HP COBOL II/XL Reference Manual

Series 900 HP 3000 Computer Systems

LA Facianc

HP Part No. 31500-90001
Printed in U.S.A. July 1991

E0791



Notice
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD

TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced or translated to
another language without the prior written consent of Hewlett-Packard Company

Copyright © 1987, 1988, 1991 by HEWLETT-PACKARD COMPANY
RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 for DoD agencies, Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.



Printing History

New editions are complete revisions of the manual. Update packages, which are issued
between editions, contain additional and replacement pages to be merged into the manual by
the customer. The dates on the title page change only when a new edition or a new update
is published. No information is incorporated into a reprinting unless it appears as a prior
update; the edition does not change when an update is incorporated.

The software code printed alongside the data indicates the version level of the software
product at the time the manual or update was issued. Many product updates and fixes
do not require manual changes and, conversely, manual corrections may be done without
accompanying product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

First Edition November 1987 31500A.00.12
Second Edition October 1988 31500A.01.06
Third Edition July 1991 31500A.04.03






Preface

This reference manual documents the HP COBOL II language for programming on
Hewlett-Packard computer systems. HP COBOL II is based on the 1974 and ANSI
COBOL’1985 Standard X3.23-1985.

This manual is a reference text for programmers who have a working knowledge of COBOL.
The objective of the HP COBOL II Reference Manual is to guide you in writing source
programs in HP COBOL II, compiling them into object programs, preparing and executing
them.

Note The information in the main body of this manual is generic. Machine-
dependent information is in Appendix H, “MPE XL System Dependencies.”

This manual is organized as follows:

Chapter 1 Introduces HP COBOL II. Summarizes standard capabilities, HP
extensions, and new features.

Chapter 2 Describes constructs of COBOL.

Chapter 3 Describes COBOL program elements.

Chapter 4 Explains how data is described and referenced in COBOL.

Chapter 5 Describes the Identification Division.

Chapter 6 Describes the Environment Division.

Chapter 7 Describes the Data Division.

Chapter 8 Gives a general description of the Procedure Division.

Chapter 9 Describes specific Procedure Division statements.

Chapter 10 Describes all the COBOL functions and how to call them.

Chapter 11 Explains interprogram communication in COBOL.

Chapter 12 Describes SORT-MERGE operations.

Chapter 13 Describes the COBOL debugging facility.

Chapter 14 Describes source-text manipulation statements.

Appendix A Lists the error messages produced by the COBOL compiler and by
COBOL programs.

Appendix B Lists preprocessor commands and $SCONTROL options.

Appendix C Describes differences between COBOL’85 and COBOL’74 and lists
incompatibilities and obsolete features of the language.

Appendix D Defines the ASCII and EBCDIC character sets.

Appendix E Contains the COBOL glossary.



Preface

Appendix F Lists COBOL reserved words.
Appendix G Describes the COBEDIT program and COPY libraries.
Appendix H Describes machine-dependent information for MPE XL systems.

Additional Documentation
More information on HP COBOL II/XL is in the following manuals:

m AP COBOL 1I/XL Programmer’s Guide (31500-90002)
m AP COBOL 1I/XL Quick Reference Guide (31500-90003)

This manual references the following manuals:

HP Toolset/XL Reference Manual (36044-90001)

HP Symbolic Debugger/XL Reference Manual (31508-90003)

Using KSAM/XL (32650-90168)

KSAM/3000 Reference Manual (30000-90079)

MPFE XL Intrinsics Reference Manual (32650-90028)

MPFE XL Commands Reference Manual (32650-90003)

Account Structure and Security Reference Manual (32650-90041)

Native Language Programmer’s Guide (32650-90022)

System Startup, Configuration, and Shutdown Reference Manual (32650-90042)
HP Screen Management Intrinsic Library Reference Manual (32424-90002)
HP System Dictionary/XL General Reference Manual (32256-90004 )

HP SQL/XL COBOL Application Programming Guide (36216-90006)

Link Editor/XL Reference Manual(32650-90030)

System Debug Reference Manual (32650-90013)

TurboIMAGE/XL Reference Manual (30391-90001)

Compiler Library/X1L Reference Manual (32650-90029)

Trap Handling Programmer’s Guide (32650-90026)

The following book, not available from HP, contains more information about the COBOL
functions:

m COBOL Functions: An Introduction, by Donald A. Sordillo, published in 1990 by Prentice
Hall, Inc.

Information on migrating COBOL programs from HP COBOL II/V to HP COBOL II/XL is
in the following manual:

m AP COBOL 11/XL Migration Guide (31500-90004)

vi



Preface

What’s New in This Release

This section briefly describes what is new in this release of HP COBOL II/XL and where to
find more information.

vii



Addendum (> ANSPcoBE 855 Buittih CoB I HahcliBhs!ions

This version of the HP COBOL II/XL compiler introduces the 42 built-in COBOL functions
recently defined by Addendum 1 of the ANSI COBOL’85 standard. Chapter 10, “COBOL

Functions,” describes all the functions.

viii



Compatibility and the SCONTROL POSTS5 Quiigatibility and the SCONTROL POST85 Option

To use the new COBOL functions, you must use the SCONTROL option POSTS5.

This option was added because the COBOL functions introduce a new reserved word,
FUNCTION. If your existing COBOL programs use the word FUNCTION as an identifier,
those programs will continue to compile without SCONTROL POST85. However, if you want
to use the new COBOL functions in a program that uses the word FUNCTION, you must
change the word to another word and use SCONTROL POST85. For more information, see
Chapter 10, “COBOL Functions.”



e TZEnvirsrment Varidibid e

Use the TZ environment variable to set the time zone. The COBOL functions
CURRENT-DATE and WHEN-COMPILED use the value of this variable and the value of the
hardware clock when reporting their results. For more information, see Chapter 10, “COBOL
Functions.”



HP COBOL II/XL Reference Manual Supplemepfp copoL II/XL Reference Manual Supplement

The HP COBOL 11/XL Reference Manual Supplement (31500-90005) is no longer a separate
manual. It has been moved into Appendix H of this manual.

xi



Bréeviols HP COBOR A Pl ddnenpsnts

Information from the HP COBOL II/XL Technical Addendum, published in April, 1990 for
MPE XL Release 2.1 and the HP Communicator article, published for MPE XL Release 3.0
have been incorporated into this manual.

These documented the following features:

m The SCONTROL NLS option. See Appendix H, “MPE XL System Dependencies,” for more
information.

m Dynamic file assignment with the USING phrase of the ASSIGN clause. See the “ASSIGN
Clause” in chapter 6 for more information.

m An additional position in the COBRUNTIME variable for handling run-time errors. See
Appendix H, “MPE XL System Dependencies” for more information.

m The RETURN-CODE special register. See Chapter 11 “Interprogram Communication” for
more information.

Appendix G, “Summary of COBOL II Syntax,” in the previous edition of this manual was
duplicated in the HP COBOL II/XL Quick Reference Guide. It has been removed. See the

Quick Reference Guide for this information.

Appendix H, “HPTOOLSET Program Development System,” in the previous edition of this
manual has been moved to the HP COBOL II/XL Programmer’s Guide.

xii



Acknowledgement

At the request of the American National Standards Institute (ANSI), the following
acknowledgement is reproduced in its entirety:

Any organization interested in reproducing the COBOL standard and specifications
in whole or in part, using ideas from this document as the basis for an instruction
manual or for any other purpose, is free to do so. However, all such organizations are
requested to reproduce the following acknowledgement paragraphs in their entirety as
part of the preface to any such publication (any organization using a short passage
from this document, such as in a book review, is requested to mention “COBOL” in
acknowledgement of the source, but need not quote the acknowledgement):

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein have specifically
authorized the use of this material in whole or in part, in the COBOL specifications.

Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the Univac++
I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM, FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

xiii



Conventions

Notation Description

Change bars in the margin show where substantial changes have been
made to this manual since the last edition. (Chapter 10 and Appendix H
are new to this manual, but are not marked with change bars.)

UPPERCASE and Within syntax statements, characters in uppercase must be entered
UNDERLINING in exactly the order shown. Uppercase words that are underlined are
keywords that are always required when the clause or statement in which
they appear is used in your program. Uppercase words that are not
underlined are optional, and may be included or omitted. They have
no effect on program execution and serve only to make source program
listings more readable. The following example illustrates this:

[FILE STATUS IS stat-item] .

STATUS must be entered, FILE may be either included or omitted. See also
“Underlining in dialog” on the following page.

italics Within syntax statements, a word in italics represents a formal parameter,
argument, or literal that you must replace with an actual value. In the
following example, you must replace filename with the name of the file
you want to release:

RELEASE filename

punctuation Within syntax statements, punctuation characters (other than brackets,
braces, vertical parallel lines, and ellipses) must be entered exactly as
shown.

{7 Within syntax statements, when several elements within braces are

stacked, you must select one. In the following equivalent examples, you
select ON or OFF:

{oN }
SETMSG {OFF}

ON
SETMSG
{OFF}

{0 13 Within syntax statements, bars in braces are choice indicators. One or
more of the items within the choice indicators must be specified, but a
single option may be specified only once.

xiv



(!

Underlining in
dialog

(!

{r ...

Within syntax statements, brackets enclose optional elements. In the
following example, brackets around ,TEMP indicate that the parameter and
its delimiter are not required:

PURGE filename[ , TEMP]

When several elements within brackets are stacked, you can select any one
of the elements or none. In the following equivalent examples, you can
select devicename or deviceclass or neither:

[devicename]
SHOWDEV [deviceclass]

devicename
SHOWDEV .
deviceclass

When it is necessary to distinguish user input from computer output, the
input is underlined. See also underlining on the previous page.

NEW NAME? ALPHA

Brackets followed by a horizontal ellipsis indicate either that a previous
bracketed element may be repeated zero or more times, or that elements
have been omitted from the description.

[WITH DUPLICATES]
The ellipsis shows that the preceding clause may be repeated indefinitely.

Braces followed by a horizontal ellipses indicate either that the item
within braces may be repeated one or more times, or that elements have
been omitted from the description.

Within syntax statements, the space symbol U shows a required blank. In
the following example, you must separate modifier and variable with a

blank:
SET [(modifier)]U(variable) ;

XV



, >, =, <=, These symbols are used in conditional statements to represent the

<> keywords LESS THAN, GREATER THAN, EQUAL TO, LESS THAN
OR EQUAL TO, GREATER THAN OR EQUAL TO, and NOT EQUAL
TO, respectively. Although these symbols represent keywords, they are
not underlined.

; The semicolon is used only to improve readability and is always optional.
, The comma is used only to improve readability, and is always optional.

The period is a terminator or delimiter that is always required where
shown; it must always be entered at the end of every division name,
section name, paragraph name, and sentence.

The caret is occasionally used in examples to represent an implied decimal
point in computer memory.

Shading Features that are part of the 1985 ANSI standard are shaded . They are
accessible through the ANSI85 entry point.

LGI200026._198 In some diagrams and tables, a number appears in the lower left
corner. This number is for HP control purposes only and should not be
interpreted as part of the diagram or table.

XVi



Contents

1.

Introduction
ANSI Standard Compliance . . e e e e e e e e e e 1-1
ANSI COBOL’85 Features in HP COBOL H e e e e e e 1-5
ANSI Features Added Since ANSI COBOL’8s . . . . . . . . . . . .. 1-5
Compatibility Considerations . . . Coe e 1-6
Compatibility between ANSI COBOL 74 and ANSI COBOL’85 Coe e 1-6
Compatibility of COBOL Functions . . . . . . . . . . . . . . . . .. 1-6
HP Extensions . . . e e e e e 1-6
Portability to HP from Other Vendors .o Coe e 1-7
Portability between HP COBOL II/V and HP COBOL H/XL Ce e 1-7
Program Structure
Structural Hierarchy . . . . . . . . . . . ..o o000 oL 2-1
Divisions . . . . . . . L L oL e 2-4
Division Format . . . . . . . . . . ... 0oL oL 2-4
Division Header Format . . . . . . . . . . . . . . . . . . ... 2-4
Sections . . . e e e e e e e e e 2-5
Section Format e e e e e e e e e 2-5
Section Header Format . . . . . . . . . . . . ..o oo 2-5
Paragraphs . . . . . . . . oL oL oo 2-7
Paragraph Format . . . . e e e e e 2-7
Paragraph Header and Name Format e e e e 2-8
Sentences, Statements, and Clauses . . . . . . . . . . . . . . ... 2-9

Program Elements

Character Strings . . . . . . . . . . . L oo o 3-2
Words . . . . e e e e e e e e 3-2
Reserved Words e e e e e e e e 3-2
Keywords . . . . . . . ... Lo 3-3
Optional Words . . . . . . . . . . . . ..o Lo 3-3
Special Register Words . . . . . . . . . . . ..o oL 3-3
Figurative Constants . . . . . . . . . . . . . . .. .. oL 3-6
Special Character Words . . . . . . . . . . . . . . . ... 3-8
User-Defined Words . . . . . . . . . . . . ..o o000 3-8
System Names . . . . . . . . . oo oo L0000 3-11
Function-Names . . . . . . . . . . oo L Lo 3-12
Literals . . . . . . . . oL L 3-12
Numeric Literals . . . . . . . . . . . o oo o oL L 3-13
Octal Literals . . . . . . . . o o . ... Lo oL 3-13
Examples . . . . . .. o000 3-14
Nonnumeric Literals . . . . . Ce e 3-15
Single and Double Quotation Marks in Nonnumerlc therals e 3-15

Contents-1



Embedded Quotation Marks in Nonnumeric Literals . . . . . . . . . . 3-16
PICTURE Character Strings . . . . . . . . . . . . . . . . ... .. 3-17
Comment Entries . . . . . . . . .o 0oL 0000 Lo 3-18

Comment Lines . . . . . . . . . . . .. ..o L0 3-18

Separators . . . . . . L ..o oo oo e e e e 3-19
Character Set . . . . . . . . . . L oL 3-20
Coding Rules . . . . C e e e e 3-22
Sequence Number (Columns 1 through 6) e e e 3-22
Program Text (Columns 8 through 72) . . . . . . . . . . . . . . .. 3-22
Continuation Lines . . . . . . . . . . . . .. .00 3-23
Debugging Lines . . . . . . . . . L. oL Lo 3-24
Identification Code (Columns 73-80) . . . . . . . . . . . . . . . . .. 3-24

4. Describing and Referencing Data

Files . . o o o oo oL 4-1
Records . . . e e e e e e 4-1
Logical Versus Physu:al Records e e e e 4-2
Record Descriptions . . . C e e e e e e e e 4-2
Level 66, 77, and 88 Items e e e e e e 4-4
Data Items - Classes and Categories . . . . . . . . . . . . . . . . . .. 4-4
Classes of Data Items . . . . . . . . . . . . . ..o 4-4
Categories of Data Items . . . . . . . . . . . . . . .. ... 4-5
Algebraic Signs . . . . . . . L Lo oL oL oo 4-6
Operational Signs . . . . . . . . . . ... ..o 4-6
Editing Signs . . . . . . . ..o oL oL 4-6
Data Alignment . . . . . . . . L L o oL o 4-7
Identifiers . . . . e e e e e e e e e 4-9
Uniqueness of Reference e e e e e e e e e 4-10
Qualifiers . . . . . .0 0L L L 4-10
Tables . . . e e e e e s 4-14
Defining a Table Coe C e e e e 4-14
Referencing Table Items Wlth Subscrlptmg C e e e e 4-15
Referencing Table Items with Indexing . . . . . . . . . . . . . . . .. 4-18
Condition Names . . . . . . . . . . ..o L 4-18
Function-Identifiers . . . . . . . . . . o ..o L0000 4-19
Reference Modification . . . . . . . . . . . o000 0oL 4-20
Reference Modification Rules . . . . . . . . . . . . . . .o 4-21

5. IDENTIFICATION DIVISION
IDENTIFICATION DIVISION Format . . . . . . . . . . . . . . . .. 5-1
IDENTIFICATION DIVISION Syntax Rules . . . . . . . . . . . . . .. 5-2
Paragraphs . . . e e e e e 5-2
PROGRAM-ID Paragraph e e e e e 5-2
DATE-COMPILED Paragraph . . . . . . . . . . . . . . . . .. .. 5-4
Other Paragraphs . . . . . . . . . . . .. .o 5-5

Contents-2



6.

ENVIRONMENT DIVISION
ENVIRONMENT DIVISION Format . . .
ENVIRONMENT DIVISION Syntax Rules .
CONFIGURATION SECTION .
SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
MEMORY-SIZE Clause . . . ..
PROGRANICOLLATHU}SEQUENCE(Hmme..
SEGMENT-LIMIT Clause . . .
SPECIAL-NAMES Paragraph Coe
Feature-name, Switch-name, or Device-name Cﬂause -
Software SW1tches .
Line Printer Features . . .
CONDHHONCODEFEHM% .
SYSIN, SYSOUT, mnlCONSOLEIkvm% .
ALPHABET(ﬂmme. -
STANDARD],STANDARDQandNATHHDPha%s
EBCDIC and EBCDIK Phrases . .
LITERAL Phrase .
Defining Your Own Collatmg Sequence
SYMBOLIC CHARACTERS Clause
CLASS Clause . . .
CURRENCY SIGN IS Clause .
DECIMAL POINT IS COMMA Clause
INPUT-OUTPUT SECTION . .
FILE-CONTROL Paragraph . .
Sequential Files . .
Random Access Files
Relative Files . .
Sequential Access .
Random Access . .
Dynamic Access
Indexed Files . .
Sequential Access .
Random Access . .
Dynamic Access
Sort-Merge Files
File Status . ..
Fixed Length Records ..
Variable Length Records .
File Control Clauses . .
SELECT Clause . . . .
OPTIONAL Phrase . .
ASSIGN Clause .
File Status Code . . .
ACCESS MODE Clause .

ACTUAL KEY Clause (an HP extension to the ANSI COBOL standard)

ALTERNATE RECORD KEY Clause . .
DUPLICATES Phrase .

FILE STATUS Clause . .

ORGANIZATION Clause

6-1

6-2

6-2

6-4

6-5

6-5

6-6

6-6

6-7
6-10
6-12
6-13
6-13
6-13
6-14
6-15
6-15
6-15
6-16
6-19
6-21
6-22
6-23
6-24
6-25
6-25
6-25
6-26
6-27
6-27
6-27
6-28
6-28
6-28
6-29
6-29
6-30
6-30
6-30
6-31
6-34
6-34
6-35
6-36
6-37
6-39
6-40
6-40
6-41
6-46

Contents-3



RECORD KEY Clause .
DUPLICATES Phrase .
RESERVE Clause . . . .
[-O-CONTROL Paragraph .
SAME Clause . . .
SAME AREA Clause ..
SAME RECORD AREA Clause .
SAME SORT AREA and SAME SORT- MERGE AREA Clauses
MULTIPLE FILE Clause

7. DATA DIVISION
DATA DIVISION Format . . .
DATA DIVISION Syntax Rules .
FILE SECTION .
WORKING-STORAGE SECTION
LINKAGE SECTION
DATA DIVISION Clauses
File Description Clauses ..
FD Level Indicator - For Data Flle Descrlptlons
SD Level Indicator - For Sort File Descriptions
BLOCK CONTAINS Clause
CODE-SET Clause .
DATA RECORDS Clause
EXTERNAL Clause .
GLOBAL Clause . . . ..
LABEL RECORDS Clause ..
LINAGE Clause
FOOTING Phrase . . . .
LINES AT TOP and LINES AT BOTTOM Phrases .
Use of Data Names Versus Use of Integers
LINAGE-COUNTER . .
RECORD CONTAINS Clause
Fixed Length Records .
Variable Length Records . .
RECORDING MODE Clause
VALUE OF Clause
Data Description Entries . .
77 Level Description Entries
Record Description Entries . .
Data Name or FILLER Clause
BLANK WHEN ZERO Clause
EXTERNAL Clause .
GLOBAL Clause .
JUSTIFIED Clause
OCCURS Clause . .
PICTURE Clause . .
Alphabetic Data
Numeric Data
Alphanumeric Data . . .
Alphanumeric-Edited Data .
Numeric-Edited Data

Contents-4

6-47
6-47
6-48
6-50
6-51
6-51
6-51
6-52
6-53

7-2

7-2

7-3

7-3

7-6

-7

-7

7-9

7-9
7-10
7-12
7-13
7-14
7-15
7-16
7-17
7-19
7-19
7-20
7-21
7-22
7-23
7-23
7-27
7-29
7-31
7-31
7-32
7-35
7-36
7-37
7-38
7-39
7-40
7-44
7-44
7-45
7-47
7-47
7-48



Size of Elementary Data Items
Editing Rules . . .
Simple Insertion Edltlng .
Special Insertion Editing .
Fixed Insertion Editing
Floating Insertion Editing
Zero Suppression Editing
Precedence Rules
REDEFINES Clause
SIGN Clause . . .
SYNCHRONIZED Clanse
Slack Bytes .
USAGE Clause . . .
USAGE IS DISPLAY Coe .
USAGE IS BINARY or COMPUTATIONAL Ce
USAGE IS PACKED-DECIMAL or COMPUTATIONAL 3
USAGE IS INDEX
VALUE Clause .
Restrictions on the Use of the VALUE Clanse
Literals in the VALUE Clause
RENAMES Clause

Condition Names

PROCEDURE DIVISION

PROCEDURE DIVISION Header .
USING Clause .

PROCEDURE DIVISION Format .

PROCEDURE DIVISION Syntax Rules
Declarative Sections .

Procedures . . .
Sections and Section Headers .
Segmentation .

Segment Numbers .

PROCEDURE DIVISION Statements and Sentences
Conditional Statements and Sentences . .
Compiler Directing Statements and Sentences
Imperative Statements and Sentences
Categories of Statements .

Scope Terminators

Arithmetic Expressions
Arithmetic Operators
Hierarchy of Operations
Use of Parentheses ..
Valid Combinations in Arlthmetlc EXpressmns
Exponentiation .

Conditional Expressions

Simple Conditions
Sign Condition
Class Condition . .

Switch-Status Condltlon .
Relation Conditions .

7-50
7-51
7-51
7-52
7-53
7-53
7-55
7-55
7-57
7-59
7-61
7-61
7-64
7-65
7-66
7-66
7-68
7-69
7-70
7-70
7-71
7-73

8-2
8-2
8-3
8-5
8-5
8-6
8-7
8-7
8-7
8-9
8-9
8-9
8-10
8-11
8-13
8-14
8-14
8-15
8-16
8-17
8-17
8-18
8-18
8-19
8-20
8-22
8-23

Contents-5



ANSI Standard Relation Conditions . . . . . . . . . . . . . . . .. 8-23

Comparison of Numeric Operands. . . . . C e e e 8-24
Comparisons Using Index Names and Index Data Items e 8-25
Comparison of Nonnumeric Operands. . . . . . . . . . . . . . . .. 8-25
Condition Name Conditions . . . . . . . . . . . . . . . . . . ... 8-27
Intrinsic Relation Conditions . . . . . . . . . . . . . . . . . . . .. 8-28
Correct Example . . . . . . . . 0000000 Lo 8-29
Incorrect Examples . . . . . . . . ..o 0oL 0oL 8-29
Complex Conditions . . . . . . . . . . . . oo 8-30
Combined Conditions . . . . . . . . . . . . . . . . ..o 8-30
Negated Simple Conditions . . . . . . . . . . . . . . . .. ... 8-32
Condition Evaluation Rules . . . e e e e e e e 8-33
Abbreviated Combined Relation Condltlons e e e e e e e 8-38
Common Phrases . . . . . . . . . . . . . oo s 8-40
NOT Phrases . . . . . . . . . . . . oo 8-40
ROUNDED Phrase . . . . . . . . . . . . . . . . . . .. ... 8-41
SIZE ERROR Phrase . . . . . . . . . . . . . . . . ... 8-41
CORRESPONDING Phrase . . . e e e e 8-43
Common Features of Arithmetic Statements e e e e e e e 8-45
Overlapping Operands and Incompatible Data . . . . . . . . . . . . . 8-46
Variable-Length Receiving Items . . . . . . . . . . . . . . ... .. 8-46
Input-Output Error Handling Procedures . . . . . . . . . . . . . . .. 8-47
9. PROCEDURE DIVISION Statements

ACCEPT Statement . . e e e e 9-1
ACCEPT Statement - Formats 1 and 2 e e e e 9-3
FREE and INPUT ERROR Phrases . . . e e e e e e 9-3
ACCEPT Statement Without the FREE Phrase e e e e e 9-5
Programming Considerations . . . . . . . . . . . . . . .. ... .. 9-6
ACCEPT Statement - Format3 . . . . . . . . . . . . . . . . . .. 9-9
ADD Statement . . . . . . oL L L e 9-10
ALTER Statement . . . . e e e e e e e e e 9-13
Segmentation Conslderatlons e e e e e 9-13
CALL Statement . . . . . . . . . . . . ..o 9-14
CANCEL Statement . . . . . . . . . . . . . ..o 9-14
CLOSE Statement . . . . . . . . . . . .. ..o 9-15
Sequential Files - Format 1 . . e e e e e e 9-15
REEL/UNIT and REMOVAL Phrases e e e 9-16

NO REWIND Phrase . . . . . . . . . . . . . . . . . . .. ... 9-16
WITH LOCK Phrase . . . . e e e e e e 9-16
Random, Relative and Indexed Flles - Format 2 e e e e e e 9-17
COMPUTE Statement . . . . e e e e e e e 9-18
Calculation of Intermediate Results e e e e e e e 9-19
CONTINUE Statement . . . . . . . . . . . . . . . . .« . .. .. 9-21
DELETE Statement . . . . . . . . . . . . . . . . . .. .. 9-22
DISPLAY Statement . . e e e e e e e 9-25
Length of Data Being Dlsplayed e e e e e 9-26
The WITH NO ADVANCING Phrase . . . . . . . . . . . . . . .. 9-26
DIVIDE Statement . . . . . . . . . . . . . . . . .o 9-28
ENTER Statement . . . . . . . . . . . . . . . . ... 9-32
ENTRY Statement . . . . . . . . . . . . . . . . ... 9-32

Contents-6



EVALUATE Statement
Subjects and Objects
ConeﬂxmdmweBeﬁwwnSuMedsamiObﬁmm
Evaluation of Subjects and Objects
Comparison Operation of EVALUATE .
Execution of EVALUATE
EXAMINE Statement .
TALLYING Phrase
REPLACING Phrase
EXCLUSIVE Statement
EXIT Statement . . .
EXIT PROGRAM Statement
GOBACK Statement
GO TO Statement
IF Statement . .
INITIAIJZE)StaRHnent
Initializing Data Fields
INSPECT Statement
CONVERTING Phrase . ..
How the Comparison Operation Occurs
BEFORE and AFTER Phrases .
LEADING Phrase
ALL Phrase . . .
CHARACTERSPME%
FIRST Phrase
MOVE Statement .
Rules For Moving Data
Rules For Elementary Moves .
Alphanumeric or Alphanumeric- Edlted Recelvmg Item .
Numeric or Numeric-Edited Receiving Item
Alphabetic Receiving Item .
MULTIPLY Statement
OPEN Statement .
Label Records . . .
EXTEND, REVERNEandNOIUﬂNHH)Pba%S
Pernnssﬂﬂe Statements
FILE STATUS Data Item
PERFORM Statement .
Variation of a Single Identifier
Out-of-Line PERFORM
In-Line PERFORM . .
General Rules of PERFORM . . .
Range of the PERFORM Statement .
Nested PERFORM Statements .
PERFORM Constructs .
Variation of Two or More Identlﬁers .
ANSI COBOL’74 .
ANSI COBOL’85 . .
Variation of More than Two Identlﬁers ..
Incompatibility Between ANSI COBOL’74 and ANSI COBOL’85
READ Statement .

9-33
9-34
9-34
9-34
9-35
9-35
9-38
9-39
9-39
9-40
9-42
9-43
9-43
9-44
9-46
9-49
9-50
9-52
9-54
9-55
9-58
9-59
9-59
9-59
9-59
9-61
9-62
9-62
9-63
9-63
9-63
9-67
9-69
9-70
9-72
9-72
9-74
9-75
9-80
9-81
9-82
9-82
9-83
9-83
9-84
9-87
9-88
9-90
9-94
9-94
9-97

Contents-7



READ Statement - Format 1 . . . . . . . . . . . . . . . . . . . .. 9-99
READ Statement - Format 2 . . . . . . . . . . . . . . . . . .. .. 9-100
READ Statement - Format 3 . . . . . . . . . . . . . . . . . .. .. 9-101
RELEASE Statement . . . . . . . . . . . . . . . . . . . . ... 9-102
RETURN Statement . . . . . . . . . . . . . . . . . . . ... 9-102
REWRITE Statement . . . . . . . . . . . . . . . . . . . . .. ... 9-103
FROM Phrase . . . . . . . . . . . . . . ..o 9-105
SEARCH Statement . . . e e e e e e s e 9-106
SEARCH Statement - Format 1 e e e e e e s e 9-108
VARYING Phrase . . . . e e e e e e s e 9-108
SEARCH Statement - Format 2 e e e e e e s e 9-110
SEEK Statement . . . . . . . . . . . . . . .o 9-113
SET Statement . . . e e e e e e s e e 9-114
SET Statement - Format 1 e e e e e e s e e 9-115
SET Statement - Format 2 . . . . . . . . . . . . . . . . . . . ... 9-116
SET Statement - Format 3 e e e e e e e e e 9-116

SET Statement - Format 4 e e e e e e e e e 9-116
START Statement . . . . . . . . . . . . . . . ..o 9-117
STOP Statement . . . . . . . . . . . . ..o 9-120
STRING Statement . . . e e e e e e s 9-121

Execution of the STRING Statement e e e e e e s 9-122
SUBTRACT Statement . . . . . . . . . . . . . . . . . . . . .. .. 9-125
UN-EXCLUSIVE Statement . . . . . . . . . . . . . . . . . . . ... 9-128
UNSTRING Statement . . e e e e 9-129

Execution of the UNSTRING Statement e e e e 9-131

Overflow Conditions . . . e e e e e e s 9-132

Subscripting or Indexing of Identlﬁers e e e s s 9132
USE Statement . . . e e e e e e s e e 9-135

USE Statement - Format 1 e e e e e e s e e 9-136

USE Statement - Format 2 . . . . . . . . . . . . . . . . . . .. .. 9-137
WRITE Statement . . . . . . . . . . . . . . . ..o 9-139

FROM Phrase . . . e e e e e e e e e 9-141

WRITE Statement - Format 1 e e e e e e e e e 9-141

ADVANCING Phrase . . . . . . . . . . . . .. ..o 9-141
END-OF-PAGE Phrase . . . . . . . . . . . . . . . . . .. ... 9-143
Bounds Overflow . . . . . . . . . . .. .. .. 9-144
Multiple Reel/Unit Files . . . . . . . . . . . . . .. .. ... .. 9145
Print Files . . . . e e e e e e e e e 9-145
Carriage Control Codes e N 1§
WRITE Statement - Format 2 . . . . . . . . . . . . . . . . . . .. 9-146
Random Access Files . . . . . . . . . . . . . . .. ... 9-146
Relative Files . . . . e e e e e 9-147
INVALID KEY Condltlons For a Relatlve Flle e e e e e 9-147
Indexed Files . . . . e e e e e e 9-147
INVALID KEY Condltlons For Indexed Flles e e e e e e 9-148

Contents-8



10.

COBOL Functions

The $CONTROL POSTS85 Option

ANSI85 Entry Point .

Function Types .

Function Parameters .
Using ALL as a Table Subscrlpt
Precision of Numeric Functions .

Calling COBOL Functions
Examples ..

ACOS Function .

ANNUITY Function

ASIN Function

ATAN Function .

CHAR Function

COS Function .

CURRENT-DATE Functlon

Setting the TZ Environment Varlable

DATE-OF-INTEGER Function .
DAY-OF-INTEGER Function
FACTORIAL Function
INTEGER Function . . . .
INTEGER(H?DATEEhndmn.
INTEGER-OF-DAY Function
INTEGER-PART Function
LENGTH Function

LOG Function

LOG10 Function . . . .
LOWER-CASE Function

MAX Function

MEAN Function

MEDIAN Function . .
MIDRANGE Function .

MIN Function

MOD Function . .

NUMVAL Function . .
NUMVAL-C Function .

ORD Function . . .
ORD-MAX Function

ORD-MIN Function . . . .
PRESENTVVALUEEhndmn.
RANDOM Function .

RANGE Function .

REM Function . . .
REVERSE Function .

SIN Function . .

SQRT Function .

STANDARD- DEVIATION Functlon

SUM Function

TAN Function . . . .
UPPER-CASE Functlon .
VARIANCE Function

10-3

10-3

10-4

10-5

10-5

10-5

10-6

10-6

10-7

10-8

10-9
10-10
10-11
10-12
10-13
10-14
10-18
10-20
10-22
10-23
10-24
10-26
10-28
10-29
10-31
10-32
10-33
10-34
10-36
10-37
10-38
10-39
10-41
10-42
10-43
10-45
10-46
10-47
10-48
10-49
10-51
10-52
10-53
10-54
10-55
10-56
10-57
10-58
10-59
10-60

Contents-9



WHEN-COMPILED Function . . . e e 10-61

Setting the TZ Environment Varlable . 1 0 )
11. Interprogram Communication

Transfer of Control . . . . . e e e e e e 11-2
Reference to Common Data and Flles Coe C e e e e 11-2
Reference to Common Data through Parameter Passmg e e e 11-3
Reference to Common Data and Files through FExternal Objects . . . . . . 11-4
PROGRAM-ID Paragraph . . . . . . . . . . . . . . . . . .. .. 11-5
COMMON Clause . . . . . . . o o o o oo o oo 11-5
EXTERNAL Clause . . . . . . . . . . . . . . o o o o o oo 11-6
GLOBAL Clause . . . . . . . . . o o . Lo 11-9
Types of Subprograms . . . . . . . . . . . . ... Lo 11-10
Non-Dynamic Subprograms . . . . . . . . . . . . ..o ... 11-10
Dynamic Subprograms . . . . . . . . . .. oL L0000 oo 11-11
ANSISUB Subprograms . . . . . . . . . . . . .. .. ..o 1111
END PROGRAM Header . . . . . . . . . . . . . . . . . o ... 11-12
CALL Statement . . . . . . . . . . . ... Lo 11-13
Calling Intrinsics . . . . . . . . . . . . . . . ... ..o o 117
Execution-Time Loading . . . . . . . . . . . . . . . ... ... .. 11-19
Pseudo-Intrinsics . . . e e e e e e e 11-20
.LOC. Pseudo- Intrmsm e e e e e e e 11-20
.LEN. Pseudo-Intrinsic . . e e e e e e 11-20
USING Phrase (COBOL Subprograms) e b £
BY REFERENCE Phrase . . . . . . . . . . . . . .. ... ... 11-22

BY CONTENT Phrase . . . e e e e e 11-22
USING Phrase (Non-COBOL Subprograms) e B Bt
GIVING Phrase When Calling COBOL Subprograms e B /2
RETURN-CODE Special Register . . . P I B
GIVING Phrase When Calhng Non- COBOL Subprograms e e e oo 1126
CANCEL Statement . . . . .. . e e e 11-27
ENTRY Statement . . . e e e e e e 11-28
EXIT PROGRAM Statement e e e e e e 11-31
GOBACK Statement . . . . . . . . . ... Lo 11-32

12. SORT/MERGE Operations

MERGE Statement . . . e e e e e e 12-2
COLLATING SEQUENCE Phrase .o C e e e e e 12-4
GIVING and OUTPUT PROCEDURE Phrases e e e e e e 12-5
Segmentation Considerations . . . . . . . . . . . . .. .. o0 12-6
RELEASE Statement . . . . . . . . . . . . . ..o 12-7
RETURN Statement . . . . . . . . . . . . . . . oo 12-8
INTO Phrase . . . . . . . . . . . ..o 12-9
AT END Phrase . . . . . . . . .00 12-9
SORT Statement . . . . . . . . . . . . Lo 12-10
DUPLICATES Phrase . . . e e e e e e 12-14
ASCENDING and DESCENDING Phrases e e e e e e 12-14
COLLATING SEQUENCE Phrase . . . . . . . . . .. .. ... .. 1214
USING and INPUT PROCEDURE Phrases e e e e e 12-14
GIVING and OUTPUT PROCEDURE Phrases . . . . . . . . . . . .. 12-15
Sorting Large Files . . . . . . . . . . . . . ..o ... 1216

Contents-10



13.

14.

Segmentation Considerations .

Debug Module
WITH DEBUGGING MODE Clause
USE FOR DEBUGGING statement .
Debugging Lines .
The ANSI Debug Module Example
Using the ANSI Debug Module Example .

Source Text Manipulation

COPY Statement . . .
REPLACING Phrase

REPLACE Statement .

HP COBOL II Error Messages

Reading Error Messages from COBCAT
Example . .. .

Compile-Time Error Messages

Run-Time Error Messages

Warnings ..

Questionable Errors .

Serious Errors

Disastrous Errors .

Nonstandard Warnings

Run-Time Errors

Informational Messages

Preprocessor Commands and $CONTROL Options
Types of Processes e
Preprocessor Programming Language
Description . .
Continuation Lines .
$COMMENT Command .
Defining and Using Macros .
$DEFINE Command
Formal Parameters
Macro Calls
Relationship of Formal Parameters to Actual Parameters
Nested Macro Calls . . . .
$PREPROCESSOR Command
Conditional Compilation .
$SET Command
$IF Command
File Insertion, and Mergmg and Edrtmg Operatrons
$INCLUDE Command . . .
Merging Files and the SEDIT Command
Merging Files . .
Sequence Field Checkmg
$EDIT Command .
VOID Parameter
SEQNUM Parameter

12-18

13-2
13-3
13-6
13-7
13-8

14-2
14-4
14-6

A-1
A-1
A-2
A-3
A-4
A-9
A-31
A-35
A-39
A-41
A-49

B-1
B-2
B-3
B-3
B-4
B-5
B-5
B-7
B-8
B-9
B-11
B-12
B-13
B-13
B-13
B-15
B-15
B-17
B-17
B-18
B-19
B-19
B-19

Contents-11



NOSEQ Parameter
INC Parameter . . ..
Compiler-Dependent Options . .
$COPYRIGHT Command . .
$PAGE Command
$TITLE Command . )
$VERSION Command . .
$CONTROL Command
ANSISORT
ANSISUB
BOUNDS . . . .
CHECKSYNTAX .
CODE . .
NOCODE .
CROSSREF . . .
NOCROSSREF . .
DEBUG . .
DIFF74, DIFF74=0BS, and DIFF74=INC .
DYNAMIC . .
ERRORS=number
LINES=number
LisT . . .
NOLIST . .
LOCKING .
LOCOFF .
LOCON . .
MAP . . .
NOMAP . .
MIXED
NOMIXED . . .
QUOTE = {"*}
SOURCE . . . .
NOSOURCE . . .
STAT74 .
STDWARN . . .
NOSTDWARN . .
SUBPROGRAM .
SYMDEBUG . . . . .
SYNC16 and SYNC32 .
USLINIT
VERBS . .
NOVERBS .
WARN . .
NOWARN . . . .
The COBCNTL FILE .

Contents-12

B-20
B-20
B-21
B-21
B-22
B-23
B-24
B-25
B-26
B-26
B-26
B-26
B-26
B-26
B-27
B-27
B-27
B-27
B-27
B-27
B-27
B-28
B-28
B-28
B-28
B-28
B-28
B-29
B-29
B-29
B-29
B-29
B-29
B-29
B-30
B-31
B-31
B-31
B-32
B-32
B-32
B-32
B-33
B-33
B-33



Differences Between ANSI COBOL’74 and ANSI COBOL’85

ANSI74 Entry Point Differences . . Ce e C-1
Incompatibilities between ANSI COBOL 74 and ANSI COBOL’85 Ce e C-3
Syntax Incompatibilities . . . . . . . . .. o0 o000 oL C-3
Run-time Incompatibilities . . . . . . . . . . . .00 0oL C-3
Obsolete Features . . . . . . . . . . .. ..o L Lo C-6

ASCII and EBCDIC Character Sets
How to Use This Table . . . . . . . . . . . . . . . . . . . . . ... D-1

COBOL Glossary
Definitions . . . . . . . . . L L L oo E-1

COBOL Reserved Word List

COBEDIT Program and COPY Libraries

The COBEDIT Program . . . . . . . . . . . . . . . . . . . .. G-1

COPY Libraries . . . . . . . . . . .o G-2

COBEDIT Commands . . . . . . . . . . . . . . . . . . . . . ... G-3
BUILD Command . . . . . . . . . . . . . . . . . . . ... G-4
COPY Command . . . . . . . . . . . . . . G-7
EDIT Command . . . . . . . . . . . . . . . . . ..o G-8
EXIT Command . . . . . . . . . . . . . . . ..o G-12
HELP Command . . . . . . . . . . . . . . . . . . . . ... G-14
KEEP Command . . . . . . . . . . . . . . . . . . ... G-15
LIBRARY Command . . . . . . . . . . . . . . . . . . .. ... G-19
LIST Command . . . . . . . . . . . . . . . . . ... G-21
PURGE Command . . . . . . . . . . . . . . . . . . . ... G-24
SHOW Command . . . . . . . . . . . . . . . .o G-26

MPE XL System Dependencies

Introduction . . . e e e e e H-1
Compiling, Linking, and Executmg Programs e e e e H-3
Overview . . . . . . . oL Lo e e s H-3
Command Files . . . e e e e H-4
Compiling Your Program Wlth the RUN Command C e e H-7
Linking Your Program . . . C e e H-10
Executing Your Program with the RUN Command C e e H-10
Setting Software Switches . . e e e e H-10
Setting the Object-Time Debug Module SW1tch e e e e H-11
Control Options . . e e e e e e H-12

MPE XL-Specific Control Optlons e e e e e H-12
CALLINTRINSIC . . . . . . o o o o o oo oo oo H-12
CMCALL . . . . e e e e s H-13
INDEX16 and INDEX32 e e e e s H-13

Limitations . . . . . . . . . ..o Lo o H-14
OPTFEATURES . . . . . . . o o . o o . oo o o H-17
OPTIMIZE . . . . . . . . . o . oL H-18
POST8s . . . . e e e e e e H-18
RLFILE and RLINIT e e e e e e H-19

Contents-13



SYMDEBUG=XDB . . . . e e e e e e H-19
VALIDATE and NOVALIDATE e e e e e e H-20
Control Options that Work Differently . . . . . . . . . . . . . . . .. H-20
ANSISUB . . . . o o oo H-20
BOUNDS . . . . o o e H-21
CODE . . . . . o o o s e H-21
USLINIT . . . . e e e e e e H-21
Obsolete Control Optlons .. e e e e e e e H-21
Data Alignment and Limits on MPE XL e e e e s H-22
Alignment . . . . . . . 0oL 0L L s H-22
Limits on Data Items . . . e e e e e e H-22
HP CX)B()L]I[XI‘Language]Dependencuﬁ C e e e e H-23
IDENTIFICATION DIVISION . . . . . . . . . . . . . . . .. .. H-23
ENVIRONMENT DIVISION . . . . . . . . . . o . o . . .. .. H-23
DATA DIVISION . . . . . . . o . . o oo oo H-24
PROCEDURE DIVISION . . . . . . . . . . . . .« . . .. .. H-24
Interprogram Communication . . . . . . . . . . . . . .. ... H-27
External Names . . . . . . . . . oL o000 L 0L H-27
Subprogram Types . . . . . . . . . oL Lo Lo H-27
Calling Intrinsics . . . e e e e e H-28
.LOC. Pseudo- Intrrn51c e e e e e H-28
Parameter Alignment . . . . . . . . . .. Lo oL oL H-28
Run-Time Trap Handling . . . . . . . . . . . . . . . . . . .. .. H-29
Supported Traps . . . C e e e e e H-29
HandhngﬁRun’TnneﬁErHHsanh,C(HBRIJNjﬂﬂﬁE C e e e H-30
Setting COBRUNTIME . . . . C e e e H-31
The COBOL Trap hdechanlﬁn,and,(ﬂjuﬂ Languages e e e H-33
Example HP COBOL II/XL Program . . . . . . . . . . . . . . .. .. H-39

Index

Contents-14



Figures

2-1.
2-2.
4-1.
7-1.
8-1.

8-2.

8-3.
8-4.
8-5.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
12-1.
H-1.

H-2.
H-3.

COBOL Structure Hierarchy . . . . . . . . . . . . . . . . ... 2-2
Program Structure Example . . . . . . . . . . o000 L. 2-3
Record Desctiption Entry . . . Ce e e 4-3
Example of the LINAGE Clause and 1ts Loglcal Representatlon Coe e 7-18
Evaluation of the hierarchical level condition-1 and condition-2 and ...

condition-n . . . Coe e 8-34
Evaluation of the hlerarchlcal level condltlon 1 or condltlon 2 or ...

condition-n . . . e e e e 8-35
Evaluation of condition- 1 or condltlon 2 and condltlon 3 Coe e 8-36
Evaluation of (condition-1 or not condition-2) and condition-3 and condltlon 4 837
Input-Output Error Handling . . . . . . . . . . . . . . . .. . ... 8-48
Valid PERFORM Constructs . . . e e e e 9-84
Variation of a Single Identifier with TEST BEFORE C e e e 9-85
Variation of a Single Identifier with TEST AFTER . . . . . . . . . .. 9-86
Variation of Two Conditions (ANSI COBOL’74) . . . . . . . o 9-89
Variation of Two Conditions with TEST BEFORE (ANSI CDBDL’85) . 9-91
Variation of Two Conditions with TEST AFTER (ANSI €OBOL’85) . . 9-93
Execution of Format 1 SEARCH Statement . . c e e o o 9109
Determining Local File Size (SIZE-PARM) Used in FOPEN . b
Relationships between HP COBOL II/XL and the ANSI Standards

COBOL’74 and COBOL’8 . . . . . C e e e H-1
How a Source Program Becomes an Executmg Program e e H-3
Invalid PERFORM Constructs . . . . . . . . . . . . . . . . . . .. H-26

Contents-15



Tables

1-1.
1-2.
1-3.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2.
4-3.
4-4.
6-1.
6-2.
6-3.
7-1.

7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
10-1.
10-2.
10-3.

ANSI COBOL’85 Organization .

HP COBOL II Compiler Conformity Levels

Terms Used in This Manual

Special Register Words

Extensions to Special Register Words

Figurative Constant Words .

Figurative Constants Examples .

Special Character Words .

User-Defined Word Types

Data Item Classes and Categories .

Data Alignment

Reference Modification Results .

Reference Modification Without Subscrrptmg

HP COBOL II Feature, Switch, and Device Names

ANSI COBOL’85 File Status Codes .

ANSI COBOL’74 File Status Codes . . .

Values of the LABEL INFO and DATA NAME Parameters in the VALUE OF
Clause .

Editing Picture Characters . .

Allowable Types of Editing For Categorres of Data Items

Effects of Sign Control Symbols on Receiving Items

PICTURLE Character Precedence Chart .

Overpunch Characters for Rightmost Digit in ASCH Coded Decrmal Numbers

Number of Bytes Used to Contain a BINARY Data Item

COMPUTATIONAL-3 or PACKED-DECIMAL Sign Configuration .

PACKED-DECIMAL Fields in Memory or in a File

Imperative Verbs

Categories of Statements . Coe

Valid Combinations of Symbols in Arrthmetrc EXpressrons .
Valid Combinations of Conditions, Logical Operators, and Parentheses .
NOT Phrases and Associated Verbs . .

Input-Output Statements and Exception Condrtron Optrons

Results of INSPECT Statement Execution .

Permissible Moves

Sequential Organization .

Relative and Indexed Organrzatron

Random Organization . .
Validity of Different Combrnatrons of Operands in the SET Staternent .
Carriage Control Codes and Their Meanings

Date Functions .

String Functions

General Functions .

Contents-16

1-2
1-3
1-4
3-3
3-4
3-6
3-7
3-8
3-9
4-5
4-8
4-22
4-22
6-11
6-43
6-45

7-30
7-49
7-51
7-53
7-56
7-65
7-66
7-67
7-67
8-10
8-11
8-17
8-31
8-40
8-47
9-60
9-64
9-72
9-73
9-73
9-116
9-146
10-1
10-1
10-2



10-4.
10-5.
10-6.
10-7.
11-1.
11-2.

A-1.
B-1.
B-2.
B-3.
C-1.
D-1.
F-1.
G-1.
H-1.
H-2.
H-3.
H-4.
H-5.
H-6.
H-7.

Arithmetic Functions . . . 10-2

Financial and Statistical Functlons e e e e e 10-2
Trigonometric Functions . . . e e 10-3
Time Zones and TZ Env1r0nment Varlable Values C e e e e e e 10-15
Types of Subprograms and How to Specify Them . . . .o 11-10
Relationship Between EXIT PROGRAM, STOP RUN and GOBACK

Statements . . . . . . . L L L L L L e e 11-32
Kinds of Error Messages . . . . . . . . . . . . ..o oo A-2
Preprocessor Commands . . . . . . . . . ... .00 0oL B-2
$CONTROL Options . . . . . . . . . . . v v v e e s e B-25
FIPS COBOL Subsets . . . . . . . . . . . . . . . . oo B-31
New [-O Status Codes . . . . e e e e e C-4
ASCII and EBCDIC Character Sets e e e e e e e e e D-2
COBOL Reserved Words . . . . . . . . . . . . . . . . . ... F-1
COBEDIT Commands . . . C e e e e e e G-3
Subsystems that Interface Wlth HP COBOL H/XL e e e H-2
Command Files . . . . e e e e e e e e H-4
PARM Values and Their Meanmgs .o C e e H-8
Values for NLDATALANG Environment Varlable e e e e e e H-14
$CONTROL OPTIMIZE Parameters . . . . . . . . . . . . . . . .. H-18
Run-Time Error Handling Options . . . . . . . . . . . . . . . . .. H-30
Character Position in Specific Traps . . . . . . . . . . . . . . . . .. H-31

Contents-17






Introduction

COBOL (Common Business Oriented Language) is the most widely used programming
language for commercial applications. Hewlett-Packard’s COBOL II is based on ANSI
COBOL as specified in the American National Standard Programming Language COBOL
(ANSI X3.23a-1989). It offers the following important features:

m Compatibility with American National Standards Institute (ANSI) COBOL at the highest
level of all the required COBOL modules. The optional Report Writer and Communication
modules are not supported. See “ANSI Standard Compliance” later in this chapter.

m Communication with programs written in other languages, including RPG, FORTRAN,
SPL, C, and Pascal.

m Communication with other operating subsystems through intrinsic calls, including data
management (TurboIMAGE), screen management (VPLUS), graphics (DSG), and program
development tools (HPToolset/Dictionary).

ANSI Standard Compliance

The standards for COBOL were originally developed and defined by a national committee

of computer manufacturers and users known as the Conference On Data Systems Languages
(CODASYL). In 1960, under the guidance of this committee, the first official version of
COBOL was designed, called COBOL’60. Since then subsequent versions were developed that
significantly extended the power of the language. Later versions, ANSI COBOL’68, ANSI
COBOL’74, and ANSI COBOL’85, followed the standards published and sanctioned by ANSI. I
In 1989, ANSI published an addendum that adds intrinsic functions to the language.

ANSI COBOL’85 and the functions addendum are organized on the basis of one nucleus and
11 functional processing modules. These elements are summarized in Table 1-1. Fach module
contains either two or three functional levels. In all cases, the lower levels are proper subsets
of the higher level within the same module. The lowest levels supply elements needed for basic
or elementary operations; the higher levels supply more extensive or sophisticated capabilities.
The full ANSI COBOL is composed of the highest level of the nucleus and of each module.

Introduction 1-1



Introduction

Table 1-1. ANSI COBOL’85 Organization

Module

Function

Nucleus

Contains language elements necessary for internal processing.

Sequential /O Module

Provides language elements for definition and access of sequentially
organized external files.

Relative /O Module

Provides capability for defining and accessing mass storage files in which
records are identified by relative record number.

Indexed 1/O Module

Provides capability for defining and accessing mass storage files in which
records are identified by the value of a key and accessed through an index.

Sort/Merge Module

Provides sorting and merging operations in a COBOL program.

Report Writer Module

Provides for semi-automatic production of printed reports. Not
implemented in HP COBOL II.

Segmentation Module

Provides overlaying of PROCEDURE DIVISION sections at object time.

Source Text
Manipulation

Allows you to include predefined COBOL text into your program.

Debug Module

Offers a way to specify a debugging algorithm—the conditions under which
data or procedure items are monitored during the execution of the program.

Interprogram
Communication Module

Allows a program to communicate with other programs.

Communication Module

Provides ability to access, process, and create messages or portions of
messages and to communicate through a message control system with local
and remote communication devices. Not implemented in HP COBOL II.

Intrinsic Function
Module

Provides 42 intrinsic or “built-in” COBOL functions including date and
string functions, financial and statistical functions, trigonometric and other
arithmetic functions. (These are not MPE intrinsics.)

1-2 Introduction




Introduction

Hewlett-Packard’s COBOL II compiler conforms to the high level of the ANSI COBOL
X3.23-1974 specification and to the high level of the ANSI COBOL X3.23a-1989 specification.
It meets the corresponding level of the United States Government Federal Information

Processing Standard as described in FIPS PUB 21-3. Some of the individual modules meet

the high level requirements as described in Table 1-2.

The HP COBOL II compiler is two compilers in one. That is, it contains two entry points:

Table 1-2. HP COBOL Il Compiler Conformity Levels

FIPS PUB 21-3
Level Supported by | Requirements for
ANSI COBOL’85 Module HP COBOL II High Level

Nucleus 2 2
Sequential /0 21 2
Relative I/O 2 2
Indexed T/0O 2 2
Source Text Manipulation 2 2
Interprogram Communication 2 2
Sort/Merge 1 1
Debug 1 22
Segmentation 2 22
Report Writer Not supported 12
Communication Not supported 22
Intrinsic Functions 1 1

1 Exceptions are PADDING CHARACTERS and RECORD DELIMITER.

2 These are optional modules that are not required for high-level implementation.

ANSI74 and ANSI85. The ANSI74 entry point accepts ANSI COBOL’74 syntax and
semantics. The ANSI85 entry point provides an ANSI COBOL’85 compiler. To use any of the
ANSI COBOL’85 features, use the ANSI85 entry point.

Note

Use the option SCONTROL POSTS85 for intrinsic functions.

Hereafter in this manual, intrinsic functions will be referred to as COBOL

functions.

Introduction

1-3



Introduction

B Table 1-3 lists the terms used in this manual.

Table 1-3. Terms Used in This Manual

This Term

Refers To

ANSI COBOL74

The 1974 ANSI COBOL standard.

ANSI COBOL’85

The 1985 ANSI COBOL standard.

ANSI74 The compiler entry point used to invoke COBOL features of ANSI
COBOL’74 plus HP extensions.

ANSI8H The compiler entry point used to invoke COBOL features of ANSI
COBOL’85 plus COBOL functions and HP extensions.

HP COBOLII Refers to the HP compiler that implements ANSI COBOL’74, ANSI

COBOL’85, and HP extensions on MPE systems.

1-4 Introduction




Introduction

ANSI COBOL’85 Features in HP COBOL Ii

Features in the X3.23a-1989 American National Standard Programming Language COBOL
that are in HP COBOL II are shown below. These features provide structured programming
capabilities to make coding and maintenance easier. They also provide capabilities to enhance
the manipulation of data initialization and extend I/0O status codes for reporting I/O errors.

EVALUATE statement.
In-line PERFORM.
Scope-delimited statements.
CONTINUE statement.
Optional FILLER clause.
INITIALIZE statement.
Reference modification.
De-edited MOVE operations.
BY CONTENT argument passing.
Symbolic characters.

CLASS clause.

SET statement.

NOT phrases.

REPLACE statement.
Alphabetic tests.
EXTERNAL clause.
GLOBAL clause.

Note Use the ANSI85 entry point to the HP COBOL II compiler whenever you use
any ANSI COBOL’85 features. Throughout this manual, shading identifies
those features that are available through the ANSI85 entry point.

ANSI Features Added Since ANSI COBOL’85

42 built-in functions have been added to ANSI standard COBOL. For more information on
the COBOL functions, see Chapter 10, “COBOL Functions.”

Note Use the option $CONTROL POSTS5 for the COBOL functions.

Introduction 1-5



Introduction

Compatibility Considerations

There are several compatibility issues to consider when using the HP COBOL II compiler.

Compatibility between ANSI COBOL’74 and ANSI COBOL’85
The HP COBOL II compiler is compatible with the ANSI COBOL’74 standard. Through

the use of entry points to the compiler you can choose which standard to execute, thereby
avoiding any conversion issues between the two standards. Some incompatibilities between
ANSI COBOL’74 and ANSI COBOL’85, such as reserved words, allow you to preserve
existing source code while doing new development using the ANSI COBOL’85 standard. Or
if you choose to move all of your applications to the ANSI COBOL’85 standard, the compiler
flags the syntax changes, allowing you to modify, recompile, and execute using the ANSI
COBOL’85 entry point.

For a complete list of the incompatibilities between ANSI COBOL’74 and ANSI COBOL’85,
as well as obsolete features to consider when upgrading, refer to Appendix C.

Compatibility of COBOL Functions
The COBOL functions add the reserved word FUNCTION to the COBOL language. HP

COBOL II maintains compatibility with existing programs. Your existing programs will
continue to compile without change. If you want to use the COBOL functions, you must use
$CONTROL POSTS85 and you must not use the word FUNCTION as an identifier anywhere
in your program. If you have used the word FUNCTION as an identifier, you must change it
to another word before you can call any COBOL functions. Otherwise, the compiler gives an
error message.

HP Extensions

HP extensions are features added to HP COBOL II that are not part of the ANSI standard.
These features make COBOL easier to use on the MPE operating system and ease the
conversion from previous versions of the ANSI standard.

You can use the HP extensions with either the ANSI74 or ANSI85 entry points unless one of
the following is true:

m The HP extension if part of a ANSI COBOL’85 feature.

m The HP extension contains a ANSI COBOL’85 reserved word.

m The description of the HP extension specifically mentions that it can be used only with the
ANSI85 entry point.

$CONTROL STDWARN flags features that are HP extensions. HP extensions are generally
not portable to other systems. For a list of HP extensions, see the HP COBOL I1/XL
Programmer’s Guide.

1-6 Introduction



Introduction

Portability to HP from Other Vendors

If you are transferring COBOL source programs and data to an HP computer system from
another system, ANSI standard features are compatible. Any extension to accommodate
vendor operating systems and file systems need to be examined for conversion efforts. Consult
your HP representative for assistance and advice.

Portability between HP COBOL I1I/V and HP COBOL II/XL

For portability from HP COBOL 1I/V to HP COBOL II/XL, compiler options provide
16-bit or 32-bit alignment for synchronized items and allow passing of parameters on byte
boundaries, as well as word boundaries. These features allow compatibility with 32-bit or
16-bit architectures. For more information, refer to the HP COBOL II/XL Migration Guide.

Introduction 1-7






Program Structure

COBOL is similar to the English language in both structure and content. Structurally, for
example, COBOL programs are made up of such familiar constructs as paragraphs, sentences,
statements, and clauses. These constructs, in turn, contain such elements as words, names,
verbs, and symbols. Program constructs are described in this chapter of the manual; program
elements are described in Chapter 3.

Within the context of COBOL, constructs and elements all have very specific meanings. In
this manual, all such terms are defined at or near the point where they are introduced. For
additional convenience, their definitions appear in the glossary in Appendix E.

The concept of program modules is also described in this chapter. These modules make up a
superset into which all other constructs fall; they contain almost all of the program constructs.

Structural Hierarchy

All COBOL programs are organized in a structure that consists of divisions, sections,
paragraphs, sentences, statements, clauses, and phrases. This structure is hierarchical—that
is, as a general rule, a COBOL program is made up of divisions; a division is made up of
sections; a section is made up of paragraphs; a paragraph is made up of either sentences

or clauses (depending upon the division); a sentence can contain one or more statements;

a statement or clause can contain one or more phrases. The general hierarchy appears
schematically in Figure 2-1. Those COBOL constructs with English language counterparts
(paragraphs, sentences, clauses, and phrases) generally resemble their corresponding
counterparts. From the standpoint of the compiler, each construct is treated as a logical entity
within your program.

In describing the COBOL constructs, this manual begins with the highest level construct
within a program, and proceeds to the lowest level.

Program Structure 2-1



Program Structure

COBOL PROGRAM

IDENTIFICATION DIVISION

PARAGRAPH
L

PARAGRAPH
L

LPARAGRAPH

ENVIRONMENT DIVISION

SECTION

PARAGRAPH

LPARAGRAPH

PARAGRAPH

CLAUSE

CLAUSE

SECTION

IPARAGRAF“H

EARAGRAPH

DATA DIVISION

ISECTION

SECTION

|
SECTION

CLAUSE

CLAUSE

PROCEDURE DIiVISION

SECTION

PARAGRAPH

SENTENCE
STATEMENT

STATEMENT

SENTENCE

SECTION

lPAF%AGF!APH

lPAF%AGRAF‘H

LG200026_002

Figure 2-1. COBOL Structure Hierarchy

2-2 Program Structure



Program Structure: Divisions

Figure 2-2 is an example of the COBOL program structure. The numbers indicate specific
parts of the program. They are described in more detail later in this chapter as “item”. For
example, under the section “Division Header Format”, the phrase “items 1 through 4” refers

to the circled numbers 1 through 4.

 (a)—____ IDENTIFICATION DIVISION.
()~ ®\@ PROGRAM-ID. COBOL—F103.—(11)

AUTHOR. ARTHUR-JONES.

@ ENVIRONMENT DIVISION. (12
" DATA DIVISION.

WORKING-STORAGE SECTION.

77 EDIT-FIELD PIC $2,229.99.
G- @ 77 TOTAL-COST PIC 999v99.

77 COST-OF-SALE  PIC 99V99.

77 TAX PIC 99V99.

77 YN PIC X.

PROCEDURE DIVISION.
ENTER-ROUTINE.

@_ ACCEPT COST-OF-SALE.

MOVE TOTAL-COST TO EDIT-FIELD.

STOP RUN.
LG200026_003

Figure 2-2. Program Structure Example

The items shown in Figure 2-2 are:

Identification Division.

FEnvironment Division.

Data Division.

Procedure Division.

Working-Storage Section.

Program-Id Paragraph.

Author Paragraph.

A paragraph in the Procedure Division.
9. A user-defined paragraph name.

10. A sentence in the Procedure Division.

11. The program name.

12. The author’s name.

COMPUTE TAX = COST-OF-SALE * .06.
ADD COST-OF-SALE, TAX TO TOTAL COST.

DISPLAY “TOTAL COST OF PURCHASE = ”
DISPLAY “ARE YOU FINISHED? (Y OR N)”
ACCEPT Y-N. IF Y-N = “N” GO TO ENTER-ROUTINE.

@/ MOVE ZEROES TO TOTAL-COST.
DISPLAY SPACE.
@ DISPLAY “ENTER COST OF SALE (BEFORE TAX) NO DECIMAL PT

DISPLAY “(4 DIGITS MAX) INCLUDE LEADING ZEROES!”.

EDIT-FIELD.

Program Structure 2-3



Program Structure: Divisions

Divisions
A division is the first level (highest) construct in a COBOL program. COBOL programs are
partitioned into the following four divisions, which appear in the order listed:

m [DENTIFICATION DIVISION: Specifies the program name and other items used to
uniquely identify the program. This division is required in every COBOL program.

m ENVIRONMENT DIVISION: Describes the computer and peripheral devices
used to compile and execute the program, and the data files used by the program.
This division is optional.

m DATA DIVISION: Describes and defines the data items referenced by the program,
including their names, lengths, decimal point locations (if applicable), and storage formats.
This division is optional.

m PROCEDURE DIVISION: Specifies the operations that the program must perform,
describing how the data defined in the DATA DIVISION should be processed.

This division is optional.

More information about the functions of these divisions appears later in this manual, where
the divisions are described individually.

Division Format

Each division begins with a header entry, which is sometimes followed by one or more sections
(in the ENVIRONMENT, DATA, and PROCEDURE DIVISIONs) or paragraphs (in the
IDENTIFICATION DIVISION) called the division body. A division is terminated by the
next division header in the program, or by the end of the program in the PROCEDURE
DIVISION. The IDENTIFICATION DIVISION requires a body that specifies the name of the
program.

Division Header Format

The division header consists of the division name, followed by the word DIVISION, followed
by a period and a space. In the PROCEDURE DIVISION only, the optional USING phrase
may also appear in the header between the word DIVISION and the period. In any COBOL
program, only the following division headers are allowed:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION [ USING {data-name-1...3}].

Note Remember that the terminating periods shown in construct format
descriptions must be included. Otherwise, the compiler generally misinterprets
the construct.

The IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE DIVISIONs,

including appropriate headers, appear in Figure 2-2 as items 1 through 4, respectively.

2-4 Program Structure



Program Structure: Sections

Sections

A section is the second level construct in a COBOL program. In the source program, sections
allow you to group logically related items together within a division. In the PROCEDURE
DIVISION, you can organize logically related functions into the same sections in such a way
that often used routines reside in main memory for longer periods of time than routines used
infrequently. This minimizes the total number of input-output operations that the operating
system must perform on the code segments belonging to the program. It also facilitates
program debugging. In other divisions, the features that a program uses determine which
sections must be specified in the program.

Sections are optional in the PROCEDURE DIVISION. If you do not specify sections in a
division, the entire division is treated as a single section. Sections are not used, however, in

the IDENTIFICATION DIVISION.

Section Format

Each section begins with a header entry that is optionally followed by zero, one, or more
paragraphs (in the ENVIRONMENT or PROCEDURE DIVISION) or clauses (in the DATA
DIVISION). The paragraphs or clauses comprise the section body. A section is terminated by
the next section header, the next division header, the END DECLARATIVES keywords (in
the declarative portion of the PROCEDURE DIVISION), or the physical end of the program.

Section Header Format

In the ENVIRONMENT and DATA DIVISIONSs, the section header consists of a COBOL
reserved word that identifies the section, followed by the word SECTION, followed by a period
and a space. In the ENVIRONMENT DIVISION, only the following section headers are
permitted:

CONFIGURATION SECTION.

INPUT-0UTPUT SECTION.
In the DATA DIVISION, only the following section headers are allowed:
FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

Program Structure 2-5



Program Structure: Sections

In the PROCEDURE DIVISION, the section header consists of a user-defined section name
that identifies the section, followed by the word “SECTION”, followed by an optional segment
number, followed by a period and a space. In the PROCEDURE DIVISION, unlike the
ENVIRONMENT and DATA DIVISIONs, names are not restricted to specific words, so you
can supply any section names you desire. Here are some examples of section headers that

might be used in the PROCEDURE DIVISION:
INITIALIZATION SECTION.

HOUSEKEEPING SECTION 3.

In the second example above, the number 3 represents the segment number. This number
is used in program segmentation (partitioning of a program into distinct code segments.)
Segmentation is described in Chapter 8.

For clarity, programmers usually write a section header on a line by itself, although you are
not formally required to do so.

In Figure 2-2, the WORKING-STORAGE SECTION (item 5) appears in the DATA
DIVISION. Because no section is specified in the PROCEDURE DIVISION, the whole

division is regarded as a section by the compiler.

2-6 Program Structure



Program Structure: Paragraphs

Paragraphs

A paragraph is the third level construct in a COBOL program. Paragraphs allow you to
break your program into even more elementary units. One paragraph (the PROGRAM-ID
paragraph) is required in the IDENTIFICATION DIVISION. Paragraphs are optional in
the ENVIRONMENT and PROCEDURE DIVISIONs. They are not used in the DATA
DIVISION.

Paragraph Format
In the IDENTIFICATION and ENVIRONMENT DIVISIONSs, each paragraph begins with

a header entry, optionally followed by one or more words or clauses that comprise the
paragraph body. In the PROCEDURE DIVISION, a paragraph begins with a paragraph
name, optionally followed by one or more sentences comprising the paragraph body. In any
division, a paragraph is terminated by one of the following:

m The next paragraph header or name.

m The next section or division header.

m The physical end of the program in the PROCEDURE DIVISION.

m The words END DECLARATIVES in the PROCEDURE DIVISION.
m The words END PROGRAM in the PROCEDURE DIVISION.

Program Structure 2-7



Program Structure: Paragraphs

Paragraph Header and Name Format

The paragraph header, used in the IDENTIFICATION and ENVIRONMENT DIVISIONSs,
consists of a COBOL reserved word identifying the paragraph, followed by a period and a
space. In the IDENTIFICATION DIVISION, only the following headers are permitted:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

REMARKS. (This is an HP extension to the ANSI COBOL standard.)
In the ENVIRONMENT DIVISION, only these headers are allowed:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECTAL-NAMES.

FILE-CONTROL.

I-0-CONTROL.
The paragraph name, used in the PROCEDURE DIVISION, is a user-defined word that

identifies the paragraph and is always terminated by a period and a space. It must be unique
within a section or in a program if no sections are defined. If sections are used, however, the
same paragraph name may appear in different sections. When referencing such a paragraph,
you can use the section name to qualify the paragraph name, and you must do so if you are
referencing it from within a section other than the section in which it is defined.

The paragraph header or name must be the first item on a coding line, but may be followed
by other items on the same line.

In Figure 2-2, the IDENTIFICATION DIVISION contains paragraphs identified by the
headers PROGRAM-ID (item 6) and AUTHOR (item 7). The PROCEDURE DIVISION
includes one paragraph (item 8) identified by the user-defined name ENTER-ROUTINE (item 9).

2-8 Program Structure



Program Structure: Sentences, Statements, Clauses

Sentences, Statements, and Clauses

Within a paragraph, sentences (in the PROCEDURE DIVISION) and entries (in the
IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs) may appear. Within a
sentence, in turn, one or more statements can be written. These items provide a further
syntactic breakdown of your program. In structure, they closely resemble their English
language counterparts.

A sentence is a sequence of one or more statements, with the last statement terminated by a
period followed by a space.

A statement is a syntactically valid combination of words and symbols, beginning with a verb

such as ADD, READ, or DISPLAY.

An entry is any descriptive set of consecutive clauses terminated by a separator period
and written in the IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA
DIVISION of a COBOL program.

All of these items are explained further in the descriptions of the divisions in which they
appear.

In Figure 2-2, the PROCEDURE DIVISION begins with a sentence that contains a single
statement: MOVE ZEROS TO TOTAL COST. (item 10). Another example is the sentence shown
below, which contains two statements:

DISPLAY AREA-A “=" NAME-OUT <#——— First Statement

Verb /
\

-
LG200026,_005 MOVE NAME-QUT TO SAVER. -¢—————— Second Statement

A clause is an ordered set of character strings (sequences of characters) that specify an
attribute of an entry in the program.

In Figure 2-2, the IDENTIFICATION DIVISION contains the clauses COBOL-F1D3 (item 11)
and ARTHUR-JONES (item 12).

Statements and entries may also include phrases and clauses. A phrase is a sequence of one
or more consecutive character strings that form a portion of a statement or clause. In the
example below, the characters RED-DATA OF COLOR-DATA form a phrase:

MOVE RED-DATA OF COLOR-DATA TO FORM-DATA.

Program Structure 2-9






3

Program Elements

All COBOL language constructs are made up of basic elements comprised of character strings
and separators. A character string is a character or sequence of characters that forms a
COBOL word, literal, PICTURE character string, or comment entry (as defined later in

this chapter). Every character string is enclosed by a separator that is either a single special
character (such as a period, comma, semicolon, or blank) or a sequence of special characters.
The characters that you can use in character strings and separators are selected from the
COBOL character set, described in this chapter under “Character Set.”

Program Elements 3-1



Program Elements

Character Strings
Character strings may form:

m Words.

m Literals.

m PICTURE character strings.

m Comment entries.

Words

In COBOL, a word is generally the name of some entity such as a function, paragraph,
register, section, data item, constant, or other syntactical term used in a format description.
There are four types:

m Reserved words.

m User-defined words.

m System names.

m Function-Names.

Each word is limited to a maximum length of 30 characters. Certain types of words, such as
user-defined words, may be restricted to a shorter length.

Reserved Words

A COBOL reserved word is a word that has a predefined meaning (see Appendix I' for a
complete list) that is always consistent within all COBOL programs. Thus, reserved words
are always interpreted in the same way by the compiler. For instance, the reserved word
SECTION always denotes a COBOL section header. As a programmer, you may not define
your own reserved words. You can use the following types of reserved words in your program:

m Keywords.
m Optional words.

Special register words.

Figurative constant words.

Special character words.

3-2 Program Elements



Program Elements

Keywords. A keyword is a reserved word that is required in a statement or clause. You
must enter the keywords where they are used. In the division header below, the words
PROCEDURE, DIVISION, and USING are keywords. (In the format descriptions in this
manual, all keywords are denoted by underlined upper case letters.) The USING clause is
optional, as indicated by the brackets. But if you use this clause in your program, you must

include the keyword USING.
PROCEDURE DIVISION [USING {data-name-1} ... ].

Optional Words. An optional word is a reserved word that you can include in or omit from a
statement or clause. It has no effect on program execution and serves only to make source
program listings more readable. In the following clause, the words MODE and IS are optional.
(In the format descriptions, all optional reserved words are denoted by upper case letters that
are not underlined.)

SEQUENTIAL
ACCESS MODE IS { RANDOM
DYNAMIC

LG200026_007

Special Register Words. A special register is a storage area in main memory that contains
information primarily used in connection with specific COBOL features. The content of
this area is generated automatically by the compiler. In a COBOL program, such an area
is referenced by a special register word. Those special register words that are part of ANSI
COBOL are indicated in Table 3-1.

Table 3-1. Special Register Words

Word Contents

LINAGE-COUNTER | An unsigned number used to keep track of the number of
lines written to each page of a printed report. It is
generated for each output file whose description in the
DATA DIVISION contains a LINAGE clause (which
defines the number of lines permitted per page). The
register is initialized to zero and then updated each time a
line 1s written with the WRITE statement in the
PROCEDURE DIVISION. When this value exceeds the
number specified by integer-1 or data-name-1 in the
LINAGE clause, the program skips to the next page and
resets the register to one.

DEBUG-ITEM A data item used in support of the COBOL DEBUG
facility. The compiler automatically generates one
DEBUG-ITEM register for each program.

Program Elements 3-3



Program Elements

Table 3-2 lists the HP COBOL II special register words that are an HP extension to the ANSI
COBOL standard.

Table 3-2. Extensions to Special Register Words

Word Contents

TALLY A 5-digit unsigned integer typically used to store
information produced by the EXAMINE statement in the
PROCEDURE DIVISION. (This statement counts the
occurrences of a particular character within a data item
and optionally replaces all instances of that character with
another character.) This register may also be used as a
data name for an unsigned numeric value with no decimal
positions, for instance, as a subscript.

CURRENT-DATE An 8-digit alphanumeric item used only as the sending
field in a MOVE or DISPLAY statement in the
PROCEDURE DIVISION. These statements send data to
another field or to an output device, respectively. This
item is always stored in this format:

mn/dd/yy

Here, mm indicates the month, dd indicates the day of the
month, and yy indicates the last two digits of the year.
The slash marks are automatically included in the data;
you need not insert them.

The date and time are obtained from the software clock.
The date and time obtained by the COBOL function
CURRENT-DATE are obtained from the hardware clock.
See Chapter 10 for more information about the COBOL
function CURRENT-DATE.

WHEN-COMPILED An 18-character alphanumeric item that represents the
date and time that the program is compiled. It may be
used only in MOVE and DISPLAY statements of the
PROCEDURE DIVISION. This field is automatically

stored as follows, with slash marks inserted:
mm/dd/yyULIhh :mm: ss

As in the CURRENT-DATE format, mm means current
month, dd means day of month, and yy indicates the year.
The hh:mm:ss means hours, minutes and seconds, as in

TIME-OF-DAY.

The date and time are obtained from the software clock.
The date and time obtained by the COBOL function
WHEN-COMPILED are obtained from the hardware
clock. See Chapter 10 for more information about the

COBOL function WHEN-COMPILED.

3-4 Program Elements



Program Elements

Table 3-2. Extensions to Special Register Words (continued)

Word Contents

RETURN-CODE A predefined numeric data name in the PROCEDURE
DIVISION of a subprogram, RETURN-CODE 1s used to
pass a value back to the calling program. For complete
information, see “GIVING Phrase (COBOL
Subprograms)” in Chapter 11.

TIME-OF-DAY A six-character numeric item accessed only as the
transmitting field of a MOVE or DISPLAY statement in
the PROCEDURE DIVISION to access the time of day.
This data may be used to determine the clock time
required to run a COBOL program; this is done by
printing the contents of this register at the beginning and
end of the program. Remember however, that clock time
in a multiprogramming environment is not necessarily
related to the central-processor time used by the program;
it varies according to the current mix of active programs.
The data is always stored in this format:

hhmmss

hh indicates the current hour, mm the current minute, and
ss the current second, relative to midnight. The data is
unedited. However, the statement DISPLAY
TIME-OF-DAY results in the edited format:

hh:mm:ss

Program Elements 3-5



Program Elements

Figurative Constants. Figurative constants are values that have been used so often that

they have been assigned fixed data names within the COBOL language. For example, the
figurative constant consisting of a string of zeros is the figurative constant ZIFRO. The values
for figurative constants are generated automatically by the compiler. The figurative constants
that you can use are shown in Table 3-3. Singular and plural forms of these words are
identical.

Table 3-3. Figurative Constant Words

Word

Constant Value

ALL literal

The character string denoted by the variable literal. This
string may be either a nonnumeric literal (as defined later
in this chapter), or another figurative constant (such as
ZERO). If a literal is used, it must be enclosed in
quotation marks. If a figurative constant is used, the word
ALL is redundant.

HIGH-VALUE
HIGH-VALUES

One or more occurrences of the character with the highest
possible value in the program collating sequence. The
default program collating sequence is the ASCII Collating
Sequence. The ASCII equivalent of this character i1s not
used on the HP computers, but this bit configuration is
equivalent to the hexadecimal character FF. (all eight bits
on

)

symbolic-—character

LOW-VALUE One or more occurrences of the character with the lowest

LOW-VALUES possible value in the program collating sequence. This is
the nonprinting character NULL. The default program
collating sequence is the ASCII Collating Sequence. (all
eight bits off)

QUOTE One or more quotation marks. This constant is used to

QUOTES code the quotation mark as a literal in statements such as
MOVE QUOTES. However, the word QUOTE or
QUOTES cannot be used in place of an explicit quotation
mark (7) to delimit a nonnumeric literal. Thus, QUOTE
ABD QUOTE cannot be substituted for the nonnumeric
literal “ABD”.

SPACE One or more spaces.

SPACES

ZERO One or more occurrences of the digit zero.

ZEROS

ZEROES

fALL] User-defined figurative constants which are defined using

the SYMBOLIC CHARACTERS clause of the
ENVIRONMENT DIVISION.

3-6 Program Elements




Program Elements

Figurative constants are not enclosed in quotation marks or apostrophes. The number of
characters for a figurative constant is determined by the size of the field to which the constant
is moved or with which it is associated, as follows.

1.

When the constant is associated with another data item, as in a VALUE clause or when
the constant is moved to or compared with another item, the constant assumes the same
length as the associated item. The string of characters represented by the constant is
repeated, character by character, until the size of the resultant string equals that of the
associated data item. Thus, when the constant word group ALL literal is used, the literal
specified is repeated until the associated data item is filled with the value of the literal. For
example, if FIELD-A is defined as a ten-character item, the statement:

MOVE ALL "123" TO FIELD-A
produces the following result:

1231231231

. When the constant is not associated with some other item, as when used in a DISPLAY,

STRING, UNSTRING, EXAMINE, or STOP statement, the constant assumes a length of
one character or the length of the literal.

A figurative constant may be referenced wherever a literal appears in a format description,
except that literals restricted to numeric characters only may be replaced by the figurative

constant words ZERO, ZEROS, OR ZEROES only.

Use of figurative constant words is demonstrated in Table 3-4 with MOVE and STRING
statements, which transmit the value of the constants referenced to the storage areas denoted

by STORE-n.
Table 3-4. Figurative Constants Examples
Example Comment
MOVE QUOTES TO Suppose STORE-1 is an area six character positions long.
STORE-1 When this statement is executed, STORE-1 contains:

MOVE ALL "NEGATIVE" |Suppose STORE-2 is twelve positions long. It contains:
TO STORE-2

NEGATIVENEGA
MOVE SPACES TO Suppose STORE-3 is nine positions long. It contains all
STORE-3 spaces.

STRING QUOTE "BETA" |Suppose STORE-4 is six positions long. It contains:
QUOTE DELIMITED BY N
SIZE INTO STORE-4 BETA
Note that quotation marks delimit the literal value BETA
in the program. These, however, are not transmitted to
STORE-4. Instead, the quotation marks in STORE-4 are

supplied by the figurative constant QUOTE.

Program Elements 3-7



Program Elements

Special Character Words. A special character word is a reserved word, grouping of reserved
words, or character that represents an arithmetic or relational operator. These words are
listed in Table 3-5.

Table 3-5. Special Character Words

Arithmetic Relational
Operators Operators
+ S [NOT] GREATER THAN
S [NOT] >
- S [NOT] LESS THAN
S [NOT] <
* S [NOT] EQUAL TO
IS [NOT] =
/ IS <> (<> is an HP extension to the ANST COBOL standard.)
IS GREATER THAN OR EQUAL TO
*ok IS >=
IS LESS THAN OR EQUAL TO
IS <=

User-Defined Words

A user-defined word is a word that you must supply to satisfy the format of a statement or
clause. Such words act as arbitrary variables that name or identify various program items.
These words include such elements as program names, section names, paragraph names, and
data names. In the PROCEDURE DIVISION header below, data-name-1 is a user-defined
word. (In the format descriptions, all user-defined words are denoted by italic lower case
letters.)

PROCEDURE DIVISION [USING {data-name-1} ... ].

The following shows a PROCEDURE DIVISION header with the data names ALPHA, BETA,
and GAMMA:

PROCEDURE DIVISION USING ALPHA, BETA, GAMMA.

User-defined data names, procedure names, and section names can contain up to 30
characters. These include letters (A through Z), digits (0 through 9) and the hyphen

(-). Except for paragraph names, section names, segment numbers, and level numbers,

all user-defined words must contain at least one alphabetic character (letter). However,
user-defined words cannot begin or end with a hyphen, include an embedded space, or have
the same spelling as any reserved word.

Note For more information on internal naming conventions, refer to “System
Dependencies” in Appendix H.

In specific formats, the rules covering user-defined words may be more restrictive. Where such
rules apply, they are explained in the description of the statement or clause in which the word
appears.

3-8 Program Elements



Program Elements

In ANSI COBOL’85, 15 types of user-defined words are permitted. These are defined in
Table 3-6. Fourteen of these word types are implemented in HP COBOL II. routine-name is
not, but it is accepted by the compiler and treated as a comment.

Table 3-6. User-Defined Word Types

Word Type Definition

Alphabet-name Word that identifies (names) a specific character set or
collating sequence to be used by the program. Defined in
SPECIAL-NAMES paragraph of ENVIRONMENT
DIVISION; used in CODE-SET clause of DATA DIVISION
and in COLLATING SEQUENCE phrase of SORT and
MERGE statements in PROCEDURE DIVISION. Must also
be named in the PROGRAM COLLATING SEQUENCE
clause of the CONFIGURATION SECTION in the
ENVIRONMENT DIVISION in order to specify a collating
sequence to be used throughout your program.

Condition-name Word that identifies a specific value, or subset or range of
values, within a complete set of values that a data item may
assume. (This data item is called a conditional variable.) Tt
may be defined in the DATA DIVISION, where the
condition name is preceded by the level number 88 and
followed by a VALUE clause. In the following example, the
condition names FIRST-CONST, SECOND-CONST, and
THIRD-CONST appear:

02 CONST PICTURE 99.
88 FIRST-CONST VALUE IS 10.
88 SECOND-CONST VALUE IS 20.

88 THIRD-CONST VALUE IS 30.

A condition name may also appear in the
SPECTAL-NAMES paragraph of the ENVIRONMENT
DIVISION, where it is assigned to denote the status of
switches or as an abbreviation for specific conditions.

Data-name Word that identifies a data item. Defined in data description
entries in the DATA DIVISION. Cannot be subscripted,
indexed, or qualified unless specifically permitted by the
format description in which it appears.

File-name Word that identifies a data file. Defined in a file description
entry or a sort-merge file description entry in DATA
DIVISION.

Indez-name Word that identifies an index associated with a specific

table, and used to select an item from that table. Used in

DATA and PROCEDURE DIVISIONS.

Program Elements 3-9



Program Elements

Table 3-6. User-Defined Word Types (continued)

Word Type

Definition

Level-number

Word that indicates the position of a data item in the
hierarchical structure of a logical record, or that indicates
special properties of a data description entry. Level numbers
1 through 49 indicate the position in a record structure; level
numbers 66, 77, and 88 identify special properties. In the
example that appears in the condition-name description
above, level numbers 02 and 88 are used. In single-digit level
numbers, a leading zero may be optionally added. Used in

the DATA DIVISION.

Library-name

Word that identifies a COBOL library (containing source
text) used as input by the compiler during a particular
compilation. Used in all divisions.

Mnemonic-name

Word equated to a name that identifies a special feature of
the computer system on which the program is compiled or
run. This relationship is established in the
SPECTAL-NAMES paragraph of the ENVIRONMENT
DIVISION.

Paragraph-name

Word that identifies and begins a paragraph in the
PROCEDURE DIVISION.

Program-name

Word that identifies a COBOL language source program.
Used in the IDENTIFICATION DIVISION.

Record-name

Word that identifies a logical record in a data file. Used in a
record description entry in the DATA DIVISION and
WRITE statement in the PROCEDURE DIVISION.

Routine-name

Word that identifies a procedure written in a language other
than COBOL. Used in PROCEDURE DIVISION in ANSI
COBOL, but HP COBOL II treats it as a comment.

Section-name

Word that identifies and begins a section in the
PROCEDURE DIVISION.

Segment-number

Word that classifies sections in the PROCEDURE
DIVISION for purposes of program segmentation. Must be
one of the numbers zero through 99; leading zeros are
optional.

Text-name

Word that identifies text within a source library. Used in all
divisions.

3-10 Program Elements




Program Elements

All user-defined words within the same program, except segment numbers and level numbers,
can belong to only one of the following disjoint sets.

Alphabet names.

Condition names, data names, and record names.
File names.

Index names.

Library names.

Mnemonic names.

Paragraph names.

Program names.

Section names.

Text names.

For example, if the word TEST-1 is used as a program name, it cannot also be used as a
routine name. Furthermore, all such words must be unique within a disjoint set, either
because no other user-defined word in the set is spelled and punctuated the same way or
because uniqueness is ensured by qualification. In other words, a program cannot include two
paragraphs both named PAR-A unless special qualification is made.

Note The general term procedure-name is often used to refer to either a section
name or a paragraph name in the PROCEDURE DIVISION.

Following are examples of user-defined names:

END-0F-SCHOOL-AVERAGE
PAGECTR
123B

System Names
This is an obsolete feature of the 1985 ANSI COBOL standard.

A system name is a word that is used to define the operating environment in which the
COBOL program is compiled or run. It permits communication between the program and this
environment. There are two types of system names:

m Computer name, used to identify the computer on which the program is to be compiled or
run. This name appears in the CONFIGURATION SECTION of the ENVIRONMENT
DIVISION.

m Language name, used to specify the language in which the program is written. This name is

used in the ENTER statement of the PROCEDURE DIVISION.

In HP COBOL II, all system names are treated as comments. They appear on source program
listings but do not affect compilation or execution. Nevertheless, when present, system names
can only contain letters (A through 7), digits (0 through 9), or hyphens. The first character of
a system name must be alphabetic and the last character in the name cannot be a hyphen.

Program Elements 3-11



Program Elements

Function-Names

A function-name is a word that names a function you can call from your COBOL source
program. Except for CURRENT-DATE, LENGTH, RANDOM, and WHEN-COMPILED,
which are already reserved words, you can use function-names in a different context as
user-defined words or system-names. See Chapter 10, “COBOL Functions,” for more
information about the COBOL functions.

Literals

A literal is a character string that defines itself, rather than representing some other value.
The value of the literal is the character string composing the literal.

Literals are always constant values that cannot be changed during program execution.
Because literals are self-defining, you do not define them in the DATA DIVISION. Instead,
you code them directly into your program.

In COBOL, two types of literals are used, numeric and nonnumeric.

3-12 Program Elements



Program Elements

Numeric Literals

A numeric literal is essentially a number (numeric value) that is specified directly in a
program. It is comprised of characters selected from the digits 0 through 9, the plus sign (4),
the minus sign (-), and a decimal point (.). As an example, the literal 1 appears in the ADD
statement below:

ADD 1 TO PAGE-NUMBER.

The specific value of the literal is the algebraic quantity represented by the characters that
compose the literal. In the format descriptions, literals are indicated by the word literal-n.
For example, literal-1 and literal-2. Every numeric literal must contain:

m At least one digit.
m No more than 18 digits.

m No more than one arithmetic sign (+ or -). If a sign is used, it must appear as the leftmost
character in the literal. If no sign is used, the literal is treated as a positive value by the
compiler.

m No more than one decimal point. If a decimal point is used, it may appear anywhere in
the literal except as the rightmost character. (Any decimal point used as the rightmost
character is interpreted as a period that terminates a sentence.) If no decimal point is used,
the literal is treated as an integer.

Note If a character string follows the rules for the formation of a numeric literal,
but is enclosed in quotation marks, it is treated by the compiler as a
nonnumeric literal. (See “Nonnumeric Literals” below.) As such, it cannot be
used in arithmetic operations.

Following are examples of numeric literals:
1670037627 3.415
+2 -30.06
Octal Literals
Octal literals are an HP extension to the ANSI COBOL standard.

You can use octal literals in your program. Octal literals are always preceded by a percent
sign (%). Following are examples of octal literals:

%17 U3TTTTTTTTTT %456

Program Elements 3-13



Program Elements

Tip Try using the SYMBOLIC CHARACTERS clause to define constants instead
of using octal literals.
Caution For octal literals used in VALUE clauses, it is recommended that you only use

nonnumeric items or items with USAGE BINARY. For other types that are
used in level 88 values, the octal literal is converted to decimal before it is
used. Otherwise, no conversion is done for octal literals. When no conversion
is done, the octal literal is right-justified with NULL fill.

No conversion is done for octal literals in the PROCEDURE DIVISION except
in arithmetic statements. You must make sure the octal literal is a valid value

for the particular way you are using it.

In IF statements, a nonnumeric compare is performed without conversion of
the octal literals. The DISPLAY, EXAMINE, INSPECT, SEARCH ALL,
STRING, and UNSTRING statements interpret the octal constants as

nonnumeric literals.

Examples. The following program uses octal literals:

WORKING-STORAGE SECTION.

01 ITEM-ALPHA PIC XX
01 ITEM-NUMERIC PIC 99 BINARY VALUE %47.
01 TITEM-NUM PIC 99

DISPLAY
DISPLAY
DISPLAY
DISPLAY
ADD %23
DISPLAY

%54131.
ITEM-ALPHA.
ITEM-NUMERIC.
ITEM-NUM.

TO ITEM-NUM.
ITEM-NUM.

When the above program runs, it displays the following:

XY
AB
39
12
31

VALUE %40502.

VALUE %30462.

Octal literal is “AB”.
Octal literal is 39.
Octal literal is ASCII 12.

Octal literal is “XY”.
Displays “AB”.

Displays 39.

Displays the value 12.
Adds octal 23 (decimal 19).
Displays the sum, 31.

See also the SYMBOLIC CHARACTERS clause in Chapter 6, “ENVIRONMENT
DIVISION.”

3-14 Program Elements



Program Elements

Nonnumeric Literals

A nonnumeric literal is a character string containing letters, digits, or special characters that
is coded directly into a program. It is formed by entering:

m A quotation mark or apostrophe that denotes the beginning of the literal.
m The character string that comprises the literal.
m A matching quotation mark or apostrophe that delimits the end of the literal.

A character string may be from 1 to 255 characters long (an HP extension to the ANSI
COBOL standard ), and may consist of any of the characters from the ASCII collating
sequence. (The ANSI COBOL standard allows a maximum length of 160 characters.) See
Appendix D for a list of these characters.

Note The delimiting quotation marks or apostrophes are not considered part of the
literal.

All punctuation marks within a nonnumeric literal are treated as ordinary
punctuation marks, not as delimiters or separators.

Single and Double Quotation Marks in Nonnumeric Literals

You can use either quotation marks or apostrophes as delimiters. There is no restriction

on which set of delimiters can be used at a given time. This allows you a great amount of
freedom in forming nonnumeric literals. For example, to display the following message on your
terminal screen:

PLEASE ENTER "AGE UNDETERMINED" IF UNSURE
You can use the following DISPLAY statement:
DISPLAY ’PLEASE ENTER "AGE UNDETERMINED" IF UNSURE’

As an example of invalid usage, the character string, >I DON’T KNOW’, is interpreted by the
HP COBOL II compiler as being the string, >I DON’, followed by the characters, T KNOW’.
In this case, a syntax error would be generated. Since you can use quotation marks and
apostrophes throughout your program to delimit nonnumeric literals, the above string could
be made valid by using quotation marks:

DISPLAY "I DON’T KNOW"

Program Elements 3-15



Program Elements

Embedded Quotation Marks in Nonnumeric Literals

You can use two consecutive quotation marks, or two consecutive apostrophes, within the
characters of a nonnumeric literal to represent a single quotation mark or apostrophe. For
example, the DISPLAY statement above could also have been written as follows:

DISPLAY ’I DON’’T KNOW’

The results of executing this statement would be the following message on your terminal
screen or line printer:

I DON’T KNOW

If you use double apostrophes in a nonnumeric literal, and the literal is bounded by quotation
marks, then both apostrophes are used as part of the literal. The opposite is also true. For
example:

DISPLAY "DOUBLE APOSTROPHES, ’’, ARE PART OF THIS LITERAL"
The above statement results in the following:

DOUBLE APOSTROPHES, °’’, ARE PART OF THIS LITERAL
Following is another example:

DISPLAY ’DOUBLE QUOTES, "", ARE PART OF THIS LITERAL’
The above statement results in the following:

DOUBLE QUOTES, "", ARE PART OF THIS LITERAL

Notice that the figurative constant words QUOTE and QUOTES cannot be used to supply
delimiting quotation marks for nonnumeric literals.

For how to continue nonnumeric literals onto a second line, see “Continuation Lines” later in
this chapter.

3-16 Program Elements



Program Elements

PICTURE Character Strings
The PICTURE character string appears in the PICTURE clause of the DATA DIVISION.

This clause describes the characteristics and editing requirements of data that is typically
destined for some external output device such as a terminal or line printer. Specifically, the
PICTURE clause determines the appearance of the field that is actually output by specifying:

m The size of the field.

m The class (type) of data that can be written into the field (alphabetic, numeric, or
alphanumeric).

m The appearance of a numeric sign, if any, in the field.
m The position of the decimal point, if any, in the field.
m The editing required to insert, suppress, or replace characters in the field.

The PICTURE clause supplies currency signs, leading or trailing zeros, commas, plus or minus
signs, and other punctuation stated in the PICTURE string. Often, for example, it is used

to suppress leading zeros on checks, replacing them with asterisks or spaces. As an example,
if the data to be printed was comprised of the digits 8765432123 and you wished to print it

as a dollar value with appropriate punctuation, you could specify the following PICTURE
character string in the PICTURE clause:

$99,999,999.99

In this string, the “9” digits are used as special symbols to specify the character positions
that are filled with numeric data. The dollar sign, commas, and decimal point indicate the
positions of the punctuation characters. The PICTURE character string is superimposed on
the output data so that the following information is printed:

$87,654,321.23

Complete details about PICTURE character strings appear in Chapter 7.

Program Elements 3-17



Program Elements

Comment Entries
This is an obsolete feature of the 1985 ANSI COBOL standard.

You should use comment lines instead of comment entries. A comment entry is used in the
IDENTIFICATION DIVISION to include comments or remarks in the program. These
comments appear on the source program listing but do not affect program compilation or
execution. They denote such items as program author, installation name, date written, date
compiled, security requirements, and other general remarks. They may include any printable
character from the ASCII Character Set.

All comment entries are optional. When included, however, they must also conform to the
rules for paragraph and sentence structure described in this manual.

Comment Lines

A comment line is any line with an asterisk in the continuation indicator area (column 7) of
the line.

A comment line can appear anywhere in your program following the IDENTIFICATION
DIVISION header. It can be made up of any combination of characters from the ASCII
collating sequence, with all characters (except the asterisk in column 7) contained in columns
8 through 72 of the line.

Additionally, you can use a special form of comment line to cause page ejection prior to
printing the comment. This special comment line is the same as the general one described
above, except you put a slash character (/) in column 7 instead of an asterisk.

3-18 Program Elements



Program Elements

Separators
A separator is a punctuation character that delimits a character string. Separators include:
m Spaces (one or more).

m A comma or semicolon immediately followed by a space, except when the comma is used in
a PICTURE character string.

m A period that is followed by a space. The period must be used only to indicate the end of a
sentence, or as shown in formats.

m Left and right parentheses. These must only appear as balanced pairs used to delimit
subscripts, indices, arithmetic expressions, conditions, reference-modifiers, or a list of
function arguments.

m Quotation marks or apostrophes. These delimit nonnumeric literals, and must appear as
balanced pairs (except as noted under “Continuation Lines” later in this chapter). An
opening quotation mark or apostrophe must be immediately preceded by a space or left
parenthesis. A closing quotation mark or apostrophe must be immediately followed by a
space, comma, semicolon, period, or right parenthesis.

m Sets of two contiguous equal signs (==), used to delimit pseudo-text. (Pseudo-text is text
incorporated into, or replaced in, a COBOL program by the COPY or {REPLACE}}
statement.) An opening delimiter must be immediately preceded by a space; a closing
delimiter must be immediately followed by a space, comma, semicolon, or period. These
delimiters must appear in balanced pairs.

Any of the above separators may, at your option, be immediately preceded by one or more
spaces, except if specifically prohibited by format rules. (A space preceding a closing
quotation mark is treated as part of the literal enclosed by this and the preceding quotation
mark.)

Any of the above separators, except the opening quotation mark, may be optionally followed
immediately by one or more spaces. (A space following an opening quotation mark is
considered as part of the literal enclosed by this and the next following quotation mark.)

Note The above rules do not apply to punctuation characters within nonnumeric
literals, comment entries, comment lines, or PICTURE character strings.
Those characters are not regarded as separators.

Program Elements 3-19



Program Elements

Character Set

Most character strings and all delimiters in a COBOL program are formed from characters
selected from the COBOL character set. This character set includes upper case letters A
through 7, lower case letters a through z, digits 0 through 9, and certain special characters:

Special
Character Meaning

+ Plus sign

- Minus sign

* Asterisk

/ Slash

= Equal sign

$ Currency sign

, Comma

; Semicolon
Colon
Period (decimal point)

Quotation mark

’ Apostrophe This is an HP extension to the ANSI COBOL standard.
( Left parenthesis
) Right parenthesis
> Greater than
< Less than

Space
% Percent sign This is an HP extension to the ANSI COBOL standard.
@ At sign This is an HP extension to the ANSI COBOL standard.
\ Back slash This is an HP extension to the ANSI COBOL standard.

In the case of nonnumeric literals, comment entries, and comment lines, additional characters
may be used. These characters are selected from the ASCII Character Set listed in
Appendix D, (which includes the COBOL Character Set).

3-20 Program Elements



Program Elements

Note When lower case letters appear outside of literals, the HP COBOL II compiler
automatically converts them to upper case letters.

Each character in the ASCII Character Set has a unique value that establishes its order in the
collating sequence of this character set. In Appendix D, the characters are listed in order of
ascending value.

Note When COBOL programs originally written for other systems are run on an
HP Computer System, variations between the collating sequences for both
systems may cause variations in output. For example, the Binary Coded
Decimal (BCD) and Extended Binary Coded Decimal Information Interchange
Code (EBCDIC) both collate the letters of the alphabet before (lower than)
the digits 0 through 9. This differs from the ASCII Collating Sequence, where
digits are collated before letters. In addition, several special characters collate
differently in various sequences. To permit valid processing when a different
collating sequence is used, you may specify the appropriate sequence in the
ALPHABET and PROGRAM COLLATING SEQUENCE clauses of the
ENVIRONMENT DIVISION.

Program Elements 3-21



Program Elements

Coding Rules

The following paragraphs state the standards that you should follow when coding COBOL
source programs. These coding rules are known in COBOL as the reference format.

Sequence Number (Columns 1 through 6)

Sequence numbers appear in columns 1 through 6 of the source record. They identify the
order of the record with respect to other records in your program. When you enter a program
through EDIT /3000, the sequence numbers are supplied automatically by that subsystem.
When you write the program on a coding form, however, these numbers are optional. When
you choose to use them, you enter them in columns 1 through 6 of the coding sheet. Any
character may be used in the sequence numbers, though sequential numbers are recommended.

When you compile your program, you may request the compiler to use the sequence numbers
to check the sequence of the source statements in the program. You may also request the
compiler to renumber these statements. You select these options with the $EDIT command
(refer to Appendix B for descriptions of the SEDIT options).

Sequence numbers are also useful if you must recompile the program. They allow you to
merge new text with the originally compiled text stored on disk, according to sequence
number. Thus, you need to enter only additional or changed statements for this compilation.

Note If you intend to use this feature, increment the sequence numbers by 10 or 100
to allow space for possible new statements.

Program Text (Columns 8 through 72)

Program text appears in columns 8 through 72. This group of columns is divided into

Areas A and B. The coding sheet provides both column and area headings. All Area A and
Area B coding conventions presented throughout this manual represent the ANSI standard
specifications for COBOL. In many instances the HP COBOL II compiler allows variations
from these standards. In order to enhance the readability of source programs, and ensure
compatibility with standard ANSI COBOL, you are encouraged to follow the rules presented
here.

In Area A (columns 8 through 11), you begin all division headings, section headers, paragraph
headers, paragraph names, level indicators FD and SD, and level numbers 01 and 77. These
entries may, where necessary, be continued into Area B.

In Area B (columns 12 through 72), you enter all other COBOL text. For example, the
following elements must appear in Area B: all sentences and procedural statements; data
description entries (including their names), whether or not associated with level indicators and
numbers.

3-22 Program Elements



Program Elements

Continuation Lines

Any sentence or entry that requires more than one line, must be continued in Area B of the
next line. Your program can contain any number of continuation lines.

When a word or numeric literal is broken from one line to the next, you must enter a hyphen
(-) in column 7 of the continuation line. This hyphen indicates that the first nonspace
character in Area B is part of the word or literal broken on the previous line.

When a nonnumeric literal is broken from one line to the next, you again must place a hyphen I
in column 7, and you must enter a quotation mark or apostrophe before the continuation of

the literal. In any case, the continuation of the word or literal can begin anywhere within

Area B of the continuation line. All spaces at the end of the continued line are considered

part of the end of the word or literal. In any continuation line, Area A must contain spaces

only.

Examples

The following example shows a continuation line where the data item ITEM-NUMBER-FOUR
is continued onto the second line:

ADD ITEM-NUMBER-ONE, ITEM-NUMBER-TWO, ITEM-NUMBER-THREE TO IT
- EM-NUMBER-FOUR. 1
1 1 Column 72
Columns 7 and 14.

All characters of the first line up to column 72 are considered part of the line. On the second
line, the continuation hyphen is in column 7. The continuation text begins in column 14.

The following example shows a nonnumeric literal continued onto a second line. The literal is:
"Name 1A Number 1A Name 2A Number 2A Name 3A Number 3A Name 4A Number 4A"

MOVE "Name 1A Number 1A Name 2A Number 2A Name 3A Number 3A N
- "ame 4A Number 4A" TO RECORD-ITEM. 1
1 1 Column 72
Columns 7 and 12.

All characters of the first line up to column 72 are considered part of the literal. Notice that
there is no closing quotation mark on the first line. Once again, the continuation hyphen is in
column 7, and the continuation text begins in column 12. The continuation of the literal must
start and end with quotation marks or apostrophes.

The following example shows that the continued line can start anywhere in Area B. It also
shows apostrophes instead of quotation marks. This example is equivalent to the previous
example:

MOVE ’Name 1A Number 1A Name 2A Number 2A Name 3A Number 3A N
- ’ame 4A Number 4A’ TO RECORD-ITEM. 1
1 1 Column 72
Column 7. Continuation text starts in column 17.

Program Elements 3-23



Program Elements

The following example shows that all characters of the first line are used in the nonumeric
literal:

Columns 68 through 72 are blank
and considered part of the literal.

ol

MOVE "Name 1A Number 1A Name 2A Number 24 Name 3A Number
- "3A Name 4A Number 4A" TO RECORD-ITEM. 1
1 1 Column 72.

Columns 7 and 12.
When the above MOVE statement is executed, the following literal is moved to
RECORD-ITEM:

"Name 1A Number 1A Name 24 Number 24 Name 34 Number 34 Name 4A Number 4A"

There are five spaces between “Number” and “3A” in the literal, which correspond to the five
spaces in columns 68 through 72 of the first line. This literal contains a total of 75 characters.

Debugging Lines

A debugging line is any line with a “D” in column 7. Refer to Chapter 13, for more
information on rules and use of debugging lines.

Identification Code (Columns 73-80)

An optional identification code may appear in columns 73 through 80. This feature can be
used to identify different versions of a program. It also serves as the library name for source
statements placed in a COBOL copy library. All statements in such a library require an
identification code.

3-24 Program Elements



4

Describing and Referencing Data

The data used by a COBOL program is defined and described in the DATA DIVISION, and
referenced and operated upon in the PROCEDURE DIVISION. This data is stored in, read
from, and written to files (collections of information) that reside on various peripheral devices.
For instance, a payroll processing program might accept input from a file that contains wage
and salary information for all employees on the company payroll; this program might also
write new output to this same file during updating operations.

Within a file, all information is organized into units of related data called logical records.
These records are similar in form, purpose, and content. For example, in a payroll file, each
logical record could contain the wage and salary data related to a particular employee. In
other words, there would be one record for each employee.

Within each record, individual elements of data, or groups of such elements, are called data
items. As an example, a payroll record for an employee might contain the following data
items: the employee’s name, social security number, marital status, gross pay, tax exemptions,
individual deductions, and net pay. The individual deductions data item might itself contain
subordinate data items, such as federal income tax, state income tax, insurance premiums,
bond payments, and charity contributions.

Files

In COBOL, a file is a collection of records that is identified by a unique name and is currently
recognizable by your program. The name allows you to reference the file in your program.
Other specifications define how records are organized within the file with respect to the
physical device on which the file is stored. The specifications for the file are defined in the
INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION and the FILE SECTION of
the DATA DIVISION.

Records

Each logical record constitutes a group of related information, uniquely identifiable

and treated as a unit. A record is actually the most inclusive data item in a file. Each
input-output statement in the PROCEDURE DIVISION accesses one logical record, although
it can also extract subordinate data items from that record.

Describing and Referencing Data 4-1



Describing and Referencing Data

Logical Versus Physical Records

A physical record is one or more logical records and is commonly called a block. A block is
the physical unit used by the operating system to read data from a file, or write data to it; it
is the basic unit transferred between the device on which the file resides and main memory
each time a program executes an input or output operation.

You can use the BLOCK CONTAINS clause to specify the size of (that is, the number of
logical records contained in) a physical record. For files on magnetic tape or disk, a block
consists of either one logical record or a group of several logical records. For instance, 2, 16,
or 256 logical records could be grouped into one block. For tape files, blocking is normally
done to improve execution time or to conserve file space by reducing the number of gaps on
the tape. For files on card readers and punches, line printers, and terminals, each block is
identical to each logical record, and its length is determined by the type of device. Thus,
each block/logical record read from a card reader consists of one 80-character punched card;
each block/logical record written to a line printer consists of one line of print; typically 132
characters. The size of a block has no relation to the size of the data file contained on the
device to or from which the block is transferred.

A single storage device can hold one or more logical records.

Note In this manual, the term record refers to logical records unless the term block
or physical record is specifically used.

COBOL allows you to define logical records in main memory as well
as in files stored on peripheral devices. This definition is done through
the WORKING-STORAGE SECTION of the DATA DIVISION (refer
to Chapter 7).

Record Descriptions

Each record in a file is defined by a record description entry in the DATA DIVISION. This
entry, in turn, consists of one or more data description entries that collectively define the
characteristics of the record. Each data description entry consists of the following elements in
the order listed:

m Level number that indicates a subdivision or portion of the logical record.
m Data name that allows you to identify and reference the data item.
m Independent clauses that describe the attributes of the data item.

To reference portions of the information in a logical record, you must subdivide the record
into corresponding data items. You must also identify each data item that you wish to
reference with a name. Once you specify any data item, you can further subdivide it into
subordinate data items to permit more detailed data reference. You can also reference data
using reference modification (described later in this chapter). The level number indicates
the hierarchical order of a data item within the record structure. Figure 4-1 contains some
examples. Since a record is the most inclusive data item your program can reference, it is
assigned the level number 01. Less inclusive data items are assigned numerically higher level
numbers, ranging from 02 through 49. These numbers need not be successive.

The most basic subdivisions of a record (those data items that have no further subdivisions)
are called elementary items. Items with subdivisions are called group items, or simply groups.

4-2 Describing and Referencing Data



Describing and Referencing Data

Within the record description entry, each group includes all following group and elementary
items until an item with a level number greater than or equal to the level number of that
group is encountered.

A record is considered a single elementary item if it is not subdivided; otherwise, it is regarded
as a sequence of elementary items that may or may not be organized into groups. Because of
the hierarchical structure of the record, a basic element can belong to its immediate group

and higher level groups that contain that group. In the PROCEDURE DIVISION, your
program can refer to the entire record, to any group of any level within that record, or to an
elementary item.

In Figure 4-1, a record named PERSONNEL-RECORD (line 11) is defined in the DATA DIVISION.
This record is divided into the various group items:

m Two main group items, named EMPLOYEE-ID (line 12) and ADDRESS (line 15).

m The EMPLOYEE-ID group item is subdivided into two elementary items: EMPLOYEE-NUMBER
(line 13) and SOCIAL-SECURITY-NUMBER (line 14). The ADDRESS group item is subdivided
into three items: STREET (line 16), LOCATION (line 17), and ZIP (line 20).

m The LOCATION group item is further subdivided into two elementary items: CITY (line 18)
and STATE (line 19).

In this example, the following data items are all elementary items: EMPLOYEE-NUMBER,
SOCIAL-SECURITY-NUMBER, STREET, CITY, STATE, and ZIP. If your program accesses the group
item ADDRESS, it implicitly accesses STREET, LOCATION, CITY, STATE, and ZIP.

Notice that the level numbers used in this example are not successive, and that the
descriptions of all elementary items include PICTURE clauses. The first entry in this example
begins with the word FD, which is a level indicator that indicates the entire file; this entry is a
file description entry, which must always precede any group of record description entries in the
FILE SECTION. File description entries are described completely in Chapter 7.

0010 FD PAYROLL-FILE.

0011 01 PERSONNEL-RECORD.

0012 03 EMPLOYEE-ID.

0013 05 EMPLOYEE-NUMBER PIC 9(5).
0014 05 SOCIAL-SECURITY-NUMBER PIC 9(9).
0015 03 ADDRESS.

0016 05 STREET PIC X(20).
0017 05 LOCATION.

0018 07 CITY PIC X(20).
0019 07 STATE PIC X(20).
0020 05 ZIP PIC 9(5).

Figure 4-1. Record Desctiption Entry

Describing and Referencing Data 4-3



Describing and Referencing Data

Level 66, 77, and 88 Iltems

Programs can contain special level numbers that do not actually apply to hierarchical levels.
Instead, they indicate special properties of entries in the DATA DIVISION. These level
numbers are described below:

Level Number Purpose

66 specifies group or elementary items introduced by a RENAMES clause. This
clause permits the regrouping of data.

7 specifies noncontiguous data items that are not subdivisions of other
items and are not themselves subdivided. These items are defined in the

WORKING-STORAGE SECTION and typically reference internal counters

and accumulators.

88 specifies condition names associated with particular values of a conditional
variable.

Refer to the description of the DATA DIVISION in Chapter 7 for specific rules on coding the
above entries.

Data Items - Classes and Categories

Data items in a COBOL program are specified and referenced very precisely. The various
restrictions governing data items are outlined below.

Classes of Data Items
COBOL has three general classes of data items:
m Alphabetic, which can contain letters (A through Z) or spaces, in any combination.

m Numeric, which can contain digits (0 through 9) in any combination, optionally including
an operational sign. This is the only class of data item that can be used in arithmetic
operations.

m Alphanumeric, which can contain any characters from the ASCII character set, in any
combination.

Note For complete compatibility with all ANSI COBOL compilers, use only
members of the COBOL character set.

4-4 Describing and Referencing Data



Describing and Referencing Data

Categories of Data Items

The three classes of data items are subdivided into five categories:
m Alphabetic, which is synonymous with the alphabetic class.

m Numeric, which is synonymous with the numeric class.

m Alphanumeric, which can contain any characters from the ASCII character set in any
combination, not edited by a PICTURE clause.

m Alphanumeric-edited, which can contain any characters from the ASCII character set in any
combination, plus editing symbols supplied by a PICTURE clause.

m Numeric-edited, which can contain any digits (0 through 9), plus editing symbols supplied
by a PICTURE clause.

Note More precise definitions of these categories appear under the description of the

PICTURE clause in Chapter 7.

These classes and categories are independent of the external or internal storage formats of the
data items. The relation of classes to categories are summarized in Table 4-1. For alphabetic
and numeric data items, the classes and categories are synonymous. For alphanumeric data
items, the relation of class to category depends on the level (group or elementary) of the data
item within the record structure. Every elementary item (except an index data item) belongs
to one of these classes and categories. During program execution, every group item is treated
as an alphanumeric item regardless of the class of the elementary items subordinate to that
group item.

Table 4-1. Data Item Classes and Categories

Level of Item Class Category
Elementary | Alphabetic Alphabetic
Numeric Numeric

Alphanumeric | Numeric Edited
Alphanumeric Edited

Alphanumeric

Group Alphanumeric | Alphabetic

Numeric

Numeric Edited
Alphanumeric Edited

Alphanumeric

Describing and Referencing Data 4-5



Describing and Referencing Data

Algebraic Signs

Numeric data can have two types of algebraic signs: operational signs and editing signs.

Operational Signs

These signs are associated with signed numeric data items and signed numeric literals, to
indicate their algebraic properties. In regular (default) internal format, they are represented
in storage as noted in the description of the USAGE clause of the DATA DIVISION (see
Chapter 7). However, you can optionally override this format by explicitly specifying the
location of the signs with the SIGN clause of the DATA DIVISION.

Note Using the SIGN clause to force operation signs into a representation different
from the regular (default) format typically causes the compiler to create less
efficient object code.

Editing Signs

These signs typically appear on edited reports, and are used to denote the positive or negative
value of data. They are inserted into the data through sign/control symbols in the PICTURE
clause.

4-6 Describing and Referencing Data



Describing and Referencing Data

Data Alignment

In a COBOL program, data is moved from one area of storage (sending data item) to
another (receiving data item) through use of the MOVE, ACCEPT, STRING, UNSTRING,
arithmetic, or other statements in the PROCEDURIE DIVISION. When aligning data within
the receiving item, the compiler follows specific rules. These rules depend upon the category
of that item, as noted below. Table 4-2 contains some examples.

m For data items in the numeric category, the compiler aligns the data by the decimal point
and places it in the receiving data item. The compiler also truncates excess characters on
either end of the sending data item, and fills unused positions in the receiving data item
with zeros.

Note The decimal point is never actually stored in a numeric data item; instead, the
compiler defines and keeps track of an assumed decimal point that appears
in the data item only when it is read or written or output. Any stored data
item that contains a combination of digits and editing characters such as the
decimal point, comma, and so forth, does not belong to the numeric category
and cannot be used in arithmetic operations except as a receiving field.

When your program does not explicitly specify a decimal point for a numeric
data item, the compiler defines an assumed decimal point immediately after
the rightmost digit and aligns the item as described above.

m For data items in the numeric-edited category, the compiler aligns the data by decimal point
with zero-fill or truncation at either end (as with numeric data items), except where editing
replaces leading zeros with another character.

Note The decimal point in a numeric-edited data item, unlike that in a numeric
data item, is actually stored in the item.

m For data items in the alphabetic, alphanumeric, and alphanumeric-edited categories,
the compiler aligns the data at the leftmost character position. It also truncates excess
characters to the right of the sending item and fills unused positions to the right of the
receiving item with spaces.

Note If your program specifies the JUSTIFIED clause for the receiving data item in
the DATA DIVISION, the above rules are modified as directed by that clause.

Describing and Referencing Data 4-7



Describing and Referencing Data

Level-01 (record) and level-77 data items are always aligned on word boundaries unless

they are in the LINKAGE SECTION. Refer to “System Dependencies” in Appendix H for
more information. In Table 4-2, a space character is represented by the symbol LI, and an
assumed decimal point position is represented by the symbol A. The receiving data items

for alphabetic and alphanumeric data items are each 11 positions long. The receiving data
item for the alphanumeric-edited data item is six positions long. The receiving data items for
numeric and numeric-edited data items may each contain up to 18 digits. The specifications
for the PICTURE format are explained in Chapter 7.

Table 4-2. Data Alignment

Receiving Field after Transfer
Receiving Item | picTURE Content
Category Data to be Stored before Transfer Clause
Alphabetic ABC PQRSTUVWXYZ | A(11) ABC
ABCDEFGHIJK PQRSTUVWXYZ | A(11) ABCDEFGHIJK
ABCDEFGHIJKLMN | PQRSTUVWXYZ | A(11) ABCDEFGHIJK
Numeric 12 987654 9(3)V9(3) |001A200
123/A456 987654 9(3)VI(3) |123A456
12345A67890 987654 9(3)VI(3) |345A678
Numeric Edited 1.2 987.654 9(3).9(3) |001.200
123.456 987.654 9(3).9(3) 123.456
12345.67890 087.654 9(3).9(3) 345.678
Alphanumeric Edited | ABCDE 777/777 XXX /XXX | ABC/DEU
Alphanumeric A2C PQRSTUVWI123 | X(11) A2CUUUUUUUUY
A2C7EIG*I5K PQRSTUVWI123 | X(11) A2C7EIG*I5K
A2C?EIGFIBK@QM7 PQRSTUVWI123 | X(11) A2C7EIG*I5K

4-8 Describing and Referencing Data



Describing and Referencing Data

Identifiers

Data names that are uniquely identified by qualifiers, subscripts, indexes, or reference

modifiers are known collectively as identifiers. Function-identifiers are also identifiers.

The syntax for identifiers is summarized in the general format:

IN
data-name-—1 { QE} data-name-2 | + - - {gE} {file—name—1}

[({ subscript } + « - )]

LG200026_008a

The syntax for a function-identifier is:
FUNCTION function-name-1 [({parameter-1} ... )1 L[reference-modifier]
Function-identifiers are described later in this chapter.
The following are restrictions on the use of identifiers:
m Where subscripting is prohibited, indexing is also prohibited.

m You can alter the value of an index only by using the SET, SEARCH, and PERFORM
statements in the PROCEDURE DIVISION.

m You can store values referenced by index names into data names that are described by the

USAGE IS INDEX clause of the DATA DIVISION. These data items are index data items.

Describing and Referencing Data 4-9



Describing and Referencing Data

Uniqueness of Reference

To ensure that the basic elements defined in the various program divisions can be properly
referenced in the PROCEDURE DIVISION, the compiler places several restrictions on some
of these elements. These restrictions cover qualifiers, subscripts, indexes, and identifiers as
they apply to data names, condition names, paragraph names, and text names.

Qualifiers

Each data name, condition name, paragraph name, and text name must be unique within

the program in which it appears. Such a name is unique if either of the following conditions

applies:

m No other name in the program has the same spelling and hyphenation.

m [f the same name is used for two different elements in a program, it must be made unique
through qualification. For instance, if two paragraphs are both identified by the name
PAR-MSG, they must be members of different sections, called perhaps SEC-1 and SEC-2.

In the PROCEDURE DIVISION, you might then reference one of these paragraphs by
specifying:

PAR-MSG OF SEC-1.

In a hierarchy of names such as this, the higher-level names are called qualifiers. Specifically, a
qualifier is one of the following;:

m A data name used in a reference together with another data name or with a condition name
at a lower level in the same hierarchy.

m A section name used in a reference together with a paragraph name specified in that
section.

m A library name used in a reference together with a text name associated with that library.

In a program, you qualify a data name, condition name, paragraph name, or text name by
entering one or more phrases composed of the following: the name to be qualified, followed by
the reserved word IN or OF, followed by a qualifier. Four formats are possible, depending on
the type of name:

4-10 Describing and Referencing Data



Describing and Referencing Data

Format 1

o) (o)
data-name-2 =+ « » file~ -1
{data—name—1 } {QE OF { fle=name-1}

condition-name—1 IN
OF { file—-name-1 }

Format 2
paragraph—-name—1 {gE} section—-name-1

LG200026_009a

Format 3

]-N }
text—-name-—1 library-name—1
{ OF i

Format 4
LINAGE-COUNTER { gE} file-name-2

LG200026_010

Note In these format descriptions, the keywords OF and IN are logically equivalent
and can be used interchangeably.

In all cases, you must use sufficient qualifiers to make the name unique. It is not always
necessary, however, to mention all levels in a particular hierarchy.

Within the DATA DIVISION, all data names used as qualifiers must be associated with

a level indicator or level number. Thus, you cannot specify two identical data names as
subordinate entries in a group item unless you can make them unique through qualification.
In the qualification hierarchy, names associated with a level indicator are the most significant;
names associated with level number 01 are the next most significant; names associated with
level numbers 02 through 49 are then ranked in descending order of significance.

Describing and Referencing Data 4-11



Describing and Referencing Data

In the PROCEDURE DIVISION, two identical paragraph names must not appear in the same
section. A section name is the highest and only qualifier for a paragraph name.

Note The most significant name in any hierarchy must be unique and cannot be
qualified.

Subscripted or indexed data names and conditional variables can be made unique through
qualification. The name of a conditional variable can be used as a qualifier for any of its
condition names. Regardless of the available qualification, no name can be both a data name
and a procedure name.

In using qualification, the following specific rules apply:
For all names:

m You must make sure that each qualifier belongs to a successively higher level and falls
within the same hierarchy as the name it qualifies.

m You cannot use the same name at two or more levels in the same hierarchy.

m You can use any combination of qualifiers to reference the name if more than one
combination of qualifiers ensures uniqueness.

m You can qualify a name even if it does not require qualification.
For data names and condition names:

m If you assign a data name or condition name to more than one data item, you must qualify
this name each time it is referenced in the ENVIRONMENT, DATA, and PROCEDURE

divisions.

Note This rule does not apply to the REDEFINES clause of the DATA DIVISION,

where qualification is prohibited.

4-12 Describing and Referencing Data



Describing and Referencing Data

For data names:
m You cannot subscript a data name that is used as a qualifier.

m You cannot specify, as the complete set of qualifiers for one data name, a partial set of
qualifiers used for another data name.

m You must qualify data names if more than one file contains a LINAGE clause.
For paragraph names:
m You cannot duplicate a paragraph name within a section.

m You cannot use the reserved word SECTION in the qualification of a paragraph when the
paragraph name is qualified by a section name.

m You need not qualify a paragraph name that is referenced within the same section.
For text names:

m You must qualify all text names each time they are referenced in the program if more than
one COBOL library is used during compilation.

Example

The following example illustrates qualification. The name DATA-GRAY is duplicated in the
program, where it actually refers to two different data items. In each case, the name can be
qualified as DATA-GRAY OF DATA-BLACK or DATA-GRAY OF DATA-GREEN.

DATA DIVISION.
01 RECORD-1.

03 DATA-BLACK.
05 DATA-GRAY.

10 DATA-BLUE PIC X(06).
10 DATA-YELLOW PIC X(06).
05 DATA-BROWN PIC X(12).

03 DATA-WHITE.
05 DATA-GREEN.
10 DATA-GRAY PIC X(06).

Describing and Referencing Data 4-13



Describing and Referencing Data

Tables

Quite frequently in business applications, data is arranged in the form of tables. This is
because of the logical arrangement of data and because it is easier to both describe and select
elements of a table than it is to write all the components of the table as one record.

Tables composed of contiguous data items are defined in COBOL by using the OCCURS
clause in a record description entry. The OCCURS clause states how many elements there are
in a table, gives these elements a common name, tells whether the elements are arranged in
ascending or descending order, and whether to use subscripting or indexing to access elements
of the table.

You must use subscript or index names to access table elements because they share the same
name.

Defining a Table

In HP COBOL II, you can define a table containing up to seven dimensions . This is
accomplished by using the OCCURS clause once for each dimension within different level
numbers (other than 01) of the description. In ANSI COBOL’74, the maximum number of
dimensions is three.

To define a one dimensional table, use an OCCURS clause as part of the data description for
the table itself. If you do not use the OCCURS clause as part of the first level description
following the table name, the elements described before the QCCURS clause are not part of
the table. For example, in the program fragment below, TABLE1-HEADER is not a table element,
whereas ELEMENT, TIME-ADJUSTER, and DATE-ADJUSTER are table elements.

01 TABLE-1.
02 TABLE1-HEADER PIC X(20) VALUE "TABLE ONE".
02 ELEMENT OCCURS 100 TIMES.
03 TIME-ADJUSTER PIC X(10).
03 DATE-ADJUSTER PIC X(10).

To define a two dimensional table, you must build it from a one dimensional table. That is,
to define a two dimensional table, you must use an OCCURS clause twice, once in an element
of the first table, and a second time in the description of a group item containing that table
element. For example:

01 SHOW-TABLE.
11 FIRST-DIM OCCURS 10 TIMES.
22 DIM1-HEAD PIC X(20)
22 SECOND-DIM OCCURS 10 TIMES.
25 TWODIM-ELEMENTS.

30 MORE-ONE PIC X(10).
30 MORE-TWO PIC X(07).
30 MORE-THREE PIC X(16).

The table element, SECOND-DIM, of the first table dimension (FIRST-DIM) uses the OCCURS
clause to define a second dimension of SHOW-TABLE, while the group item FIRST-DIM defines
the first dimension.

4-14 Describing and Referencing Data



Describing and Referencing Data

Defining a three dimensional table is analogous to defining a two dimensional table. Simply
extend the table elements of the two dimensional table to include an element that uses the

OCCURS clause. For example:

01 SALES-ORGANIZATION-TABLE.
11 REGION-TABLE O0CCURS 4 TIMES.

22 SALES-REGION PIC X(05).
22 STATE-TABLE OCCURS 13 TIMES.
33 STATE PIC X(20).
33 REP-TABLE OCCURS 4 TIMES.
34 REP-INFO.
35 REPRESENTATIVE PIC X(20).
35 LOCATION-INFO PIC X(60).

The table above, named SALES-0RGANIZATION-TABLE, has one dimension for REGION-TABLE, a
second dimension for STATE-TABLE, and a third dimension for REP-TABLE.

SALES-ORGANIZATION-TABLE contains 472 data items. There are four data items for
REGION-TABLE, 52 data items for STATE-TABLE (4 times 13), and 416 data items for
REP-TABLE (52 times 4, twice, one for each element name).

Referencing Table Items with Subscripting

Elements in a table of like elements can be uniquely referenced through subscripts. A
subscript is an integer that corresponds to a specific element in the table. You can only
use subscripts for elements that have not been assigned individual data names. The lowest
possible subscript value is 1, which identifies the first element in the table. The next
ascending values (2, 3,4 ... ) point to the second, third, and fourth elements, and so forth.

The highest possible value is specified by the OCCURS clause of the DATA DIVISION.

The table is identified by a table element data name or referenced by a condition name.
Individual elements in the table are identified by one, two, three, or up to seven subscripts.
The subscript, or set of subscripts, is enclosed in a pair of balanced parentheses following any
qualification for the table element data name. (Any data name written in this format is called
a subscripted data name.) When two or more subscripts are used, they are written in order of
successively decreasing inclusiveness. Subscripted data names have the following format:

ALL
integer-1
{condition—name—1 (

data-name-2 |{+} integer-2 e
data-name-1 [{ ! g ] )

index-name-1 [{+ } integer-3]
LG200028 _011a

Describing and Referencing Data 4-15



Describing and Referencing Data

0 The subscript can be represented by the reserved word ALL, a numeric literal, a data name,
or an index name.

The subscript ALL can be used only when the subscripted identifier is a parameter to a
COBOL function. ALL cannot be used with condition-name-1. ALL specifies that each
table element associated with that subscript position is a parameter to the function. See
Chapter 10, “COBOL Functions”, for more information on calling COBOL functions.

Literals and data names must represent an integer, optionally preceded by a plus (+) sign.
If a data name is used, it must specify an elementary item; the data name can be qualified
but cannot itself be subscripted. The plus or minus sign must be preceded and followed by a
space.

An index is a special register containing a binary value that corresponds to an occurrence
number of an element of the table to which it is associated. The implementation of an index is
machine dependent for efficiency.

The index is defined for the table and assigned an index name through the INDEXED BY
phrase in the table definition in the DATA DIVISION. In the PROCEDURE DIVISION,
you use the index name to reference the index. The index name must correspond to a data
description entry in the hierarchy of the table being referenced that contains an INDEXED
BY phrase specifying that index name. Before you can use the index as a table reference,
however, you must assign the index an initial value. You do this by using the SET, SEARCH
ALL, or PERFORM statement.

Indices, data-names, integers, and the word ALL can be combined to

I reference a multidimensional table.
Two subscripting techniques are available:
m Direct subscripting, where the element desired is specified by the contents of the subscript.

m Relative subscripting, where the element desired is specified by the contents of the subscript
plus or minus a specific value.

Direct subscripting is specified by using a subscript after the table element data name. For
example:

DATA-1 (INDEX-4)

Relative subscripting is specified by using the subscript, followed by a plus or minus sign,
followed by an unsigned integer specified as a numeric literal, all enclosed in balanced
parentheses and following the table element data name.

4-16 Describing and Referencing Data



Describing and Referencing Data

The compiler determines the sequential location of the element in the table by incrementing
(for the plus sign) or decrementing (for the minus sign) the value in the index or data item by
the value of the literal.

The following illustrates direct subscripted data items.

DAY (1)
DATE (1 2)
BENCHMARK (ALPHA BETA GAMMA)

CANDY (20 FILEZ-01 +3)
The following illustrates relative subscripting.

TABLE-1 (BETA + 1)
TABLE-2 (THETA - 1 MU)

ARRAY-3 (STORE-1 + 1 STORE-2 + 1 STORE-3 + 1)

In the first of the above examples, if TABLE-1 is the table name and the value of BETA is 15,
the program accesses the 16th element. The second example demonstrates that both direct
and relative subscription are permitted in the same subscripted data name.

Subscripting uses an occurrence number (that is, the number of where in a particular
dimension an element occurs) for each dimension of a table. To illustrate, using the three
dimensional table SALES-ORGANIZATION-TABLE described under “Defining a Table”, the
following refers to the third occurrence of REPRESENTATIVE in the first state of the fourth sales
region:

REPRESENTATIVE (4, 1, 3)

Thus, if the fourth sales region is the western sales region, and the first state in that region is
California, then the name of the third representative for that state is accessed by the above
subscripted reference.

Of course, if you wish only to access a state entry, you can do so by using only two subscripts.
For example, the following references the 12th state in the fourth sales region:

STATE(4, 12)

Note that data names could as easily have been used to perform all or just part of the
subscripting above. Generally, these data items are defined in working storage, and have no
restrictions on them except that they cannot be index data names.

Describing and Referencing Data 4-17



Describing and Referencing Data

Referencing Table Items with Indexing

Indexing requires more coding in the OCCURS clause, since you must specify at least one
name to be used for the indexing. To illustrate, the SALES-0RGANIZATION-TABLE has been
modified for indexing:

01 SALES-ORGANIZATION-TABLE.
11 REGION-TABLE OCCURS 4 TIMES.

22 SALES-REGION PIC X(05).
22 STATE-TABLE OCCURS 13 TIMES.
33 STATE PIC X(20).

33 REP-TABLE OCCURS 4 TIMES
INDEXED BY RPINDX.

34 REP-INFO.
35 REPRESENTATIVE PIC X(20).
35 LOCATION-INFO PIC X(60).

Once the index names have been defined, you must use the SET statement of the
PROCEDURE DIVISION to initialize the index names to a value within the range of from 1
to the highest occurrence number associated with the dimension in which the index name was

defined. See “OCCURS Clause” in Chapter 7 for more details.

Once an index name has been set, you can use it to access table elements. Assuming that
RPINDX has been set to 2, the following example accesses the information about the second
representative in the first state of the fourth sales region:

REP-INFO(4, 1, RPINDX)

Referring to the use of this same data base in the subscript example above, note that this
accesses the information about the second sales representative in California.

You can use index names in conjunction with the SEARCH statement of the PROCEDURE
DIVISION to search for occurrences of table items within a given table. For information and
restrictions on searching tables, refer to “SEARCH Statement” in Chapter 9.

Condition Names

Condition names made unique through qualification, indexing, or subscripting have the
same overall syntax for identifiers as the two formats above. In these formats, however, the
user-defined word condition-name-1 replaces data-name-1.

The restrictions that apply to the combined use of qualification, subscripting, and indexing of
identifiers also apply to condition names. In addition, these further restrictions apply:

1. If a condition name is made unique through qualification, you can use either the hierarchy
of names associated with the related conditional variable or the conditional variable itself
as the first qualifier.

2. If references to a conditional variable require indexing or subscripting, you must use the
same indexing or subscripting for references to any condition name associated with that
variable.

4-18 Describing and Referencing Data



Describing and Referencing Data

Note In the format descriptions appearing throughout this manual, condition-name
refers to a condition name that can be qualified, indexed, or subscripted as
necessary.

Function-ldentifiers

A function-identifier is a syntactically correct combination of character strings and separators
that references a function.

Syntax
The format of a function-identifier is:
FUNCTION function-name-1 [({parameter-1} ... )1 L[reference-modifier]
Parameters
function-name-1 Any of the COBOL functions listed in Chapter 10, “COBOL
Functions.”
parameter-1 Must be an identifier, a literal, or an arithmetic expression. Specific

rules for parameters are listed with each function in Chapter 10.

reference-modifier A reference-modifier can only be used with alphanumeric functions.
See “Reference Modification” later in this chapter for more
information.

Description

You can use a function-identifier anywhere an identifier of the same class and category is
allowed except where it is specifically disallowed. However, a function-identifier cannot be
used as a receiving item in any statement. An integer or numeric function identifier can only
be used in an arithmetic expression.

Evaluation of Function Parameters. When you call a function, its parameters are evaluated
individually from left to right. A parameter can itself be a function-identifier or an expression
containing a function-identifier.

For more information on the COBOL functions, see Chapter 10, “COBOL Functions.”

Describing and Referencing Data 4-19



Describing and Referencing Data

Reference Modification

Reference modification is a feature of the 1985 ANSI COBOL standard.

Reference modification is a method of referencing data by specifying a leftmost character and
length for the data item.

Syntax
The format of a reference modifier is:
(leftmost-character-position: [length])

You use a reference modifier with a data item or a function identifier. The general format for
reference modification is:

data-name-1 (leftmost-character-position: [length])

| The format for reference modification with COBOL functions is:

FUNCTION function-name-1 [({parameter-1} ... )1 (leftmost-character-position: [length])
Parameters
data-name-1 must reference a data item whose usage is DISPLAY.

data-name-1 can be qualified or subscripted.

leftmost-character-position must be an arithmetic expression.
length must be an arithmetic expression.
Sfunction-name-1 must be an alphanumeric COBOL function. For a list of

COBOL functions, see Chapter 10, “COBOL Functions.”
parameter-1 is any parameter to the function function-name-1.

I Reference modification is allowed wherever an identifier referencing an alphanumeric data item
or alphanumeric function is permitted, except in identifier-3 of the STRING statement and
wdentifier-1 of the UNSTRING statement.

4-20 Describing and Referencing Data



Describing and Referencing Data

Reference Modification Rules
The following rules apply when using reference modification:

m Each character of a data item referenced by data-name-1 or by function-name-1 and its
parameters, if any, is assigned an ordinal number according to its position. The leftmost
position is assigned the number one and the number of each successive position to the right
is incremented by one. If the data description entry for data-name-1 contains a SIGN IS
SEPARATE clause, the sign position is assigned an ordinal number within that data item.

m If data-name-1 or function-name-1 is numeric, numeric-edited, alphabetic, or
alphanumeric-edited, reference modification operates upon the item as if it were redefined as
an alphanumeric data item of the same size.

m For an operand, reference modification is evaluated as follows:

If you specify subscripting for an operand, the reference modification is evaluated
immediately after the subscripts. If you specify an ALL subscript for an operand, the
reference-modifier is applied to each element of the table. (Using ALL as a subscript is
only allowed when the operand is a parameter to a function.)

If subscripting is not specified for the operand, the reference modification is evaluated at
the time subscripting would be evaluated if subscripts had been specified.

If you specify reference modification for a function reference, the reference modification is
done immediately after the function is evaluated.

m Reference modification creates a unique data item that is a subset of the data item
referenced by data-name-1 or function-name-1 and its arguments, if any.

This unique data item is defined as follows:

The leftmost-character-position specifies the ordinal position of the leftmost character
of the unique data item in relation to the leftmost character of data-name-1 or
function-name-1. Evaluation of the leftmost-character-position must result in a positive
nonzero integer less than or equal to the number of characters in the data item.

The length specifies the size of the data item to be used in the operation. The result must
be a positive nonzero integer. The sum of leftmost-character-position and length minus 1
must be less than or equal to the number of characters in the data item data-name-1 or
function-name-1.

If length is not specified, the unique data item extends from the leftmost-character-
position through the rightmost character of the data item.

m The unique data item is considered an elementary data item without the JUSTIFIED
clause. When a function is referenced, it has the class and category of alphanumeric.
When data-name-1 is specified, the unique data item has the same class and category as
data-name-1 except that the categories numeric, numeric-edited, and alphanumeric-edited
are considered class and category alphanumeric.

Describing and Referencing Data 4-21



Describing and Referencing Data

Examples

Based upon the following example, Table 4-3 shows the result of reference modification upon
four statements:

01 TAB.
05 ELEMENT PIC X(5)
OCCURS 5 TIMES VALUE "12345",
01 X PIC X(3).

Table 4-3. Reference Modification Results

Statement Result

MOVE "ABC" TO ELEMENT (3) (2:) Changes the third element of ELEMENT
table to 1ABCLI.

MOVE "ABC" TO ELEMENT (2) (4:) Changes the second element of ELEMENT
table to 123AB.

MOVE "ABC" TO ELEMENT (1) (1:4) Changes the first element to ABCLI5.

MOVE ELEMENT (5) (2:2) TO X. Changes X to 23L.

Based on the following example, Table 4-4 shows the result of reference modification without
subscripting upon three statements:

01Y PIC XXXX VALUE SPACES.

Table 4-4. Reference Modification Without Subscripting

Statement Result

MOVE "AB" TO Y(2:) LIABU

MOVE "XYZ" TO Y(2:)| LXYZ

MOVE "F" TO Y(2:1) UFYZ

4-22 Describing and Referencing Data



Describing and Referencing Data

The following program shows reference modification on function calls:

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

The abov

19910
12
19910
1991
93843
38

$CONTROL POST85
IDENTIFICATION DIVISION.
PROGRAM-ID. FUNC-EXAMPLE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TAB.
05 ELEMENT PIC X(5) USAGE DISPLAY
OCCURS 5 TIMES VALUE "12345",
PROCEDURE DIVISION.
FIRST-PARA.
DISPLAY FUNCTION WHEN-COMPILED
DISPLAY FUNCTION WHEN-COMPILED (9:2)
DISPLAY FUNCTION CURRENT-DATE
DISPLAY FUNCTION CURRENT-DATE (1:4)
MOVE "93843" TO ELEMENT (2)
MOVE "38103" TO ELEMENT (3)
MOVE "49382" TO ELEMENT (4)
MOVE "78397" TO ELEMENT (5)
DISPLAY FUNCTION MAX ( ELEMENT (ALL) )
DISPLAY FUNCTION MAX ( ELEMENT (ALL) ) (2:2)
STOP RUN.

e program displays the following kind of output:

11612272700-0500  Qutput from WHEN-COMPILED, line 21.
Output from reference-modified WHFEN-COMPILED, line 22.
11612283000-0500  Qutput from CURRENT-DATE, line 23.
Output from reference-modified CURRENT-DATE, line 24.
Output from MAX, line 29.
Output from reference-modified MAX, line 30.

Describing and Referencing Data 4-23






<

IDENTIFICATION DIVISION

Every HP COBOL II program begins with the IDENTIFICATION DIVISION. This division
specifies information that identifies both the source program and related listings produced by
the HP COBOL II compiler. Among this information, you must always include the name of

your program. In addition, you may optionally identify:

m The author of the program.

m The installation where the program is compiled.
m The date that the program is written.

m The date that the program is compiled.

m Any security restrictions governing the program.

IDENTIFICATION DIVISION Format
The IDENTIFICATION DIVISION has the following format:
An HP extension to the 1985 ANSI COBOL standard

{Q } DIVISION.
IDENTIFICATION

PROGRAM-ID. program-name

[AUTHOR. [comment-entry] .. ]

[INSTALLATION. [comment-entry] . . .]
[DATE-WRITTEN. [comment-entry] . .. ]

[DATE-COMPILED. [comment-entry] . . . ]

-

[SECURITY. [comment-entry] . .. ]

[REMARKS. [comment—ently] o ] An HP extension to the 1985 ANSI COBOL standard

LG200026_012d

In this format, the paragraph headers identify the kind of information that each paragraph
contains. Thus, in the PROGRAM-ID paragraph, you specify the name of your program; in
the AUTHOR paragraph, you generally enter your own name.

IDENTIFICATION DIVISION 5-1



IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION can not be abbreviated to ID DIVISION in the contained
programs within a nested program. Only the outermost containing program can abbreviate

IDENTIFICATION to ID.

IDENTIFICATION DIVISION Syntax Rules

The PROGRAM-ID paragraph is always required, but all other paragraphs are optional.
When any optional paragraphs are included, they must always appear in the order shown in
the format description.

Begin the division header in Area A of the first line. Begin each paragraph header in

Area A of a new line. In each paragraph, begin the paragraph body (program-name or
comment-entry) either on the same line as the paragraph header or in Area B of a new line
following the header. When you must continue a lengthy entry, begin the continuation in Area
B of the next available line. The PROGRAM-ID paragraph must be terminated by a period
followed by a space.

Paragraphs

The IDENTIFICATION DIVISION contains the following paragraphs: PROGRAM-ID,
AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY. A
description of these paragraphs follow. All paragraphs in the IDENTIFICATION DIVISION
except the PROGRAM-ID paragraph are obsolete features of the 1985 ANSI COBOL

standard.

PROGRAM-ID Paragraph

This paragraph must appear in every program and must include the program’s name. This
name identifies your source program and appears on the listings associated with it. It must
be a unique name with respect to all program units (HP COBOL II main program or
subroutines) compiled in a particular instance. The name must begin with a letter and cannot
contain more than 30 characters, including hyphens.

The INITIAL clause specifies that when the program is called, that program

and any other programs it contains are in their initial state. The initial
state of a program is the state of the program the first time it is called

as a run unit. Using the INITIAL clause sets $CONTROL DYNAMIC and is only

useful for subprograms.

For a description of the COMMON clause, see Chapter 11, “Interprogram Communication.”

The program names of a run unit do not need to be unique. When two program names in

a run unit are the same, at least one of the two programs must be directly or indirectly
contained within another separately compiled program that does not contain the other of the
two programs.

5-2 IDENTIFICATION DIVISION



IDENTIFICATION DIVISION

Example

The following example shows parts of several programs. Only the IDENTIFICATION I
DIVISION, PROGRAM-ID, and END PROGRAM are shown for each program. For clarity,

the lines are appropriately indented. However, in practice, IDENTIFICATION DIVISION, I
PROGRAM-ID, and END PROGRAM must start in margin A.

Program Structure Scope

IDENTIFICATION DIVISION.

PROGRAM-ID. A. Callable by separately compiled program (G below). I
IDENTIFICATION DIVISION.

PROGRAM-ID. B. Callable by A.

END PROGRAM B.
IDENTIFICATION DIVISION.
PROGRAM-ID. C COMMON. Callable by B, A, D and E.

END PROGRAM C.
IDENTIFICATION DIVISION.
PROGRAM-ID. D. Callable by A.

IDENTIFICATION DIVISION.
PROGRAM-ID. E. Callable by D.

END PROGRAM E.
END PROGRAM D.
END PROGRAM A.
IDENTIFICATION DIVISION.
PROGRAM-ID. F. Callable by separately compiled programs (A above or
G below).

IDENTIFICATION DIVISION.

PROGRAM-ID. A. Callable by F. Note that a call to A from F will call
the nested program A, not the separately compiled
program A (above).

END PROGRAM A.
IDENTIFICATION DIVISION.
PROGRAM-ID. B. Callable by F.

END PROGRAM B.
END PROGRAM F.
IDENTIFICATION DIVISION.
PROGRAM-ID. G.

END PROGRAM G.

IDENTIFICATION DIVISION 5-3



IDENTIFICATION DIVISION

DATE-COMPILED Paragraph
The DATE-COMPILED paragraph is an obsolete feature of the 1985 ANSI COBOL standard.

When you enter the DATE-COMPILED paragraph in your source program, the compiler
prints the current date and time on the first line of this paragraph as it appears on the source
program listing. Generally, you include only the paragraph header (and do not specify a
body) when you enter the source program. On the source listing, the date and time appear in
the following format:

Source-code entry
Al

4 A

001400 DATE-COMPILED. FRI, NOV 29, 1987, 5:27 PM
] “ J
° Y

Date and time supplied by compiler

LG200026_013a

No additional data, either on the same line as the paragraph header or on subsequent lines, is
printed on the source listing.

5-4 IDENTIFICATION DIVISION



IDENTIFICATION DIVISION

Other Paragraphs

The remaining paragraphs of the IDENTIFICATION DIVISION, AUTHOR,
INSTALLATION, DATE-WRITTEN, and SECURITY, are obsolete features of the 1985
ANSI COBOL standard.

In the other paragraphs of the IDENTIFICATION DIVISION, which are optional, the
paragraph bodies are treated as comments. Thus, you may enter any information you wish
in any of them. For example, you may use the AUTHOR paragraph for data other than
someone’s name.

To continue any of these comment entries onto two or more lines, simply enter the desired
information in Area B of the necessary lines. However, in this case, do not enter the hyphen
continuation indicator in column 7.

The following illustrates a complete IDENTIFICATION DIVISION, showing all required and
optional paragraphs:

IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE-ID-SECTION.

AUTHOR. MANUAL-J-WRITER.

INSTALLATION. GSD-CUST-TRAINING-AND-DOC-GROUP.
DATE-WRITTEN. 07/11/86.

DATE-COMPILED.

SECURITY. NONE.

IDENTIFICATION DIVISION 5-5






ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION allows you to define those aspects of a data processing
application that depend on the physical characteristics of the processing environment.
The ENVIRONMENT DIVISION is optional. It always follows the IDENTIFICATION
DIVISION.

This division consists of two sections:

m CONFIGURATION SECTION, for specifying the hardware characteristics of the system on
which you will compile and run your program.

m INPUT-OUTPUT SECTION, for specifying the data files used by your program, and
various input-output control elements.

Each of these sections may contain several paragraphs.

ENVIRONMENT DIVISION Format
The ENVIRONMENT DIVISION has the following general format:

GENERAL FORMAT FOR ENVIRONMENT DIVISION

[ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.
[SOURCE-COMPUTER. [source-computer—entry]]
[OBJECT-COMPUTER.  [object-computer—entry]]
[SPECIAL-NAMES. [special-names~entry] ]
[INPUT-OUTPUT SECTION.

FILE-CONTROL. ({ file-control-entry } ...
[l-0-CONTROL.  [input-output-controi-entry]]]]

LG200026_014

ENVIRONMENT DIVISION 6-1



CONFIGURATION SECTION

ENVIRONMENT DIVISION Syntax Rules

The CONFIGURATION and INPUT-OUTPUT SECTIONs are optional. In nested programs,
the CONFIGURATION SECTION is not allowed, because the information in the containing
program is global across the contained programs. In separate programs, or in concatenated
programs when included, they must appear in the order shown in the format description.
Within each section, all paragraphs are optional.

CONFIGURATION SECTION
The CONFIGURATION SECTION may include the following paragraphs:

m SOURCE-COMPUTER paragraph, for defining the characteristics of the computer system
on which your HP COBOL II source program will be compiled.

m OBJECT-COMPUTER paragraph, for specifying the characteristics of the computer system
on which the resulting object program will be run.

m SPECIAL-NAMES paragraph, for specifying symbolic characters and the relationship of
special function names to mnemonic names appearing in the source program.

The CONFIGURATION SECTION format is shown on the next page, and each paragraph is
described on the following pages.

6-2 ENVIRONMENT DIVISION



CONFIGURATION SECTION

[CONFIGURATION SECTION.
[sOURCE-COMPUTER. [computer-name [ WITH DEBUGGING MODE ]. 1]
[OBJECT-COMPUTER. [computer-name

WORDS
MEMORY SIZE integer-1 { CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1]
[SEGMENT-LIMIT IS segment-number] . ]]

[sPECIAL-NAMES. [ [ function-name-1
1S mnemonic-name-1 {ON STATUS IS condition-name-1 [ QEE STATUS IS condition-name-2 ]]
IS mnemonic-name-2 [OFF STATUS IS condition-name-1 [ ON STATUS IS condiion-name-1]]
ON STATUS IS condition-name~1 [ QFE STATUS IS condition-name-2 |
OFF STATUS IS condition-name-2 [ QN STATUS IS condition-name-1 |

[ALBHABES aiphabet-name-1 IS
STANDARD-1
STANDARD-2
NATIVE
EBCDIC
EBCDIK

THR H literal-2
literal~1 THRU

{ALSQ fiteral-3} . . .

[ CURRENCY SIGN IS fiterai-6]
[DECIMAL-POINT Is coMMa].]]]

LG200026_015

ENVIRONMENT DIVISION 6-3



CONFIGURATION SECTION
SOURCE-COMPUTER Paragraph

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph denotes the computer system on which you plan to
compile your source program, and whether or not to set the debugging mode switch on at
compile time.

Syntax
This paragraph has the following format:
[SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE].]]

where computer-name is any valid user-defined COBOL word. That is, any combination of
alphanumeric characters and hyphens you choose, with the restriction that the first character
must be alphabetic and that there must be no blanks between the first and last characters.

HP COBOL II assumes that all programs are compiled on an HP computer system. If you
specify a computer-name in the SOURCE-COMPUTER paragraph, the compiler treats this
name as a comment.

For further details on the WITH DEBUGGING MODE clause, refer to Chapter 13.

6-4 ENVIRONMENT DIVISION



CONFIGURATION SECTION
OBJECT-COMPUTER Paragraph

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph denotes the computer system on which the object
program is executed. HP COBOL II assumes that all COBOL programs are executed on an
HP computer system.

The only clause in the OBJECT-COMPUTER paragraph that is not treated as a comment is
the PROGRAM COLLATING SEQUENCE clause.

Syntax
[0BUECT-COMPUTER. [computer-name
WORDS
M.E.M.QBX SIZE integer—1 QHABA.QIE.&S
MODULES
[PROGRAM COLLATING SEQUENCE IS alphabet-name-~1]
[SEGMENT-LIMIT IS segment-number] . ]]
LG200026_016
Parameters
computer-name any combination of alphanumeric characters and hyphens you
choose, with the restriction that the first must be alphabetic,
and that there must be no blanks between the first and the last
characters in the name.
integer-1 any positive integer.
alphabet-name-1 any name you choose, with the same rules and restrictions as
computer-name above. This name must appear in the alphabet
clause of the SPECIAL-NAMES paragraph.
segment-number any nonnegative integer in the range 1 to 49.

MEMORY-SIZE Clause
The MEMORY-SIZE clause is an obsolete feature of the 1985 ANSI COBOL standard.

The MEMORY-SIZE clause specifies the amount of main memory required by your program.
In HP COBOL II, however, memory is allocated automatically through the operating system.
Thus, any entry in this clause is treated as a comment.

ENVIRONMENT DIVISION 6-5



CONFIGURATION SECTION
OBJECT-COMPUTER Paragraph

PROGRAM COLLATING SEQUENCE Clause

On an HP computing system, the following operations are performed on the basis of the
ASCII collating sequence:

m Determining the truth value of nonnumeric comparisons explicit in relation or condition
name conditions.

m Using nonnumeric sort or merge keys (unless the COLLATING SEQUENCE clause of the
respective SORT or MERGE statement is specified in the PROCEDURE DIVISION, and

the alphabet name used in it specifies a non-ASCII collating sequence).

The COLLATING SEQUENCE clause can be used in relation with the SPECIAL-NAMES

paragraph to define a different collating sequence to be used in these operations.

That is, in the SPECIAL-NAMES paragraph, you can relate alphabet-name to the specific
collating sequence desired.

An example of the COLLATING SEQUENCE clause is shown under the SPECIAL-NAMES
paragraph later in this chapter.

The PROGRAM COLLATING SEQUENCE clause applies only to the program in which it

appears. If you omit this clause, the ASCII collating sequence is used.

SEGMENT-LIMIT Clause
The SEGMENT-LIMIT clause is an obsolete feature of the 1985 ANSI COBOL standard.

The SEGMENT-LIMIT clause is used to define the number of permanent segments in a
COBOL program. However, since the concept of a permanent segment has no meaning on an
HP computer system, this clause, if specified, is treated as a comment.

6-6 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph allows you to relate certain COBOL-supplied feature,
switch, or device names to mnemonic names. By specifying these mnemonic names in your
program, you can invoke these functions. It allows you to relate the alphabet name specified
in the PROGRAM COLLATING SEQUENCE clause to a particular collating sequence or
character set, and to define other collating sequences with different alphabet names. The
SPECIAL-NAMES paragraph also allows you to specify symbolic characters and to relate
class names to sets of characters.

Syntax

switch-name
device-name

-

1S mnemonic-name-1 [QN STATUS IS condition-name~1 [QFF STATUS IS condition-name-2 ]]

1S mnemonic-name-2 [QFF STATUS IS condition-name~1 [ ON STATUS IS condition-name-1]]

ON STATUS IS condition-name-1 [ QFF STATUS IS condition-name-2 |
OFF STATUS IS condition-name-2 [ ON STATUS IS condition-name-1 ]

[ALPHABET aiphabet-name-1 1S

EBCDIK

{IEBQ-U-QH} literai-2
literal-1 THRU e
{ ALSO fliteral-3}. . .

[ CURRENCY SIGN IS riteral-6]
[DECIMAL-POINT IS cOMMA].] ]

LO200026_017a

ENVIRONMENT DIVISION 6-7



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph

Parameters

feature-name-1 a COBOL reserved word having a specific meaning. Table 6-1
lists these feature names and describes their meanings.

switch-name-1 a COBOL reserved word having a specific meaning. Table 6-1
lists these switch names and describes their meanings.

device-name-1 a COBOL reserved word having a specific meaning. Table 6-1

lists these device names and describes their meanings.

mnemonic-name-1 and names you choose to represent feature-name-1, switch-name-1,
mnemonic-name-2 or device-name-1 within your program. These names can be
any valid user-defined COBOL words.

condition-name-1 and each are any valid user-defined COBOL words.
condition-name-2
alphabet-name-1 either the name (if any) specified in the PROGRAM

COLLATING SEQUENCE clause of the OBJECT-
COMPUTER paragraph, or any valid user-defined COBOL

word.

literal-1 through lteral-5 are each nonnumeric or numeric literals. If any such literal is a
numeric literal, it must be a positive integer from the range 1
to 256.

If any nonnumeric literal is used in a THROUGH or ALSO
phrase, it must be only one character long. Note that no
ASCII character can be specified more than one time as a
literal in any given ALPHABET clause. Literals 1 through 5
must not be nonnumeric figurative constants.

ANSI COBOL’85 allows literals 1 through 5 to be figurative

constants.

STANDARD-1 and STANDARD-2 represent the ASCII collating sequence.

NATIVE currently defined as representing the ASCII collating sequence.
However, it may be changed to represent another character set
(for example, the KATAKANA character set).

EBCDIC specifies that the EBCDIC collating sequence is to be used.
Note that this does not enable any conversion of data. It only
allows data to be (for example) sorted or merged according to
the EBCDIC collating sequence.

EBCDIK specifies the Japanese version of the EBCDIC collating
sequence.

6-8 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph

literal-6 a single character, chosen from a specific set. This set is shown
later in this chapter, when the CURRENCY SIGN clause is
described.

THROUGH and THRU are equivalent and may be used interchangeably.

symbolic- character-1 a name you choose to represent the user-defined constant
within your program. This name can be any valid user-defined
COBOL word.

integer-1 the ordinal position specified by integer-1 must exist in

the ASCII character set. If the IN phrase is specified, the
ordinal position must exist in the character set named by
alphabet-name-2.

alphabet-name-2 the name specified in the ALPHABET clause of the
SPECIAL-NAMES paragraph.

class-name-1 a name you choose to represent a user-defined class; this name
can be any valid user-defined COBOL word.

Each clause of the SPECIAL-NAMES paragraph is described on the following pages.

Note The SPECIAL-NAMES clause must follow the order shown in the syntax
diagram.

ENVIRONMENT DIVISION 6-9



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
Feature-name, Switch-name, or Device-name Clause

Feature-name, Switch-name, or Device-name Clause

I In the Feature-name, Switch-name, or Device-name clause, you relate various COBOL
functions to mnemonic names used in your program. You do this by equating the specific
function name to the desired mnemonic name.

Syntax

switch-name

SPECIAL-NAMES. feature-name
device-name

IS mnemonic-name-1 [ON STATUS IS condition-name-1 [QFF STATUS IS condition-name-2 |]
IS mnemonic-name-2 [QFF STATUS IS condition-name-1 [ ON STATUS IS condition-name-1]]
ON STATUS IS condition-name-1 [ QFF STATUS IS condition-name-2 ]

OFF STATUS IS condition-name-2 [ ON STATUS IS condition-name-1 | |
LG200026_018a
Parameters
feature-name-1 a COBOL reserved word having a specific meaning. Table 6-1
lists these feature names and describes their meanings.
switch-name-1 a COBOL reserved word having a specific meaning. Table 6-1
lists these switch names and describes their meanings.
device-name-1 a COBOL reserved word having a specific meaning. Table 6-1
lists these device names and describes their meanings.
I mnemonic-name-1 and names you choose to represent feature-name-1, switch-name-1,
mnemonic-name-2 or device-name-1 within your program. These names can be

any valid user-defined COBOL words.

condition-name-1 and each are any valid user-defined COBOL words.
condition-name-2

Description

The feature, switch, and device names and corresponding functions are listed in Table 6-1.

All names except the software switches (SWO0 through SW15) and the CONDITION-CODE
feature may be referenced by using the assigned mnemonic-name in the ACCEPT, DISPLAY,
or WRITE statements of the PROCEDURE DIVISION. The CONDITION-CODE feature is
related to the special MPE intrinsic relation condition. Refer to the description of relation
conditions in Chapter 8 for more information.

6-10 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
Feature-name, Switch-name, or Device-name Clause

Table 6-1. HP COBOL Il Feature, Switch, and Device Names

Feature Name

Function

CONDITION-CODE

Refers to condition codes returned by operating system
intrinsics when they have been called through the
CALL statement.

NO SPACE CONTROL

When included in the ADVANCING clause of the
WRITE statement, this prevents the line printer from
advancing vertically or horizontally.

TOP When included in the ADVANCING clause of the
WRITE statement, the mnemonic name assigned to
TOP causes the line printer to perform a page eject.
Co1 Used in the ADVANCING clause of the WRITE
through statement for sequential files. Each directs the line
C16 printer to skip to a particular channel (1 through 16)

on the carriage control tape. Refer to Chapter 9 for
details.

Switch Name

Function

SWO0 Refer to software switches associated with condition
through names. (Software switches are described in the next
SW15 section of this chapter.)

Device Name

Function

SYSIN

Refers to the operating system standard input device.
In an interactive session, this is your terminal. In a
batch job, it is either the card reader or operator’s
console.

SYSOUT

Refers to the operating system standard output device.
In an interactive session, this is your terminal. In a
batch job, it is the line printer

CONSOLE

Refers to the computer operator’s console (not your
terminal).

ENVIRONMENT DIVISION 6-11




CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
Feature-name, Switch-name, or Device-name Clause

Software Switches

The software switches are external switches known to COBOL, the status of which is available
to each object program functioning within the entire run unit.

Fach of the 16 software switches (SWO0 through SW15) used in a given program has at least
one condition name associated with it.

A condition name and the SET statement are the means by which you can reference one of
these switches. For example,

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HPCOMPUTER
0BJECT-COMPUTER. HPCOMPUTER
SPECTIAL-NAMES.
SWO IS SORT-SWITCH ON STATUS IS SORT-ON.

PROCEDURE DIVISION.

IF SORT-ON
THEN CALL "SORTER".

In the above example, the actual reference to SWO0 is done in the IF statement in the
PROCEDURE DIVISION, where SORT-0N is tested in a condition name condition.

(Chapter 8 has information on condition name conditions.) If SORT-0N is in an “on”
condition, the subprogram SORTER is called. If it is in an “off” condition, the next executable
sentence is executed.

Software switches are always considered to be OFF at the beginning of the execution of
a program unless you turn them on before execution begins. To turn switches on or off

after execution begins, use the SET statement. Refer to Appendix H, “MPE XL System
Dependencies”, for information on setting software switches before execution begins.

6-12 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
Feature-name, Switch-name, or Device-name Clause

Line Printer Features

The TOP, NO SPACE CONTROL, and C01 through C16 switches are all related to line
printer control. Since there is no way for a COBOL II program to explicitly check for the
condition of a line printer, you cannot use condition names with these functions. You must,
however, specify mnemonic names for these functions if you intend to reference them later in
your program. For example:

SPECTIAL-NAMES.
TOP IS TOP-OF-FORM, CO9 IS TO-END-OF-FORM.

PROCEDURE DIVISION.

WRITE REC-0UT FROM FOOT-NOTE
AFTER ADVANCING TO-END-OF-FORM.

WRITE REC-0UT FROM TITLE
AFTER ADVANCING TOP-0F-FORM.

CONDITION-CODE Features

The CONDITION-CODE function allows you to check the condition code returned by MPE
intrinsics. This function is itself a form of conditional variable, with an integer value. Thus,
no condition name can be associated with it, and a mnemonic name must be used if you wish
to check condition codes returned by intrinsics called from your program. Refer to the section
on relation conditions in Chapter 8 for an example and more information.

SYSIN, SYSOUT, and CONSOLE Devices

The SYSIN, SYSOUT, and CONSOLE functions are used in the ACCEPT and DISPLAY
statements of the PROCEDURE DIVISION. Since these names refer to terminals, line
printers, card readers, and the operator’s console, you cannot associate condition names with
them. Also, because of the formats of the ACCEPT and DISPLAY statements, you need not
specify mnemonic names for them in the SPECIAL-NAMES paragraph. You may, however,
choose to do so. Refer to the ACCEPT and DISPLAY statement descriptions in Chapter 9 for
more information.

ENVIRONMENT DIVISION 6-13



CONFIGURATION SECT

ION

SPECIAL-NAMES Paragraph

ALPHABET Clause

ALPHABET Clause
The ALPHABET claus

1. To define a program
nonnumeric compari

e has three functions:

collating sequence to be used in sort and merge operations, and
sons.

2. To define an alphabet name and relate this name to either the ASCII, EBCDIK, or the
EBCDIC collating sequence. This alphabet name can later be used in the CODE-SET

clause of the DATA

DIVISION to specify whether records of a sequential file are written in

ASCII or EBCDIC code.

3. To define an alternate collating sequence separate from the program collating sequence to

be used (optionally)

Syntax
The ALPHABET claus

in sort and merge operations.

e has the following format:

alphabet-name-1 IS

LG200026_019

Parameters

alphabet-name-1

literal-1 through
literal-3

STANDARD-1 and
STANDARD-2

NATIVE
EBCDIC

[ STANDARD-1 \]
STANDARD-2
NATIVE
EBCDIC
EBCDIK >
) {IHBQL&H } literal-2
literal—1 THRU
\ { ALSQ literal-3}. . . )]

either the name (if any) specified in the PROGRAM COLLATING
SEQUENCE clause of the OBJECT-COMPUTER paragraph, or any
valid user-defined COBOL word.

each are alphabetic or numeric literals. If any such literal is a numeric
literal, it must be a positive integer from the range 1 to 256. If any
nonnumeric literal is used in a THROUGH or ALSO phrase, it must
be only one character long. Note that no ASCII character can be
specified more than one time as a literal in any given ALPHABET
clause.

represents the ASCII collating sequence.

represents the ASCII collating sequence.

specifies that the EBCDIC collating sequence is to be used. Note that
this does not enable conversion of data. It only allows data to be

6-14 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
ALPHABET Clause

(for example) sorted or merged according to the EBCDIC collating
sequence.

EBCDIK specifies the Japanese version of the EBCDIC collating sequence.
THROUGH and THRU equivalent and may be used interchangeably.

To define a program collating sequence, you must relate the alphabet-name specified in the
PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph to
either the words NATIVE, STANDARD-1, STANDARD-2, EBCDIC, EBCDIK, or a list of

literals.

STANDARD-1 and STANDARD-2 refer to the ASCII collating sequence, which is used
on all HP computer systems. Therefore, you need not specify alphabet-name in either the
PROGRAM COLLATING SEQUENCE clause or the SPECIAL-NAMES paragraph if this is

your choice for a program collating sequence.

STANDARD-1, STANDARD-2 and NATIVE Phrases

To specify the ASCII collating sequence used on HP computer systems, enter either the
STANDARD-1, STANDARD-2, or NATIVE phrase in the ALPHABET clause. For example,

SPECTIAL-NAMES.
ALPHA-NAME IS STANDARD-1.

Note Although NATIVE is currently defined as being the ASCII collating sequence,
it may be changed in future releases of HP COBOL II. Thus, to avoid the
possibility of having to change your program in the future, you should always
use the STANDARD-1 or STANDARD-2 phrase, rather than the NATIVE

phrase.

EBCDIC and EBCDIK Phrases
To specify the EBCDIC collating sequence, enter EBCDIC in the ALPHABET clause:

SPECTIAL-NAMES.
ALPHA-NAME IS EBCDIC.

To specify the Japanese version of the EBCDIC collating sequence, use EBCDIK.

LITERAL Phrase

The literal phrase allows you to rearrange the ASCII collating sequence to suit your needs.
However, if you specify the literal phrase in an ALPHABET clause, you may not reference
that name in a CODE-SET clause.

ENVIRONMENT DIVISION 6-15



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
ALPHABET Clause

Defining Your Own Collating Sequence

To define your own collating sequence, you must follow the rules listed below.

1.

If you specify a nonnumeric literal, it represents the equivalent character in the ASCII
collating sequence. For instance, the literal “A” represents an ASCII A.

If the literal consists of several characters, each character is assigned successive ascending
positions in the collating sequence, beginning with the leftmost character. For example,

ALPHA-NAME IS "OA9B8C7D".

Results in the following collating sequence:

O N O 00 WO O

. If you specify a numeric literal, it represents the ordinal number of the corresponding

character in the ASCII collating sequence. Therefore, if you specify 66, this represents the
66th character in the ASCII collating sequence—an uppercase A.

. The order in which the literals appear in the ALPHABET clause determines, in ascending

sequence, the ordinal numbers of the corresponding characters in the new collating
sequence.

. Any ASCII characters not explicitly specified in the literal phrase assume positions in the

new collating sequence numerically higher than any explicitly specified characters. The
relative order of the unspecified characters, with respect to each other, is the same as in the
ASCII collating sequence.

. If you use the THROUGH phrase, the new collating sequence consists of contiguous

characters from the ASCII character set, beginning with the value of literal-1 and ending
with the value of literal-2. These characters are assigned successive ascending positions in
the new character set. As an example, the following ALPHABET clause creates a collating
sequence consisting of all uppercase alphabetic characters (letters) from the ASCII collating
sequence:

ALPHA-NAME IS "A" THROUGH "Z"

With the THROUGH phrase, you can also specify and assign ASCII characters in
descending sequence:

ALPHA-NAME IS "Z" THROUGH "A".

Note If a nonnumeric literal is used in a THROUGH phrase, it must be only one

character long.

6-16 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
ALPHABET Clause

6. If you use the ALSO phrase, the ASCII characters specified by literal-1 and literal-3
are assigned to the same relative positions in the new collating sequence. If you use a
nonnumeric literal in an ALSO phrase, it must be only one character long.

7. The character with the highest ordinal position in the new collating sequence may be
referenced by the figurative constant, HIGH-VALUE. If more than one character shares the
highest ordinal position, the last character specified in the ALPHABET clause is referenced
by HIGH-VALUE.

8. The character with the lowest ordinal position in the new collating sequence may be
referenced by the figurative constant LOW-VALUE. If more than one character shares the
lowest ordinal position, the first character specified in the ALPHABET clause is referenced
by LOW-VALUE.

9. Within the SPECIAL-NAMES paragraph, the figurative constants HIGH-VALUE and
LOW-VALUE are those positions in the native collating sequence, ASCIIL. If you redefine
HIGH-VALUE or LOW-VALUE in the SPECIAL-NAMES paragraph, the new values will
not take effect until after the SPECIAL-NAMES paragraph.

Example

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
0BJECT-COMPUTER. HP3000

PROGRAM COLLATING SEQUENCE IS ASCII.
SPECTIAL-NAMES.

ASCITI IS STANDARD-1

IBMCODE IS EBCDIC

SORT-SEQ IS "A" THROUGH "Z"

"a'" THROUGH '"z".

DATA DIVISION.
FILE SECTION.
FD EBCDICIN

CODE-SET IS IBMCODE.

FD EBCDOUT
CODE-SET IS IBMCODE.

PROCEDURE DIVISION.

SORT SFILE ON ASCENDING LEFT-CHR
COLLATING SEQUENCE IS SORT-SEQ
USING INFILE
GIVING OUTFILE.

SORT SFILE ON ASCENDING LEFT-CHAR
COLLATING SEQUENCE IS IBMCODE
USING EBCDICIN
OUTPUT PROCEDURE IS SORT-0UT-PARA THROUGH END-0UT.

SORT-0UT-PARA.

GET-NEXT-REC.
RETURN SFILE INTO CHK-REC AT END GOTO END-OUT.
IF DATA-FIELD-2 OF CHK-REC IS NOT ALPHABETIC

ENVIRONMENT DIVISION 6-17



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
ALPHABET Clause

THEN DISPLAY "ERROR IN SORTED RECORD "
DISPLAY CHK-REC
ELSE MOVE CHK-REC TO EBCDOUT.
GO GET-NEXT-REC.
END-0UT.

In the above example, the program collating sequence is specified as STANDARD-1. Because

this is the default, the PROGRAM COLLATING SEQUENCE clause and the ASCII IS
STANDARD-1 phrase serve only as documentation.

The alphabet-name, IBMCODE is used in two file description entries to indicate that the records
of the files EBCDICIN and EBCDOUT are in EBCDIC code. Thus, when the records are read

in, they are translated to ASCII, and when they are written out, they are translated back to
EBCDIC.

The use of IBMCODE in the second SORT statement causes the ASCII records of SFILE
(obtained from EBCDICIN) to be sorted using the EBCDIC collating sequence. Since EBCDOUT
also names IBMCODE as its code-set, the sorted records are translated back from ASCII to
EBCDIC when they are written to EBCDOUT. Thus, the result of this sorting operation is an
EBCDIC file sorted with the EBCDIC collating sequence. It is not necessary to translate the
records from EBCDIC to ASCII, unless you want the ability to display an erroneous record.
The results of sorting the records without using a translation are the same. However, since,
in the output procedure, any erroneous record is displayed, and since it appears as the ASCII
equivalent of EBCDIC characters, the CODE-SET clause is required in the file description of
EBCDICIN to translate the records into ASCII.

In the first SORT statement, the collating sequence is specified as SORT-SEQ. The result of
this is that the records of OUTFILE are arranged in such a way that all records containing
alphabetic characters in their leftmost positions precede records containing nonalphabetic
characters in corresponding positions. This is different from the standard ASCII collating
sequence, since, in the standard sequence, all numerals and 55 other characters precede the
letters of the alphabet name.

6-18 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
SYMBOLIC CHARACTERS Clause

SYMBOLIC CHARACTERS Clause

The SYMBOLIC CHARACTERS clause is a feature of the 1985 ANSI COBOL standard.

A symbolic character is a user-defined word that specifies a user-defined figurative constant.
This feature is useful for unprintable characters. For example, a symbolic character can be
used to produce audible output from the terminal.

Syntax

|:S_Y_MB_O_LLQ CHARACTERS { { symbolic—character—1} . . { IS } { integer-11} . . }
ARE

[ IN alphabet-name—2 ]_I PP

Parameters

symbolic-character-1 name you choose to represent a user-defined figurative constant.
The same symbolic-character-1 must appear only once in a
SYMBOLIC CHARACTERS clause.

integer-1 must be a positive integer in the range of 1 to 256.

alphabet-name-2 must be an alphabet name specified in the ALPHABET clause.

The following rules apply to the SYMBOLIC CHARACTERS clause:

The relationship between each symbolic-character-1 and the corresponding integer-1 is by
position in the SYMBOLIC CHARACTERS clause. The first symbolic-character-1 is paired
with the first integer-1, the second symbolic-character-1 is paired with the second integer-1,
and so on.

There must be a one-to-one correspondence between occurrences of symbolic-character-1
and integer-1.

The ordinal position specified by integer-1 must exist in the ASCII character set. If the IN
phrase is specified, integer-1 specifies the ordinal position of the character set named by
alphabet-name-2.

If the IN phrase is not specified, symbolic-character-1 represents the character whose ordinal
position in the ASCII character set is specified by integer-1.

The internal representation of symbolic-character-1 is the internal representation of the
character that is represented in the ASCII character set.

ENVIRONMENT DIVISION 6-19



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
SYMBOLIC CHARACTERS Clause

For example, the following SYMBOLIC CHARACTERS clause declares the words BELL,
CARRIAGE-RETURN, and ESCAPE:

SYMBOLIC CHARACTERS BELL IS 8, CARRIAGE-RETURN IS 14, ESCAPE IS 28.

With the above declaration you can use the following DISPLAY statements. The first
DISPLAY makes a sound on the terminal before displaying the message. The second displays
the message in inverse video on certain terminals:

DISPLAY BELL " JOB COMPLETED ".
DISPLAY ESCAPE '"&dB" "Enter a number: ".

6-20 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
CLASS Clause

CLASS Clause
The €LASS clause is a feature of the 1985 ANSI COBOL standard.

The CLASS clause is used to create a user-defined class and provides a means for relating a
name to the specified set of characters it lists.

Syntax

[QLASS class-name-1 IS {Iiteral—~4 |:{ } Iiteral—5]} . ] .o

LG200026_021a

Parameters

class-name-1 can only be referenced in a class condition. (Refer to Chapter 8 for more
information about class conditions.)

literal-4 and specify values that define the exclusive set of characters contained in
literal-5 class-name-1.

THROUGH and THRU equivalent.
The following rules apply to the literal specified in the CLASS clause:

m A numeric literal must be an unsigned integer and must have a value within the range of
one through the maximum number of characters in the ASCII character set (256).

m A nonnumeric literal that is associated with a THROUGH phrase must be one character
in length. If a nonnumeric contains multiple characters, each character is included in
class-name-1.

m [f the THROUGH phrase is specified, the contiguous characters in the ASCII character
set beginning with literal-4 and ending with literal-5, are included in class-name-1. In
addition, the contiguous characters specified by a given THROUGH phrase may specify the
characters of the ASCII character set in either ascending or descending sequence.

Example
SPECTIAL-NAMES.
CLASS VALID-GRADE IS "A'" "B" "C'' wpn Mg,

WORKING-STORAGE.
01 GRADE-LIST.
05 CLASS-GRADES PIC X OCCURS 5 TIMES.

IF GRADE-LIST IS NOT VALID-GRADE THEN
PERFORM ERROR-ROUTINE.

ENVIRONMENT DIVISION 6-21



CONFIGURATION SECTION

SPECIAL-NAMES Paragraph

CURRENCY SIGN IS Clause

CURRENCY SIGN IS Clause

The CURRENCY SIGN IS clause is used to specify a literal whose value is later referenced in
the PICTURE clause of the DATA DIVISION to denote a currency symbol.

Syntax

[ CURRENCY SIGN IS Jitera/~6]

LG200026_022

Parameters

literal-6 a single character, chosen from a specific set. The literal cannot be any of
the following characters:

m The digits 0 through 9.
m Theletters ABCDPRSVXZabcecdprsvxz

m A space

Note ANSI COBOL’85 allows the letter [, but does not allow lowercase letters.

m The special characters:

* (asterisk)

+ (plus sign)

- (minus sign)

, (comma)

period or decimal point)
semicolon )

(left parentheses)
(right parentheses)
(quotation mark)

/ (slash mark)
= (equal sign)

N
 (

— N

i

The literal must not be a figurative constant.

Description

If the CURRENCY SIGN IS clause is omitted, the dollar sign ($) must be used as the
currency symbol in the PICTURE clause.

Example

To specify the percent sign (%) as the currency symbol, enter the following clause:

CURRENCY SIGN IS "%

6-22 ENVIRONMENT DIVISION



CONFIGURATION SECTION
SPECIAL-NAMES Paragraph
DECIMAL POINT IS COMMA Clause

DECIMAL POINT IS COMMA Clause

The DECIMAL POINT IS COMMA clause allows you to request the exchange of the function
of the comma and decimal point (or period) in numeric literals or PICTURE-CLAUSE
character strings.

Syntax
[DECIMAL-POINT IS COMMA].

Description

This clause has some effect on pictures for edited data items. Refer to Chapter 7, under
“PICTURE-CLAUSE,” for details. This clause also has an effect on the ACCEPT FREE
verb. When entering data for the ACCEPT FRELE verb, use a comma instead of a decimal
point.

ENVIRONMENT DIVISION 6-23



INPUT-OUTPUT SECTION

INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECTION allows you to specify information needed to control the
transmission and handling of data between the object program and various input-output
devices. Specifically, it permits you to define the names of data files, and the devices on which
they reside, and special control techniques to be used in the object program.

The INPUT-OUTPUT SECTION can include the following paragraphs:

m PILE-CONTROL paragraph (required), for specifying the names of files used by your
program and other file-related information.

m [-O-CONTROL paragraph (optional), for defining special storage techniques.
The INPUT-OUTPUT SECTION has the following format:

INPUT-OUTPUT SECTION Format
[INPUT-OUTPUT SECTION.

EILE-CONTROL.,

{ file—=control-entry } + » -

[l-o-conTraL.
BECORD
SAME| SORT AREA FOR file-name-3 { file—=name—4 }
SORT-MERGE
[MULTIPLE FILE TAPE CONTAINS { file~-name-5 [POSITION integer-31} . . . | . . . . 1]

LG200026_024b

Each paragraph of the INPUT-OUTPUT SECTION is described on the following pages.

6-24 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph is used to name files to be used in your program, and to
define certain properties of these files that are necessary for their use by your program. Each
file named in the FILE-CONTROL paragraph must be described in the DATA DIVISION of
your program. Conversely, each file described in the DATA DIVISION must be named once in
the FILE-CONTROL paragraph.

An overview of the types of files that can be used in HP COBOL II is presented on the
following pages. Following this overview, the various clauses of the FILE-CONTROL
paragraph are described.

In HP COBOL II, there are five ways to access and use files:
m Sequential access

m Random access

m Relative access

m Indexed access

m Sort-merge access

Each type of file described must be named, and certain features specified, in the
INPUT-OUTPUT SECTION. The organization of the files and their logical records must be
described in an SD entry (for sort-merge files), or an FD entry (for any other type of files) in
the FILE SECTION of the DATA DIVISION.

Sequential Files

Sequential files are generally files residing on, or being written to, a serial access device (such
as a magnetic tape or a serial disk). Of course it is possible to access disk files sequentially
also.

A sequentially accessed file means the records of that file can only be accessed in the order in
which the records were written to the file. Because of the nature of serial access devices, these
types of files can only be written to or read from in a single operation. However, on direct
access discs, files being accessed sequentially can be read from and written to at the same
time, as well as have a record brought in, modified, and returned to the same storage area.

Random Access Files

Random access files must reside on disk. Through the use of a key, you can read or write a
record anywhere within a random access file, regardless of whether data has been written on
previous records.

The only limitation on where you can write a record is the externally defined boundaries of
the file. For example, if a random access file has been defined to contain a maximum of three
thousand records, you cannot write data to record number 3010, although you can write data
to record number 2000 without having written data to any preceding records.

Record access of random access files is controlled by the data item defined in the ACTUAL
KEY clause of the FILE-CONTROL paragraph. This data item is described anywhere

other than in records associated with this file. It is most efficient if defined as a signed
integer of five to nine digits whose usage should be described as COMPUTATIONAL

ENVIRONMENT DIVISION 6-25



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph

SYNCHRONIZED. However, any numeric data item of a suflicient size for the records in a file
can be used.

The ACTUAL KEY data item is used by placing a number into it that corresponds to the
logical record number in the file. Logical records in a random access file begin with record
zero. Thus, to access the tenth record in a random access file, your program must move the
integer 9 into the ACTUAL KEY data item, and then execute the input-output statement.

Execution of an input-output statement for random access files does not update the ACTUAL
KEY data item. For example, if the ACTUAL KEY data item contains a value of one before
reading or writing takes place, the second record is accessed when the READ or WRITE
statement is executed. Following execution of the statement, any subsequent WRITE
statement or READ statement (without the NEXT phrase) also accesses record one, unless
the value in the ACTUAL KEY data item has been changed.

When your program writes data to a record of a random access file, and previous record areas
have had no data written to them, these records are filled with blanks or zeroes. Blank fill is
used when the records of the file are designated as ASCII records. Zero fill is used when the
records are designated as binary records.

The implication of this blank/zero filling is that you can read records of the file for which no
WRITE statement has been executed. In such a case, the data moved into your program is
either a blank record, or a zero-filled record. This capability does not exist for any other type

of file.

Relative Files

Relative files are similar to random access files in that you access records of such a file through
the use of a record number. The only real difference in the two keys used for random access
and relative files is that record numbers on a relative file begin with one, rather than with
zero as in random access files.

The major functional difference between random access and relative files is that you can
always reuse record areas in a random access file by simply writing new data in them. In
relative files, you must use the DELETE statement to purge data from record areas. Once a
record has been deleted, you can no longer access the area it occupied except to write a record
into it again.

Relative files opened in dynamic mode use a data item named in the RELATIVE KEY clause
of the FILE-CONTROL paragraph to access records. This data item is later described in the
WORKING-STORAGE SECTION. Although the ANSI standard allows only an unsigned

integer value for this data item, it is most efficient if defined as a signed integer of five to nine
digits whose usage should be described as COMPUTATIONAL SYNCHRONIZED. However,

any numeric data item of a sufficient size for the records in a file can be used.

Relative files opened in sequential mode do not need to use the RELATIVE KEY data item to
access records. You can simply execute input-output operations on them as though they were
sequential files. If, however, you wish to position the file by using the START statement, you
must specify the RELATIVE KEY data item, since the START statement uses this data item
to find the record you want.

Your program can access a relative file in one of the following ways.

6-26 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph

Sequential Access

Sequential WRITE statements for a relative file release data to the file, starting with the
first record on the file, and proceeding to the second, third, and so forth in turn. If the
RELATIVE KEY data item has been specified, it is updated each time a sequential WRITE
statement is executed.

Note Even though you may already have data on these records, a sequential
WRITE statement will cause the new data to replace it.

Sequential READ statements for relative files start with a particular record, read it, and
proceed to the next existing record.

The record that is read depends upon the type of the last input-output statement executed
before the READ statement is encountered. If a DELETE or READ statement is executed,
the READ statement reads the next existing record following the record just read or deleted.
If an OPEN statement is executed, the first existing record is read. If a successful START
statement is executed, the record pointed to is read.

Sequential DELETE statements require the use of the READ statement to position the file
to the record to be deleted. This READ statement must be the last input-output operation
performed on the file before the DELETE statement is encountered.

Sequential REWRITE statements require the use of the READ statement to position the file
to the record to be rewritten. This READ statement must be the last input-output statement
performed on the file before the REWRITE statement is encountered.

Random Access

Random access input-output statements use the required RELATIVE KEY data item to select
the record for the READ, WRITE, REWRITE, and DELETE statements. Thus, to perform

a random access input-output operation on a relative file, you must place the number of the
record to be accessed into the RELATIVE KEY data item before executing the input-output
statement.

When the random access input-output operation is executed, an implicit seek is performed to
find the record, and the specified input-output operation is performed if possible.

Dynamic Access

A relative file open in dynamic access mode allows you to access your file in either random or
sequential mode.

The only permissible sequential access that can be performed on a relative file opened in
dynamic access mode is the READ NEXT form of the READ statement. This statement
allows you to access the records of the file, starting with the record pointed to (if valid) by
the current record pointer. If the record is invalid (that is, has been deleted), the next valid
record in the file is read.

ENVIRONMENT DIVISION 6-27



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph

Indexed Files

Indexed files use data items that are integral parts of the records to control accessing of the
records.

For a given indexed file, each record contains a single prime record key, and zero or more
alternate record keys. Each key must be described as alphanumeric within the record
description entry of the associated indexed file. To indicate which key is the prime record key
and which, if any, are the alternate keys, you must specify their names in the RECORD KEY
and ALTERNATE RECORD KEY clauses, respectively, in the FILE-CONTROL paragraph of
the ENVIRONMENT DIVISION.

The prime record key is used in writing, deleting, or updating records of an indexed file.
Alternate record keys are used only in reading records.

The values of both prime and alternate record keys may be duplicated within an indexed file.
Note however, that since the prime record key must be used for all input-output operations
except reading, you should be very careful to make sure that if you are deleting a record
whose prime key has duplicates, it is the record you wish to delete, and not some other record
with the same prime record key value.

When a prime record key has duplicates, and you use such a key to access a record on an
indexed file, the file is searched in a chronological order. That is, the file is searched according
to which record was written first. Thus, the record accessed is the first record containing the
specified record key value that is still active.

As with relative files, an indexed file can be accessed in random, dynamic, or sequential mode.
The actions taken for a specific access mode and a specific input-output operation are listed
below.

Sequential Access

A sequential access READ statement for an indexed file uses the current record pointer to
read records from the file. The record selected to be read is determined in essentially the same
way as for relative files opened in sequential mode. See the description of sequential access of
relative files, above.

A sequential access WRITE statement for an indexed file uses the prime record key to place
records in the file. Records must be written in ascending order according to these keys. Since
the prime record key (and all alternate keys as well) must be alphanumeric, this means that
the records must be written using the ASCII collating sequence to determine ascending order.

A sequential access REWRITE or DELETE statement requires that a READ statement be
the last executed input-output statement for the file being referenced.

Random Access

The READ ... KEY IS form requires that you place a key value into one of the record key
data items (prime or alternate). This data item is then specified in the READ statement, and
the indexed file is searched until a record having the same value in the same record key is
found. This record is then brought into your program.

A random access WRITE, REWRITE, or DELETE statement uses the contents of the
RECORD KEY data item to select the record to be written or deleted.

6-28 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph

Dynamic Access

When dynamic access is used for indexed files, you can use either the READ NEXT or the
READ ... KEY IS form of the READ statement.

The READ NEXT form is used when you wish to read records in a sequential manner. This
statement allows you to access the records of the file starting with the record pointed to by
the current record pointer (if valid). If the record is invalid, the next valid record in the file is
read.

A dynamic access WRITE, REWRITE, or DELETE statement uses the contents of the
RECORD KEY data item to select the record to be written or deleted.

As an extension to ANSI COBOL’85, HP COBOL II allows the use of alphanumeric,
computational, numeric display (without the optional SIGN clause) and COMPUTATIONAL-
3 data types for RECORD KEY and ALTERNATE RECORD KEY clauses respectively, in
the FILE-CONTROL paragraph of the ENVIRONMENT DIVISION.

Indexed files are processed with Hewlett-Packard’s KSAM subsystem in HP COBOL II. Refer
to the KSAM/XL Reference Manual for information such as creation and deletion of this file
type. Programmatic creation and deletion of these files can be accomplished by calling the
appropriate intrinsics described in the above manual using the CALL statement. Opening,
closing, and reading of these files is accomplished through the normal COBOL OPEN,
CLOSE, and READ statements.

Sort-Merge Files

The ability to arrange records in a particular order is often required in COBOL applications.
This ability is provided by the sort and merge features of HP COBOL II.

The sort facility allows you to arrange the records of one or more files in a specified sequence.
The merge facility merges two or more previously sorted files. |

Sort-merge files are the files acted upon by the sort and merge operations. These files can
never be accessed directly, except in input and output routines associated with a SORT or
MERGE statement.

When a SORT or MERGE statement is issued, the records are taken from the named input
file or procedure and then placed in the sort/merge workfile. Finally, the sorted /merged
records are placed in the output file, files, or procedure. |

Refer to Chapter 12, “SORT-MERGE Operations”, for more information on sort-merge files
and operations.

ENVIRONMENT DIVISION 6-29



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph

File Status

B Every type of file described above (except sort-merge files) may have a file status data
item associated with it. This data item can be used to check on the success or failure of an
input-output operation involving the file with which it is associated. File status data items are
described in more detail later in this chapter.

Fixed Length Records

Fixed length records must contain the same number of character positions for all the records
in the file. Only one record size can be processed by all input-output operations on the file.
Fixed length records may be explicitly selected by specifying format 1 of the RECORD clause
in the file description entry for the file, regardless of the individual record descriptions. Refer
to Chapter 7 for more information on the RECORD clause.

Variable Length Records

Variable length records can contain differing numbers of character positions among the
records on the file. To define variable length records explicitly, specify the VARYING phrase
in the RECORD clause of the file description entry or the sort-merge file description entry
for the file. The length of a record is either affected by: the data item referenced in the
DEPENDING phrase of the RECORD clause, the DEPENDING phrase of an OCCURS

clause, or the length of the record description entry for the file.

6-30 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
SELECT clause

File Control Clauses

The various clauses of the FILE-CONTROL paragraph can be specified in five separate
formats, depending upon the type of file being described. These formats follow:

File Control Format

Format 1 - For Sequential Files
SELECT [OPTIONAL] fife-name-1

ASSIGN {[TO file-info-1] [USING data-name-1]}

AREA
I:RESEH’VE integer-1 [ AREAS. :I

[[oRGANIZATION IS] SEQUENTIAL]
[accESS MODE IS SEQUENTIAL]
[FILE STATUS 1S stat-item].

Format 2 - For Relative Files

seLecT JBEHONALY mo-name-1

ASSIGN {[TO file-info-1] [USING data-name-1]}
AREA
[ES_EBME Integer-1 |: AREAS :I

IQRQANIZAﬂQN IS] RELATVE

SEQUENTIAL [RELATIVE KEY IS data-name-1]
ACCESS MODE IS RANDOM
{ Dxmwg}

RELATIVE KEY IS data-name-1

[FILE STATUS IS stat-item].

LG200026 0250

ENVIRONMENT DIVISION 6-31



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
SELECT clause

Format 3 - For Random-Access Flles

SEHOKAL] fle-name
ASSIGN {[TO file-info-1] [USING data-name-1]}

; AREA
BESERVE integer-1
|: mege |:AREAS :I

ACCESS MODE IS BANDOM
ACTUAL KEY IS data-name-1
[FILE STATUS IS stat-ftem).

Format 4 - For Indexed Files

file~-name-1

ASSIGN {ITO file-info-1] {USING data-name-11}

AREA
BESERVE integer-1
[ eaer I:AREAS :|:|

[ORGANIZATION IS] INDEXED

1

BECORD KEY IS data-name-1 [WITH DUPLICATES]

[ALTERNATE BECORD KEY IS data-name-2 [WITH DUPLICATES]] . . .

[FILE STATUS IS stat-item].

LA200026_0268

6-32 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
SELECT clause

Format 5 - For Sort-Merge Files
SELECT file-name-1
ASSIGN {[TO file-info-1] [USING data-name-1]}

LG200026_027a

In the FILE-CONTROL paragraph body, the SELECT clause must be specified first. The
remaining clauses may appear in any order.

Each of the clauses of the FILE-CONTROL paragraph are described on the following pages
in alphabetical order, except the SELECT and ASSIGN clauses. Since these clauses must be
specified first for any file type, they are discussed first.

ENVIRONMENT DIVISION 6-33



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
SELECT clause

SELECT Clause
The SELECT clause is used to identify a file to be used in your program.

Syntax
The SELECT clause has two formats:

Format 1 - For Sort-Merge Files
SELECT file—name-1

Format 2 - For All Other Files

SELECT f[opTiONAL] file-name-1

LG200026_028

Parameters
file-name-1 any valid user-defined COBOL word.

File-name-1 is the name you use later in OPEN, CLOSE, USE, and other statements in
the PROCEDURE DIVISION. It must also be used in an F'D or an SD entry in the DATA
DIVISION.

OPTIONAL Phrase

The purpose of the OPTIONAL phrase is to allow you to specify an input file in the SELECT
statement that may not be present during a particular execution of the program in which it

is named. If the file is not present and the OPTIONAL phrase has been specified, when the
first READ statement naming that file is executed, the imperative statement in the associated
AT END phrase is executed. If no AT END phrase has been specified, then a USE procedure
must be defined, either explicitly or implicitly, and this procedure is executed.

When the file is not present and it is opened in I-0 or extend mode with the

OPTIONAL phrase, a new file 1s created. Otherwise, file status 35 is returned.

6-34 ENVIRONMENT DIVISION



ASSIGN Clause

The ASSIGN clause associates a file with the storage medium on which the file resides. With
the USING phrase, you can assign logical files to physical files dynamically (that is, at run

time).

Syntax

INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
ASSIGN clause

ASSIGN { [TO file-info-1] [USING data-name-1] }

Parameters
file-info-1

a nonnumeric literal of the form:

name [, [class] [, Lrecording mode]l [, [device [(CCTL)] ]
[, [file-size] [, [formsmessage.] [,L11111]

The meanings of each parameter of file-info-1 are given below.

name

class

recording mode

device

CCTL

file-size

the operating system file designator. Refer to Appendix H,
“MPE XL System Dependencies”, for detailed information
about this file designator.

If you use the USING phrase of the ASSIGN clause, this
parameter is ignored. The operating system file designator
must be supplied in data-name-1 instead.

the class of device on which the file resides. This
parameter is not used by the file system and is ignored if it
is specified. However, if specified, the class parameter can
be one of the following three mnemonics:

DA, implying a mass-storage device.
UT, implying a utility device such as a tape drive.
UR, implying a unit-record device, such as a card reader.

If the class parameter is omitted, DA is assigned by
default.

the recording mode of the file. It may be either ASCII or
binary. If the file is an ASCII file, recording mode must
be A. If the file is binary, the recording mode must be

B. If the recording mode parameter is omitted, ASCII is
assigned by default.

the type of device on which the file resides. Refer to
Appendix H, “MPE X1, System Dependencies”, for further
details.

the carriage control option for an output file, indicating
that carriage control directives are supplied in write
operations referencing line printer files. If omitted, your
program uses the file system default for the device or file.

the number of records in the file. Refer to Appendix H,
“MPE XL System Dependencies”, for further details.

ENVIRONMENT DIVISION 6-35



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
ASSIGN clause

formsmessage for a listing device, a request for the operator to provide
special forms, such as blank checks or inventory report
forms, on the printer. For any other device, this parameter
is ignored. This entry may contain a maximum of 49
characters and must be terminated with a period.

L enables your program to dynamically lock and unlock a
disk file. However, this feature is provided only to assist in
the conversion of COBOL’68 programs to COBOL II. It is
recommended that the EXCLUSIVE and UN-EXCLUSIVE
statements be used instead for file locking and unlocking.

L is not a required parameter if the EXCLUSIVE and
UN-EXCLUSIVE statements are used. Otherwise, it
enables your program to dynamically lock and unlock a

disk file.

data-name-1  an alphanumeric data item containing the operating system file designator
(see name above). data-name-1 must not be subordinate to the file
description entry for the file described in the enclosing SELECT clause. If the
TO phrase is also specified, all the information in file-info-1 except the file
designator, name, is used when the file is opened.

See Appendix H, “MPE XL System Dependencies,” for detailed information
about this file designator.

The USING data-name-1 form of the ASSIGN clause is an HP extension to
the ANSI COBOL standard.

Description

You associate a file with a storage medium in the ASSIGN clause. When you use the TO
phrase, this association occurs at compile time and cannot be changed unless you modify
your program and recompile it. When you use the USING phrase, the association occurs at
run time. You can change the association in the PROCEDURE DIVISION by changing the
contents of data-name-1. data-name-1 contains the operating system file designator for the
file. See the HP COBOL I1/XL Programmer’s Guide for an example of the USING clause.

If you use both the TO and USING phrases, the name parameter of file-info-1 is ignored.
The name specified in data-name-1 is used instead. Any other parameters specified in
file-info-1 also apply to the file named in data-name-1.

File Status Code

File status code 31 indicates a permanent error where an OPEN, SORT, or MERGE of a file
specified in data-name-1 has failed. The operation may have failed because the contents of
data-name-1 were not consistent with the contents of file-info-1 in the TO phrase. This error
also occurs if data-name-1 contains an invalid file name.

6-36 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
ACCESS MODE clause

ACCESS MODE Clause

The ACCESS MODE clause specifies the way in which your program is to access the
associated file.

Syntax

There are four formats of this clause, depending upon the type of file being described. This
clause cannot be used for sort-merge files. The four formats are shown below.

Format 1 - Sequential
[ACCESS MODE Is SEQUENTIAL]

Format 2 - Relative

SEQUENTIAL [RELATIVE KEY IS data-name—1]

ACCESS MODE IS {BANQQM

KEY | - —
DlNAMJQ} BELATIVE S data-name-1

Format 3 - Random

ACCESS MODE 1S BANDOM

Format 4 - Indexed

SEQUENTIAL
ACCESS MODE |s { BANDOM
DYNAMIC
LG200026_029
Parameters
data-name-1 a data item that must not be defined in the record description entry

for the relative file being described. Furthermore, the item must be
defined as an unsigned integer. Such a data item might be defined as
the following where n is an integer in the range 5 to 9:

USAGE COMPUTATIONAL SYNCHRONIZED PIC 9(n),

ENVIRONMENT DIVISION 6-37



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
ACCESS MODE clause

Note The ANSI standard defines the relative key value as an unsigned integer
data item; however, HP COBOL II extends the standard and allows the
use of signed integers for efficiency of code. Because a 32-bit integer is used
for relative record numbers, a definition of “USAGE COMPUTATIONAL
SYNCHRONIZED PIC 59(9)” would allow for maximum code efficiency and
record access.

Even if you want to access a relative file sequentially, you must specify the RELATIVE KEY
phrase in order to reference the associated file in a START statement.

For three of the four file types to which this clause pertains (sequential, relative, and indexed),
you must specify an ACCESS MODE clause or sequential access is assumed. You must specify
the ACCESS MODE clause exactly as it is shown for random access files.

The three access modes are defined as follows:

m Sequential access means that existing records are accessed in ascending order. The relative
key is used for relative files, and a prime or alternate record key is used for indexed files.
Random access files may not be accessed sequentially.

m Dynamic access means that your program may alternate between sequential and random
access modes by selectively using different forms of various input-output statements. This
type of access may only be used for relative and indexed files.

m Random access means that the records are accessed directly by using a record key data
item (for indexed files) or by using the relative record numbers of records (for relative and
random access files).

For details on how sequential, dynamic, and random access is performed on the various file
types, refer to the overview on preceding pages of this chapter.

6-38 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
ACTUAL KEY clause

ACTUAL KEY Clause (an HP extension to the ANSI COBOL standard)

The ACTUAL KEY clause names the data item to be used in accessing records of a random
access file and applies only to random access files.

Syntax

This clause has the following format:

ACTUAL KEY IS data-name-1

Parameters

data-name-1 an integer item of one to nine digits.

Example

For greatest efficiency, the variable data-name-1 should have a PICTURE clause in the
following form:

PIC S9(9) USAGE COMPUTATIONAL SYNCHRONIZED.

This data item must be defined in either the FILE SECTION or the WORKING-STORAGE
SECTION of the DATA DIVISION. It corresponds to a relative record number. Record
numbers in random access files begin with 0. To ensure the accessibility of all records, the
data item must be large enough to contain the greatest record number in the file.

ENVIRONMENT DIVISION 6-39



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph

ALTERNATE RECORD KEY clause
ALTERNATE RECORD KEY Clause

Each use of the ALTERNATE RECORD KEY clause names an alternate record key for an
indexed file. The number of alternate keys for a file must be the same as the number used
when the file was created.

Syntax

This clause has the following format:

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ...

Parameters

data-name-2 the name of a data item described as alphanumeric in a record
description entry for the file with which it is associated. It must not
reference an item whose first character begins in the same position as
the first character of any other key, whether alternate or prime.

DUPLICATES Phrase

The DUPLICATES phrase specifies that the named alternate key may be duplicated within
any of the records of the file. If this phrase is unused, the contents of the data item referenced
by data-name-2 must be unique among records of the file.

As an extension to ANSI COBOL’85, HP COBOL II also allows the use of computational,
numeric display (without the optional SIGN clause), COMPUTATIONAL-3,
BINARY, and PACKED-DECIMAL data types for data-name-2.

6-40 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
FILE STATUS clause

FILE STATUS Clause

The FILE STATUS clause allows you to name a data item to be used in obtaining information
about the success or failure of input-output operations performed using the file being
described. This clause is optional, and may be used for all types of files except sort-merge

files.

Syntax

The FILE STATUS clause has the following format:
[FILE STATUS IS stat-item)].

Parameters

stat-item

Description

a two character alphanumeric data item defined in the

WORKING-STORAGE SECTION of the DATA DIVISION.

When an input or output operation has been performed on a file that has a FILE STATUS
data-item associated with it, the data item is updated with two characters that indicate the
status of the operation. These two characters are the file status code. The leftmost character
of this data item is called status-key-1. The rightmost character is called status-key-2. The
values that can be placed in status-key-1 and status-key-2, and their meanings, are shown in
Table 6-2 and Table 6-3.

Table 6-2 and Table 6-3, respectively contain information about the ANSI COBOL’85 and
ANSI COBOL’74 I-O status-codes. Key terms used in those tables are defined below.

EOF
AT END

INVALID KEY

PERMANENT
ERROR

LOGIC ERROR

IMPLEMENTOR
DEFINED

The program attempted to read a record following the last record in the file.

A sequential READ statement was unsuccessfully executed as a result of an
AT END condition.

The input-output operation failed because a duplicate key existed, a
boundary violation occurred, the record sought could not be found, or a
sequence error occurred (for indexed files only).

The input-output statement was unsuccessfully executed as the result of an
error that precluded further processing of the file.

The input-output statement was unsuccessfully executed as a result of an
improper sequence of input-output operations that were performed on the
file, or as a result of violating a user-defined limit.

The implementor defined codes are 9z. When status-key-1 is set to 9, an
unexpected error has occurred. In this case, the value placed in status-key-2

is a binary integer quantity corresponding to a file system error. Since

this quantity can range from 0 to 255, and since the status key item is
alphanumeric, your program will interpret this integer as some character

from the ASCII collating sequence. For an example, see the section “File I
Status Codes” in Chapter 5 of the HP COBOL I1/XL Programmer’s Guide.

ENVIRONMENT DIVISION 6-41



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
FILE STATUS clause

FIXED FILE Information about a file that is established when a file is created and cannot
ATTRIBUTE subsequently be changed during the file’s existence. These attributes include

the following:

m Organization of the file (sequential, relative, or indexed).

m Prime record key.

m Alternate record keys.

m Code-set.

m Minimum and maximum record size.

m Record type (fixed or variable).

m Collating sequence of the keys for indexed files.

m Blocking factor.

m Padding character.

m Record delimiter.

The ANSI COBOL’S85 file status codes are potentially incompatible with the ANSI COBOL’74

status codes.

m Some 9z values have been changed to other codes. For example, the ANST COBOL’85 file
status 38 was previously a 9z code.

m In order to provide more information to you, some additional values have been specified for

status-key-2.

6-42 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
FILE STATUS clause

Table 6-2. ANSI COBOL’85 File Status Codes

RANDOM ACCESS or
SEQUENTIAL RELATIVE INDEXED
S 00-Successful. No 00-Successful. No 00-Successful. No
U more information more information more information
C available. available. available.
C 04-READ length of 04-READ length of 02-READ current key
E record doesn’t record doesn’t = next key value
S match file. match file. -WRITE or REWRITE
S 05-0PEN. Optional 05-0PEN. Optional creates duplicate
F file not present, file not key for alternate
U created. present, created. key in which
L 07-File is not a duplicates are
tape as the OPEN/ allowed.
CLOSE phrase 04-READ length of
implies. record doesn’t
match file.
05-0PEN. Optional
file not present,
created.
A 10-EOF or optional 10-EOF or optional 10-EOF or optional
T file not present file not present file not present
on READ. on READ. on READ.
E 14-Record number too
i) big for relative
D key data item on
READ.
I 22-WRITE a duplicate |21-Sequence error.
i) key. * 22-WRITE OR REWRITE
V 23-Record does not a duplicate key.
A exist. 23-Record does not
L —-START OR READ on exist.
I missing optional —-START OR READ on
D file. missing optional
24-WRITE beyond file file.
K boundary. 24-WRITE beyond file
E -Sequential WRITE boundary.
Y record number too
big for relative
key data item.

* Does not apply to random files.

ENVIRONMENT DIVISION 6-43




INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
FILE STATUS clause

Table 6-2. ANSI COBOL’85 File Status Codes (continued)

SEQUENTIAL

RANDOM ACCESS or
RELATIVE

INDEXED

H=EM=P = o MY

o O ™ >

30-No more informa-
tion available.
31-0PEN, SORT, or
MERGE of dynamic
file failed due to
file attribute
conflict.
34-Boundary
violation.
35-Nonoptional file
not present for
OPEN.
37-EXTEND or OUTPUT
on unwritable
file.
-I-0 for file that
does not support
it.
—-INPUT on invalid
device for input.
38-0PEN on file
closed with LOCK.
39-0PEN unsuccessful
due to fixed file
attribute
conflict.

30-No more
information
available.

31-0PEN, SORT, or
MERGE of dynamic
file failed due to
file attribute
conflict.

35-Nonoptional file
not present for
OPEN.

37-EXTEND or OUTPUT
on unwritable file.
-I-0 for file that
does not support
it.
—-INPUT on invalid
device for input.

38-0PEN on file
closed with LOCK.

39-0PEN unsuccessful
due to fixed file
attribute
conflict.

30-No more
information
available.

31-0PEN, SORT, or
MERGE of dynamic
file failed due to
file attribute
conflict.

35-Nonoptional file
not present for
OPEN.

37-EXTEND or OUTPUT
on unwritable
file.
-I-0 for file that
does not support
it.
—-INPUT on invalid
device for input.

38-0PEN on file
closed with LOCK.

39-0PEN unsuccessful
due to fixed file
attribute
conflict.

Q H Qo

o O =™ ™M

41-0PEN on file that
is already open.

42-CLOSE for file
not open.

43-No READ before
REWRITE.

44-Boundary
violation.
-Record too big or
too small.
-Rewrite record
not same size.

46-READ after AT END
or after
unsuccessful
READ.

47-READ on file not
open for input.

48-WRITE on file
not open for
output.

49-REWRITE on file
not open for I-0.

41-0PEN on file that
is already open.
42-CLOSE for file
not open.
43-No READ before
REWRITE/DELETE.
44-Boundary
violation.
-Record too big or
too small.
46-READ after AT END
or after
unsuccessful
READ or START.
47-READ or START on
file not open for
input or I-O.
48-WRITE on file not
open for output
or I-0.
49-REWRITE or DELETE
on file not open
for I-0.

41-0PEN on file that
is already open.
42-CLOSE for file
not open.
43-No READ before
REWRITE/DELETE.
44-Boundary
violation.
-Record too big or
too small.
46-READ after AT END
or after
unsuccessful
READ or START.
47-READ or START on
file not open for
input or I-O.
48-WRITE on file not
open for output
or I-0.
49-REWRITE/DELETE
on file not
open for I-0.

6-44 ENVIRONMENT DIVISION




INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
FILE STATUS clause

Table 6-3. ANSI COBOL’74 File Status Codes

RANDOM ACCESS or

SEQUENTIAL RELATIVE INDEXED
S 00-Successful. NO 00-Successful. No 00-Successful. No
U more information more information more information
C available. available. available.
C 02-READ current key
E = next key value.
S -WRITE or REWRITE
S creates duplicate
F key for alternate
U key in which
L duplicates are
allowed.
A 10-EOF or optional 10-EOF or optional 10-EOF or optional
T file not present. file not present. file not present.
E
i)
D
I 22-WRITE 21-Sequence error.
N a duplicate key. 22-WRITE OR REWRITE
V 23-Record does not a duplicate key.
A exist. 23-Record does not
L —START OR READ on exist
I missing optional —-START OR READ on
D file. missing optional
24-WRITE beyond file file.
K boundary. 24-WRITE beyond file
E -Sequential WRITE boundary.
Y record number too
big for relative
key data item.
P 30-No more 30-No more 30-No more
E information information information
R available. available. available.
M 34-Boundary
A violation.
i)
E
i)
T
E
R
R
0
R

ENVIRONMENT DIVISION 6-45




INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
ORGANIZATION clause
ORGANIZATION Clause
The ORGANIZATION clause specifies the logical structure of the file being described. It can
be used in sequential, relative, and indexed files.
Syntax
The three formats of the ORGANIZATION clause are shown below.
[ORGANIZATION IS] SEQUENTIAL
[ORGANIZATION IS] RELATIVE
[ORGANIZATION IS] INDEXED

Description

The ORGANIZATION clause is required for relative and indexed files. It is optional for
sequential files. This clause cannot be used for sort-merge and random access files.

6-46 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
RECORD KEY clause

RECORD KEY Clause

The RECORD KEY clause is used for indexed files only. It is required, because it provides
the means (data-name-1) by which the associated indexed file is accessed.

Syntax
RECORD KEY IS data-name-1 [WITH DUPLICATES]

The WITH DUPLICATES phrase in the record key clause is an HP extension to the ANSI
COBOL standard.

Parameters

data-name-1 the name of an alphanumeric data item defined in a record description
entry associated with the file being described. As an HP extension to
ANSI COBOL’85, HP COBOL II also allows the use of computational,
numeric display (sign overpunched on least significant digit),
COMPUTATIONAL-3, BINARY, and PACKED-DECIMAL data types for
data-name-1.

Data-name-1 is the prime record key for the file. The data-description for data-name-1, and
its relative position within a record must be the same as that used when the file was created.

DUPLICATES Phrase

The DUPLICATES phrase specifies that the named prime record key may be duplicated
within any of the records of the file. If, however, you do not specify that duplicates may exist,
then the value of the key must be unique among records of the file.

Note If an indexed file has the DUPLICATES phrase specified for its primary key,
the REWRITE/DELETE statement should be used only when the indexed
file is in sequential access mode. This is because a REWRITE/DELETE
statement issued for a file whose access mode is dynamic or random only
rewrites/deletes the first record of a DUPLICATE primary key chain.

ENVIRONMENT DIVISION 6-47



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
RESERVE clause
RESERVE Clause

The RESERVE clause allows you to indicate the number of input-output buffers to be
allocated for the file being described. Its use is optional. If you do not specify it, the number
of buffers allocated is the operating system default.

This clause may be used for sequential, relative, indexed, and random access files. It may not
be used for sort-merge files.

Syntax

The format of the RESERVE clause is shown below.

RESERVE integer—1 | AREA
AREAS

LG200026_034

Parameters

integer-1 a nonnegative integer in the range zero to 16.

AREA and  each are equivalent, and can be used interchangeably.
AREAS

Description

If you specify zero, the operating system still allocates the default number. Also, although you
can specify more than two, any more than three buffers does not usually increase input-output
efficiency. See your operating system reference manual for more information on buffers.

6-48 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
FILE-CONTROL Paragraph
RESERVE clause

Example

The following example shows a FILE-CONTROL paragraph for an indexed file and a
sequential file, as well as important data items associated with the files.

ENVIRONMENT DIVISION.

INPUT-0UTPUT SECTION.
FILE-CONTROL.
SELECT INDXFILE
ASSIGN TO "KFILE,DA,A,DISC,5000,,L"
RESERVE 3 AREAS
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS FIRST-CHARS
ALTERNATE RECORD KEY IS SECOND-CHARS WITH DUPLICATES
FILE STATUS IS CHECK-KFILE.

SELECT TAPEIN
ASSIGN TO "READTAPE,UT,TAPE, ,HANG TAPE 001."
RESERVE 2 AREAS
FILE STATUS IS CHECK-TAPE.

DATA DIVISION.
FILE SECTION.
FD INDXFILE
LABEL RECORDS ARE OMITTED.
01 RECORD-IN.

02 FIRST-CHARS PIC X(8).

02 SECOND-CHARS PIC X(24).
FD TAPEIN

LABEL RECORDS ARE OMITTED.

01 TAPE-REC PIC X(80).

WORKING-STORAGE SECTION.
77 CATCHNUM PIC 9(4) USAGE DISPLAY.
01 CHECK-KFILE.
02 STAT-KEY-1 PIC
02 STAT-KEY-2  PIC X.
01 CHECK-TAPE.
02 STAT-KEY-1 PIC
02 STAT-KEY-2 PIC X.

>

>

ENVIRONMENT DIVISION 6-49



INPUT-OUTPUT SECTION
10-CONTROL Paragraph

I-O-CONTROL Paragraph

The I-O-CONTROL paragraph is an optional paragraph that specifies the areas of memory
(buffers) to be shared by different files and the locations of files on a multi-file tape reel.

Syntax
This paragraph has the following format:

[l-o-conTROL.
RECQRD
SAME | SORT AREA FOR file-name-3 { file~name—4 }
SORT-MERGE
[MULTIPLE EILE TAPE CONTAINS { file-name-5 [PQOSITION integer—3]} «v ] vov . 1]

LG200026_035a

6-50 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
10-CONTROL Paragraph
SAME Clause

SAME Clause

The SAME clause has three formats, whose meanings and restrictions are described below.

Syntax

SAME AREA FOR file-name-3 { file—name—4}

SAME RECORD AREA FOR file—-name-3 { file-name—4 }

SORT
SORT-MERGE

LG200026_036a

SAME{ } AREA FOR file-name-3 { file—name—4 }

SAME AREA Clause

The SAME AREA clause allows you to conserve main memory space by permitting two or
more non-sort or non-merge files to use the same area of main memory for processing the file.

Because the area shared includes all storage areas assigned to the files specified, only one file
can be open at any given time.

Also, a file name can appear in only one SAME AREA clause within a program. However,
this does not exclude the possibility of the file name appearing in a SAME RECORD AREA,
SAME SORT AREA, or SAME SORT-MERGE AREA clause.

The restrictions on file names appearing in more than one SAME RECORD, SAME SORT
AREA, or SAME SORT-MERGE AREA are listed on the following pages under the headings
SAME RECORD AREA clause, SAME SORT AREA, and SAME SORT-MERGE AREA

clauses.

The files referenced in the SAME AREA clause need not all have the same organization or
access.

An external file can not be referenced in a SAME AREA clause.
To specify that FILEA, FILEB, and FILEC share the same processing area, enter the following:
SAME AREA FOR FILEA, FILEB, FILEC.

SAME RECORD AREA Clause
The SAME RECORD AREA clause specifies that two or more files (of any kind) be allowed

to share the same area of main memory for processing the current logical record.

If none of the files in this clause appears in a SAME AREA clause, then all of the files can be
open at the same time.

A logical record in this shared record area is considered a logical record of each open output
file named in the SAME RECORD AREA clause. It is also considered a record of the most
recently opened input file named in the SAME RECORD AREA clause. This is equivalent
to an implicit redefinition of the shared area. That is, records are aligned on the leftmost
character position.

ENVIRONMENT DIVISION 6-51



INPUT-OUTPUT SECTION
10-CONTROL Paragraph
SAME Clause

If any file appears in the SAME RECORD AREA clause and in the SAME AREA clause,
then all other files appearing in the SAME AREA clause must also appear in the SAME
RECORD AREA clause. Of course, files not named in the SAME AREA clause can also
appear in the SAME RECORD clause. Because of this restriction, and since only one file
named in a SAME AREA clause can be open at any given time, if any file in the SAME
RECORD AREA clause also appears in a SAME AREA clause, then the rule that only one
file at one time may be open takes precedence over the rule that all files named in the SAME
RECORD AREA clause can be open at the same time.

As with files named in the SAME AREA clause, files named in the SAME RECORD AREA
clause can have different organizations and access modes. Also, if a file name appears in a
SAME RECORD AREA clause, it can not appear in any other SAME RECORD AREA

clause within the program.

External files can not appear in a SAME RECORD AREA clause.

SAME SORT AREA and SAME SORT-MERGE AREA Clauses
The SAME SORT AREA and SAME SORT-MERGE ARFEA clauses are equivalent. Both

specify that the area used in main memory for sorting or merging sort-merge files is shared.

No sort or merge file can appear in a SAME AREA clause; However, it is not necessary for all
files named in a SAME SORT AREA or SAME SORT-MERGE AREA clause to be sort or
merge files. Only one must be. Furthermore, any sort or merge file that appears in a SAME
SORT AREA or SAME SORT-MERGE AREA clause can not appear in another SAME
SORT or SAME SORT-MERGE AREA clause within the same program.

If a non-sort or non-merge file appears in a SAME ARFEA clause and in one or more SAME
SORT AREA or SAME SORT-MERGE AREA clauses, then all files named in that SAME
ARFEA clause must appear in the SAME SORT AREA or SAME SORT-MERGE AREA

clauses.

During the execution of a SORT or MERGLE statement that refers to a file named in a SAME
SORT AREA or SAME SORT-MERGE AREA clause, those files that are not sort or merge
files, but are named in the SAME SORT AREA or SAME SORT-MERGE AREA clauses,

must not be open.

The files named in a SAME SORT AREA or SAME SORT-MERGE AREA clause need not

have the same organization or access mode.

External files can not appear in a SAME SORT AREA clause or a SAME SORT-MERGE
ARFEA clause.

Note Because only one file can be OPEN at any given time, there is no implied
redefinition of the record storage area, unless the SAME RECORD AREA
clause is also used. Therefore, any access of the record area through
non-OPEN’ed file data items yields undefined results.

6-52 ENVIRONMENT DIVISION



INPUT-OUTPUT SECTION
10-CONTROL Paragraph
MULTIPLE FILE Clause
MULTIPLE FILE Clause
The MULTIPLE FILE clause is an obsolete feature of the 1985 ANSI COBOL standard.

The MULTIPLE FILE clause specifies the location of files on a multiple file reel.

Syntax
[MULTIPLE FILE TAPE CONTAINS {file-name-5 [POSITION integer-3] } ... ] ...

Description

When the file referenced by your program shares a labeled tape with other files, you must
enter the MULTIPLE FILE clause. Regardless of the number of files on the reel, you need
specify only those used by your program. If you specify the files in chronological order, you
need only enter the file names in the MULTIPLE FILE clause:

MULTIPLE FILE TAPE CONTAINS FILEA, FILEC, FILEF

But if you specify the files in random order, you must indicate their positions by using the

POSITION clause:

MULTIPLE FILE TAPE CONTAINS FILEC POSITION 3
FILEF POSITION 6, FILEA POSITION 1

In the second example, the first position, in relation to the beginning of the reel, is position
one.

No more than one file on the same tape device can be open at the same time.

The files specified in this clause cannot be external files.

Note The MULTIPLE FILE clause applies to labeled sequential files only. This is
because of the intrinsically sequential nature of magnetic tape devices.

ENVIRONMENT DIVISION 6-53






7

DATA DIVISION

The DATA DIVISION describes all data that your program is to use. That is, it describes any
data to be read from or written to a file, data developed internally and held in temporary or
working storage, and any constants that are used. The DATA DIVISION is optional. When
included, however, it must follow the ENVIRONMENT DIVISION.

There are three sections within the DATA DIVISION:
m FILE SECTION: defines the structure of data files.
m WORKING-STORAGE SECTION: describes data items used as constants by the object

program, as well as records and noncontiguous data items that are developed and used
internally, and are not part of external data files.

m LINKAGE SECTION: describes data items within subprograms that are referenced
by both the calling and the called program. This section appears only in programs
that will be called by some other program. Its format is the same as the format of the

WORKING-STORAGE SECTION.

DATA DIVISION 7-1



DATA DIVISION

DATA DIVISION Format
The DATA DIVISION has the following general format;

GENERAL FORMAT FOR DATA DIVISION

[DATA DIVISION.
[EILE SECTION.

I: file—description-entry { record-description-entry } . . .
sort-merge—file~description-entry { record-description-entry } . . .

[WORKING-STORAGE SECTION.

l:77—/evel-—description—entry L
record—-description—entry

[LINKAGE SECTION.

I: 77—~level~description-entry
record~description—entry e

LG200026_038

The format of each section is described separately on the following pages, followed by an
explanation of record description entries.

DATA DIVISION Syntax Rules

All sections within the DATA DIVISION are optional. When included, however, they must
appear in the order shown in the format description.

Each DATA DIVISION entry begins with a level indicator or a level number, followed by
a space, the name associated with the level indicator or level number, and a sequence of
independent description clauses. The last clause must be terminated by a period.

The division header must begin in Area A (the eighth through eleventh character positions of
each record). It consists of the words DATA DIVISION and is followed by a period.

7-2 DATA DIVISION



DATA DIVISION
FILE SECTION

FILE SECTION

The FILE SECTION defines the structure of any sequential, indexed, relative, random access,
or sort-merge file appearing in your program.

Each file is defined by a file description entry and one or more record descriptions.

A file description entry always begins with the letters SD (for sort-merge files), or FD (for any
other type of file as mentioned above) in Area A. It is followed by a space, the name of the file
being described, and a sequence of input-output description clauses.

An FD file description furnishes information concerning the physical structure, identification,
and record names pertaining to any type of file except a sort-merge file.

An SD file description provides information about the size and names of the data records

in a file to be sorted or merged. Because you cannot control label procedures and because
the blocking for the internal storage of sort-merge records is controlled by the SORT and
MERGE operations, the only two clauses allowed in a file description for a sort-merge file are

the RECORD CONTAINS and DATA RECORD IS clauses.

A record description always begins with a level number which, in the FILE SECTION, may
be any number from 1 to 49, or the numbers 66 and 88. Level numbers of 66 and 88 have
special usages associated with them, as described in Chapter 4. Record description entries are
described in Chapter 4.

Note that record description entries can be used in every section and must be used in the
FILE SECTION, following each file description appearing in that section. For a complete
description of the FILE SECTION format refer to the “File Description Clauses” section later
in this chapter.

[ELLE SECTION.
[file—description«entry { record-description~entry} »+ » -
sort-merge—file—description—entry { record-description—-entry } . :

LG200026_197

DATA DIVISION 7-3



DATA DIVISION
FILE SECTION

[ FILE SECTION .

ED file-name-1

CHARACTERS

BLOCK CONTAINS [integer-1 10] integer-2 {RECORDS }]

s

RECORDING MQDE iS

mici< Im

CONTAINS integer-3 CHARACTERS
FRO

RECOR

CONTAINS integer-6 TO integer-7 CHARACTERS

B RECORD IS STANDARD
L

RECORDS ARE] | OMITTED
B data-name-2
VALUE OF { {label-info-1} 181 jesrar_1 c.
B RECORD IS
DA —RECORDS ARE {data-name-3 } - - -
I data-name-4 1, \ e | WITH FQOTING AT {data_name_s }
HNAGE IS { integer-6 } integer-7
ta- - ta- -
LINES AT TOP {f’a a-name-6 } LINES AT BOTTOM {F’a a-name-7 }
integer-8 ——— | integer-9

[ CODE-SET Is alphabet-name-1] .

{ record-description-entry} . . .

SD file-name-1

CONTAINS integer-1 CHARACTERS

CONTAINS integer-4 TQ integer-5 CHARACTERS

RECORD IS
DA RECORDS ARE { data-name-2 } - - - | -
{ record-description-entry } . . ]

LG200026_038b

7-4 DATA DIVISION



DATA DIVISION
WORKING-STORAGE SECTION

WORKING-STORAGE SECTION
The WORKING-STORAGE SECTION consists of a section header, “WORKING-STORAGE

SECTION”, and one or more data description entries for noncontiguous data items, as well as

record description entries. The general format of the WORKING-STORAGE SECTION is:

[WORKING-STORAGE SECTION.

77-level-description-entry
record~description—entry

LG200026_040

Each data description entry within WORKING-STORAGE allocates memory space for the
data item and associates a data name with the item.

You can use the WORKING-STORAGE SECTION to assign initial values to data items,
define report headings, set up tables with initial values, define counters and accumulators, and
so forth.

Level 77 and other data description entries are described in the following paragraphs.

DATA DIVISION 7-5



DATA DIVISION
LINKAGE SECTION

LINKAGE SECTION
The LINKAGE SECTION consists of the header, “LINKAGE SECTION”, and one or more

data description entries for noncontiguous data items, as well as record description entries.

The LINKAGE SECTION in a program is meaningful only if the object program is

to be called from another object program through a CALL statement, and the CALL
statement in the calling program contains a USING phrase. See Chapter 11, “Interprogram
Communication”, for more information on how calling programs and called programs operate.

The LINKAGE SECTION is used to describe the data that is available from the calling
program, but is to be used in both the calling program and the called program.

No space is allocated in the program containing a LINKAGE SECTION entry for the data
items described in such an entry. PROCEDURE DIVISION references to these data items are
resolved at object time by equating the reference in the called program to the location used in
the calling program.

In the case of index names, no such correspondence is established. Index names are always
local to their programs. Therefore, such names in the called and calling program always

refer to separate indices. If index names are to be passed between programs, they should

first be saved in a data item described in the WORKING-STORAGE SECTION as an index
data item. A SET statement in the PROCEDURE DIVISION accomplishes this. Next, the
index data item should be passed to the called program by the USING option of the CALL
statement in the PROCEDURE DIVISION. Once the index data item is passed, a SET
statement in the called program can be used to set the index value to the index name declared

in the LINKAGE SECTION of the called program.

Data items defined in the LINKAGE SECTION of the called program may be referenced
within the PROCEDURE DIVISION of the called program only under the following

conditions:

m [f they are specified as operands of the USING phrase of the PROCEDURE DIVISION

I header or ENTRY statement or are subordinate to such operands.

m [f the object program is under the control of a CALL statement that specifies the USING
phrase.

All data description clauses may be used in the LINKAGE SECTION, with the restriction
that a VALUE clause can only be used in a condition name (level 88) entry.

The VALUE clause cannot be used in any other type of entry because no memory space is

allocated for LINKAGE SECTION data items.
The LINKAGE SECTION has the following format:

[LINKAGE SECTION.

77-level-description—entry
record-description—entry

LG200026_041

7-6 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses

DATA DIVISION Clauses

There are two distinct sets of clauses in the DATA DIVISION: file description clauses and
data description clauses. File description clauses apply only to data files (F'D level entries)
and sort-merge files (SD level entries). Data description clauses can be used in any of the
three sections allowed by HP COBOL II within the DATA DIVISION. They must be used in
conjunction with each file description entry.

File Description Clauses

Each clause described on the following pages, if used, must be part of a file description entry.
However, several of the clauses do not apply to sort-merge files (that is, to SD level indicator
entries). Those that do not apply to SD level entries are noted as they are described.

The FILE SECTION must begin in Area A with the words FILE SECTION followed by a
period. The header is followed by a level indicator (either FD or SD) and the name of the file
being described. One or more record description entries must follow each file description entry.
A file description entry is terminated by a period.

The general formats for the file description clauses are:

DATA DIVISION 7-7



FILE SECTION
File Description (FD, SD) Clauses

FD file-name-1

fspm

RECORDS }
CHARACTERS,

|:BLOCKCONTAINS [integer-11Q] Integer-2 {

I Ic 1< 1M

!:RECORDING MODE IS:

& 4 1110 intsger 51 cHARACTERG

name-1]
CONTAINS integer-6 TO integer-7 CHARAGTERS

{neconms } {M’}
BEL | RECORDS ARE] | OMITTED

data-name-2
VALUE OF | {label-info-1} 18 | prar-1 v

RECORD IS
DATA RECORDS ARE {data-name-3 } - - .

CONTAINS integer-3 CHARACTERS
RECORI

&

data-name-4 data-name-5
[LINAGE 3 { Integer—6 }UNES l:WITH FOOTING AT {Integer~7 H

data-name-6 data-name-7
I:LINES ATTOP {I 8 ]:I [LINES AT BOTTOM {inleger—Q }:']

[cODE-SETIS alphabet-name-1] .
{ record-description-entry} « . .

8D file-name-1
‘CONTAINS integer-1 CHARACTERS
R

RECORD

-
CONTAINS integer-4 TO Integer-5 CHARACTERS

RECORD IS
DATA { ——— . — - PRI
|:_ { RECORDS ARE} { data-name-2} ]

{ record-description-entry} - -+ «

LG200026_0428

7-8 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
FD Level Indicator - For Data File Descriptions
The FD level indicator names the data file being described. It must be the first clause in a
data file description entry.
Syntax
The data file description clause has the following format:

FD file-name-1

Parameters

FD indicates that the clauses that follow are data file description clauses.
file-name-1 the name of the data file being described.

Description

The characters FD must begin in Area A. These characters are followed by a space and the
name of the data file being described. Following the name, several clauses, mostly optional,
are used to describe the file. At least one record description entry must follow the file
description entry.

SD Level Indicator - For Sort File Descriptions
An SD level indicator names the file to be sorted or merged. It must be the first entry in a
sort-merge file description entry.
Syntax
The format of the SD level indicator is:
SD file-name-1

Parameters

SD indicates that the clauses that follow are used to describe a file to be
sorted and/or merged.

file-name-1 the name of the file being described.

Description

The characters SD must begin in Area A. These characters are followed by a space and the
name of the data file being described. The name may then be followed by a RECORD
CONTAINS clause or DATA RECORDS clause, and must be followed by at least one record

description entry.

DATA DIVISION 7-9



FILE SECTION
File Description (FD, SD) Clauses
BLOCK CONTAINS Clause

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause allows you to specify the blocking factor of the file being
described. This clause should be used if the actual blocking factor of the file being described
cannot be determined by the operating system.

For example, this clause is optional when the physical record contains exactly one complete
logical record or, for sequential files only, when the physical device associated with the file is a
unit-record device (such as a card reader).

When the BLOCK CONTAINS clause is omitted, the default blocking factor from the

operating system is automatically assigned.

This clause does not apply to sort-merge files (SD level descriptions).

Syntax
. RECORDS
BLOCK CONTAINS |integer-1 integer—2 { }
[ [ I I_Q] g CHARACTERS
LG200026_044

Parameters

integer-1 optional and must be positive. It refers to the minimum blocking factor
size or to the minimum size of the physical record, depending upon
whether the keyword RECORDS or CHARACTERS is used. Due to the
way in which the operating system determines file attributes, this phrase
is treated as a comment.

integer-2 required and must be positive. If used in conjunction with integer-1, it
specifies the maximum size of the physical record; used alone, however, it
specifies the exact size of the physical record, or the exact blocking factor.

RECORDS specifies that the physical record size of the file is determined by its
blocking factor.

CHARACTERS when specified, is used to determine the blocking factor by dividing the
value of integer-2 by the logical record size. Refer to the RECORD
CONTAINS clause description in this chapter.

Description

When the word CHARACTERS is used, the physical record size should be specified as a
multiple of the maximum logical record size. Note that this logical record size must include
any slack bytes generated by the compiler. Refer to the SYNCHRONIZED clause description
in this chapter.

If logical records of differing size are grouped into one physical record, they are treated
differently, according to the file’s organization:

m Sequential or indexed file - The size of a logical record is variable, and is equal to the size of
the record currently being accessed.

7-10 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
BLOCK CONTAINS Clause

m Random and relative files require fixed length records.
To illustrate the use of the BLOCK CONTAINS clause:

m A magnetic tape file contains variable length logical records with a maximum of 120
characters, blocked with a minimum of four logical records per physical record. There is a
maximum of 480 characters (bytes) per physical record, and a minimum of 60 bytes per
physical record.

B RECO RECH1 REC2 REC3 E

0 60 95 120 70 0

T bytes bytes bytes bytes F
LG200026_045

In this case, you can use either:
BLOCK CONTAINS 4 RECORDS.
or:

BLOCK CONTAINS 60 TO 480 CHARACTERS.

Note The figures specified above are only used as estimates by the operating
system. The actual blocking factor varies depending on the logical records,
and the physical record size for variable records contains control information.
Therefore, it is larger than specified in the BLOCK CONTAINS clause. This
applies to relative files as well. Refer to the MPFE File System Manual for
more information on blocking factors.

m A random access disk file contains fixed length logical records of 206 bytes (103 words) each.
Therefore, there are 50 unused bytes per sector. To minimize this waste, a blocking factor of
six records can be used:

BLOCK CONTAINS 6 RECORDS.

m A serial access disk file contains variable length logical records, ranging from 256 to 2560
bytes per record. The blocking factor is 10.

You can use either:
BLOCK CONTAINS 256 TO 2560 CHARACTERS.
or:

BLOCK CONTAINS 10 RECORDS.

DATA DIVISION 7-11



FILE SECTION
File Description (FD, SD) Clauses
CODE-SET Clause

CODE-SET Clause

The CODE-SET clause specifies the character code convention that represents data stored in
sequential files. This clause may be specified for all files with sequential organization. This
clause is optional, with ASCII being the default if it is not specified.

Syntax
[CODE-SET IS alphabet-name-1].
{record—description—-entry} . . .
LG200026_046
Parameters
alphabet-name-1 a previously defined name related to either EBCDIC, EBCDIK,
STANDARD-1, STANDARD-2 or NATIVE. It must be specified in
the ALPHABET clause of the SPECIAL-NAMES paragraph in the
ENVIRONMENT DIVISION.
Description

If the CODE-SET clause is specified, alphabet-name-1 indicates the character code convention
used to represent the data on the related file. It further indicates the conversion routine to be
used in translating the data into ASCII (when reading it) and translating data back into its
original character code (when writing it from your program).

When the CODE-SET clause is used for a file, all data in that file must be described as
USAGE IS DISPLAY, and any signed numeric data must be described with the SIGN IS
SEPARATE clause.

Note The HP utility FCOPY can be used to translate EBCDIC files containing
records with elements that are other than USAGE DISPLAY. Refer to the
FCOPY Reference Manual for more information.

7-12 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
DATA RECORDS Clause

DATA RECORDS Clause

The DATA RECORDS clause is an obsolete feature of the 1985 ANSI COBOL standard.

For any type of file (random, sequential, sort-merge, and so forth) the DATA RECORDS
clause serves only to document the names of data records associated with a file. This clause
is, therefore, optional for both FD and SD level file descriptions.

Syntax

BECORD IS

DATA { data-name-3} - . -
BECORDS ARE
LG200026_047

Parameters
data-name-2 and its subsequent occurrences are the names of data records.
Description

Use of more than one data name in this clause indicates that the file contains more than one
type of data record. For instance, they might be of different size or format.

DATA DIVISION 7-13



FILE SECTION
File Description (FD, SD) Clauses
EXTERNAL Clause

EXTERNAL Clause

The EXTERNAL clause is a feature of the 1985 ANSI COBOL standard.
The EXTERNAL clause specifies the external attributes of a file connector, the associated
data records, and the associated data items.
Syntax
IS EXTERNAL

Description

If the file description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. FILLER
cannot be specified for any record descriptions associated with a file description entry that
contains the EXTERNAL clause. See Chapter 11, “Interprogram Communication”, for more
detailed information.

7-14 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
Global Clause

GLOBAL Clause

The GLOBAL clause is a feature of the 1985 ANSI COBOL standard.
The GLOBAL clause specifies that the file connector, the data records and associated data

items are available to the contained programs within a nested program in which the file is
declared global.
Syntax

Is GLOBAL

Description

The GLOBAL clause can only be specified in the FD clause of the FILE SECTION. Refer to
Chapter 11, “Interprogram Communication,” for more detailed information.

DATA DIVISION 7-15



FILE SECTION
File Description (FD, SD) Clauses
LABEL RECORDS Clause

LABEL RECORDS Clause
B The LABEL RECORDS clause is an obsolete feature of the 1985 ANSI COBOL standard.

The LABEL RECORDS clause specifies whether one or more labels exist on the file and,
optionally, the names of the records containing the label. This clause does not apply to
I sort-merge files. This clause is optional.

Syntax

STANDARD
OMITTED

{
data—name-1

BECORD 1S
BECORDS ARE

LG200026_048

Parameters

OMITTED specifies that no explicit labels exist for the file or the device to which the
file is assigned.

STANDARD specifies that labels exist for the file or the device to which it has been
assigned, and that the labels conform to the operating system’s label
specification.

data-name-1 the name of the label record which must be described in a record
description entry associated with the file. This record must not appear in
the DATA RECORDS clause associated with the file. Use of this option
indicates that user labels, as well as standard labels, are to be processed.
All PROCEDURE DIVISION references to these names, or to any
subordinate items, must appear within USE procedures. Label records for
all files share the same area of memory.

Data-name-1 cannot be an external record. The data-name-1 parameter
is an HP extension to the ANSI COBOL standard.
Description

With HP COBOL II, it does not matter whether you specify that labels are STANDARD
or OMITTED because the operating system processes standard labels before making the
associated file available to your COBOL program.

If the file being described is an external file, all programs describing this file must have

consistent LABEL RECORDS clauses.

7-16 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
LINAGE Clause

LINAGE Clause

The purpose of the LINAGE clause is to describe the format of a logical page. It is used in
conjunction with sequential files opened for output. Although there is not necessarily any
relation between a logical and a physical page, it is advisable (particularly when writing a
logical page to the line printer) to consider the size of a physical page when you are defining a
logical one.

The LINAGE clause applies only to sequential files. It has no meaning for relative, random,
indexed, or sort-merge files.

Its use is optional with sequential files, but it must be used if you intend to write records to

the file using the END-OF-PAGE (or EOP) phrase of the WRITE statement.

A logical page consists of a top margin, page body, footing area, and bottom margin. Within
a file, logical pages are contiguous. Figure 7-1 shows the concept of a logical page.

Syntax

data—name—4 - —
LINAGE 1S { ¢ LINES | WITH EQOTING AT{ 92t@-name=5
integer~6 integer-7
data—name—6 - -
LINES AT TOP { LINES AT BOTTQM { 22ra-name=7
integer-8 integer-9
LG200026_049
Parameters
data-name-/ each reference an elementary unsigned integer data item.
through
data-name-7
integer-6 greater than zero.
integer-7 greater than or equal to zero and not greater than integer-6.
integer-8 and each greater than or equal to zero.
integer-9
Description

The LINAGE clause uses data-name-4 or integer-6 to define the number of lines in the page
body. The page body is the area of the logical page in which lines can be written or spaced.
Because a page size is being defined, integer-6 (or the value associated with data-name-4)
must be greater than 0.

If the file being described is an external file, and any file description entries for this file have
a LINAGE clause, all file description entries in the run unit that describe this file must have
a LINAGE clause. Also, the parameters must be either constants or external data items.
Corresponding parameters must be the same in all LINAGE clauses for this file.

DATA DIVISION 7-17



FILE SECTION
File Description (FD, SD) Clauses
LINAGE Clause

Lines at Top 3 { Top Margin

r

Line 1 of page body

Page Body

Linage is 25 4
Lines
Footing at 24  Footing Area
| Line 25 of page body
Lines at Bottom 3 { Bottom Margin

Linage is 25 lines, with footing at 24.
Lines at top 3, lines at bottom 3.

LG200026_050

Figure 7-1. Example of the LINAGE Clause and its Logical Representation

7-18 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
LINAGE Clause

FOOTING Phrase

The FOOTING phrase is optional. If specified, however, it uses integer-7 or data-name-5 to
define the FOOTING AREA of the page body.

The entire page body can be the footing area. That is, integer-7 (or, the value of
data-name-5) may be 1, in which case the footing area is all of the page body.

The footing area is used in conjunction with the END-OF-PAGE phrase of the WRITE
statement. It signifies that the end of the logical page has been reached.

If you do not use the FOOTING phrase, then the only way that an end of page condition can
occur is for a WRITE statement to attempt to write a record beyond the end of the logical
page body (that is, when a page overflow condition exists).

LINES AT TOP and LINES AT BOTTOM Phrases

The LINES AT TOP and LINES AT BOTTOM phrases are optional. They are used to
specify a top margin and a bottom margin, respectively, for the logical page. If neither phrase
is used, the margins are assumed to be zero.

If THE LINES AT TOP phrase is specified, it uses integer-8 or data-name-6 to specify the
number of lines in the top margin.

If THE LINES AT BOTTOM phrase is specified, it uses data-name-7 or integer-9 to specify
the number of lines in the bottom margin.

The top and bottom margins are distinct from the page body; therefore, no data may be
written into them.

DATA DIVISION 7-19



FILE SECTION
File Description (FD, SD) Clauses
LINAGE Clause

Use of Data Names Versus Use of Integers

The use of integers in a LINAGLE clause allows for less flexibility than does the use of data
names.

When an integer (either integer-6, integer-7, or integer-8) is specified, it is used when the file
associated with the LINAGE clause is opened for output. This value is used for every logical
page written for the file and cannot change during a particular execution of the program in
which it appears.

The values of data names, on the other hand, can vary during the execution of a program.
Therefore, the values are checked and used not only when the associated file is open for
output, but also whenever a WRITE statement containing an ADVANCING PAGE phrase is
executed, or a WRITE statement is executed and a page overflow condition occurs.

Taking each of these cases in turn:

m When the file is opened for output, the current values of data-name-4, data name-5,
data-name-6, and data-name-7 are used to define their associated sections of the FIRST
logical page only.

m When a WRITE statement is executed, and the ADVANCING PAGE phrase is activated,
the current values of data-name-4, data name-6 and data-name-7 are used to define the
page body, top and bottom margins of the next logical page.

m [f a footing area has been defined, the ADVANCING PAGE phrase is activated when the
WRITE statement in which it appears attempts to write data into the footing area. In this
case, the data is written into the footing area of the current logical record and the current
value of data-name-5 is then used to define the footing area for the next logical page.

m When a WRITE statement is executed and a page overflow condition occurs, thus forcing
an end-of-page condition, the current values of data-name-4, data name-6, and data-name-7
are used to define their associated parts of the next logical page.

This type of end-of-page condition implies that either the value of data-name-5 is the same as
that of data-name-/ or that a footing area was not defined (the two are equivalent).

In either case, the data to be written is placed in the first available line of the next logical
record (depending upon whether the BEFORE or AFTER ADVANCING phrase was used in
the WRITE statement).

If a footing area has been defined, the current value of data-name-5 is then used to define the
footing area of this logical record.

7-20 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
LINAGE Clause

LINAGE-COUNTER

Any time a LINAGE clause is specified for a file, a LINAGE-COUNTER, is supplied for the
file.

Because you can have more than one file whose description contains a LINAGE clause, you

must qualify the LINAGE-COUNTER of each file by using the file name.

The value of a LINAGE-COUNTER at any given time is the current line number of the
associated page body. This value ranges from one, for the first line of a page body, to
integer-6 (or the value of data-name-4). You can reference a LINAGE-COUNTER in the
PROCEDURE DIVISION, but cannot change it.

Each time a record is written to a logical page, the associated LINAGE-COUNTER is
incremented according to the following rules:

m When the file associated with LINAGE-COUNTER is first opened, LINAGE-COUNTER is

set to one.

m [f the ADVANCING phrase of the WRITE statement is not specified, LINAGE-COUNTER

is incremented by one when the WRITE statement is executed.
m [f the ADVANCING phrase is used with a WRITE statement, and

o is of the form, ADVANCING integer-1 or ADVANCING identifier-2, LINAGE-
COUNTER is incremented by integer-1 (or the value of identifier-2) when the WRITE
statement is executed.

o1 is of the form ADVANCING PAGE, LINAGE-COUNTER is reset to one.
m If a new logical page is to be written upon, LINAGE-COUNTER is reset to one.

DATA DIVISION 7-21



FILE SECTION
File Description (FD, SD) Clauses
RECORD CONTAINS Clause

RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size, in characters, of data records in a file.
Because each data record of a file is completely defined in a record description entry, this
clause is optional for any file description entry.

Syntax
The RECORD CONTAINS clause has the following three formats:

Format 1

BECORD CONTAINS integer—1 CHARACTERS

Format 2

Format 3

BECORD CONTAINS integer—4 IQ integer-5 CHARACTERS

LG200026_051

Parameters

integer-1 specifies the number of characters contained in each record of the file.

integer-2 specifies the minimum number of character positions to be contained in
any record of the file.

integer-3 specifies the maximum number of character positions to be contained in
any record of the file.

integer-4 specifies the minimum number of characters in the smallest size data
record.

integer-5 specifies the maximum number of characters in the largest size data
record.

data-name-1 must be an elementary unsigned integer in the WORKING-STORAGE or

LINKAGE section.

7-22 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
RECORD CONTAINS Clause

Description

The size of a record is determined by taking the sum of the numbers of all characters in all
fixed length elementary items, and adding to that sum the maximum number of characters in
any variable length item subordinate to the record.

This sum may differ from the actual size of the record because of slack bytes. Refer to the
SYNCHRONIZED and USAGE clause descriptions appearing later in this chapter.

If the RECORD clause is not specified in all formats, the size of each data record is
completely defined in the record description entry.

Fixed Length Records

Format 1 is used to specify fixed length records. integer-1 specifies the number of character
positions contained in each record in the file.

Variable Length Records
Format 2 is used to specify variable length records.

The number of character positions associated with a record description is determined by the
sum of the number of character positions in all elementary data items excluding redefinitions
and renamings, plus any implicit FILLER due to synchronization.

If a table is specified, the minimum or maximum number of table elements described in the
record is used in the summation above to determine the minimum or maximum number of
character positions associated with the record description.

If integer-2 is not specified, the minimum number of character positions to be contained in
any record of the file is equal to the least number of character positions described for a record
in that file.

If integer-3 is not specified, the maximum number of character positions to be contained in
any record of the file is equal to the greatest number of character positions described for a
record in that file.

If data-name-1 is specified, the number of character positions in the record must be placed
into the data item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE
statement is executed for the file.

If data-name-1 is specified, the execution of a DELETE, RELEASE, REWRITE, START, or
WRITE statement or the unsuccessful execution of a READ or RETURN statement does not
alter the content of the data item referenced by data-name-1.

DATA DIVISION 7-23



FILE SECTION
File Description (FD, SD) Clauses
RECORD CONTAINS Clause

During execution of a RELEASE, REWRITE, or WRITE statement, the number of character
positions in the record is determined by the following three conditions:

m If data-name-1 is specified, by the content of the data item referenced by data-name-1.

m If data-name-1 is not specified and the record does not contain a variable occurrence data
item, by the number of character positions in the record.

m If data-name-1 is not specified and the record does contain a variable occurrence data item,
by the sum of the fixed portion and that portion of the table described by the number of
occurrences at the time of execution of the output statement.

If data-name-1 is specified, after the READ or RETURN statement for the file successfully
executes, the contents of the data item referenced by data-name-1 indicate the number of
character positions in the record just read.

If the INTO phrase is specified in the READ or RETURN statement, the number of character
positions in the current record that participate as the sending data items in the implicit
MOVE statement are determined by the following two conditions:

m If data-name-1 is specified, by the content of the data item referenced by data-name-1.

m If data-name-1 is not specified, by the value that would have been moved into the data item
referenced by data-name-1.

Format 2 is the preferable way to specify variable length records. If format 3 is used, the
RECORDING MODE clause must also be specified.

In format 3 of the RECORD clause, the size of each data record is completely defined in the
record description entry.

The size of each data record is specified in terms of the number of character positions required
to store the logical record, regardless of the types of characters used to represent the items
within the logical record. The size of a record is determined by the sum of the number of
characters in all fixed length elementary items plus the sum of the maximum number of
characters in any variable length item subordinate to the record. This sum can be different
from the actual size of the record.

7-24 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
RECORD CONTAINS Clause

Example
The following example illustrates use of the RECORD VARYING clause.

IDENTIFICATION DIVISION.
PROGRAM-ID. COBVAR.

ENVIRONMENT DIVISION.
INPUT-0UTPUT SECTION.
FILE-CONTROL.

SELECT IFILE ASSIGN TO "IFILE".
SELECT IFILE2 ASSIGN TO "IFILE".
DATA DIVISION.

FILE SECTION.

FD IFILE
RECORD IS VARYING FROM 10 TO 50 DEPENDING ON LEN.
01 IREC.
05 FILLER PIC X OCCURS 10 TO 50 TIMES DEPENDING ON LEN.
FD IFILE2
RECORD IS VARYING FROM 10 TO 50.
01 IREC2 PIC X(50).
WORKING-STORAGE SECTION.
01 LEN PIC S9(4) BINARY.
01 LEN-ED PIC ++++49.
01 WREC PIC X(50).
PROCEDURE DIVISION.
P1.

DISPLAY "EXAMPLE 1 0DO REC"
OPEN INPUT IFILE
PERFORM UNTIL LEN = -1
READ IFILE
AT END MOVE -1 TO LEN
NOT AT END
DISPLAY IREC
MOVE LEN TO LEN-ED
DISPLAY "Length is ", LEN-ED
END-READ
END-PERFORM
CLOSE IFILE
DISPLAY SPACE

DISPLAY "EXAMPLE 2 FIXED REC"
OPEN INPUT IFILE2

MOVE ALL "X" TO IREC2

READ IFILE2 AT END MOVE -1 TO LEN
END-READ

DISPLAY IREC2

DISPLAY SPACE

DISPLAY "EXAMPLE 3 READ INTO WREC"

MOVE ALL "X" TO IREC2 WREC

READ TFILE2 INTO WREC AT END MOVE -1 TO LEN
END-READ

DATA DIVISION 7-25



FILE SECTION
File Description (FD, SD) Clauses
RECORD CONTAINS Clause

DISPLAY IREC2
DISPLAY WREC
CLOSE IFILE2.

If IFILE contains the following data:

1234567890
123456789%123456789%
123456789%123456789%123456789%

The program will produce the following output:

EXAMPLE 1 0DO REC

1234567890

Length is  +10
123456789%123456789%

Length is  +20
123456789+123456789%123456789%
Length is  +30

EXAMPLE 2 FIXED REC
1234567890 XXX XXX X XXX XXX XX XXX XXXXXXXXXXXXXXXXXXXXXX

EXAMPLE 3 READ INTO WREC

123456789%123456789* XX XXX XXX XXXXXXXXXXXXXXXXXXXXXX
123456789%123456789%

7-26 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
RECORDING MODE Clause

RECORDING MODE Clause

The RECORDING MODE clause is an HP extension to the ANSI COBOL standard.

The RECORDING MODE clause specifies how logical records are contained in the file, and
whether or not the logical record being read or written spans more than one physical record
(generally because of hardware constraints or for I-O efficiency). This clause does not apply to
sort-merge files. This clause is optional.

Syntax
E
BECORDING MODE IS <
S
LG200026_052
Parameters
F specifies fixed length logical records. This implies that no OCCURS DEPENDING on

clause can be associated with any record description entry for the file. Also, if more
than one record description entry is supplied for the file, all record lengths calculated
from the record descriptions must be the same. This option is the only one that is
valid for random access and relative files.

v specifies variable length logical records.

U specifies undefined length logical records. This kind of file cannot be blocked.
Therefore, the BLOCK CONTAINS clause need not be used for this kind of file.

S enables the MULTI-RECORD (or more accurately, “multi-block”) option. This

option allows the reading or writing of a single logical record across more than one
physical record.

DATA DIVISION 7-27



FILE SECTION
File Description (FD, SD) Clauses
RECORDING MODE Clause

Description

If none of the above codes is specified, an F is the default value.

Logical records are contained in files as either fixed, variable, or undefined in length.
A fixed length record file contains logical records whose lengths are all the same.

A variable length record file contains logical records whose lengths may vary. In such a file,
each record is preceded by a two-byte count, which specifies the length of that particular
record.

An undefined length record file contains logical records of undetermined length. In such a file,
each logical record is equivalent to one physical record, and a physical record is as long as the
longest possible logical record in the file.

To clarify the case of logical records spanning more than one physical record, assume you want
to read logical records of 128 characters each from a card reader.

Each card represents a physical record of 80 characters. Therefore, to read one logical record,
you must read two physical records.

In such a case, you could specify the recording mode as equal to S, the operating system’s
multi-record option.

7-28 DATA DIVISION



FILE SECTION
File Description (FD, SD) Clauses
VALUE OF Clause

VALUE OF Clause

The VALUE OF clause is an obsolete feature of the 1985 ANSI COBOL standard.

The VALUE OF clause allows you to access existing files on labeled tapes or to create a new
labeled tape. A label contains identification, whether the label is in IBM or ANSI standard
format, the expiration date of the file protection, and the position of the file on the tape. This
clause does not apply to sort-merge files.

Syntax

VALUE QF { {/abei-info-1} 15 { Gata—mame=23 1. .,
literal—1
LG200026_053

Parameters

label-info-1 specifies one of the following fields: VOL, LABELS, SEQ, or EXDATE.
Each of these fields is described in Table 7-1 on the following page.

data-name-2 must be described in the WORKING-STORAGE SECTION. This name
can be qualified, but cannot be subscripted, indexed, or described with the
USAGE IS INDEX clause in a data description. It is used to specify the
value of the associated label-info entry. The possible values are shown in
Table 7-1 on the following page.

literal-1 a COBOL literal or a figurative constant.

Description

The data name associated with VOL can specify a data item of any category, but must
consist of a maximum of six characters or digits. The data name associated with SEQ can
also specify a data item of any category, but must consist of a maximum of four digits or
characters. The data names associated with LABELS and EXDATE must name alphanumeric
data items; the respective picture strings for LABELS must describe data that is three
characters long, EXDATE that is eight characters long and of the form, mm/dd/yy.

All VALUE OF clauses for each external file in the run unit must be consistent.

DATA DIVISION 7-29



FILE SECTION

File Description (FD, SD) Clauses
VALUE OF Clause

Table 7-1.
Values of the LABEL INFO and DATA NAME Parameters
in the VALUE OF Clause

label-info-n

Meaning

data-name-n or literal-n

VOL

Volume 1dentification.

Any combination of one to six characters from the

set A through Z, and 0 through 9.

LABELS ANSI standard or IBM format. ANS or IBM.

SEQ Relative position of file on a 0 to 9999, NEXT, or ADDF.
magnetic tape.

EXDATE Date when file may be written Date, in the form month/day/year. The default is
over. Until that time, the file is 00/00/00.
protected.

Example

DATA DIVISION.

FILE SECTION.

FD TAPEFL

VALUE OF VOL IS
SEQ IS

FD NEW-TAPE

VALUE OF VOL IS
SEQ IS

PROCEDURE

DISPLAY

DIVISION.

"JTAPE1", LABELS IS "ANS",
10, EXDATE IS '"02/25/85".

"JTAPE2", LABELS IS "ANS",
"ADDF", EXDATE IS "02/25/85".

"PLEASE MOUNT NEW TAPE FOR JTAPE2" UPON CONSOLE.

OPEN O0UTPUT NEW-TAPE, INPUT TAPEFL.

Assuming that NEW-TAPE names a new file, when the OPEN statement above is executed, the
information given in the VALUE OF clause is used to write a label for the tape volume.

When TAPEFL is opened, the specification of 10 for the SEQ value causes the tape to
automatically be placed at the beginning of the tenth file on the volume named JTAPE1.

Note that a message requesting that the volumes JTAPE2 and JTAPE1 be mounted is displayed
on the operator’s console. Because JTAPE2 is a new volume, the DISPLAY statement above
was used to tell the operator that JTAPE2 does not already exist.

7-30 DATA DIVISION




DATA DIVISION
FILE SECTION
Data Description Entries

Data Description Entries

A data description entry is composed of a level number followed by a data name, and then
followed by a set of data clauses.

The level numbers can be 01 to 49 for record description entries, 77 for unrelated data items,
66 for alternative groupings of elementary items in the preceding record description entry, and
88 for condition names.

A level number is required for each data description entry, and must be the first element of
such an entry.

The level numbers 01 and 77 must begin in Area A. Other level numbers may begin in either

Area A or Area B.

All data description entries are discussed in the following pages, beginning with level 77
entries.

77 Level Description Entries

Noncontiguous data items are data items or constants that are not subdivided and bear no
hierarchical relationship to one another. That is, noncontiguous data items are unrelated data
items.

These data items are only defined in the WORKING-STORAGE and LINKAGE SECTIONs,
and have level numbers of 77. Recall, however, that those items defined in the LINKAGE
SECTION do not have any storage allocated for them.

Each name used for a noncontiguous data item must be unique since it cannot be qualified.
For example,

WORKING-STORAGE SECTION.
77 COUNTER PICTURE 9(4) VALUE 0.
77 MID-TOTALS PICTURE 9(6)V99 VALUE 0.

COUNTER is an accumulator, and MID-TOTALS is an intermediate storage variable. Because they
are not subdivided, and they have no immediate relationship to any other data items, they are
described using level 77 entries.

DATA DIVISION 7-31



DATA DIVISION
FILE SECTION
Data Description Entries

Record Description Entries

At least one record description entry must follow each FD or SD file description entry. This
discussion of record description entries is applicable to either type of file description, as well as

for the LINKAGE and WORKING-STORAGE SECTIONS.
A record description consists of one or more data description entries.

Associated with each data description entry is a level number chosen from the set 01 to 49, 66,
or 88. The level number for the first data description entry of any record description must be
01 (or simply 1). Succeeding level numbers of data description entries for the same record
description may range from 01 to 49, or may be 66. If, however, multiple 01 entries are used
for a given level indicator (F'D, or SD) they represent implicit redefinitions of the same area.
The 02 to 49 level numbers are used to specify subsets of the characters of a record.

The level number 66 is used only when the data description uses the RENAMES clause to
regroup data items. Refer to the description of the RENAMES clause later in this chapter.

The level number 88 is used only for a condition name data description. It is always
associated with a VALUE clause. Refer to “Condition Names” later in this chapter.)

Data names subordinate to record names can be nonunique, provided they can be made
unique by qualification.

The three general formats for data description entries are shown below and described in the
following paragraphs.

7-32 DATA DIVISION



DATA DIVISION
FILE SECTION
Data Description Entries

Data Description Format

Format 1

data—name—1
FILLER

level-number |:

[REDEFINES data-name-2]

:[SIQN is] {

LEADING
TRALL IE} [SEPARATE CHARACTERﬂ

F QCCURS integer-2 TIMES

|:{ DE_S_QEMQLN_G} KEY IS { data-name-3} - - :] e

[INDEXED BY { index-name-1}- - -]
QCCURS integer-1 TQ integer-2 TIMES DEPENDING ON data—name—4

=

D.ES_C_END_LNQ} KEY IS { data-name-3} : jl e

[INDEXED BY { index-name~1 3. - /]

LG200026_054a

DATA DIVISION 7-33



DATA DIVISION
FILE SECTION
Data Description Entries

(sageen) [t |

(225 v

[BLANK WHEN ZEROQ]

[VALUE 1s Jiterai~1].

Format 2

66 data—name—1 BENAMES data—name—2 |:{IHBL1 } data—name—3j| .

Format 3

88 condition-name-1 Y2 IS literal-1 THAOUGH literal-2 e
YALUES ARE THRU

LG200026_055

In the first format, the level number may be any number from 01 to 49, or 77. It cannot be 66
or 88.

If it is used, the data name or FILLER clause must immediately follow the level number, and
the REDEFINES clause (if used) must immediately follow the data-name-1 clause. Except for
these two conditions, all other clauses, if used, may be written in any order.

The PICTURE clause must be used for every elementary item except an index data item. A
PICTURE clause must not be used for an index data item.

Data elements and constants bearing a definite hierarchic relationship to one another must be
grouped into records.

The initial value of any data item except an index data item is specified by using the VALUE
clause in the description of that item. Because the VALUE clause does not apply to index
data items, the initial value of any such item is unknown.

You may not use the SYNCHRONIZED, PICTURE, JUSTIFIED, or BLANK WHEN ZERO

clauses for any but elementary data items.

Except for the data name or filler clause, which is described first, all other data description
clauses are described in alphabetical order on the following pages.

7-34 DATA DIVISION



DATA DIVISION
FILE SECTION
Data Name or FILLER Clause

Data Name or FILLER Clause

A data name clause specifies the name of the data being described. The keyword, FILLER,
implies that you are specifying an elementary item of the logical record being described that
cannot be referenced explicitly. If this clause is omitted, the record is treated as though

FILLER had been specified.
In the FILE, WORKING-STORAGE, and LINKAGE SECTIONS, a data name must be the

first word following the level number in each data description entry.

Syntax
level b data-name-1
evel-number | L oo
Parameters
data-name-1 must be a valid user-defined COBOL word.
Description

Although you may not refer to a FILLER item explicitly, the keyword FILLER may be used
as a conditional variable (format 3) because the use of it in this manner does not require
explicit reference to the FILLER item, but to its value.

DATA DIVISION 7-35



DATA DIVISION
Record Descriptions
BLANK WHEN ZERO Clause

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause causes a numeric or numeric-edited data item to be filled
with spaces when the value of the data item is zero.

This clause is optional. If used, it may refer only to a numeric or numeric-edited elementary
data item. When this clause is used with a numeric data item, the category of the data item
is considered to be numeric-edited.

Syntax
[BLANK WHEN ZERO]

Note This clause cannot be used for a numeric-edited data item whose PICTURE
uses asterisks for zero suppression and replacement.

7-36 DATA DIVISION



DATA DIVISION
Record Descriptions
EXTERNAL Clause

EXTERNAL Clause

The EXTERNAL clause is a feature of the 1985 ANSI COBOL standard.
The EXTERNAL clause specifies external attributes of a WORKING-STORAGE SECTION
data description entry, the associated data record, and its subordinate data items.
Syntax
IS EXTERNAL

Description

The EXTERNAL clause can only be specified in data description entries in the
WORKING-STORAGE SECTION whose level number is 01.

The EXTERNAL clause and the REDEFINES clause must not be specified in the same data
description entry.

FILLER cannot be specified for any entry containing the EXTERNAL clause. Refer to
Chapter 11, “Interprogram Communication”, for more detailed information.

DATA DIVISION 7-37



DATA DIVISION
Record Descriptions
GLOBAL Clause

GLOBAL Clause
The GLOBAL clause is a feature of the 1985 ANSI COBOL standard.

The GLOBAL clause specifies that a 01 record description and its subordinate data items are
available to all contained programs within a nested program in which the record is declared
global. Refer to Chapter 11, “Interprogram Communication,” for more detailed information.

Syntax
IS GLOBAL

Description

The GLOBAL clause can be specified in data description entries in the WORKING-
STORAGE SECTION where the level number is 01.

FILLER cannot be specified for any entry containing the EXTERNAL clause. Refer to
Chapter 11, “Interprogram Communication”, for more detailed information.

7-38 DATA DIVISION



DATA DIVISION
Record Descriptions
JUSTIFIED Clause

JUSTIFIED Clause

The JUSTIFIED clause allows you to right-justify alphabetic or alphanumeric data items. It
cannot be used with numeric or edited data items, and only applies to elementary data items
being used to receive data. This clause is optional.

Syntax
{muzusn} FIGHT
JUST
LG200026_058
Parameters
JUST is an abbreviation for JUSTIFIED.
Description

Data is moved from a sending data item to the right justified receiving data item starting with
the rightmost character of the sending data item. The rightmost character is placed in the
rightmost character of the receiving data item. The next rightmost data item of the sending
data item is then moved to the next rightmost character of the receiving data item. This
process continues until either all of the sending data item has been moved, or the receiving
data item is full. Note that a space in the sending data item is considered a valid character,
no matter where it is within the sending data item. That is, spaces are not stripped from the
sending item, even if they are in the rightmost positions of the sending item.

When a receiving data item is described using this clause, and the sending data item is larger
than the receiving item, the leftmost characters are truncated.

When the receiving data item is longer than a sending item, the data is aligned at the
rightmost character position in the receiving field, and unused characters to the left are filled
with spaces.

If the JUSTIFIED clause is not used, standard rules for aligning data within an elementary
item are used.
Example

Sending data item: HEWLETT-PACKARD COBOL ITILILJ

Receiving data item: 01 INFIRST PIC X(29) JUSTIFIED RIGHT.

Resulting data item: ULUUUHEWLETT-PACKARD COBOL ITILIL

Assuming the same sending data item, but using a new receiving data item:

Receiving data item: 01 NEWIN PIC X(14) JUSTIFIED RIGHT.
Resulting data item: KARD COBOL IILIL

DATA DIVISION 7-39



DATA DIVISION
Record Descriptions
OCCURS Clause

OCCURS Clause

I The OCCURS clause is used to define a table containing up to seven dimensions. Its use
eliminates the need for separate entries to describe repeated data items, and provides
information required for the application of subscripts or indices.

Refer to Chapter 4, “Tables”, for a description of the formation and use of tables.

Syntax

This clause has the following two general formats:

[ OCCURS integer-2 TIMES

| Eesctuana)
KEY IS { data-name-3} + + + | + « -
[INDEXED BY { index-name-1}- - ]

QCCURS integer—1 TQ integer-2 TIMES DEPENDING ON data-name—4

I:{ QES_C_EN.DLNQ} KEY IS { data-name-3} - - :l s

[lNDEXEQ BY {index—-name—1}: + ]

LG200026_059

The two formats of the OCCURS clause are described in the following paragraphs. The first
format of the OCCURS clause is used to define a table of fixed length data items.

Parameters to Format 1

integer-2 specifies the exact number of occurrences of the item being described.

KEY IS phrase indicates that the repeated data is arranged in ASCENDING or
DESCENDING order according to the values contained in data-name-3.

data-name-3 must either be the name of the entry containing the OCCURS clause or
the name of an entry subordinate to the entry containing the OCCURS
clause (when first specified). Subsequent specification of data-name-3
must be subordinate to the entry containing the OCCURS clause.
Data-name-3 may be qualified.

INDEXED BY specifies one or more index names to be used when reference to the
subject of this entry or items subordinate to it is done by indexing.

index-name-1 not defined elsewhere in a program, and cannot be associated with any
data hierarchy. Index names must be unique within a given program.

The data names referred to by data-name-3 must be listed in their descending order of
significance. If data-name-3 is not the same name as the item being described, then all of

7-40 DATA DIVISION



DATA DIVISION
Record Descriptions
OCCURS Clause

the items identified by data names in this phrase must be within the group item that is the
subject of this entry, and must not contain an OCCURS clause.

There must not be any entry containing an OCCURS clause between the items identified in
the KEY IS phrase and the subject of this entry.

The second format of the OCCURS clause is used to define a variable length table.

Parameters to Format 2

integer-1 represents the minimum number of occurrences of the subject of the
OCCURS clause. Integer-1 must be less than integer-2.

integer-2 represents the maximum number of occurrences. This implies that only
the number of occurrences is variable and not the length of the data item.

data-name-4 represents an integer used to determine the number of occurrences of
data items within the table. Therefore, the current value of the data item
referenced by data-name-4 represents the number of occurrences.

A data description entry containing this format of the OCCURS clause can only be followed,
within the one record description, by data description entries subordinate to it.

Data-name-/ must not be contained in that part of the record being described that starts at
the first character of the first element of the table and continues to the end of the record.

To illustrate, the two representations of records below show an allowable, and an unacceptable
placement of the item referenced by data-name-4 in a record.

data-name-4 data Area used in OCCURS clause
A
- ™

ACCEPTABLE

Area used in OCCURS clause
A

data-name-4  data UNACCEPTABLE

LG200026_060

DATA DIVISION 7-41



DATA DIVISION
Record Descriptions
OCCURS Clause

Data-name-4, and its contents, must be described in a separate data description entry, and
may be qualified.

If the OCCURS clause is specified in a data description entry included in a record description
entry containing the EXTERNAL clause, data-name-4, if specified, must reference a data item
possessing the external attribute that is described in the same DATA DIVISION.

If the OCCURS clause is specified in a data description entry subordinate to one containing
the GLOBAL clause, data-name-/4, if specified, must be a global name and must reference a
data item that is described in the same DATA DIVISION.

Because the current value of the data item referenced by data-name-/ represents the number
of occurrences of a data item, it must be an integer in the range of values from integer-1 to
integer-2.

If the value of the integer represented by data-name-4 is reduced from a previous value,
the contents of those data items whose occurrence numbers exceed this new value are
unpredictable.

When a group item has a subordinate entry that specifies format 2 of the OCCURS clause,
only that part of the group item specified by the value of data-name-4 is used.

The KEY IS and INDEXED BY phrases follow the rules given for format 1.

The OCCURS clause cannot be specified in a data description entry having an 01, 66, 77, or
88 level number.

The OCCURS clause cannot be used in a description entry for an item whose size is variable.
The size of an item is variable if the data description of any subordinate item contains format
2 of the OCCURS clause. In other words, this restriction means that no OCCURS clause
using the DEPENDING ON phrase can be used in the description of an item subordinate to
an item that also uses either format of the OCCURS clause.

Examples
For example, the following two records are allowed:

01 ROAD.
02 SURFACE OCCURS 1 TO 12 TIMES
DEPENDING ON SIZER.
03 SIDE OCCURS 10 TIMES PIC X(9). Allowed.
01 ROAD.
02 SURFACE OCCURS 10 TIMES.
03 SIDE OCCURS 4 TIMES PIC X(9).

7-42 DATA DIVISION



DATA DIVISION
Record Descriptions
OCCURS Clause

But, the following two records are not allowed:

01 ROAD. Not allowed.
02 SURFACE OCCURS 10 TIMES.
03 SIDE OCCURS 1 TO 8 TIMES
DEPENDING ON SIZER PIC X(9).
01 ROAD.
02 SURFACE OCCURS 1 TO 10 TIMES
DEPENDING ON SIZER. Not allowed
03 SIDE OCCURS 1 TO 8 TIMES
DEPENDING ON SIZEUP PIC X(9).

The name of the data item being described must be either subscripted or indexed whenever

it is referred to in any way other than with the SEARCH or USE FOR DEBUGGING
statements. Also, if the name of the data item being described is the name of a group item,
then all data names belonging to the group must be subscripted or indexed whenever they are
used as operands, except as the object of a REDEFINES clause.

Except for the OCCURS clause itself, all data description clauses associated with an item
whose description includes an OCCURS clause apply to every occurrence of the item being

described.

If a data item possessing the global attribute includes a table accessed with an index, that I
index also possesses the global attribute. See Chapter 11, “Interprogram Communication,” for
more detailed information.

DATA DIVISION 7-43



DATA DIVISION
Record Descriptions
PICTURE Clause

PICTURE Clause

The PICTURE clause describes the category, length, and editing requirements for an
elementary item. It applies only to elementary data items and must be used for every
elementary data item. It is not allowed for an index data item.

Syntax
{ELQBJ'BE IS character-strin
PIC 7
LG200026_061

Parameters
PICTURE and PIC equivalent.
character-string a set of up to 30 characters, arranged in certain allowable

combinations; these combinations determine the category of the

elementary item.
Description

You can define any of five categories of data with the PICTURE clause. The five categories of
data are:

m Alphabetic

m Numeric

m Alphanumeric

m Alphanumeric-edited
m Numeric-edited

Alphabetic Data

Alphabetic data consists of upper and lowercase letters from the English alphabet, and one
or more blanks. When you wish to define the characteristics of an alphabetic data item, the
character string must consist of a combination of the letters A and/or B and, optionally, one
or more nonnegative integers in parentheses.

The letter A represents a character of the alphabet or a space. The letter B represents a blank
(or a space).

The integers are repetition factors and are used to specify one or more occurrences of A or B
in the picture.

To describe an alphabetic data item that consists of six alphabetic characters, three spaces,
and then twelve more alphabetic characters (or blanks), the following PICTURE clauses could
be used, and are equivalent:

PICTURE IS AAAAAABBBAAAAAAAAAAAA

PIC A(B)B(3)A(12)

7-44 DATA DIVISION



DATA DIVISION
Record Descriptions
PICTURE Clause

Numeric Data

Numeric data consists of a combination of the Arabic numerals 0 through 9, optionally
including the positive or negative sign, or a representation of an operational sign as defined
in the SIGN clause. Note that a decimal point is not part of the possible set of characters
allowed in forming numeric data for a COBOL program.

You must specify the data without a decimal point. Use the V character of the PICTURE
clause to indicate where the decimal point belongs.

The size of a numeric data item can be from one to 18 digits long.

When you wish to define the characteristics of a numeric data item, the picture clause you use
must consist of only the symbols 9, P, S, V, and (in conjunction with the 9 and P symbols
only) one or more repetition factors as described under the heading “Alphabetic Data”, above.

The symbol 9 represents the character position that is to contain a numeral.

The symbol S indicates the presence of an operational sign, but not necessarily its position
within a numeric data item. It must be the leftmost character in the picture of the data item
being described and can appear only once in a given picture clause.

The S symbol is not counted in determining the size of an elementary data item unless the

data item is subject to a SIGN clause using the SEPARATE CHARACTER phrase.

The symbol V is used to indicate the location of the assumed decimal point in numeric data.
Like the S symbol, it may only appear once in any given picture clause.

Because the V does not represent a character position, it is not counted in the size of the
elementary data item. Note also that if the V appears as the rightmost character in a
character string, it is redundant.

DATA DIVISION 7-45



DATA DIVISION
Record Descriptions
PICTURE Clause

The symbol P indicates an assumed decimal scaling position and is used to specify the
location of an assumed decimal point when the point is not within the number appearing in
the data item.

That is, for each appearance of a P in the PICTURE of a data item, the data item is assumed
to be multiplied by 10, or by one tenth, depending upon whether the P symbol is on the right,
or on the left of the character string used to define the field.

The P in a character string does not occupy a position in memory and does not add to the
size of the item. However, the P has the effect of the digit 0 whenever the item is accessed.
When the data item is used for arithmetic operations, the P must be counted as a digit to
determine whether the field exceeds the 18-digit maximum size for a numeric field.

One or more P symbols can only be placed at either the left or the right end of a character
string. Because P represents a decimal position, the use of the P symbol and the V symbol as
the left or rightmost symbol in the same string is redundant.

Therefore, if the V symbol is used with the P symbol, it is meaningful only if it appears as the
leftmost or rightmost symbol in the character string.

The following illustrates the use of the P symbol:
m Input data: 241000
m PICTURE clause: 999P(3)
m Data stored as: 241
m Data accessed as: 241000.
Using the following PICTURE clause for the number 00000241
PICTURE P(5)999
results in the data being stored as 241, but being accessed as .00000241.

A repetition factor may be used with the P symbol. Therefore, PPPPP99 is equivalent to
P(5)99.

All numeric literals used in a VALULE clause must have a value that is within the range of
values indicated in the PICTURE clause. For example, the range of values permitted for an

item with the PICTURE PPP999 are .000000 through .000999.

7-46 DATA DIVISION



DATA DIVISION
Record Descriptions
PICTURE Clause

Alphanumeric Data
Alphanumeric data is made up of any valid character used on an HP computer.

To define an alphanumeric data item, you can use the symbols A, 9, or X. The PICTURE
clause for this type of data, however, must contain at least one X symbol, or a combination of
the A and 9 symbols to indicate that it represents an alphanumeric data item.

The A symbol can be used to represent alphabetic characters or a space, while the 9 symbol
can be used to represent numerals. However, the entire PICTURE clause is treated as if it
consists entirely of X symbols, where each X symbol can represent any single character used
on an HP computer.

Repetition factors may be used with all these symbols. For example,
77 FINISHER PICTURE A(5)9(8).
is equivalent to:

77 FINISHER PICTURE X(13).

Alphanumeric-Edited Data

Alphanumeric data is data consisting of any set of characters available on an HP computer.
This type of data can be edited by specifying where one or more spaces, strokes, or zeros are
to appear as part of the receiving data item.

You can use the A, X, 9, B, 0 (zero), and / symbols to define a data item to receive an
edited alphanumeric data item. The A, X, 9, and B symbols are explained under the
headings “Alphabetic Data,” “Numeric Data,” “Alphanumeric Data,” and “Numeric-edited,”
respectively.

The 0 symbol is used to specify where in the character string the numeral 0 is to be inserted.

The / (stroke) symbol represents where in the character string a stroke symbol is to be
inserted.

All of the symbols used in an alphanumeric-edited PICTURE clause may use a repetition
factor.

The PICTURE character string of an alphanumeric-edited data item is restricted to certain
combinations of the following symbols:

A, X,9,B, 0, and /

The PICTURE clause must contain at least one A or X, and must contain at least one B, 0
(zero), or / (stroke).

For example,
Sending data item: 010685
PICTURE of receiving data item: 99/99/99
Receiving data item: 01/06/85
Sending data item: NAMEADDRESSPHONENUMBERZIPCODE
PICTURE of receiving data item: PICTURE A(4)B(5)A(7)B(5)A(5)BA(6)/A(T)
Receiving data item: NAMEULILIUUADDRESSLILILILILIPHONELINUMBER/ZIPCODE

DATA DIVISION 7-47



DATA DIVISION
Record Descriptions
PICTURE Clause

Numeric-Edited Data

In standard data format, numeric-edited data consists of a combination of the numerals zero
through 9 and an optional decimal point.

Editing of this type of data in HP COBOL II consists of leading zero suppression, filling or
replacement, placement and alignment of a decimal point and a currency symbol, insertion of
a sign, commas, blanks, or strokes. This is accomplished through use of the following symbols:

P, Vv, 9, B, /, r, Z, (), (), *, +, -, CR, DB

and the currency symbol as defined in the CURRENCY SIGN clause of the SPECIAL-
NAMES paragraph in the ENVIRONMENT DIVISION. To distinguish this type of data from
unedited numeric data, at least one of the above symbols (except the 9) must appear in the

PICTURE clause.
A maximum of 18 digit positions can be represented in this type of PICTURE.

The first three of the above symbols are described under the heading, “Numeric Data”, and
the second set of three are described under the heading, “Alphanumeric-Edited Data”. The
remaining symbols are described below.

The 7 symbol is used for the suppression of leading zeros in the receiving data item. It can
only be used to represent the leftmost leading numeric character positions.

The comma symbol (,) represents where in the character string of the receiving data item a
comma is to be inserted. It cannot be the rightmost character in the PICTURE clause unless
followed by the period symbol (.).

The period symbol (.) represents the decimal point for aligning the sending and receiving
data items and also represents a character position into which a period (decimal point) is
to be inserted. It may not be used if the V symbol is used, and may only appear once in

a given PICTURE clause if the DECIMAL POINT IS COMMA clause is not specified in
the SPECIAL-NAMES paragraph. Also, it may not appear as the rightmost element in the
PICTURE clause unless followed by the decimal point (.). The P symbol and the decimal
point (.) cannot be used in the same PICTURE character string.

If the DECIMAL POINT clause is specified, the roles of the commas and period symbols are
reversed. Therefore, in such a case, only one comma symbol may appear in a numeric-edited
PICTURE clause, but several periods may appear. The plus (+), minus (-), CR (for CRedit),
and DB (for DeBit) are used as editing sign control symbols. Only one of these symbols may
appear in any given PICTURE clause, and when used, specify the position in the receiving
data item into which the editing sign control symbol will be placed.

The asterisk (*) symbol is used for replacing leading zeros. Each leading zero in the sending
data item is replaced in the receiving data item by an asterisk if there is an asterisk in the
PICTURE clause for the receiving data item whose position corresponds to the position of the
zero in the sending data item.

This symbol may not appear in a PICTURE clause for a data item which has the BLANK
WHEN ZERO clause specified for it.

7-48 DATA DIVISION



DATA DIVISION
Record Descriptions
PICTURE Clause

The appearance of a currency symbol in a PICTURE clause represents the position into
which a currency symbol is to be placed. If you do not specify an alternative currency symbol

through the CURRENCY SIGN clause of the SPECIAL-NAMES paragraph, the dollar ($)

symbol is used.

This symbol must appear as the leftmost symbol in the character string, except that it may be
preceded by a plus (+) or minus (-) symbol.

With the exception of the symbols V, CR, DB, and period (.), all of the symbols described
above may be specified using a repetition factor.

To illustrate edited numeric data:
Sending data item: -1234.59
PICTURE clause of the receiving data item: PICTURE 99,999.99DB
Receiving data item: 01,234 .59DB

Note in the second example that the DECIMAL-POINT IS COMMA clause is assumed.
Sending data item: 345777.78
PICTURE clause of the receiving data item: PICTURE +$ZZZ,ZZZ,ZZ7Z ,ZZZ .99
Receiving data item: +$ 345.777,78

Table 7-2 summarizes the editing picture characters and their function.

Table 7-2. Editing Picture Characters

Picture Symbol Editing
Characters Definition Function

B Letter B Inserts a blank.

/ Slash Inserts a slash character.

0 Zero Inserts a zero digit.
Decimal point Inserts a decimal point.
Comma Inserts a comma.

+ Plus sign Inserts + or - sign.

- Minus sign Inserts - or blank.

CR Credit sign Inserts CR.

DB Debit sign Inserts DB.
Dollar sign Inserts currency symbol.
Letter 7 Zero suppression by blank.

* Asterisk Zero suppression by *.

DATA DIVISION 7-49



DATA DIVISION
Record Descriptions
PICTURE Clause

Size of Elementary Data Items

The size of an elementary data item is defined as being the number of character positions
occupied by the elementary item in standard data format. This size is determined by counting
the number of allowable symbols used to represent character positions within a PICTURE
clause for that item.

With the exception of the S, V, period (.), CR and DB symbols, all symbols in the PICTURE
clause may use repetition factors. These repetition factors are represented by an integer
enclosed by parentheses following the symbol to which they pertain, and indicate the number
of consecutive occurrences of the symbol.

Furthermore, if the SEPARATE CHARACTER phrase of the SIGN clause is not specified, the
V symbol and the S symbol do not participate in the count when you are determining the size
of the data item.

DB and CR each represent two character positions.
When you count occurrences of characters in an elementary data item description, you must
only count those symbols that appear without repetition factors, and add them to the sum of
all integers appearing in repetition factors for that PICTURE clause.
Examples
The size of the data item represented by the following PICTURE clause is 11 characters.
PICTURE ZZZ,299V99CR
The size of the data item represented by the next PICTURE clause is 17 characters.
PICTURE A(10)B(5)XX

In the next PICTURE clause, assume that the SIGN IS SEPARATE clause is NOT specified
for the data item represented by the PICTURE clause below.

PICTURE S9(5)V99

The size of the item described above is 7 characters.

7-50 DATA DIVISION



DATA DIVISION
Record Descriptions
PICTURE Clause

Editing Rules

There are two general methods for performing editing in the PICTURE clause: insertion, and
zero suppression and replacement.

Editing takes place only when data is moved into an elementary data item whose PICTURE
clause specifies editing (that is, whose PICTURE clause is alphabetic, alphanumeric-edited or
numeric-edited). Therefore, data moved into a numeric field is not edited.

You may perform simple insertion editing for an item belonging to the alphabetic or
alphanumeric-edited categories.

Three other types of insertion, as well as suppression and replacement, may be performed on
numeric-edited data: special, fized, and floating insertion.

Table 7-3 below summarizes the type of editing permitted for each category.

Table 7-3. Allowable Types of Editing For Categories of Data Items

Category Type of Editing
Alphabetic Simple insertion B only
Numeric None
Alphanumeric None

Alphanumeric-Edited Simple insertion (0), (,), (B), and (/)

Numeric-Edited All

Simple Insertion Editing. The comma (,), space (B), zero (0), and stroke (/) symbols are used
in simple insertion editing. These insertion characters are counted in the size of the receiving
item and represent the position in the receiving item into which the character is inserted.

Simple insertion editing is so called because, other than inserting the particular symbol, no
other editing is done and the data sent is unaffected except for the placement of the simple
insertion characters between, before, or after the other characters received from the sending
data item.

An example of simple insertion editing is shown in the illustration under the heading,
“Alphanumeric-Edited Data”, on the preceding pages.

DATA DIVISION 7-51



DATA DIVISION
Record Descriptions
PICTURE Clause

Special Insertion Editing. The period (.) is used in special insertion editing. In addition to
being an insertion character, it is also used for alignment purposes when the sending data item
is numeric and contains a decimal point. The result of this form of editing is the appearance
of the period in the same position as it appears in the PICTURE clause for the item.

When data is moved to an item defined with the special insertion character, COBOL
automatically provides truncation and zero fill to both the left and the right of the decimal
point. However, if zero suppression or floating insertion editing is included in the PICTURE
clause of the receiving data item, zero fill normally produced by special insertion editing is
overridden.

The following illustrates special editing:
Sending data item: 12345.678
PICTURE clause of receiving data item: 9(5).99
Receiving data item: 12345.67

Note that the rightmost digit, 8, was truncated. This was caused by the alignment of decimal
points.

Sending data item: .001
PICTURE clause of receiving data item: 9,999.9999
Receiving data item: 0,000.0010

Finally:
Sending data item: 658456.995
PICTURE clause of receiving data item: 999.99
Receiving data item: 456.99

7-52 DATA DIVISION



DATA DIVISION
Record Descriptions
PICTURE Clause

Fixed Insertion Editing. Fixed insertion editing uses the currency symbol and the editing sign
control symbols, 4+, -, CR, and DB.

Only one currency symbol and one editing sign control symbol can be used in a given
PICTURE clause when you wish to use fixed insertion editing. When the CR or DB symbol
is used, each represents two characters, and must be in the rightmost character positions
counted in determining the size of the receiving item.

When the + or - symbol is used, it must be either the leftmost or rightmost character in the
PICTURE clause for the receiving item, and is counted in the size of that item.

The currency symbol must be the leftmost character position to be counted in the size of the
item, except that it may be preceded by a + or a - symbol.

Fixed insertion editing results in the insertion character occupying the same character position
in the receiving item as it does in the character string used in the PICTURE clause.

The sign control symbols produce different results, depending upon whether the sending data
item is positive or negative. These differing results are shown in Table 7-4 below.

Table 7-4. Effects of Sign Control Symbols on Receiving Iltems

Editing Symbol in Result
Character String | Daga Item Positive | Data Item Negative
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing. Floating insertion editing uses the currency, +, or - symbol. Each
symbol is mutually exclusive of the others when you wish to perform this type of editing.

Also, zero suppression and replacement cannot be used in the same character string of a
PICTURE clause using floating insertion editing.

You can represent floating insertion editing in one of two ways. The first is to represent any or
all of the leading numeric positions to the left of the decimal point with your chosen floating
insertion character. The second way is to represent every numeric character position, on both
sides of the decimal point, with the insertion character.

Floating insertion editing is indicated by an occurrence of the same symbol used at least twice
in the same string. This is the major distinction between fixed and floating insertion editing.

Between or to the right of this floating insertion string, can be any of the simple insertion
characters. If such is the case, the simple insertion characters are a part of the floating
insertion character string.

The bounds of the floating insertion string (including the simple insertion characters, as noted
above) are formed by the leftmost and the rightmost elements of the floating string.

Nonzero numeric data can be stored in the receiving data item starting at the first character
to the right of the leftmost character in the floating string, and proceeding through the entire
floating string.

If the floating insertion characters are only to the left of the decimal point, insertion takes
place in a fashion analogous to the following algorithm:

DATA DIVISION 7-53



DATA DIVISION
Record Descriptions
PICTURE Clause

1. The leading character of the sending data item is checked to see if it has a zero value. If it
is zero, the floating insertion character is inserted in the corresponding character position
of the receiving data item and the preceding character of this data item is replaced with a
space.

2. The next character of the sending data item is then checked for a zero value, and if it is
zero, the action described in step 1 is repeated.

3. The process continues either until no numeral in the sending data item is nonzero (in which
case all the positions corresponding to the floating insertion string in the receiving data
item are replaced with spaces), or some nonzero numeral is found in the sending data item
and this numeral appears to the left of the decimal place.

If any simple insertion character appears as part of the floating insertion string, and no
nonzero character is encountered in the sending data item before the next floating insertion
character position is considered, one simple insertion character is replaced by the floating
insertion character, and the preceding floating insertion character is replaced by a space.

When a nonzero numeral is encountered in the data item, that numeral and all following it are
replaced in the positions corresponding to their positions in the floating insertion string.

If the floating insertion characters correspond to every numeric character position, including
those to the right of the decimal point, the algorithm is the same as above, with one
exception.

The exception is when the original data item is zero. In this case, the result of floating
insertion editing is that the data item referenced by the PICTURE clause contains only
spaces.

Note that to avoid truncation, your character string in the PICTURE clause for the receiving
data item must be, minimally, the size of the number of characters in the sending data item,
plus the number of nonfloating insertion characters being inserted into the receiving data
item, plus one for the first floating insertion character. To illustrate floating insertion editing,
the following example uses a sending data item that is 00123.45, in standard data format and
uses the PICTURE clause to describe the receiving data item:

PICTURE  $$%,$8$.99
Using the algorithm described above, the steps taken appear as follows:
1. First character equal to 07 Yes. Therefore, receiving data item appears as LS.

2. Second character equal to 07 Yes. Therefore, receiving data item appears as LILILI$
(Because the comma preceded the first occurrence of a nonzero numeral).

B 3. Third character equal to 07 No. Therefore, receiving data item appears as LILILI$123.45
| Result: UUU$123.45
Note that if the PICTURE clause had been of the form:
PICTURE $$$.99

I the result would be $23.45 because of truncation of the sending data item to allow for
insertion of the floating character, §, in the receiving data item.

7-54 DATA DIVISION



DATA DIVISION
Record Descriptions
PICTURE Clause

Zero Suppression Editing. Zero suppression editing allows you to replace leading zeros of the
sending data item with either spaces or asterisks in the receiving data item.

You can replace one or more leading zeros with spaces by placing a 7Z in the corresponding
positions of the PICTURLE character string used to represent the receiving data item.

If you wish to replace leading zeros with asterisks (*), use a string of asterisks rather than Z’s
in the PICTURE for the receiving data item.

You may use either the 7 symbol or the * symbol, but not both, in any one PICTURE clause.

The algorithm used in zero suppression and replacement is essentially the same as the
algorithm used for floating insertion editing. That is, any simple insertion symbols may
appear between the first and last symbol or to the right of the last suppression symbol, and
are included as part of the suppression string.

Furthermore, if the suppression symbols appear only to the left of the decimal point, any
leading zero in the sending data item that corresponds to a suppression symbol is replaced
by that suppression symbol. Suppression terminates with the first occurrence of a nonzero
numeral in the sending data item or with the decimal point, whichever occurs first.

If all numeric character positions are represented by suppression symbols and the sending data
item is zero, the entire receiving data item consists of spaces (if Z’s are used) or asterisks (if
asterisks are used), except for the decimal point.

If all numeric characters are represented in the receiving data item by suppression or
replacement symbols, and the sending data item is not zero, suppression and replacement
take place in the same manner as if the suppression symbols appeared only to the left of the
decimal place.

Note that you may not use floating insertion editing in the same PICTURLE clause in which
you are using zero suppression and replacement. The following illustrates zero suppression and
replacement:

Sending data item in standard data format: 004053.67
Picture of receiving data item: PICTURE $ZZZ,ZZZ.ZZ
Result: $LLI4,053.67
Using the same sending data item, but with the following picture of the receiving data item:
PICTURE $*x*,*%x9.99
results in:
$xx4 ,053.67

Precedence Rules. Table 7-5 shows the order of precedence when using insertion, suppression,
or replacement symbols in a character string of a PICTURE clause.

An x at an intersection indicates that the symbol at the top of the column may precede the
symbol at the left of the row. Multiple symbols in a box (except for A and X) are mutually
exclusive. The leters “cs” indicate the currency symbol.

The +, -, Z, *, cs, and P symbols appear twice in the Non-Floating and Floating insertion
symbols sections of Table 7-5. The lefthand column and the upper row of each of these pairs
represents the use of the symbol to the left of the decimal point. The righthand column and
lower row represent the use to the right of the decimal point.

DATA DIVISION 7-55



DATA DIVISION
Record Descriptions
PICTURE Clause

Table 7-5. PICTURE Character Precedence Chart

First Symbol
Second NOI}-Floating F-loating
Symbol Insertion Symbols Insertion Symbols | Other Symbols
+ |+ |CR YAVAESES A
0/|s|-|-|-|DBles|*|*|-|-|cs|es|9|X|S|V|P|P
B x|x|x|x|x X |x|x|x|x|x|x|x|x X X
0 x|x|x|x|x X |x|x|x|x|x|x|x|x X X
/ x|x|x|x|x X |x|x|x|x|x|x|x|x X X
, x|x|x|x|x X |x|x|x|x|x]|x|x X X
x|x|x X X |x X X X
+ -
+ - x|x|x|x X |x|x X | x|x x|x|x
CR DB X[X|X|x X |x|x X | X |x X | xX|x
cs X
Z * x|x|x X x| x
Z * x|x|x|x|x X |x|x X X
+ - X |X|X X X
+ - X |X[X|X X X | X X X
cs x|x|x X X
cs x|x|x|x|x X | x X X
9 x|x|x|x|x X |x X X x| x|x|x X
AX X[ X x| x
S
A\ X[X|x X X | x X X X X X
P X[X|x X X | x X X X X X
P X X x| x X

7-56 DATA DIVISION




DATA DIVISION
Record Descriptions
REDEFINES Clause

REDEFINES Clause

The REDEFINES clause allows you to define the same storage area in main memory for
different data items whose lengths are not described as variable in an OCCURS clause.

Syntax
level-number | 2818 TM8ME=T | Lo ner NES gat 2
FILLER ata-name-
LG200026_064a
Parameters

level-number and  level number and data name of the data item being described; these are

data-name-1 and  not part of the REDEFINES clause. When the REDEFINES clause is

FILLER used in a data description entry, it must be immediately preceded by
level-number and data-name-1.

data-name-2 data name used in a different data description entry; it must have the
same level number associated with it as does data-name-1. The level
number must not be 66 or 88, nor can it be 01, if the REDEFINES clause
is used in the FILE SECTION.

Description

Redefinition of storage area begins at the data-name-1 entry and continues until a level
number less than or equal to that of data-name-1 (or data-name-2 since they are the same) is
found.

Because data-name-1 is a redefinition of the storage area for data-name-2, no entry having a
level number numerically lower than the level number of data-name-2 may occur between the
data description entries of data-name-2 and data-name-1.

Furthermore, the description entry for data-name-2 cannot contain a REDEFINES or an
OCCURS clause, but may be subordinate to an entry that contains one of these clauses.

If the data description entry for an item to which data-name-2 is subordinate contains an
OCCURS clause, the reference to data-name-2 in the REDEFINES clause must not be
subscripted or indexed.

If the level number of data-name-1 and data-name-2 is other than 01 or data-name-2 is an
external record, the description of data-name-1 must specify less than or the same number
of character positions as specified for the data item referenced by data-name-2.

Multiple redefinitions of the same character positions are permitted in COBOL. However,
multiple redefinitions of the same character positions must all use the data name of the entry
that was originally used to define the area. The entries providing the new descriptions must
immediately follow the entries used to define the area currently being redefined and the new
entries must not (except in the case of condition name entries) contain any VALUE clauses.

DATA DIVISION 7-57



DATA DIVISION
Record Descriptions
REDEFINES Clause

Examples
01 RECORD-IN PICTURE X(80).
01 RECORD-PARTS REDEFINES RECORD-IN.
02 NAME PICTURE X(30).
02 STREET PICTURE X(20).
02 CITY PICTURE X(20).
02 STATE PICTURE X(10).

01 PARTS-TABLE.
02 PART OCCURS 35 TIMES.

03 NAME PIC X(10).
03 QUANTITY PIC 9(04).
03 UNIT-PRICE PIC 9(06).
03 LOCALE PIC X(10).

03 SITE-INFO REDEFINES LOCALE.
04 BUILDING-NO PIC X(03).

04 FLOOR-NO PIC X(02).
04 SECTION-NO PIC X(02).
04 BIN-NO PIC X(03).

The above two uses of the REDEFINES clause are permissible, whereas the following two are
not.

05 VOCABULARY OCCURS 2000 TIMES PIC X(100).
05 WORDLIST REDEFINES VOCABULARY.

20 INITTAL PIC X(20).
20 SECOND PIC X(30).
20 THIRD PIC X(30).
20 FOURTH PIC X(20).

01 RECORD-IN.
02 FIRST-FIELD.
03 SUB-AA PIC X(15).
02 SECOND-FIELD.
03 SUB-BB REDEFINES SUB-AA PIC X(15) VALUE SPACES.
03 SUB-BB1 PIC X(05).

The first unacceptable usage above is because of the use of an OCCURS clause in the
description of VOCABULARY. The second is unacceptable because of the 02 level entry between
SUB-AA and SUB-BB. The new entry may not contain any value clauses.

7-58 DATA DIVISION



DATA DIVISION
Record Descriptions
SIGN Clause

SIGN Clause

The SIGN clause is only used with a signed numeric data description item or description entry
whose usage is DISPLAY, or a group item containing at least one such data description entry.

It states the position of the sign, whether leading or trailing, as well as whether the sign was
formed by overpunching in the first or last character of the data item (see the USAGE IS
DISPLAY clause, below) or was formed separately.

Syntax
LEADING
SIGN 1S { CHARACTER

[[ 1 { Rap ng| [SERABATE ]

LG200026_065
Parameters
LEADING and indicates that the sign is at the beginning or end, respectively, of the item.
TRAILING
SEPARATE indicates that the sign is not overpunched; that is, the sign exclusively

occupies the first or last character of this item.

Description

Only one sign clause may be used per given numeric data description entry.

Also, if the CODE-SET clause is specified in a file description, any signed numeric data
description entry associated with that file must be described with the SIGN IS SEPARATE
clause.

Valid signs for data items, and their representations when overpunching is used, are shown in

the table under the USAGE IS DISPLAY heading on the following pages.

For a SIGN IS SEPARATE designation, the two valid operational signs (whether LEADING
or TRAILING) are + or - for positive and negative quantities, respectively.

For a signed numeric data description entry having no SIGN clause associated with it, the
default is equivalent to SIGN IS TRAILING. That is, the sign is assumed to be overpunched
in the last character of the item.

DATA DIVISION 7-59



DATA DIVISION
Record Descriptions
SIGN Clause

In either the default case, or the case when the optional SEPARATE CHARACTER phrase is
not used, the letter “S” in the PICTURE CLAUSE is not counted in determining the size of
the item when represented in standard data format. To illustrate the SIGN clause:

m The data to be entered is 123489F

In this case, no SIGN clause is required because the default is SIGN IS TRAILING.
However, if the PICTURE clause for this data item is PICTURE S9(7), the size of the data
item is seven characters.

m The data to be entered is +1409748
In this case, the SIGN clause should be: SIGN IS LEADING SEPARATE CHARACTER

Also, since the sign is separate, the PICTURE clause for this data item, PICTURE S9(7)
defines the data item to be eight characters long in order to hold the separate sign.

7-60 DATA DIVISION



DATA DIVISION
Record Descriptions
SYNCHRONIZED Clause

SYNCHRONIZED Clause

The SYNCHRONIZED clause is used to align items defined as USAGE IS
COMPUTATIONAL or BINARY on word boundaries in order to facilitate arithmetic
operations. A word size is defined by the operating system environment (a word is 32 bits on I

MPE XL).

All other items are aligned on byte boundaries. Because the character (byte) is the smallest
directly addressable unit within the COBOL language, the SYNCHRONIZED clause has
no meaning when applied to an item with any usage other than COMPUTATIONAL. It is
treated as a comment for items described as DISPLAY, INDEX, COMPUTATIONAL-3, or
PACKED-DECIMAL .

Syntax
(S | |
SYNC BIGHT
LG200026_066
Description

Because of the word structure used on HP computers, the LEFT and RIGHT options are
irrelevant and are treated as comments by the compiler.

The words SYNCHRONIZED and SYNC are equivalent.

The compiler always aligns all level 01 and level 77 items on word boundaries except in the I
LINKAGE section (see the section “OPTFEATURES” in Appendix G for details).

When the SYNCHRONIZED clause is specified for a data item whose description also
contains an OCCURS clause, or in a data description entry of a data item subordinate to
a description entry containing an OCCURS clause, each occurrence of the data item is
synchronized. Any implicit filler (see “Slack Bytes”, below) generated for other data items
within that same table are generated for each occurrence of those data items.

Slack Bytes

The SYNCHRONIZED clause specifies that the data described is to be aligned on word
boundaries. If the SYNCHRONIZED item does not fall naturally on a word boundary, the
compiler assigns the next highest boundary address to the item.

The effect of adding a byte (or bytes) is equivalent to providing extra FILLER characters,
known as slack bytes, just before the SYNCHRONIZED item.

These slack bytes are not used for any other data item and are not counted in the size of
the items. They are, however, included in the size of any group item or items to which the
elementary item belongs, and are included in the character positions redefined when the
SYNCHRONIZED item is the object of a REDEFINES clause. Therefore, when you use the
REDEFINES clause in a data description that also contains a SYNCHRONIZED clause, you
must ensure that the redefined item has the proper boundary alignment for the item that
redefines it.

DATA DIVISION 7-61



DATA DIVISION
Record Descriptions
SYNCHRONIZED Clause

The computation of boundary addresses is affected by the SCONTROL SYNC option. This
option changes the alignment of SYNCHRONIZED data items, which affects the number of
slack bytes generated in a record. Items with the SYNC clause are aligned along 16-bit (2
characters) boundaries, if SYNC16 is in effect. Items with the SYNC clause are aligned along
32-bit (4 character) boundaries, if SYNC32 is in effect. (Refer to the description of DATA
DIVISION language dependencies and SCONTROL SYNC16/SYNC32 in “MPE XL System
Dependencies” in Appendix H for synchronization alignment specifics.) This option may be
coded more than once in a program to align one record along 16-bit boundaries, and another
record along 32-bit boundaries. Alignment cannot be changed within a record, only between
records.

This option is especially useful to develop files to be used on other computer architectures, or
to read files developed on other architectures.

Whenever a SYNCHRONIZED item is referenced in your program, the original size of the
item, as shown in the PICTURE clause, is used in determining any action that depends on
size. Such actions include justification, truncation, or overflow.

If the SYNCHRONIZED clause is not used, no space is reserved for slack bytes, and when
a computation is performed on a data item described as COMPUTATIONAL, the compiler
provides the code and space required to move the data item from its storage area to a work
area. This work area has the alignment required to perform the computation.

As an illustration of slack bytes (assuming 16-bit synchronization), consider the following data
description entries:

01 ITEM-LIST.
02 ITEM-NUMBER PICTURE X(3).
02 ITEM-1 PICTURE X(4).
02 ITEM-2 REDEFINES ITEM-1 PICTURE S9(6) USAGE COMP SYNC.

The above is an example of not taking into account the slack byte required because of the
REDEFINES clause. To correct it, the description of ITEM-LIST should include an extra byte
prior to ITEM-1:

01 ITEM-LIST.
02 ITEM-NUMBER PICTURE X(3).
02 SLACK-BYTE PICTURE X.
02 ITEM-1 PICTURE X(4).
02 ITEM-2 REDEFINES ITEM-1 PICTURE S9(6) USAGE COMP SYNC.

This change is all that was needed, since all 01 level entries are aligned on word boundaries
except in the LINKAGE section (see the section “OPTFEATURES” in Appendix H for
details).

7-62 DATA DIVISION



DATA DIVISION
Record Descriptions
SYNCHRONIZED Clause

Example
The following illustrates the use of SCONTROL SYNC:
$CONTROL SYNC32

01 OUT-REC.
05 A PIC X.
05 B PIC S9999 BINARY SYNC.
05 ¢ PIC X.
$CONTROL SYNC16
01 IN-REC.
05 A PIC X.

05 B PIC S9999 BINARY SYNC.
05 ¢ PIC X.

OUT-REC with $CONTROL SYNC32 Clause

;.Y_JL — I\ J H—I
A Slack Bytes

w <
9

IN-REC with $CONTROL SYNC16 Clause

A Slack B C
Byte
LG200026_222

In the above example, three slack bytes are inserted before B of OUT-REC. One slack byte is
inserted before B of IN-REC.

Note Due to the SCONTROL SYNC option, boundary alignment within a record is 1
constant. It only changes between records.

DATA DIVISION 7-63



DATA DIVISION
Record Descriptions
USAGE Clause

USAGE Clause

The USAGE clause specifies how the data item being described is stored internally. When
used with index, the USAGE clause specifies that the data item being described contains a
value equal to the value of an index name associated with an occurrence number for a table
element.

Syntax
[usac 1s] <
LG200026_067
Parameters
PACKED-DECIMAL , equivalent; they specify packed-decimal format.

COMPUTATIONAL-3, The words COMPUTATIONAL-3 and COMP-3 are an HP extension

and COMP-3 to the 1985 ANSI COBOL standard.

BINARY , equivalent; they specify two’s complement binary integer format.

COMPUTATIONAL, and

COMP

DISPLAY the default usage if no USAGE clause is specified. It specifies that
data is to be stored internally as ASCII characters.

INDEX specifies an index data item.

Description

This clause is optional, with a USAGE IS DISPLAY being used by your program for any data
item having no USAGE clause as part of its description, or as part of the description of a data
item to which it is subordinate.

You may use the USAGE clause at any level of organization. However, if written at a group
level, the USAGE clause applies to each elementary item in the group, and any USAGE clause
specified at the elementary level must be the same as at the group level.

Although a USAGLE clause does not affect the use of a data item, some of the statements in
the PROCEDURE DIVISION may restrict the USAGE clause of the operands used.

7-64 DATA DIVISION



DATA DIVISION
Record Descriptions
USAGE Clause

USAGE IS DISPLAY

When usage of a data item is defined (implicitly or explicitly) as DISPLAY, the data is stored
internally as ASCII characters.

This means that each character of data is stored as an 8-bit byte.

If you are using the data item in a noncomputational manner (that is, printing or displaying
it), this is the appropriate type of usage to be specified.

However, for optimum use of your COBOL program, you should specify USAGE IS
COMPUTATIONAL, or BINARY , COMPUTATIONAL-3, or PACKED-DECIMAL for data
items intended for use in computations. This is because data items described as USAGE IS
DISPLAY must be converted to two’s-complement binary or packed-decimal format before
they can be used in computations, and this conversion takes time. Also, if you intend to use
signed numeric data items for computational purposes, you must specify a sign (by using the
S symbol) in the PICTURE clause for that item (see USAGE IS COMPUTATIONAL on the
following page), whether its usage is specified as DISPLAY or otherwise.

An unsigned numeric data item whose description specifies the USAGE IS DISPLAY clause is
assumed to be positive.

Numeric DISPLAY items without a clause that designates SIGN IS SEPARATE are
represented in ASCII coded (8-bit) decimal digits (0 through 9) except for the units digit
which carries the sign of the data item. The units digit, with the sign of its associated number
being positive, negative, or no sign (absolute value) respectively, is represented in ASCII code
as shown in Table 7-6.

Note that using signed numeric DISPLAY data items for computational purposes is more
efficient than using unsigned numeric data items.

Table 7-6.
Overpunch Characters for Rightmost Digit in ASCIl Coded Decimal Numbers
Units Digit | Internal Representation (ASCII)
Positive Negative No Sign
0 { } 0
1 A J 1
2 B K 2
3 C L 3
4 D M 4
5 E N 5
6 F 0 6
7 G P 7
8 H Q 8
9 I R 9

Signed decimal fields entered through punched cards are known as zone-signed fields. To
represent a positive value, an overpunch is placed in the 12-zone above the rightmost digit
of the field. To represent a negative value, an overpunch is placed in the 11-zone above the
rightmost digit of the field. If no sign is desired, only the digits need be punched.

DATA DIVISION 7-65



DATA DIVISION
Record Descriptions
USAGE Clause

Zone signs cause the signed digit to have the same punch configuration as certain other
characters. This is the purpose of the S symbol in the PICTURE clause; it informs the
compiler that the last digit in the field is to be interpreted as a number and a sign, and
not as the character that it would otherwise represent. Table 7-6 shows the data character
equivalents to each possible rightmost digit sharing a zone sign.

USAGE IS BINARY or COMPUTATIONAL

When usage of a data item is defined as BINARY or COMPUTATIONAL, the data must be
numeric. It is stored in two’s-complement binary integer form, consisting of either two, four,

or eight bytes each. The number of bytes used depends upon the size of the data item, as
shown in Table 7-7 below.

Table 7-7. Number of Bytes Used to Contain a BINARY Data Item

PICTURE Number of Bytes
S9 to S9(4) 2
S9(5) to S9(9)
S9(9) to S9(18)

A data item whose usage is defined as BINARY or COMPUTATIONAL must have an unedited
numeric PICTURE clause associated with it. It may contain up to 18 digits plus a sign. Also,
if a group item is described as BINARY or COMPUTATIONAL, all of the elementary items

in the group are computational and may be used in computations. However, the group item
itself may not be used in computations because it is considered alphanumeric. A numeric data
item that does not have a sign associated with it is assumed to be positive.

As with numeric DISPLAY data items, a signed numeric data item whose USAGLE IS BINARY
is more efficient than an unsigned numeric data item with the same USAGE.

USAGE IS PACKED-DECIMAL or COMPUTATIONAL-3

Data items described as PACKED-DECIMAL or COMPUTATIONAL-3 are subject to the same
restrictions and are used in the same way as data items described as COMPUTATIONAL.
Such items are, however, stored in packed-decimal format. In this format, there are two digits
per byte, with a sign in the low order 4-bits of the rightmost byte.

Each PACKED-DECIMAL or COMPUTATIONAL-3 item may contain up to 18 digits plus

a sign. If the picture for the item does not contain a sign, the sign position in the data
field is occupied by a bit configuration that is interpreted as positive. Table 7-8 illustrates
the bit configurations used to represent signs in packed-decimal fields. Notice that the bit
configuration 1100 specifies a positive value and that the 4-bit configuration 1111 represents
the unsigned (assumed positive) value when an unsigned picture is specified. For negative
values, the 4-bit configuration is 1101.

7-66 DATA DIVISION



DATA DIVISION
Record Descriptions
USAGE Clause

Table 7-8. COMPUTATIONAL-3 or PACKED -DECIMAL Sign Configuration

Bit Hexadecimal
Sign | Configuration Value
+ 1100 C
- 1101 D
Unsigned 1111 F

Table 7-9 gives a graphic illustration of packed-decimal fields as they might appear in
memory or in a file. Notice that these items follow the normal rules for truncation, even
though the field may include an unused half-byte position. The contents of this half-byte are
unpredictable when data is interchanged with other computer systems. In the table below,
each box in the result column represents a byte.

Table 7-9. PACKED DECIMAL Fields in Memory or in a File

Value to be Stored | PICTURE of Result Result
+1234. 59999 01]23|4C
+12345. 599999 1234 |5C
12345 59999 12|34 | 5F

-1.2 S999V999 00]|01]|20|0D
-5 S999V999 00]00|50|0D
+1.22172 S999V999 00]01]22|1C
-12345. 99999 12|34 | 5F

Note that the third and last number in the table were stored as unsigned (assumed positive)
numbers because the receiving field is unsigned according to its PICTURI.

DATA DIVISION 7-67



DATA DIVISION
Record Descriptions
USAGE Clause

USAGE IS INDEX

An elementary data item whose usage is defined as INDEX is called an index data item. Its
purpose is to hold the contents of a table index while the table is being processed. Therefore,
any value within the index data item must correspond to an occurrence number of an element
in a table. An index data item is stored as a synchronized unsigned computational integer,
both internally and externally. (Refer to “System Dependencies” in Appendix H for the
correct size of an index data item.) An index data item cannot be a conditional variable,

and can only be referenced explicitly in a SEARCH or SET statement, a relation condition,

the USING phrase of the PROCEDURE DIVISION header, or USING phrase of a CALL

statement.

Do not use the SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN
ZERQO clauses to describe a group of elementary items whose usage is defined as INDEX.
Index data items are automatically SYNCHRONIZED.

In ANSI COBOL’85, if a group item is described with a USAGE IS INDEX clause, all of its
elementary items are index data items, but the group itself is not an index data item and
cannot be used in the SEARCH or SET statements, or in an alphanumeric comparison in the
PROCEDURE DIVISION. As an HP extension to the ANSI COBOL standard, HP COBOL
IT allows a group item described with USAGE IS INDEX to be used in an alphanumeric
comparison.

7-68 DATA DIVISION



DATA DIVISION
Record Descriptions
VALUE Clause

VALUE Clause

The VALUE clause is used to define the values of constants and to initialize the values of
WORKING-STORAGE data items. For information on VALUE clauses in condition names,
refer to “Condition Names” later in this chapter.

Syntax
[VALUE IS lteral-1]

Parameters

literal-1 the value assigned to the data item being described.

Description

The above format for the VALUE clause can only be used in the WORKING-STORAGE
SECTION. If used, the VALUE clause causes the item to which it is associated to assume the
specified value at the start of the object program, irrespective of any BLANK WHEN ZERO
or JUSTIFIED clause. If the VALUE clause is not used in an item’s description, the initial
value of the item is undefined.

A VALUE clause may be used with data items (or descendants of data items)

containing an OCCURS clause to initialize tables.

A VALUE clause (VALUE is literal-1) specified in a data description
entry that contains an OCCURS clause, or in an entry that is subordinate to
an OCCURS clause, causes every occurrence of the associated data item to be

assigned the specific value.

If a VALUE clause is specified in a data description entry of a data item
that is associated with a variable occurrence data item, {{the initialization of the da
DEPENDING ON phrase in the OCCURS clause is set to the maximum number

of occurrences specified by that OCCURS clause.

A data item is associated with a variable occurrence data item in any of the following cases:
m When it is a group data item that contains a variable occurrence data item.

m When it is a variable occurrence data item.

m When it is a data item that is subordinate to a variable occurrence data item.

If a VALUE clause is associated with the data item referenced by a DEPENDING ON phrase,
that value is considered to be placed in the data item after the variable occurrence data item
is initialized.

DATA DIVISION 7-69



DATA DIVISION
Record Descriptions
VALUE Clause

Restrictions on the Use of the VALUE Clause

The following restrictions apply to the use of the VALUE clause. They also apply to the
VALUE clause in condition names.

The VALUE clause cannot be used in a data description entry containing a REDEFINES
clause (except when used with a condition name), or in an entry subordinate to an entry
containing a REDEFINES clause. Nor can it be used for a group containing items with
descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (except USAGE IS
DISPLAY).

The VALUE clause must not conflict with any other clauses in the data description of the
item, or in the data description within the hierarchy of the item.

The VALUE clause must not be used with any external record, except for condition-name
entries associated with external records.

Literals in the VALUE Clause

The literals used in the VALULE clause are subject to the following rules:

Figurative constants may be substituted for literals.

A signed numeric literal must have a signed numeric PICTURLE and character string
agsociated with it.

All numeric literals must have a value within the range of values indicated by the PICTURE
clause, and must not have a value which would require truncation of nonzero digits.
Nonnumeric literals must not exceed the size indicated by the PICTURE clause.

If the category of the item being described is numeric, all literals in the VALULE clause must
be numeric. If the literal defines the value of a working-storage item, the literal is aligned in
the data item according to the standard alignment rules.

If the category of the item being described is any other than numeric, all literals in the
VALUE clause must be nonnumeric. The literal is aligned in the data item as if the data
item had been described as alphanumeric. Editing characters in the PICTURE clause
are included in determining the size of the data item, but have no effect on initialization.
Therefore, the VALUE for an edited item must be presented in an edited form.

If the VALUE clause is used in an entry at the group level, the literal must be a figurative
constant or a nonnumeric literal, and the group area is initialized without consideration

for the individual elementary or group items contained within the group. A VALUE clause
cannot be used for elements of a group that has a VALULE clause assigned to it at the group
level.

7-70 DATA DIVISION



DATA DIVISION
Record Descriptions
RENAMES Clause

RENAMES Clause

The RENAMES clause permits alternative, possibly overlapping groupings of elementary
items. This clause is always associated with a 66 level entry.

Syntax

66 data-name-1 BENAMES data-name-2 |:{ } data—name—{l .

LG200026_070

The level number (66) and data-name-1 are not part of the RENAMES clause, but are used
to clarify the purpose of the clause.

Parameters
THROUGH and THRU equivalent.

data-name-1 the name used to rename the item or items referenced by data-name-2
and data-name-3. It cannot be a qualifier, and can only be qualified by
the names of the associated 01, FD, or SD level entries.

data-name-2 and must be names of elementary items or groups of elementary items in the

data-name-3 same logical record. They must not be the same name, and neither may
have an OCCURS clause in its data description, or be subordinate to an
item that has an OCCURS clause in its description. Furthermore, no
item within the range of the portion of the logical record being renamed
can be variable in size, or can contain such an item. Data-name-2 and
data-name-3 may be qualified.

If data-name-2 is used alone (that is, the optional THROUGH phrase is
unused), data-name-2 can be either a group or an elementary item.

Description

When data-name-2 is a group item, data-name-1 is treated as a group item; when
data-name-2 is an elementary item, data-name-1 is treated as an elementary item.

If the THROUGH phrase is used, data-name-1 is a group item that includes all elementary
items starting from data-name-2 and concluding with elementary item data-name-3. Or,

if data-name-2 and data-name-3 are also group names, data-name-1 is a group name that
begins with the first elementary item in data-name-2 and concludes with the last elementary
item in data-name-3.

Because of the way in which data-name-1 is defined, there are restrictions on the area
described by data-name-2 and data-name-3. That is, the area described by data-name-3 must
not begin to the left of the first character in the area described by data-name-2, and it must
end to the right of the last character of the area of data-name-2.

DATA DIVISION 7-71



DATA DIVISION
Record Descriptions
RENAMES Clause

Example
01 STUDENT-REC.
03 NAME PIC X(20).
03 ID-NO PIC X(9).
03 MAJOR PIC X(3).
03 CLASSES OCCURS 5 TIMES.
05 CLASS-ID PIC X(3).
05 DEPT PIC X(3).
66 STUD-INFO RENAMES NAME THRU MAJOR.
66 MAJOR-DEPT RENAMES MAJOR.

In the above example, CLASSES, CLASS-ID, and DEPT may not be named in a RENAMES
clause because of the OCCURS clause.

Note The above paragraph implies that data-name-3 cannot be subordinate to
data-name-2.

You can use more than one RENAMES entry for a single logical record. However, all
RENAMES entries referring to data items within a given logical record must immediately
follow the last data description entry of the associated record description entry. You cannot
use a level 66 entry to rename another level 66 entry or a 77, 88, or 01 level entry.

7-72 DATA DIVISION



DATA DIVISION
Record Descriptions
Condition Names

Condition Names

A condition name is always subordinate to another data item called the conditional variable.
The level number 88 is used to describe it. The characteristics of a condition name are
implicitly those of its conditional variable. This must be reflected in the value or values
assigned to the condition name.

A condition name is assigned one or more values. The condition name can later be used to
specify comparison with the conditional variable (see Chapter 8, “PROCEDURE DIVISION”,
for information on condition name conditions).

Syntax

The VALULE clause in a condition name has the following format:

" YALUE IS THROUGH
88 condition-n -1 1i - j —
iti ame { ARE} { iteral-1 I:{ } literal 2:]}

LG200026_071

Parameters

condition-name-1  any valid user-defined COBOL word.
literal-1 and the values assigned to the condition name.
literal-2

THROUGH and THRU equivalent and can be used interchangeably.

Description

The VALUE clause and the condition name itself are the only two clauses permitted in the
data description entry.

The VALUE clause can be used in any of the sections of the DATA DIVISION and must be
used for condition names.

Wherever the THROUGH phrase is used, literal-1 must be less than literal-2.

When a VALUE clause is used in a level 88 entry, you can specify no more than 127 ranges of
values for the related condition name. A range of values is either a single literal or two literals

related by the THROUGH (or THRU) keyword.

Additional rules applying to the VALUE clause in condition names are described under
the headings “Restrictions on the Use of the VALULE Clause” and “Literals in the VALULE
Clause”, earlier in this chapter.

The condition name entries for a particular conditional variable must follow the entry
describing the item with which the condition name is associated (that is, the conditional
variable). Each condition name in your program must have a separate level 88 entry
associated with it. A condition name cannot be associated with any data description entry
containing a level number 66, another condition name, or a group item with descriptions

including JUSTIFIED, SYNCHRONIZED, or USAGE (other than DISPLAY).

DATA DIVISION 7-73



DATA DIVISION
Record Descriptions
Condition Names

Example

01 CONDVAR PIC 9(5) USAGE DISPLAY.
88 COND1 VALUE 10 THRU 25, 100 THRU 250.

01 ALPHAVAR PIC A.
88 ALPHACOND VALUE "A" , "M" THROUGH "Z".

7-74 DATA DIVISION



8

PROCEDURE DIVISION

The PROCEDURE DIVISION is the division that specifies the operations to be carried out
by the program. It is an optional part of a COBOL program and may contain declarative as
well as nondeclarative procedures.

Generally, statements in the PROCEDURE DIVISION are executed by the compiler in the
order in which you enter them. However, you can alter this sequential flow by using one of the
following statements: IF, PERFORM, GO TO, or EVALUATE .

Also, through the use of the DECLARATIVES keyword coupled with the END
DECLARATIVES keywords, you can specify procedures to be executed only under special
circumstances.

PROCEDURE DIVISION 8-1



PROCEDURE DIVISION

PROCEDURE DIVISION Header
The PROCEDURE DIVISION header has the following format:
PROCEDURE DIVISION [USING {data-name-1} ... ]
The PROCEDURE DIVISION header begins in Area A of the program. Note that the header

must be terminated by a period followed by a space.

USING Clause

The USING clause in the PROCEDURE DIVISION header is required only if the program
containing it is to be called by another COBOL program through the CALL statement.

The CALL statement itself includes a USING clause. That is, the USING clause in a
PROCEDURE DIVISION header identifies the program in which it appears as a subprogram
that references data common to the program that calls it.

The data names in the USING clause must follow the rules listed below.

1. Fach data item named in the USING phrase of a PROCEDURE DIVISION header must
be described as 01 or 77. In ANSI COBOL’85 a data item must not have a REDEFINES
clause in its description. HP COBOL II allows this as an HP extension to the ANSI
COBOL standard.

2. Data items are processed according to their descriptions in the called program, and not
according to their descriptions in the calling program. Note that although this implies that
common data may have different usages, the data must, as a general rule, have the same
usage. Results may be undefined if usages are mixed. This is because data sharing is done
by passing an address of the data item (when passing by reference), with no conversion
from one data type to another.

3. The descriptions of data common to both programs must define an equal number of
character positions.

4. Data is passed from one program to another according to the position of its name in the
USING phrase, and not by its name. Thus, data in the calling program may be known
to the calling program by a completely different name. The same name can appear in
the USING phrase of the CALL statement, but each name in the USING phrase of a
PROCEDURE DIVISION header must be unique with respect to other names in that
phrase.

5. For the limit on the number of data names listed in the USING phrase, refer to “MPE XL
System Dependencies” in Appendix H for more information.

For a more general overview of passing data to and from two COBOL programs, refer to
Chapter 11, “Interprogram Communication.”

8-2 PROCEDURE DIVISION



PROCEDURE DIVISION

PROCEDURE DIVISION Format
The body of the PROCEDURE DIVISION has two general formats:

Format 1

[ PROCEDURE DIVISION [ USING { data-name~1} - - -] -
{ paragraph—-name.

[ sentence] ...} ...]

Format 2
[ PROCEDURE DIVISION [ USING { data—name~11} - - - ] -

[DECLARATIVES.

{ section-name SECTION [segment-number].
USE statement
[paragraph—name .

[ sentence ]+ - -]}

END DECLARATIVES . ]
{ section-name SECTION [segment—-number].

[ paragraph—-name .

[ sentence] - -] -} -]

LG200026_073

The first format of the PROCEDURE DIVISION body can be used when you wish to use
no section names in your program. In such a case, only paragraph names are used to define
procedures. This is generally not the best way to write a COBOL program, since it does
not allow for USE procedures or segmentation of the object program. It may be beneficial,
however, if you are writing a very short, simple program.

PROCEDURE DIVISION 8-3



PROCEDURE DIVISION

The second format of the PROCEDURE DIVISION body is used when you wish to allow for

segmentation of your program or define declarative procedures.

In the second format, section names may be used to define procedures, with paragraph names
being used as subsections. If any part of the PROCEDURE DIVISION is written using a
section name, the entire PROCEDURE DIVISION must be written using section names.
Therefore, if a section name is used, either the entire PROCEDURE DIVISION is a single
section or the PROCEDURE DIVISION consists of several sections.

8-4 PROCEDURE DIVISION



PROCEDURE DIVISION

PROCEDURE DIVISION Syntax Rules

This section discusses syntax rules for the following areas:
m Declarative Sections

m Procedures

m Sections and Section Headers

m Segmentation

Declarative Sections

Declarative sections are optional. If used, they may appear in COBOL subprograms as well as
main programs.

When you define declarative sections, they must be the first sections within the
PROCEDURE DIVISION, be preceded by the keyword DECLARATIVES beginning in

area A and followed by a period and a space, and be on a line by itself. To indicate where
declarative sections end and the remainder of the PROCEDURE DIVISION begins, you must
use the keywords END DECLARATIVES beginning in area A and followed by a period and
a space, and be on a line by itself. USE procedures consist of a section name followed by a
space and the keyword SECTION, followed by an optional segment number, a period and a
space, a declarative sentence, and one or more optional paragraphs.

A declarative sentence is one that contains a USE statement. The USE statements themselves
are not executed. They simply define the conditions calling for the execution of the USE
procedures. The declarative procedures are the optional paragraphs following the declarative
sentence.

A single USE procedure is terminated in a source program by either a new section name,
which indicates the beginning of another declarative statement, or by the keywords END
DECLARATIVES, which indicate the end of the list of declarative sections.

As the preceding paragraph implies, you must define a new section for each USE statement
entered in the source program.

Declarative procedures must not reference nondeclarative procedures, although you may use
a PERFORM statement in the nondeclarative portion of a program to refer to procedures
associated with a USE statement.

PROCEDURE DIVISION 8-5



PROCEDURE DIVISION

Below is an example of the declaratives portion of a COBOL program:

PROCEDURE DIVISION.
DECLARATIVES.
IN-FILE-ERR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON IN-FILE.
REPORT-ERR-PARA.
DISPLAY "ERROR IN IN-FILE. ".
DISPLAY "FILE-STATUS ITEM IS " FILE-STAT.
DISPLAY "WHAT ACTION?".
DISPLAY "ENTER C OR A FOR CONTINUE OR ABORT".
ACCEPT DECISION.
IF DECISION IS EQUAL TO "A" MOVE "ON" TO STOP-IT.
FILE-LABEL SECTION.
USE AFTER STANDARD BEGINNING FILE LABEL
PROCEDURE ON OUT-FILE.
WRITE-LABEL-PARA.
MOVE "HP 3000" TO LABEL-REC.
END DECLARATIVES.

In the above example, if an error occurs during execution of an OPEN, CLOSE, READ,

WRITE, REWRITE, EXCLUSIVE, or UN-EXCLUSIVE statement referencing IN-FILE, and
no AT END phrase is used in the statement, the USE procedure, IN-FILE-ERR, is executed.

When OUTFILE is opened, the second USE procedure called FILE-LABEL, is executed. This
procedure creates a user label, and as an implicit part of its operation, writes the label on the

file.

For more information on USE procedures, refer to “USE Statement” in Chapter 9.

Procedures

A procedure consists either of one or more paragraphs or sections. A procedure name is a
word you choose that refers to a paragraph or section in the source program. A procedure
name consists of a section name or a paragraph name. A paragraph name may be qualified.

The physical end of the PROCEDURE DIVISION is that physical position in the source
program after which no further procedures appear.

8-6 PROCEDURE DIVISION



PROCEDURE DIVISION

Sections and Section Headers

A section consists of a section header followed by zero or more successive paragraphs. A
paragraph consists of a paragraph name followed by a period, a space, and zero or more
successive sentences. (Paragraphs, sentences, statements, and so forth are described in
Chapter 2.)

In the PROCEDURE DIVISION, a section header consists of a section name followed by the
word SECTION, an optional segment number, then a period. For example:

BEGIN-INITTALIZATION SECTION 05.
or:
END-INITIALIZATION SECTION.

If no section header is specified, the entire PROCEDURE DIVISION constitutes one section.
Section names in both main programs and subprograms must be unique.

(For more information on section and paragraph names, refer to “MPE XL System
Dependencies” in Appendix H.)

The segment number appearing in a section header is used to segment the PROCEDURE
DIVISION. Thus, all sections with the same segment number constitute a program segment.
If no segment number is specified, COBOL assumes it to be 0. Although sections with the
same segment numbers are a part of the same segment, they need not be physically contiguous
in the source program.

Segmentation
Segmentation is an obsolete feature of the 1985 ANSI COBOL standard.

Segmentation has no effect on the physical layout of the object program.

Segment Numbers
Sections in the DECLARATIVES portion of a PROCEDURE DIVISION must have segment

numbers less than 50.

The term initial state refers to the original setting of GO TO statements before they
are modified at run time by the ALTER statement Refer to the “ALTER Statement” in
Chapter 9.

A segment with a segment number from 0 to 49 is in its initial state only when it is first used
in a given run-unit. Upon subsequent entries into such a segment, its state is the same as
when it was exited from a previous usage.

There are three exceptions where a segment with a segment number from 50 to 99 is always
in its initial state whenever control is transferred to that section. The first exception
concerns the appearance of a SORT, MERGE, or PERFORM statement, or any statement
that implicitly calls a USE procedure, in a section whose segment number is greater than
49. When one of these statements implicitly transfers control to a procedure outside of the
segment in which it appears, the segment is reentered in its last used state following the
execution of the procedure.

PROCEDURE DIVISION 8-7



PROCEDURE DIVISION

The second exception is when a subprogram is called from a section whose segment number
is greater than 49. In this case, if the EXIT PROGRAM or GOBACK statement is executed
in the called program, the calling program is reentered at the statement following the CALL
statement. If this statement is within the same segment as the CALL statement, the segment
is in its last used state when it is reentered.

The third exception is when a PERFORM statement is executed. If the sections or
paragraphs named in the PERFORM statement have segment numbers greater than 49,
then the segment of which they are a part is in its initial state the first time it is executed.
It remains in its last used state for all subsequent executions. Of course, following the
completion of the PERFORM, the associated segment is again in its initial state.

Since segment numbers greater than 49 are always (with the noted exceptions) in their initial
states when used, the compiler must initialize each section when control is passed to it, thus
lengthening execution time. Modifying a GO TO statement in such a section from outside by
using an ALTER statement in another section is impossible, since all GO TO statements in
that section are set to their initial state once control is passed to that section.

(For more information on segmentation and internal naming conventions, refer to “MPE XL
System Dependencies” in Appendix H.)

8-8 PROCEDURE DIVISION



PROCEDURE DIVISION
Statements and Sentences

PROCEDURE DIVISION Statements and Sentences

There are three types of statements and sentences in the PROCEDURE DIVISION:
m Conditional statements and sentences.

m Compiler directing statements and sentences.

m Imperative statements and sentences.

Conditional Statements and Sentences

A conditional statement specifies that a condition is to be tested, and depending upon the
truth value of the condition, determines the action of the object program.

HP COBOL II contains the following conditional statements:
m EVALUATE , [F, SEARCH, or RETURN statement.

® READ statement specifying the AT END, NOT AT END ., INVALID KEY,
NOT INVALID KEY phrase.

B WRITE statement specifying the INVALID KEY, NOT INVALID KEY, END-OF-PAGE or
NOT AT END-OF-PAGE phrase.

m START, REWRITE, or DELETE statement specifying the INVALID KEY, or
NOT INVALID KEY phrase.

m Arithmetic statements (ADD, COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT)
specifying the ON SIZFE, ERROR or NOT ON SIZE ERROR phrase.

B STRING or UNSTRING statements specifying the ON OVERFLOW or NOT ON OVERFLOW
phrase.

m CALL statement specifying the ON OVERFLOW, ON EXCEPTION, or
NOT ON EXCEPTIBN phrase.

® ACCEPT statement specifying the ON INPUT ERROR, or NOT ON INPUT ERROR phrase.

A conditional sentence is a conditional statement, optionally preceded by an imperative
statement, terminated by a period followed by a space.

Compiler Directing Statements and Sentences

A compiler directing statement consists of a compiler directing verb (either COPY, USE or
REPLACE ) followed by the verb’s operands. It causes the compiler to take a specific action
during compilation.

A compiler directing sentence is a single compiler directing statement terminated by a period
followed by a space.

PROCEDURE DIVISION 8-9



PROCEDURE DIVISION
Statements and Sentences

Imperative Statements and Sentences

An imperative statement either begins with an imperative verb and specifies an unconditional
action to be taken, or it is a conditional statement that is delimited by its explicit scope
terminator (delimited scope statement). Scope terminators are described later in this chapter.

An imperative statement may consist of a sequence of one or more imperative statements.

Note that when the phrase imperative-statement appears in a format, it refers to that
sequence of consecutive imperative statements that must be ended in one of the following
ways:

By a period.

By an ELSE phrase associated with a previous IF statement.

By a WHEN phrase associated with a previous SEARCH statement.

By the verb’s explicit scope terminator.

An imperative sentence is an imperative statement terminated by a period followed by a
space. Verbs used in forming imperative statements are shown in Table 8-1 below.

Table 8-1. Imperative Verbs

ACCEPT! EXCLUSIVE RELEASE
ADD? EXAMINE REWRITE?
ALTER EXIT SET

CALL* GO TO SORT
CANCEL GOBACK START®
CLOSE INITIALIZE STOP
COMPUTE? INSPECT STRING®
CONTINUE MERGE SUBTRACT?
DELETE? MOVE TERMINATE
DISPLAY MULTIPLY? UN-EXCLUSIVE
DIVIDE? OPEN UNSTRING?®
ENTER PERFORM WRITE®
EVALUATE READ’

1 Without the optional 0N INPUT ERROR and NOT ON INPUT ERRUOR phrase.

2 Without the optional ON SIZE ERROR and NOT OB SIZE ERROR phrases.

3 Without the optional INVALID KEY and WOT INVALID KEY phrases.

4 Without the optional 0N OVERFLOW, ON EXCEPTION, and WOT ON EXCEPTION phrases.

5 Without the optional ON OVERFLOW and ‘NOT 0N OVERFLOW phrases.

6 Without the optional INVALID KEY, NOT INVALID KEY , END-OF-PAGE, and NOT AT END-OF-PAGE

phrases.

7 Without the optional AT END, NOT AT END , INVALID KEY, and NOT INVALID KEY phrases.

8-10 PROCEDURE DIVISION




PROCEDURE DIVISION
Statements and Sentences

Categories of Statements

HP COBOL II statements fall into 11 categories. These categories, and the verbs used in
them, are listed in Table 8-2.

Table 8-2. Categories of Statements

Category Verbs

Arithmetic ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

Compiler COPY
Directing REPLACE
USE

Conditional ACCEPT (ON INPUT ERROR or BOT 0N INPUT ERROR)

ADD (SIZE ERROR or BOGT ON SIZE ERROR)

CALL (ON OVERFLOW, ON EXCEPTION, NOT 0N EXCEPTION )
COMPUTE (SIZE ERROR or NOT ON SIZE ERROR)

DELETE (INVALID KEY or NOT INVALID KEY)

DIVIDE (SIZE ERROR or KOT ON SIZE ERRUR)

EVALUATE
IF
MULTIPLY (SIZE ERROR or NOT ON SIZE ERROR)

READ (AT END, NOT AT END INVALID KEY,
or NOT INVALID KEY)
RETURN (AT END or NOT AT END)

REWRITE (INVALID KEY or NOT INVALID KEV)
SEARCH
START (INVALID KEY or NOT INVALID KEY)

STRING (ON OVERFLOW or NOT ON OVERFLOW )
SUBTRACT (SIZE ERROR or NOT ON SIZE ERROR)
UNSTRING (ON OVERFLOW or NOT ON OVERFLOW )
WRITE (INVALID KEY, NOT INVALID KEY FEND-OF-PAGE,
or NOT AT END-OF-PAGE)

Data ACCEPT (DATE, DAY, DAY-OF-WEEK, or TIME)
Movement EXAMINE (REPLACING)

INITIALIZE

INSPECT (REPLACING) (CONVERTING)
MOVE

STRING

UNSTRING

PROCEDURE DIVISION 8-11



PROCEDURE DIVISION
Statements and Sentences

Table 8-2. Categories of Statements (continued)

Category

Verbs

Ending

STOP
STOP RUN
GOBACK (in main program)

Input-Output

ACCEPT (identifier)
CLOSE

DELETE
DISPLAY
EXCLUSIVE
OPEN

READ
REWRITE
SEEK

START

STOP (literal)
UN-EXCLUSIVE
WRITE

Interprogram
Communication

CALL

CANCEL

ENTRY

EXIT PROGRAM
GOBACK

Ordering

MERGE
RELEASE
RETURN
SORT

Procedure
Branching

ALTER
CALL
EXIT

GO TO
PERFORM

Table
Handling

SEARCH
SET

No Operation

CONTINUE

8-12 PROCEDURE DIVISION




PROCEDURE DIVISION
Statements and Sentences

Scope Terminators

Scope terminators mark the end of the PROCEDURE DIVISION statements that contain
them. There are two types of scope terminators: explicit and implicit.

The explicit scope terminators are:

END-ACCEPT END-IF END-SEARCH
END-ADD END-MULTIPLY END-START
END-CALL END-PERFORM END-STRING
END-COMPUTE END-READ END-SUBTRACT
END-DELETE END-RETURN END-UNSTRING
END-DIVIDE END-REWRITE END-WRITE

END-EVALUATE

Examples
In the following example, the READ and IF statements have explicit scope terminators.

READ IN FILE
AT END
MOVE ’YES’ TO EOF-SW
IF IN-COUNT = O
DISPLAY "EMPTY FILE"
END-IF
END-READ

The implicit scope terminators are:

m At the end of a sentence: the separator period, which terminates the scope of all previous
statements not yet terminated.

m Within any statement containing another statement: the next phrase of the containing
statement following the contained statement terminates the scope of any unterminated
statement. ELSE, WHEN, and NOT AT END are examples of such phrases.

In the next example, the IF" statement in line 2 is terminated by the ELSE clause on line 6.
The IF statement on line 1 is terminated by the period (.) on line 7.

1 IF HOURS > 40
2 IF PAYCODE = NONEXEMPT
3 PERFORM OVERTIME
4 ELSE
5 PERFORM NORMAL-PAY
6 ELSE

7 PERFORM NORMAL-PAY.

PROCEDURE DIVISION 8-13



PROCEDURE DIVISION
Arithmetic Expressions

Arithmetic Expressions

Arithmetic expressions are used in the COMPUTE statement and in relation conditions. They
enable you to use exponentiation, as well as the addition, subtraction, multiplication, division,
and negation operations that can be performed using arithmetic statements.

Arithmetic expressions allow you to combine arithmetic operations without the restrictions
on “composites of operands” and receiving data items that exist for arithmetic statements.
(See “COMPUTE Statement” in Chapter 9 for rules concerning calculation of intermediate
results.)

For machine specific limitations on the maximum number of digits in arithmetic expressions,
refer to the HP COBOL I1I/XL Programmer’s Guide.

The number of decimal places used in evaluating an arithmetic expression is determined by
the maximum number of decimal places within the expression and within the operand of a
COMPUTE statement intended to receive the result.

An arithmetic expression can be any of the following:

m An identifier of a numeric elementary item or COBOL function.

m A numeric literal.

m Identifiers and literals as described above, separated by arithmetic operators.
m Two arithmetic expressions separated by an arithmetic operator.

m An arithmetic expression enclosed in parentheses.

Any arithmetic expression may be preceded by a unary operator.

Arithmetic Operators

There are five binary and two unary arithmetic operators. Each is represented by a specific
character or characters. When an operator is used, it must be preceded and followed by a
space.

The binary operators are listed below:
+ symbolizes addition.

- symbolizes subtraction.

* symbolizes multiplication.
/ symbolizes division.
* %

symbolizes exponentiation.

8-14 PROCEDURE DIVISION



PROCEDURE DIVISION
Arithmetic Expressions

The following are unary operators:
+ is equivalent to multiplying by +1.
- is equivalent to multiplying by -1.

An arithmetic expression may only begin with a left parenthesis, a plus or minus sign, or an
identifier or numeric literal. It may only end with an identifier or numeric literal, or with a
right parenthesis.

Also, there must be a one-to-one correspondence between left and right parentheses, and each
left parenthesis must be to the left of its corresponding right parenthesis.

Hierarchy of Operations

When parentheses are not used or they do not entirely enclose an arithmetic expression, the
order in which the various operands are applied in evaluating the expression is determined in
the following manner:

1. Any unary operator (4 or-) is executed first.

2. Following the execution of a unary operator, any exponent specified in the expression is
executed.

3. Next, if multiplication or division is specified, the multiplication or division is executed. If
consecutive multiplications and/or divisions are specified, each operation is performed in
turn, starting from the left and continuing until the rightmost multiplication or division has
been performed.

4. Following the execution of multiplication or division, any addition or subtraction specified
in the expression is performed next. As with multiplication and division, if any consecutive
combination of these operators is used, evaluation begins with the leftmost and terminates
with the execution of the rightmost operator in the consecutive list.

In general, when the sequence of execution of an arithmetic expression is not specified by
parentheses, the order of execution of consecutive operations of the same hierarchical level is
from left to right.

For example, the following arithmetic expression:
-5+ 3 xx 2 x4 +7 - 21
Is evaluated as follows:

-5 is evaluated, resulting in -5.

3 %% 2 is evaluated, resulting in 9.
9 x4 is evaluated, resulting in 36.
-5 + 36 is evaluated, resulting in 31.
31 + 7 1is evaluated, resulting in 38.
38 - 21 is evaluated, resulting in 17.

PROCEDURE DIVISION 8-15



PROCEDURE DIVISION
Arithmetic Expressions
Use of Parentheses

Parentheses may be used in arithmetic expressions to specify the order in which elements are
to be evaluated. Always use parentheses in pairs.

Expressions within parentheses are evaluated first. Within nested parentheses, evaluation
begins with the innermost set of parentheses, and continues outward until the expression
contained in the outermost set is evaluated.

Use of parentheses allows you to eliminate ambiguities in logic where consecutive operations of
the same hierarchical level appear, or to modify the normal hierarchical sequence of execution
in an arithmetic expression.

To illustrate the use of parentheses, the following example uses the previous arithmetic
expression. The following two expressions are equivalent:

-5+ 3 *xx 2 x 4 +7 - 21

(((-5 + ((3 *%x 2) *x 4)) +7) - 21)
Both expressions result in 17. The following two expressions are also equivalent:

-5+ 3 xx (2 x4) +7 - 21

-5+ 3 % 8 +7 - 21

Both expressions result in 6542.

8-16 PROCEDURE DIVISION



PROCEDURE DIVISION
Arithmetic Expressions

Valid Combinations in Arithmetic Expressions

The ways in which operators, variables, and parentheses may be combined in an arithmetic
expression are summarized in Table 8-3 below. The word “Variable” means a numeric literal
or an identifier of a numeric elementary item.

Table 8-3. Valid Combinations of Symbols in Arithmetic Expressions

Second Symbol

First

Symbol Variable | + - * / ** | Unary + or - ( )

Variable Not valid. | Permissible Not valid. Not valid. | Permissible.

+-* / ** | Permissible.| Not valid. | Permissible. | Permissible.| Not valid.

Unary + or - | Permissible. | Not valid. Not valid. | Permissible. | Not valid.

( Permissible. | Not valid. | Permissible. | Permissible.| Not valid.
) Not valid. | Permissible.| Not valid. Not valid. | Permissible.
Exponentiation

ANSI COBOL’85 defines the following special cases of exponentiation:

m If a value less than or equal to zero is raised to a power of zero, the size error condition
results.

m If no real number exists as the result of the evaluation, the size error condition results.

PROCEDURE DIVISION 8-17



PROCEDURE DIVISION
Conditional Expressions

Conditional Expressions

Conditional expressions identify conditions to be tested to select one of alternate paths
of control. This selection is determined by the truth value of a condition. Conditional
expressions are used in the IF, SEARCH, EVALUATE, and PERFORM statements.

There are two categories of conditions associated with conditional expressions:
m Simple conditions.
m Complex conditions.

You can enclose either category within any number of paired parentheses without changing its
category. This section describes both simple conditions and complex conditions.

Simple Conditions
The six simple conditions are:
m Sign condition.

m Class condition.

m Switch-status condition.

m Relation condition.

m Condition name condition.

m Intrinsic relation conditions. Intrinsic relation conditions are an HP extension to the ANSI

COBOL standard.

8-18 PROCEDURE DIVISION



Sign Condition

PROCEDURE DIVISION
Conditional Expressions

The sign condition tests whether or not the algebraic value of an arithmetic expression is less
than, greater than, or equal to zero. The sign condition has the following format:

POSITIVE

arithmetic-expression 1S [NOT] { NEGATIVE

ZERQ

L.G200026_075

Parameters

arithmetic-expression

NOT

POSITIVE, NEGATIVE, and
ZERO

Example

any valid arithmetic expression, as described on the preceding
pages. It must contain at least one reference to a variable.

coupled with one of the next keywords, algebraically tests
arithmetic-expression.

If NOT POSITIVE is specified, return a value of “true” if
arithmetic-expression is negative or equal to zero; return a
value of “false” otherwise.

If NOT NEGATIVE is specified, return a value of “true” if
arithmetic-expression is equal to zero or positive; return a
value of “false” otherwise.

If NOT ZERO is specified, return a value of “true” if
arithmetic-expression is positive or negative; return a value of
“false” if arithmetic-expression is equal to zero.

each used without the NOT keyword, algebraically tests
arithmetic-expression.

If POSITIVE is specified, return a value of “true” if
arithmetic-expression is greater than zero; return a value of
“false” otherwise.

If NEGATIVE is specified, return a value of “true” if
arithmetic-expression is less than zero; return a value of “false”
otherwise.

If ZERO is specified, return a value of “true” if arithmetic-
expression is equal to zero; return a value of “false”
otherwise.

Assume that the variable A identifies the numeric value -5.

IF A IS ZERO NEXT SENTENCE
ELSE DIVIDE A INTO SUMS.

In this example, because A is not zero, the statement DIVIDE A INTO SUMS is executed. If A
were zero, the sentence immediately following the condition sentence would be executed.

PROCEDURE DIVISION 8-19



PROCEDURE DIVISION
Conditional Expressions

Class Condition

The class condition determines whether an operand consists entirely of numbers and an
operational sign, or letters, or a user-defined class.

Syntax

identifier-1 1S [NOT]

LG200026_076a

Parameters

identifier-1 names the operand to be tested. It must be described implicitly or
explicitly as USAGE IS DISPLAY. Other restrictions apply if the
keyword NUMERIC is used. HP COBOL II allows PACKED-DECIMAL
items to be tested for NUMERIC as an HP extension to the ANSI
COBOL standard. If identifier-1 is a function-identifier, it must
reference an alphanumeric function.

NOT coupled with one of the next keywords negates the condition.

ALPHABETIC means a value of “true” is returned if the operand consists entirely of
characters selected from the letters a through z, A through 7, and a
space. Otherwise a value of “false” is returned.

NUMERIC means a value of “true” is returned if the operand consists entirely of
numerals selected from the set O through 9 and a single operational
sign. Otherwise a value of “false” is returned.

ALPHABETIC-LOWER means a value of "true' is returned if the operand
consists entirely of the lowercase letters a through

z and space. Otherwise a value of 'false' is returned.

ALPHABETIC-UPPER means a value of "true' is returned if the operand
consists entirely of the uppercase letters A throuth

Z and space. Otherwise a value of '"false' 1s returned.

class-name-1 means a value of "true' is returned if the operand
consists entirely of the characters listed in the
definition of class-name-1 in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION.

8-20 PROCEDURE DIVISION



PROCEDURE DIVISION
Conditional Expressions

Description

You cannot use a NUMERIC test if the operand has a data description defining it as
alphabetic, or as a group item composed of elementary items whose data descriptions indicate
the presence of an operational sign or signs.

If the data description of the operand does not indicate the presence of an operational sign,
the operand is considered numeric only if it consists of numerals, and has no operational sign.

If the data description of the operand does indicate an operational sign, the operand is
considered numeric only if it consists of numerals from the set 0 through 9, and a single valid
operational sign.

Valid operational signs are determined by the presence or absence of the SIGN IS SEPARATE
clause in the data description of the operand.

If the SIGN IS SEPARATE clause is present, the valid operational signs are the standard data
format characters, + and -.

If the SIGN IS SEPARATE clause is not present, the valid operational signs in standard data
format are shown in Table 7-6 under the heading, USAGE IS DISPLAY.

The ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER, and class name tests cannot
be used with an operand whose data description describes it as numeric.

To illustrate the class condition, the following example uses an operand which, in standard
data format, is 35798D.

Data description of operand:

01 FIRST-NUMBER PIC S9(6) SIGN IS TRAILING.
Condition test:

FIRST-NUMBER IS NUMERIC

In this case, the test returns a value of “true”, since D is a valid operational sign. D has the
value +4, thus making the numeral 35798D equivalent to +357984.

PROCEDURE DIVISION 8-21



PROCEDURE DIVISION
Conditional Expressions

Switch-Status Condition

A switch-status condition determines the on or off status of a defined switch. The function
name and the on or off value associated with the condition must be specified in the

SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. The Switch-Status

condition has the following format:

condition-name-1

Parameter

condition-name-1 the name associated with the function name in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION.

The result of the test is true if the switch is set to the specified position corresponding to
condition-name-1.

Example

ENVIRONMENT DIVISION
SPECTIAL-NAMES.
SWO, OFF STATUS IS NOADD, ON STATUS IS ADDONE.

PROCEDURE DIVISION.
PRINT-ROUTINE.
IF NOADD THEN PERFORM OTHER-ACTION.

In the above example, if the status of switch SWO0 is “off”, then a routine named
OTHER-ACTION is performed. If the status of switch SWO0 is “on”, then OTHER-ACTION is not
performed, and control passes to the next executable statement.

8-22 PROCEDURE DIVISION



PROCEDURE DIVISION
Conditional Expressions

Relation Conditions

There are two types of relation conditions in HP COBOL II. One is ANSI standard; the other
is used for checking condition codes after intrinsic calls. The intrinsic relation condition is
described following the description of ANSI standard relation conditions.

ANSI Standard Relation Conditions

A relation condition compares two operands, each of which may be a data item referenced by
an identifier, a literal, or the value resulting from an arithmetic statement.

If a specified relation exists between the two operands, the relation condition value is

“TRUE”.

You may compare two numeric operands, regardless of their respective usages; however, if you
want to compare two operands and one of them is not numeric, then both must have the same
usage. Note that since group items are treated as alphanumeric, nonnumeric comparison rules
apply.

A relation condition must contain at least one reference to a variable. Relation conditions
have the following format:

/15 [NOT] GREATER THAN \

IS [NOT] >

IS [NOT] LESS THAN

Is [NOT] <
identifier-1 identifier-2
literal-1 's [NOT] EQUAL TO literal-2
arithmetic-expression—1 IS [NQT] arithmetic-expression-2
index-name-1 index-name-2

An HP extension to the 1985
ANSI COBOL standard

LG200026_077a

b b

Note The required relational characters >’ ,’<’ ,'=" . '<=",">=" and <>’ are
not underlined to avoid confusion with other symbols such as >’ (greater than
or equal to).

PROCEDURE DIVISION 8-23



PROCEDURE DIVISION
Conditional Expressions

Parameters

wdentifier-1 the subject of the condition.
or

literal-1

or

arithmetic-expression-1

or

mdez-name-1

tdentifier-2 the object of the condition.
or

literal-2

or

arithmetic-expression-2

or

mdez-name-2

[NOT] GREATER THAN equivalent to [NOT] >

[NOT] LESS THAN equivalent to [NOT] <

[NOT] EQUAL TO equivalent to [NOT] = or < > (< > is an HP extension to the ANSI
COBOL standard.)

NOT coupled with the next keyword or relation character has the following
meaning:

NOT GREATER or NOT > means less than or equal;
NOT LESS or NOT < means greater than or equal;
NOT EQUAL or NOT = means greater than or less than.

GREATER THAN OR EQUAL TO is equivalent to >=.

LESS THAN DR EQUAL TO is equivalent to <=.

Comparison of Numeric Operands.

For operands belonging to the numeric class, a comparison is made with respect to the
algebraic values of the operands. The number of digits in an operand is not significant. Also,
no distinction is made between a signed or unsigned value of zero.

Comparison of numeric operands is not affected by their usages. Unsigned numeric operands
are considered to be positive when they are used as operands in a comparison.

8-24 PROCEDURE DIVISION



PROCEDURE DIVISION
Conditional Expressions

Comparisons Using Index Names and Index Data Items.

Relation tests may be made using any of the index names and index data items described
below.

m Two index names. The result is the same as if the corresponding occurrence numbers were
compared.

m An index name and a data item (other than an index data item) or literal. The occurrence
number corresponding to the value of the index name is compared to the data item or
literal.

m An index data item and an index name or another index data item. The actual values are
compared without conversion.

An index data item should only be compared with another index data item or an index name.
Comparison of an index data item with any other data item or a literal gives an undefined
result.

Comparison of Nonnumeric Operands.

For nonnumeric operands, or one nonnumeric operand and one numeric operand, a comparison
is made with respect to the specified collating sequence (refer to “OBJECT-COMPUTER
Paragraph” in Chapter 6).

If one of the operands is numeric, it must be an integer data item or an integer literal. It must
also have the same usage as the nonnumeric operand.

If the nonnumeric operand is an elementary data item or a literal, the numeric operand is
treated as though it were moved to an elementary alphanumeric data item of the same size as
the numeric data item. The contents of this alphanumeric data item are then compared to the
nonnumeric operand.

If the nonnumeric operand is a group item, the numeric operand is treated as though it were
moved to a group item of the same size as the numeric data item. The contents of this group
item are then compared to the nonnumeric operand. Remember, a group item is always
classified as alphanumeric.

Note In the previous paragraphs, “the same size as the numeric data item” means
the size of the numeric data item in standard data format. If the P character
of the PICTURE clause is included in the description for numeric operand, it
must not be included in determining the size of the operand.

PROCEDURE DIVISION 8-25



PROCEDURE DIVISION
Conditional Expressions

The size of an operand is the total number of standard data format characters in the operand.

When operands are of unequal size, comparison proceeds as though the shorter operand is
extended on the right by sufficient spaces to make the operands of equal size.

When operands are of equal size (or have been adjusted as described in the preceding
paragraph), the comparison proceeds on a character-by-character basis, starting with each
leftmost character and continuing until either the last character of each operand has been
compared, or a pair of unmatched characters is found.

The operands are considered equal if each pair of characters match, from the leftmost to the
rightmost.

The first time a pair of characters is found to be unequal (that is, do not match), their
positions in the program collating sequence, and the character having the numerically larger
index in the collating sequence, is considered to be greater than the other character.

Example

01 SUBJECT PIC X(06) VALUE ’FLAXEN’.
01 OBJECT PIC X(07) VALUE °’FLATTER’.

The relative condition is:
SUBJECT IS EQUAL TO OBJECT
The comparison takes place as follows:

F matches F; therefore, proceed.

L matches L; therefore, proceed.

A matches A; therefore, proceed.

X does not match T; therefore find the indices of each
in the ASCII collating sequence;

Index of X: 88
Index of T: 84

X is greater than T; thus, FLAXEN is greater than FLATTER, and the relation condition above
returns a “false” value.

8-26 PROCEDURE DIVISION



PROCEDURE DIVISION
Conditional Expressions
Condition Name Conditions

In a condition name condition, a conditional variable is tested to determine whether or not its
value is equal to one of the values associated with condition-name. Condition names have the
following format:

condition-name-1

Parameter

condition-name- 1 an identifier described under an 88 level data description entry

in the DATA DIVISION.

If condition-name is associated with a range of values, then the conditional variable is tested
to determine whether or not its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition name are the same as those
specified for relation conditions.

The result of such a comparison is true if one of the values of condition-name equals the value
of its associated conditional variable.

Example

DATA DIVISION.
01 CON-VAR PICTURE 999.
88 CON-NAME1 VALUES ARE 001 THRU 100.

PROCEDURE DIVISION.

IF CON-NAME1 THEN PERFORM UNDER-VALUE
ELSE NEXT SENTENCE.

In the above example, the test is performed to see if CON-VAR has a value of 1, 100, or any
number between 1 and 100. If it does, a procedure named UNDER-VALUE is performed.
Otherwise, the next sentence is executed.

PROCEDURE DIVISION 8-27



PROCEDURE DIVISION

Conditional Expressions

Intrinsic Relation Conditions

Intrinsic relation conditions are an HP extension to the ANSI COBOL standard.

Intrinsic relation conditions are used only to test the condition codes returned by HP
operating system intrinsics after they have been called with the CALL INTRINSIC statement.

Syntax

Intrinsic relation conditions have the following format:

[ s [NOT] GREATER THAN \
IS [NQ_‘[] >
IS [NOT] LESS THAN
Is [NOT] <
1S [NOT] EQUAL TO >
0

mnemonic-name [NQI] < IS [NQI] -

LG200026_078

Note The required relational characters >’ , <’ , and =" are not underlined to
avoid confusion with other symbols.

Parameter

mnemonic-name a user-defined name that represents the CONDITION-CODE
function. It must be defined in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION.

Description

If mnemonic-name is zero, execution of the intrinsic was successful. If mnemonic-name is
not zero, then an error probably occurred. Specific meanings are numerous, since they vary
from intrinsic to intrinsic. Refer to the MPF Intrinsics Reference Manual for your system
for meanings of the values returned. Mnemonic-name should be tested immediately after the
intrinsic call, since the value may be altered by the execution of subsequent instructions.

8-28 PROCEDURE DIVISION



PROCEDURE DIVISION
Conditional Expressions

Note When using CALLs to operating system intrinsics, the condition code returned
is not saved by COBOL and as such is only available until an instruction
is executed that changes the condition code. The condition code can be
successfully tested with the following examples that illustrate possible correct
and incorrect methods.

Examples

The following are correct and incorrect examples of intrinsic relation conditions.

Correct Example

The generated code for the example below causes control to branch to the following test only
if the test result is FALSE and to the next sentence if the test result is TRUE. This method

does not allow any intermediate operations, since such operations may cause the state of the
condition code to change, thereby causing incorrect program logic flow.

IF CC = 0 DISPLAY " CC ="
ELSE
IF CC > 0 DISPLAY " CC > "
ELSE

IF CC < 0 DISPLAY " CC < ".

Incorrect Examples

The generated code for the incorrect case below causes incorrect condition code status
branching for subsequent tests when the test result of the prior test is TRUE, causing
execution of the DISPLAY statement.

IF CC = 0 DISPLAY " CC = ".
IF CC > 0 DISPLAY " CC > ".
IF CC < 0 DISPLAY " CC < ".

The generated code for the incorrect case below causes incorrect condition code status
branching for subsequent tests when the OR condition test is required, as the operations
needed to test the condition causes changes to the condition code.

IF CC > 0 OR FLAG-TRUE
DISPLAY "CC > OR FLAG-TRUE"
ELSE

IF CC = 0 DISPLAY " CC ="
ELSE

IF CC < O DISPLAY " CC < ",

PROCEDURE DIVISION 8-29



PROCEDURE DIVISION
Conditional Expressions

Complex Conditions

A complex condition is formed by using the logical operators AND and OR to combine
simple, combined, and/or complex conditions, or by negating these conditions with the logical
negation operator, NOT.

The truth value of a complex condition, regardless of the use of parentheses, results from
the interaction of all the stated logical operators on the individual truth values of simple
conditions. It can also be the result of the intermediate truth values of conditions logically
connected or negated.

The meanings of the three logical operators are listed below.
Logical Operator Meaning

AND Logical conjunction; the truth value is “true” if both of the conjoined
conditions are true and “false” if one or both of the conjoined
conditions is false.

OR Logical inclusive OR; the truth value is “true” if one or both of the
included conditions is true and “false” if both included conditions are
false.

NOT Logical negation or reversal of truth value; the truth value is “true” if

the condition is false and “false” if the condition is true.

When a logical operator is used, it must be preceded and followed by a space.

Combined Conditions

You can form a combined condition by connecting conditions with one of the logical operators,
AND or OR. Combined conditions have the following format:

condition—1 {{AND} condition—Z} e
OR

L.G200026_08 1

Parameter

condition-1 where condition-1 is one of five possible types of conditions:
m A simple condition.
m A negated simple condition.
m A combined condition.

A negated combined condition (combined condition enclosed by
parentheses and preceded by the NOT logical operator).

m Combinations of any of the four types listed above, as specified in
Table 8-4.

8-30 PROCEDURE DIVISION



PROCEDURE DIVISION
Conditional Expressions

Although you do not need parentheses when you form a combined condition using AND or
OR, you may use parentheses to clarify and to affect the final result of a combined condition.

Table 8-4 indicates the ways in which conditions and logical operators can be combined and
parenthesized.

There must be a one-to-one correspondence between left and right parentheses. Any left
parenthesis must be to the left of its corresponding right parenthesis.

As an illustration of the use of the table, note that the pair OR NOT is acceptable, whereas
NOT OR is not acceptable.

Table 8-4.

Valid Combinations of Conditions, Logical Operators, and Parentheses
Location in In a left-to-right sequence of elements:
conditional
expression Element, \ivhen n-ot first, | Element, \-Nhen H.Ot last,

Given the may be immediately may be immediately

following element;: | First | Last preceded by only: followed by only:
simple-condition | Yes | Yes | OR, NOT, AND, ( OR, AND, )
OR or AND No | No |simple-condition, ) simple-condition, NOT, (
NOT Yes | No |OR, AND, ( simple-condition, (
( Yes | No |OR, NOT, AND, ( simple-condition, NOT, (
) No | Yes |simple-condition, ) OR, AND, )

PROCEDURE DIVISION 8-31




PROCEDURE DIVISION

Conditional Expressions

Negated Simple Conditions

The NOT operator can be used to negate simple conditions.

A negated simple condition has a value of “true” only if the value of the simple condition
is “false”. Conversely, a negated simple condition has a value of “false” only if the simple
condition itself has a value of “true”.

Negated simple conditions have the following format:

NoT condition-1

Parameter

condition-1 where condition-1 is one of five possible types of conditions:
m A simple condition.
m A negated simple condition.
m A combined condition.

m A negated combined condition (combined condition enclosed by
parentheses and preceded by the NOT logical operator).

m Combinations of any of the four types listed above, as specified in
Table 8-4.

Example

IF CON-NAME1 THEN PERFORM UNDER-VALUE
ELSE NEXT SENTENCE.

is equivalent to:

IF NOT CON-NAME1 THEN NEXT SENTENCE
ELSE PERFORM UNDER-VALUE.

8-32 PROCEDURE DIVISION



PROCEDURE DIVISION
Conditional Expressions

Condition Evaluation Rules

You may use parentheses to specify the order in which individual conditions of complex
conditions are to be evaluated when you wish to modify the precedence rules (as listed below)
for evaluating such conditions.

Conditions within parentheses are evaluated first. Within nested parentheses, the condition
bounded by the innermost set is evaluated first, followed by the condition within the

next innermost set. The process continues until the condition within the outermost set of
parentheses is evaluated.

When parentheses are not used, or when they completely contain a condition, the following
rules (in the order listed) are used to determine the truth value:

1. The order of precedence of logical operators is NOT, AND, OR. The order of precedence
establishes hierarchical levels of conditions at the same precedence level.

2. Conditions in the same hierarchical level are evaluated from left to right. Evaluation of
that level terminates as soon as a truth value for the level is determined, regardless of
whether all the constituent conditions within that level have been evaluated.

3. Values are established for arithmetic expressions if and when it is necessary to evaluate
them.

4. Negated conditions are evaluated if and when it is necessary to evaluate them.

Application of the above rules is illustrated in Figure 8-1 through Figure 8-4 on the following
pages.

PROCEDURE DIVISION 8-33



PROCEDURE DIVISION
Conditional Expressions

Evaluate
condition-1

Is

condition-1 Yes

false
?

Evaluate
condition-2

Is

condition-2 Yes

false
?

Evaluate
condition-n

s

condition-n Yes

false
?

Truth value is true

v
Truth value is_false

LG200026_082

Figure 8-1.

Evaluation of the hierarchical level condition-1 and condition-2 and . ..

8-34 PROCEDURE DIVISION

condition-n



PROCEDURE DIVISION
Conditional Expressions

Evaluate
condition-1

is
condition-1
true
?

Yes

Evaluate
condition-2

Is
condition-2
true
?

Yes

Evaluate
condition-n

Is
condition-n
true
?

Yes

v
Truth value is_falsg_ Truth value is true

LG200026_083

Figure 8-2. Evaluation of the hierarchical level condition-1 or condition-2 or ... condition-n

PROCEDURE DIVISION 8-35



PROCEDURE DIVISION
Conditional Expressions

< Yes

< Yes

v
Truth value is_false

Evaluate
condition-1

Is
condition-1

Yes

true
?

Evaluate
condition-2

Is
condition-2
false
?

Evaluate
condition-3

Is

condition-3 No

false
?

v
Truth value is true

LG200026_084

Figure 8-3. Evaluation of condition-1 or condition-2 and condition-3

8-36 PROCEDURE DIVISION




PROCEDURE DIVISION
Conditional Expressions

Evaluate
condition-1

Is

condition-1 Yes

true
?

Evaluate NOT
condition-2

Is NOT

g

condition-2 Yes
true
?
No
¢
‘7

v
Truth value is_false

v

Evaluate
condition-3

Is
condition-3
false
?

Evaluate
condition-4

Is
condition-4
false
?

Truth value Is true

LG200026_086

Figure 8-4. Evaluation of (condition-1 or not condition-2) and condition-3 and condition-4

PROCEDURE DIVISION 8-37




PROCEDURE DIVISION
Conditional Expressions

Abbreviated Combined Relation Conditions

If you combine simple or negated simple relation conditions with logical connectives (AND
and OR) in a consecutive sequence in such a way that:

m No parentheses are used in the consecutive sequence, and

m A succeeding relation condition contains the same subject as the preceding relation
condition, or

m A succeeding relation condition contains the same subject and the same relational operator,
you can abbreviate any relation condition, except the first, within the consecutive sequence.

There are two ways by which you can abbreviate such relation conditions. The first is by
omitting the subject of the relation condition; the second is by omitting the subject and the
relational operator of the relation condition. Abbreviated combined relation conditions have
the following format:

relation—condition {{ OR } [NQ_'[] [relational—-operator] object } c

LG200026_087

The effect of using such abbreviations is that the last preceding stated subject is inserted in
place of the omitted subject, and the last stated relational operator is inserted in place of the
relational operator.

In order to ensure that an abbreviated relation condition is valid, insert the omitted subject
and relational operator. If, after insertion, the combined relation condition is valid according
to the rules in Table 8-4 above, the abbreviated relation condition is valid.

The end of an abbreviated relation condition is signified by the first occurrence of a complete
simple condition within a complex condition.

The word NOT can be used in two different ways: as part of a relational operator or as
the logical negation operator. The rules for its usage in an abbreviated combined relation
condition are as follows:

m [f the word immediately following NOT is one of the following: GREATER, LESS,
EQUAL, or one of the equivalent symbols ( >, <, = ), then NOT participates as part of the
relational condition.

m [f the word immediately following NOT is not one of those listed in the above paragraph, it
is considered to be the negation operator. Thus, it negates only the first occurrence of the
abbreviated relation condition.

8-38 PROCEDURE DIVISION



Examples
A > B AND NOT < COR D
is equivalent to:

((A > B) AND (A NOT < C))
OR (A NOT < D)

A NOT EQUAL B OR C
is equivalent to:

(A NOT EQUAL B) OR (A NOT EQUAL C)

NOT A =B OR C
is equivalent to:

(NOT (A =B)) OR (A = C)

NOT (A GREATER B OR < C)
is equivalent to:

NOT ((A GREATER B) OR (4 < C))

NOT (A NOT > B AND C AND NOT D)

is equivalent to:

PROCEDURE DIVISION
Conditional Expressions

NOT ((((A NOT > B) AND ( A NOT > C)) AND (NOT (A NOT > D))))

PROCEDURE DIVISION 8-39



PROCEDURE DIVISION
Common Phrases

Common Phrases

The NOT, ROUNDED, SIZE ERROR, and CORRESPONDING phrases are common phrases
used in several PROCEDURE DIVISION statements. In order to avoid describing each of
these phrases each time they appear in a particular statement, they are described just once in
the following paragraphs.

In the description that follows, the term resultant identifier means the identifier associated
with a result of an arithmetic operation.

NOT Phrases
The NOT phrases are a feature of the 1985 ANSI COBOL standard.

You can use NOT phrases with the statements that have conditionally executed exception
phrases. The imperative statements in the NOT phrases execute when the exception does not
occur. Table 8-5 lists the new NOT phrases and their associated verbs.

Table 8-5. NOT Phrases and Associated Verbs

Phrase Statement

NOT AT END-OF-PAGE WRITE

NOT AT END READ
RETURN

ROT INVALID KEY DELETE
READ
REWRITE
START
WRITE

NOT ON EXCEPTION CALL

ROT ON OVERFLOW STRING
UNSTRING

HOT ON SIZE ERROR ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

NOT ON INPUT ERROR ACCEPT

8-40 PROCEDURE DIVISION



PROCEDURE DIVISION
Common Phrases
ROUNDED Phrase
The ROUNDED phrase consists entirely of the keyword, ROUNDED.

In an arithmetic operation, if, after decimal point alignment, there are more decimal places in
the fraction of the result than is specified for the resultant identifier, truncation is performed
on the result. The number of digits truncated is dependent upon the number of decimal places
specified for the fractional part of the resultant identifier.

If you want to round the result before truncation occurs, you can use the ROUNDED option.

If the ROUNDED phrase is specified in an arithmetic operation, the absolute value of the
resultant identifier is increased by one whenever the most significant digit of the excess
portion of the result is greater than or equal to 5. The excess portion is then truncated.

When the low-order integer positions in a resultant identifier are represented by the P
character in the PICTURE clause of that resultant identifier, rounding occurs relative to the
rightmost integer position for which storage is allocated.

SIZE ERROR Phrase

The SIZE ERROR phrase has the format

[ON SIZE ERROR imperative-statement]

where imperative-statement is one or more imperative statements.

If, after decimal point alignment, the number of digits in a result exceeds the number of digits
specified for the associated resultant identifier, a SIZE ERROR condition exists.

The imperative-statement is executed if a SIZE ERROR condition occurs.

The SIZE ERROR condition applies only to the final result of most arithmetic operations; it
applies to intermediate results, however, when the MULTIPLY, DIVIDE, and COMPUTE
statements are used.

Note that division by 0 (zero) and violation of the rules for exponentiation always forces a

SIZE ERROR condition.

If the ROUNDED phrase is specified in an arithmetic operation, rounding is done before a
SIZE ERROR check is performed.

Note When a SIZE ERROR condition occurs and the SIZE ERROR phrase is not

specified, the values of any resultant identifiers affected are undefined.

If other resultant identifiers are involved in a particular arithmetic operation for which a SIZE
ERROR condition occurs, their values are unaffected. Only the resultant identifiers for which

the SIZE ERROR occurs have undefined values.

PROCEDURE DIVISION 8-41



PROCEDURE DIVISION
Common Phrases

Example 1

If the following arithmetic operation forces a SIZE ERROR condition for B, but not for C, only
B has an undefined value:

ADD A TO B, C

When the SIZE ERROR phrase is specified for an arithmetic operation and a SIZE ERROR
condition exists for the values of one or more of the resultant identifiers involved, their values
remain as they were before the operation was executed.

Values of other resultant identifiers involved in the operation are unaffected by size errors.
Therefore, their values are changed according to the arithmetic operation specified.

The SIZE ERROR phrase includes an imperative-statement following the words SIZFE
ERROR. This statement is executed following the occurrence of a size error in an arithmetic
statement for which the SIZE ERROR phrase is specified.

Example 2
WORKING-STORAGE SECTION.

01 SIZE-ERR.
02 NOTIFY PIC X(10) VALUE °’SIZE ERROR’.
02 PARAMETERS.
03 PARM-1 PIC Z(18) VALUE 0.
03 PARM-2 PIC Z(18) VALUE 0.
PROCEDURE DIVISION.

ADD A B TO C D ROUNDED
ON SIZE ERROR PERFORM NOTIFICATION.

NOTIFICATION.
MOVE C TO PARM-1.
MOVE D TO PARM-2.
WRITE SIZE-ERR AFTER ADVANCING 1 LINE.

If an ADD or SUBTRACT statement uses the CORRESPONDING phrase as well as the

SIZE, ERROR phrase and an operation produces a size error condition, the imperative
statement in the SIZE ERROR phrase is not executed until all individual additions or
subtractions are completed.

8-42 PROCEDURE DIVISION



PROCEDURE DIVISION
Common Phrases

CORRESPONDING Phrase

The CORRESPONDING phrase consists entirely of the word CORRESPONDING, or of
the equivalent abbreviation, CORR. The purpose of the CORRESPONDING phrase is to
allow you to add, subtract, or move a data item subordinate to a group item to a data item
subordinate to some other group item.

Two data items are said to correspond if three conditions are met. For purposes of
description, assume that D1 and D2 are group items.

A data item from D1 is said to correspond to a data item from D2 if:

1. Both of the data items have the same name, the name is not FILLER, and both have the
same qualifiers up to, but not including D1 and D2.

2. When the CORRESPONDING phrase is being used in a MOVE statement, at least one of
the data items is an elementary data item; when the CORRESPONDING phrase is used in
an ADD or SUBTRACT statement, both data items are elementary data items.

3. The descriptions of D1 and D2 do not contain a 66, 77, or 88 level number and do not
contain a USAGE IS INDEX clause.

Any data item that is a candidate for use in a CORRESPONDING phrase is ignored if it
contains a REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clause, even if it
meets the conditions above. Furthermore, any data items subordinate to such a data item are
also ignored.

These restrictions do not apply to D1 and D2, except as noted in condition 3 above.

Example

01 FIRST-DATA.
02 ENTRY-1.
03 ENTRY-14A PIC 9(5)V99.
03 ENTRY-1B PIC 9(3)V99.
02 ENTRY-2 PIC X(30).

01 SECOND-DATA.
02 ENTRY-1.
03 ENTRY-14A PIC 99V99.
03 ENTRY-1B PIC 999.
02 FINISH PIC X(20).

ENTRY-1A of FIRST-DATA corresponds to ENTRY-1A of SECOND-DATA, and ENTRY-1B of
FIRST-DATA corresponds to ENTRY-1B of SECOND-DATA.

ENTRY-1 of FIRST-DATA does not correspond to ENTRY-1 of SECOND-DATA because of the
second condition of correspondence.

The ADD statement below uses the CORRESPONDING phrase to add ENTRY-14 of
FIRST-DATA to ENTRY-1A of SECOND-DATA, and ENTRY-1B of FIRST-DATA to ENTRY-1B of
SECOND-DATA. The results are stored in ENTRY-1A and ENTRY-1B of SECOND-DATA.

ADD CORRESPONDING FIRST-DATA TO SECOND-DATA.

PROCEDURE DIVISION 8-43



PROCEDURE DIVISION
Common Phrases

Note There is a limit of approximately 500 matching pairs allowed in a single
MOVE CORRESPONDING statement. Multiple MOVEs are necessary to
exceed this limit. Compiler errors 390 and 457 are given for this condition.

8-44 PROCEDURE DIVISION



PROCEDURE DIVISION
Common Arithmetic Features

Common Features of Arithmetic Statements
The five arithmetic statements, ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE

have the following features in common:
1. The data descriptions of operands in an arithmetic statement need not be the same.

If operands are of mixed types, the compiler generates any data conversion routines
necessary to format the data. Note that this does increase the size of the code space.

If the operands are already defined as COMPUTATIONAL SYNCHRONIZED, the
compiler does not have to generate conversion routines. This reduces the object program
size and its execution time. Therefore, to maximize efficiency of arithmetic operations,
remember to define the operands as being COMPUTATIONAL SYNCHRONIZED or with
a usage of COMPUTATIONAL-3.

For more information, see the HP COBOL I1/XI. Programmer’s Guide.

2. The maximum size of each operand is 18 digits. The composite of operands must not
contain more than 18 decimal digits.

The composite of operands is the hypothetical data item resulting from the superimposition
of specified operands in an arithmetic statement after the operands have been aligned on
their decimal points.

For example, in format 1 of the ADD statement, the composite of operands is determined
by using all of the operands in a given statement.

Therefore, if A = 1234.567, B = 1.2359, and C = 10340.77, the composite of operands of the
statement ADD A, B TO C is 10340.2359.

This number was arrived at by selecting the operand with the greatest number of digits to
the right of the decimal point (in this case, 1.2359), and then the operand with the greatest
number of digits to the left of the decimal point (which is 10340.77).

These two operands were then superimposed, with the larger number to the left or right of
the decimal point masking the smaller.

3. Arithmetic statements can have multiple results. For example, the following ADD
statement gives the multiple results, A + B, A + C, and A + D:

ADD A TO B, C, D.
Such statements behave as though they had been written in the following way:

a. A statement was first written that performs the specified arithmetic operation, and
stores the results in a temporary location.

b. A sequence of statements was then written that transfers or combines the value in the
temporary location with each of the single data items specified as a result in the original
arithmetic statement. This hypothetical sequence of statements was written to perform
the transferring or combining of the temporary value in the same left-to-right sequence
as the multiple results are listed.

PROCEDURE DIVISION 8-45



PROCEDURE DIVISION
Common Arithmetic Features

Example
The following example illustrates how a temporary location is used in an ADD statement:
ADD A, B, CTO C, D, E

The above ADD statement is equivalent to the following ADD statements, where TEMP is a
temporary location that stores the intermediate result:

ADD A,B,C GIVING TEMP
ADD TEMP TO C
ADD TEMP TO D
ADD TEMP TO E

Overlapping Operands and Incompatible Data

When a sending and a receiving data item in an arithmetic statement or an INSPECT,
MOVE, SET, STRING, or UNSTRING statement share a part of their storage areas, the
result of the execution of such a statement is undefined.

Furthermore, except for a class condition, when the contents of a data item are referenced in
the PROCEDURE DIVISION and the contents of that data item are not compatible with the
class, the sign, or the range of values specified by its PICTURE clause, the result of such a
reference is undefined.

Variable-Length Receiving Items

In ANSI COBOL’85, when a receiving item is a variable-length data item and
contains the object of the DEPENDING ON phrase, the maximum length of the

item is used.

In ANSI COBOL’74, the length is computed using the object of the DEPENDING ON
phrase.

8-46 PROCEDURE DIVISION



PROCEDURE DIVISION
I1-O Error Handling

Input-Output Error Handling Procedures

Input-output error handling procedures are controlled by the following programming options
in the sequence shown.

m First, the FILE STATUS item (if declared) is set for the associated file.

m Second, the INVALID KEY, AT END, or AT EOP phrases on selected I-O statements are
executed.

m Third, if no INVALID KEY, AT END, or AT EOP is executed, a USE statement and its
associated procedure is executed.

Ten input-output statements allow exception condition processing with a USE procedure, a
FILE STATUS item, or the INVALID KEY, AT END, or AT EOP phrases. Table 8-6 lists

these statements and the kinds of exception condition processing each one can use.

Table 8-6. Input-Output Statements and Exception Condition Options

INVALID KEY

FILE STATUS AT END

Statement USE Procedure Item AT EOP
CLOSE Yes Yes No
DELETE Yes Yes Yes
EXCLUSIVE Yes Yes No
OPEN Yes Yes No
READ Yes Yes Yes
RETURN No No Yes
REWRITE Yes Yes Yes
START Yes Yes Yes
UN-EXCLUSIVE Yes Yes No
WRITE Yes Yes Yes

If an exception condition occurs and:

m Neither a FILE STATUS item, USE statement procedure, INVALID KEY or AT END
phrase is specified, the program is aborted along with a file system tombstone display.

m An INVALID KEY or AT END phrase is specified, with no USE statement specification,
and an INVALID KEY or AT END condition occurs, the program continues executing
in-line code. If a USE procedure was specified, it is executed.

m There are any errors in DISPLAY, ACCEPT (without ON INPUT ERROR), SORT,
MERGE and RELEASE, the program aborts.

These precedence rules are also defined in Figure 8-5, which includes tests for the ANSI
COBOL’85 clauses NOT INVALID KEY and NOT AT END.

PROCEDURE DIVISION 8-47



PROCEDURE DIVISION
I1-O Error Handling

Wes & file = Ye8
status clause
specified?,

No

Successtul Yes
condition
oocumed?

No

NVALID Yes
AT END condition,
oceuring?

No

USE Yos
specified?

Was a file Yos

Sat
fife status
value

NOT
NV KEY or \Yes

oT IAT ENEI‘)’
:psciﬁedgh

No

TNVALID
KEY or AT ENDN®

pacified?

No

Exectite the
USE

82z

ure

status clause
specified?

No

Abort the
program

LG200028_0860

Figure 8-5. Input-Output Error Handling

PROCEDURE DIVISION




9

PROCEDURE DIVISION Statements

All statements that can be used in the PROCEDURE DIVISION are described in alphabetical

order in this chapter.

ACCEPT Statement

The ACCEPT statement can be used for low volume input from a specified device.

Syntax
ACCEPT has three general formats, as shown below:

Format 1

SYSIN
ACCEPT identifier [EREE] | ERQOM { CONSOLE

mnemonic—-name

Format 2

SYSIN
ACCEPT identifier EREE | FROM { CONSOLE

mnemonic—-name
[ON INPUT ERROR imperative—statement~1]

Format 3

ACCEPT identifier EBOM

LG200026_090

PROCEDURE DIVISION Statements 9-1



ACCEPT

Parameters
identifier

SYSIN

a valid data name; it receives the data entered by the execution of the
ACCEPT statement.

in a batch job, the input stream file; in a session, this name indicates the
terminal used to initiate execution of your program. There is no indication
of a pending user response; thus, you should use the DISPLAY statement
immediately before the ACCEPT statement to indicate that the ACCEPT
statement is awaiting input. The SYSIN device for jobs (that is, in batch
mode), is the stream file. For sessions, this is your terminal.

When the FROM option is not specified, the compiler assumes the SYSIN
device.

Note Special care must be taken when the SYSIN device is used for the ACCEPT
statement, and the program is running in batch mode. In this case, the
ACCEPT statement simply reads the next record of the job stream. Without
careful planning, this record could be a data record, or an MPE command.

CONSOLE

the operator’s console. When an ACCEPT statement specifying the
FROM mnemonic name for CONSOLE option or FROM CONSOLE is
executed, the field specified by identifier must not exceed 31 characters
and the following actions result:

1. A system-generated message is automatically displayed at the console,

followed by the message, AWAITING REPLY.
2. Object program execution is suspended.

3. When the computer operator enters the input data requested, this
data is moved to the field specified by the identifier. Data positioning
and/or conversion is performed subject to whether the FREE phrase
specification was included.

Note I-O errors that occur during execution of ACCEPT do not produce a
“tombstone” since the I-O is not done by the file system.

mnemonic-name

imperative-
staterment

DATE

a name assigned in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. It must be a name for either SYSIN or
CONSOLE, and has the same effect as the device name to which it is
equated.

one or more imperative statements. The INPUT ERROR phrase in which
it appears can only be used if the FREE phrase is used.

composed of the year of the century, month of year, and day of month, in
that order. Thus, for example, February 16, 1985 is transmitted as 850216.
COBOL moves this data as an unsigned elementary numeric integer data
item six digits in length.

9-2 PROCEDURE DIVISION Statements



ACCEPT

DAY composed of the year of the century and day of the year, in that order. For
example, February 16, 1985 is accessed as 85047. COBOL moves this data
as an unsigned elementary numeric integer data item five digits in length.

DAY-0F-WEEK composed of a single data element whose content represents the day of the
week. The value, 1 represents Monday, 2 represents Tuesday, ... , and 7
represents Sunday. COBOL moves this data as an unsigned elementary
numeric data item one digit long.

TIME the time of day, taken from a 24 hour clock, in hours, minutes, seconds
and tenths of a second. The minimum value of time is 00000000, and the
maximum is 23595990. COBOL moves this data as an unsigned elementary
numeric integer data item eight digits long.

ACCEPT Statement - Formats 1 and 2

When formats 1 and 2 are used, data is accepted from an input spool file (if your program is

running in batch mode), the terminal from which your program is executed (if it is running in
session mode), or from the operator’s console (if the CONSOLE option is used). This data is

then used to replace the contents of the data item named by identifier.

FREE and INPUT ERROR Phrases
The FREE and INPUT ERROR phrases are HP extensions to the 1985 ANSI COBOL

standard.
The FREE phrase allows you to use free-field format to enter data.

The INPUT ERROR phrases may also be used if the FREE phrase has been specified. They
may not, however, be specified if the FREE phrase is not. This is the distinction between
formats 1 and 2 of the ACCEPT statement.

Free-field format uses the pound sign (#) to indicate the end of data. The ampersand (&),
if used as the last nonblank character in a record, indicates a continuation of data from one
record or line to another. An ampersand takes precedence over the pound sign.

If the ACCEPT statement is issued against a terminal (operator’s console or otherwise), the
pound sign is not required to terminate data. The pound sign need only be used to indicate
the end of data on a terminal when the last nonblank character of data to be read is an
ampersand. Otherwise, simply pressing the RETURN key on the terminal indicates the end of
data.

If you want to enter a pound sign as part of your data, you must use two consecutive pound
signs, in which case, your program takes a single pound sign as a data character. Thus, for
example, if you enter the characters, ABC##&, a single pound sign is treated as part of the
data, and the ampersand is assumed to indicate a continuation of the data to the next line.

In free-field format, alphanumeric data is left justified (or right justified if

JUSTIFIED [ RIGHT ] is specified in the PICTURE clause for the receiving data item), with
blank fill for any unused character positions. Numeric data is aligned on the decimal point,
with zero fill for unused character positions.

PROCEDURE DIVISION Statements 9-3



ACCEPT

If the identifier named in the ACCEPT statement names a numeric or numeric-edited
data item, the input must be a numeric value, with an optional leading separate sign. Any
necessary conversion takes place automatically as in elementary moves (see the “MOVE
Statement”).

In any case other than numeric or numeric-edited data, input is assumed to be alphanumeric.
No conversion takes place, but justification and space filling is performed as described above.

If you use the FREE phrase, you can also specify the ON INPUT ERROR and
NOT ON INPUT ERROR phrases. These phrases allow you to handle the following three input
error conditions:

m An illegal digit or illegal sign in a numeric item, or too many digits. The input data will not
fit without left or right truncation.

m A physical I-O error or an end-of-file error.
m An input string that is too long for the receiving field.

When such an error condition occurs and the ON INPUT ERROR phrase is specified, control
is passed to the imperative statement of that phrase. If none of these conditions occurs, the
ON INPUT ERROR phrase is ignored and control is transferred to the end of the ACCEPT
statement, or to the imperative statement specified in the NOT ON INPUT ERROR if it is
used.

Note The maximum input record length for the ACCEPT statement with the
FREE phrase is 256 characters. Use of the ampersand (&) continuation
character, as the last nonblank character in the data record line input, allows
the record length to be continued to the defined length of the identifier, which
is then only limited by the available user stack space to contain the identifier.

Example

DATA DIVISION.
01 IN-DATA PICTURE X(19) VALUE SPACES.

PROCEDURE DIVISION.
ACCEPT IN-DATA FREE;

ON INPUT ERROR DISPLAY "DATA TOO LONG".
DISPLAY "’", IN-DATA, "’".

9-4 PROCEDURE DIVISION Statements



ACCEPT

The following is user input to the above program:

DOUBLE&
TROUBLE &
BUBBLE GUM

The result of the above user input would be:

DATA TOO LONG
*DOUBLETROUBLE BUBBL’

And if the following were user input to the above program:
ADD & GET ## OF SUM#

The result would be:
*ADD & GET # OF SUMLI®

In the first response above, the message DATA T0O0 LONG was returned because the user
response exceeded 19 characters. Note that the data stored did not include the five characters,
E GUM. If the ON INPUT ERROR had not been specified, there would have been no indication
that the data had been truncated. In the second example, the user response was 18 characters
so the compiler adds a trailing character blank.

ACCEPT Statement Without the FREE Phrase

If a format 1 ACCEPT statement is used without the FREE phrase and the receiving data
item requires fewer characters than the hardware imposed maximum, when the input data is
transferred and it is the same length as the receiving data item, no problems arise.

If a hardware device is not capable of transferring data of the same size as the receiving data
item, two cases must be considered.

First, if the size of the receiving data item exceeds the size of the transmitted data, the
transmitted data is stored in the leftmost characters of the receiving data item. Additional
data is then requested. The next group of data elements transmitted (if any) is aligned to the
right of the rightmost character already occupying positions in the receiving data item. This
process continues until either the receiving data item is full or the RETURN key is depressed
(in session mode).

Refer to “MPE XL System Dependencies” in Appendix H for more information on the
ACCEPT statement and the receiving data item.

PROCEDURE DIVISION Statements 9-5



ACCEPT

Note An ACCEPT operation prematurely terminated by a :EOD or :EOJ (in job
mode) causes a read error condition and abort of the program.

You can use the linefeed key to continue the transmission of characters from your screen after
you have reached the right margin. This allows you to enter up to 256 characters per line
before you press the RETURN key. In most cases, this avoids the necessity of sending only
part of the characters required to fill the receiving data item at a given time.

In the second case, if the size of the transferred data exceeds the size of the receiving

data item, or of the portion of the receiving data item not yet occupied, only the leftmost
characters of the transferred data are stored in the area available in the receiving data item.
The remaining characters are ignored.

Programming Considerations

The ACCEPT statement does not signal that it is waiting for a response. Therefore, a
DISPLAY statement should usually precede an ACCEPT statement. This DISPLAY
statement serves the dual purposes of warning you that a response is required to continue the
program, and to indicate what the expected response might be.

The maximum number of characters that can be read by an ACCEPT statement is 256;
however, certain hardware constraints apply to the ACCEPT statement. For example, when
the SYSIN device is a card reader, the maximum number of characters that can be transferred
is 80. The maximum number of characters that can be transferred from a terminal depends on
the width of the device’s carriage; you must terminate responses from these devices.

The ACCEPT statement issues multiple requests for data until suflicient data is read. If the
identifier specifies 60 characters and the SYSIN device is a card reader, the last 20 characters
on the card(s) are ignored.

When numeric data is to be input through the ACCEPT statement, you must resolve the
problems of decimal point alignment and negative input values as well as leading and trailing
zero fill. The following conventions should be observed:

m [dentifier must be defined as X-type data or as a group item.

m The number of characters input should always be equal to the length defined for the
identifier.

m [f the period character is entered as a decimal point along with the significant data, the
program must strip out the period before the numeric data can be used in arithmetic
operations. This technique simplifies the task of data entry (and is, therefore, less error
prone) at the cost of programming overhead.

9-6 PROCEDURE DIVISION Statements



ACCEPT

Examples

The following coding is a typical example of an ACCEPT statement. Notice the use of the
DISPLAY statement before the ACCEPT statement.

DISPLAY "IS THIS END-OF-MONTH? REPLY YES OR NO".
ACCEPT E-0-M-FLAG.

The following example presents one technique for removing a period entered as a part of a
numeric field that must be used for subsequent arithmetic operations. The following data

description coding appears in the WORKING-STORAGE SECTION:

01 INPUT-AMOUNT.
02 FIELD-1 PIC XX.
02 FILLER PIC X.
02 FIELD-2 PIC XX.
01 HOLD-AMOUNT.
02 FIELD-A PIC 99.
02 FIELD-B PIC 99.
01 CALC-AMT REDEFINES HOLD-AMOUNT.
02 CALC-AMOUNT PIC 99V99.
The following coding appears in the PROCEDURE DIVISION:
GET-AMOUNT.

DISPLAY "ENTER AMOUNT. FORMAT EQUALS ©9.99.".
DISPLAY "SUPPLY LEADING ZERO IF REQUIRED.".
ACCEPT INPUT-AMOUNT.

ERROR-CHECK.
MOVE FIELD-1 TO FIELD-A.
MOVE FIELD-2 TO FIELD-B.
IF CALC-AMOUNT IS NOT NUMERIC GO TO BAD-AMOUNT.
ADD CALC-AMOUNT TO FACTOR-X.

BAD AMOUNT.
DISPLAY "AMOUNT ENTERED INCORRECTLY. TRY AGAIN.".
GO TO GET-AMOUNT.

The following two examples present possible techniques for handling the input of negative
values.

PROCEDURE DIVISION Statements 9-7



ACCEPT

Example 1: Minus sign conversion method

This example illustrates a method whereby the person entering the data precedes the quantity
with a minus sign, and the program checks for the character and converts the value to an
internal negative value.

ID DIVISION.
PROGRAM-ID. JUNK-1.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TIN-DATA.
02 SIGN-BYTE PIC X.
02 DATA-BYTES PIC 9(6).
01 DATA-VAL PIC S9(8).

PROCEDURE DIVISION.

O1-ENTER-DATA.
DISPLAY "ENTER SIGN FOLLOWED BY SIX-DIGIT NUMBER".
ACCEPT IN-DATA.

02-VALIDATE DATA.
IF DATA-BYTES NOT NUMERIC THEN
DISPLAY "ILLEGAL DIGITS IN INPUT--PLEASE RE-ENTER"
GO TO O1-ENTER-DATA
ELSE
MOVE DATA-BYTES TO DATA-VAL
IF SIGN-BYTE = "-" THEN
COMPUTE DATA-VAL = - DATA-BYTES
ELSE IF SIGN-BYTE NOT EQUAL TO "+" THEN
DISPLAY "ILLEGAL SIGN IN INPUT--PLEASE RE-ENTER"
GO TO O1-ENTER-DATA.

03-DISPLAY-RESULTS.
DISPLAY "DATA-VAL = ", DATA-VAL.
STOP RUN.

Example 2: Use of SIGN IS LEADING SEPARATE phrase

This example illustrates a method whereby the person entering the data precedes the quantity
with a plus or minus sign.

01 IN-DATA-2 PIC 39(6) SIGN IS LEADING SEPARATE.
ACCEPT IN-DATA-2.
MOVE IN-DATA-2 TO DATA-VAL.

9-8 PROCEDURE DIVISION Statements



ACCEPT

ACCEPT Statement - Format 3

ACCEPT identifier EBOM

LG200026_092

Format 3 is used to transmit the date, day, day of the week , or time from the internal
software clock of the system to the identifier named in the ACCEPT statement. The
hardware clock is not used for these items.

Example

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECTIAL-NAMES.

FROM-TERMINAL IS SYSIN.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 NUMBER-IN PIC 999V99.
01 DATE-IN.
02 YR PIC X(2).
02 MO PIC X(2).
02 DY PIC X(2).
01 DATE-OUT.
02 MONTH-0UT PIC X(2).
02 FILLER PIC X VALUE °/’.
02 DAY-OUT PIC X(2).
02 FILLER PIC X VALUE °/’.

02 YEAR-OUT PIC X(2).
PROCEDURE DIVISION.

ACCEPT DATE-IN FROM DATE.

MOVE DY TO DAY-OUT.

MOVE MO TO MONTH-OUT.

MOVE YR TO YEAR-OUT.

WRITE DATE-OUT AFTER ADVANCING 1 LINES.

ACCEPT NUMBER-IN.
IF NUMBER-IN IS LESS THAN 125.50 THEN PERFORM BILL-LOW.

PROCEDURE DIVISION Statements 9-9



ADD

ADD Statement

The ADD statement computes the sum of two or more operands and stores the result.

Syntax

Format 1

identifier—1
literal—1

} « «+ IQ {identifier-2 [RQUNDED] } - - -

[ON SIZE ERROR imperative—statement—1 ]

Format 2

identifier—1 identifier-2
{Iitera/—1 } {/iteral—2 }

GIVING { identifier-3 [ROUNDED]} - - -

[ON SIZE ERROR imperative—statement-1]

identifier—1 TQ identifier~2
coRR } [ROUNDED]

[ON SIZE ERROR imperative—statement—1]

LG200026_093a

9-10 PROCEDURE DIVISION Statements



ADD

Parameters

In format 1 and 2, identifier-1, identifier-2, and so forth must refer to elementary numeric
items, except that in format 2, each identifier following the word GIVING may also be an
edited numeric data item. Also, the word literal means numeric literal.

In format 3, both identifiers must refer to group items.

Description

When format 1 is used, the values of all identifiers and literals to the left of the keyword TO
are added together and the resulting sum is added to the current contents of identifier-2.
The results are then stored into identifier-2. This process of adding the resulting sum to an
identifier and then storing the results into the identifier is continued until all identifiers to the
right of the TO keyword have been used.

When format 2 is used, all literals and values of identifiers to the left of the GIVING keyword
are added, and the result is stored into each identifier named to the right of the GIVING
keyword.

When format 3 is used, data items in identifier-1 are added to corresponding data items in
wdentifier-2. The results are stored in corresponding data items of identifier-2. Thus, format 3
is equivalent to using format 1 for each pair of corresponding data items.

See Chapter 8 for details on the ROUNDED, SIZE ERROR, and CORRESPONDING

phrases.

The composite of operands must not exceed 18 digits (see “Arithmetic Expressions” in
Chapter 8). In format 1, it is calculated by using all of the operands in the statement; in
format 2, it is calculated using all of the operands to the left of the GIVING phrase; in format
3, the composite of operands is calculated using pairs of corresponding data items.

During execution, the compiler always ensures that enough places are carried to avoid losing
any significant digits.

For an example of format 3 usage, refer to “CORRESPONDING Phrase” in Chapter 8. For
an example of format 1 usage refer to “Arithmetic Expressions” in Chapter 8.

PROCEDURE DIVISION Statements 9-11



ADD

Example
Following is an example of the ADD statement using format 2.
The operands and their assumed values are:

01 SUM-IT PICTURE 9(9)V999. Assumed value is 3295 182
01 SUM-AT PICTURE 999V9. Assumed value is 2035 9

The receiving data items are:

01  TAKE-1 PICTURE 9(9)V999.
01  TAKE-2 PICTURE 9(8)V9.

The example ADD statement is:

ADD SUM-IT, SUM-AT GIVING TAKE-1
TAKE-2 ROUNDED
ON SIZE ERROR PERFORM
REPORT-IT.

The composite of operands is: 3295182
The results of the ADD statament are:
TAKE-1 has the value 533,082

TAKE-2 has the value 53351 because of the ROUNDED phrase.

9-12 PROCEDURE DIVISION Statements



ALTER

ALTER Statement
The ALTER statement is an obsolete feature of the 1985 ANSI COBOL standard.

The ALTER statement allows you to modify a predetermined sequence of operations.

Syntax
ALTER {procedure-name-1 TO [PROCEED TO] procedure-name-2} ...

Parameters

procedure-name-1  a paragraph containing a single sentence consisting of a GO TO without
the DEPENDING phrase.

procedure-name-2  a paragraph or section in the PROCEDURE DIVISION.

Execution of an ALTER statement modifies the GO TO statement in the specified paragraphs
so that subsequent executions of the modified GO TO statements cause transfer of control to
the section or paragraph named by procedure-name-2.

For example, the paragraph:

GO-PARA.
GO TO CHECK-SECTION.

is altered to be equivalent to the paragraph:

GO-PARA.
GO TO FINISH-UP.

by the ALTER statement:
ALTER GO-PARA TO PROCEED TO FINISH-UP.

Segmentation Considerations

The ALTER statement must not refer to a GO TO statement that appears in a section whose
segment number is greater than 49 unless the ALTER statement is in the same segment.

Refer to “MPE XL System Dependencies” in Appendix H for more information.

PROCEDURE DIVISION Statements 9-13



CALL, CANCEL

CALL Statement

In ANSI COBOL, the CALL statement can be used to transfer control from one object
program to another within the same run-unit. HP COBOL II adds the ability to invoke
operating system intrinsics from within a given object program. For more information on the
CALL statement refer to Chapter 11, “Interprogram Communication”.

CANCEL Statement

The CANCEL statement restores a program to its initial state and closes all files currently
in open mode. For more information on the CANCEL statement refer to Chapter 11,
“Interprogram Communication.”

9-14 PROCEDURE DIVISION Statements



CLOSE

CLOSE Statement

The CLOSE statement terminates the processing of sequential, random, relative, and indexed
files. It can only be executed for an open file.

Syntax

The CLOSE statement has two formats, depending upon whether you want to close a
sequential file or one of the other three types of files.

Sequential Files - Format 1

[For REMOVAL]
; UNIT

CLOSE file~name—
WITH {ND_BEMND}
LOCK

LG200026_095

Description

Rules that apply to a CLOSE statement for any type of file are described below. For
information on handling I/O errors, see “Input-Output Error Handling Procedures” in
Chapter 8.

A CLOSE statement can only be issued for a file that is open, and has not yet been closed.

If a CLOSE statement has been successfully executed for a file, no other statement can be
executed that references the closed file, either explicitly or implicitly, unless an intervening
OPEN statement for that file is executed. There is one exception to this rule. A sequential
file that has been closed may be referred to in SORT and MERGE statements that use the
USING or GIVING phrases. In this case, the file or files named in the USING and GIVING

phrases must not be open.

Following the successful execution of the CLOSE statement (without the REEL or UNIT
phrases in the case of sequential files), the record area associated with the name of the closed
file is no longer available.

If a CLOSE statement is unsuccessful in its execution, the availability of the record area for
the specified file is undefined.

If a CLOSE statement has not been issued for an open file when a STOP RUN statement (or
a GOBACK statement in a main program) is executed, the file is automatically closed by the
COBOL run-time system.

If a called program has been canceled by the CANCEL statement, all open files of that
program will be closed.

If the file being closed is a new file or a temporary file, it is closed in the temporary file
domain. If it is a permanent file, it remains in the permanent file domain when it is closed.

PROCEDURE DIVISION Statements 9-15



CLOSE

The FILE STATUS data item, if any, specified for the file named in the CLOSE statement is
updated to indicate the success or failure of the closing operation. Refer to “FILE STATUS
Clause” in Chapter 6 for valid status keys.

Using a format 1 CLOSE statement, as shown above, allows you to terminate the processing
of files whose organization is sequential. It also provides you with the options of placing the
serial access device at its physical beginning and of locking the file so that it cannot be opened
again during the execution of the current run-unit.

REEL/UNIT and REMOVAL Phrases

The REEL/UNIT phrase and the REMOVAL phrase are treated as comments in format 1
of the CLOSE statement. Furthermore, if the REEL/UNIT phrase is specified in a format
1 CLOSE statement, the entire CLOSE statement is treated as a comment. Thus, the file
specified in the CLOSE REEL/UNIT statement remains open.

Each of the remaining optional phrases are described below.

If no optional phrases are used, that is, if the format 1 CLOSE statement consists entirely of
the statement,

CLOSE file-name-1

then the system’s closing operations are executed, no matter what kind of operations (input,
input-output, output or extend) the file was opened for. If the file resides on a magnetic tape,
the reel is rewound when the file is closed.

NO REWIND Phrase

The NO REWIND phrase applies only to labeled magnetic tape files.

Used without either a REEL or UNIT phrase, the NO REWIND phrase alters the execution
of the system’s standard closing procedure. The tape device, instead of being rewound when
the file is closed, remains in its current position.

This phrase should be used in the closing of a file only if another file residing near the end of
the same tape is to be opened later in the program. Upon completion of the program, the
tape is rewound by the operating system.

If the file resides on a device that allows no rewinding, such as a line printer, the NO
REWIND phrase is ignored when specified for that file in a CLOSE statement; it has no effect
on the file.

WITH LOCK Phrase

The WITH LOCK phrase can be used in the CLOSE statement to ensure that the file being
closed cannot be opened again during the execution of the current run-unit.

This locking is accomplished by the program, following the successful closing of the file.

9-16 PROCEDURE DIVISION Statements



CLOSE

Random, Relative and Indexed Files - Format 2
The second format of the CLOSE statement is:
CLOSE {file-name-1 [WITH LOCK] } ...

This form of CLOSE closes the files named by file-name-1, and so forth, and optionally locks
the files so that they cannot be opened again during execution of the current run-unit.

The files named by file-name-1, and so forth need not all have the same organization or
access.

When a CLOSE statement without the LOCK phrase is issued for a relative, random, or
indexed file, the MPE file system closing procedures are used to close the file or files specified,
no matter how the files are used (that is, input, input-output, or output).

Additionally, if the LOCK phrase is used with a relative, random access, or indexed file,
the compiler ensures that the file cannot be opened again during execution of the current
run-unit.

Example

ENVIRONMENT DIVISION.
INPUT-0UTPUT SECTION.

FILE-CONTROL.
SELECT INDEXER
ASSIGN TO "FILE-INDX, DA, A, DISC"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS INDX-FOR-FL.

SELECT RNDM-FL
ASSIGN TO "RANDOM"
ACCESS MODE IS RANDOM
PROCESSING MODE IS SEQUENTIAL
ACTUAL KEY IS DATA-5.
PROCEDURE DIVISION.

CLOSE INDEXER WITH LOCK, RNDM-FL WITH LOCK.

In the above CLOSE statement, the files named INDEXER and RNDM-FL are closed and locked
so that they may not be opened again during execution of the run-unit.

PROCEDURE DIVISION Statements 9-17



COMPUTE

COMPUTE Statement

The COMPUTE statement evaluates an arithmetic expression (Refer to Chapter 8, under
“Arithmetic Expressions”), and assigns the result to one or more data items.

Syntax
COMPUTE  {identifier-1 [RQUNDED] } - - + = arithmetic-expression
[ON SIZE ERROR imperative—statement—1]
LG200026_097
Parameters
identifier-1 refers to either an elementary numeric, or an elementary
numeric-edited data item.
arithmetic-expression any valid COBOL arithmetic expression.

The ROUNDED and SIZE ERROR and NOT ON SIZE ERROR phrases are described in
Chapter 8, as are multiple results and other information pertaining to arithmetic statements.

The COMPUTE statement allows you to combine arithmetic operations without the
restrictions on composites of operands or receiving data items imposed by the arithmetic

statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

When the COMPUTE statement executes, the arithmetic expression is evaluated, and all of
the identifiers to the left of the equal sign are assigned the value of the result. Rounding is
done where specified and necessary. For example,

COMPUTE DAILY-RTE-1, DAILY-RTE-2 = (INT - RTE / 360) * DAYS
ON SIZE ERROR PERFORM RATE-ERROR-RTNE.

In the above statement, a daily interest rate is calculated, and the results are stored in the
two data items, DAILY-RTE-1 and DAILY-RTE-2. If a size error occurs, no data is stored in the
two receiving data items and the error handler, RATE-ERROR-RTNE, is performed.

9-18 PROCEDURE DIVISION Statements



COMPUTE

Calculation of Intermediate Results

The following description presents the conceptual compiler algorithms for determining the size
and number of decimal places reserved for intermediate results. This information is provided
since the manipulations performed on the intermediate results are not always obvious. These
algorithms apply to all arithmetic and compute statements.

The following abbreviations are used:
d number of decimal places carried for an intermediate result.

dmazx maximum number of decimal places defined for any operand in a particular
statement including the result.

opl first operand in a generated arithmetic statement.

op2 second operand in a generated arithmetic statement.

d1,d2 number of decimal places defined for op! or op2, respectively.

i intermediate result field obtained from the execution of a generated arithmetic

statement or operation. Iril, ir2, etc., represent successive intermediate
results. Successive intermediate results may have the same location.

Most arithmetic statements generate intermediate results except for simple cases, (for
example, single pair of operands) where the result can be stored without decimal point
alignment or conversion.

The compiler treats the statement as a succession of operations. For example, consider the
following statement:

COMPUTE Y = A+ B * C-D/E+F *x G
The above COMPUTE statement is replaced by the following:

MULTIPLY C BY B Yielding iri
ADD ir! TO A Yielding ir2
DIVIDE D BY E Yielding r3
SUBTRACT 13 FROM 72 Yielding ir4
RAISE F TO THE POWER G Yielding irb
ADD 14 TO rb Yielding iré
STORE 116 TO Y

PROCEDURE DIVISION Statements 9-19



COMPUTE

The compiler determines the maximum value that the ir can contain by performing the
statement in which the ir occurs.

m If an operand in this statement is a data name, the value for the data name is equal to the
numerical value of the PICTURE for the data name (for example, PICTURE 9V99 has the
value 9.99).

m [f an operand is a literal, the literal’s actual value is used, except in case of DIVIDE.

m If an operand is an intermediate result, the value determined for the intermediate result in a
previous arithmetic operation is used.

m If the operation is division:

o If op2 is a data name, the value used for op2 is the minimum nonzero value of the digit
in the PICTURE for the data name (for example, PICTURE 9V99 has the value 0.01).

o If op2 is an intermediate result, the intermediate result is treated as though it had a
PICTURE, and the minimum nonzero value of the digits in this PICTURLE is used.

When the maximum value exceeds the machine specific limit, a warning (#050) is generated
and the maximum size is set at that limit. For limitations on arithmetic expressions refer to
“MPE XL System Dependencies” in Appendix H for more information.

The number of decimal places contained in an ir is calculated as:

Operation Decimal Places

+or - dl or d2, whichever is greater

* dl + d2

/ d1-d2 or dmax, whichever is greater

*ok dmaz

Note When any operand is an IEEE floating point (from the result of a COBOL

function), the resulting intermediate data item is also IEEE floating point.
The intermediate floating point data items always have 15 digits of precision.

9-20 PROCEDURE DIVISION Statements



CONTINUE

CONTINUE Statement

The CONTINUE statement indicates that no executable statement is present. It is a
no-operation statement and has no effect on the execution of the program.

Syntax
CONTINUE

Description

CONTINUE can be used anywhere a conditional statement or an imperative statement is
used.

Example

IF A < B THEN
IF A < C THEN
CONTINUE
ELSE
MOVE ZERO TO A
END-IF
ADD B TO C.
SUBTRACT C FROM D.

PROCEDURE DIVISION Statements 9-21



DELETE

DELETE Statement

The DELETE statement logically removes a record from a relative or indexed file.

Syntax
DELETE file~name~1 RECORD
[MAJ_J_Q KEY imperative—statement—1]
LG200026_099
Parameters
file-name-1 the name of the file from which the record is to be deleted. The
file must be an indexed or relative file opened in input-output
mode.
imperative-statement- 1 one or more imperative statements.
and

imperative-statement-2

Description

If the specified file is being used in sequential access mode, the INVALID KEY or
NOT INVALID KEY phrase must not be specified. However, if the file is being used in any
other access mode and there is no applicable USE procedure, these clauses must be specified.

For information on handling 1/0 errors, see “Input-Output Error Handling Procedures” in
Chapter 8.

After a successful execution of a DELETE statement, the selected record has been logically
removed from the file, and can no longer be accessed.

Note “Logically removed” means that the record has been marked for deletion, and
not physically removed. The contents of the record area associated with the
specified file are unaffected. The file position indicator is also unaffected.

The execution of the DELETE statement causes the value of the FILE STATUS data item, if
specified for the file, to be updated. Refer to “FILE STATUS Clause” in Chapter 6 for valid
status keys.

Selection of the record to be deleted is accomplished in one of two ways, depending upon what
access mode is specified for the file.

9-22 PROCEDURE DIVISION Statements



DELETE

For files being used in sequential access mode, the record to be deleted is the last record
read by a successfully executed READ statement. The READ statement must be the last
input-output operation performed on the file prior to execution of the DELETE statement.

For files in dynamic or random access mode, the record removed is that record identified
by the contents of the RELATIVE KEY or RECORD KEY data item associated with the
specified file. If the file does not contain the record specified by the key, an INVALID KEY

condition exists.

If the INVALID KEY phrase has been specified, and the execution of a DELETE statement
causes an INVALID KEY condition, the imperative statements specified in the INVALID
KEY phrase are executed. Any USE procedure specified for the file is ignored.

When no INVALID KEY condition exists, control is transferred to the end of the
DELETE statement or to the imperative statement specified in the

NOT INVALID KEY phrase, if specified. For more information on handling I/O errors, see I
“Input-Output Error Handling Procedures” in Chapter 8.

For indexed files, if the primary record key has duplicates specified for it, you should use the
DELETE statement only when the file is open in sequential access mode. This is because a
DELETE statement for such files open in dynamic or random access mode deletes the first
record written to the file that has the same primary key value as the value placed in the
RECORD KEY data item. This first occurrence of the duplicate value may not be the record
you want to delete.

PROCEDURE DIVISION Statements 9-23



DELETE

Example
The following example shows the DELETE statement:

ENVIRONMENT DIVISION.

INPUT-0UTPUT SECTION.

FILE-CONTROL.

SELECT REL-FILE

ASSIGN TO "DATAFL1"

ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS CHK-REL-FILE.

SELECT INDX-FILE

ASSIGN TO "DATAFL2"

ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS KEY-DATA
FILE STATUS IS CHK-INDX-FILE.

DATA DIVISION.

FILE SECTION.

FD REL-FILE.

01 REL-DATA

02 DATA-1 PIC 99.
FD INDX-FILE.
01 INDX-DATA.
02 KEY-DATA PIC X(5).

PROCEDURE DIVISION.

OPEN I-0 REL-FILE INDX-FILE.
READ REL-FILE RECORD AT END STOP RUN.
IF DATA-1 IS EQUAL TO O THEN DELETE REL-FILE RECORD.

MOVE "MEYER" TO KEY-DATA.
DELETE INDX-FILE RECORD
INVALID KEY PERFORM CHECK-OUT.

CHECK-0UT.
DISPLAY "VALUE OF CHK-INDX-FILE IS" CHK-INDX-FILE.
DISPLAY "WHAT ACTION TO BE TAKEN?".
ACCEPT ACTION-ITEM.

9-24 PROCEDURE DIVISION Statements



DISPLAY

DISPLAY Statement

The DISPLAY statement can be used to transfer low volume data to the operator’s console, a
terminal, or the line printer. If more than one name is specified, each data item is listed in the
order specified in the DISPLAY statement.

Syntax

UPON 4 CONSQLE

{ identifier-1
mnemonic-name

literal-1

| e

LG200026_100

Parameters

identifier-1 and identifiers of data items, unsigned numeric integer literals, the

literal-1 special registers (TALLY, TIME-OF-DAY, CURRENT-DATE,
WHEN-COMPILED, LINAGE-COUNTER, and DEBUG-ITEM) and any
figurative constant except ALL.

SYSQUT in batch mode, the line printer. In session mode, it is the terminal from
which the COBOL program was initiated. This is the default if the
UPON phrase is not used.

CONSOLE the operator’s console.

mnemonic-name the name specified by you, and defined under the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION as either SYSOUT or
CONSOLE.

Description

Note 1-O errors that occur during execution of the DISPLAY statement do not
produce a “tombstone” since the I-O is not done by the file system.

If an item is described as USAGE COMPUTATIONAL, BINARY , COMPUTATIONAL-3, or
PACKED-DECIMAL ., the compiler translates it into a USAGE DISPLAY item for purposes of
displaying it.

If TIME-OF-DAY is used as an identifier, the time is displayed in edited form. That is, in the
form, HH:MM:SS where HH is the hour taken from a 24 hour clock, MM is the number of
minutes after the hour, and SS is the number of seconds after the minute.

If a figurative constant is specified as an operand, only one occurrence of the constant is
displayed. This is true even when the figurative constant ALL is specified.

When a DISPLAY statement contains more than one operand, the size of the data to be
transmitted is the sum of the sizes of all the operands. The values of the operands are
transferred in the sequence in which the operands are listed.

PROCEDURE DIVISION Statements 9-25



DISPLAY

Length of Data Being Displayed

As with the ACCEPT statement, hardware record sizes determine the display of the data
specified in the DISPLAY statement. The following methods are used, depending upon
whether the size of the sending item is equal to, shorter than, or longer than the hardware
device designated to receive the data:

m [f the sending item is the same length, no problem arises and the data is transmitted.

m [f the sending item is shorter than the device, the transferred data is displayed beginning
with the leftmost position of the device, continuing to the right until all data characters
have been displayed.

m [f the sending item is longer than can be displayed on one line of the device, the first line of
the device is filled with as many characters as possible, then the next line is filled, and so
forth until the entire sending item has been displayed. The order in which the sending data
is displayed is the same as the order in which it is transmitted.

The WITH NO ADVANCING Phrase

The WITH NO ADVANCING phrase of the DISPLAY statement provides interaction
with a hardware device having vertical positioning. If the WITH NO ADVANCING
phrase is specified, the positioning of the hardware device is not reset to
the next line or changed in any other way following the display of the last
operand. If the hardware device can be set to a specific character position,
it remains set at the character position immediately following the last
character of the last operand displayed. If the hardware device cannot be set
to a specific character position, only the vertical position, if applicable,
is affected. This may cause overprinting if the hardware supports
overprinting. If you redirect STDLIST to a file, the file must use carriage
control (CCTL) or WITH NO ADVANCING has no effect.

If the WITH NO ADVANCING phrase is not specified, the positioning of the hardware device

is reset to the leftmost position of the next line of the device after the last operand has been
transferred to the hardware device.

If vertical positioning is not applicable on the hardware device, the operating system ignores
the vertical positioning that is specified or implied.

9-26 PROCEDURE DIVISION Statements



DISPLAY

Example 1

Following is an example DISPLAY statement:
WORKING-STORAGE SECTION.
01 BEGIN-MSG PIC X(21) VALUE "UPROGRAM BEGINNINGLILI".
PROCEDURE DIVISION.

DISPLAY CURRENT-DATE, BEGIN-MSG, TIME-OF-DAY UPON SYSOUT.

If the date is Tuesday, July 30, 1991 at exactly 10:45 a.m. and the above DISPLAY statement
is executed, the following message is displayed on the terminal where the program was run:

07/30/91UPROGRAM BEGINNINGLILI10:45:00

Example 2
The following DISPLAY statement illustrates the WITH NO ADVANCING phrase:

DISPLAY "ENTER CLASS CODE" WITH NO ADVANCING.
ACCEPT CLASS-CODE.

When the above statement is executed, the cursor is left on the same line as ENTER CLASS
CODE on the screen:

ENTER CLASS CODE
I

Position of cursor following the display.

PROCEDURE DIVISION Statements 9-27



DIVIDE

DIVIDE Statement

The DIVIDE statement divides one numeric data item into one or more others, assigns the
result to a data item, and optionally assigns a remainder to another data item.

Syntax
There are five formats of the DIVIDE statement:

Format 1

identifier—1 , ,
, INTO { identifier-2 [RQUNDED]}
literal—1

[ON SIZE ERROR imperative-statenent—1]

Format 2

identifier—1 identifier-2
DIVIDE INTO
{ literal—1 } { literal-2 }
GIVING { identifier-3 [RQUNDED]}

[ON SIZE ERROR imperative—statement—1]

Format 3

identifier—1 identifier—2
{ literal-1 } o { literal-2 }
GIVING { identifier-3 [ROUNDED]}

[ON SIZE ERROR imperative~statement—1 ]

[NOT ON siZE ERROR imperative-statement
LG200026_101

9-28 PROCEDURE DIVISION Statements



DIVIDE

Format 4
identifier—1 identifier-2 , »
iteral_1 itoral_2 GIVING identifier-3 [ROUNDED]
BEMAINDER identifier—4

Format 5
identifier-1 identifier-2 ' -
literal~1 literal~2 GIVING identifier-3 [ROUNDED]
REMAINDER identifier—4

[ON SIZE ERROR imperative—statement—1]

LG200026_102

Parameters

identifier-1, names of elementary numeric items, except that those associated with a
wdentifier-2., GIVING or REMAINDER phrase may be elementary numeric-edited items.
and so forth

literal-1, numeric literals.
literal-2, and
so forth

Description

The ROUNDED and SIZE ERROR phrases are described under the heading, “Common
Phrases”, in Chapter 8.

The composite of operands for the DIVIDE statement is determined using all of the receiving
data items of a particular statement except the data item associated with the REMAINDER
phrase. This composite must not exceed 18 digits. Refer to Chapter 8, under “Arithmetic
Expressions” for details on how to determine the composite of operands.

PROCEDURE DIVISION Statements 9-29



DIVIDE

When format 1 of the DIVIDE statement is used, each identifier following the INTO keyword
is divided, in turn, by the identifier or literal to the left of the INTO keyword. Each result

is rounded if specified and necessary, and is then stored in the data item referenced by the
identifier that acted as the dividend in that particular division.

When format 2 is used, the literal or data item specified by the identifier between the
keywords INTO and GIVING is divided by the literal or data item specified by identifier-1,
and the result is stored in each identifier listed in the GIVING phrase.

When the third format of the DIVIDE statement is used, the data item specified by
wdentifier-1 or literal-1 is divided by literal-2 or the contents of identifier-2. The result is
then stored in each identifier following the GIVING phrase, with rounding being used where
specified and needed.

Formats 4 and 5 can be used to obtain a remainder from a division operation. In COBOL, the
remainder is defined as the difference between the product of the quotient and the divisor and

the dividend.
For example, in format 4 of the DIVIDE statement:

DIVIDE A INTO B GIVING C REMAINDER D
I I I

divisor dividend quotient

The remainder D has the value determined by multiplying C times A and subtracting this
product from B. Thus, if A=7 and B=16, then C=2 and D=2 because 16-7*2=2.

If identifier-3 (the quotient) is defined as numeric-edited, the quotient used to calculate the
remainder is an internal, intermediate field containing the unedited quotient.

Also, if the ROUNDED phrase is specified, the quotient used to calculate the remainder is
kept in an intermediate field and is truncated rather than rounded.

Appropriate decimal alignment and truncation are performed on the remainder as needed.

When the SIZE ERROR phrase is specified for a format 4 or 5 DIVIDE statement, and a size
error condition occurs for the quotient, the contents of data items referenced by identifier-3
and identifier-/ are unchanged. However, if the size error condition occurs for the remainder
and not the quotient, only the remainder is unchanged. Identifier-3 still contains the new
quotient.

9-30 PROCEDURE DIVISION Statements



DIVIDE

Example
FILE SECTION.
FD PAY-FILE.
01 PAY-INFO.
02 EMP-NAME PIC X(30).
02 EMP-NUM PIC X(9).
02 PAY PIC 999V99.
02 HOURS PIC 99.
WORKING-STORAGE SECTION.
77 RATE PIC 99 VALUE ZERO.

77 CHECK PIC V99 VALUE ZERO.

PROCEDURE DIVISION.
MAIN-100.
DIVIDE PAY BY HOURS GIVING RATE REMAINDER CHECK
ON SIZE ERROR PERFORM SIZE-ERR.

SIZE-ERR.
IF RATE = O THEN
DISPLAY "SIZE ERROR IN RATE USING " PAY, HOURS
ELSE
DISPLAY "SIZE ERROR IN CHECK".

The DIVIDE statement above uses format 5. If a size error occurs, the SIZE-ERR routine is
performed, and a check is made to determine whether the size error occurred because of RATE
or CHECK.

PROCEDURE DIVISION Statements 9-31



ENTER, ENTRY

ENTER Statement
The ENTER statement is an obsolete feature of the 1985 ANSI COBOL standard.

In ANSI COBOL’74, this statement provides a means of allowing the use of more than one
language in the same program. It is, however, not allowed in HP COBOL II. Thus, if specified
in your program, it is treated as a comment. The format is listed below for information only.

The format of this statement is shown below:

ENTER language-name [routine-name].

ENTRY Statement
The ENTRY statement is an HP extension to the ANSI COBOL standard.

The ENTRY statement establishes a secondary entry point in an HP COBOL II subprogram.
For more information on the ENTRY statement refer to Chapter 11, “Interprogram
Communication”.

9-32 PROCEDURE DIVISION Statements



EVALUATE

EVALUATE Statement

The EVALUATE statement adds a multi-condition case construct to COBOL. This statement
causes a set of subjects to be evaluated and compared with a set of objects. The results of
these evaluations determine the subsequent sequence of code execution.

Syntax
identifier—1 identifier—2
literal—1 literal-2
EVALUATES expression—1 ALSO expression~2
JRUE TRUE
EALSE EALSE
{{ WHEN
(" ANy A
condition-1
IRUE
< EALSE >
identifier—3 THROUGH identifier—4
[voT] {{ literal-3 } { literal—4
\_ arithmetic—expression—1 THRU arithmetic—-expression—2 J
[aLso
(" ANY NT )
condition-2
TBUE

EALSE

identitier—5
[NOT] {1 siterai~5
\_ arithmetic—-expression—-3

imperative-statement—1} + + -

[WHEN OTHER imperative-statement-2 ]

[END-EVALUATE]

LG200026_104

THRQUGH
IHRU

1

identifier—6
literal-6
arithmetic—expression—4

i

PROCEDURE DIVISION Statements 9-33



EVALUATE

Subjects and Objects

The operands or the words TRUE and FALSE that appear before the first WHEN phrase
of the EVALUATE statement are referred to individually as subjects. Collectively, they

are referred to as the set of subjects. The operands or the words TRUE, FALSE, and ANY
that appear in a WHEN phrase of an EVALUATE statement are individually called objects.
Collectively, they are called the set of objects.

The words THROUGH and THRU are equivalent. Two operands connected by a THROUGH
phrase must be of the same class. The two connected operands constitute a single object.

The number of objects within each set of objects must be equal to the number of subjects.

Correspondence Between Subjects and Objects

A subject-object pair consists of a subject and object having the same ordinal position within
each set. Each pair must conform to the following rules:

m Identifiers, literals, and arithmetic expressions must be valid operands for a comparison
between the subject and object.

m Conditions or the words TRUE or FALSE appearing as an object must correspond to a
conditional expression or the words TRUE or FALSE.

m The word ANY may correspond to a selection subject of any type.

Evaluation of Subjects and Objects

Execution of the EVALUATE statement operates as if each subject and object were evaluated
and assigned a numeric or nonnumeric value, a range of numeric or nonnumeric values, or a
truth value (TRUE or FALSE). These values are determined as follows:

m Any subject or object specified by an identifier, without either the NOT or the THROUGH
phrases, is assigned the value and class of the data item referenced by the identifier.

m Any subject or object specified by a literal, without either the NOT or the THROUGH
phrases, is assigned the value and class of the specified literal. When an object is assigned
the figurative constant ZERO, it is assigned the class of the corresponding subject.

m Any subject or object in which an expression is specified as an arithmetic expression
without either the NOT or the THROUGH phrases, is assigned a numeric value according
to the rules for evaluating an arithmetic expression. (Refer to Chapter 8, under “Arithmetic
Expressions”.)

m A subject or object specified by a conditional expression is assigned a truth value (TRUE or
FALSE) according to the rules for evaluating conditional expressions. (Refer to Chapter 8,
“Conditional Expressions.”)

m A subject or object specified by the words TRUE or FALSE is assigned the appropriate
truth value.

m No further evaluation is done for an object specified by the word ANY.

m [f the THROUGH phrase is specified for an object, without the NOT phrase, the range of
values includes all values of the subject that are greater than or equal to the first operand
and less than or equal to the second operand.

9-34 PROCEDURE DIVISION Statements



EVALUATE

m [f the NOT phrase is specified for an object, the values assigned to that item are all values
that are not equal to the value, or included in the range of values, that would have been
assigned to the item without the NOT phrase.

Refer to Chapter 8, “Relation Conditions,” for more information on NOT phrases.

Comparison Operation of EVALUATE

The execution of the EVALUATE statement proceeds as if the values assigned to the subjects
and objects were compared, to determine if any WHEN phrase satisfies the set of subjects.
This comparison proceeds as follows:

1. A subject-object pair comparison is satisfied if the following conditions are true:

a. If the items being compared are assigned numeric, nonnumeric, or a range of numeric or
nonnumeric values, the comparison is satisfied if the value, or one of the range of values,
assigned to the object is equal to the value assigned to the subject.

b. If the items being compared are assigned truth values, the comparison is satisfied if the
items are assigned the identical truth values.

c. If the object being compared is specified by the word ANY, the comparison is always
satisfied, regardless of the value of the subject.

2. If the above comparison is satisfied for every object within the set of objects being
compared, the first WHEN phrase for which each subject-object pair comparison is satisfied
is selected as the one that satisfies the set of subjects.

3. If the above comparison is not satisfied for one or more objects within the set of objects
being compared, that set of objects does not satisfy the set of subjects.

4. This procedure is repeated for subsequent sets of objects in the order of their appearance in
the source program. The comparison operation continues until either a WHEN phrase that
satisfies the set of subjects is selected or until all sets of objects are exhausted.

Execution of EVALUATE

After the comparison operation is completed, execution of the EVALUATE statement
proceeds as follows:

1. If a WHEN phrase is selected, execution continues with the first imperative statement
following the selected WHEN phrase.

If a WHEN phrase is followed by other WHEN phrases with no intervening imperative
statement, the WHEN conditions are ORed together. In other words, if any of the WHEN
phrases is selected, the first imperative statement that follows is executed, even if that
imperative statement is part of a following WHEN phrase. See the following section for an
example.

Use the CONTINUE statement to indicate no operation on a WHEN clause. See the
following section for examples.

2. If no WHEN phrase is selected and a WHEN OTHER phrase is specified, execution
continues with the imperative statement following the WHEN OTHER phrase.

3. The execution of the EVALUATE statement is terminated when execution reaches the end
of the imperative statement of the selected WHEN phrase, or when no WHEN phrase is
selected and no WHEN OTHER, phrase is specified.

PROCEDURE DIVISION Statements 9-35



EVALUATE

Examples

I The following example shows an EVALUATE statement with two data items (HOURS-WORKED
and EXEMPT) as subjects:

EVALUATE HOURS-WORKED ALSO EXEMPT
WHEN O ALSO ANY PERFORM NO-PAY
WHEN NOT O ALSO "Y" PERFORM SALARIED
WHEN 1 THRU 40 ALSO "N" PERFORM HOURLY-PAY
WHEN NOT 1 THRU 40 ALSO "N'" PERFORM OVERTIME-PAY
WHEN OTHER DISPLAY HOURS-WORKED
DISPLAY EXEMPT
MOVE O TO HOURS-WORKED
END-EVALUATE.

I The following shows a relation condition (GRADE > 3.0) and a data item (COLLEGE-CODE) as
the subjects of an EVALUATE:

EVALUATE GRADE > 3.0 ALSO COLLEGE-CODE
WHEN TRUE ALSO "01" PERFORM DEANS-LIST-AGGIES
WHEN TRUE ALSO "02" PERFORM DEANS-LIST-S-AND-H
WHEN TRUE ALSO "03" PERFORM DEANS-LIST-ENG
WHEN TRUE ALSO ANY PERFORM MISC-LIST
END-EVALUATE.

The following shows two equivalent EVALUATE statements that illustrate that subjects and
objects must be of the same type. The first EVALUATE statement shows the truth value,
TRUE, as the subject and several condition name conditions as objects. The second shows the
data item INPUT-FLAG as the subject and nonnumeric literals as objects. Notice also that if
INPUT-FLAG is “C”, the EVALUATE statement executes the CONTINUE statement, which
simply continues execution at the statement following the EVALUATE statement:

WORKING-STORAGE SECTION.
01 INPUT-FLAG PIC X VALUE SPACE.

88 INPUT-YES VALUE "Y".
88 INPUT-NO VALUE "N".
88 INPUT-QUIT VALUE "Q".

88 INPUT-CONTINUE VALUE "C".

EVALUATE TRUE
WHEN INPUT-CONTINUE CONTINUE

WHEN INPUT-YES MOVE PROD-NO TO OUTPUT-REC
WHEN INPUT-NO MOVE SPACES TO OUTPUT-REC
WHEN INPUT-QUIT PERFORM TERMINATION-ROUTINE
WHEN OTHER PERFORM GET-INPUT

END-EVALUATE.

9-36 PROCEDURE DIVISION Statements



EVALUATE

EVALUATE INPUT-FLAG

WHEN
WHEN
WHEN
WHEN
WHEN

ny" MOVE PROD-NO TO OUTPUT-REC
“N MOVE SPACES TO OUTPUT-REC
Q" PERFORM TERMINATION-ROUTINE
ne CONTINUE

OTHER PERFORM GET-INPUT

END-EVALUATE.

The following example shows two WHEN phrases without an intervening imperative
statement. If either the first or the second WHEN phrase is selected, that is, if
NUMBER-OF-THINGS is either 1 or 2, the DISPLAY statement after WHEN 2 is executed:

EVALUATE NUMBER-OF-THINGS

WHEN
WHEN
WHEN
WHEN

1

2 DISPLAY "The value is 1 or 2"
3 STOP RUN

OTHER DISPLAY "Input again."

END-EVALUATE.

PROCEDURE DIVISION Statements 9-37



EXAMINE

EXAMINE Statement

The EXAMINE statement is an HP extension to the ANSI COBOL standard. It has been
replaced by the INSPECT statement, covered later in this chapter. Although HP COBOL II
includes the EXAMINE statement for compatibility with COBOL’68, it is advisable that you
use the INSPECT statement for coding new programs.

The EXAMINE statement replaces or counts the number of occurrences of a given character
in a data item.

Syntax
EXAMINE identifier
[ UNTLL EIRST )
TALLYINGY ALL literal~1 [REPLACING BY literai-2]
4 E—
ALL >
BEPLACING< LEADING literal-3 BY literal-4
\ [unTi] EIRST )
LG200026_105
Parameters
identifier  names a data item whose usage is DISPLAY. It is this data item that is
examined.
literal-1, each a single character whose data type is the same as identifier. Any or all of
literal-2, these literals may be any figurative constant except ALL.

and so forth

Description

When the EXAMINE statement is executed, it acts differently depending upon whether
identifier names a numeric or a nonnumeric data item.

If identifier is a nonnumeric data item, examination begins with the leftmost character, and
proceeds to the right. Fach character is examined in turn.

If identifier is a numeric data item, the data item may contain a sign, and examination
proceeds on a digit by digit basis. This examination starts with the leftmost digit and
proceeds to the right. If a sign is included in the data item being examined, it is ignored
regardless of its physical location.

9-38 PROCEDURE DIVISION Statements



EXAMINE

TALLYING Phrase

When the TALLYING phrase is used in an EXAMINE statement, a count is placed in the
special HP COBOL II register named TALLY. This count is an integer and represents a value
that is dependent upon the keywords following the word TALLYING.

If TALLYING UNTIL FIRST is specified, the integer in the TALLY register after execution
of an EXAMINE statement is the number of occurrences of characters in identifier before the
first occurrence of literal-1.

If TALLYING ALL is specified, every occurrence of literal-1 is counted and the result of this
counting is placed in the TALLY register.

If TALLYING LEADING is specified, only those occurrences of literal-1 that precede any
other characters in the data item named by identifier are counted. For example, if the first
character of identifier is not literal-1, the EXAMINE statement ceases execution immediately.

If the REPLACING phrase is used in conjunction with the TALLYING phrase, then,
depending upon which keywords are used with the TALLYING phrase, those occurrences
of literal-1 that participate in the tallying are replaced by literal-2. For example, if the
EXAMINE statement:

EXAMINE ABMASK TALLYING ALL A REPLACING BY B.

is executed and ABMASK contains the value ABBBBABBABAAAB before execution, when
execution of the EXAMINE statement is complete, the value in the TALLY register is 6 and
ABMASK contains the value BBBBBBBBBBBBBB.

REPLACING Phrase

The REPLACING phrase acts in the same manner as the REPLACING verb in the
TALLYING phrase. However, since no tallying takes place, the TALLY register remains
unchanged. The rules of the REPLACING phrase are stated below:

m [f REPLACING ALL is specified, all occurrences of literal-3 in identifier are replaced by
literal-4 .

m [f REPLACING LEADING is specified, each occurrence of literal-3 is replaced by literal-4
until the first occurrence of a character other than literal-3 or the rightmost character of the
data item is examined.

m [f REPLACING UNTIL FIRST is specified, every character of the data item represented by
wdentifier is replaced by literal-4 until literal-3 is encountered in the data item. If literal-3
does not appear in the data item, the entire data item is filled with literal-4.

m [f REPLACING FIRST is specified, only the first occurrence of literal-3 is replaced by
literal-4 . 1f literal-3 does not appear in the data item represented by identifier, the data
item is unchanged after execution of the EXAMINE statement.

PROCEDURE DIVISION Statements 9-39



EXCLUSIVE

EXCLUSIVE Statement
The EXCLUSIVE statement is an HP extension to the ANSI COBOL standard.

The EXCLUSIVE statement provides you with a method for locking a file that has been
opened for shared access.

Note Use of EXCLUSIVE within a program causes any OPEN of the associated file
to enable the dynamic locking facility.

This “locking” does not stop anyone from accessing the file. Locking and unlocking files must
be done on a cooperative basis. That is, if all users who intend to access a shared file agree

to attempt to lock the file before accessing its records, then no problems arise. However, since
this form of “locking” only sets a flag on the file, if other users do not check to see if the flag
is set (by attempting to lock it themselves), then they can do anything with the file that other
file security mechanisms allow.

A locked file remains locked until an UN-EXCLUSIVE statement is issued for that file.

Syntax
EXCLUSIVE file-name [CONDITIONALLY]

Parameters

file-name the name of the file you want to lock. It must be opened before the
EXCLUSIVE statement is executed. Also, the file may have a USE
procedure associated with it in case an error occurs during execution of
the EXCLUSIVE statement. If an error does occur, the USE procedure is
executed.

Description

If used without the CONDITIONALLY option, the EXCLUSIVE statement continues to try
to lock the file until it succeeds. If the file is already locked (for example, by another user),
this means your program will pause until the lock succeeds.

To prevent the above from occurring, you can use the CONDITIONALLY option. This option
attempts to lock the file and, if unsuccessful, returns immediately to your COBOL program.

The FILE STATUS data item, if any, associated with the file named in the EXCLUSIVE
statement is updated to indicate whether or not the attempt to lock the file was successful. If
the lock was successful, the STATUS-KEYS are set to “00”. If the file is in use by another
process and the lock condition is FALSE, or file options do not specify dynamic locking, or
the calling process does not have multiple RIN capability, STATUS-KEY-1 is set to “9” and
STATUS-KEY-2 contains the binary error code. For more information on handling 1/0 errors,
see “Input-Output Error Handling Procedures” in Chapter 8.

9-40 PROCEDURE DIVISION Statements



EXCLUSIVE

Programs that are to access an indexed file concurrently, within an environment that includes
modification of the file, must include EXCLUSIVE/UN-EXCLUSIVE statements to maintain
data integrity.

Refer to “MPE XL System Dependencies” in Appendix H for more information.

Example
The following example shows the EXCLUSIVE statement:

ENVIRONMENT DIVISION.
FILE-CONTROL.
SELECT CUSTFILE ASSIGN TO "CUSTDATA" FILE STATUS IS CHECKER.

PROCEDURE DIVISION.
OPEN I-0 CUSTFILE.
EXCLUSIVE CUSTFILE CONDITIONALLY.

IF CHECKER IS EQUAL TO "00" PERFORM CUSTOMER-UPDATE
ELSE PERFORM FIND-WHY.

PROCEDURE DIVISION Statements 9-41



EXIT

EXIT Statement

The EXIT statement provides a common end point for a series of procedures.

Syntax
paragraph-name.
BXIT.
paragraph /section-name.

Paragraph-name and paragraph/section-name are not a part of the EXIT statement. They are
shown to clarify the fact that:

m EXIT must appear in a sentence by itself.
m EXIT must be the only sentence in a paragraph.

An EXIT statement serves only to enable you to terminate a procedure and has no other
effect on the compilation or execution of the program.

Example
PROCEDURE DIVISION.
PERFORM FIX-IT THRU OUT.
PERFORM EXCESS THRU OUT.

FIX-IT.
IF CHARS IS ALPHABETIC THEN GO TO OUT.

EXCESS.
IF OVER-AMT IS EQUAL TO O THEN GO TO OUT.

0UT.
EXIT.
NEXT-PAR.

In the above illustration, both of the IF statements are the first lines of procedures executed
by PERFORM statements. If the condition in either of the IF statements returns a “true”
value, the statement branches to the 0UT paragraph, the EXIT statement is executed, and
control passes to the statement following the PERFORM statement that called the procedure.

9-42 PROCEDURE DIVISION Statements



EXIT PROGRAM, GOBACK

EXIT PROGRAM Statement

The EXIT PROGRAM statement marks the logical end of a program. For more information
on the EXIT PROGRAM statement refer to Chapter 11, “Interprogram Communication”.

GOBACK Statement
The GOBACK statement is an HP extension to the ANSI COBOL standard.

The GOBACK statement marks the logical end of a program. For more information on the
GOBACK statement refer to Chapter 11, “Interprogram Communication”.

PROCEDURE DIVISION Statements 9-43



GO TO

GO TO Statement

The GO TO statement transfers control from one part of the PROCEDURE DIVISION to
another.

The optionality of procedure-name-1 of the GO TO statement is an obsolete feature of the
1985 ANSI COBOL standard. See the description below for more information.

Syntax
The GO TO statement has two formats:
GO TO [procedure-name-1]
GO TO {procedure-name-1} ... DEPENDING ON identifier-1

Parameters

procedure-name-1  and its subsequent occurrences are names of procedures within the

PROCEDURE DIVISION of your program.

identifier-1 the name of a numeric elementary data item that has no positions to the
right of the decimal point.

Description

The first format of the GO TO statement transfers control to the procedure named by
procedure-name-1 or, if no procedure is named, to the procedure specified in a previously
executed ALTER statement. An ALTER statement must be issued for this type of GO TO
statement before it is executed if no procedure is named in it. This also implies that a GO
TO statement without a procedure name specification must make up the only sentence in a
paragraph. Refer to the ALTER statement description in this chapter for other restrictions.

Both the ALTER statement and the optionality of procedure-name-1 in the GO TO statement
are obsolete features of the 1985 ANSI COBOL standard.

If the first format of the GO TO statement does specify a procedure name and if it appears in
a sequence of imperative statements within a sentence, it must be the last statement in that
sentence.

In the second format of the GO TO statement, identifier must be the name of a numeric
elementary item described with no positions to the right of the decimal point. It is used

to determine which procedure is to be executed. If the contents of identifier is an integer

in the range one to n, where n is the number of procedure names appearing in the GO TO
statement, then control passes to the procedure in the position corresponding to the value of
wdentifier. Otherwise, no transfer occurs and control passes to the next statement following
the GO TO statement.

9-44 PROCEDURE DIVISION Statements



GO TO

Examples

In the program below, the GO TO statement in the GO-PARA paragraph is equivalent to
GO TO WHICH because of the ALTER statement preceding it. This form of the GO TO
statement is an obsolete feature of the 1985 ANSI COBOL standard.

The second GO TO statement branches to UNDER, OVER, or EXACT, depending upon whether

SELECTOR

has a value of 1, 2, or 3 respectively. If SELECTOR has any other value, the

DISPLAY statement is executed.

WORKI
01 SE

PROCE

GO-PA
AFTER

NG-STORAGE SECTION.
LECTOR PIC 9(3).

DURE DIVISION.
ALTER GO-PARA TO PROCEED TO WHICH.

RA. GO TO.
-GO-PARA.

GO TO UNDER, OVER, EXACT DEPENDING ON SELECTOR.
DISPLAY "SELECTOR OUT OF RANGE - VALUE IS ", SELECTOR.

UNDER.

OVER.

EXACT.

WHICH.

PROCEDURE DIVISION Statements 9-45



IF

IF Statement

The IF statement evaluates a condition and, depending upon the truth value of the condition,
determines the subsequent action of the program.

Syntax

{statement_1} . e .} E.LS_E {Statement-—2} e '

IE condition-1 THEN { NEXT SENTENCE EI‘SE NEX

LG200026_109

Parameters

statement-1 and each are imperative or conditional statements, optionally followed by a
statement-2 conditional statement.

condition-1 any valid COBOL condition as described under “Conditional Expressions” in
Chapter 8.

Description

You may omit the ELSE NEXT SENTENCE phrase if it immediately precedes the period
used to terminate the sentence.

If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be
specified.

The scope of the IF statement may be terminated by any of the following:

m An END-IF phrase at the same level of nesting.

m A separator period, which terminates II" statements at all levels of nesting.

m [f nested, by an ELSE phrase associated with an IF statement at a higher level of nesting.

9-46 PROCEDURE DIVISION Statements



When an IF statement is executed, the following transfers of control occur:

If the truth value of the condition is “true” and statement-1 is specified, then if statement-1
is a procedure branching or conditional statement, control is explicitly transferred according
to the rules for that statement. If statement-1 does not contain such a statement, then
statement-1 is executed and control passes to the end of the IF statement.

If the truth value of the condition is “true” and the NEXT SENTENCE phrase is used
instead of statement-1, control immediately passes to the next executable sentence.

If the truth value of the condition is “false” and if statement-2 is specified, then if
statement-2 is a procedure branching or conditional statement, control is explicitly
transferred according to the rules for that statement. If statement-2 is not such a
statement, then statement-2 is executed and control passes to the end of the IF statements.

If the truth value of the condition is “false” and statement-2 is not specified, then the ELSE
NEXT SENTENCE phrase, if specified, causes transfer of control to the next executable
sentence. If the condition is false and the ELSE phrase is not specified then statement-1 is
ignored and control passes to the end of the IF statement.

Statement-1 or statement-2 may be (or may contain) an II statement, according to their
description in the previous paragraphs. This is called a nested IF statement.

IF statements within IF statements may be considered as paired 1F, ELSE, and END-IF

combinations, proceeding from left to right. Thus, any ELSE or END-IF encountered is
considered to apply to the immediately preceding IF that has not been already paired with an
ELSE or END-IF respectively.

To clarify, the IF/ELSE pairing is shown in the following illustration:

IF ... IF ... IF ... ELSE ... IF ... ELSE ... ELSE ... ELSE
l I { I

LG200026_110

PROCEDURE DIVISION Statements 9-47



IF

Example

BEGIN SECTION.
DATA-IN.
READ REC-FILE RECORD INTO DATA-REC.

IF DATA-REC IS NOT ALPHABETIC
THEN
IF DATA-REC IS NOT NUMERIC
PERFORM ILLEGAL-CHARACTER
ELSE NEXT SENTENCE
ELSE PERFORM ALPHA-TYPE.

The IF statements above check that the data read into DATA-REC is either all alphabetic or all
numeric.

The first I statement consists of the IF'/ELSE pair:

IF DATA-REC IS NOT ALPHABETIC...ELSE PERFORM ALPHA-TYPE.
The second IF/ELSE pair is:

IF DATA-REC IS NOT NUMERIC...ELSE NEXT SENTENCE.

Thus, if DATA-REC has any nonnumeric character or characters not from the English alphabet,
the procedure ILLEGAL-CHARACTER is performed.

To clarify, the IF/ELSE and END-IF pairing is shown in the following illustration.

IF...IF...iF...IF... EﬁSE.. .EN?—HK. .END-IF. . . ELSE. . .ELSE . . . END-IF

LG200026_111

9-48 PROCEDURE DIVISION Statements



INITIALIZE

INITIALIZE Statement

The INITIALIZE statement sets selected types of data fields to predefined values. For
example, INITIALIZE can set numeric data to zeros or alphanumeric data to spaces.

Syntax

INITIALIZE { identifier-1}

ALPHABETIC
ALPHANUMERIC
MERIC DATA BY {identifier—2 }
ALPHANUMERIC-EDITED literal~1
NUMERIG-EDITED
LG200026_112
Parameters

literal-1 and  represent the sending area.
wdentifier-2

identifier-1 represents the receiving area.

Description

The description of the data item referenced by identifier-1 or any items subordinate to
wdentifier-1 may not contain the DEPENDING phrase of the OCCURS clause.

The data description entry for the data item referenced by identifier-1 must not contain a

RENAMES clause.

Each category stated in the REPLACING phrase must be a permissible category as a
receiving operand in a MOVE statement, where the corresponding data item referenced by
identifier-2 or literal-1 is used as the sending operand. (See “MOVE Statement”, later in this
chapter.)

The same category cannot be repeated in a REPLACING phrase.

An index data item may not be used as an operand in an INITIALIZE statement.

PROCEDURE DIVISION Statements 9-49



INITIALIZE

Initializing Data Fields

Following are rules for initializing data fields:

The keyword following the word REPLACING corresponds to a category of data as defined
under “PICTURE Clause” in Chapter 7 of this manual.

INITTALIZE is executed as if a series of moves had been written. The receiving item of each
MOVE is always an elementary item even if identifier-1 refers to a group item.

When the REPLACING phrase is specified:

o If identifier-1 references a group item a move is executed from identifier-2 or literal-1
to each elementary item of identifier-1 that belongs to the category specified by the
REPLACING phrase.

o If identifier-1 references an elementary item, a move is executed from identifier-2 or
literal-1 to identifier-1, if it belongs to the category specified by the REPLACING
phrase.

The only exceptions are those fields specified in the first two rules below.

Index data items and elementary FILLER data items are not affected by the execution of

INITTALIZE.

Any item that is subordinate to a receiving area identifier and contains the REDEFINES
clause, or any item that is subordinate to such an item, is not initialized. However, a
receiving area identifier may have a REDEFINES clause or be subordinate to a data item
with a REDEFINES clause.

When the statement is written without the REPLACING phrase, data items of the
categories alphabetic, alphanumeric, and alphanumeric-edited are set to spaces. Data items
of the categories numeric and numeric-edited are set to zeros. In this case, the operation is
as if each affected data item is the receiving area in an elementary MOVE statement with
the indicated source literal (that is, spaces or zeros).

In all cases, the content of the data item referenced by identifier-1 is set to the indicated
value in the order of appearance of identifier-1 (left to right) in the INITIALIZE statement.
Where identifier-1 references a group item, affected elementary items are initialized in the
sequence of their definition within the group.

If identifier-1 occupies the same storage area as identifier-2, the result of the execution of
this statement is undefined, even if both identifiers are defined by the same data description
entry.

9-50 PROCEDURE DIVISION Statements



INITIALIZE

Example

WORKING-STORAGE SECTION.
01 A.
05 B PIC 999.
05 C REDEFINES B.
10 D PIC X.
10 E PIC XX.

PROCEDURE DIVISION.

INITIALIZE A.
INITIALIZE C.
INITIALIZE C A.

When the INITIALIZE statements in the example above are executed, the data items are
initialized as follows:

1. In the first INITIALIZE, B is set to zeroes, while C, D and E are ignored.
2. In the second INITIALIZE, D and E are set to blanks.

3. In the third INITTALIZE, D and E are set to blanks. B is set to zeroes. The net effect is
that D and E are set to zeroes.

PROCEDURE DIVISION Statements 9-51



INSPECT

INSPECT Statement

The INSPECT statement can be used to perform one of three actions:

m [t can count the number of occurrences of a given character or character substring within a
data item.

m [t can replace a given character or characters within a specified data item with another
character or set of characters.

m [t can perform both of the functions described above in a single operation.

By using the LEADING, BEFORE, and AFTER phrases, you can use INSPECT to replace
only certain occurrences of characters within a data item. Also, by using CHARACTERS, you
can tally and replace every character (or subset of characters when used in conjunction with

LEADING, BEFORE, and AFTER) in a data item.

Syntax
The INSPECT statement has four formats as shown below.

Note Format 4 (INSPECT CONVERTING) is a way to specify a translation
table converting one set of characters into another. Format 4 is
equivalent to format 2, but provides a concise way of achieving
the same results.

Format 1 - INSPECT...TALLYING

INSPECT identifier-1 TALLYING

BEFORE identifier-4
CHARACTERS [{ AFTER } INITIAL {Illoral»1 }:I

identifier-2 FOR:
ALL identifier-3 BEFORE INITIAL: iderttitier-4 ?:X
LEADING literal-1 AFTER fiteral-2 [

Format 2 - INSPECT...REPLACING

!

S

INSPECT identifier-1 REPLACING

CHARACTERS identifier-5 BEFORE Identifier~4 .
B {IilalalAJ } [{AEIIE } INITIAL{IIYSIEI—Z }]m

AL
LEADING | J [ identifier-3 ideriiter-6) | | BEEORE | |\ rra, | identier-s
FIRST iorai-1 | B sterat-3 AFTER Iteral-2

L6200026_1138

9-52 PROCEDURE DIVISION Statements



Parameters
identifier-1

wdentifier-2

wdentifier-3
through
identifier-n
literal-1 through
literal-5

INSPECT

Format 3 - INSPECT...TALLYING
INSPECT identifier-1 TALLYING

BEFORE identitior-4 | s
CHABACTERS | { arrem [ ™AL 3 yrorar 1 L

identifier-2 FQR-
AlL Identifier-3 BEFQRE INITIAL idertifier-4
LEADING fiteral-1 AFTER literal-2

BEPLACING

CHARAGTERS By { dertiior-5 BEFORE identitier-4
o Bx{lirelal—S } I:{AEIEB ] INITIAL {Ii!eral—z
ALL
EADING identifier-3 identitier-5 | | [ BEFORE identifior4) |, .
FIRST {mmm BY Y terar-a armer [ VAL Y dterar-2 i

Format 4 - INSPECT...CONVERTING

\NSPECT identiier-1 CONVERTING {'denﬂ"er-ﬁ } { identiier-7 }

literal-4 literal-5

BEFORE identifier-4
AFTER INTIAL 4 terat-2 e

LG200026_114a

a variable representing either a group item or any category of elementary
item described implicitly or explicitly as USAGE IS DISPLAY. This is the
data item to be inspected.

names an elementary numeric data item. It is used to contain the results of
tallying occurrences of a character or characters in the data item represented
by identifier-1. Identifier-2 is not initialized by the INSPECT statement;
therefore, if you want it initialized, you must do so programmatically before
the INSPECT statement is executed.

each must reference either an elementary alphabetic, alphanumeric, or
numeric data item described implicitly or explicitly as USAGE IS DISPLAY.

are each nonnumeric literals. Each may be any figurative constant except

ALL.

If, in formats 1 and 3, literal-1 is a figurative constant, that implicitly refers
to a single character constant.

PROCEDURE DIVISION Statements 9-53



INSPECT

In formats 2 and 3, the size of the data referenced by literal-3 or identifier-5
must be equal to the size of the data item referenced by literal-1 or
wdentifier-3.

If literal-3 is a figurative constant, its size is implicitly equal to the size of
literal-1, or the size of the data item referenced by identifier-3.

If literal-1 is a figurative constant, the data referenced by literal-3 or
identifier-5 must be a single character.

When the CHARACTERS phrase is used, literal-3 (or literal-2), or the size
of the data item referenced by identifier-5 (or identifier-4 ) must be one
character in length.

No more than one BEFORE phrase and one AFTER phrase can be specified
for any one ALL, LEADING, CHARACTERS, FIRST, or CONVERTING

phrase.

The size of literal-5 or the data item referenced by identifier-7 must be
equal to the size of literal-4 or the data item referenced by identifier-6.
When a figurative constant is used as literal-5, the size of the figurative
constant is equal to the size of literal-4 or the size of the data item
referenced by identifier-6.

The same character must not appear more than once either in literal-4 or in
the data item referenced by identifier-6.

Description

When inspection takes place, the data items referenced by identifier-1 and identifiers-3
through 5 are all considered to be character strings, regardless of whether they are
alphanumeric, alphanumeric-edited, numeric-edited, unsigned or signed numeric.

For any data item except signed numeric or alphanumeric, inspection is accomplished by
inspecting the items as though they have been redefined as alphanumeric, and the INSPECT
statement written to reference the redefined data item.

For signed numeric data items, inspection is accomplished by treating the data item as if it
had been moved to an unsigned numeric data item, and then inspecting it as described in the
preceding paragraph.

CONVERTING Phrase

A format 4 INSPECT statement is interpreted and executed as though a format 2 INSPECT
statement specifying the same identifier-1 has been written. This is done with a series of ALL
phrases, one for each character of literal 4. The result is as if each of these ALL phrases

were referenced as literal-1, a single character of literal-4 and referenced, as literal-3, the
corresponding single character of literal-5. Correspondence between the characters of literal-4
and the characters of literal-5 is by ordinal position within the data item.

If identifier-4, identifier-6, or identifier-7 occupy the same storage area as identifier-1, the
result of the execution of this statement is undefined. This is true even if they are defined by
the same data description entry. Refer to “Overlapping Operands and Incompatible Data” in
Chapter 8 for more information.

9-54 PROCEDURE DIVISION Statements



INSPECT

Example
The following two INSPECT statements are equivalent:
INSPECT D-ITEM CONVERTING "ABCD'" TO "XYZX" AFTER QUOTE BEFORE "#".

INSPECT D-ITEM REPLACING
ALL "A" BY "X" AFTER QUOTE BEFORE "#"
ALL "B" BY "Y" AFTER QUOTE BEFORE "#"
ALL "C" BY "Z" AFTER QUOTE BEFORE "#"
ALL "D" BY "X" AFTER QUOTE BEFORE "#".

The results of these statements are:

Initial value of D-ITEM: AC"AEBDFBCD#AB'"D
Final value of D-ITEM: AC"XEYXFYZX#AB'"D

How the Comparison Operation Occurs

To facilitate the following description of the comparison operation, the various groups of
identifiers and literals are renamed. The names used and the identifiers or literals they
represent are:

searchchars represents literal-1 or the contents of identifier-3 and 5%.
initchars represents literal-2 or the contents of identifier-4.
replacechars represents literal-3 or the contents of identifier-5.

data represents the contents of identifier-1.

When inspection takes place, the elements of data are compared to searchchars. For each
properly matched occurrence of searchchars:

m In formats 1 and 3, tallying occurs using identifier-2 to contain the results.

m In formats 2 and 3, each set of properly matched characters in data is replaced by
replacechars.

When the INSPECT statement is used in its simplest form, that is, without the LEADING,
BEFORE, and AFTER phrases, the inspection occurs as follows:

The first set of searchchars is compared with an equal number of characters in data, starting
with the leftmost character of data.

If no match occurs, the second set of searchchars is compared with an equal number of
characters in data, again starting with the leftmost character of data.

This process continues for each set of searchchars until either a match occurs or all sets of
searchchars are exhausted.

If all sets of searchchars are exhausted and no matches have occurred, comparison begins
again using the first set of searchchars, but starting this time with the character immediately
to the right of the leftmost character of data.

Again, comparison proceeds as described above until either a match occurs or all sets of
searchchars are used.

PROCEDURE DIVISION Statements 9-55



INSPECT

If all sets are used and no matches have occurred, comparison begins again, starting with the
character of data to the right of the leftmost character of data.

This continuing cycle of shifting one character to the right in the characters of data and using
all of the sets of searchchars is terminated when, if no matches have occurred, the rightmost
character of data has been used in a comparison with the last set of searchchars.

If a match does occur for some set of searchchars and TALLYING is specified, identifier-2 is
incremented by one. If REPLACING is specified, the matched characters of data are replaced
by the replacechars that correspond to the set of searchchars being compared when the match
occurred.

When a match occurs for a particular set of searchchars, the characters of data that matched
are not compared with any following searchchars. Comparison begins again using the first
set of searchchars, but starting with the character immediately to the right of the leftmost
character of data that matched.

Inspection continues in the manner described above until the rightmost character of data has
been used as the first character in a comparison with the last set of searchchars, or has been
matched.

If TALLYING and REPLACING are both specified in the INSPECT statement, two
completely separate comparisons, as described above, take place. The first comparison is used

for TALLYING, and the second is used for REPLACING.

Example
The following INSPECT statement illustrates this form of inspection:

INSPECT WORD TALLYING COUNTER FOR ALL "X"
REPLACING ALL "EE" BY "OX", "9" BY "E".

WORD contains the alphanumeric data, YEEXE9XY, and COUNTER is the variable used to hold the
tally. Since INSPECT does not initialize COUNTER, assume it is initialized to zero before the
INSPECT statement.

Following are the step-by-step comparisons that take place when this INSPECT statement
executes:

1. Initially, WORD=YEEXE9XY and COUNTER=O0. Begin the comparison starting at the first
character of YEEXE9QXY:

YEEXEOXY

1
=X?

2. No match occurred. Begin the comparison again, starting at the second character:

YEEXEOXY

1
=X?

3. No match occurred. Begin the comparison again, starting at the third character:

YEEXEOXY

I
=x?

9-56 PROCEDURE DIVISION Statements



10.

11.

12.

INSPECT

No match occurred. Begin the comparison again, starting at the fourth character:

YEEXEOXY

1
=X?

. A match occurred. Increment COUNTER by 1, and begin the comparison again, starting

with the fifth character of YEEXEOQXY:

YEEXEOXY

I
=x?

. No match occurred. Begin the comparison again, starting with the sixth character:

YEEXEOXY

i
=X?

No match occurred. Begin the comparison again, starting with the seventh character:

YEEXEOXY

1
=X?

. A match occurred. Increment COUNTER by 1, and begin the comparison again, starting

with the eighth character of YEEXE9XY:

YEEXEOXY

1
=X?

. No match occurred. The last character of YEEXE9XY has been used as the first element in

a comparison. The tallying cycle is complete. Begin the replacing cycle starting with the
first characters of YEEXE9XY:

YEEXE9XY — YEEXEOXY

1 i
=EE? =97

No match occurred. Begin the comparison again, starting with the second character:

YEEXEOXY

1
=EE?

A match occurred. Change EE to 0X, and begin the comparison again, starting with the

fourth character of YOXXE9XY:

YOXXE9XY — YOXXE9XY

[l 1
=EE? =97

No match occurred. Begin the comparison again, starting with the fifth character:

YOXXE9XY — YOXXE9XY

[l 1
=EE? =97

PROCEDURE DIVISION Statements 9-57



INSPECT

13. No match occurred. Begin the comparison again, starting with the sixth character:

YOXXE9XY — YOXXE9XY

1 I
=EE? =97

14. A match occurred. Replace 9 by E in YOXXE9XY, and begin the comparison again, at the
seventh character of YOXXEEXY:

YOXXEEXY — YOXXEEXY

1 I
=EE? =97

15. No match occurred. Begin the comparison again, starting with the eighth character:

YOXXEEXY — YOXXEEXY

1 i
=EE? =97

16. No match occurred. The last character of YOXXEEXY has been used as the first character in
a comparison. The comparison cycle for REPLACING is complete. This ends execution of
the INSPECT statement.

The result of this INSPECT statement is summarized by the fact that WORD now contains the
character string, YOXXEEXY, and COUNTER now contains the integer 2.

BEFORE and AFTER Phrases

No more than one BEFORE phrase and one AFTER phrase can be specified for any one ALL,
LEADING, CHARACTERS, FIRST, or CONVERTING phrase.

The comparison operation described on the preceding pages is affected by the BEFORE and
AFTER phrases in the following way:

If the BEFORE phrase is used, the associated searchchars are used only in those comparison
cycles that make comparisons of characters of data to the left of the first occurrence of the
associated initchars.

If initchars does not appear in data, the BEFORE phrase has no effect upon the comparison
operation.

If the AFTER phrase is used, the associated searchchars are used only in those comparison
cycles that make comparisons of characters of data to the right of the first occurrence of the
associated initchars.

If initchars does not appear in data, the associated searchchars are never used in the
comparison cycle. This is equivalent to not using the clause in which the AFTER phrase
appears.

Multiple occurrences of the BEFORE/AFTER phrase allow the TALLYING/REPLACING
operation to be initiated after the beginning of the inspection of data begins and/or is
terminated before the end of the inspection of data ends.

9-58 PROCEDURE DIVISION Statements



INSPECT

LEADING Phrase

If the LEADING phrase is used in an INSPECT statement, it causes identifier-2 (the variable
used to hold the tally) to be incremented by one for each contiguous matching of searchchars
with a character of data, provided that the matching begins with the leftmost character of the
characters that make up data.

For replacing, the LEADING phrase has the effect of replacing each contiguous occurrence of
matched characters to be replaced by replacechars, provided that the matching begins with
the leftmost character of data.

If the first character (or characters) of data is not the same as searchchars, the clause in which
the LEADING phrase appears has no effect upon the data, or the variable used to hold the
tally.

ALL Phrase

When used in tallying, the ALL phrase causes the contents of identifier-2 to be incremented
by one for each occurrence of searchchars within data. When used in replacing, the ALL
phrase causes each set of characters in data matched with the searchchars to be replaced.

CHARACTERS Phrase

When the CHARACTERS phrase is used in tallying, the contents of identifier-2 are
incremented by 1 for each character in the set of characters used in the comparison cycle.

This does not necessarily imply that all characters are tallied, since the BEFORE and AFTER
phrases can limit comparison to only part of data.

When the CHARACTERS phrase is used in replacement, each character in the set of
characters used in the comparison cycle is replaced by replacechars, regardless of what the
character in data is. For example, this phrase can be used to initialize a data item by not
using the BEFORE or AFTER phrases to limit the part of data to be acted upon.

Multiple occurrences of the REPLACING CHARACTERS phrase are allowed.

FIRST Phrase

When the FIRST phrase is used in replacement, the leftmost occurrence in data of searchchars
is replaced by the associated replacechars.

Examples

Assuming that the variable THISONE has the data "WARNING" in it, the INSPECT statement,
INSPECT THISONE REPLACING ALL "N" by "P" BEFORE INITIAL "I".

results in THISONE having the data WARPING in it.

If REC has the data "JIMGIRAFFEEGAVEGUMDROPS' and ACUM is zero initially, the following
INSPECT statement results in ACUM being 2, and REC containing JIMRIRAFFEERAVERUMDROPS.

INSPECT REC TALLYING ACUM FOR ALL "F", REPLACING ALL "G" BY "R".

If PETE has the data "CBVFEET" before execution of the following INSPECT statement, then
following execution, PETE contains CBVFOOO.

PROCEDURE DIVISION Statements 9-59



INSPECT

INSPECT PETE REPLACING LEADING "BV" BY "AT",
CHARACTERS BY "O" AFTER INITIAL "F".

In the following example, COUNT-7 is assumed to be zero immediately prior to execution of the
statement. Table 9-1 shows the result of executing the two successive INSPECT statements.

INSPECT ITEM TALLYING
COUNT-O FOR ALL "AB" BEFORE "BC"
COUNT-1 FOR LEADING "B" AFTER "D"
COUNT-2 FOR CHARACTERS AFTER "A" BEFORE "C".

INSPECT ITEM REPLACING
ALL "AB" BY "XY" BEFORE "BC"
LEADING "B" BY "W" AFTER "D"
FIRST "E" BY "V" AFTER "D"
CHARACTERS BY "Z'" AFTER "A'" BEFORE '"C".

Table 9-1. Results of INSPECT Statement Execution

Initial Value of Item | COUNT-0 | COUNT-1| COUNT-2 | Final Value of Item
BBEABDABABBCABEE 3 0 2 BBEXYZXYXYZCABVE
ADDDDC 0 0 4 AZ777C

ADDDDA 0 0 5 AZZZ77

CDDDDC 0 0 0 CDDDDC

BDBBBDB 0 3 0 BDWWWDB

9-60 PROCEDURE DIVISION Statements



MOVE

MOVE Statement

The MOVE statement transfers data to one or more data areas in accordance with the rules of
editing,.

Syntax
The MOVE statement has two general formats:

identifier—1
literal-1

} IO { identitier-2 } + + »

CORRESPONDING

MQME{ CcomR } identifier-1 IQ identifier-2

LG200026_115

Parameters

identifier-1 the sending areas. The special registers, TALLY, TIME-OF-DAY,
and literal-1 CURRENT-DATE, and WHEN-COMPILED may be used as sending items.

wdentifier-2 and its subsequent occurrences, are the receiving areas.

CORR an abbreviation for CORRESPONDING. An index data item cannot be used
as an operand of a MOVE statement.

Description

If you use format 2, both identifiers must be group items. Selected items are moved from
within identifier-1 to selected items within identifier-2. The results are the same as

if you referred to each pair of corresponding identifiers in separate MOVE statements.
The rules governing correspondence are presented in Chapter 8 under the heading,

“CORRESPONDING Phrase”.

If you use format 1, the data designated by literal-1, or by identifier-1 is moved, in turn,
to identifier-2. Any subscripting or indexing associated with identifiers to the right of the
keyword TO is evaluated immediately before the data is moved to the respective data items.

Any subscripting, indexing, reference modification, or function associated with identifier-1
is evaluated only once, immediately before the data is moved to the first of the receiving
operands.

For example, the result of the following statement:
MOVE A(B) TO B, C(B)
Is equivalent to the following three statements:

MOVE A(B) TO temp
MOVE temp TO B
MOVE temp TO C(B)

PROCEDURE DIVISION Statements 9-61



MOVE

Where temp is an intermediate result item used internally by the compiler. Note that the
move of A(B) to B affects the element of C to which A(B) is moved. That is, if B is initially
one and A(B) is 9, then after 9 is moved to B, A(1) is moved to C(9). It is not moved to C(1).

Rules For Moving Data

All data is moved according to the rules for moving elementary data items to elementary data
items. This is called an elementary move. Valid and invalid moves are determined by the
categories of the sending and receiving data items. Refer to “PICTURE Clause” in Chapter 7
for a description of the various categories.

Any move that is not an elementary move is treated exactly as if it were a move from one
alphanumeric elementary data item to another, except that there is no conversion from one
form of internal representation to another. In such a move, the receiving data item is filled
without respect to the individual elementary or group items contained in either the sending
or receiving area, except when the sending data item contains a table whose OCCURS clause
uses the DEPENDING ON clause. In this case, only the area specified by the DEPENDING
ON clause is filled or moved.

When a receiving item is a variable length data item and contains the object
of the DEPENDING ON phrase, the maximum length of the item is used.

If the move is from a group to an elementary item, justification takes place if specified in the
receiving item.

Rules For Elementary Moves

The following rules apply to an elementary move between data items belonging to one of the
five categories of data:

m All numeric literals and the figurative constant ZIZRO belong to the numeric category; all
nonnumeric literals, and all figurative constants except SPACE and ZERO belong to the
alphanumeric category; SPACE belongs to the alphabetic category.

m An alphanumeric-edited or alphabetic data item cannot be moved to a numeric or
numeric-edited data item.

m A numeric or numeric-edited data item cannot be moved to an alphabetic data item.

m A noninteger numeric literal or noninteger numeric data item cannot be moved to an
alphanumeric or alphanumeric-edited data item.

m All other elementary moves are valid and are performed according to the rules listed below.

Any necessary conversion from one internal representation to another takes place during valid
elementary moves, as does any editing specified for, or de-editing implied by, the receiving
data item.

9-62 PROCEDURE DIVISION Statements



MOVE

Alphanumeric or Alphanumeric-Edited Receiving Item

When an alphanumeric-edited or alphanumeric item is a receiving data item, alignment and
any necessary space filling takes place as defined under “Data Alignment” in Chapter 4. If the
size of the sending item is larger than the receiving item, the excess characters are truncated
on the right after the receiving data item is filled.

If the sending item is a signed numeric item, the sign is not moved, regardless of whether

the sign is separate or not. If the sign is separate, however, the sending item is considered

to be one character shorter than its actual size. If the sending operand is numeric-edited,

no de-editing takes place. If the usage of the sending operand is different from that of the
receiving operand, the sending operand is converted to the internal representation of the
receiving operand. If the sending operand is numeric and contains the PICTURE symbol "P’,
all digit positions specified with this symbol are considered to have the value zero and are
counted in the size of the sending operand.

Numeric or Numeric-Edited Receiving Item

When a numeric or numeric-edited item is the receiving item, alignment by decimal point
and any necessary zero filling is performed as defined under “Data Alignment” in Chapter 4.
The exception to this rule is when zeros are replaced because of editing requirements of the
receiving data item.

For signed numeric receiving items, the sign of the sending item is placed in the receiving
item. An unsigned numeric sending item causes a positive sign to be generated for the
receiving item. Also, any conversion of the representation of the sign, such as from a zoned
overpunched sign to a separate sign, is done as necessary.

For an unsigned numeric receiving item, the absolute value of the sending item is moved and
no operational sign is generated for the receiving item.

For an alphanumeric sending item, data is moved as if the sending item were described as

an unsigned numeric integer. The ANSI limit for the length of a numeric item is 18 digits;
however, HP COBOL II extends the limit to the length of an intermediate result, as defined in
the COMPUTE statement.

When the sending operand is numeric-edited, de-editing is implied to establish
the operand’s unedited numeric value, which may be signed; then the unedited
numeric value is moved to the receiving field. This means that blanks are
converted to zeros and insertion characters and floating characters are
stripped. Any sign characters are translated into the proper internal form

of the sign described by the USAGE clause.

Alphabetic Receiving Iltem

When a receiving field is described as alphabetic, justification and any necessary space filling
is performed as specified under “Data Alignment” in Chapter 4. If the size of the sending data
item is larger than the receiving data item, the excess characters are truncated to the right
after the receiving item is filled.

Table 9-2 summarizes the rules presented above.

PROCEDURE DIVISION Statements 9-63



MOVE

Table 9-2. Permissible Moves

Receiving Field

(The characters must be numeric.)

YS = the literal must consist only of numeric characters and is
treated as an External Decimal (integer) field.

Y6 = de-edited move

%'5
% 4\ )
<4 ) < (P (8
2 N\ % 0(:‘})6/ %@A/ 0)0"/ R0
2 2 '(2,, Q (o 1, O
A, N\ %\ D N5 NG, OGN s\ o\ 2R X,
o, O, A, 2N\, (r % 2
Source Field % 2 % 9 \2 2\ S % o
Group Y Y Y1 \4 Y1 Y? Y!
Alphabetic Y A A A Y A
Alphanumeric Y Y Y Y4 Y4 Y4 Y Y4
External Decimal (DISPLAY) Y1 A Y2 Y2 Y
Binary (COMP) Y A Y2 Y Y2
Numeric Edited Y A Y Ys Ys Ys Y Ys
Alphanumeric Edited Y Y Y A A A Y A
Zero; (numeric or alphanumeric) Y A Y Y3 Y3 v3 % Y3
Spaces Y Y Y A A A Y A
High-Value, Low-Value, Quotes Y A Y A A A Y A
All Literal Y Y Y Ys Y5 Y5 Y \E
Numeric Literal Y2 A Y2 Y Y Y Y2 Y
Nonnumeric Literal Y Y Y YS Ys YS Y YS
Packed Decimal (COMP-3) \4 A Y2 Y Y Y Y2 Y
Y = permissible; A - prohibited
Y1 = move without conversion
Y2 = permissible only if the decimal point is to the right
of the least significant digit.
Y3 = a numeric move
Y4 = the move is treated as an External Decimal (integer) field.

L.G200026_210b

9-64 PROCEDURE DIVISION Statements




MOVE

Example

FILE SECTION.
FD FILE-IN.
01 FILE-REC.
02 EMP-FIELD.
03 NAME PIC X(20).
03 AGE PIC 99.
03 EMP-NO  PIC X(9).
02 LOCALE PIC X(35).

WORKING-STORAGE SECTION.

01 FIELD.
02 SUB-F1 PIC BBXX VALUE SPACES.
02 SUB-F2  PIC XX/XX/XX VALUE SPACES.
01 NUM-IN PIC S9(3)V99 VALUE -12099.
01 CARD-NUM PIC S9(3)V99 SIGN IS TRAILING VALUE ZERO.
01 NUM-JUNK PIC 59(5) VALUE -12345
01 INFO-OUT.
02 EMP-FIELD.
03 NAME PIC X(20)BBB VALUE SPACES.
03 AGE PIC XXBBB VALUE SPACES.
03 EMP-NO PIC XXXBXXBXXXXBBB VALUE SPACES.
02 EXEMPTIONS PIC 99 VALUE ZERO.

Given the fields described above, the MOVE statement:
MOVE NUM-IN TO FIELD

gives the result:
1209RUILILUUUY

A group move is done with no conversion.

The statement, MOVE NUM-JUNK TO SUB-F2, gives the result:
12/34/51

The space to the right was supplied in order to fill the field, and no operational sign was
moved.

PROCEDURE DIVISION Statements 9-65



MOVE

Assuming that the current contents of FILE-REC are in order:

NAME JASONUPENNYLILILILILuUuL

AGE AGE

EMP-NO 585241215

LOCALE WASHINGTONUDISTRICTUOFLICOLUMBIAULILIL

and the current contents of INFO-0UT are all spaces for NAME, AGE, and EMP-NO, and zeros
for EXEMPTIONS, then the statement MOVE CORRESPONDING FILE-REC TO INFO-0UT gives the
following results in INFO-OUT,

NAME JASONUPENNYLILILIU UL UL
AGE 39U

EMP-NO 585012411121501LILI

EXEMPTIONS 00

Finally, the MOVE statement:
MOVE NUM-IN TO CARD-NUM

results in the contents of CARD-NUM being 1209R, since R is the zoned overpunch character for
9 in a negative number.

The following example contains a de-edited MOVE statement.
Given:
01 NUM-ITEM PIC s59(5)V99.
01 EDITED-ITEM PIC $22Z,ZZZ.99-.
MOVE -23.00 TO EDITED-ITEM
The following is a valid de-edited MOVE:
MOVE EDITED-ITEM TO NUM-ITEM.
The results of the example above are the same as in the following example:

MOVE -23.00 TO NUM-ITEM

9-66 PROCEDURE DIVISION Statements



MULTIPLY

MULTIPLY Statement

The MULTIPLY statement multiplies a number by one or more other numbers and stores the
result in one or more locations.

Syntax
The MULTIPLY statement has the following two formats:

Format 1

{ identitier—1

Jiteral—1 } BY { identifier—2 [ROUNDED] }

[ON SIZE ERRQR imperative-statement—-1 ]

Format 2

identifier—1 BY identifier-2
literal-1 literal-2

GIVING { identifier-3 [ROUNDED] }
[ON SIZE ERROR  imperative—statement—1]

LG200026_116

Parameters

identifier-1, numeric elementary items, except that in format 2, each identifier following
wdentifier-2., the GIVING keyword may be numeric-edited elementary items.
and so forth

literal-1 and  any numeric literal.
literal-2

PROCEDURE DIVISION Statements 9-67



MULTIPLY

Description

The composite of operands (that is, the hypothetical data item resulting from the
superimposition of all receiving data items aligned on their decimal points) in any given
MULTIPLY statement must not contain more than 18 digits.

The ROUNDED, SIZE, ERROR, and NOT ON SIZE ERROR phrases, as well as multiple results
and overlapping operands, are described in Chapter 8.

When you use format 1 of the MULTIPLY statement, literal-1 or the contents of identifier-1
is multiplied, in turn, by the identifiers following the BY keyword. The result of each
multiplication is stored in each of the identifiers following the BY keyword immediately after
that particular product is determined.

When format 2 is used, the value of identifier-1 or literal-1 is multiplied by the value of
wdentifier-2 or literal-2, and the resulting product is stored in each identifier following the

GIVING keyword.

Examples
MULTIPLY 2 BY ROOT, SQ-ROOT, ROOT-SQUARED.

If ROOT has the value 2, SQ-ROOT the value square root of 2 (1.41), and ROOT-SQUARED the
value 4, then the above MULTIPLY statement results in ROOT having the value 4, SQ-R0O0T
having twice the value the square root of 2 (2.82), and ROOT-SQUARED having the value 8.

Assuming ROOT to be 2, the following MULTIPLY statement assigns the value 4 to
ROOT-SQUARED:

MULTIPLY ROOT BY ROOT GIVING ROOT-SQUARED.

9-68 PROCEDURE DIVISION Statements



OPEN

OPEN Statement

The OPEN statement opens a specified file or files. It also performs checking and writing of
labels, and other input or output operations.

Syntax

INPUT { file~name—1 REVERSED e )
- WITH NO REWIND

OPEN < QUTPUT { file-name-2 [WITH NO REWIND]} - - « [
=Q ({file-name-3} - . .
EXTEND {file-name—4} « + - J
LG200026_117

Where file-name-1 through file-name-4 are the files to be opened.

Description

The NO REWIND phrase can only be used for sequential files. It has no meaning for indexed,
random, or relative files and must not be used for such files. When using ANSI74 entry point,
EXTEND can only be used for sequential files.

The REVERSED phrase is not implemented in HP COBOL II. If used, it is treated as a
comment. The REVERSED phrase is an obsolete feature of the 1985 ANSI COBOL standard.

You can use a single OPEN statement to open several files. The files to be opened need not
have the same organization or access. However, each file m