entries:

File description (FD)
Sort-merge �le Description (SD)
Communication description (CD) Not used in HP COBOL II.

File Connector. A storage area which contains information about a �le and is used as the
linkage between a �le name and a physical �le and between a �le name and its associated
record area.

FILE-CONTROL. The name of an ENVIRONMENT DIVISION paragraph in the data �les
for a given source program are declared.

File Control Entry. A SELECT clause and all its subordinate clauses that declare the relevant
physical attributes of a �le.

File Description Entry. An entry in the FILE SECTION of the DATA DIVISION that is
composed of the level indicator FD, followed by a �le name, and then followed by a set of �le
clauses as required.

File Name. A user-de�ned word that names a �le description entry or a sort-merge �le
description entry within the FILE SECTION of the DATA DIVISION.

File Organization. The permanent logical �le structure establish at the time that a �le is
created.
NN
File Position Indicator. A conceptual entity that contains the value of the current key
within the key of reference for an indexed �le, or the record number of the current record
for a sequential �le, or the relative record number of the current record for a relative �le, or
indicates that no next logical record exists, or that the number of signi�cant digits in the
relative record number is larger than the size of the relative key data item, or that an optional
input �le is not present, or that the at end condition already exists, or that no valid next
record has been established.

FILE SECTION. The section of the DATA DIVISION that contains �le description entries
and sort-merge �le description entries together with their associated record descriptions.
NN
Fixed File Attributes. Information about a �le which is established when a �le is
created and cannot subsequently be changed during the existence of the �le. These attributes
include the organization of the �le (sequential, relative, or indexed), the prime record key, the
alternate record keys, the code-set, the minimum and maximum record size, the record type
(�xed or variable), the collating sequence of the keys for indexed �les, the blocking factor, the
padding character, and the record delimiter.

Fixed Length Record. A record associated with a �le whose �le description or sort-merge
description entry requires that all records contain the same number of character positions.

Footing Area. The position of the page body adjacent to the bottom margin.

Format. A speci�c arrangement of a set of data.

COBOL Glossary E-9

COBOL Glossary

Function. A temporary data item whose value is determined at the time the function is
referenced during the execution of a statement.

Function-Identi�er. A syntactically correct combination of character-strings and separators
that references a function. The data item represented by a function is uniquely identi�ed
by a function name with its arguments, if any. A function-identi�er may include a
reference-modi�er. A function-identi�er that references an alphanumeric function may be
speci�ed anywhere that an identi�er may be speci�ed, subject to certain restrictions. A
function-identi�er that references an integer or numeric function may be referenced anywhere
an arithmetic expression may be speci�ed.

Group Item. A named contiguous set of elementary or group items.

High Order End. The leftmost character of a string of character.

I-O-CONTROL. The name of an ENVIRONMENT DIVISION paragraph in which object
program requirements for speci�c input-output techniques, rerun points, sharing of same areas
by several data �les, and multiple �le storage on a single input-output device are speci�ed.

I-O-CONTROL Entry. An entry in the I-O-CONTROL paragraph of the ENVIRONMENT
DIVISION which contains clauses which provide information required for the transmission and
handling of data on named �les during the execution of a program.

I-O Mode. The state of a �le after execution of an OPEN statement with the I-O phrase
speci�ed, for that �le and before the execution of a CLOSE statement for that �le.

I-O Status. A conceptual entity which contains the two-character value indicating the
resulting status of an input-output operation. This value is made available to the program
through the use of the FILE STATUS clause in the �le control entry for the �le.

Identi�er. A data name, followed as required by the syntactically correct combination of
quali�ers, subscripts, indices, and reference-modi�ers necessary to make unique reference to a
data item. When referencing a data item that is a function, a function-identi�er is used. The
rules for identi�er associated with general formats may, however, speci�cally prohibit reference
to functions, quali�cation, subscription, or reference modi�cation.

Imperative Statement. A statement that begins with an imperative and speci�es an
unconditional action to be taken. An imperative-statement may consist of a sequence of
imperative statements.

Implementor-Name. A system-name that refers to a particular feature available on that
implementor's computing system.

Implicit Scope Terminator. A separator period which terminates the scope of any preceding
unterminated statement, or a phrase of a statement, which by its occurrence, indicates the end
of the scope of any statement contained with the preceding phrase.

E-10 COBOL Glossary

COBOL Glossary

Index. A computer storage position or register, the contents of represent the identi�cation of
a particular element in a table.

Index Data Item. A data item in which the value associated with an index name can be
stored in a form speci�ed by the implementor.

Index Name. A user-de�ned word that names an index associated a speci�c table.

Indexed Data Name. An identi�er that is composed of a data name followed by one or more
index names enclosed in parentheses.

Indexed File. A �le with indexed organization.

Indexed Organization. The permanent logical �le structure in which each record is identi�ed
by the value of one or more keys within that record.

Initial Program. A program that is placed into an state every time the program is called in a
run unit.

Initial State. The state of a program when it is �rst called in a run unit.

Input File. A �le that is opened in the input mode.

Input Mode. The state of a �le after execution of an OPEN statement, with the INPUT
phrase speci�ed, for that �le and before the execution of a CLOSE statement for that �le.

Input-Output File. A �le that is opened in the I-O mode.

INPUT-OUTPUT SECTION. The section of the ENVIRONMENT DIVISION that names the
�les and the external media required by an object program and which provides information
required for transmission and handling of data during execution of the object program.

Input-Output Statement. A statement that causes �les to be processed by performing
operations upon individual records or upon the �le as a unit. The input-output statements
are: ACCEPT (with the identi�er phrase), CLOSE, DELETE, DISABLE, DISPLAY,
ENABLE, OPEN, PURGE, READ, RECEIVE, REWRITE, SEND, SET (with the TO ON or
TO OFF phrase), START, and WRITE.

Input Procedure. A set of statements that is executed each time a record is released to the
sort-�le.

Integer. A numeric literal or a numeric data item that does not include any character
positions to the right of the assumed decimal-point. Or, a numeric function whose de�nition
provides that all digits to the right of the decimal point are zero in the returned value for
any possible evaluation of the function. Where the term 'integer' appears in general formats,
integer must not be a numeric data item, must not be signed, nor must not be zero unless
explicitly allowed by the rules of the format.

Integer Function. A function of the category numeric whose de�nition provides that all digits
to the right of the decimal point are zero in the returned value for any possible evaluation of
the function.

COBOL Glossary E-11

COBOL Glossary

Intra-Record Data Structure. The entire collection of groups and elementary data items from
a logical record which is de�ned by a contiguous subset of the data description entries which
describe that record. These data description entries include all entries whose level number is
greater than the level number of the �rst data description entry describing the intra-record
data structure.

Invalid Key Condition. A condition, at object time, caused when speci�c value of the key
associated with an indexed or relative �le is determined to be invalid.

Key. A data item which identi�es the location of a record, or of data items which serve to
identify the ordering of data.

Key of Reference. The key, either prime or alternate, currently being used to access records
within an indexed �le.

Keyword. A reserved word or function-name whose presence is required when the format in
which the word appears is used in a source program.

Language Name. A system name that speci�es a particular programming language.

Letter. A character belonging to one of the following two sets: (1) uppercase letters: A, B, C,
D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z; (2) lowercase letters: a,
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.

77 Level Description Entry. A data description entry that describes a noncontiguous data
item with the level number 77.

Level Indicator. Two alphabetic characters that identify a speci�c �le type or a position in
hierarchy.

Level Number. A user-de�ned word which indicates the position data item in the hierarchical
structure of a logical record or which indicates special properties of a data description entry.
A level number is expressed as a one or two digit number. Level numbers in the range 1
through 49 indicate the position of a data item in the hierarchical structure of a logical record.
Level numbers in the range 1 through 9 may be written either as a single digit or as a zero
followed by a signi�cant digit. Level number 66, 77, and 88 identify special properties of a
data description entry.

Library Name. A user-de�ned word that names a COBOL library that is to be used by the
compiler for a given source program compilation.

Library Text. A sequence of character strings and/or separators COBOL library.

LINAGE-COUNTER. A special register whose value points to the current position within the
page body.

Line. (See Report Line) Not used in HP COBOL II.

Line Number. An integer that denotes the vertical position of a line on a page. Not used for
HP COBOL II.

E-12 COBOL Glossary

COBOL Glossary

LINKAGE SECTION. The section in the DATA DIVISION of the called program that
describes data items available from the calling program. These data items may be referred to
by both the calling and called program.

Literal. A character string whose value is implied by the order set of characters comprising
the string.

Logical Operator. One of the reserved words AND, OR, or NOT. I formation of a condition,
both or either of AND and OR can be used as logical connectives. NOT can be used for
logical negation.

Logical Page. A conceptual entity consisting of the top margin the page body, and the bottom
margin.

Logical Record. The most inclusive data item. The level number a record is 01. (See Report
Writer Logical Record)

Low Order End. The rightmost character of a string of characters.

Mass Storage. A storage medium on which data may be organized a maintained in both a
sequential and nonsequential manner.

Mass Storage Control System (MSCS). An input-output control system that directs, or
controls, the processing of mass storage �les.

Mass Storage File. A collection of records that is assigned to mass storage medium.

Merge File. A collection of records to be merged by a MERGE statement. The merge �le is
created and can be used only by the merge function.

Message. Data associated with an end of message indicator or an of group indicator. Not used
in HP COBOL II. (See Message Indicators)

Mnemonic Name. A user-de�ned word that is associated in the ENVIRONMENT DIVISION
with a speci�ed implementor name.

MSCS. (See Mass Storage Control System)

Native Character Set. The ASCII character set associated with the computer speci�ed in the
OBJECT-COMPUTER paragraph.

Native Collating Sequence. The ASCII collating sequence associated with the computer
speci�ed in the OBJECT-COMPUTER paragraph.

Negated Combined Condition. The 'NOT' logical operator immediately followed by a
parenthesized combined condition.

Negated Simple Condition. The 'NOT' logical operator immediately followed by a simple
condition.

COBOL Glossary E-13

COBOL Glossary

Nested Programs. A COBOL program that contains another COBOL program. In the
following example, TEST1 is a nested program. TEST contains TEST1.

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST....
IDENTIFICATION DIVISION.

PROGRAM-ID. TEST1.

END PROGRAM TEST1....
END PROGRAM TEST.

See \Containing and Contained Programs" in this glossary.

Next Executable Sentence. The next sentence to which control will be transferred after
execution of the current statement is complete.

Next Executable Statement. The next statement to which control will be transferred after
execution of the current statement is complete.

Next Record. The record which logically follows the current record a �le.

Noncontiguous Items. Elementary data items, in the WORKING-STORAGE and LINKAGE
SECTIONs, which bear no hierarchic relationship to other data items.

Nonnumeric Item. A data item whose description permits its contents to be composed of
any combination of characters taken from the computer's character set. Certain categories of
nonnumeric items may be formed from more restricted character sets.

Nonnumeric Literal. A character-string bounded by quotation marks. The string of characters
may include any character in the computer's character set. To represent a single quotation
mark character within a nonnumeric literal, two contiguous quotation marks must be used.

Numeric Character. A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6,
7, 8, 9.

Numeric Function. A function of the class and category numeric but which for some possible
evaluation does not satisfy the requirements of an integer function.

Numeric Item. A data item whose description restricts its contents a value represented by
characters chosen from the digits '0' through '9'; if signed, the item may also contains a '+',
'-', or an operational sign.

Numeric Literal. A literal composed of one or more numeric characters that also may contain
either a decimal point, or an algebraic sign, or both. The decimal point must not be the
rightmost character. The algebraic sign, if present, must be the leftmost character.

OBJECT-COMPUTER. The name of an ENVIRONMENT DIVISION paragraph the
computer environment, within which the object program is executed, is described.

E-14 COBOL Glossary

COBOL Glossary

Object Computer Entry. An entry in the OBJECT-COMPUTER paragraph of the
ENVIRONMENT DIVISION which contains clauses which describe the computer environment
in which the object program is to be executed.

Object of Entry. A set of operands and reserved words, within a DIVISION entry, that
immediately follows the subject of the entry.

Object Program. A set or group of executable machine language instructions and other
material designed to interact with data to provide problem solution. In this context, an object
program is generally the machine language result of the operation of a COBOL compiler on
a source program. Where there is no danger of ambiguity, the word 'program' alone may be
used in place of the phrase 'object program'.

Object Time. The time at which an object program is executed. The term is synonymous
with execution time.

Obsolete Element. A COBOL language element in the 1985 revision of ANSI standard
COBOL that is to be deleted from the next revision of standard COBOL.

Octal Literal. A literal composed of a \%" followed by between 11 octal digits with a
maximum value of 37777777777. No algebraic sign nor decimal point may appear in the
literal. Octal Literals may appear as numeric literals and in VALUE clauses.

Open Mode. The state of a �le after execution of an OPEN statement for that �le and before
the execution of a CLOSE statement for that �le. The particular open mode is speci�ed in the
OPEN statement as either INPUT, OUTPUT, I-O or EXTEND.

Operand. Whereas the general de�nition of operand is 'that component which is operated
upon', for the purposes of this publication, any lowercase word (or words) that appears in a
statement or entry format may be considered to be an operand and, as such, is an implied
reference to the data indicated by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item or a numeric literal,
to indicate whether its value is positive or negative.

Optional File. A �le which is declared as being not necessarily present each time the object
program is executed. The object program causes an interrogation for the presence or absence
of the �le.

Optional Word. A reserved word that is included in a speci�c format only to improve the
readability of the language and whose presence is optional when the format in which the word
appears is used in a source program.

Output File. A �le that is opened in either the output mode or extend mode.

Output Mode. The state of a �le after execution of an OPEN statement with the OUTPUT
or EXTEND phrase speci�ed, for that �le and before the execution of a CLOSE statement for
that �le.

Output Procedure. A set of statements to which control is given during execution of a SORT
statement after the function is completed, or during execution of a MERGE statement after
the merge function has selected the next record in merged order.

COBOL Glossary E-15

COBOL Glossary

Page. A vertical division of a report representing a physical separation of report data, the
separation being based on internal reporting requirements and/or external characteristics of
the reporting medium.

Page Body. That part of the logical page in which lines can be written and/or spaced.

Page Footing. A report group that is presented at the end of a report page as determined by
the Report Writer Control System.

Page Heading. A report group that is presented at the beginning a report page and
determined by the Report Writer Control System.

Paragraph. In the PROCEDURE DIVISION, a paragraph name followed by a period and a
space and by zero, one, or more sentences. In the IDENTIFICATION and ENVIRONMENT
divisions, a paragraph header followed by zero, one, or more entries.

Paragraph Header. A reserved word, followed by a period and a space that indicates the
beginning of a paragraph in the IDENTIFICATION and ENVIRONMENT divisions. The
permissible paragraph headers are:

In the IDENTIFICATION DIVISION:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

In the ENVIRONMENT DIVISION:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O CONTROL.

Paragraph Name. A user-de�ned word that identi�es and begins paragraph in the
PROCEDURE DIVISION.

Parameter. An identi�er, a literal, or an arithmetic expression that speci�es a value to be
used in the evaluation of a function.

Phrase. A phrase is an ordered set of one or more consecutive COBOL character strings that
form a portion of a COBOL procedural statement or of a COBOL clause.

Physical Page. A device dependent concept de�ned by the implementor.

Physical Record. (See Block)

Prime Record Key. A key whose contents uniquely identify a record within an indexed �le.

Printable Group. A report group that contains at least one print. Not used in HP COBOL II.

Printable Item. A data item, the extent and contents of which a speci�ed by an elementary
report entry. This elementary report entry contains a COLUMN NUMBER clause, a
PICTURE clause, and a SOURCE, SUM or VALUE clause.

E-16 COBOL Glossary

COBOL Glossary

Procedure. A paragraph or group of logically successive paragraphs, or a section or group of
logically successive sections, within the PROCEDURE DIVISION.

Procedure Branching Statement. A statement that causes the explicit transfer of control to a
statement other than the next executable statement in the sequence in which the statements
are written in the source program. The procedure branching statements are: ALTER, CALL,
EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT PROCEDURE phrase),
PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE phrase).

Procedure Name. A user-de�ned word which is used to name a paragraph or section in the
PROCEDURE DIVISION. It consists of a paragraph name (which may be quali�ed), or a
section name.

Program Name. A user-de�ned word that identi�es a COBOL source program.

Program Name Entry. An entry in the PROGRAM-ID paragraph of the IDENTIFICATION
DIVISION which contains clauses that specify the program name and assign selected program
attributes to the program.

Pseudo-Text. A sequence of character strings and/or separators bounded by, but not
including, pseudo-text delimiters.

Pseudo-Text Delimiter. Two contiguous equal sign (=) characters to delimit pseudo-text.

Punctuation Character. A character that belongs to the following set:

Character Meaning
, comma
; semicolon
. period
" quotation mark
(left parenthesis
) right parenthesis

space
= equal signNNNNN
:

NNNNNNNNNNNNNNNN
colon

Quali�ed Data Name. An identi�er that is composed of a data name followed by one or more
sets of either of the connectives OF and IN, followed by a data name quali�er.

Quali�er.

1. A data name which is used in a reference together with another data name at a lower level
in the same hierarchy.

2. A section name which is used in a reference together with a paragraph name speci�ed in
that section.

3. A library name which is used in a reference together with a text name associated with that
library.

Queue. A logical collection of messages awaiting transmission or processing. Not used in
HP COBOL II.

Queue Name. A symbolic name that indicates to the MCS the logic path by which a
message or a portion of a completed message may be accessible in a queue. Not used in
HP COBOL II.

COBOL Glossary E-17

COBOL Glossary

Random access. An access mode in which the program-speci�ed value of a key data item
identi�es the logical record that is obtained from, deleted from or placed into a relative or
indexed �le.

Record. (See Logical Record)

Record Area. A storage area allocated for the purpose of processing the record described in a
record description entry in the FILE SECTION.

Record Description. (See Record Description Entry)

Record Description Entry. The total set of data description entries associated with a
particular record.

Record Key. A key, either the prime record key or an alternate record key, whose contents
identify a record within an indexed �le.

Record Name. A user-de�ned word that names a record described in a record description
entry in the DATA DIVISION.

Record Number. The ordinal number of a record in the �le whose organization is sequential.

Reel. A discrete portion of a storage medium, the dimensions of which are determined by
each implementor, that contains part of a �le, all of a �le, or any number of �les. The term is
synonymous with unit and volume.

Reference Format. A format that provides a standard method for describing COBOL source
programs.
NNN
Reference-Modifier. A syntactically correct combination of character-strings and
separators that de�nes a unique data item. It includes a delimiting left parenthesis separator,
the leftmost character position, a colon separator, optionally a length, and a delimiting right
parenthesis separator.

Relation. (See Relational Operator)

Relation Character. A character that belongs to the following set:

Character Meaning
> greater than
< less than
= equal to

Relation Condition. The proposition, for which a truth value can be determined, that the
value of an arithmetic expression or data item has a speci�c relationship to the value of
another arithmetic expression or data item. (See Relational Operator)

E-18 COBOL Glossary

COBOL Glossary

Relational Operator. A reserved word, a relation character, a group of consecutive reserved
words, or a group of consecutive reserved words and relation characters used in the
construction of a relation condition. The permissible operators and their meaning are:

Relational Operators Meaning
IS (NOT) GREATER THAN Greater than or not greater than
IS (NOT) >
IS (NOT) LESS THAN Less than or not less than
IS (NOT) <
IS (NOT) EQUAL TO Equal to or not equal to
IS (NOT) =NNN
IS GREATER THAN OR EQUAL TO Greater than or equal toNNNNNNNNNNNNNNNN
IS >=NNN
IS LESS THAN OR EQUAL TO Less than or equal toNNNNNNNNNNNNNNNN
IS <=

Relative File. A �le with relative organization.

Relative Key. A key whose contents identify a logical record in relative �le.

Relative Organization. The permanent logical �le structure in each record is uniquely
identi�ed by an integer value greater than zero, which speci�es the record's logical ordinal
position in the �le.

Relative Record Number. The ordinal number of a record in a �le whose organization is
relative. This number is treated as a numeric literal which is an integer.

Reserved Word. A COBOL word speci�ed in the list of words that may be used in COBOL
source programs, but must not appear in the programs as user-de�ned words or system names.

Routine Name. A user-de�ned word that identi�es a procedure written in a language other
than COBOL.

Run Unit. A set of one or more object programs which function, object time, as a unit to
provide problem solutions.

Static Storage. Static storage is storage that is allocated and initialized once at the
beginning of the run unit. It remains �xed throughout the run unit. Working-storage data of
subroutines with static storage retain their value from call to call.

Section. A set of zero, one, or more paragraphs or entries, called a section body, the �rst of
which is preceded by a section header. Each section consists of the section header and the
related section body.

COBOL Glossary E-19

COBOL Glossary

Section Header. A combination of words followed by a period and a space that indicates the
beginning of a section in the ENVIRONMENT, DATA and PROCEDURE divisions.

In the ENVIRONMENT and DATA divisions, a section header is composed of reserved words
followed by a period and a space. The permissible section headers are:

In the ENVIRONMENT DIVISION:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

In the DATA DIVISION:

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

COMMUNICATION SECTION.

REPORT SECTION.

In the PROCEDURE DIVISION, a section header is composed of a section name, followed by
reserved word SECTION, followed by a segment number (optional) followed by a period and a
space.

Section Name. A user-de�ned word that names a section in the PROCEDURE DIVISION.

Segment Number. A user-de�ned word that classi�es sections in the PROCEDURE
DIVISION for purposes of segmentation. Segment numbers may contain only the characters
'0', '1', . . . , '9'. A segment number may be expressed either as a one or two digit number.

Sentence. A sequence of one or more statement, the last of which is terminated by a period
followed by a space.

Separately Compiled Program. A program which, together with its contained programs, is
compiled separately from all other programs.

Separator. A punctuation character used to delimit character strings.

Sequential Access. An access mode in which logical records are obtained from or placed into a
�le in a consecutive predecessor-to-successor logical record sequence determined by the order
of records in the �le.

Sequential File. A �le with sequential organization.

Sequential Organization. The permanent logical �le structure in which a record is identi�ed
by a predecessor-successor relationship established when the record is placed into the �le.

Sign Condition. The proposition, for which a truth value can be determined, that the
algebraic value of a data item or an arithmetic expression is either less than, greater than, or
equal to zero.

E-20 COBOL Glossary

COBOL Glossary

Simple Condition. Any single condition chosen from the set:

relation condition

class condition
condition name condition

switch-status condition

sign condition

(simple-condition)

Sort File. A collection of records to be sorted by a SORT state. The sort-�le is created and
can be used by the sort function only.

Sort-Merge File Description Entry. An entry in the FILE SECTION of the DATA DIVISION
that is composed of the level indicator SD, followed by a �le name, and then followed by a set
of �le clauses as required.

Source. The symbolic identi�cation of the originator of a transmission to a queue.

SOURCE-COMPUTER. The name of an ENVIRONMENT DIVISION paragraph which the
computer environment, within which the source program is compiled, is described.

Source Computer Entry. An entry in the SOURCE-COMPUTER paragraph of the
ENVIRONMENT DIVISION which contains clauses which describe the computer environment
in which the source program is to be compiled.

Source Item. An identi�er designated by a SOURCE clause that provides the value of a
printable item.

Source Program. Although it is recognized that a source program may be represented by
other forms and symbols, in this document it always refers to a syntactically correct set of
COBOL statements beginning with the IDENTIFICATION DIVISION. In contexts where
there is no danger of ambiguity, the word 'program' alone may be used in place of the phrase '
source program'.

Special Character. A character that belong to the following set:

Character Meaning
+ plus sign
- minus sign
* asterisk
/ stroke (virgule, slash)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon
. period (decimal point)
" quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbolNNNNN
:

NNNNNNNNNNNNNNNN
colon

COBOL Glossary E-21

COBOL Glossary

Special Character Word. A reserved word which is an arithmetic operator or a relation
character.

SPECIAL-NAMES. The name of an ENVIRONMENT DIVISION paragraph in which
implementor names are related to user-speci�ed mnemonic names.

Special Names Entry. An entry in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION which provides means for specifying the currency sign; choosing the decimal point;
specifying symbolic characters; relating implementor names to user-speci�ed mnemonic names;
relating alphabet names to character sets or collating sequences; and relating class-names to
sets of characters.

Special Registers. Compiler generated storage areas whose primary use is to store information
produced in conjunction with the use of speci�c COBOL features.

Standard Data Format. The concept used in describing the characteristics of data in a
COBOL DATA DIVISION under which the characteristics or properties of the data are
expressed in a form oriented to the appearance of the data on a printed page of in�nite length
and breadth, rather than a form oriented to the manner in which the data is stored internally
in the computer, or on a particular external medium.

Statement. A syntactically valid combination of words and symbols written in the
PROCEDURE DIVISION beginning with a verb.

Subject of Entry. An operand or reserved word that appears immediately following the level
indicator or the level number in a DATA DIVISION entry.

Subprogram. There are three types of subprograms, dynamic, nondynamic, or combined.

Subscript. An integer, or a data-name optionally followed by an integer with the operator
+ or -, or an index-name optionally followed by an integer with the operator + or -, that
identi�es a particular element in a table. A subscript may be the word ALL when the
subscripted identi�er is used as a function argument.

Subscripted Data Name. An identi�er that is composed of a data name followed by one or
more subscripts enclosed in parentheses.

Switch-Status Condition. The proposition, for which a truth value can be determined, that an
implementor de�ned switch, capable of being set to an 'on' or 'o�' status, has been set to a
speci�c status.

Symbolic-Character. A user-de�ned word that speci�es a user de�ned �gurative constant.

System-Name. A COBOL word which is used to communicate with the operating
environment.

Table. A set of logically consecutive items of data that are de�ned in the DATA DIVISION by
means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items comprising a table.

Terminal. The originator of a transmission to a queue, or the receiver of a transmission from a
queue. Not used in HP COBOL II.

Text Name. A user-de�ned word which identi�es library text.

E-22 COBOL Glossary

COBOL Glossary

Text-Word. A character or a sequence of contiguous characters within area A and/or area B
in a COBOL library, source program, or in pseudo-text that is:

A separator (except for: a space, a pseudo-text delimiter, the opening and closing delimiters
for nonnumeric literals.) The right and left parentheses are always considered text-words.
A literal (including, in the case of nonnumeric literals, the opening quotation mark and the
closing quotation mark that bound the literal.)
Any other sequence of contiguous COBOL characters except comment lines and the word
'COPY', bounded by separators.

Truth Value. The representation of the result of the evaluation condition in terms of one of
two values:

true

false

Unary Operator. A plus (+) or a minus (-) sign, which precedes variable or left parenthesis
in an arithmetic expression and which has the e�ect of multiplying the expression by +1 or -1
respectively.

Unit. A module of mass storage the dimensions of which are determined by each implementor.

Unsuccessful Execution. The attempted execution of a statement that does not result in
the execution of all the operations speci�ed by that statement. The unsuccessful execution
of a statement does not a�ect any data referenced by that statement, but may a�ect status
indicators.

User-De�ned Word. A COBOL word that must be supplied by you to satisfy the format of a
clause or statement.

Variable. A data item whose value may be changed by execution of the object program. A
variable used in an arithmetic expression must be a numeric elementary item.

Variable Length Record. A record associated with a �le whose �le description or sort-merge
description entry permits records to contain a varying number of character positions.

Variable Occurrence Data Item. A variable occurrence data item is a table element which is
repeated a variable number of times. Such an item must contain an OCCURS DEPENDING
ON clause in its data description entry, or be subordinate to such an item.

Verb. A word that expresses an action to be taken by a COBOL compiler or object program.

Volume. A discrete portion of a storage medium, the dimensions of which are determined by
each implementor, that contains part of a �le, all of a �le, or any number of �les. The term is
synonymous with reel and unit.

Word. A character-string of not more than 30 characters that forms a user-de�ned word, a
system name, a reserved word, or a function-name.

WORKING-STORAGE SECTION. The section of the DATA DIVISION that describes
working-storage data items, composed of noncontiguous items or working-storage records or of
both.

COBOL Glossary E-23

F

COBOL Reserved Word List

This appendix lists all the reserved words in COBOL.

Table F-1. COBOL Reserved Words

ACCEPT

ACCESS

ACTUAL

ADD

ADVANCING

AFTER

ALLNNNNNNNNNNNNNNNNNNNNNNNN
ALPHABET

ALPHABETICNN
ALPHABETIC-LOWERNN
ALPHABETIC-UPPERNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
ALPHANUMERICNN
ALPHANUMERIC-EDITED

ALSO

ALTER

ALTERNATE

ANDNNNNNNNNNN
ANY

ARE

AREA

AREAS

ASCENDING

ASSIGN

AT

AUTHOR

BEFORE

BEGINNINGNNNNNNNNNNNNNNNNNN
BINARY

BLANK

BLOCK

BOTTOM

BY

CALL

CANCEL

CD

CF

CH

CHARACTER

CHARACTERSNNNNNNNNNNNNNNNN
CLASS

CLOCK-UNITS

CLOSE

COBOL

CODE

CODE-SET

COLLATING

COLUMN

COMMANNNNNNNNNNNNNNNNNN
COMMON

COMMUNICATION

COMP

COMP-3

COMPUTATIONAL

COMPUTATIONAL-3

COMPUTE

CONDITIONALLY

CONFIGURATION

CONTAINSNNNNNNNNNNNNNNNNNNNNN
CONTENTNNNNNNNNNNNNNNNNNNNNNNNN
CONTINUE

CONTROL

CONTROLSNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CONVERTING

COPY

CORR

CORRESPONDING

COUNT

CURRENCY

CURRENT-DATE

DATA

DATE

DATE-COMPILED

DATE-WRITTEN

DAYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DAY-OF-WEEK

DE

DEBUG-CONTENTS

DEBUG-ITEM

DEBUG-LINE

DEBUG-NAME

DEBUG-SUB-1

DEBUG-SUB-2

DEBUG-SUB-3

DEBUGGING

DECIMAL-POINT

DECLARATIVES

DELETE

DELIMITED

DELIMITER

DEPENDING

DESCENDING

DESTINATION

DETAIL

DISABLE

DISPLAY

DIVIDE

DIVISION

DOWN

DUPLICATES

DYNAMIC

EGI

ELSE

EMI

ENABLE

ENDNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-ACCEPTNNNNNNNNNNNNNNNNNNNNN
END-ADDNNNNNNNNNNNNNNNNNNNNNNNN
END-CALL

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-COMPUTENNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-DELETENNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-DIVIDENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-EVALUATENNNNNNNNNNNNNNNNNN
END-IFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-MULTIPLY

END-OF-PAGENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-PERFORMNNNNNNNNNNNNNNNNNNNNNNNN
END-READNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-RECEIVENNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-RETURNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-REWRITENNNNNNNNNNNNNNNNNNNNNNNNNN
END-STARTNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-STRINGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-SUBTRACTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-UNSTRINGNNNNNNNNNNNNNNNNNNNNNNNNNN
END-WRITE

ENDING

ENTER

ENTRY

ENVIRONMENT

EOP

EQUAL

ERROR

ESINNNNNNNNNNNNNNNNNNNNNNNN
EVALUATE

EVERY

EXAMINE

EXCEPTION

EXCLUSIVE

EXIT

EXTENDNNNNNNNNNNNNNNNNNNNNNNNN
EXTERNAL

COBOL Reserved Word List F-1

COBOL Reserved Words

Table F-1. COBOL Reserved Words (continued)
NNNNNNNNNNNNNNNN
FALSE

FD

FILE

FILE-CONTROL

FILE-LIMIT

FILE-LIMITS

FILLER

FINAL

FIRST

FOOTING

FOR

FREE

FROM

FUNCTION1

GENERATE

GIVINGNNNNNNNNNNNNNNNNNN
GLOBAL

GO

GOBACK

GREATER

GROUP

HEADING

HIGH-VALUE

HIGH-VALUES

I-O

I-O-CONTROL

IDENTIFICATION

IF

IN

INDEX

INDEXED

INDICATE

INITIALNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
INITIALIZE

INITIATE

INPUT

INPUT-OUTPUT

INSPECT

INSTALLATION

INTO

INTRINSIC

INVALID

IS

JUST

JUSTIFIED

KEY

LABEL

LAST

LEADING

LEFT

LENGTH

LESS

LIMIT

LIMITS

LINAGE

LINAGE-COUNTER

LINE

LINE-COUNTER

LINES

LINKAGE

LOCK

LOW-VALUE

LOW-VALUES

MEMORY

MERGE

MESSAGE

MODE

MODULES

MORE-LABELS

MOVE

MULTIPLE

MULTIPLY

NATIVE

NEGATIVE

NEXT

NO

NOLIST

NOT

NUMBER

NUMERICNN
NUMERIC-EDITED

OBJECT-COMPUTER

OCCURS

OF

OFF

OMITTED

ON

OPEN

OPTIONAL

ORNNNNNNNNNNNNNNNN
ORDER

ORGANIZATIONNNNNNNNNNNNNNNNN
OTHER

OUTPUT

OVERFLOW

NN
PACKED-DECIMALNNNNNNNNNNNNNNNNNNNNN
PADDING

PAGE

PAGE-COUNTER

PERFORM

PF

PH

PIC

PICTURE

PLUS

POINTER

POSITION

POSITIVE

PRINTING

PROCEDURE

PROCEDURES

PROCEED

PROCESSING

PROGRAM

PROGRAM-IDNNNNNNNNNNNNNNNN
PURGE

QUEUE

QUOTE

QUOTES

RANDOM

RD

READ

RECEIVE

RECORD

RECORDING

RECORDS

REDEFINES

REELNNNNNNNNNNNNNNNNNNNNNNNNNN
REFERENCE

REFERENCES

RELATIVE

RELEASE

REMAINDER

REMOVAL

RENAMESNNNNNNNNNNNNNNNNNNNNN
REPLACE

REPLACING

REPORT

REPORTING

REPORTS

RERUN

RESERVE

RESET

RETURN

REVERSED

REWIND

REWRITE

RF

RH

RIGHT

ROUNDED

RUN

1 FUNCTION is a reserved word when the POST85 control option is speci�ed.

F-2 COBOL Reserved Word List

COBOL Reserved Words

Table F-1. COBOL Reserved Words (continued)

SAME

SD

SEARCH

SECTION

SECURITY

SEEK

SEGMENT

SEGMENT-LIMIT

SELECT

SEND

SENTENCE

SEPARATE

SEQUENCE

SEQUENTIAL

SET

SIGN

SIZE

SORT

SORT-MERGE

SOURCE

SOURCE-COMPUTER

SPACE

SPACES

SPECIAL-NAMES

STANDARD

STANDARD-1NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
STANDARD-2

START

STATUS

STOP

STRING

SUB-QUEUE-1

SUB-QUEUE-2

SUB-QUEUE-3

SUBTRACT

SUM

SUPPRESS

SYMBOLIC

SYNC

SYNCHRONIZED

TABLE

TALLY

TALLYING

TAPE

TERMINAL

TERMINATENNNNNNNNNNNNN
TEST

TEXT

THAN

THEN

THROUGH

THRU

TIME

TIME-OF-DAY

TIMES

TO

TOP

TRAILINGNNNNNNNNNNNNN
TRUE

TYPE

UN-EXCLUSIVE

UNIT

UNSTRING

UNTIL

UP

UPON

USAGE

USE

USING

VALUE

VALUES

VARYING

WHEN

WHEN-COMPILED

WITH

WORDS

WORKING-STORAGE

WRITE

ZERO

ZEROES

ZEROS

+

-

*

/

**

>

>=

<

<=

<>

=NNNNN
:

COBOL Reserved Word List F-3

G

COBEDIT Program and COPY Libraries

This appendix explains the COBEDIT program that allows you to copy source statements
from COBOL COPY libraries. With COBEDIT you can develop and maintain COBOL
COPY libraries. The EDIT, EXIT, HELP, and LIBRARY commands are discussed as features
in using the COPY Library.

The COBEDIT Program

The COBEDIT program resides in the PUB group of the SYS account. This program allows
you to create, modify, and look at a COBOL COPY Library �le.

As part of the create process, you have the option to copy any ASCII �le into the newly
created library. Since the records of the �le are eventually used in a COBOL program, they
must be valid COBOL statements or preprocessor commands. Because of the restriction
placed on modules by the COPY command, there should not be any COPY statements as
part of the records in a library.

The commands available in the COBEDIT program are HELP, BUILD, COPY, LIST, EDIT,

SHOW, PURGE, KEEP, and LIBRARY. Enter one of these commands when the COBEDIT
prompt, a greater-than sign (>), appears. Several MPE commands may also be issued from
within the COBEDIT program by typing a colon (:) followed by the command that is to be
executed. Any programmatically executable command may be used, that is, those commands
that are executed by the COMMAND intrinsic.

To enter the COBEDIT program, issue the MPE RUN command as shown here:

:RUN COBEDIT.PUB.SYS

When this command is executed, the COBEDIT program displays a header, including the
current date and time, and a \HELP" message followed by the greater-than prompt.

HP32233A.02.00 COPYLIB EDITOR - COBEDIT MON, MAR 26, 1991, 10:03 AM

(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR A LIST OF COMMANDS.

>

Only one user per logon group can be editing any library �le. Other users in the same logon
group must wait until the current user has �nished editing. And, only one user at a time can
be editing any particular library �le. COBEDIT opens the library �le exclusively.

COBEDIT Program and COPY Libraries G-1

COBEDIT Program, COPY Libraries

COPY Libraries

The COPY statement is a COBOL feature that enables you to copy COBOL source
statements into your program from COPY Libraries. In this way, multiple programs can use a
single paragraph, �le description or record description.

On an HP computer system, COBEDIT copy libraries are KSAM �les of ASCII records which
contain one or more modules. These modules are the sets of text which can be copied into
your program. You can have more than one library and, by using multiple COPY statements,
can copy text from several libraries.

A module in a copy library is distinguished from other modules by a string of alphanumeric
characters in columns 73 through 80 of each record in that module. Since this is the only way
to distinguish one module from another, the string of characters must be unique with respect
to every other module in the same library.

The following illustrates the use of the COBEDIT program to list three modules within a
library named MYLIB:

:RUN COBEDIT.PUB.SYS

HP32233A.02.00 COPYLIB EDITOR - COBEDIT MON, MAR 26, 1991, 10:08 AM

(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR A LIST OF COMMANDS.

>LIBRARY MYLIB

>LIST ALL

Text-name MODULE1

001000$CONTROL SUBPROGRAM

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. DUMMY-SUB.

Text-name MODULE2

005100 WORKING-STORAGE SECTION.

005200 01 UNIV-TOTALER PIC 9(8) COMP-3.

005300 01 UNIV-ACCUM PIC 9(8) COMP-3.

Text-name MODULE3

008000 PERFORM TEST-IT.

008100 IF RESULTANT IS LESS THAN 2

008200 PERFORM TEST-FAILED;

008300 ELSE NEXT SENTENCE.

The three modules are MODULE1, MODULE2, and MODULE3. There is no restriction on a module
name. The names above were chosen to help clarify the example.

G-2 COBEDIT Program and COPY Libraries

COBEDIT Program, COPY Libraries

COBEDIT Commands

There are 10 commands in the COBEDIT program. Each is listed in Table G-1 and discussed
on the following pages. Note that user input is underlined in each example of the commands.

Table G-1. COBEDIT Commands

Command Meaning

BUILD Build a COPYLIB �le.

COPY Copy modules into the library as in the BUILD command.

EDIT Create or edit a module to add to a COPYLIB �le.

EXIT Leave the COBEDIT program.

HELP List all COBEDIT commands.

KEEP Add a module to the currently active COPYLIB �le.

LIBRARY Activate an already existing COPYLIB �le.

LIST List text-names or one or more modules of the currently
active COPYLIB �le.

PURGE Purge a module of the currently active library or purge the
library itself.

SHOW Show the name of the current library, its key �le and the
latest module to be accessed.

COBEDIT Program and COPY Libraries G-3

COBEDIT BUILD Command

BUILD Command

The BUILD command allows you to build a new KSAM �le to be used as a library �le. Once
this library �le is built, it remains open and available for use until you exit the COBEDIT
program, or specify a new library by issuing another BUILD command or a LIBRARY
command.

Syntax

BUILD [�le-name] [,maxrecs]

Parameters

�le-name any name you wish to give your new library �le, subject to the naming
conventions for any MPE �le. The �le-name may be from one to eight
alphanumeric characters, the �rst of which must be alphabetic.

maxrecs if speci�ed, must be greater than 0. It speci�es the maximum number of
records that may be placed in the �le being built. If no value is speci�ed for
maxrecs , the default is 2500.

Description

If a �le name is not speci�ed, COBEDIT prompts you for one. After you are prompted for a
name, a second chance to provide a �le name is given if RETURN is pressed. If RETURN is
pressed again, the BUILD command is terminated and no library �le is created.

If you name a �le in the BUILD command, or if a name is speci�ed when COBEDIT prompts
you for one, you are next prompted for a name to be used as the key �le for the library �le
being created.

The restrictions on the key �le name are the same as for �le-name.

If RETURN is pressed, an MPE �le system error message is listed, followed by an error
message from COBEDIT. Then, the BUILD command is terminated.

Once a library �le and an associated key �le have been named, the COBEDIT program
attempts to create a KSAM �le using the speci�ed names. If this attempt fails, an MPE error
message is generated. Otherwise, you are given the opportunity to copy a �le into your newly
created library �le. When the �le name prompt is given and, if you respond with a carriage
return, the BUILD command is terminated. To copy a �le into the library �le, the name
of the �le must be typed in response to the prompt. This name can be fully quali�ed and
speci�ed in the form �lename.group.account.

You must have the capability to access �les in a group or account other than your own. One
of the ways this is accomplished is by using the MPE RELEASE command. See the MPE
XL Commands Reference Manual for details. Also, see the Account Structure and Security
Reference Manual for details on �le security and access.

If you do not have access to the speci�ed �le, the following message is returned:

SECURITY VIOLATION (FSERR 93)

BUILD TERMINATED

After the �le has been speci�ed, you are asked if the �le is in COPYLIB format. This is
equivalent to asking you if the �le to be copied has text-names in columns 73 through 80.

G-4 COBEDIT Program and COPY Libraries

COBEDIT BUILD Command

If you respond with Y for YES, COBEDIT attempts to copy the requested �le. Note that
if the text-name is blank, the COBEDIT program copies the records into your library and
assigns a default text-name, BOO-BOO.

If a negative response is given, COBEDIT asks you for a text-name to be used for the copied
records. This text-name must be from one to eight characters long.

After a �le has been copied into your library, you are asked if there are more �les to be
copied. A negative response terminates the BUILD command. A positive response causes
the COBEDIT program to repeat the questions and actions described in the preceding three
paragraphs.

Note If the �le to be copied is in copylib format and has duplicate copies of one or
more modules, COBEDIT gives an error message.

Examples

To illustrate the BUILD command, user input is underlined:

>BUILD

What is the name of your library file? MYLIB

Name a key file to be used with MYLIB: KMYLIB

To copy a file into MYLIB now, enter the file name.

File name? COBCOPY

Is the file in copylib format? NO

Text-name for library module? MODULE1

5 records copied to library file.

Do you wish to copy more files?

Respond YES or NO: NO

Library file created; requested file(s) copied.

>

>BUILD MYLIB

Name a key file to be used with MYLIB: MYLIBKEY

Unable to create KSAM file

DUPLICATE PERMANENT FILE NAME (FSERR 100)

>

COBEDIT Program and COPY Libraries G-5

COBEDIT BUILD Command

Note that if you name a �le to be copied into your library �le and the library �le does not
have a su�cient amount of free space to contain the records of the �le being copied, no
records are copied and the BUILD command is terminated. A library �le that is too small to
contain the records from a speci�ed �le is used to illustrate this.

>BUILD ATLAS, 3

Name a key file to be used with ATLAS: KEYATLAS

To copy a file into ATLAS now, enter the file name.

File name? COBCOPY

NOT ENOUGH ROOM FOR FILE COBCOPY

0 records copied to library file.

BUILD TERMINATED

>

If you are building a KSAM/XL COPY library, the name of the key �le is ignored because
KSAM/XL �les do not use a key �le. When the BUILD command prompts you for a key �le
name, press the RETURN key.

Example

To create a KSAM/XL copy �le:

:FILE MYLIB;KSAMXL

:COBEDIT

>BUILD *MYLIB

Name a key file to be used with *MYLIB: <RETURN>

...

Library file created.

G-6 COBEDIT Program and COPY Libraries

COBEDIT COPY Command

COPY Command

The COPY command allows you to copy additional modules into a library that was created
previously using the BUILD command. To use COPY, the library must be the current library
or it must be activated by using the LIBRARY command. COPY prompts and executes in a
way similar to the BUILD command.

Syntax

COPY

Example

:RUN COBEDIT.PUB.SYS

HP32233A.02.00 COPYLIB EDITOR - COBEDIT MON, MAR 26, 1991, 10:12 AM

(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR A LIST OF COMMANDS.

>COPY

No library is open.

>LIB MYLIB

>COPY

To copy a file into MYLIB now, enter the file name.

File name? COBCOPY

Is the file in copylib format? NO

Text-name for Library module? MOD2

13 records copied to library file.

Do you wish to copy more files?

Respond YES or NO: NO

Requested file(s) copied.

>EXIT

END OF PROGRAM

COBEDIT Program and COPY Libraries G-7

COBEDIT EDIT Command

EDIT Command

The EDIT command calls the EDIT/3000 subsystem, and optionally allows you to name a
module from the currently active library to be edited.

Syntax

EDIT [text-name]

Parameters

text-name the name of a module in the currently active library.

Description

EDTXT is created by COBEDIT as a permanent �le when required for edit operations.
EDTXT is purged by COBEDIT when no longer required. Thus, only one user per logon
group can be editing any library �le.

EDTXT is the name of the temporary text �le used as the interface between COBEDIT
and EDIT/3000. If you name a module to be edited, a copy of the module, excluding the
text-name in columns 73 through 80, is moved into EDTXT.

If a module is not named, a single blank record with a record number of .001 is moved into
EDTXT. This blank record is placed in EDTXT in order to place the EDIT/3000 work �le in
COBOL format. If you do not want to use the blank record, delete it.

Once you have entered the EDIT/3000 subsystem, any of its features, except two can be used
to perform any editing task.

The two features you cannot use are the TEXT and KEEP commands.

The TEXT command cannot be used since EDTXT is automatically used as the TEXT �le
when you enter the EDIT command. However, you can use the JOIN command to append
ASCII �les to EDTXT.

The KEEP command cannot be used for the same reason. An automatic KEEP is issued,
naming EDTXT as the KEEP �le.

G-8 COBEDIT Program and COPY Libraries

COBEDIT EDIT Command

Example 1

>EDIT

HP32201A.07.20 EDIT/3000 TUE, MAR 26, 1991, 10:15 AM

(C) HEWLETT-PACKARD CO. 1990

NOTE: FORMAT=COBOL VALUES SET FOR LENGTH,RIGHT,FROM,DELTA,FRONT

/L ALL

.001

/D

.001

*** WARNING *** WORK FILE IS EMPTY.

/A

1 $CONTROL SUBPROGRAM

1.1 PROGRAM-ID. FRESHTEST.

1.2 AUTHOR. JAMES FISH.

1.3 //

...

/KEEP MINE

INVALID COMMAND

/E

EDTXT ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW

PURGE OLD?Y

>

In the example above, note the error message, INVALID COMMAND, which follows a KEEP
command attempted while in the EDIT/3000 text editor. You can not use the EDIT/3000
KEEP command to keep the �le MINE because an automatic KEEP is issued, naming EDTXT
as the KEEP �le.

However, to keep the data entered in EDTXT in your copylib, you must use the COBEDIT
KEEP command. The COBEDIT KEEP command is fully explained later.

COBEDIT Program and COPY Libraries G-9

COBEDIT EDIT Command

Example 2

>EDIT MODULE1

Previous Edit text was not saved.
OK to clear? (Y/N) Y

HP32201A.07.20 EDIT/3000 TUE, MAR 26, 1991, 10:18 AM

(C) HEWLETT-PACKARD CO. 1990

NOTE: FORMAT=COBOL VALUES SET FOR LENGTH,RIGHT,FROM,DELTA,FRONT

/L ALL

1. SORT-PARA.

1.1 SORT SORTFL ON ASCENDING KEY FIRST-KEY

1.2 INPUT PROCEDURE IS INP-SECTION

1.3 OUTPUT PROCEDURE IS OUTP-SECTION

1.4 THROUGH OUTP-END-SECTION.

/ADD

1.5 INP_SECTION.

1.6 OPEN INPUT FILE-IN

1.7 IF IN-REC IS ALPHABETIC

1.8 THEN RELEASE IN-REC

1.9 ELSE NEXT SENTENCE.

2.0 CLOSE FILE-IN.

2.1 OUTP-SECTION.

2.2 OPEN OUTPUT FILE-OUT.

2.3 IF SORT-REC IS NOT NUMERIC

2.4 THEN RETURN SORTFL RECORD INTO FOR-WRITE

2.5 WRITE REC-OUT FROM FOR-WRITE;

2.6 ELSE NEXT SENTENCE.

2.7 OUTP-END-SECTION.

2.8 CLOSE FILE-OUT.

2.9 //

...

/E

EDTXT ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW

PURGE OLD?Y

>

In the example above, when the EDIT command is issued, the module named MODULE1 is
speci�ed. Note the message immediately following the EDIT command above. This message
is issued because the data stored in EDTXT was not kept to the library �le before the EDIT
command was issued. Since the response to the CLEAR question is Y (yes), EDTXT is
cleared, and the records of MODULE1 are copied into it.

Also, although records have been copied from MODULE1, the records of MODULE1 are still in the
library �le. These are kept in the library �le by issuing a KEEP command for the records in
EDTXT, using a di�erent text-name, or the same name.

G-10 COBEDIT Program and COPY Libraries

COBEDIT EDIT Command

Example 3

As a �nal illustration of using the EDIT command, a �le created outside of the COBEDIT
program is joined to the work space associated with EDTXT.

>EDIT

Previous Edit text was not saved.

OK to clear? (Y/N) N

>

>KEEP MODULE4

>EDIT

HP32201A.07.20 EDIT/3000 TUE, MAR 26, 1991, 10:21 AM

(C) HEWLETT-PACKARD CO. 1990

NOTE: FORMAT=COBOL VALUES SET FOR LENGTH,RIGHT,FROM,DELTA,FRONT

/L ALL

.001

/M

MODIFY .001

R* THIS MODULE IS CREATED BY JOINING THE FILE, FROMEDIT,

* THIS MODULE IS CREATED BY JOINING THE FILE, FROMEDIT

/A

.101* TO THE CURRENT WORK FILE.

.201//

...

/JOINQ FROMEDIT

NUMBER OF LINES JOINED =2

/L ALL

.001* THIS MODULE IS CREATED BY JOINING THE FILE, FROMEDIT,

.101* TO THE CURRENT WORKFILE.

.201* THIS LINE AND THE FOLLOWING WERE JOINED TO THE WORK

.301* FILE FROM THE FILE, FROMEDIT.
/E

EDTXT ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW

PURGE OLD? Y

>

COBEDIT Program and COPY Libraries G-11

COBEDIT EXIT Command

EXIT Command

The EXIT command is used to exit the COBEDIT program.

Syntax

E[XIT]

Description

To exit COBEDIT, type EXIT or E.

If you have used the EDIT command, and no KEEP command was issued before the EXIT
command is executed, the following message is displayed:

Edit text not empty. OK to clear?

If you respond with anything except Y or YES, the EXIT command terminates, and
COBEDIT remains active. A Y or YES response causes COBEDIT to clear EDTXT, close
the currently active library, and cease execution.

If a KEEP command has been performed for the current contents of EDTXT, or if the EDIT
command was not used during the current execution of the COBEDIT program, then when
the EXIT command is executed, COBEDIT ceases execution with no warning message.

Example 1

>EDIT

HP32201A.07.20 EDIT/3000 TUE, MAR 26, 1991, 10:25 AM

(C) HEWLETT-PACKARD CO. 1990

NOTE: FORMAT=COBOL VALUES SET FOR LENGTH,RIGHT,FROM,DELTA,FRONT

/L ALL

.001

/E

EDTXT ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW

PURGE OLD? Y

>EXIT

Edit text not empty. OK to clear? Y

END OF PROGRAM

:

Example 2

:RUN COBEDIT.PUB.SYS

HP32233A.02.00 COPYLIB EDITOR - COBEDIT MON, MAR 26, 1991, 10:26 AM

(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR A LIST OF COMMANDS.

>E

END OF PROGRAM

:

G-12 COBEDIT Program and COPY Libraries

COBEDIT EXIT Command

Example 3

:RUN COBEDIT.PUB.SYS

HP32233A.02.00 COPYLIB EDITOR - COBEDIT MON, MAR 26, 1991, 10:27 AM

(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR A LIST OF COMMANDS.

>LIB MYLIB

>LIST ALL

Text-name MODULE1

001000$CONTROL SUBPROGRAM

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. DUMMY-SUB.

Text-name MODULE2

005100 WORKING-STORAGE SECTION.

005200 01 UNIV-TOTALER PIC 9(8) COMP-3.

005300 01 UNIV-ACCUM PIC 9(8) COMP-3.

Text-name MODULE3

008000 PERFORM TEST-IT.

008100 IF RESULTANT IS LESS THAN 2

008200 PERFORM TEST-FAILED;

008300 ELSE NEXT SENTENCE.

>EDIT

HP32201A.07.20 EDIT/3000 TUE, MAR 26, 1991, 10:28 AM

(C) HEWLETT-PACKARD CO. 1990
NOTE: FORMAT=COBOL VALUES SET FOR LENGTH,RIGHT,FROM,DELTA,FRONT

/L ALL

.001

/A

.101* THIS IS TO SHOW WHAT HAPPENS WHEN A KEEP COMMAND

.201* IS ISSUED BEFORE THE EXIT COMMAND IS USED.

.301//

...

/E

EDTXT ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW

PURGE OLD? Y

>KEEP MOD4

>E

END OF PROGRAM

:

COBEDIT Program and COPY Libraries G-13

COBEDIT HELP Command

HELP Command

The HELP command lists and gives a brief description of all commands available in the
COBEDIT program.

Syntax

HELP

Example

> HELP

The following is a list of COBEDIT commands:

BUILD library-name [, filesize]

Create a new library file with name "library-name".

COPY

Copy modules into library, as in Build command.

EDIT [text-name]

Activate EDIT/3000 and text in that module of the current

library which contains "text-name" in the id field.

EXIT Exit the COBEDIT program.

HELP

Display a list of COBEDIT commands.

KEEP [text-name]

Insert an (edited) module in the current library.

LIBRARY library-name

Designate "library-name" as the current library.

LIST [text-name]

[ALL]

Display all or part of the current library on $STDLIST.

With no parameter, will list the text-names of the current library.

PURGE { text-name }
{ ALL }

Delete a module from the current library. The ALL

option will purge the entire library.

SHOW

Display an information block for the current library.

:{ MPE Command }

Certain MPE commands may be executed from COBEDIT.

G-14 COBEDIT Program and COPY Libraries

COBEDIT KEEP Command

KEEP Command

The KEEP command allows you to add a module to the currently active library, or replace an
already existing module.

Syntax

KEEP [text-name]

Parameters

text-name is the name to be used for the module being kept.

Description

If the module to be kept is one that already exists on the �le, and you named that module in
a previous EDIT command, you do not have to specify a text-name in the KEEP command.
In this case, you are asked if you want to replace the module in the library.

Example 1

>LIST MYLIB

>LIST ALL

Text-name MODULE1

001000$CONTROL SUBPROGRAM

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. DUMMY-SUB.

Text-name MODULE2

005100 WORKING-STORAGE SECTION.

005200 01 UNIV-TOTALER PIC 9(8) COMP-3.

005300 01 UNIV-ACCUM PIC 9(8) COMP-3.

Text-name MODULE3

008000 PERFORM TEST-IT.

008100 IF RESULTANT IS LESS THAN 2

008200 PERFORM TEST-FAILED;
008300 ELSE NEXT SENTENCE.

Text-name MOD4

000101* THIS IS TO SHOW WHAT HAPPENS WHEN A KEEP COMMAND

000201* IS ISSUED BEFORE THE EXIT COMMAND IS USED.

>EDIT MODULE1

HP32201A.07.20 EDIT/3000 TUE, MAR 26, 1991, 10:32 AM

(C) HEWLETT-PACKARD CO. 1990

NOTE: FORMAT=COBOL VALUES SET FOR LENGTH,RIGHT,FROM,DELTA,FRONT

/L ALL

COBEDIT Program and COPY Libraries G-15

COBEDIT KEEP Command

1. $CONTROL SUBPROGRAM

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-ID. DUMMY-SUB.
/M 1.2

MODIFY 1.2

PROGRAM-ID. DUMMY-SUB.

RTEST-KEEP.

PROGRAM-ID. TEST-KEEP.

/A

1.3 AUTHOR. MYSELF.

1.4//

...

/E

EDTXT ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW

PURGE OLD? Y

>KEEP

"MODULE1 " already exists on Library MYLIB.

OK to clear? Y

>LIST ALL

Text-name MODULE1

001000$CONTROL SUBPROGRAM

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. TEST-KEEP.

001300 AUTHOR. MYSELF.

Text-name MODULE2

005100 WORKING-STORAGE SECTION.
005200 01 UNIV-TOTALER PIC 9(8) COMP-3.

005300 01 UNIV-ACCUM PIC 9(8) COMP-3.

Text-name MODULE3

008000 PERFORM TEST-IT.

008100 IF RESULTANT IS LESS THAN 2

008200 PERFORM TEST-FAILED;

008300 ELSE NEXT SENTENCE.

Text-name MOD4

000101* THIS IS TO SHOW WHAT HAPPENS WHEN A KEEP COMMAND

000201* IS ISSUED BEFORE THE EXIT COMMAND IS USED.

G-16 COBEDIT Program and COPY Libraries

COBEDIT KEEP Command

Example 2

>EDIT

HP32201A.07.20 EDIT/3000 TUE, MAR 26, 1991, 10:36 AM

(C) HEWLETT-PACKARD CO. 1990

NOTE: FORMAT=COBOL VALUES SET FOR LENGTH,RIGHT,FROM,DELTA,FRONT

/MODIFY

MODIFY .001

I*THIS MODULE WILL BE ADDED TO MYLIB BY

*THIS MODULE WILL BE ADDED TO MYLIB BY

/A

.002*USING A TEXT NAME IN THE KEEP COMMAND

.003//

...

/E

EDTXT ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW

PURGE OLD?Y

>KEEP MOD5

>LIST ALL

Text-name MODULE1

001000$CONTROL SUBPROGRAM

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. TEST-KEEP.

001300 AUTHOR. MYSELF.

Text-name MODULE2

005100 WORKING-STORAGE SECTION.

005200 01 UNIV-TOTALER PIC 9(8) COMP-3.

005300 01 UNIV-ACCUM PIC 9(8) COMP-3.

Text-name MODULE3

008000 PERFORM TEST-IT.

008100 IF RESULTANT IS LESS THAN 2

008200 PERFORM TEST-FAILED;

008300 ELSE NEXT SENTENCE.

COBEDIT Program and COPY Libraries G-17

COBEDIT KEEP Command

Text-name MOD4

000101* THIS IS TO SHOW WHAT HAPPENS WHEN A KEEP COMMAND
000201* IS ISSUED BEFORE THE EXIT COMMAND IS USED.

Text-name MOD5

000101* THIS MODULE WILL BE ADDED TO MYLIB BY

000201* USING A TEXT NAME IN THE KEEP COMMAND.

Note that if you use the KEEP command without a text-name, and the data in EDTXT was
not entered by using text from an already existing module, the message Invalid text-name

is returned. Also, if the KEEP command is issued, and you have issued no EDIT command
since, then when another KEEP command is issued, the message Edit file is empty is
returned.

G-18 COBEDIT Program and COPY Libraries

COBEDIT LIBRARY Command

LIBRARY Command

The LIBRARY command allows you to select the library that you wish to access. When you
issue this command, the currently active library is closed, and the speci�ed library is opened
and made available.

Syntax

LIBRARY library-name

Parameters

library-name is the name of the library �le you want to access.

Description

It can be in any group and account. Note that only one user at a time can be editing a
particular library �le. COBEDIT opens the library �le exclusively.

The fully quali�ed form of a library name is the same as for all MPE �les.

Note that you can specify the name of the currently active library, even though it is already
open. This has no e�ect on the COBEDIT program.

If no library name is speci�ed in the LIBRARY command, COBEDIT prompts you for one.

When the LIBRARY command executes, it checks to make sure that the �le named is a valid
library �le. If it is not, an appropriate error message is generated by the MPE �le system, and
a COBEDIT error message occurs in the following two cases.

The two cases are: when no �le of the speci�ed name exists, and when an error occurs while
trying to open the �le.

COBEDIT Program and COPY Libraries G-19

COBEDIT LIBRARY Command

Example

>LIB

Library name? MYLIB

>SHOW

**

Library file: MYLIB.MANAGERS.USERS

Text-name:

Key file: KMYLIB

**

>LIB COPYLIB

>SHOW

**

Library file: COPYLIB.MANAGERS.USERS

Text-name:

Key file: KCOPYLIB

**

>LIB CLIB.PUB.USERS

SECURITY VIOLATION (FSERR 93)

FILE CLIB.PUB.USERS NOT OPENED.

>:TELL WENDY.USERS; PLEASE RELEASE FILE CLIB FOR UPDATE

FROM /S21 WENDY.USERS/ IT'S RELEASED NOW

>:TELL WENDY.USERS; THANKS

>LIB CLIB.PUB.USERS

>SHOW

**

Library file; CLIB.PUB.USERS

Text-name:

Key file: CLIBKEY.KING.USERS

**

In the previous examples, the LIBRARY command is used to obtain access to three di�erent
�les. The �rst use of the command speci�ed no library. COBEDIT therefore prompted for
one.

The third attempt to use the LIBRARY command failed, since the desired library, CLIB,
resides in a group other than the logon group, MANAGERS. The availability of MPE
commands in COBEDIT make it easy to request that the �le be released. Once the �le is
released, obtaining access to it presents no problem.

The SHOW command is used to show which library �le is currently open and available.

As a �nal example of the LIBRARY command, an attempt to open a non-existent �le is
made:

>LIBRARY FROTH

NONEXISTENT PERMANENT FILE (FSERR 52)

FILE FROTH NOT OPENED.

G-20 COBEDIT Program and COPY Libraries

COBEDIT LIST Command

LIST Command

The LIST command allows you to list information about your currently active library.

The information available is a list of all module names within the library, or a list of all or one
of the modules in the library. A control Y terminates the listing.

If no library is open (you have not built one, or used the LIBRARY command to name one,
or purged the latest one, and have not opened another), the response to executing a LIST
command with or without parameters is No library file is open.

Syntax

LIST [text-name]

[ALL]

Parameters

text-name is the name of a module in the currently active library.

ALL indicates that all modules in the library are to be listed, beginning with the
�rst module on the �le, and proceeding to the last.

Description

If neither text-name nor the word ALL is used in the LIST command, only the names of the
modules in the library are returned.

Note The listing is directed to the $STDLIST device. If you wish to obtain a \hard
copy" listing, the $STDLIST device can be redirected by using the :RUN
command or by executing COBEDIT in a batch job.

COBEDIT Program and COPY Libraries G-21

COBEDIT LIST Command

The following examples illustrate the use of redirection and batch jobs.

Example of Redirection

:FILE PRINT; DEV=LP

:RUN COBEDIT.PUB.SYS;STDLIST=*PRINT

HP32233A.02.00 COPYLIB EDITOR - COBEDIT MON, MAR 26, 1991, 10:43 AM

(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR A LIST OF COMMANDS.

>LIB COPYLIB

>SHOW

>LIST ALL

>EXIT

Example of Batch Job

:JOB LIBPRINT,USER.ACCOUNT

:RUN COBEDIT.PUB.SYS

LIB COPYLIB

SHOW

LIST ALL

EXIT

:EOJ

G-22 COBEDIT Program and COPY Libraries

COBEDIT LIST Command

Example

>LIBRARY MYLIB

>LIST

Text-names of modules in MYLIB:

MODULE1

MODULE2

MODULE3

MOD4

MOD5

>LIST MODULE2

Text-name MODULE2

005100 WORKING-STORAGE SECTION.

005200 01 UNIV-TOTALER PIC 9(8) COMP-3.

005300 01 UNIV-ACCUM PIC 9(8) COMP-3.

>LIST ALL

Text-name MODULE1

001000$CONTROL SUBPROGRAM

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. TEST-KEEP.

001300 AUTHOR. MYSELF.

Text-name MODULE2

005100 WORKING-STORAGE SECTION.

005200 01 UNIV-TOTALER PIC 9(8) COMP-3.

005300 01 UNIV-ACCUM PIC 9(8) COMP-3.

Text-name MODULE3

008000 PERFORM TEST-IT.

008100 IF RESULTANT IS LESS THAN 2

008200 PERFORM TEST-FAILED;

008300 ELSE NEXT SENTENCE.

Text-name MOD4

000101* THIS IS TO SHOW WHAT HAPPENS WHEN A KEEP COMMAND

000201* IS ISSUED BEFORE THE EXIT COMMAND IS USED.

Text-name MOD5

000101* THIS MODULE WILL BE ADDED TO MYLIB BY

000201* USING A TEXT NAME IN THE KEEP COMMAND.

COBEDIT Program and COPY Libraries G-23

COBEDIT PURGE Command

PURGE Command

The PURGE command allows you to purge either a single module from your currently active
library, or the entire library.

If you choose to purge the entire library, it no longer exists after successful execution of the
PURGE command.

Syntax

PURGE ftext-nameg

fALL g

Parameters

text-name is the name of a module to be purged from the currently active library. This
is the module to be purged.

ALL indicates that you want the entire library, including its key �le, to be purged.

Description

If you specify ALL in the PURGE command, COBEDIT double checks to be sure that
you want the entire library �le purged. COBEDIT displays the following message where
library-name is the name of your currently active library:

Is it OK to purge library library-name?

If the response is not Y or YES, purging does not occur and the current library �le remains
active. If an a�rmative response is not given, the following message is returned:

COBOL library file library-name purged.

G-24 COBEDIT Program and COPY Libraries

COBEDIT PURGE Command

Example

To illustrate the PURGE command, a �le called MESSEDUP is used. This library contains only
two modules. The �rst is a module copied into it at the time MESSEDUP was created. This
module has no text-name associated with it. Thus, it is accessed with the default text-name
assigned by COBEDIT that is BOO-BOO.

>LIB MESSEDUP

>LIST ALL

Text-name BOO-BOO

000101* THESE RECORDS WERE COPIED INTO MESSEDUP FROM AN ASCII

000201* FILE, AND SINCE THE COBEDIT PROGRAM THOUGHT IT WAS IN

000301* COPYLIB FORMAT, IT ASSIGNED THE DEFAULT TEXT-NAME, BOO-BOO.

Text-name M1

001000$CONTROL USLINIT

002000 IDENTIFICATION DIVISION.

003000 DATA DIVISION.

004000 PROCEDURE DIVISION.

>PURGE M1

>LIST ALL

Text-name BOO-BOO

000101* THESE RECORDS WERE COPIED INTO MESSEDUP FROM AN ASCII

000201* FILE, AND SINCE THE COBEDIT PROGRAM THOUGHT IT WAS IN

000301* COPYLIB FORMAT, IT ASSIGNED THE DEFAULT TEXT-NAME, BOO-BOO.

>PURGE ALL

Is it OK to purge library MESSEDUP? YES

COBOL Library file MESSEDUP purged.
>LIST ALL

No library file is open.

COBEDIT Program and COPY Libraries G-25

COBEDIT SHOW Command

SHOW Command

The SHOW command is used to �nd out the name of the currently active library, its key �le,
and the name of the module that was most recently accessed by COBEDIT.

If no library is open, the message No library is open occurs.

Syntax

SHOW

Example

:RUN COBEDIT.PUB.SYS

HP32233A.02.00 COPYLIB EDITOR - COBEDIT MON, MAR 26, 1991, 11:03 AM

(C) HEWLETT-PACKARD CO. 1986

TYPE "HELP" FOR A LIST OF COMMANDS.

>SHOW

No library is open.

>LIB MYLIB

>SHOW

**

Library name: MYLIB.USERS.MANAGERS

Text-name:

Key file: KMYLIB

**

>EDIT MOD5

HP32201A.07.20 EDIT/3000 TUE, MAR 26, 1991, 11:04 AM

(C) HEWLETT-PACKARD CO. 1990

NOTE: FORMAT=COBOL VALUES SET FOR LENGTH,RIGHT,FROM,DELTA,FRONT

/L ALL

.101*THIS MODULE WILL BE ADDED TO MYLIB BY

.201*USING A TEXT NAME IN THE KEEP COMMAND

/A

.301*THIS LINE IS ADDED TO SHOW THE EFFECT OF USING

.401*THE SHOW COMMAND WHEN A MODULE HAS BEEN ACCESSED.

.501//

...

/E

EDTXT ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW

PURGE OLD? Y

>SHOW

G-26 COBEDIT Program and COPY Libraries

COBEDIT SHOW Command

**

Library name: MYLIB.USERS.MANAGERS Text-name: MODS Key file: KMYLIB

**
>KEEP MOD6

>EXIT

END OF PROGRAM

:

COBEDIT Program and COPY Libraries G-27

H

MPE XL System Dependencies

This appendix gives system-speci�c information about the HP COBOL II/XL programming
language on the MPE XL operating system. It does not explain every feature of HP
COBOL II/XL. For more information, refer to the main body of this manual.

Introduction

HP COBOL II/XL is Hewlett-Packard's implementation of the 1985 ANSI COBOL standard
(X3.23-1985) and the 1974 ANSI COBOL standard (X3.23-1974), the COBOL programming
languages that meet the 1985 and 1974 standards set by the American National Standards
Institute (ANSI).

The HP COBOL II/XL compiler compiles COBOL'74 programs as well as COBOL'85
programs. When you invoke it through its ANSI74 entry point (using the COB74XL
command �le), it accepts only syntax that conforms to COBOL'74. When you invoke it
through its ANSI85 entry point (using the COB85XL command �le), it accepts the syntax of
COBOL'85 plus the intrinsic functions that were de�ned in 1989 by Addendum 1 of the ANSI
COBOL'85 standard. The ANSI85 entry point is the default.

Figure H-1 shows the relationships between the two entry points of the HP COBOL II/XL
compiler, and the two revisions of the ANSI standard, COBOL'85, and COBOL'74.

Figure H-1.

Relationships between HP COBOL II/XL and

the ANSI Standards COBOL'74 and COBOL'85

MPE XL System Dependencies H-1

MPE XL System Dependencies

The HP COBOL II/XL product consists of a compiler, which translates HP COBOL II/XL
programs into machine object �les, and a run-time library. The object code that the compiler
generates contains calls to routines in the run-time library.

HP COBOL II/XL runs on the MPE XL operating system. You can use the debuggers
that run on MPE XL to debug your HP COBOL II/XL programs. They are DEBUG (the
MPE XL System Debugger), HP Symbolic Debugger/XL, and HP TOOLSET/XL.

Table H-1 lists HP subsystems with which HP COBOL II/XL can interface.

Table H-1. Subsystems that Interface with HP COBOL II/XL

Subsystem Description Where to Look for Details

DEBUG MPE XL System Debugger. System Debug Reference
Manual

HP Symbolic Debugger/XL A full-featured symbolic debugger that is
interactive at the source level.

HP Symbolic Debugger/XL
Reference Manual

HP TOOLSET/XL A programming environment for
developing COBOL programs. It provides
source management, a symbolic debugger,
and an editor that is speci�cally for
COBOL.

HP TOOLSET/XL Reference
Manual

TurboIMAGE/XL A network database management system.
Your COBOL program accesses
TurboIMAGE/XL routines with intrinsic
calls.

TurboIMAGE/XL Reference
Manual

HPSQL A relational database management
system whose COBOL preprocessor has
macros that generate calls to HPSQL.

HPSQL/XL COBOL
Application Programming
Guide

HP System Dictionary/XL A dictionary of MPE XL data elements. HP System Dictionary/XL
General Reference Manual

H-2 MPE XL System Dependencies

Compiling, Linking, and Executing Programs

Compiling, Linking, and Executing Programs

To make your HP COBOL II source program a valid MPE XL program �le, you must
compile, link, and execute it. There are two ways to perform these tasks:

With command �les.

With the RUN command and the Link Editor.

This section describes compilation, linking, and execution and explains the di�erent ways of
performing them.

Overview

The HP COBOL II compiler compiles the source program, which is created in a text �le. The
compiler translates the source code into binary form and stores it in an object �le.

The MPE XL Link Editor links the object �le into a program �le by binding the procedures in
the object �les together and de�ning the initial requirements of the user data space.

The MPE XL operating system allocates the space for the program, binds its external
procedures to it, and runs it. (The external procedures are in executable libraries.)

Figure H-2 shows how a source program becomes an executing program.

Figure H-2. How a Source Program Becomes an Executing Program

MPE XL System Dependencies H-3

Compiling, Linking, and Executing Programs

Command Files

Table H-2 lists the MPE XL system-wide command �les that you can use to compile, link, and
execute HP COBOL II programs. You can enter these commands as part of the input stream
in job or batch mode or from your terminal in a session.

The �rst three command �les invoke the HP COBOL II compiler through the entry point
that conforms to the 1985 ANSI COBOL standard. The next three command �les invoke the
HP COBOL II compiler through the entry point that conforms to the 1974 ANSI COBOL
standard. You can look at these command �les by using the MPE XL PRINT command. For
example, to display the COB85XL command �le, enter PRINT COB85XL.PUB.SYS. Refer to the
Link Editor/XL Reference Manual for information on how to link object �les.

Table H-2. Command Files

Command Description

COB85XL Invokes the COBOL compiler using the 1985 ANSI standard entry point and creates
an object �le.

COB85XLK Invokes the COBOL compiler using the 1985 ANSI standard entry point, links the
object �le, and creates a program �le.

COB85XLG Invokes the COBOL compiler using the 1985 ANSI standard entry point, and creates
and runs a program �le in $NEWPASS.

COB74XL Invokes the COBOL compiler using the 1974 ANSI standard entry point and creates
an object �le.

COB74XLK Invokes the COBOL compiler using the 1974 ANSI standard entry point, links the
object �le, and creates a program �le.

COB74XLG Invokes the COBOL compiler using the 1974 ANSI standard entry point, and creates
and runs a program �le in $NEWPASS.

H-4 MPE XL System Dependencies

Compiling, Linking, and Executing Programs

Syntax

COB85XL [text�le][,[object�le][,[list�le][,[master�le] [,new�le]]]]

[;INFO="info"][;WKSP=workspacename] [;XDB=xdb�le]

COB85XLK [text�le][,[prog�le][,[list�le][,[master�le] [,new�le]]]]

[;INFO="info"][;WKSP=workspacename] [;XDB=xdb�le]

COB85XLG [text�le][,[list�le][,[master�le][,new�le]]]

[;INFO="info"][;WKSP=workspacename] [;XDB=xdb�le]

COB74XL [text�le][,[object�le][,[list�le][,[master�le] [,new�le]]]]

[;INFO="info"][;WKSP=workspacename] [;XDB=xdb�le]

COB74XLK [text�le][,[prog�le][,[list�le][,[master�le] [,new�le]]]]

[;INFO="info"][;WKSP=workspacename] [;XDB=xdb�le]

COB74XLG [text�le][,[list�le][,[master�le][,new�le]]]

[;INFO="info"][;WKSP=workspacename] [;XDB=xdb�le]

Parameters

text�le MPE or TSAM �le containing your source program. This �le can be
compiled. The default is $STDIN.

object�le Relocatable object code �le. This �le can be linked. The default is
$NEWPASS or $OLDPASS. The object �le code can be NMOBJ or
NMRL. The compiler will take the appropriate actions for existing �les.
Refer to RLINIT or RLFILE in the section on \Control Options" for new
�les.

prog�le Executable program �le. This �le can be executed. The default is
$NEWPASS.

list�le File on which your source code will be listed. The default is $STDLIST.

master�le MPE or TSAM �le to be merged with text�le to produce a composite
source program. If master�le is omitted, the entire source is from text�le.

new�le MPE �le into which the merged text�le and master�le is written. For
details, refer to the HP COBOL II Reference Manual . If new�le is
omitted, no new �le is written.

MPE XL System Dependencies H-5

Compiling, Linking, and Executing Programs

info A string whose value is a command list of the form:

"$compiler command[$compiler command]..."

where no compiler command contains the character $.

If the number of commands is long enough, you can use an ampersand (&)
to continue the info string. The length limit for a compiler command is
the same as the length limit for a source program line.

In the listing �le, the string \INFO=" appears where the sequence
numbers normally appear.

The info string is processed before any source, including compiler
commands in the source. Therefore, you may not want to use the default
settings of these commands in the source �le. You should only include
commands such as SUBPROGRAM, which are required for proper
compilation, in the source �le. This allows you to specify commands like
NOLIST, MAP, BOUNDS, or CROSSREF uniquely within the info string
for each compilation.

workspacename Work space in which HP TOOLSET/XL can manage versions of the
source program.

xdb�le MPE XL �le into which a listing of the source code is written. xdb�le is
used to view the source code in the HP Symbolic Debugger/XL.

H-6 MPE XL System Dependencies

Compiling, Linking, and Executing Programs

Compiling Your Program With the RUN Command

The MPE XL RUN command runs the HP COBOL II compiler, which compiles your source
program. You can invoke the HP COBOL II compiler and compile your HP COBOL II
program with either the RUN command or a command �le.

Syntax

RUN

�
COBOL

COBOLII

�
.PUB.SYS

�
,

�
ANSI85

ANSI74

��
;PARM=parm;INFO=info

Parameters

COBOL The compiler is invoked in Native Mode and generates object code especially
designed for the MPE XL operating system. The default entry point is
ANSI85.

COBOLII The compiler is invoked in Compatibility Mode and generates object code
especially designed for the MPE V operating system. The code runs on the
MPE XL operating system, but not as e�ciently as Native Mode code does.
The default entry point is ANSI74.

ANSI85 The compiler is invoked through its ANSI85 entry point and conforms to the
COBOL'85 standard.

ANSI74 The compiler is invoked through its ANSI74 entry point and conforms to the
COBOL'74 standard.

parm Tells the RUN command which of the following �les have been rede�ned by
FILE commands and are not to be defaulted. See Table H-3 for the values
parm can have and what they mean.

new�le MPE �le into which the merged text�le and master�le is
written. The formal designator is COBNEW. If new�le is
omitted, no new �le is written.

master�le MPE or TSAM �le to be merged with text�le to produce
a composite source program. The formal designator is
COBMAST. If master�le is omitted, the entire source is from
text�le.

object�le Relocatable object code �le (Native Mode only). The formal
designator is COBOBJ. The default is $NEWPASS or
$OLDPASS.

usl�le Relocatable object code �le (Compatibility Mode only). The
formal designator is COBUSL. The default is $NEWPASS or
$OLDPASS.

list�le MPE �le into which the source listing and errors are
written. The formal designator is COBLIST. The default is
$STDLIST.

text�le MPE or TSAM �le containing your source program. The
formal designator is COBTEXT. The default is $STDIN.

MPE XL System Dependencies H-7

Compiling, Linking, and Executing Programs

info A string whose value is a command list of the form:

"$compiler command[$compiler command]..."

where no compiler command contains the character $ (even if it is within
quotes). Refer to Appendix B for more information on compiler commands.

If the number of commands is long enough, you can use an ampersand (&) to
continue the info string. The length limit for a compiler command is the same
as the length limit for a source program line.

In the listing �le, the string \INFO=" appears where the sequence numbers
normally appear.

The info string is processed before any source, including compiler commands
in the source. Therefore, you may not want to use the default settings of
these commands in the source �le. You should only include commands such
as SUBPROGRAM, which are required for proper compilation, in the source
�le. This allows you to specify commands like NOLIST, MAP, BOUNDS, or
CROSSREF uniquely within the info string for each compilation.

Table H-3. PARM Values and Their Meanings

PARM
Value

p
means \Do not use the default for this �le:"

new�le master�le object�le list�le text�le

0

1
p

2
p

3
p p

4
p

5
p p

6
p p

7
p p p

8
p

9
p p

10
p p

11
p p p

12
p p

13
p p p

14
p p p

15
p p p p

H-8 MPE XL System Dependencies

Compiling, Linking, and Executing Programs

Table H-3. PARM Values and Their Meanings (continued)

PARM
Value

p
means \Do not use the default for this �le:"

new�le master�le object�le list�le text�le

16
p

17
p p

18
p p

19
p p p

20
p p

21
p p p

22
p p p

23
p p p p

24
p p

25
p p p

26
p p p

27
p p p p

28
p p p

29
p p p p

30
p p p p

31
p p p p p

The following is an example of a command �le. It can be used as a template to create a
command �le that merges master and text �les to create new �les. Given the �le named
COMPCOB with the following contents:

PARM text=$stdin,obj=$newpass,list=$stdlist,mast=$null,new=$null,INFO=""

FILE COBTEXT=!TEXT

FILE COBOBJ=!OBJ

FILE COBLIST=!LIST

FILE COBMAST=!MAST

FILE COBNEW=!NEW

RUN COBOL.PUB.SYS,ANSI85;PARM=31;INFO="!INFO"

You can invoke the command �le as follows:

:COMPCOB PRGCHNGS,,,PRGMAST,PRGNEW

MPE XL System Dependencies H-9

Compiling, Linking, and Executing Programs

Linking Your Program

To link your main program and a subprogram and create a single program �le, use the HP
Link Editor/XL LINK command. If the main program object code �le is mainobj , the
subprogram object code �le is subobj , and the program �le to be created is prog�le , then the
command is:

LINK FROM = mainobj,subobj; TO = prog�le

This is one of the simplest cases. For more examples, refer to the HP COBOL II/XL
Programmer's Guide. For complete information on the LINK command, refer to the HP Link
Editor/XL Reference Manual .

Executing Your Program with the RUN Command

The RUN command also executes the program �le. The PARM parameter of the RUN
command has two functions:

Setting software switches.

Setting the object-time debug module switch.

Setting Software Switches

You must use the PARM=parameter keyword of the RUN command to set software switches.
The parameter is an octal value corresponding to a 16-bit word. Each bit is the actual switch
corresponding to one of the software switches, depending on its position in the word. To set
one or more switches to \on", assign the appropriate value to parameter . For example, to set
switches SW0, SW3, and SW5 to \on", assign the value %112000 to PARM. The example
below illustrates this.

The following shows the switch word initially, where all switches are \o�":

H-10 MPE XL System Dependencies

Compiling, Linking, and Executing Programs

After executing the following command:

RUN MYPROG;PARM=%112000

The switch word looks like the following:

Hexadecimal constants can also be used for the PARM value.

Setting the Object-Time Debug Module Switch

Bit 15 of the PARM parameter is the object-time debug module switch. If bit 15 of the
PARM parameter in the RUN command has a value of 1, the object-time DEBUG mode is
active. Otherwise, it is inactive. For more information on the object-time debug module
switch, see Chapter 13.

Note The object-time debug module switch is equivalent to SW15.

The minimum and maximum values you can use for the PARM parameter word are %0 (all
o�), and %177777 (all switches, from SW0 to SW15, \on"). If bit 15 is \on", the run-time
debugging code is enabled.

MPE XL System Dependencies H-11

Control Options

Control Options

Control options are used with the $CONTROL command. Control options fall into these
three categories:

MPE XL speci�c control options that depend on the MPE XL operating system. These
options work for HP COBOL II/XL but not other COBOL versions.

Control options that work for both HP COBOL II/XL and other COBOL versions, but they
work di�erently.

Obsolete control options, which HP COBOL II/XL no longer supports.

MPE XL-Specific Control Options

This section explains MPE XL-speci�c control options that depend on the MPE XL operating
system and therefore work for HP COBOL II/XL but not for other COBOL versions. They
are:

CALLINTRINSIC
CMCALL
INDEX16
INDEX32
NLS
OPTFEATURES
OPTIMIZE
POST85
RLFILE
RLINIT
SYMDEBUG=XDB
VALIDATE
NOVALIDATE

CALLINTRINSIC

The CALLINTRINSIC option is an aid for migration of HP COBOL II/V programs
containing intrinsic calls into HP COBOL II/XL programs. The option causes the compiler
to check all called subprograms to determine whether or not they are intrinsics. A warning
message is generated each time the compiler locates intrinsics that are called using CALL
statements lacking the INTRINSIC parameter. In addition, the compiler generates code in
each of these cases, and assumes that the call was to an intrinsic (not to a user program). Use
this option for migration only because it extends compilation time.

H-12 MPE XL System Dependencies

Control Options

CMCALL

The CMCALL option is provided as a tool for migration from MPE V to MPE XL based
systems. This option a�ects all external names except those generated by a CALL identi�er
statement. An external name is generated according to the following rules:

Hyphens within names are removed.
Uppercase characters are converted to lowercase.
Names are truncated to 15 characters.

If CMCALL is speci�ed, the HP COBOL II program can only call or be called by the
following kinds of programs:

COBOL programs compiled with the CMCALL option.
Programs run in compatibility mode.
Programs written in other languages that depend on the above rules holding true.

If the CMCALL option is not speci�ed, external names are generated according to the
default naming conventions. Refer to \External Names" in the section on \Interprogram
Communication" later in this appendix.

INDEX16 and INDEX32

These parameters are used to allocate storage for index data items. (Refer to the section
\USAGE Clause" in Chapter 7 for information about index data items.)

32 bits (4 bytes) of storage are allocated for each index data item. 32-bit index data items are
fully functional as described in the Chapter 7, \Data Division."

You cannot use index data items having 16 bits of storage allocated to them that come from
non-COBOL II/XL �les. Specify this option only when reading a record that contains an
index data item that was created on a computer having 16-bit architecture. The option causes
the byte o�sets of the other �elds in the record to remain the same as those on the computer
on which it was created.

NLS

The $CONTROL NLS (Native Language Support) compiler option provides support for
international (multi-byte or non-ASCII) characters in certain character operations. For more
information on NLS, refer to the Native Language Programmer's Guide. Th NLS option
makes string comparisons sensitive to international character sets and allows input and output
of international characters.

Syntax.

$CONTROL NLS=

8>><
>>:

ON

OFF

LITERALS

COMPARE

9>>=
>>;

MPE XL System Dependencies H-13

Control Options

ON Enables NLS support for both string literals and comparisons. This provides
the same service that both the LITERALS value and the COMPARE value
provide.

OFF Disables NLS support. This is the default value.

LITERALS Enables handling of international characters in string literals during
compilation of an HP COBOL II program. LITERALS and COMPARE are
mutually exclusive. Use NLS ON to enable LITERALS and COMPARE at the same
time.

COMPARE Enables relation condition comparison of non-numeric operands to be
sensitive to the character set (and associated collating sequence) that you
select. LITERALS and COMPARE are mutually exclusive. Use NLS ON to enable
LITERALS and COMPARE at the same time.

Editing inserts the appropriate single-byte DECIMAL-POINT, comma, and
single-byte CURRENCY-SIGN.

ACCEPT . . . FREE requires the appropriate DECIMAL-POINT for numeric data.

Location. This compiler option can only appear once in your program: on the �rst line or in
the INFO string.

Default. The default for this option is OFF.

Limitations. The environment variable NLDATALANG must be set at both compile time and
run time. The values set at compile time and at run time can be di�erent. For example, the
following sets NLDATALANG to Norwegian:

:SETJCW NLDATALANG 10

Some of the other values for NLDATALANG are:

Table H-4. Values for NLDATALANG Environment Variable

Language NLDATALANG Value

Native-3000 (Default) 00

American 01

Canadian-French 02

English (British) 05

French 07

German 08

Italian 09

Japanese 221

Norwegian 10

Spanish 12

Swedish 13

H-14 MPE XL System Dependencies

Control Options

For more values and more information on NLDATALANG, refer to the Native Language Support
Reference Manual .

Using $CONTROL NLS decreases both compile-time and run-time performance in some cases
and always reduces the backwards compatibility of your programs.

Only single-byte CURRENCY-SIGNs and single-byte DECIMAL-POINTs are supported. Their
values are overridden by NLS, not by the program-collating sequence.

Comparisons by indexed sequential �les are done in the collating sequence speci�ed during
their creation in KSAMUTIL. By default, HP COBOL II/XL creates KSAM �les with an
ASCII (binary) collating sequence.

International characters are not supported in macros or in preprocessor commands, such as
PAGE, TITLE, VERSION, and COPYRIGHT.

International characters are also not supported in COPY REPLACING or REPLACE. These
characters cannot be on any line containing embedded COPY or REPLACE character strings or in
COPYLIB with REPLACING if any tokens on that line are replaced. International characters are
supported in the following COBOL functions: MAX, MIN, ORD-MAX, and ORD-MIN. The
compiler does not support international characters in the following COBOL functions: CHAR,
LOWER-CASE, ORD, and UPPER-CASE. These functions use the current COBOL program
collating sequence, which defaults to the ASCII character set.

Operations on data items that contain international characters are completed in the same
manner as if the characters are ASCII. These include the following:

Reference modi�cation on MOVEs and compares.
INSPECT (TALLYING, REPLACING, CONVERTING).
EXAMINE.
STRING and UNSTRING.
Class conditions for user-de�ned classes, except \alphabetic" clauses.
Relation conditions with �gurative constants.
Display international characters.

Example 1. This example displays international characters. Substitute # signs with NLS
characters to make this example work.

001000$CONTROL NLS=ON

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. EXAMPLE.

001700 DATA DIVISION.

002300 WORKING-STORAGE SECTION.

002400 01 NLS-FIELD PIC X(08) VALUE "G#K#".

002600 PROCEDURE DIVISION.

002700 NLSEXAMPLE.

002800 DISPLAY "NLS-FIELD is initialized to ", NLS-FIELD.

002900 DISPLAY "NLS literals can also be used in COBOL "

003000 " programs as follows :".

003100 DISPLAY " The following DISPLAY statement uses NLS string."

003200 DISPLAY " A#K#B".

003300 DISPLAY " Characters between A and B are NLS characters.".

003400 STOP RUN.

MPE XL System Dependencies H-15

Control Options

Example 2. This example compares two NLS strings. Substitute # signs with NLS characters
to make this example work.

001000$CONTROL NLS=ON
001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. EXAMPLE1.

001700 DATA DIVISION.

002300 WORKING-STORAGE SECTION.

002400 01 NLS-FIELD PIC X(08) VALUE "G#K#".

002410 01 NLS-FIELD-1 PIC X(06) VALUE "G#K#".

002500 01 NLS-FIELD-2 PIC X(6) VALUE "G#K#".

002600 PROCEDURE DIVISION.

002700 NLSONEXAMPLE.

004700 IF NLS-FIELD <> NLS-FIELD-2

004800 DISPLAY "Fields of different lengths are not identical"

004801 ELSE

004802 DISPLAY "Fields of different lengths are identical"

004803 END-IF.

004804

004810 IF NLS-FIELD-1 <> NLS-FIELD-2

004820 DISPLAY "Same length fields are not identical"

004830 ELSE

004840 DISPLAY "Same length fields are identical"

004850 END-IF.

004860

004900 MOVE "aa" TO NLS-FIELD NLS-FIELD-2.

005000 IF NLS-FIELD = NLS-FIELD-2

005100 DISPLAY "strings are identical"

005200 ELSE

005300 DISPLAY "strings with ascii characters are not identical"

005400 END-IF.

005500 STOP RUN.

H-16 MPE XL System Dependencies

Control Options

OPTFEATURES

The OPTFEATURES option for the $CONTROL command allows you to make your
programs run faster by generating more e�cient code.

Syntax.

$CONTROL OPTFEATURES = [CALLALIGNED[16]] [LINKALIGNED[16]]

If both CALLALIGNED and LINKALIGNED are speci�ed, you must separate them with a
space.

By default, the compiler expects parameters passed to subprograms by reference to be
byte-aligned. The compiler generates extra code in the called program to move byte-aligned
data to temporary storage that is 32-bit aligned (or 16-bit aligned) when required by
arithmetic expressions.

When LINKALIGNED is speci�ed, the compiler generates code that expects parameters
in the LINKAGE SECTION (01s and 77s) to be 32-bit aligned. If LINKALIGNED16 is
speci�ed, the compiler generates code for 16-bit alignment. The LINKALIGNED options
are not meaningful for main programs. The compiler generates more e�cient code for
accessing formal parameters when you specify one of these options. If you do not specify a
LINKALIGNED option, the compiler generates code that assumes the parameters are on byte
boundaries (see \BOUNDS" later in this section for details).

When CALLALIGNED is speci�ed, the compiler checks the alignment of all identi�ers in
the USING phrase of CALL statements. An error message is issued for parameters not
on a 32-bit boundary. If CALLALIGNED16 is speci�ed, the compiler checks for 16-bit
boundaries. Once you have changed the alignment of the agged parameters, you can remove
the CALLALIGNED option. Subprograms written in languages other than HP COBOL II
may require parameters to be aligned on 32- or 16-bit boundaries. The CALLALIGNED or
CALLALIGNED16 option can be used to ag any parameters that are not properly aligned
for the subprogram.

Note CALLALIGNED does not apply to intrinsic calls. Alignment requirements for
intrinsics are always checked when you use the CALL INTRINSIC format of
the CALL statement.

Example.

$CONTROL BOUNDS,OPTFEATURES=CALLALIGNED LINKALIGNED, OPTIMIZE=1

MPE XL System Dependencies H-17

Control Options

OPTIMIZE

The OPTIMIZE option speci�es the level of object code optimization you want. If your
program does not contain the OPTIMIZE option, the object code is not optimized. This
is equivalent to specifying optimization level zero. OPTIMIZE must appear before the
IDENTIFICATION DIVISION.

Syntax.

$CONTROL OPTIMIZE

�
=0

=1

�

The following table summarizes the levels of optimization you can request.

Table H-5. $CONTROL OPTIMIZE Parameters

If you specify: You get:

Nothing No optimization. This is the default.

$CONTROL OPTIMIZE=0 No optimization. This is the default.

$CONTROL OPTIMIZE Level one optimization.

$CONTROL OPTIMIZE=1 Level one optimization.

For more information on the OPTIMIZE option, see the HP COBOL II/XL Programmer's
Guide.

POST85

The POST85 option enables the COBOL functions and makes the word FUNCTION a
reserved word. If you use the word FUNCTION as an identi�er in your program, you must
change it to another word before you can use this option. Otherwise, you get a compile-time
error.

The COBOL functions were added to the ANSI standard after the 1985 ANSI standard was
published. For more information, see Chapter 10, \COBOL Functions."

H-18 MPE XL System Dependencies

Control Options

RLFILE and RLINIT

When you compile a program on an MPE XL system, the compiler produces a relocatable
object �le (�le code NMOBJ) for the program. You can then use the HP Link Editor/XL to
place the relocatable object �le in a relocatable library (�le code NMRL).

Alternatively, you can direct the compiler to place the relocatable program in a relocatable
library directly. The RLFILE option of the $CONTROL command lets you do this. The
RLFILE option lets you closely simulate the placing of object modules in a USL �le on MPE
V systems. When you use RLFILE, the compiler assumes that the formal �le designator name
of the relocatable library is COBOBJ and that it has a �le code of NMRL. The compiler also
treats each procedure in the source �le as a separate compilation unit and places each of the
compilation units into the library as separate relocatable modules. When you use the RLFILE
option, you can erase modules in an existing library before placing new modules into it by
using the RLINIT option.

If you use the RLFILE option, be sure that the output �le (if it already exists) is a relocatable
library with �le code NMRL. If a previous compilation created COBOBJ as a relocatable
object �le, you must purge it before compiling.

For details about RLFILE and RLINIT, see the HP COBOL II/XL Programmer's Guide.

SYMDEBUG=XDB

The SYMDEBUG=XDB option causes the compiler to put symbolic debug information into
the object �le for use with HP Symbolic Debugger/XL. The main program should include this
option if any subprogram includes the option.

This option must appear before the IDENTIFICATION DIVISION. If the SYMDEBUG
option is used without the \= XDB" phrase, the symbolic debug information is formatted for
use with HP TOOLSET/XL instead of with HP Symbolic Debugger/XL.

MPE XL System Dependencies H-19

Control Options

VALIDATE and NOVALIDATE

The VALIDATE and NOVALIDATE options allow you to specify whether or not you want the
program to check the validity of the data. VALIDATE causes the compiler to generate code
for each arithmetic operation or MOVE and to check for valid decimal digits and signs in the
data associated with all identi�ers having USAGE IS DISPLAY, PACKED-DECIMAL, or
COMPUTATIONAL-3 clauses.

When a program that was compiled with the VALIDATE option encounters an illegal ASCII
or decimal digit, the program aborts and one of the following messages is displayed:

Illegal ASCII digit

or:

Illegal decimal digit

Refer to the section \Run-Time Trap Handling" later in this appendix for information about
how to handle these errors when they occur.

To prevent these errors, use a de-edited MOVE to check that no illegal characters or blanks
are placed in a numeric �eld when moving from an edited �eld (see the \MOVE Statement"
in Chapter 9 for information on de-edited moves). Also, use the NUMERIC class condition to
detect invalid digits.

NOVALIDATE is the default on MPE XL systems. If you specify NOVALIDATE or do not
specify VALIDATE, no validation code is generated. This results in more e�cient code.

Control Options that Work Differently

This section describes control options that work for both HP COBOL II/XL and other
COBOL versions, but work di�erently. They are:

ANSISUB
BOUNDS
CODE
USLINIT

ANSISUB

ANSISUB speci�es that the source code is a subprogram that strictly conforms to the
ANSI standard (refer to \$CONTROL Command" in Appendix B for more information on
ANSISUB). In HP COBOL II/XL, there is no run-time performance penalty for specifying
ANSISUB. The DATA DIVISION is not written to a �le between calls in HP COBOL
II/XL as it is in HP COBOL II/V. The calling program can CANCEL a subprogram that
is compiled with this option, if necessary. The program �le of a program compiled with
ANSISUB is larger because it contains code to reinitialize the DATA DIVISION if the
subprogram is cancelled.

H-20 MPE XL System Dependencies

Control Options

BOUNDS

In addition to its normal functionality (described in Appendix B), the control options
BOUNDS and OPTFEATURES=LINKALIGNED (or LINKALIGNED16) provide
run-time checking of the LINKAGE SECTION. When you specify both the BOUNDS and
LINKALIGNED options in a $CONTROL command, the compiler generates code that checks
whether or not all the parameters passed to a subprogram are aligned on 32-bit or 16-bit
boundaries. If a parameter is not aligned on a 32-bit or 16-bit boundary, a run-time trap
occurs. (See the section \Run-Time Trap Handling" for more information.)

In cases when a program contains illegal PERFORM statements, the compiler issues an
error message if these statements would cause the program to abort during execution. Illegal
PERFORM statements cause a program to abort in the following situations:

When the program contains too many indirectly recursive PERFORM statements.
When the program uses too many GO TO statements to get out of PERFORMed
paragraphs.
When the program has too many PERFORM statements with common exit points.

See the section \Language Dependencies" later in this appendix for more information on
illegal PERFORM constructs.

CODE

The CODE parameter requests a copy of the assembly language listing of the object code
written to the temporary �le, COBASSM. This object code is a listing of the machine code
generated by the compiler.

USLINIT

USLINIT is ignored in HP COBOL II/XL programs. Object �les are always initialized by the
HP COBOL II/XL compiler. See the section \RLFILE and RLINIT" for relocatable library
�les.

Obsolete Control Options

Obsolete control options are no longer supported by HP COBOL II/XL. They are:

ANSIPARM
BIGSTACK
SORTSPACE

The compiler issues a questionable error message when it encounters these control options and
ignores them. Delete these options from your HP COBOL II source �les.

MPE XL System Dependencies H-21

Language Dependencies

Data Alignment and Limits on MPE XL

All addresses on MPE XL systems are byte addresses that are aligned in some way. Addresses
divisible by 2 are half-word aligned. Addresses divisible by 4 are word aligned. A word
aligned address is also half-word aligned and byte aligned. Refer to the HP COBOL II/XL
Programmer's Guide for more information on addressing.

Alignment

By default, HP COBOL II/XL data is aligned in the following way on MPE XL:

In the WORKING-STORAGE and FILE sections, level 01 and 77, COMP
SYNCHRONIZED or BINARY SYNCHRONIZED, and index data items are 32-bit-aligned.

The �rst item in WORKING-STORAGE is 64 bit-aligned.

In the LINKAGE SECTION, all level 01 and 77 items are 8-bit-aligned (byte-aligned) even
if the SYNCHRONIZED clause is speci�ed. The SYNCHRONIZED clause adds slack bytes
as if the 01 record began on a 32-bit boundary.

The SYNC32 control option does not a�ect the above, because it speci�es the default.

The SYNC16 control option a�ects the WORKING-STORAGE and FILE sections as follows:

Level 01, 77, and indexed data items are 32-bit-aligned.

COMP or BINARY SYNCHRONIZED data items are 16-bit-aligned.

The control options OPTFEATURES=LINKALIGNED and
OPTFEATURES=LINKALIGNED16 a�ect only the LINKAGE SECTION. When
you use one of these options, the compiler assumes that levels 01 and 77 and index data items
(depending on SYNC16/SYNC32) are on 32- and 16-bit boundaries, respectively.

Limits on Data Items

The following are limits on data items:

The maximum number of data items in any one USING clause of the CALL statement, the
ENTRY statement, or the PROCEDURE DIVISION header is 255. Or, the number of data
items in these USING clauses cannot be greater than the total number of 01 and 77 level
items de�ned in the LINKAGE SECTION.

The maximum number of EXTERNAL data items and �les is as follows:

The sum of the following items must be less than or equal to 4000:
The number of EXTERNAL �les, multiplied by two.
The number of EXTERNAL records.

The maximum number of 01 and 77 level entries permitted in the LINKAGE SECTION of a
subprogram, excluding rede�nitions, is 255.

H-22 MPE XL System Dependencies

Language Dependencies

HP COBOL II/XL Language Dependencies

HP COBOL II/XL language dependencies are features of HP COBOL II/XL that depend on
the MPE XL operating system. Often they are tailored to the architecture of the computer on
which MPE XL runs. This section groups these language dependencies by what they a�ect|
the program division or interprogram communication.

IDENTIFICATION DIVISION

In the IDENTIFICATION DIVISION, the compiler uses the name speci�ed in the
PROGRAM-ID paragraph to generate an external name according to the following
conventions:

Long names are truncated to 30 characters.

All uppercase characters are converted to lowercase unless the �rst character of the name is
a backslash (n).

If a name begins with a backslash, it is interpreted literally as beginning with the character
after the backslash. No conversion to lowercase or uppercase is performed. As with other
non-numeric literals, the backslash and name must be enclosed in quotation marks.

Hyphens are converted to underscores (unless $CONTROL CMCALL is speci�ed).

ENVIRONMENT DIVISION

The following are dependencies in the ENVIRONMENT DIVISION:

The RESERVE clause of the SELECT statement is ignored in HP COBOL II/XL. This is
because the clause is used to allocate input/output bu�ers and bu�ers are not used on MPE
XL systems.

In the ASSIGN clause, an operating system �le designator is of the following form:

�le/lockword.group.account

This is the fully quali�ed form of a �le name. If the �le exists in your log-on group, then
you need to specify only the �le parameter and any lockword assigned to it. If the �le exists
in a group other than your log-on group, you must specify the �le (and lockword, if any),
and the group where the �le resides. Finally, if the �le exists in a group and account other
than your log-on, you must use the fully quali�ed �le name. If the �le resides in a group or
account other than your own, you must have access to the �le.

In the ASSIGN clause, the device parameter allows you to select a �le system de�ned device
type (such as DISC, TAPE, or LP) or a private volume. If you omit this parameter, the
default device type, DISC, is assumed. If this parameter is followed by a left parenthesis,
the CCTL (carriage control) option is assumed. CCTL is described in Chapter 6,
\Environment Division."

In the ASSIGN clause, the �le-size parameter can be a maximum of nine digits long. If
omitted, a �le size of 10,000 records is assigned by default.

MPE XL System Dependencies H-23

Language Dependencies

DATA DIVISION

The following are dependencies in the DATA DIVISION:

Word size|The word size on MPE XL systems is 32 bits or 4 bytes.

Index names|Index names are 4 bytes long.

Subscripts|The performance when referencing table elements using subscripts de�ned as
PIC S9(9) COMP SYNC is the same as referencing table elements using index names.

Synchronization|The default synchronization is on 32-bit boundaries.

LINAGE-COUNTER|The LINAGE-COUNTER is a 9-digit unsigned integer.

CODE-SET clause of the FD entry|The CODE-SET clause speci�es the character
code convention used to represent the data in the �le (ASCII, EBCDIC, EBCDIK,
STANDARD-1, STANDARD-2, or NATIVE). The default is ASCII.

Optimal data types|Chapter 3 of the HP COBOL II/XL Programmer's Guide provides a
discussion of optimal data types.

PROCEDURE DIVISION

The following are dependencies in the PROCEDURE DIVISION:

Segmentation|The MPE Segmenter is not available on MPE XL systems. The HP COBOL
II compiler ignores segment numbers after section names (except where ALTER and
alterable GO TO statements exist). No performance gain is achieved by including segment
numbers after section names. The function formerly accomplished by segmenting an HP
COBOL II program using section numbers is provided by the memory manager of the MPE
XL operating system.

ACCEPT Statement|An ACCEPT operation prematurely terminated by an :EOD or :EOJ
(in job mode) causes a read error condition and abort of the program.

DISPLAY Statement|The format of output when displaying unedited signed numeric
data items is improved in HP COBOL II. For signed items, the sign overpunch is removed
and a leading minus or plus sign is printed. A decimal point is inserted where applicable.
For example, if the data item A is declared as PIC S999V99 and has the value 1.3, and the
following statement is executed:

DISPLAY A

The result would be:

+001.30

The console device when you use UPON CONSOLE is assumed to be 50 characters long.
The SYSOUT device when you use UPON SYSOUT is assumed to be 132 characters long.
If the data you display is longer than these, it will be displayed on multiple lines.

Escape sequences are stripped out of the data when displayed UPON CONSOLE.

H-24 MPE XL System Dependencies

Language Dependencies

Error Handling|Decimal data is not checked for validity unless you specify the control
option VALIDATE. When you specify this option, a program aborts on the following
conditions:

Illegal ASCII digit.
Illegal decimal digit.
Illegal signs.

Your program may abort with the following conditions:

Division by zero.
An overow condition occurs without an ON SIZE ERROR phrase.

Using a common point to exit from multiple PERFORM statements may also cause errors
in HP COBOL II. If too many common exit points from PERFORM statements are found,
an error message is issued at run time. Using the control option BOUNDS causes the
compiler to generate code to see if the paragraph stack overows.

In addition, illegal GO TO statements (those that branch out of PERFORMed paragraphs)
cause a program to abort in HP COBOL II. Using control option BOUNDS causes the
program to trap instead.

You can control the run-time trap handling environment by setting the MPE XL variable
COBRUNTIME (see the section \Run-Time Trap Handling" and the HP COBOL II/XL
Programmer's Guide for more information).

EXCLUSIVE/UN-EXCLUSIVE Statement|The following applies to the use of the
EXCLUSIVE statement:

Programs that are updating or adding to the �le must utilize a run-time �le equation with
the \SHR" option speci�ed to permit other programs to share the �le.

Programs that want READ ONLY access to the �le may improve performance when
the program is not concerned with data currency, but is currently sharing the �le with
other programs that are concerned with data currency. The program must specify either
the \L" option within the SELECT statement of the �le, or the \LOCK" option on a
run-time �le equation without utilizing the EXCLUSIVE/UN-EXCLUSIVE statement in
the PROCEDURE DIVISION. This enables HP COBOL II to open the �le with dynamic
locking speci�ed, but to refrain from actually locking it for input operations.

The COBOLLOCK and COBOLUNLOCK procedures are not available in
HP COBOL II/XL. Use the EXCLUSIVE and UN-EXCLUSIVE statements instead.

Note Use of an EXCLUSIVE statement for a �le causes any OPEN of the same �le
to be executed with the dynamic locking facility enabled.

MPE XL System Dependencies H-25

Language Dependencies

OPEN Statement|INDEX organization �les are implemented as MPE KSAM �les.
Compatibility Mode KSAM �les use two �les, a data �le and a key �le. The key �le name
for an INDEX �le is the data �le name plus the letter \K". If the �le name is already
eight characters long, the last character is replaced by \K". Native Mode INDEX �les
use one Native Mode KSAM �le. When only ANSI85 is speci�ed, �les with U or V type
records will not be checked for record length mismatch. For more information, see the
HP COBOL II/XL Programmer's Guide.

PERFORM Statement|The following are illegal PERFORM constructs on
HP COBOL II/XL:

PERFORM statements with a common exit point.
PERFORM statements where the exit point of one PERFORM statement is contained
within the range of another, subsequently called PERFORM statement.

These two illegal cases are illustrated in Figure H-3 below.

Figure H-3. Invalid PERFORM Constructs

Note The behavior of illegal PERFORM constucts is not always consistent. The
compiler does not ag these constructs as errors.

H-26 MPE XL System Dependencies

Interprogram Communication

Interprogram Communication

This section explains these aspects of interprogram communication:

External names.

Subprogram types.

Intrinsics.

Parameter alignment.

External Names

An external name is one that is visible to other programs. The compiler generates external
names for the PROGRAM-ID name (programname), the name in the ENTRY statement
(literal-1), and the program name in the CALL statement (literal-1) according to the
following conventions (unless $CONTROL CMCALL is speci�ed):

Long names are truncated to 30 characters.

Uppercase characters are converted to lowercase unless the �rst character of the name is a
backslash (n).

If a name begins with a backslash, it is interpreted literally as beginning with the character
after the backslash.

Hyphens are converted to underscores.

When $CONTROL CMCALL is speci�ed, the external names are generated according to the
following conventions:

Hyphens within names are removed.

Uppercase characters are converted to lowercase.

Names are truncated to 15 characters.

Subprogram Types

Subprogram types are discussed in Chapter 11, \Interprogram Communication," and in
the HP COBOL II/XL Programmer's Guide. There are no restrictions as to which type of
subprogram (ANSISUB, DYNAMIC, or SUBPROGRAM) can be in a relocatable library or
an executable library in HP COBOL II/XL.

When an ON EXCEPTION phrase, an ON OVERFLOW phrase, or identi�er-1 is speci�ed in
the CALL statement, the following restrictions apply:

identi�er-1 cannot be numeric.

The subprogram called must reside in an executable library or in the program �le.

MPE XL System Dependencies H-27

Interprogram Communication

Calling Intrinsics

You must include the INTRINSIC phrase to call all MPE operating system intrinsics. Using
the INTRINSIC phrase is also recommended for calling subsystem intrinsics to provide for
more thorough error checking and greater portability of programs.

Parameter passing to intrinsics is described in detail in the HP COBOL II/XL Programmer's
Guide.

The system intrinsic �le is SYSINTR.PUB.SYS.

.LOC. Pseudo-Intrinsic

Addresses on MPE XL systems are either 32 or 64 bits long. To get a 32-bit address, you
must de�ne the result of the .LOC. pseudo-intrinsic as:

PIC S9(9) USAGE IS BINARY.

To get a 64-bit address, you must de�ne the result as:

PIC S9(18) USAGE IS BINARY.

Caution Pseudo-intrinsics are highly machine-dependent and should not be used in
programs that may be run on di�erent machines and architectures now or in
the future.

Parameter Alignment

The compiler passes information to the Link Editor about the actual alignment of each
parameter of the CALL statement.

If you use either CALLALIGNED or CALLALIGNED16 with the control option
OPTFEATURES, an error message is issued for each parameter of a CALL statement that is
not on a 32- or 16-bit boundary, respectively.

If you specify either LINKALIGNED or LINKALIGNED16 with the control option
OPTFEATURES for a subprogram, the subprogram expects all parameters in the USING
phrase of the PROCEDURE DIVISION header to be aligned on 32-bit or 16-bit boundaries,
respectively. Without this option, the compiler assumes that all parameters are on byte
boundaries.

On MPE V systems, the @ sign preceding a parameter in the USING phrase of the CALL
statement indicates that the byte address of that parameter should be passed to the
subprogram being called. Since all addresses are byte addresses on MPE XL systems, the @
sign on parameters is ignored.

H-28 MPE XL System Dependencies

Run-Time Trap Handling

Run-Time Trap Handling

The HP COBOL II compiler handles run-time traps for a variety of run-time error conditions.
You can control your program's response to these conditions. This section:

Describes the traps that the HP COBOL II compiler supports.

Explains how to specify what actions should be taken when run-time errors occur.

Explains when and how to enable the trap mechanism.

Supported Traps

The HP COBOL II compiler supports the following traps:

Illegal ASCII digit (Error 711)|This error occurs if the program is compiled with the
$CONTROL VALIDATE option and an illegal ASCII digit is encountered. It also occurs
when an unsigned number is detected in a signed numeric �eld or vice-versa.

Illegal decimal digit (Error 710)|This error occurs if the program is compiled with the
$CONTROL VALIDATE option and an illegal decimal digit is encountered. It also occurs
when an unsigned number is detected in a signed numeric �eld or vice-versa.

Range Error (Error 751)|This error occurs if the program is compiled with the
$CONTROL BOUNDS option and one of the following occurs:

The identi�er named in an OCCURS DEPENDING ON clause is out of bounds.
A subscript or index is out of bounds.
A reference modi�cation is out of bounds.
For some COBOL functions, parameter is out of range.

No Size Error Phrase (Error 747)|This error occurs:

If a division by zero or other size error occurs without an ON SIZE ERROR phrase.
For COBOL functions, IEEE traps can occur for invalid parameters.
For COBOL functions, XLIBTRAP traps can occur for invalid parameters.

Invalid GO TO (Error 754)|This error occurs for an alterable GO TO that was never
altered. That is, it never speci�ed the target of the GO TO statement.

Address Alignment (Error 753)|This error occurs if the program is compiled
with the $CONTROL BOUNDS option and either the control option
OPTFEATURES=LINKALIGNED or LINKALIGNED16 and a parameter is
passed that is not on a 32-bit or 16-bit boundary, respectively.

Paragraph Stack Overow (Error 748)|This error occurs when a program is compiled with
the $CONTROL BOUNDS option and one of the following occurs:

A recursive PERFORM.
Too many nested PERFORM statements have the same common exit point.
Too many illegal GO TO statements are used to jump out of PERFORMed paragraphs.

MPE XL System Dependencies H-29

Run-Time Trap Handling

Handling Run-Time Errors with COBRUNTIME

The default action when one of these errors occurs is to print an error message and abort the
program. To specify an action other than the default, you need to do both of the following:

Compile your program with $CONTROL VALIDATE and $CONTROL BOUNDS.
Set a global variable, called COBRUNTIME, to a set of characters before running the
program.

A global variable is similar to a job control word. Each character position in COBRUNTIME
corresponds to a particular error condition. The letter in each character position of
COBRUNTIME instructs the compiler how to handle that particular error, as shown in
Table H-6.

Table H-6. Run-Time Error Handling Options

Option Meaning

A or blank Print the error message and abort (default).

C Print the error message and continue.

D Print the error message and enter debug mode.

I Ignore the error. (Continue without printing an error message).

M Print the error message, change the illegal digit to some legal digit, and continue.
This option is only valid for illegal decimal or ASCII digit errors. (See character
position 1 in Table H-7.) When used for other errors, M is treated as a blank.

N Change the illegal digit to a legal digit and continue without printing an error
message. This option is only valid for illegal decimal or ASCII digit errors in
positions 1, 7, and 8. See the description of character positions 1, 7, and 8 in
Table H-7 for details. When used in other positions, N is treated as a blank.

Note The M and N options alter the o�ending source �elds unless the source �eld is
de�ned as PIC X and the target is PIC 9 DISPLAY.

H-30 MPE XL System Dependencies

Run-Time Trap Handling

Setting COBRUNTIME

You set the run-time environment using the MPE XL SETVAR command with the variable
COBRUNTIME. For example:

SETVAR COBRUNTIME "string"

In the above example \string" is a string of nine either uppercase or lowercase characters
representing the run-time options A, C, D, I, M, N, or blank, as shown in Table H-6. A blank
in the string is interpreted as \A", or \Abort," the default. Each character position in the
string represents a speci�c trap that you can request, as shown in Table H-7.

Table H-7. Character Position in Specific Traps

Character
Position Trap Type

1 Illegal ASCII or decimal digit.

2 Range error (OCCURS DEPENDING ON identi�er, subscript, index,
or reference modi�cation out of bounds).

3 No SIZE ERROR phrase.

4 Invalid GO TO.

5 Address Alignment.

6 Paragraph stack overow (recursive PERFORMs or too many
PERFORMs with a common exit point).

7 Leading blanks in a numeric �eld. If this position contains I, leading
blanks in a numeric �eld are ignored. If this position contains N,
leading blanks are changed to zeros. If this position contains a value
other than N or I, the action entered in character position 1 is used.

8 Unsigned number in signed numeric �eld or signed number in unsigned
numeric �eld. If this position contains I, the invalid sign is ignored. If
this position contains N, the invalid sign is corrected. If this position
contains a value other than N or I, the action entered in character
position 1 is used.

9 Only a�ects a NUMERIC class condition with a PACKED-DECIMAL
identi�er. If this �eld contains the character I, then the following
conditions do not make a NUMERIC test false:

A signed value in an unsigned PACKED-DECIMAL �eld.
An unsigned value in a signed PACKED-DECIMAL �eld.
Any invalid sign nibble (half-byte).

If this �eld contains anything other than I, the above conditions make
the NUMERIC class condition false.

MPE XL System Dependencies H-31

Run-Time Trap Handling

M can only appear in the �rst character position, and N can only appear in character
positions 1, 7, and 8. This is because the action taken by M and N only applies to an illegal
ASCII or decimal digit errors. If either letter appears in any other character position, it is
treated as a blank. If character positions 7 or 8 are blank or are not equal to N or I, the
action speci�ed in character position 1 is used.

Setting COBRUNTIME to the following will closely simulate HP COBOL II/V actions:

SETVAR COBRUNTIME "MCCAAANNI"

Example

For example, for a program compiled with the control options VALIDATE and BOUNDS, the
following MPE XL command sets COBRUNTIME:

SETVAR COBRUNTIME "MtIDCANNI"

The above SETVAR command has the following e�ects when you run the program:

Fixes any invalid digits that are found, prints an error message, and continues running (M
in position 1).

Aborts if a trap on an OCCURS DEPENDING ON item, a subscript, an index, or a
reference modi�cation goes out of bounds (blank in position 2).

Ignores any traps that occur on size errors, division by zero, or illegal intrinsic function
parameters, if these are used without an ON SIZE ERROR clause (I in position 3).

Prints an error message and places you in debug mode if an invalid GO TO error occurs (D
in position 4).

Prints an error message and continues on an address alignment trap (C in position 5).

Aborts on illegal PERFORMs or illegal GO TOs out of performed paragraphs, or on
paragraph stack overow (A in position 6).

Changes leading blanks in numeric �elds to zeros without reporting an error (N in position
7).

Fixes illegal signs in numeric �elds without reporting an error (N in position 8).

Does not return a false NUMERIC class condition on a PACKED-DECIMAL data item if
the sign of the data item is illegal (I in position 9).

Refer to the HP COBOL II/XL Programmer's Guide for more discussion and examples of
handling errors.

H-32 MPE XL System Dependencies

Run-Time Trap Handling

The COBOL Trap Mechanism and Other Languages

In order to work, the COBOL trap mechanism must be armed for the ON SIZE ERROR
phrase, $CONTROL VALIDATE command, and $CONTROL BOUNDS command. (The
traps must actually be enabled and armed. However, in this section, the term armed implies
enabled and armed. For more details, see the Trap Handling Programmer's Guide.)

Besides the HP COBOL II run-time library, the COBOL trap mechanism uses the DEBUG
macro �le COBMAC.PUB.SYS.

The procedure COBOLTRAP is provided in the HP COBOL II run-time library to arm the
COBOL trap mechanism. For an HP COBOL II main program, the compiler automatically
calls COBOLTRAP. When the COBOL trap mechanism is armed and an error occurs that
activates a trap, the HP COBOL II run-time library gains control.

For operating e�ciency and compatibility with other HP programming languages, the HP
COBOL II/XL compiler does not call COBOLTRAP for COBOL subprograms . If an HP
COBOL II subprogram is called by a program or subprogram written in a language other than
COBOL, it is your responsibility to arm the COBOL trap mechanism before the call.

If the COBOL trap mechanism is armed and if a subprogram in another language is called,
problems may occur if trap handling is not set for that language. In particular, these
problems may occur:

FORTRAN ON statements may not work.
Pascal TRY/RECOVER may not work for RANGE errors.
Business Basic ON statements may not work.

The COBOL trap mechanism will produce a COBOL run-time error instead of the
appropriate language error. For example, a Pascal run-time error may be reported as \NO
SIZE ERROR PHRASE (COBERR 747)".

The procedure COBOLTRAP has no parameters. To call it, simply code:

CALL "COBOLTRAP".

MPE XL System Dependencies H-33

Run-Time Trap Handling

The following are recommended programming steps for three possible trap-handling scenarios:

HP COBOL II programs and subprograms calling an HP COBOL II subprogram:

Because the COBOL trap mechanism is armed in the HP COBOL II main program, there
is no need to call COBOLTRAP in the subprogram.

HP COBOL II programs and subprograms calling a subprogram written in another
language:

Step 1: Arm or disarm the trap mechanism for the other language.

Step 2: Issue a CALL statement calling the other language subprogram or procedure.

Step 3: Arm the COBOL trap mechanism by calling the COBOLTRAP procedure.

Programs and subprograms written in other languages calling an HP COBOL II
subprogram:

Step 1: Arm the COBOL trap mechanism by calling the COBOLTRAP procedure.

Step 2: Call the HP COBOL II subprogram.

Step 3: Arm or disarm the trap mechanism for the other language.

H-34 MPE XL System Dependencies

Run-Time Trap Handling

Example 1

This example shows how an HP COBOL II/XL program calling a Pascal procedure can arm
the software traps for Pascal and then rearm the traps for HP COBOL II/XL. This example
sets the trap mechanism to the default for languages such as Pascal, FORTRAN, and HP C.

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. COBOLPROF.

001300 DATA DIVISION.

001400 WORKING-STORAGE SECTION.

001500 77 PARM1 PIC S99V99 COMP.

001600 77 PARM2 PIC X(18).

001700 PROCEDURE DIVISION.

001710 P1.

001800* Step 1: call the procedure pastrap to arm the software trap

001900* for pascal

002000 CALL "PASTRAP".

002100* Step 2: call the pascal procedure pasprog

002200 CALL "PASPROG" USING PARM1 PARM2.

002300* Step 3: arm COBOL traps again

002400 CALL "COBOLTRAP".

002500 STOP RUN.

The procedure Pastrap is coded as follows:

$subprogram$

program example_1;

procedure xaritrap; intrinsic;

procedure xlibtrap; intrinsic;

procedure hpenbltrap; intrinsic;

procedure pastrap;

var oldmask, oldplabel : integer;

begin
xaritrap(0,0,oldmask,oldplabel); { disarm arithmetic traps }

xlibtrap(0,oldplabel); { disarm library traps }

{ enable all traps but IEEE }

hpenbltrap(hex('fff83fff'),oldmask); { set to Pascal default }

end;

begin end.

MPE XL System Dependencies H-35

Run-Time Trap Handling

Example 2

This example shows how an HP COBOL II/XL program calling a FORTRAN procedure can
arm the software traps for FORTRAN and then rearm the traps for HP COBOL II/XL. This
example saves and restores the state of the trap mechanism before and after the call to the
non-COBOL subprogram. This method must be used if the called subprogram changes the
default trap mechanism. For example, if a FORTRAN subprogram uses an ON statement, this
method retains the state of the subprogram's trap mechanism.

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. IO888E.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.

001400 1 buffer.

001500 5 c pic s9(9) comp value 0.

001600 1 trap-stuff.

001700 5 old-mask pic s9(9) comp value 0.

001800 5 old-plabel pic s9(9) comp value 0.

001900* enable all but IEEE traps

002000 5 old-enblemask pic s9(9) comp value %37776037777.

002100 5 old-libplabel pic s9(9) comp value 0.

002200 5 dummy-var pic s9(9) comp.

002300 procedure division. house.

002400 perform 2 times

002500 perform restore-fortran-state

002600 call "fortransub" using buffer

002700 perform save-fortran-state

002800 display c

002900 end-perform

003000 stop run.

003100

003200 save-fortran-state.
003300 call intrinsic "XARITRAP" using 0 0 old-mask old-plabel

003400 call intrinsic "HPENBLTRAP" using 0 old-enblemask

003500 call intrinsic "XLIBTRAP" using 0 old-libplabel

003600 call "coboltrap".

003700 restore-fortran-state.

003800 call intrinsic "XARITRAP" using old-mask old-plabel

003900 dummy-var dummy-var

004000 call intrinsic "HPENBLTRAP" using old-enblemask dummy-var

004100 call intrinsic "XLIBTRAP" using old-libplabel dummy-var.

H-36 MPE XL System Dependencies

Run-Time Trap Handling

Example 3

This example shows how a Pascal program calling an HP COBOL II/XL subprogram can arm
the software traps for HP COBOL II/XL and then rearm the traps for Pascal.

program pasprog;

module cobol_trap_handling;

export

procedure savepascaltraps;

procedure restorepascaltraps;

procedure coboltrap;

implement

{ private save variables for trap handling }

var o_a_mask, o_a_plabel,

o_l_mask, o_l_plabel,

o_e_mask : integer;

procedure xaritrap; intrinsic;

procedure xlibtrap; intrinsic;

procedure hpenbltrap; intrinsic;

procedure coboltrap; external;

procedure savepascaltraps;

begin

{ save old values }

xaritrap(0,0,o_a_mask,o_a_plabel);

xlibtrap(0,o_l_plabel);

hpenbltrap(0,o_e_mask);

end;

procedure restorepascaltraps;

var dummy : integer;

begin

{ restore old pascal values }

xaritrap(o_a_mask,o_a_plabel,dummy,dummy);
xlibtrap(o_l_plabel,dummy);

hpenbltrap(o_e_mask,dummy);

end;

end;

import cobol_trap_handling;

var i : integer;

procedure cobolsubprog(var parm1: integer);

external cobol;

begin

i:=-33;

savepascaltraps;

coboltrap;

cobolsubprog(i);

restorepascaltraps;

end.

MPE XL System Dependencies H-37

Run-Time Trap Handling

001000$CONTROL SUBPROGRAM,OPTFEATURES=LINKALIGNED

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. COBOLSUBPROG.
001300 DATA DIVISION.

001400 WORKING-STORAGE SECTION.

001500 01 J PIC ----,---,---.

001600 LINKAGE SECTION.

001700 01 I PIC S9(9) BINARY.

001800 PROCEDURE DIVISION USING I.

001900 P1.

002000 MOVE I TO J.

002100 DISPLAY "INPUT PARM WAS" J.

H-38 MPE XL System Dependencies

Example HP COBOL II/XL Program

Example HP COBOL II/XL Program

This section contains a complete COBOL program listing from the HP COBOL II/XL
compiler.

PAGE 0001 COBOL II/XL HP31500A.04.03 [85] FRI, JUN 7, 1991, 4:02

PM Copyright Hewlett-Packard CO. 1987

00001 001000$CONTROL MAP,SOURCE,CROSSREF,VERBS

00002 002000 IDENTIFICATION DIVISION.

00003 003000 PROGRAM-ID. EXAMPLE.

00004 004000 AUTHOR. HEWLETT-PACKARD.

00005 005000 DATE-COMPILED. FRI, JUN 7, 1991, 4:02 PM

00006 006000***

00007 007000* BRIEF PROGRAM DESCRIPTION

00008 008000*

00009 009000* THIS IS AN EXAMPLE OF THE USE OF COBOL85. THIS IS A

00010 010000* SEQUENTIAL UPDATE PROGRAM USING STRUCTURED PROGRAMMING

00011 011000* TECHNIQUES. THE TRANSACTION FILE USED BY THE UPDATE

00012 012000* PROGRAM HAS ALREADY BEEN EDITED AND SORTED INTO THE

00013 013000* PROPER SEQUENCE FOR UPDATE PROCESSING.

00014 014000***

00015 015000* FILE REQUIREMENTS

00016 016000*

00017 017000* COPY FILES: NONE REQUIRED IN THIS PROGRAM

00018 018000*

00019 019000* DATA FILES--INPUT FILES: OLD INVENTORY MASTER

00020 020000* UPDATE TRANSACTIONS

00021 021000* OUTPUT FILES: NEW INVENTORY MASTER

00022 022000* TRANSACTION ERROR FILE

00023 023000* PRINTED REPORT OF UPDATE

00024 024000* I-O FILES: NONE

00025 025000*

00026 026000***

00027 027000 ENVIRONMENT DIVISION.

00028 028000 INPUT-OUTPUT SECTION.

00029 029000 FILE-CONTROL.

00030 030000 SELECT OLD-INV-MAST

00031 031000 ASSIGN TO "OLDMAST".

00032 032000 SELECT NEW-INV-MAST

00033 033000 ASSIGN TO "NEWMAST".

00034 034000 SELECT TRAN-FILE

00035 035000 ASSIGN TO "TRANFILE".

00036 036000 SELECT ERROR-FILE

00037 037000 ASSIGN TO "TRANERR".

00038 038000 SELECT PRINT-FILE

00039 039000 ASSIGN TO "PRINT,UR".

MPE XL System Dependencies H-39

Example HP COBOL II/XL Program

PAGE 0002/COBTEXT EXAMPLE

00040 040000/ ****** D A T A D I V I S I O N ******

00041 041000 DATA DIVISION.

00042 042000 FILE SECTION.

00043 043000*

00044 044000 FD OLD-INV-MAST.

00045 045000*

00046 046000 01 OLD-INV-MAST-REC.

00047 047000 03 OM-PART-NBR PIC X(05).

00048 048000 03 FILLER PIC X(35).

00049 049000*

00050 050000 FD NEW-INV-MAST.

00051 051000*

00052 052000 01 NEW-INV-MAST-REC PIC X(40).

00053 053000*

00054 054000 FD TRAN-FILE.

00055 055000*

00056 056000 01 TRAN-REC.

00057 057000 03 TR-UPDATE-CODE PIC X(01).

00058 058000 88 TR-ADD-CODE VALUE "A".

00059 059000 88 TR-CHANGE-CODE VALUE "C".

00060 060000 88 TR-DELETE-CODE VALUE "D".

00061 061000 03 TR-PART-NBR PIC X(05).

00062 062000 03 TR-DESCRIPTION PIC X(25).

00063 063000 03 TR-PART-COST-FLD.

00064 064000 05 TR-PART-COST PIC 9(07)V99.

00065 065000 03 TR-PART-PRICE-FLD.

00066 066000 05 TR-PART-PRICE PIC 9(05)V99.

00067 067000 03 TR-PART-QUANTITY-FLD.

00068 068000 05 TR-PART-QUANTITY PIC 9(04).

00069 069000*

00070 070000 FD ERROR-FILE.

00071 071000 01 ERROR-REC PIC X(51).

00072 072000*

00073 073000 FD PRINT-FILE.

00074 074000 01 PRINT-REC PIC X(132).

H-40 MPE XL System Dependencies

Example HP COBOL II/XL Program

PAGE 0003/COBTEXT EXAMPLE

00075 075000/ ****** W O R K I N G S T O R A G E ******

00076 076000 WORKING-STORAGE SECTION.

00077 077000*

00078 078000*

00079 079000 01 WS-PRINT-CONTROL.

00080 080000 03 WS-LINE-CTR PIC S9(03) BINARY VALUE 999.

00081 081000 03 WS-PAGE-CTR PIC S9(03) BINARY VALUE 0.

00082 082000 03 WS-SPACING PIC S9(01) BINARY VALUE 1.

00083 083000 03 WS-LINE-LMT PIC S9(03) BINARY VALUE 45.

00084 084000*

00085 085000 01 WS-ACCUMULATORS.

00086 086000 03 WS-CHANGES-CTR PIC S9(05) BINARY.

00087 087000 03 WS-ADDITIONS-CTR PIC S9(05) BINARY.

00088 088000 03 WS-DELETES-CTR PIC S9(05) BINARY.

00089 089000 03 WS-TOTAL-CTR PIC S9(05) BINARY.

00090 090000 03 WS-ERRORS PIC S9(05) BINARY.

00091 091000 03 WS-TRANS-READ PIC S9(05) BINARY.

00092 092000*

00093 093000 01 WS-UPDT-MESSAGES.

00094 094000 03 WS-CHANGE-MSG PIC X(10) VALUE "CHANGED".

00095 095000 03 WS-ADDITION-MSG PIC X(10) VALUE "ADDED".

00096 096000 03 WS-DELETE-MSG PIC X(10) VALUE "DELETED".

00097 097000*

00098 098000 01 WS-MASTER-REC.

00099 099000 03 WS-MR-PART-NBR PIC X(05).

00100 100000 03 WS-MR-DESCRIPTION PIC X(25).

00101 101000 03 WS-MR-PART-COST PIC S9(07)V99 BINARY SYNC.

00102 102000 03 WS-MR-PART-PRICE PIC S9(05)V99 BINARY SYNC.

00103 103000 03 WS-MR-PART-QUANTITY PIC S9(04) BINARY SYNC.

00104 104000*

00105 105000 01 HDG-1.

00106 106000 03 HDG1-DATE PIC X(08).

00107 107000 03 PIC X(22) VALUE SPACES.

00108 108000 03 HDG1-REPORT-NAME PIC X(24)

00109 109000 VALUE "INVENTORY UPDATE LISTING".

00110 110000 03 PIC X(20) VALUE SPACES.

00111 111000 03 PIC X(06) VALUE "PAGE ".

00112 112000 03 HDG1-PAGE-NBR PIC ZZ9.

00113 113000*

00114 114000 01 HDG-2.

00115 115000 03 PIC X(20)

00116 116000 VALUE "PART PART ".

00117 117000 03 PIC X(20)

00118 118000 VALUE " ".

00119 119000 03 PIC X(20)

00120 120000 VALUE " PART PA".

00121 121000 03 PIC X(20)

00122 122000 VALUE "RT PART UPD".

00123 123000 03 PIC X(20)

00124 124000 VALUE "ATE ".

00125 125000 03 PIC X(20)

00126 126000 VALUE " ".

00127 127000 03 PIC X(13)

00128 128000 VALUE " ".

00129 129000*

00130 130000 01 HDG-3.

00131 131000 03 PIC X(20)

MPE XL System Dependencies H-41

Example HP COBOL II/XL Program

PAGE 0004/COBTEXT EXAMPLE

00132 132000 VALUE "NUMBER DESCRIPTION".

00133 133000 03 PIC X(20)

00134 134000 VALUE " ".

00135 135000 03 PIC X(20)

00136 136000 VALUE " COST PR".

00137 137000 03 PIC X(20)

00138 138000 VALUE "ICE QUANTITY MES".

00139 139000 03 PIC X(20)

00140 140000 VALUE "SAGE ".

00141 141000 03 PIC X(20)

00142 142000 VALUE " ".

00143 143000 03 PIC X(13)

00144 144000 VALUE " ".

00145 145000*

00146 146000 01 TOTALS-HDG-1.

00147 147000 03 PIC X(20)

00148 148000 VALUE "TOTALS FOR INVENTORY".

00149 149000 03 PIC X(20)

00150 150000 VALUE " UPDATE RUN OF - ".

00151 151000 03 TOT1-HDG-DATE PIC X(08).

00152 152000*

00153 153000 01 TOTALS-HDG-2.

00154 154000 03 PIC X(20)

00155 155000 VALUE "CHANGES ".

00156 156000 03 TOT2-CHANGES PIC ZZ,ZZ9.

00157 157000*

00158 158000 01 TOTALS-HDG-3.

00159 159000 03 PIC X(20)

00160 160000 VALUE "ADDITIONS ".

00161 161000 03 TOT3-ADDITIONS PIC ZZ,ZZ9.

00162 162000*

00163 163000 01 TOTALS-HDG-4.

00164 164000 03 PIC X(20)

00165 165000 VALUE "DELETIONS ".

00166 166000 03 TOT4-DELETIONS PIC ZZ,ZZ9.

00167 167000*

00168 168000 01 TOTALS-HDG-5.

00169 169000 03 PIC X(20)

00170 170000 VALUE "TOTAL UPDATES ".

00171 171000 03 TOT5-UPDATES PIC ZZ,ZZ9.

00172 172000*

00173 173000 01 TOTALS-HDG-6.

00174 174000 03 PIC X(20)

00175 175000 VALUE "ERRORS ".

00176 176000 03 TOT6-ERRORS PIC ZZ,ZZ9.

00177 177000*

00178 178000 01 TOTALS-HDG-7.

00179 179000 03 PIC X(20)

00180 180000 VALUE "TOTAL TRANSACTIONS ".

00181 181000 03 TOT7-TRANS-READ PIC ZZ,ZZ9.

00182 182000*

00183 183000 01 WS-UPDATE-LINE.

00184 184000 03 WS-UP-PART-NBR PIC X(05).

00185 185000 03 PIC X(04) VALUE SPACES.

00186 186000 03 WS-UP-DESCRIPTION PIC X(25).

00187 187000 03 PIC X(04) VALUE SPACES.

00188 188000 03 WS-UP-PART-COST PIC Z,ZZZ,ZZZ.99-.

H-42 MPE XL System Dependencies

Example HP COBOL II/XL Program

PAGE 0005/COBTEXT EXAMPLE

00189 189000 03 PIC X(03) VALUE SPACES.

00190 190000 03 WS-UP-PART-PRICE PIC ZZ,ZZZ.99-.

00191 191000 03 PIC X(05) VALUE SPACES.

00192 192000 03 WS-UP-PART-QUANTITY PIC ZZZ9.

00193 193000 03 PIC X(04) VALUE SPACES.

00194 194000 03 WS-UP-UPDT-MESSAGE PIC X(10).

00195 195000*

PAGE 0006/COBTEXT EXAMPLE

00196 196000/ ****** P R O C E D U R E D I V I S I O N *****

00197 197000 PROCEDURE DIVISION.

00198 198000 100-MAIN-PROGRAM.

00199 199000 OPEN INPUT OLD-INV-MAST

00200 200000 TRAN-FILE

00201 201000 OUTPUT NEW-INV-MAST

00202 202000 ERROR-FILE

00203 203000 PRINT-FILE

00204 204000*

00205 205000 MOVE SPACES TO PRINT-REC

00206 206000 MOVE CURRENT-DATE TO HDG1-DATE

00207 207000 TOT1-HDG-DATE

00208 208000 INITIALIZE WS-ACCUMULATORS WS-UPDATE-LINE

00209 209000 PERFORM 300-GET-TRANSACTION

00210 210000 PERFORM 310-GET-OLD-MASTER

00211 211000*

00212 212000* M A I N P R O G R A M D R I V E R

00213 213000*

00214 214000 PERFORM UNTIL WS-MR-PART-NBR EQUAL ALL "9" AND

00215 215000 TR-PART-NBR EQUAL ALL "9"

00216 216000

00217 217000 EVALUATE TRUE

00218 218000 WHEN WS-MR-PART-NBR GREATER TR-PART-NBR

00219 219000 PERFORM 210-MASTER-COMPARED-HIGH

00220 220000 WHEN WS-MR-PART-NBR LESS TR-PART-NBR

00221 221000 PERFORM 240-MASTER-COMPARED-LOW

00222 222000 WHEN WS-MR-PART-NBR = ALL "9"

00223 223000 CONTINUE

00224 224000 WHEN OTHER

00225 225000 PERFORM 250-MASTER-AND-TRAN-EQUAL

00226 226000 END-EVALUATE

00227 227000 END-PERFORM

00228 228000*

00229 229000* PRINT TOTALS AND QUIT

00230 230000*

00231 231000 PERFORM 420-PRINT-TOTALS

00232 232000 CLOSE OLD-INV-MAST

00233 233000 NEW-INV-MAST

00234 234000 TRAN-FILE

00235 235000 ERROR-FILE

00236 236000 PRINT-FILE

00237 237000 STOP RUN.

00238 238000*

MPE XL System Dependencies H-43

Example HP COBOL II/XL Program

PAGE 0007/COBTEXT EXAMPLE

00239 239000/

00240 240000 210-MASTER-COMPARED-HIGH.

00241 241000*

00242 242000 IF TR-ADD-CODE

00243 243000 PERFORM 220-ADD-TO-MASTER

00244 244000 ELSE

00245 245000 PERFORM 230-TRAN-IN-ERROR.

00246 246000*

00247 247000 220-ADD-TO-MASTER.

00248 248000 MOVE TR-PART-NBR TO WS-MR-PART-NBR

00249 249000 MOVE TR-DESCRIPTION TO WS-MR-DESCRIPTION

00250 250000 MOVE TR-PART-COST TO WS-MR-PART-COST

00251 251000 MOVE TR-PART-PRICE TO WS-MR-PART-PRICE

00252 252000 MOVE TR-PART-QUANTITY TO WS-MR-PART-QUANTITY

00253 253000 MOVE WS-MASTER-REC TO NEW-INV-MAST-REC

00254 254000 MOVE TR-PART-NBR TO WS-UP-PART-NBR

00255 255000 MOVE TR-DESCRIPTION TO WS-UP-DESCRIPTION

00256 256000 MOVE TR-PART-COST TO WS-UP-PART-COST

00257 257000 MOVE TR-PART-PRICE TO WS-UP-PART-PRICE

00258 258000 MOVE TR-PART-QUANTITY TO WS-UP-PART-QUANTITY

00259 259000 MOVE WS-ADDITION-MSG TO WS-UP-UPDT-MESSAGE

00260 260000 PERFORM 300-GET-TRANSACTION

00261 261000 PERFORM 330-WRITE-NEW-MASTER

00262 262000 PERFORM 320-PRINT-UPDATE

00263 263000 MOVE OLD-INV-MAST-REC TO WS-MASTER-REC

00264 264000 ADD 1 TO WS-ADDITIONS-CTR.

00265 265000*

00266 266000 230-TRAN-IN-ERROR.

00267 267000 MOVE TRAN-REC TO ERROR-REC

00268 268000 WRITE ERROR-REC

00269 269000 PERFORM 300-GET-TRANSACTION

00270 270000 ADD 1 TO WS-ERRORS.

00271 271000*

00272 272000 240-MASTER-COMPARED-LOW.

00273 273000 MOVE WS-MASTER-REC TO NEW-INV-MAST-REC

00274 274000 PERFORM 330-WRITE-NEW-MASTER

00275 275000 PERFORM 310-GET-OLD-MASTER.

00276 276000*

00277 277000 250-MASTER-AND-TRAN-EQUAL.

00278 278000 EVALUATE TRUE

00279 279000 WHEN TR-DELETE-CODE

00280 280000 PERFORM 260-DELETE-MASTER

00281 281000 WHEN TR-CHANGE-CODE

00282 282000 PERFORM 270-CHANGE-MASTER

00283 283000 WHEN OTHER

00284 284000 PERFORM 230-TRAN-IN-ERROR

00285 285000 END-EVALUATE.

00286 286000*

00287 287000 260-DELETE-MASTER.

00288 288000 MOVE WS-MR-PART-NBR TO WS-UP-PART-NBR

00289 289000 MOVE WS-MR-DESCRIPTION TO WS-UP-DESCRIPTION

00290 290000 MOVE WS-MR-PART-COST TO WS-UP-PART-COST

00291 291000 MOVE WS-MR-PART-PRICE TO WS-UP-PART-PRICE

00292 292000 MOVE WS-MR-PART-QUANTITY TO WS-UP-PART-QUANTITY

00293 293000 MOVE WS-DELETE-MSG TO WS-UP-UPDT-MESSAGE

00294 294000 PERFORM 320-PRINT-UPDATE

00295 295000 PERFORM 310-GET-OLD-MASTER

H-44 MPE XL System Dependencies

Example HP COBOL II/XL Program

PAGE 0008/COBTEXT EXAMPLE

00296 296000 PERFORM 300-GET-TRANSACTION

00297 297000 ADD 1 TO WS-DELETES-CTR.

00298 298000*

00299 299000 270-CHANGE-MASTER.

00300 300000*

00301 301000 IF TR-DESCRIPTION SPACES

00302 302000 MOVE TR-DESCRIPTION TO WS-MR-DESCRIPTION

00303 303000 END-IF

00304 304000 IF TR-PART-COST-FLD SPACES

00305 305000 MOVE TR-PART-COST TO WS-MR-PART-COST

00306 306000 END-IF

00307 307000 IF TR-PART-PRICE-FLD SPACES

00308 308000 MOVE TR-PART-PRICE TO WS-MR-PART-PRICE

00309 309000 END-IF

00310 310000 IF TR-PART-QUANTITY-FLD SPACES

00311 311000 MOVE TR-PART-QUANTITY TO WS-MR-PART-QUANTITY

00312 312000 END-IF

00313 313000*

00314 314000 MOVE WS-MR-PART-NBR TO WS-UP-PART-NBR

00315 315000 MOVE WS-MR-DESCRIPTION TO WS-UP-DESCRIPTION

00316 316000 MOVE WS-MR-PART-COST TO WS-UP-PART-COST

00317 317000 MOVE WS-MR-PART-PRICE TO WS-UP-PART-PRICE

00318 318000 MOVE WS-MR-PART-QUANTITY TO WS-UP-PART-QUANTITY

00319 319000 MOVE WS-CHANGE-MSG TO WS-UP-UPDT-MESSAGE

00320 320000 PERFORM 320-PRINT-UPDATE

00321 321000 PERFORM 300-GET-TRANSACTION

00322 322000 ADD 1 TO WS-CHANGES-CTR.

00323 323000*

00324 324000 300-GET-TRANSACTION.

00325 325000 READ TRAN-FILE

00326 326000 AT END

00327 327000 MOVE ALL "9" TO TR-PART-NBR

00328 328000 NOT AT END

00329 329000 ADD 1 TO WS-TRANS-READ

00330 330000 END-READ.

00331 331000*

00332 332000 310-GET-OLD-MASTER.

00333 333000 READ OLD-INV-MAST

00334 334000 AT END

00335 335000 MOVE ALL "9" TO OM-PART-NBR

00336 336000 END-READ

00337 337000*

00338 338000 MOVE OLD-INV-MAST-REC TO WS-MASTER-REC.

00339 339000*

00340 340000 320-PRINT-UPDATE.

00341 341000*

00342 342000 IF WS-LINE-CTR GREATER WS-LINE-LMT

00343 343000 PERFORM 410-PRINT-HEADING

00344 344000 END-IF

00345 345000*

00346 346000 MOVE WS-UPDATE-LINE TO PRINT-REC

00347 347000 MOVE 1 TO WS-SPACING

00348 348000 PERFORM 400-WRITE-PRINT-LINE

00349 349000 ADD 1 TO WS-LINE-CTR.

00350 350000*

00351 351000 330-WRITE-NEW-MASTER.

00352 352000 WRITE NEW-INV-MAST-REC.

MPE XL System Dependencies H-45

Example HP COBOL II/XL Program

PAGE 0009/COBTEXT EXAMPLE

00353 353000*

00354 354000 400-WRITE-PRINT-LINE.

00355 355000 WRITE PRINT-REC BEFORE ADVANCING WS-SPACING

00356 356000 MOVE SPACES TO PRINT-REC

00357 357000 ADD WS-SPACING TO WS-LINE-CTR.

00358 358000*

00359 359000 410-PRINT-HEADING.

00360 360000 WRITE PRINT-REC BEFORE ADVANCING PAGE

00361 361000 MOVE ZEROES TO WS-LINE-CTR

00362 362000 ADD 1 TO WS-PAGE-CTR

00363 363000 MOVE WS-PAGE-CTR TO HDG1-PAGE-NBR

00364 364000 MOVE 2 TO WS-SPACING

00365 365000 MOVE HDG-1 TO PRINT-REC

00366 366000 PERFORM 400-WRITE-PRINT-LINE

00367 367000 MOVE 1 TO WS-SPACING

00368 368000 MOVE HDG-2 TO PRINT-REC

00369 369000 PERFORM 400-WRITE-PRINT-LINE

00370 370000 MOVE 2 TO WS-SPACING

00371 371000 MOVE HDG-3 TO PRINT-REC

00372 372000 PERFORM 400-WRITE-PRINT-LINE.

00373 373000*

00374 374000 420-PRINT-TOTALS.

00375 375000 ADD WS-CHANGES-CTR WS-ADDITIONS-CTR WS-DELETES-CTR

00376 376000 GIVING WS-TOTAL-CTR

00377 377000*

00378 378000 MOVE 1 TO WS-SPACING

00379 379000 MOVE WS-CHANGES-CTR TO TOT2-CHANGES

00380 380000 MOVE WS-ADDITIONS-CTR TO TOT3-ADDITIONS

00381 381000 MOVE WS-DELETES-CTR TO TOT4-DELETIONS

00382 382000 MOVE WS-TOTAL-CTR TO TOT5-UPDATES

00383 383000 MOVE WS-ERRORS TO TOT6-ERRORS

00384 384000 MOVE WS-TRANS-READ TO TOT7-TRANS-READ

00385 385000 WRITE PRINT-REC BEFORE ADVANCING PAGE

00386 386000*

00387 387000 MOVE TOTALS-HDG-1 TO PRINT-REC

00388 388000 PERFORM 400-WRITE-PRINT-LINE

00389 389000 MOVE TOTALS-HDG-2 TO PRINT-REC

00390 390000 PERFORM 400-WRITE-PRINT-LINE

00391 391000 MOVE TOTALS-HDG-3 TO PRINT-REC

00392 392000 PERFORM 400-WRITE-PRINT-LINE

00393 393000 MOVE TOTALS-HDG-4 TO PRINT-REC

00394 394000 PERFORM 400-WRITE-PRINT-LINE

00395 395000 MOVE TOTALS-HDG-5 TO PRINT-REC

00396 396000 PERFORM 400-WRITE-PRINT-LINE

00397 397000 MOVE TOTALS-HDG-6 TO PRINT-REC

00398 398000 PERFORM 400-WRITE-PRINT-LINE

00399 399000 MOVE TOTALS-HDG-7 TO PRINT-REC

00400 400000 PERFORM 400-WRITE-PRINT-LINE.

00401 401000*

00402 402000

H-46 MPE XL System Dependencies

Example HP COBOL II/XL Program

PAGE 0010/COBTEXT EXAMPLE SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATE

GORY R O J BZ

FILE SECTION

00030 FD OLD-INV-MAST DP+ 24 C0 SEQUENTIAL

00046 01 OLD-INV-MAST-REC DP+ 504 28 DISP AN

00047 03 OM-PART-NBR DP+ 504 5 DISP AN

00048 03 FILLER DP+ 509 23 DISP AN

00032 FD NEW-INV-MAST DP+ E4 C0 SEQUENTIAL

00052 01 NEW-INV-MAST-REC DP+ 4DC 28 DISP AN

00034 FD TRAN-FILE DP+ 1A4 C0 SEQUENTIAL

00056 01 TRAN-REC DP+ 4A8 33 DISP AN

00057 03 TR-UPDATE-CODE DP+ 4A8 1 DISP AN

00058 88 TR-ADD-CODE

00059 88 TR-CHANGE-CODE

00060 88 TR-DELETE-CODE

00061 03 TR-PART-NBR DP+ 4A9 5 DISP AN

00062 03 TR-DESCRIPTION DP+ 4AE 19 DISP AN

00063 03 TR-PART-COST-FLD DP+ 4C7 9 DISP AN

00064 05 TR-PART-COST DP+ 4C7 9 DISP N

00065 03 TR-PART-PRICE-FLD DP+ 4D0 7 DISP AN

00066 05 TR-PART-PRICE DP+ 4D0 7 DISP N

00067 03 TR-PART-QUANTITY-FLD DP+ 4D7 4 DISP AN

00068 05 TR-PART-QUANTITY DP+ 4D7 4 DISP N

00036 FD ERROR-FILE DP+ 264 C0 SEQUENTIAL

00071 01 ERROR-REC DP+ 474 33 DISP AN

00038 FD PRINT-FILE DP+ 324 C0 SEQUENTIAL

00074 01 PRINT-REC DP+ 3F0 84 DISP AN

WORKING-STORAGE SECTION

00079 01 WS-PRINT-CONTROL DP+ 530 8 DISP AN

00080 03 WS-LINE-CTR DP+ 530 2 COMP NS

00081 03 WS-PAGE-CTR DP+ 532 2 COMP NS

00082 03 WS-SPACING DP+ 534 2 COMP NS

00083 03 WS-LINE-LMT DP+ 536 2 COMP NS

00085 01 WS-ACCUMULATORS DP+ 538 18 DISP AN

00086 03 WS-CHANGES-CTR DP+ 538 4 COMP NS

00087 03 WS-ADDITIONS-CTR DP+ 53C 4 COMP NS

00088 03 WS-DELETES-CTR DP+ 540 4 COMP NS

00089 03 WS-TOTAL-CTR DP+ 544 4 COMP NS

00090 03 WS-ERRORS DP+ 548 4 COMP NS

00091 03 WS-TRANS-READ DP+ 54C 4 COMP NS

00093 01 WS-UPDT-MESSAGES DP+ 550 1E DISP AN

00094 03 WS-CHANGE-MSG DP+ 550 A DISP AN

00095 03 WS-ADDITION-MSG DP+ 55A A DISP AN

00096 03 WS-DELETE-MSG DP+ 564 A DISP AN

00098 01 WS-MASTER-REC DP+ 570 2A DISP AN

00099 03 WS-MR-PART-NBR DP+ 570 5 DISP AN

00100 03 WS-MR-DESCRIPTION DP+ 575 19 DISP AN

00101 03 WS-MR-PART-COST DP+ 590 4 COMP-SYNC NS

00102 03 WS-MR-PART-PRICE DP+ 594 4 COMP-SYNC NS

00103 03 WS-MR-PART-QUANTITY DP+ 598 2 COMP-SYNC NS

00105 01 HDG-1 DP+ 59C 53 DISP AN

00106 03 HDG1-DATE DP+ 59C 8 DISP AN

00107 03 FILLER DP+ 5A4 16 DISP AN

MPE XL System Dependencies H-47

Example HP COBOL II/XL Program

PAGE 0011/COBTEXT EXAMPLE SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATE

GORY R O J BZ

00108 03 HDG1-REPORT-NAME DP+ 5BA 18 DISP AN

00110 03 FILLER DP+ 5D2 14 DISP AN

00111 03 FILLER DP+ 5E6 6 DISP AN

00112 03 HDG1-PAGE-NBR DP+ 5EC 3 DISP NE

00114 01 HDG-2 DP+ 5F0 85 DISP AN

00115 03 FILLER DP+ 5F0 14 DISP AN

00117 03 FILLER DP+ 604 14 DISP AN

00119 03 FILLER DP+ 618 14 DISP AN

00121 03 FILLER DP+ 62C 14 DISP AN

00123 03 FILLER DP+ 640 14 DISP AN

00125 03 FILLER DP+ 654 14 DISP AN

00127 03 FILLER DP+ 668 D DISP AN

00130 01 HDG-3 DP+ 678 85 DISP AN

00131 03 FILLER DP+ 678 14 DISP AN

00133 03 FILLER DP+ 68C 14 DISP AN

00135 03 FILLER DP+ 6A0 14 DISP AN

00137 03 FILLER DP+ 6B4 14 DISP AN

00139 03 FILLER DP+ 6C8 14 DISP AN

00141 03 FILLER DP+ 6DC 14 DISP AN

00143 03 FILLER DP+ 6F0 D DISP AN

00146 01 TOTALS-HDG-1 DP+ 700 30 DISP AN

00147 03 FILLER DP+ 700 14 DISP AN

00149 03 FILLER DP+ 714 14 DISP AN

00151 03 TOT1-HDG-DATE DP+ 728 8 DISP AN

00153 01 TOTALS-HDG-2 DP+ 730 1A DISP AN

00154 03 FILLER DP+ 730 14 DISP AN

00156 03 TOT2-CHANGES DP+ 744 6 DISP NE

00158 01 TOTALS-HDG-3 DP+ 74C 1A DISP AN

00159 03 FILLER DP+ 74C 14 DISP AN

00161 03 TOT3-ADDITIONS DP+ 760 6 DISP NE

00163 01 TOTALS-HDG-4 DP+ 768 1A DISP AN

00164 03 FILLER DP+ 768 14 DISP AN

00166 03 TOT4-DELETIONS DP+ 77C 6 DISP NE

00168 01 TOTALS-HDG-5 DP+ 784 1A DISP AN

00169 03 FILLER DP+ 784 14 DISP AN

00171 03 TOT5-UPDATES DP+ 798 6 DISP NE

00173 01 TOTALS-HDG-6 DP+ 7A0 1A DISP AN

00174 03 FILLER DP+ 7A0 14 DISP AN

00176 03 TOT6-ERRORS DP+ 7B4 6 DISP NE

00178 01 TOTALS-HDG-7 DP+ 7BC 1A DISP AN

00179 03 FILLER DP+ 7BC 14 DISP AN

00181 03 TOT7-TRANS-READ DP+ 7D0 6 DISP NE

00183 01 WS-UPDATE-LINE DP+ 7D8 57 DISP AN

00184 03 WS-UP-PART-NBR DP+ 7D8 5 DISP AN

00185 03 FILLER DP+ 7DD 4 DISP AN

00186 03 WS-UP-DESCRIPTION DP+ 7E1 19 DISP AN

00187 03 FILLER DP+ 7FA 4 DISP AN

00188 03 WS-UP-PART-COST DP+ 7FE D DISP NE

00189 03 FILLER DP+ 80B 3 DISP AN

00190 03 WS-UP-PART-PRICE DP+ 80E A DISP NE

00191 03 FILLER DP+ 818 5 DISP AN

00192 03 WS-UP-PART-QUANTITY DP+ 81D 4 DISP NE

00193 03 FILLER DP+ 821 4 DISP AN

00194 03 WS-UP-UPDT-MESSAGE DP+ 825 A DISP AN

H-48 MPE XL System Dependencies

Example HP COBOL II/XL Program

PAGE 0012/COBTEXT EXAMPLE SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATE

GORY R O J BZ

STORAGE LAYOUT (#ENTRYS)

FIRST TIME FLAG, etc. DP+ 8 4

Global USE area DP+ 10 C

RUN TIME $. , DP+ 1C 4

SORT/MERGE PLABEL DP+ 20 4

FILE TABLE (5) DP+ 24 3C0

TALLY DP+ 3E8 4

USER STORAGE DP+ 3E8 447

TEMPCELL pool SP -48 C

Constant pool C$ CODE 0 40

Literal pool ~ S$ CODE 0 6C

PAGE 0013/COBTEXT EXAMPLE CROSS REFERENCE LISTING

IDENTIFIERS

ERROR-FILE 00036 00070 00202 00235

ERROR-REC 00071 00267 00268

HDG-1 00105 00365

HDG-2 00114 00368

HDG-3 00130 00371

HDG1-DATE 00106 00206

HDG1-PAGE-NBR 00112 00363

HDG1-REPORT-NAME 00108

NEW-INV-MAST 00032 00050 00201 00233

NEW-INV-MAST-REC 00052 00253 00273 00352

OLD-INV-MAST 00030 00044 00199 00232 00333

OLD-INV-MAST-REC 00046 00263 00338

OM-PART-NBR 00047 00335

PRINT-FILE 00038 00073 00203 00236

PRINT-REC 00074 00205 00346 00355 00356 00360

00365 00368 00371 00385 00387 00389

00391 00393 00395 00397 00399

TALLY 00000

TOT1-HDG-DATE 00151 00207

TOT2-CHANGES 00156 00379

TOT3-ADDITIONS 00161 00380

TOT4-DELETIONS 00166 00381

TOT5-UPDATES 00171 00382

TOT6-ERRORS 00176 00383

TOT7-TRANS-READ 00181 00384

TOTALS-HDG-1 00146 00387

TOTALS-HDG-2 00153 00389

TOTALS-HDG-3 00158 00391

TOTALS-HDG-4 00163 00393

TOTALS-HDG-5 00168 00395

TOTALS-HDG-6 00173 00397

TOTALS-HDG-7 00178 00399

TR-ADD-CODE 00058 00242

TR-CHANGE-CODE 00059 00281

TR-DELETE-CODE 00060 00279

TR-DESCRIPTION 00062 00249 00255 00301 00302

TR-PART-COST 00064 00250 00256 00305

TR-PART-COST-FLD 00063 00304

TR-PART-NBR 00061 00215 00218 00220 00248 00254

00327

TR-PART-PRICE 00066 00251 00257 00308

TR-PART-PRICE-FLD 00065 00307

TR-PART-QUANTITY 00068 00252 00258 00311

TR-PART-QUANTITY-FLD 00067 00310

TR-UPDATE-CODE 00057

TRAN-FILE 00034 00054 00200 00234 00325

TRAN-REC 00056 00267

MPE XL System Dependencies H-49

Example HP COBOL II/XL Program

WS-ACCUMULATORS 00085 00208

WS-ADDITION-MSG 00095 00259

WS-ADDITIONS-CTR 00087 00264 00375 00380

WS-CHANGE-MSG 00094 00319

WS-CHANGES-CTR 00086 00322 00375 00379

WS-DELETE-MSG 00096 00293

WS-DELETES-CTR 00088 00297 00375 00381

WS-ERRORS 00090 00270 00383

WS-LINE-CTR 00080 00342 00349 00357 00361

WS-LINE-LMT 00083 00342

PAGE 0014/COBTEXT EXAMPLE CROSS REFERENCE LISTING

IDENTIFIERS

WS-MASTER-REC 00098 00253 00263 00273 00338

WS-MR-DESCRIPTION 00100 00249 00289 00302 00315

WS-MR-PART-COST 00101 00250 00290 00305 00316

WS-MR-PART-NBR 00099 00214 00218 00220 00222 00248

00288 00314

WS-MR-PART-PRICE 00102 00251 00291 00308 00317

WS-MR-PART-QUANTITY 00103 00252 00292 00311 00318

WS-PAGE-CTR 00081 00362 00363

WS-PRINT-CONTROL 00079

WS-SPACING 00082 00347 00355 00357 00364 00367

00370 00378

WS-TOTAL-CTR 00089 00376 00382

WS-TRANS-READ 00091 00329 00384

WS-UP-DESCRIPTION 00186 00255 00289 00315

WS-UP-PART-COST 00188 00256 00290 00316

WS-UP-PART-NBR 00184 00254 00288 00314

WS-UP-PART-PRICE 00190 00257 00291 00317

WS-UP-PART-QUANTITY 00192 00258 00292 00318

WS-UP-UPDT-MESSAGE 00194 00259 00293 00319

WS-UPDATE-LINE 00183 00208 00346

WS-UPDT-MESSAGES 00093

H-50 MPE XL System Dependencies

Example HP COBOL II/XL Program

PAGE 0015/COBTEXT EXAMPLE CROSS REFERENCE LISTING

PROCEDURES and PROGRAMS

100-MAIN-PROGRAM 00198

210-MASTER-COMPARED-HIGH 00240 00219

220-ADD-TO-MASTER 00247 00243

230-TRAN-IN-ERROR 00266 00245 00284

240-MASTER-COMPARED-LOW 00272 00221

250-MASTER-AND-TRAN-EQUAL 00277 00225

260-DELETE-MASTER 00287 00280

270-CHANGE-MASTER 00299 00282

300-GET-TRANSACTION 00324 00209 00260 00269 00296 00321

310-GET-OLD-MASTER 00332 00210 00275 00295

320-PRINT-UPDATE 00340 00262 00294 00320

330-WRITE-NEW-MASTER 00351 00261 00274

400-WRITE-PRINT-LINE 00354 00348 00366 00369 00372 00388

00390 00392 00394 00396 00398 00400

410-PRINT-HEADING 00359 00343

420-PRINT-TOTALS 00374 00231

EXAMPLE 00003

MPE XL System Dependencies H-51

Example HP COBOL II/XL Program

PAGE 0016/COBTEXT EXAMPLE STATEMENT OFFSETS

Entry = example

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET ...

198 58 259 76C 304 C14 360 11D0

203 58 260 798 305 C38 361 11F4

205 110 261 7AC 307 CC0 362 11FC

207 124 262 7C0 308 CE4 363 120C

208 154 263 7D4 310 D50 364 1274

209 224 264 7F0 311 D74 365 1280

210 238 266 814 314 DBC 366 12A0

214 250 267 814 315 DD0 367 12B4

215 274 268 82C 316 E14 368 12C0

217 2A0 269 848 317 E90 369 12D4

218 2A4 270 85C 318 F04 370 12E8

219 2D4 272 880 319 F6C 371 12F4

220 2E8 273 880 320 F98 372 1308

221 31C 274 898 321 FAC 374 1330

222 330 275 8AC 322 FC0 375 1330

224 360 277 8D4 324 FE4 378 134C

225 360 278 8D4 326 FE4 379 1358

227 374 279 8D8 328 1004 380 13C4

231 37C 280 8E8 329 1020 381 1430

236 390 281 8FC 330 1030 382 149C

237 3FC 282 910 332 1048 383 1508

240 414 283 924 334 1048 384 1574

242 414 284 92C 335 1064 385 15E0

243 424 285 940 338 1078 387 1604

244 438 287 958 340 10A8 388 1624

245 440 288 958 342 10A8 389 1638

247 468 289 96C 343 10C0 390 1680

248 468 290 9B0 346 10D4 391 1694

249 488 291 A2C 347 10F4 392 16DC

250 4E4 292 AA0 348 1100 393 16F0

251 56C 293 B08 349 1114 394 1738

252 5D8 294 B34 351 1138 395 174C

253 620 295 B48 352 1138 396 1794

254 638 296 B5C 354 1168 397 17A8

255 658 297 B70 355 1168 398 17F0

256 6B4 299 B94 356 1194 399 1804

257 6FC 301 B94 357 11A8 400 184C

258 73C 302 BB8 359 11D0

0 ERROR(s), 0 QUESTIONABLE, 0 WARNING(s)

DATA AREA IS 834 BYTES.

CPU TIME = 0:00:03. WALL TIME = 0:00:05.

H-52 MPE XL System Dependencies

Index

A

ACCEPT statement, 9-1, 9-3, 9-9, H-24
free-�eld format, 9-3
FREE phrase, 9-3
INPUT ERROR phrase, 9-3
programming considerations, 9-6
without FREE phrase, 9-5

ACCESS MODE clause, 6-37
ACOS function, 10-7
ACTUAL KEY clause, 6-39
address alignment trap, H-29
ADD statement, 9-10
ADVANCING PAGE phrase, 7-20
algebraic signs
editing, 4-6
operational, 4-6

alignment, H-17, H-22, H-28
alignment of data items, 7-61
ALL literal, 3-6
allocation, H-13
ALL subscript, 4-21, 10-5
ALPHABET clause, 6-14
ALPHABETIC class condition, 8-20
alphabetic data, 7-44
alphabetic data item, 4-4, 7-44
ALPHABETIC-LOWER class condition, 8-20
ALPHABETIC-UPPER class condition, 8-20
alphanumeric data, 7-47
alphanumeric data item, 4-4, 7-44
alphanumeric-edited data, 7-47
alphanumeric-edited data item, 4-4, 7-44
ALTERNATE RECORD KEY clause, 6-40
ALTER statement, 9-13, 9-44, 11-1
American National Standards Institute (ANSI),

H-1
ANNUITY function, 10-8
ANSI74 entry point, H-1
ANSI74 entry point di�erences, C-1
ANSI85 entry point, 10-3, H-1
ANSI85 features, 1-3
ANSI (American National Standards Institute),

H-1
ANSI COBOL'74, ANSI COBOL'85, 1-1
ANSIPARM control option, H-21
ANSISORT control option, B-26
ANSI standard COBOL, 1-1

ANSI standard relation condition, 8-23
ANSISUB control option, B-26, H-20
ANSISUB subprogram, 11-11, 11-27
area A, B, 3-22
arithmetic expression, 8-14, 9-18
valid combinations, 8-17

arithmetic operators, 8-14
arithmetic statement
intermediate results, 9-19

ASCENDING KEY phrase, 12-4, 12-14
ASCII character set, D-1
ASCII coded decimal numbers, 7-65
ASCII collating sequence, 6-6, 6-8, 6-15
ASCII digit trapnillegal, H-29
ASIN function, 10-9
ASSIGN clause, 6-35, H-23
asterisk, in comment line, 3-18
ATAN function, 10-10
AT END condition, 6-34, 9-136
AT END phrase, 9-108, 12-9
in READ statement, 9-99

average, 10-36, 10-38

B

BIGSTACK control option, H-21
binary search, 9-110
BINARY, USAGE IS, 7-61, 7-64, 7-66
BLANK WHEN ZERO clause, 7-36
block, 4-2
BLOCK CONTAINS clause, 7-10
BOUNDS control option, B-26, H-21, H-32
BUILD, COBEDIT command, G-4
BY CONTENT, of CALL statement, 11-22
BY REFERENCE, of CALL statement, 11-22

C

CALLALIGNED16 control option, H-17, H-28
CALLALIGNED control option, H-17, H-28
CALL identi�er, 11-15, 11-19
ON OVERFLOW phrase, 11-20

calling intrinsics, 11-17
calling non-COBOL programs, 11-23, 11-26
calling SPL programs, 11-23
CALLINTRINSIC control option, H-12
CALL statement, 11-2, 11-13, H-28

Index-1

scope, 11-16
USING phrase, 11-21

CANCEL statement, 11-11, 11-27
carriage control, 6-35, 9-145
carriage control codes, 9-146
carriage control tape, 6-11
categories of data items, 4-5, 7-44
categories of statements, 8-11
CCTL (carriage control), 6-35, 9-145
channels, 6-11
character set, 3-20
character string, 3-2
CHAR function, 10-11
CHECKSYNTAX control option, B-26
class
user-de�ned, 6-21

CLASS clause, 6-21
class condition, 6-21, 8-20
ALPHABETIC, 8-20
ALPHABETIC-LOWER, 8-20
ALPHABETIC-UPPER, 8-20
NUMERIC, 8-20
user-de�ned, 8-20
user-de�ned class, 6-21

classes of data items, 4-4, 4-5
clause, 2-9
clauses
ASSIGN, H-23
CODE-SET, H-24
ON SIZE ERROR, H-25

clausesnRESERVE, H-23
CLOSE statement, 9-15
NO REWIND phrase, 9-16
REEL/UNIT phrase, 9-16
REMOVAL phrase, 9-16

CMCALL control option, H-13, H-27
COB74XL command, H-1
COB74XL command �le, H-4
COB74XLG command �le, H-4
COB74XLK command �le, H-4
COB85XL command, H-1
COB85XL command �le, H-4
COB85XLG command �le, H-4
COB85XLK command �le, H-4
COBCAT error message �le, A-1
COBCNTL �le, B-33
COBEDIT commands
BUILD, G-4
COPY, G-7
EDIT, G-8
EXIT, G-12
HELP, G-14
KEEP, G-15
LIBRARY, G-19
LIST, G-21

PURGE, G-24
SHOW, G-26

COBEDIT program, G-1
COBOL'74 COBOL, H-1
COBOL'74, COBOL'85, 1-1
COBOL'85 COBOL, H-1
COBOL character set, 3-20
COBOL function
calling, 10-3, 10-6
$CONTROL POST85, 10-3
description, 10-1

COBOL glossary, E-1
COBOL II compiler
ANSI74 entry point, 1-3
ANSI85 entry point, 1-3
compatibility considerations, 1-7

COBOL II/XL language dependencies
interprogram communication, H-27
PROCEDURE DIVISION, H-24

COBOL II/XL language dependenciesnDATA
DIVISION, H-24

COBOL II/XL
language dependenciesnENVIRONMENT
DIVISION, H-23

COBOL II/XL
language dependenciesnIDENTIFICATION
DIVISION, H-23

COBOL library, 14-2
COBOLLOCK procedure, H-25
COBOL program example, H-39
COBOLTRAP procedure, H-33
COBOLUNLOCK procedure, H-25
COBRUNTIME, H-29, H-32
COBRUNTIME , H-31
COBRUNTIME variable, H-25
CODE control option, B-26, H-21
CODE-SET clause, 6-15, 7-12, H-24
coding rules, 3-22
collating sequence, 6-14, 6-16
COLLATING SEQUENCE clause, 6-6
COLLATING SEQUENCE phrase, 12-4, 12-14
columns 73-80, 3-24
combined condition, 8-30
command �les, H-4
commands
SETVAR, H-32

commandsnLINK, H-10
$COMMENT command, B-4
comment entry, 3-18
comment line, 3-18
common data
parameter passing, 11-3

common data and �les, 11-2
through EXTERNAL objects, 11-4

COMP-3, USAGE IS, 7-61, 7-64, 7-66

Index-2

comparison of nonnumeric operands, 8-25
comparison of numeric operands, 8-25
comparisons using index data items, 8-25
compiler directing statements, 8-9
compile time, 13-2
compile-time error messages, A-2
compile-time processes, B-1
compiling your program, H-3
command �les, H-4
RUN command, H-7

complex condition, 8-30
composite of operands, 8-45
COMP, USAGE IS, 7-61, 7-64, 7-66
COMPUTATIONAL-3, USAGE IS, 7-61, 7-64,

7-66
COMPUTATIONAL, USAGE IS, 7-61, 7-64,

7-66
computer name, 3-11
COMPUTE statement, 9-18
concatenation of strings, 9-121
conditional compilation, B-13
conditional expression
EVALUATE statement, 8-18
IF statement, 8-18
PERFORM statement, 8-18
SEARCH statement, 8-18

conditional sentence, 8-9
conditional statement, 8-9
conditional variable, 7-73
CONDITION-CODE function, 6-11
condition code function, 6-13
condition evaluation rules, 8-33
condition name, 4-12, 4-13, 6-12, 7-73
restrictions, 4-18

condition name condition, 6-6, 8-27
conditions
abbreviated combined relation, 8-38

CONFIGURATION SECTION, 6-1, 6-2
OBJECT-COMPUTER paragraph, 6-2
SOURCE-COMPUTER paragraph, 6-2
SPECIAL-NAMES paragraph, 6-2

CONSOLE, 6-13, 9-2, 9-25
CONSOLE function, 6-11
constant. See �gurative constant, literal, and

symbolic characters clause
CONTENT, passing parameters by, 11-22
& continuation character, B-3
continuation line, 3-23
CONTINUE statement, 9-21
continuing preprocessor lines, B-3
$CONTROL command, B-25
$CONTROL NLS option, H-13
control options, H-12
added functionality, H-20
BOUNDS, H-21, H-32

CALLALIGNED, H-17
CALLALIGNED16, H-17
CALLINTRINSIC, H-12
CMCALL, H-13, H-27
CODE, H-21
INDEX16, H-13
INDEX32, H-13
LINKALIGNED, H-17, H-21, H-22
LINKALIGNED16, H-17, H-21, H-22
MPE XL speci�c, H-12
obsolete, H-21
OPTFEATURES, H-17, H-21, H-22
USLINIT, H-21
VALIDATE, H-25, H-32

CONTROL options, B-25
ANSISORT, B-26
ANSISUB, B-26
BOUNDS, B-26
CHECKSYNTAX, B-26
CODE, B-26
CROSSREF, B-27
DEBUG, B-27
DIFF74, B-27
DYNAMIC, B-27
ERRORS, B-27
LINES, B-27
LIST, B-28
LOCKING, B-28
LOCOFF, B-28
LOCON, B-28
MAP, B-28
MIXED, B-29
NLS, H-13
NOCODE, B-26
NOCROSSREF, B-27
NOLIST, B-28
NOMAP, B-29
NOMIXED, B-29
NOSOURCE, B-29
NOSTDWARN, B-31
NOVERBS, B-32
NOWARN, B-33
QUOTE, B-29
SOURCE, B-29
STAT74, B-29
STDWARN, B-30
SUBPROGRAM, B-31
SYMDEBUG, B-31
SYNC16, 7-61, B-32
SYNC32, 7-61, B-32
USLINIT, B-32
VERBS, B-32
WARN, B-33

control optionsnANSIPARM, H-21
control optionsnANSISUB, H-20

Index-3

control optionsnBIGSTACK, H-21
control optionsnCALLALIGNED, H-28
control optionsnCALLALIGNED16, H-28
control optionsnLINKALIGNED, H-28
control optionsnLINKALIGNED16, H-28
control optionsnOPTFEATURES, H-28
control optionsnSORTSPACE, H-21
control options with added functionality
ANSISUB, H-20
BOUNDS, H-21, H-32
CODE, H-21
USLINIT, H-21

$CONTROL POST85, 10-3
COPY, COBEDIT command, G-7
COPYLIB, 14-2
COPY libraries, G-2
COPY statement, 14-2
CORRESPONDING phrase, 8-43
COS function, 10-12
CROSSREF control option, B-27
CURRENCY SIGN IS clause, 6-22
CURRENT-DATE function, 10-13
CURRENT-DATE special register word, 3-4

D

data alignment, 4-7, H-17, H-22, H-28
data categories
alphabetic, 7-44
alphanumeric, 7-47
alphanumeric-edited, 7-47
numeric, 7-45
numeric-edited, 7-48

data description entry, 7-31
DATA DIVISION, 2-4, 7-1, H-24
data item, 4-1
alphabetic, 4-4, 7-44
alphanumeric, 4-4, 7-44
alphanumeric-edited, 4-4, 7-44
categories, 4-5, 7-44
classes, 4-4, 4-5
numeric, 4-4, 7-44
numeric-edited, 4-4, 7-44

data name, 4-2, 4-12, 4-13
DATA NAME clause, 7-35
DATA RECORDS clause, 7-13
data types
optimal, H-24

DATE, 9-2, 9-9
DATE-OF-INTEGER function, 10-18
DAY, 9-3, 9-9
DAY-OF-INTEGER function, 10-20
DAY-OF-WEEK, 9-3, 9-9
DEBUG, H-2
DEBUG-CONTENTS, 13-5
DEBUG control option, B-27

debugging, 9-135
debugging line, 3-24, 13-2, 13-6
debugging mode switch, 6-4
DEBUG-ITEM special register word, 3-4, 13-2
DEBUG-LINE, 13-5
Debug Module, 13-1
DEBUG-NAME, 13-5
decimal digit trapnillegal, H-29
DECIMAL POINT IS COMMA clause, 6-23
declarative section, 8-5, 9-136
declarative sentence, 8-5
de-editing, 9-63
$DEFINE command, B-5
DELETE statement, 9-22
INVALID KEY phrase, 9-23

delimited scope statement, 8-10
DESCENDING KEY phrase, 12-4, 12-14
device-name, 6-8, 6-10, 6-11
device-name clause, 6-10
DIFF74 control option, B-27
di�erence between ANSI COBOL'74 and ANSI

COBOL'85, C-1
direct subscripted data items, 4-17
disastrous error messages, A-35
DISPLAY statement, 9-25, H-24
DISPLAY, USAGE IS, 7-61, 7-64
DIVIDE statement, 9-28
DIVISION
DATA, 2-4
ENVIRONMENT, 2-4
IDENTIFICATION, 2-4
PROCEDURE, 2-4

division format, 2-4
division header, 2-4
DUPLICATE KEYS, 6-40
DUPLICATES phrase, 6-40, 6-47
dynamic access, 6-27, 6-29
DYNAMIC control option, B-27
dynamic �le assignment, 6-35
dynamic subprogram, 11-11, 11-27

E

EBCDIC, 6-8, 6-15, 7-12
EBCDIC character set, D-1
EBCDIK, 6-8, 6-15, 7-12
EDIT, COBEDIT command, G-8
$EDIT command, B-19
editing
�xed insertion, 7-53
oating insertion, 7-53
simple insertion, 7-51
special insertion, 7-52
zero suppression, 7-55

editing rules, 7-51
editing signs, 4-6

Index-4

elementary data item, 4-2
size of, 7-50

enabling traps, H-33
END-OF-PAGE clause, 7-17
END-OF-PAGE condition, 7-20
END PROGRAM header, 11-12
ENTER statement, 9-32
entry, 2-9
ENTRY statement, 11-28
ENVIRONMENT DIVISION, 2-4, 6-1, H-23
general format, 6-1

error handling, H-25, H-29
error messages, A-1
compile-time, A-2
disastrous, A-35
�le containing, A-1
informational, A-49
nonstandard warning messages, A-39
questionable, A-9
run-time, A-3, A-41
serious, A-31
warning messages, A-4

ERRORS control option, B-27
EVALUATE statement, 9-33
EXAMINE statement, 9-38
example HP COBOL II/XL program, H-39
EXCLUSIVE statement, 9-40, H-25
EXDATE, of VALUE OF clause, 7-30
executing your program, H-3
command �les, H-4
RUN command, H-10

execution-time loading, 11-19
EXIT, COBEDIT command, G-12
EXIT PROGRAM statement, 11-2, 11-31, 11-32
EXIT statement, 9-42
explicit scope terminator, 8-10
exponentiation, 8-17
extensions, 1-6
extensions to special register words, 3-4
EXTERNAL clause, 7-14, 7-37, 7-42, 11-4, 11-6
EXTERNAL �le, 6-51, 6-52, 6-53, 7-16, 7-17,

7-29
external names, H-13, H-23, H-27
EXTERNAL objects
common data and �les, 11-4

EXTERNAL record, 7-16
external software switch, 9-116

F

FACTORIAL function, 10-22
FD level indicator, 7-7, 7-9
feature-name, 6-8, 6-10, 6-11
feature-name clause, 6-10
�gurative constant, 3-6
HIGH-VALUE, 3-6, 6-17

HIGH-VALUES, 3-6
LOW-VALUE, 3-6, 6-17
LOW-VALUES, 3-6
QUOTE, 3-6
QUOTES, 3-6
SPACE, 3-6
SPACES, 3-6
ZERO, 3-6
ZEROES, 3-6
ZEROS, 3-6

FILE-CONTROL paragraph, 6-24, 6-25, 6-31
�le description entry, 7-7
�le merging functions, B-15
�les, 4-1
FILE SECTION, 7-3
�le status, 6-30
FILE STATUS clause, 6-41
�le status codes, 6-41
FILE STATUS data item, 8-47, 9-16, 9-22, 9-74,

9-98, 9-105, 9-118, 9-140
FILLER clause, 7-35
FIPS, 1-3
FIPS COBOL subsets, B-30
�xed �le attribute, 6-42
�xed insertion editing, 7-53
oating insertion editing, 7-53
oating point values, 10-5
FOOTING phrase, 7-19
FROM phrase, RELEASE statement, 12-7
function-identi�ers, 4-19
function-name, 3-12
function parameters, 10-5
function types, 10-4

G

GIVING phrase
CALL statement, 11-26
MERGE statement, 12-5
SORT statement, 12-15

GLOBAL clause, 7-15, 7-38, 7-42, 11-4, 11-9
GLOBAL phrase, in USE statement, 9-136
GOBACK statement, 11-2, 11-32
GO TO
invalid, H-29

GO TO statement, 9-44
GO TO statements
illegal, H-25

Greenwich mean time (GMT), 10-13, 10-61
Gregorian calendar, 10-18, 10-20, 10-24, 10-26
group item, 4-2

Index-5

H

handling run-time errors, H-29
hardware clock, 3-4, 10-16
HELP, COBEDIT command, G-14
hierarchy of arithmetic operations, 8-15
HIGH-VALUE �gurative constant, 3-6, 6-17
HIGH-VALUES �gurative constant, 3-6
HP COBOL II/XL. See COBOL
HP COBOL II/XL language dependencies, H-23
HP extensions, 1-6
HP Link Editor/XL, H-10
HPSQL, H-2
HP System Dictionary/XL, H-2
HPTOOLSET/XL, H-2

I

identi�cation code, 3-24
IDENTIFICATION DIVISION, 2-4, 5-1, H-23
syntax rules, 5-1

identi�ers, 4-9
restrictions of, 4-9

$IF command, B-13
IF statement, 9-46
NEXT SENTENCE, 9-46

illegal ASCII digit trap, H-29
illegal decimal digit trap, H-29
illegal GO TO statements, H-25
illegal PERFORM statements, H-21
imperative sentence, 8-10
imperative statement, 8-10
::, in CALL statement, 11-13
@, in CALL statement, 11-13
$INCLUDE command, B-15
/, in comment line, 3-18
incompatibilities between ANSI COBOL'74 and

ANSI COBOL'85, C-3
INC parameter, of $EDIT command, B-20
index, 4-16
direct, 4-18
relative, 4-18

INDEX16 control options, H-13
INDEX32 control options, H-13
index data item, 4-9, 7-68
indexed data name, 4-18
indexed �le, 6-28
indexing
relative, 8-47

indexing table items, 4-18
index name, 7-6, 9-116, 11-22, 11-23
index names, H-24
INDEX, USAGE IS, 7-64, 7-68
informational messages, A-49
INITIALIZE statement, 9-49
initializing data �elds, 9-50

REPLACING phrase, 9-49
initial state, of a program, 8-7, 11-1, 11-27
!, in $PREPROCESSOR command, B-12
#, in $PREPROCESSOR command, B-12
%, in $PREPROCESSOR command, B-12
input of negative values, 9-7
input-output error handling, 8-47, 9-135
INPUT-OUTPUT SECTION, 6-1, 6-24
FILE-CONTROL paragraph, 6-24
I-O-CONTROL paragraph, 6-24

input procedure, 12-7
INPUT PROCEDURE phrase, 12-14
INSPECT CONVERTING, 9-53
INSPECT statement, 9-52
AFTER phrase, 9-58
ALL phrase, 9-59
BEFORE phrase, 9-58
CHARACTERS phrase, 9-59
comparison operation, 9-55
CONVERTING phrase, 9-54
FIRST phrase, 9-59
LEADING phrase, 9-59

integer
LINAGE-COUNTER, H-24

INTEGER function, 10-23
INTEGER-OF-DATE function, 10-24
INTEGER-OF-DAY function, 10-26
INTEGER-PART function, 10-28
intermediate results, 9-19
interprogram communication, 11-1, H-27
INTO phrase, of RETURN statement, 12-9
intrinsic calls, H-12
intrinsic function module, 1-1
intrinsic relation conditions, 8-28
intrinsics, H-28
intrinsics, calling, 11-17
invalid GO TO, H-29
INVALID KEY condition, 9-100, 9-104
I-O-CONTROL paragraph, 6-24

J

Julian date, 10-20, 10-26
JUSTIFIED clause, 7-39

K

KEEP, COBEDIT command, G-15
keywords, 3-3

L

labeled tapes, 7-29
label-info �elds, VALUE OF clause
EXDATE, 7-29
LABELS, 7-29
SEQ, 7-29

Index-6

VOL, 7-29
label records, 9-70
LABEL RECORDS clause, 7-16
LABELS, of VALUE OF clause, 7-30
language dependenciesnHP COBOL II/XL,

H-23
language name, 3-11
LENGTH function, 10-29
.LEN. pseudo-intrinsic, 10-29, 11-20
level number, 4-2
66, 7-32, 7-71
77, 7-31
88, 7-32, 7-73

library, 14-2
LIBRARY, COBEDIT command, G-19
library name quali�ers, 4-10
LINAGE clause, 7-17, 9-143
LINAGE-COUNTER integer, H-24
LINAGE-COUNTER special register word, 3-4,

7-21
line printer functions, 6-13
LINES AT BOTTOM phrase, 7-19
LINES AT TOP phrase, 7-19
LINES control option, B-27
LINKAGE SECTION, 7-6
LINKALIGNED16 control option, H-17, H-21,

H-22, H-28
LINKALIGNED control option, H-17, H-21,

H-22, H-28
LINK command, H-10
linking your program, H-3
command �les, H-4
HP Link Editor/XL, H-10

LIST, COBEDIT command, G-21
LIST control option, B-28
literal, 3-12
nonnumeric, 3-15
numeric, 3-13
octal, 3-13

local time, 10-13, 10-61
LOCKING control option, B-28
locking facilityndynamic, 9-40
LOCOFF control option, B-28
LOCON control option, B-28
.LOC. pseudo-intrinsic, 11-20, H-28
.LOC. pseudointrinsic, H-28
LOG10 function, 10-32
LOG function, 10-31
logical page, 9-143
logical record, 4-1
LOWER-CASE function, 10-33
LOW-VALUE �gurative constant, 3-6, 6-17
LOW-VALUES �gurative constant, 3-6

M

macro
calls, B-8
de�nition and use, B-5
formal parameters, B-7

MAP control option, B-28
MAX function, 10-34
MEAN function, 10-36
MEDIAN function, 10-37
MEMORY-SIZE clause, 6-5
MERGE statement, 6-6, 12-2
merging �les, B-17
MIDRANGE function, 10-38
MIN function, 10-39
MIXED control option, B-29
MOD function, 10-41
modulo, 10-41
MOVE
elementary, 9-62
permissible, 9-64

MOVE statement, 9-61
MPE �le, H-5
MPE intrinsic relation condition, 6-10
MPE XL Link Editor, H-3
MPE XL speci�c commandnSETVAR, H-32
MPE XL speci�c control options, H-12
CALLALIGNED, H-28
CALLALIGNED16, H-28
CALLINTRINSIC, H-12
CMCALL, H-13, H-27
INDEX16, H-13
INDEX32, H-13
LINKALIGNED, H-21, H-28
LINKALIGNED16, H-21, H-28
NOVALIDATE, H-20
OPTFEATURES, H-17, H-21, H-22
OPTIMIZE, H-18
RLFILE, H-19
RLINIT, H-19
VALIDATE, H-20, H-25, H-32

MULTIPLE FILE clause, 6-53
MULTIPLY statement, 9-67

N

names
condition, 4-12, 4-13
data, 4-12, 4-13

native language support. See $CONTROL NLS
option

natural log, 10-31
NEGATIVE sign condition, 8-19
nested PERFORM statements, 9-83
nested programs, 11-28
NEXT SENTENCE, 9-46, 9-47

Index-7

NLS option, H-13
NOCODE control option, B-26
NOCROSSREF control option, B-27
NOLIST control option, B-28
NOLIST, of COPY statement, 14-2
NOMAP control option, B-29
NOMIXED control option, B-29
non-COBOL programs, calling, 11-23, 11-26
noncontiguous data items, 7-31
non-dynamic subprogram, 11-11, 11-27
nonnumeric literal, 3-15
nonstandard warning messages, A-39
no-operation statement, 9-21
NOSEQ parameter, of $EDIT command, B-20
no size error trap, H-29
NOSOURCE control option, B-29
NO SPACE CONTROL function, 6-11
NOSTDWARN control option, B-31
NOT phrases, 8-40
NOVALIDATE control option, H-20
NOVERBS control option, B-32
NOWARN control option, B-33
NUMERIC class condition, 8-20
numeric data, 7-45
numeric data item, 4-4, 7-44
numeric-edited data, 7-48
numeric-edited data item, 7-44
numeric literal, 3-13
NUMVAL-C function, 10-43
NUMVAL function, 10-42

O

OBJECT-COMPUTER paragraph, 6-5
COLLATING SEQUENCE clause, 6-6
MEMORY-SIZE clause, 6-5
SEGMENT-LIMIT clause, 6-6

object program, 11-1
object time, 13-2
object-time debug module switch, H-11
object time switch, 13-1
obsolete control options, H-21
obsolete control optionsnANSIPARM, H-21
obsolete control optionsnBIGSTACK, H-21
obsolete control optionsnSORTSPACE, H-21
OCCURS clause, 7-40
DEPENDING ON phrase, 7-42
INDEXED BY phrase, 7-40
KEY IS phrase, 7-40

octal literal, 3-13
ON EXCEPTION phrase, 11-19
ON OVERFLOW phrase, 11-19
ON OVERFLOW phrase, of CALL statement,

11-20
ON SIZE ERROR clause, H-25
OPEN statement, 9-69

EXTEND phrase, 9-72
NO REWIND phrase, 9-72
REVERSE phrase, 9-72

operational sign, 4-6
operator's console, 9-2, 9-120
OPTFEATURES control option, H-17, H-21,

H-22, H-28
optimal data types, H-24
OPTIMIZE control option, H-18
OPTIONAL �le, 6-34
OPTIONAL phrase, 6-34
optional word, 3-3
options
control, H-12
run-time error handling, H-30

ORD function, 10-45
ORD-MAX function, 10-46
ORD-MIN function, 10-47
ORGANIZATION clause, 6-46
OUTPUT PROCEDURE phrase, 12-5, 12-15
overow on exponentiate trap, H-29
overlapping operands, 8-46
overpunch characters, 7-65

P

PACKED-DECIMAL, USAGE IS, 7-61, 7-64,
7-66

sign con�guration, 7-66
$PAGE command, B-22
PAGE OVERFLOW condition, 7-20
paragraph, 8-6
format, 2-7
header name, 2-7
names, 4-13
PROGRAM-ID, 5-2

paragraph stack overow trap, H-29
parameter
passed by CONTENT, 11-22
passed by reference, 11-15, 11-22, 11-23
passed by value, 11-15, 11-23

parameter alignment, H-17, H-22, H-28
parameter passing
common data, 11-3

parentheses, use of, 8-16
PARM values, H-8
PERFORM statement, 9-75
incompatibility between COBOL'74 and

COBOL'85, 9-94
in-line, 9-82
nested, 9-83
out-of-line, 9-81
range, 9-83
VARYING phrase, 9-78

PERFORM statements
illegal, H-21

Index-8

permissible I-O statements, 9-72
phrase, 2-9
phrasesnUSING, H-28
physical record, 4-2
PICTURE character strings, 3-17
PICTURE clause, 7-34, 7-44
precedence rules, 7-55

POSITIVE sign condition, 8-19
precision of numeric functions, 10-5
$PREPROCESSOR command, B-12
preprocessor programming language, B-2
PRESSENT-VALUE function, 10-48
print �les, 9-145
procedure, 8-6
PROCEDURE DIVISION, 2-4, 8-1, H-24
general format, 8-3
header, 8-2
sentences, 2-9
statements, 9-1

proceduresnCOBOLTRAP, H-33
processing environment, 6-1
program elements, 3-1
program example, H-39
program structure, 2-1
program text, 3-22
pseudo-intrinsics
.LEN., 11-20
.LOC., 11-20, H-28

pseudo-text, 14-2, 14-3, 14-6
PURGE, COBEDIT command, G-24

Q

quali�cation, 4-10
quali�ers
library name, 4-10
section name, 4-10

questionable error messages, A-9
QUOTE control option, B-29
QUOTE �gurative constant, 3-6
QUOTES �gurative constant, 3-6

R

random access, 6-27, 6-28
random access �les, 6-25
RANDOM function, 10-49
range error trap, H-29
RANGE function, 10-51
READ statement, 9-97
AT END condition, 9-99
INVALID KEY phrase, 9-101

record, 4-1
logical vs. physical, 4-2

RECORD CONTAINS clause, 7-22
record description, 4-1
record description entry, 4-2, 7-32

RECORDING MODE clause, 7-27
RECORD KEY clause, 6-47
RECORD VARYING clause, 7-22, 7-25
REDEFINES clause, 7-34, 7-57, 8-2
reference format, 3-22
reference modi�cation, 4-9, 4-20
reference-modi�er, E-10
reference modi�er, 4-20
reference, passing parameters by, 11-15, 11-22,

11-23
reference to common data and �les, 11-2
referencing table items
indexing, 4-18
subscripting, 4-15

register words, special, 3-4
extensions to, 3-4

relation condition, 6-6, 11-17
ANSI standard, 8-23
intrinsic, 8-28

relative �le, 6-26
RELEASE statement, 12-7
remainder, 10-52
REM function, 10-52
renumbering sequence �elds, B-19
REPLACING phrase, 9-39, 14-3, 14-4
RESERVE clause, 6-48, H-23
reserved word, 3-2
reserved word list, F-1
RETURN-CODE special register, 3-5, 11-24,

11-25
RETURN statement, 12-8
REVERSE function, 10-53
REWRITE statement, 9-103
FROM phrase, 9-105
INVALID KEY condition, 9-104

right-justify, 7-39
RL �le, B-1
RLFILE control option, H-19
RLINIT control option, H-19
ROUNDED phrase, 8-41
RUN command
compiling your program, H-7
executing your program, H-10

run-time error handling, H-29
run-time error messages, A-3, A-41
run-time library, H-2
run-time trap handling, H-29
run unit, 11-1

S

SAME AREA clause, 6-51
scope of CALL statements, 11-16
scope terminators, 8-13
explicit, 8-13

Index-9

implicit, 8-13
SD level indicator, 7-7, 7-9
SEARCH statement, 9-106
VARYING phrase, 9-108

secondary entry point, 11-28
section, 2-5, 8-6, 8-7
section header, 2-5, 8-7
section name quali�ers, 4-10
SEEK statement, 9-113
segmentation, 8-7, 9-13, H-24
segmentation considerations, 12-6, 12-18
SEGMENT-LIMIT clause, 6-6
SELECT clause, 6-34
SELECT statement, H-23
sentence, 2-9
separator, 3-19
SEQNUM parameter, of $EDIT command, B-19
SEQ, of VALUE OF clause, 7-30
sequence �eld checking, B-18
sequence number, 3-22
sequential access, 6-27, 6-28
sequential �le, 6-25
serious error messages, A-31
$SET command, B-13
SET statement, 9-114
setting software switches, 6-12, 8-22
SETVAR command, H-31, H-32
SHOW, COBEDIT command, G-26
SIGN clause, 7-59
sign condition
NEGATIVE, 8-19
POSITIVE, 8-19
ZERO, 8-19

SIGN IS SEPARATE, 7-59
simple conditions, 8-18
negated, 8-32

simple insertion editing, 7-51
SIN function, 10-54
SIZE ERROR phrase, 8-41
slack bytes, 7-61
slash, in comment line, 3-18
software clock, 3-4, 9-9
software switches, 6-12, H-10
SORT-MERGE �les, 6-29
sort-merge operations, 12-1
SORTSPACE control option, H-21
SORT statement, 6-6, 12-10
SD level indicator, 7-9
sort �le description, 7-9
sort �le size, 12-16

SOURCE-COMPUTER paragraph, 6-4, 13-2
WITH DEBUGGING MODE clause, 6-4

SOURCE control option, B-29
source program, 11-1
coding rules, 3-22

source text manipulation module, 14-1
SPACE �gurative constant, 3-6
SPACES �gurative constant, 3-6
special character word, 3-8
special insertion editing, 7-52
SPECIAL-NAMES paragraph, 6-6, 6-7
special register words, 3-3, 3-4
extensions to, 3-4

SPL programs, calling, 11-23
SQRT function, 10-55
square root, 10-55
STANDARD-DEVIATION function, 10-56
START statement, 9-117
STAT74 control option, B-29
statement, 2-9
statements
ACCEPT, H-24
DISPLAY, H-24
EXCLUSIVE, H-25
GO TO, H-25
UN-EXCLUSIVE, H-25

statementsnCALL, H-28
statementsnSELECT, H-23
STDWARN control option, B-30
STOP RUN statement, 11-2, 11-32
STOP statement, 9-120
STRING statement, 9-121
structural hierarchy, 2-1
subprogram
ANSISUB, 11-11, 11-27
dynamic, 11-11, 11-27
non-dynamic, 11-11, 11-27
types, 11-11

SUBPROGRAM control option, B-31
subprogram types, H-27
subscripted data name, 4-15
subscripting
relative, 8-47

subscripting table items, 4-15
subscripts, H-24
subset, 4-21
substring, 14-2, 14-5, 14-9. See also unstring

and reference modi�cation
subsystems that interface with COBOL, H-2
SUBTRACT statement, 9-121
SUM function, 10-57
switch-name, 6-8, 6-10, 6-11
switch-name clause, 6-10
switch-status condition, 8-22
SYMBOLIC CHARACTERS clause, 6-19
SYMDEBUG control option, B-31
SYMDEBUG=XDB option, H-19
SYNC16 control option, 7-61, B-32, H-22
SYNC32 control option, 7-61, B-32, H-22
synchronization, H-24

Index-10

SYNCHRONIZED clause, 7-61
SYSIN, 6-13, 9-2
SYSIN function, 6-11
SYSOUT, 6-13, 9-25
SYSOUT function, 6-11
system name, 3-11

T

tables, 4-14, 7-40
referencing, 4-15, 4-18

TALLYING phrase, 9-39
TALLY special register word, 3-4
TAN function, 10-58
text name, 4-13
TIME, 9-3, 9-9
TIME-OF-DAY special register word, 3-5, 9-25
time zones, 10-14
$TITLE command, B-23
TOP function, 6-11
trap handling, H-29
traps, H-25, H-29
trapsnenabling, H-33
truncation, 4-7
TSAM �le, H-5
TurboIMAGE/XL, H-2
types of subprograms, 11-11
TZ environment variable, 10-14, 10-62

U

UN-EXCLUSIVE statement, 9-128, H-25
uniqueness of reference, 4-10
Universal Coordinated Time (UTC), 10-13,

10-61
UNSTRING statement, 9-131
indexing of identi�ers, 9-132
overow conditions, 9-132
subscripting of identi�ers, 9-132

UPPER-CASE function, 10-59
USAGE clause, 7-64
BINARY, 7-61, 7-64, 7-66
COMP, 7-61, 7-64, 7-66
COMP-3, 7-61, 7-64, 7-66
COMPUTATIONAL, 7-61, 7-64, 7-66
COMPUTATIONAL-3, 7-61, 7-64, 7-66
DISPLAY, 7-61, 7-64
INDEX, 7-64, 7-68
PACKED-DECIMAL, 7-61, 7-64, 7-66

USE FOR DEBUGGING statement, 13-1, 13-3
USE procedure, 8-5, 9-99, 9-101

user-de�ned �gurative constant, 6-19
user-de�ned word, 3-8
user label processing, 9-135
user labels on a �le, 9-137
USE statement, 8-5, 9-135
USING phrase, H-28
USING phrase, of CALL statement, 11-21
USING phrase, of PROCEDURE DIVISION,

7-6
USING PROCEDURE phrase, 12-14
USLINIT control option, B-32, H-21

V

VALIDATE control option, H-20, H-25, H-32
VALUE clause, 7-6, 7-34, 7-69
restrictions, 7-70

VALUE OF clause, 7-29
value, passing parameters by, 11-15, 11-23
variable
COBRUNTIME, H-25

variable length logical records, 7-27
variable-length receiving items, 8-46
variable length table, 7-40
VARIANCE function, 10-60
VERBS control option, B-32
VOID parameter, of $EDIT command, B-19

W

WARN control option, B-33
warning messages, A-4
WHEN-COMPILED function, 10-61
WHEN-COMPILED special register word, 3-4
WITH DEBUGGING MODE clause, 13-2
WITH LOCK phrase, 9-16
word boundary, 7-61
words, 3-2
reserved, 3-2

word size, H-24
WORKING-STORAGE SECTION, 7-5
WRITE statement, 9-139
ADVANCING phrase, 9-141

Z

ZEROES �gurative constant, 3-6
ZERO �gurative constant, 3-6
ZEROS �gurative constant, 3-6
ZERO sign condition, 8-19

zero suppression editing, 7-55

Index-11

	Top of Document
	Preface
	Contents
	Introduction
	ANSI Standard Compliance
	ANSI COBOL'85 Features in HP COBOL II
	Compatibility Considerations

	Program Structure
	Structural Hierarchy
	Divisions
	Sections
	Paragraphs
	Sentences, Statements, and Clauses

	Program Elements
	Character Strings
	Separators
	Character Set
	Coding Rules

	Describing and Referencing Data
	Files
	Records
	Data Items - Classes and Categories
	Data Alignment
	Identifiers
	Uniqueness of Reference
	Tables
	Function-Identifiers
	Reference Modification

	IDENTIFICATION DIVISION
	IDENTIFICATION DIVISION Format
	IDENTIFICATION DIVISION Syntax Rules
	Paragraphs

	ENVIRONMENT DIVISION
	ENVIRONMENT DIVISION Format
	ENVIRONMENT DIVISION Syntax Rules
	CONFIGURATION SECTION
	SOURCE-COMPUTER Paragraph
	OBJECT-COMPUTER Paragraph
	SPECIAL-NAMES Paragraph
	INPUT-OUTPUT SECTION
	FILE-CONTROL Paragraph
	File Control Clauses
	I-O-CONTROL Paragraph

	DATA DIVISION
	DATA DIVISION Format
	DATA DIVISION Syntax Rules
	FILE SECTION
	WORKING-STORAGE SECTION
	LINKAGE SECTION
	DATA DIVISION Clauses
	File Description Clauses
	Data Description Entries

	PROCEDURE DIVISION
	PROCEDURE DIVISION Header
	PROCEDURE DIVISION Format
	PROCEDURE DIVISION Syntax Rules
	PROCEDURE DIVISION Statements and Sentences
	Arithmetic Expressions
	Conditional Expressions
	Simple Conditions
	Complex Conditions
	Condition Evaluation Rules
	Abbreviated Combined Relation Conditions
	Common Phrases
	Common Features of Arithmetic Statements
	Input-Output Error Handling Procedures

	PROCEDURE DIVISION Statements
	ADD Statement
	ALTER Statement
	CALL Statement
	CANCEL Statement
	CLOSE Statement
	COMPUTE Statement
	CONTINUE Statement
	DELETE Statement
	DISPLAY Statement
	DIVIDE Statement
	ENTER Statement
	ENTRY Statement
	EVALUATE Statement
	EXAMINE Statement
	EXCLUSIVE Statement
	EXIT Statement
	EXIT PROGRAM Statement
	GOBACK Statement
	GO TO Statement
	IF Statement
	INITIALIZE Statement
	INSPECT Statement
	MOVE Statement
	MULTIPLY Statement
	OPEN Statement
	PERFORM Statement
	READ Statement
	RELEASE Statement
	RETURN Statement
	REWRITE Statement
	SEARCH Statement
	SEEK Statement
	SET Statement
	START Statement
	STOP Statement
	STRING Statement
	SUBTRACT Statement
	UN-EXCLUSIVE Statement
	UNSTRING Statement
	USE Statement
	WRITE Statement

	COBOL Functions
	The $CONTROL POST85 Option
	ANSI85 Entry Point
	Function Types
	Function Parameters
	Calling COBOL Functions
	ACOS Function
	ANNUITY Function
	ASIN Function
	ATAN Function
	CHAR Function
	COS Function
	CURRENT-DATE Function
	DATE-OF-INTEGER Function
	DAY-OF-INTEGER Function
	FACTORIAL Function
	INTEGER Function
	INTEGER-OF-DATE Function
	INTEGER-OF-DAY Function
	INTEGER-PART Function
	LENGTH Function
	LOG Function
	LOG10 Function
	LOWER-CASE Function
	MAX Function
	MEAN Function
	MEDIAN Function
	MIDRANGE Function
	MIN Function
	MOD Function
	NUMVAL Function
	NUMVAL-C Function
	ORD Function
	ORD-MAX Function
	ORD-MIN Function
	PRESENT-VALUE Function
	RANDOM Function
	RANGE Function
	REM Function
	REVERSE Function
	SIN Function
	SQRT Function
	STANDARD-DEVIATION Function
	SUM Function
	TAN Function
	UPPER-CASE Function
	VARIANCE Function
	WHEN-COMPILED Function

	Interprogram Communication
	Transfer of Control
	Reference to Common Data and Files
	Reference to Common Data through Parameter Passing
	Reference to Common Data and Files through External Objects
	Types of Subprograms
	END PROGRAM Header
	CALL Statement
	CANCEL Statement
	ENTRY Statement
	EXIT PROGRAM Statement
	GOBACK Statement

	SORT/MERGE Operations
	MERGE Statement
	RELEASE Statement
	RETURN Statement
	SORT Statement

	Debug Module
	WITH DEBUGGING MODE Clause
	USE FOR DEBUGGING statement
	Debugging Lines
	Source Text Manipulation
	COPY Statement
	REPLACE Statement

	HP COBOL II Error Messages
	Reading Error Messages from COBCAT
	Compile-Time Error Messages
	Run-Time Error Messages
	Warnings
	Questionable Errors
	Serious Errors
	Disastrous Errors
	Nonstandard Warnings
	Run-Time Errors
	Informational Messages

	Preprocessor Commands and $CONTROL Options
	Types of Processes
	Preprocessor Programming Language
	Defining and Using Macros
	Conditional Compilation
	File Insertion, and Merging and Editing Operations
	Compiler-Dependent Options
	The COBCNTL FILE

	Differences Between ANSI COBOL'74 and ANSI COBOL'85
	ANSI74 Entry Point Differences
	Incompatibilities between ANSI COBOL'74 and ANSI COBOL'85
	Obsolete Features

	ASCII and EBCDIC Character Sets
	How to Use This Table

	COBOL Glossary
	Definitions

	COBOL Reserved Word List
	COBEDIT Program and COPY Libraries
	COPY Libraries
	COBEDIT Commands

	MPE XL System Dependencies
	Introduction
	Compiling, Linking, and Executing Programs
	Compiling Your Program With the RUN Command
	Linking Your Program
	Executing Your Program with the RUN Command
	Control Options
	Data Alignment and Limits on MPE XL
	HP COBOL II/XL Language Dependencies
	Interprogram Communication
	Run-Time Trap Handling
	Example HP COBOL II/XL Program

	Index

