
LU 6.2 API Application
Programmer’s Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 3
Manufacturing Part Number: 30294-90008
E0692

U.S.A. June 1992

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1988, 1989, 1992 by Hewlett-Packard Company
2

Contents
1. The SNA Network and LU 6.2 API
Systems Network Architecture (SNA) . 19

Peer-to-Peer Communication . 20
Logical Units (LUs) . 21
LU Type 6.2 . 22
APPC . 23

An Example Transaction Without APPC . 23
An Example Transaction With APPC . 24

Hewlett-Packard’s LU 6.2 API. 25
Supported Languages . 25
IBM’s CICS . 25

2. Conversations
One-Way Conversation Without Confirm . 28
One-Way Conversation With Confirm. 29
Two-Way Conversation Without Confirm . 30
Two-Way Conversation With Confirm. 31
Establishing Conversations . 32

Locally Initiated Conversations . 32
Local Programmer Tasks . 32
Node Manager Tasks. 32

Remotely Initiated Conversations on MPE V . 33
Local Programmer Tasks . 33
Node Manager Tasks. 34
Remote Programmer Tasks. 34

Remotely Initiated Conversations on MPE XL . 34
Local Programmer Tasks . 35
Node Manager Tasks. 36
Remote Programmer Tasks. 36

3. Using Intrinsics
One-Way Conversation Without Confirm . 38

MCAllocate . 39
MCSendData . 40
MCDeallocate . 41

One-Way Conversation With Confirm. 42
MCConfirm . 42

Two-Way Conversation Without Confirm . 43
MCPrepToRcv . 43
MCRcvAndWait . 43

Two-Way Conversation With Confirm. 45
MCConfirmed . 45

LU 6.2 API Intrinsics . 46
Control Operator Intrinsics . 47

4. Conversation States
Reset State . 50
Send State. 51
3

Contents
Receive State .52
Confirm State. .54
Confirm Send State .55
Confirm Deallocate State .56
Deallocate State. .57
One-Way Conversation Without Confirm. .58
One-Way Conversation With Confirm .59
Two-Way Conversation Without Confirm. .60
Two-Way Conversation With Confirm .61

5. Intrinsic Descriptions
Syntax Conventions. .64

Syntax .64
Parameter Data Types .65
Status Parameter. .66
TP Intrinsics .68
TPStarted. .69

Syntax .69
Parameters .69
Description .70
Status Info Values .71

TPEnded. .72
Syntax .72
Parameters .72
Description .72
Status Info Values .73

Conversation Intrinsics .74
MCAllocate. .75

Syntax .75
Parameters .75
Description .78
Status Info Values .80

MCConfirm. .81
Syntax .81
Parameters .81
Description .81
Status Info Values .83

MCConfirmed. .84
Syntax .84
Parameters .84
Description .84
Status Info Values .85

MCDeallocate. .86
Syntax .86
Parameters .86
Description .87
Status Info Values .88

MCErrMsg .89
Syntax .89
4

Contents
Parameters . 89
Description. 89
Status Info Values . 90

MCFlush . 91
Syntax . 91
Parameters . 91
Description. 91
Status Info Values . 92

MCGetAllocate . 93
Syntax . 93
Parameters . 93
Description. 96

Remotely Initiated Conversations on MPE V . 97
Remotely Initiated Conversations on MPE XL . 97

Status Info Values . 100
MCGetAttr . 101

Syntax . 101
Parameters . 101
Description. 103
Status Info Values . 103

MCPostOnRcpt . 104
Syntax . 104
Parameters . 104
Description. 104
Status Info Values . 105

MCPrepToRcv . 106
Syntax . 106
Parameters . 106
Description. 108
Status Info Values . 108

MCRcvAndWait . 109
Syntax . 109
Parameters . 109
Description. 111
Status Info Values . 113

MCRcvNoWait . 114
Syntax . 114
Parameters . 114
Description. 116
Status Info Values . 117

MCReqToSend . 118
Syntax . 118
Parameters . 118
Description. 118
Status Info Values . 118

MCSendData . 119
Syntax . 119
Parameters . 119
Description. 120
5

Contents
Status Info Values .120
MCSendError. .121

Syntax .121
Parameters .121
Description .121
Status Info Values .122

MCTest .123
Syntax .123
Parameters .123
Description .124
Status Info Values .125

MCWait .126
Syntax .126
Parameters .126
Description .127
Status Info Values .128

6. Buffer Management
Control Information. .129
Send Buffer .130

Example 1: Sending Small Data Records .130
Example 2: An Allocation Error .131

Receive Buffer .132
Example 3: Receiving Data and Changing State .132
Example 4: Receiving Large Data Records .133

7. Debugging
Debugging Steps .136
The User Trace .137

Collecting the User Trace .138
Formatting the User Trace .141
Reading the User Trace .141

Field Descriptions .143

A. Status Info

B. Sample Programs
COBOL II Program .161
Pascal Program .171
CICS Program (PL/I) .181

C. State Transition Tables

D. LU 6.2 Verb Table

E. Transact Parameter Masks
The Parameter Mask. .198
6

Contents
Parameters for Future Expansion . 198
Parameter Mask Templates . 198
Using the Parameter Mask in TPs. 200
Examples . 200

F. Migrating Transaction Programs
TPs that Issue APPCCONTROL Commands . 212

Control Operator Intrinsics . 212
MPE HPCICOMMAND Intrinsic . 212
TRACEON Parameter of APPCCONTROL START . 212

Remotely Initiated TPs . 213
Source Code Changes to TPs . 213

TPs In Transact . 214

Glossary
7

Contents
8

Figures
Figure 1-1 . Node Types in an SNA Network. 20

Figure 1-2 . Type 2.1 Nodes in an SNA Network. 21

Figure 1-3 . Logical Mapping of LUs . 22

Figure 2-1 . One-Way Phone Conversation Without Confirm . 28

Figure 2-2 . One-Way Phone Conversation With Confirm . 29

Figure 2-3 . Two-Way Phone Conversation Without Confirm . 30

Figure 2-4 . Two-Way Phone Conversation With Confirm . 31

Figure 3-1 . One-Way Phone Conversation Without Confirm . 38

Figure 3-2 . Conversation Using MCAllocate . 39

Figure 3-3 . Conversation Using MCSendData . 40

Figure 3-4 . Conversation Using MCDeallocate . 41

Figure 3-5 . Conversation Using MCConfirm . 42

Figure 3-6 . Using MCPrepToRcv and MCRcvAndWait . 44

Figure 3-7 . Conversation Using MCConfirmed . 45

Figure 4-1 . Conversation States — One-Way W/O Confirm . 58

Figure 4-2 . Conversation States — One-Way With Confirm . 59

Figure 4-3 . Conversation States — Two-Way W/O Confirm . 60

Figure 4-4 . Conversation States — Two-Way With Confirm. 61

Figure 5-1 . Status Parameter Fields. 66

Figure 5-2 . Remote TP Deallocating a Conversation . 88

Figure 5-3 . Remotely Initiated TP on the HP 3000 . 99

Figure 5-4 . Queued Allocate Requests from Remote TPs . 100

Figure 5-5 . Conversation with Calls to MCRcvAndWait . 113

Figure 6-1 . Send and Receive Buffers . 130

Figure 6-2 . The Local TP Receives an Allocation Error . 131

Figure 6-3 . Receiving Data and Changing State . 133

Figure 6-4 . Receiving Large Data Records . 134

Figure 7-1 . User Trace of a Two-Way Conversation. 142

Figure B-1 . Data Set for the Example Program . 160
9

Figures
Figure B-2 . Structure of Example COBOL II Program. .161

Figure B-3 . Structure of Example Pascal Program .171
10

Tables
Intrinsics Used in Example Conversations 37
LU 66.2 API Intrinsics 46
Control Operator Intrinsics 47
Conversation States 49
Reset State Intrinsics 50
Send State Intrinsics 51
Receive State Intrinsics 53
Confirm State Intrinsics 54
Confirm Send State Intrinsics 55
Confirm Deallocate State Intrinsics 56
Confirm Deallocate State Intrinsics 57
Data Types for COBOL II and Transact 65
Data Types for Pascal and C 65
LU 6.2 API TP Instrinsics 68
LU 6.2 API Conversation Intrinsics 74
Intrinsics With Confirmation Responses 82
Intrinsics With Confirmation Requests 85
Mapping of CICS Commands to LU 6.2 Verbs 181
Meanings of EXEC Interface Block Values 181
Confirm State 185
Confirm Deallocate State 186
Confirm Send State 186
Deallocate State 187
Receive State 187
Reset State 190
Send State 190
LU 6.2 Verb Table 195
Intrinsics Requiring a 16-Bit Mask 199
Intrinsics Requiring a 32-Bit Mask 199
11

Tables
12

Preface
This manual serves two purposes: It is a training manual for
programmers who wish to create LU 6.2 API applications, and it also
serves as a reference manual.

NOTE The information in this manual can be used to create LU 6.2 API
applications on MPE V systems or MPE XL systems. Any differences
between LU 6.2 API on MPE V and LU 6.2 API on MPE XL are noted in
the manual.

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the
latest in a series of forward-compatible operating systems for the
HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will
encounter references to MPE XL, the direct predecessor of MPE/iX.
MPE/iX is a superset of MPE XL. All programs written for MPE XL will
run without change under MPE/iX. You can continue to use MPE XL
system documentation, although it may not refer to features added to
the operating system to support POSIX (for example, hierarchical
directories).

Finally, you may encounter references to MPE V, which is the operating
system for HP 3000s, not based on the PA-RISC architecture. MPE V
software can be run on the PA-RISC (Series 900) HP 3000s in what is
known as compatibility mode.
13

Audience
The audience for this manual is the HP 3000 applications programmer
who will participate in writing an LU 6.2 API application. The
programmer is assumed to have little or no knowledge of data
communications or the IBM environment. For more information in
these areas, see the list of related publications at the end of this
preface.
14

Organization
This manual is divided into the following sections and appendices:

Chapter 1, The SNA Network and LU 6.2 API, gives an overview of the
SNA environment and Advanced Program-to-Program Communication.
It explains the LU 6.2 architecture and Hewlett-Packard’s
implementation of LU 6.2 API.

Chapter 2, Conversations, describes what a conversation is and the
different kinds of conversations that application programs can have. It
explains the tasks necessary to establish a conversation.

Chapter 3, Intrinsic Overview, discusses how LU 6.2 API intrinsics are
used to implement the conversations described in chapter 2.

Chapter 4, Conversation States, gives an explanation of conversation
states and explains the relationship between states and conversations.

Chapter 5, Intrinsic Descriptions, describes each of the intrinsics
available with LU 6.2 API.

Chapter 6, Buffer Management, explains how LU 6.2 API manages its
send and receive buffers and the impact this has on LU 6.2 API
applications.

Chapter 7, Debugging, explains the user trace and the steps for
debugging LU 6.2 API applications.

Appendix A, Status Info, explains all the status info values that can be
returned by LU 6.2 API intrinsics.

Appendix B, Sample Programs, contains a sample transaction program,
in COBOL II and Pascal on the HP 3000 side, and in PL/1 on the IBM
side.

Appendix C, State Transition Tables, lists the intrinsics that can be
called from each state and the effect of each intrinsic on the state of a
conversation.

Appendix D, LU 6.2 Verb Table, maps the LU 6.2 architected verbs to
Hewlett-Packard’s LU 6.2 intrinsics.

Appendix E, Transact Parameter Masks, describes the parameter
masks used in Transact programs on MPE V systems.

Appendix F, Migrating Transaction Programs, provides information on
migrating LU 6.2 API applications from MPE V to MPE XL or from
earlier versions of LU 6.2 API/XL to the Node Type 2.1 version of LU
6.2 API/XL.
15

Related HP Publications
• COBOL II 3000 Reference Manual (32233-90001)

• COBOL II 3000/XL Reference Manual (31500-60001)

• Pascal 3000 Reference Manual (32106-90001)

• HP Pascal Reference Manual (31502-60005)

• HP C/XL Reference Manual (31506-60001)

• Transact Reference Manual (32247-60003)

• MPE XL Languages Migration Guides: Pascal/XL, FORTRAN
77/XL, COBOL II/XL (31502-60004)

• MPE V Command Reference Manual (32033-90006)

• MPE XL Commands Reference Manual (32650-60002)

• MPE/V Intrinsics Reference Manual (32033-90007)

• MPE XL Intrinsics Reference Manual (32650-60013)

• APPC Subsystem on MPE V Node Manager’s Guide (30253-90004)

• APPC Subsystem on MPE XL Node Manager's Guide (30294-61002)

• LU 6.2 API/V Node Manager’s Guide (30253-90002)

• LU 6.2 Base Node Manager’s Guide (30252-90001)

• SNA Link Services Reference Manual (30246-90003)

• SNA Link/XL Node Manager’s Guide (30291-61000)

• HP SNA Server/Access User’s Guide (30254-61000)

• Using the Node Management Services Utilities (32022-61005)

• HP SNA Products: IBM Host System Programmer’s Guides:

HP SNA Products: Manager’s Guide (5958-8542)

HP SNA Products: ACF/VTAM and ACF/NCP Guide (5958-8543)

HP SNA Products: Information Management Subsystem Guide
(5958-8545)

HP SNA Products: CICS Guide (5958-8546)

HP SNA Products: DISOSS Guide (5958-8547)

HP SNA Products: AS/400 Guide (5960-1629)
16

Related IBM Publications
• Systems Network Architecture Transaction Programmer’s Reference

Manual for LU Type 6.2 (GC30-3084)

• An Introduction to Advanced Program-to-Program Communication
(APPC) (GG24-1584)
17

18

1 The SNA Network and LU 6.2 API
Systems Network Architecture (SNA)
IBM has established a set of protocols that govern communication
between various types of machines and applications. This set of
protocols is called Systems Network Architecture (SNA).

SNA is an architecture designed to be independent of specific software
or hardware. In SNA, machines and applications are defined only in
terms of the functions they perform. Each machine or node in an SNA
network has a node type, which is determined by the set of data
communications functions it performs. For example, a Type 5 node is a
mainframe or host computer. Any machine that performs the data
communication functions defined by SNA for a mainframe computer
can act as a Type 5 node in an SNA network.

In the past, IBM has focused on centralized data processing, where data
is kept in one central location (usually a mainframe computer), and
remote processors use the data communication network to access the
data. Figure 1-1 shows a typical IBM network, with a centralized
mainframe that serves smaller processors in remote locations. An
HP 3000 serves as a remote processor in the IBM environment.

At the central location, the mainframe computer and the
communications controller work as a unit to send and receive data.
The communications controller helps the mainframe manage
communication with the remote locations so that the mainframe has
more power to process and manage data. A communications controller
is a Type 4 node.

At each of the remote locations, a cluster controller multiplexes
several terminals or other peripheral devices to a single data
communication line, making efficient use of the line between the cluster
controller and the mainframe. A cluster controller is a Type 2 node. The
HP 3000 functions as a Type 2 node.
19

The SNA Network and LU 6.2 API
Systems Network Architecture (SNA)
Figure 1-1 Node Types in an SNA Network

Peer-to-Peer Communication

As computers have become smaller and less expensive, companies have
replaced cluster controllers with computers like the HP 3000 that
adhere to Node Type 2 protocols. Using an HP 3000 as a cluster
controller allows a remote location to have local processing power as
well as a connection to the mainframe computer.

A newer version of the Type 2 node allows remote processors to take
advantage of their local processing power and perform more complex
data communication functions than traditional Type 2 nodes. This
newer node type is called Node Type 2.1, and the older Node Type 2 is
now referred to as Node Type 2.0. Type 2.1 nodes, or peer nodes, can
establish direct connections between themselves without having to rely
on a mainframe or a communications controller to manage data traffic.
Communication between Type 2.1 nodes is called peer-to-peer
communication.

IBM AS/400s function as Type 2.1 nodes. HP 3000s running MPE XL
can also function as Type 2.1 nodes. Figure 1-2 shows an SNA network
without a host node, where two AS/400s and one HP 3000 communicate
peer-to-peer as Type 2.1 nodes.
20 Chapter 1

The SNA Network and LU 6.2 API
Systems Network Architecture (SNA)
Figure 1-2 Type 2.1 Nodes in an SNA Network

NOTE The APPC subsystem on MPE XL allows the HP 3000 to function as a
Type 2.0 or Type 2.1 node. On MPE V, however, the HP 3000 functions
only as a Type 2.0 node. For more information on Node Type 2.1, see the
APPC Subsystem on MPE XL Node Manager’s Guide.

Logical Units (LUs)

A Logical Unit (LU) is the set of data communication functions
required by an end user in an SNA network. In SNA, an end user is
defined as the ultimate destination of data. So, an end user can be a
peripheral device (like a printer or a terminal) or an application
program. A Logical Unit is like a port through which an end user sends
and receives data.

Just as different node types define how machines will communicate,
different Logical Unit types define how end users will communicate
across the network. Since different peripheral devices use different
communication protocols and data formats, SNA assigns an LU type to
each kind of peripheral. For example, an LU Type 2 (LU.T2) describes
the communication protocols and data format for any terminal that
uses the IBM 3270 data stream.

Logical Units can communicate only with other Logical Units of the
same type. An application on the mainframe that will exchange data
with an LU.T2 terminal must have its own Type 2 Logical Unit through
which to transmit and receive data. Figure 1-3 shows a logical mapping
between a terminal at a remote location and an application on the
mainframe computer.
Chapter 1 21

The SNA Network and LU 6.2 API
Systems Network Architecture (SNA)
Figure 1-3 Logical Mapping of LUs

LU Type 6.2

Logical Unit types are usually used for device emulation. LU.T2 devices
or applications emulate IBM 3270 terminals, and LU.T1 and LU.T3
devices or applications emulate printers. Logical Unit Type 6.2 differs
from other LU types in that it does not emulate a device. LU 6.2
applications exchange raw data in a format called the generalized
data stream. LU 6.2 applications can use the generalized data stream
to exchange unformatted data, binary data, or data formatted for
non-SNA applications and devices.

The LU 6.2 architecture defines two kinds of Type 6.2 LUs: dependent
LUs and independent LUs.

• A dependent LU can communicate only with dependent LUs on a
Type 5 (host) node. It cannot issue a BIND to initiate a session.
When a dependent LU wants a session with the host, it sends an
INIT_SELF request and waits for the host to send the BIND. A
dependent LU can carry on only one session at a time.

• An independent LU can communicate directly with an
independent LU on a Type 2.1 (peer) node, like an IBM AS/400. An
independent LU can initiate a session by sending a BIND to the
remote LU, or it can receive a BIND from the remote LU.

An independent LU on the HP 3000 can carry on multiple,
simultaneous (parallel) sessions with independent LUs on remote
systems.Some remote systems, like the IBM AS/400, can perform
intermediate routing between nodes in an SNA network. An
independent LU connected to one of these systems can take
advantage of its routing capabilities to communicate with nodes that
are not directly connected to the HP 3000.

NOTE On MPE XL, Type 6.2 LUs may be configured as independent or
dependent. On MPE V, all Type 6.2 LUs are dependent LUs.
22 Chapter 1

The SNA Network and LU 6.2 API
Systems Network Architecture (SNA)
APPC

Communication between LU 6.2 applications is called Advanced
Program-to-Program Communication (APPC). APPC and LU 6.2
allow programs or applications running on different processors to
communicate and exchange data.

When data can be processed at both ends of a communication line,
fewer data transfers are necessary to perform certain transactions. If a
user must run applications on multiple processors to complete a
transaction, a single program on the user’s local system can
automatically start up the remote applications. The user then has to
issue only one command to initiate multiple processes on different
computers.

The following examples illustrate the advantages of APPC. In the first
example, a user at a site without APPC performs a transaction
involving applications on the local processor and a remote processor. In
the second example, a user performs the same transaction using APPC.

An Example Transaction Without APPC

A clerk works in a satellite office of a large company. The satellite office
receives payments from residents in its local area. Payment
information is kept on the local processor for up to three months. Any
payment information older than three months is kept at the central
office on a mainframe computer. The local processor does not have
APPC.

A customer comes in who requires payment information for the last six
months. The clerk must do the following:

1. Log on to the local processor.

2. Run the appropriate application.

3. Gather payment information for the last three months.

4. End the application.

5. Log on to the mainframe at the central office.

6. Run the appropriate mainframe application.

7. Gather the remainder of the payment information.

8. End the application.

9. Log off the mainframe.

If this is a process that has to be repeated many times during the day, it
can become very cumbersome. The clerk must know which information
is located on which computer. The clerk must also be able to run two
different applications in order to retrieve the information.
Chapter 1 23

The SNA Network and LU 6.2 API
Systems Network Architecture (SNA)
An Example Transaction With APPC

The following example is the same transaction described above, but the
local computer has APPC capabilities, and an APPC application on the
local system automates communication with the central mainframe.
Now the clerk must perform the following tasks:

1. Log on to the local processor.

2. Run the appropriate application.

3. Gather all pertinent information, whether it is on the local computer
or the mainframe at the central office.

4. End the application.

The clerk has to run only one application on the local computer, because
the local APPC application does the following:

1. Logs on to the mainframe.

2. Executes the mainframe application.

3. Gathers the appropriate information.

4. Ends the application.

5. Logs off the mainframe.

If this is a process that is done repeatedly, and part of the information
must remain at the central location, then an APPC application saves a
great deal of time. Also, the clerk does not have to know where the data
resides in order to run the application. The clerk performs the same
steps whether the data resides on the local processor or the central
mainframe.
24 Chapter 1

The SNA Network and LU 6.2 API
Hewlett-Packard’s LU 6.2 API
Hewlett-Packard’s LU 6.2 API
APPC allows two programs to communicate, and LU 6.2 defines the
actions or verbs that each program may execute in an APPC
application.

The Application Program Interface (API) consists of a set of intrinsics.
These intrinsics are predefined subroutines that implement the LU 6.2
architected verbs. They can be called from within application programs.

Hewlett-Packard’s LU 6.2 API implements the set of mapped
conversation verbs defined for LU 6.2. SNA defines two types of
conversations between communicating programs: basic
conversations and mapped conversations.

In a basic conversation (one that uses basic conversation verbs), the
application must perform some error recovery and data formatting
activities.

In a mapped conversation (one that uses mapped conversation
verbs), the application focuses only on data handling and relies on an
underlying program or system to provide error recovery and data
formatting. Hewlett-Packard's LU 6.2 API supports mapped
conversations.

Supported Languages

The programming languages supported by LU 6.2 API intrinsics are
listed below, for MPE V and MPE XL systems:

IBM’s CICS

Hewlett-Packard’s LU 6.2 API intrinsics are often used to write
applications that communicate with IBM LU 6.2 applications running
under the Customer Information Control System (CICS). CICS is
a subsystem that enables data transmitted over communication lines to
be processed by host application programs. These host application
programs can be written in COBOL, PL/1, or Assembler. Appendix B
contains a sample CICS program and an HP 3000 program that
communicates with it using LU 6.2 API.

MPE V: MPE XL:

COBOL II COBOL II

Pascal Pascal

Transact Transact

C

Chapter 1 25

The SNA Network and LU 6.2 API
Hewlett-Packard’s LU 6.2 API
26 Chapter 1

2 Conversations
An LU 6.2 application is called a transaction program (TP).
Transaction programs are written in pairs to communicate with each
other across a network. Every TP on the HP 3000 will have at least one
partner TP on a remote system that is designed to communicate with it.
The communication between two TPs is called a conversation.

Conversations take place across sessions. An APPC session is
analogous to the telephone connection that must be established before
two people can conduct a conversation across the telephone network.
Once a transaction program is running, it can allocate multiple
conversations with TPs on remote systems. Each conversation requires
one session.

On MPE XL, the APPC subsystem can support a maximum of 256
sessions at the same time. On MPE V, the maximum number of sessions
is 8. These sessions must be shared by all the TPs running on the APPC
subsystem. Therefore, on MPE XL, one TP can carry on 256
simultaneous conversations, but only if it is the only TP running.
Likewise, 256 TPs can be running simultaneously (on MPE XL), but
none of them may carry on more than one conversation. The available
sessions can be activated, deactivated, and reapportioned among the
active TPs as needed. For more information on session limits and
session management, see the APPC Subsystem on MPE XL Node
Manager’s Guide, or the APPC Subsystem on MPE V Node Manager’s
Guide.

Two types of conversations can be conducted between TPs: one-way
conversations and two-way conversations. In a one-way conversation,
data travels in only one direction, and in a two-way conversation, both
sides send and receive data.

Whether a conversation is one-way or two-way, the two sides must
remain synchronized for communication to take place. The LU 6.2
architecture allows a TP to ask its partner whether the conversation is
synchronized and whether everything is going smoothly on the remote
side. One TP sends a confirmation request, and the other TP must
respond with a confirmation response.

How confirmation is used in a conversation is up to the TP
programmers. It can be used, for example, to verify that a conversation
has been allocated properly and that the remote TP is ready to receive
data. It can also be used after data is sent, to verify that the remote TP
received everything the local TP sent. If a conversation uses
confirmation requests and responses, it is called a conversation with
confirm.

This chapter uses a phone conversation as an analogy to illustrate
one-way and two-way conversations with and without confirm.
27

Conversations
One-Way Conversation Without Confirm
One-Way Conversation Without Confirm
In a one-way conversation, only one TP sends data. This section
describes the simplest type of conversation: a one-way conversation
without confirm.

Figure 2-1 is an illustration of a one-way phone conversation without
confirm. Notice that data (in this case, the message) is only transmitted
in one direction. All other transmitted information is control
information, used by the two sides to mark the beginning and ending
of the conversation and to establish whose turn it is to talk.

Figure 2-1 One-Way Phone Conversation Without Confirm
28 Chapter 2

Conversations
One-Way Conversation With Confirm
One-Way Conversation With Confirm
In a one-way conversation with confirm, the side that sends the data
requests confirmation from the receiving side that the conversation is
synchronized. Figure 2-2 illustrates a one-way conversation in which
the local TP asks the remote TP for confirmation that it received all the
data the local TP sent.

Figure 2-2 One-Way Phone Conversation With Confirm

In a one-way conversation with confirm, the caller does not hang up
until it has received confirmation that the conversation is synchronized.
Once synchronization has been confirmed, each side ends the
conversation independently of the other.
Chapter 2 29

Conversations
Two-Way Conversation Without Confirm
Two-Way Conversation Without Confirm
In a two-way conversation, both sides send and receive data. Because
the two sides must take turns talking, they use the following protocol:

1. Only one person can talk at a time.

2. The person that initiated the conversation talks first after
communication is established.

3. The person talking must relinquish control before the other person
can speak.

4. The person with permission to speak is the only one who can end the
conversation.

Figure 2-3 is an illustration of a two-way conversation without confirm.
Because a two-way conversation is more complex than a one-way
conversation, more control information is needed to manage it.

Figure 2-3 Two-Way Phone Conversation Without Confirm
30 Chapter 2

Conversations
Two-Way Conversation With Confirm
Two-Way Conversation With Confirm
In a two-way conversation with confirm, the sending side issues a
confirmation request and must wait for confirmation from the receiving
side before transmitting any more information. Figure 2-4 is an
illustration of a two-way conversation with confirm.

Figure 2-4 Two-Way Phone Conversation With Confirm

Confirmation ensures that the two sides of the conversation remain
synchronized, but it increases the amount of control information and
the number of transmissions necessary to transmit data.
Chapter 2 31

Conversations
Establishing Conversations
Establishing Conversations
TP conversations can be locally initiated (initiated by the TP on the
HP 3000), or remotely initiated (initiated by the TP on the remote
system). This section describes the tasks that the local application
programmer, the node manager, and the remote application
programmer must perform in order to establish a locally or remotely
initiated conversation.

Locally Initiated Conversations

The following things must occur for a local TP to initiate a conversation:

1. An APPC session of the appropriate session type must be
established.

2. A local end user must run the local TP.

3. The local TP must send an allocate request over the session assigned
to it, to request a conversation with the remote TP.

4. The remote TP must be coded to receive the allocate request from
the local TP.

Note that the session must be established before the local TP can use it
to send the allocate request. This section describes the tasks that the
local application programmer and the node manager must perform in
order to establish a locally initiated conversation.

Local Programmer Tasks

To prepare for a locally initiated conversation, you must do the
following:

1. Work with the programmer on the remote system to design and code
the TP.

2. Ask the node manager for the name of an appropriately configured
session type, or ask the node manager to configure a session type for
the conversation. The session type must direct data to the remote
LU that serves the remote TP.

3. Code the name of the session type into the SessionType parameter
of the MCAllocate intrinsic.

Node Manager Tasks

To prepare for a locally initiated conversation, the node manager must
do the following:
32 Chapter 2

Conversations
Establishing Conversations
1. Configure an appropriate session type. For information on
configuring session types, see the APPC Subsystem on MPE XL Node
Manager’s Guide or the LU 6.2 API/V Node Manager’s Guide.

2. Tell the application programmer the name of the session type. The
programmer must code the name of the session type into the local
TP.

3. Activate a session of the appropriate session type, or configure one
for automatic activation at subsystem startup. For more information
on session activation, see the APPC Subsystem on MPE XL Node
Manager’s Guide or the APPC Subsystem on MPE V Node Manager’s
Guide.

Remotely Initiated Conversations on MPE V

The following things must occur for a remote TP to initiate a
conversation on MPE V:

1. An APPC session of the appropriate session type must be
established.

2. The remote TP must issue an allocate request over that session,
specifying the name of the job that runs the local TP with which it
wants a conversation.

3. The APPC subsystem must receive the allocate request and stream
the job that runs the local TP.

4. The local TP must be coded to receive the allocate request from the
remote TP.

Local Programmer Tasks

To prepare for remotely initiated conversations, you must do the
following:

1. Work with the programmer on the remote system to design and code
the TP. The local TP must call the MCGetAllocate intrinsic to
receive an allocate request from the remote TP.

2. Ask the node manager for the name of an appropriately configured
session type, or ask the node manager to configure a session type for
the conversation. The session type must direct data to the remote
LU that serves the remote TP.

3. Code the name of the session type into the SessionType parameter
of the MCGetAllocate intrinsic.

4. Tell the node manager the executable file name of the TP. The
executable file may reside in any group and account. The node
manager will create a job to run the TP.
Chapter 2 33

Conversations
Establishing Conversations
5. Ask the node manager for the name of the job file that runs the local
TP, and tell the programmer on the remote system what the job file
name is. The remote system must send the name of the job file in the
allocate request.

Node Manager Tasks

To prepare for a remotely initiated conversation on MPE V, the node
manager must do the following:

1. Configure an appropriate session type. See the LU 6.2 API/V Node
Manager’s Guide for information on session type configuration.

2. Tell the application programmer the name of the session type. The
programmer must code the name of the session type into the local
TP.

3. Activate a session of the appropriate session type, or configure one
for automatic activation at subsystem startup.

4. Create a job that runs the executable TP file. The job file must be
located in the APPC.SYS group and account. See the LU 6.2 API/V
Node Manager’s Guide for more information.

Remote Programmer Tasks

To prepare a remote program to initiate a conversation with an HP TP
on MPE V, the remote programmer must do the following:

1. Design and code the program to initiate a conversation with the
corresponding TP on the HP 3000.

2. Make sure that the remote TP passes the proper job name in the
allocate request. The HP application programmer must tell the
remote TP programmer which job name to use.

Remotely Initiated Conversations on MPE XL

The following things must occur for a remote TP to initiate a
conversation with a local TP on MPE XL:

1. An APPC session of the appropriate session type must be
established.

2. The remote TP must issue an allocate request over that session,
specifying the name of the local TP with which it wants a
conversation.

3. The APPC subsystem must receive the allocate request, look up the
local TP name in the APPC subsystem configuration file, and
determine from the configuration file what to do with the allocate
request.
34 Chapter 2

Conversations
Establishing Conversations
a. If the local TP is configured to conduct multiple remotely initiated
conversations, and if it is already active and in conversation, the
APPC subsystem must queue the allocate request until the local
TP finishes the current conversation and calls the
MCGetAllocate intrinsic again. If the local TP is not currently
running, the APPC subsystem must stream the job that runs the
local TP.

b. If the local TP is configured to conduct only one remotely initiated
conversation, the APPC subsystem must stream the job that runs
the local TP.

4. The local TP must be coded to receive the allocate request from the
remote TP.

NOTE On MPE XL, any local TPs that will conduct remotely initiated
conversations must be configured through NMMGR/XL. See the APPC
Subsystem on MPE XL Node Manager’s Guide for information on TP
configuration.

Local Programmer Tasks

To prepare for remotely initiated conversations on MPE XL, you must
do the following:

1. Work with the programmer on the remote system to design and code
the TP. The local TP can be designed to receive multiple allocate
requests from the remote TP, or it can be designed to receive only
one allocate request. A TP designed to receive multiple allocate
requests must call the MCGetAllocate intrinsic multiple times. A
TP designed to receive only one allocate request must call the
MCGetAllocate intrinsic only once.

2. Together with the programmer on the remote system, decide on a
name for the TP. Make sure you and the other programmer agree on
the TP name; it must be coded into the local TP, and it must be sent
by the remote system in the allocate request. Tell the node manager
the TP name. The node manager must configure the TP name in the
APPC subsystem configuration file.

3. Code the TP name into the LocalTPName parameter of the
MCGetAllocate intrinsic and the LocalTPName parameter of the
TPStarted intrinsic.

4. Ask the node manager for the name of an appropriately configured
session type, or ask the node manager to configure a session type for
the conversation. The session type must direct data to the remote
LU that serves the remote TP.

5. Code the name of the session type into the SessionType parameter
of the MCGetAllocate intrinsic.
Chapter 2 35

Conversations
Establishing Conversations
6. Tell the node manager the executable file name of the TP. The
executable file may reside in any group and account. The node
manager will create a job to run the TP.

7. Tell the node manager whether the TP calls the MCGetAllocate
intrinsic multiple times or only once. The node manager must
configure the TP to accept either single or queued allocate requests.

8. Decide whether you want to start the TP yourself or have the APPC
subsystem start the TP. While you are debugging the TP, you might
want to start it yourself. However, once the TP is working, you
should have the APPC subsystem start the TP when it receives an
allocate request from the remote TP. Tell the node manager whether
to configure the TP for manual or automatic startup.

9. Tell the node manager how long the local TP should wait for an
allocate request from the remote TP before the MCGetAllocate
intrinsic times out. The node manager will configure the time-out
value.

Node Manager Tasks

To prepare for a remotely initiated conversation on MPE XL, the node
manager must do the following:

1. Configure an appropriate session type.

2. Tell the application programmer the name of the session type. The
programmer must code the name of the session type into the local
TP.

3. Activate a session of the appropriate session type, or configure one
for automatic activation at subsystem startup.

4. Create a job that runs the executable TP file. See the APPC
Subsystem on MPE XL Node Manager’s Guide for more information.

5. Configure the TP name, the job name, the time-out value, whether
the TP accepts queued allocate requests, and whether the
programmer will start the TP manually. See the APPC Subsystem on
MPE XL Node Manager’s Guide for information on TP configuration.

Remote Programmer Tasks

To prepare a remote program to initiate a conversation with an HP TP
on MPE XL, the remote programmer must do the following:

1. Design and code the program to initiate a conversation with the
corresponding TP on the HP 3000.

2. Make sure that the remote TP passes the proper TP name in the
allocate request. The HP application programmer must tell the
remote TP programmer which TP name to use.
36 Chapter 2

3 Using Intrinsics
Chapter 2 , “Conversations,” introduced the types of conversations in
which transaction programs can participate. This chapter explains how
LU 6.2 API intrinsics are used to create the conversations described in
Chapter 2 , “Conversations.”

Table 3-1 lists the intrinsics that will be discussed in this chapter. The
list is a subset of the LU 6.2 API intrinsics. Chapter 5 , “Intrinsic
Descriptions,” contains a complete description of all of the intrinsics.

Table 3-1 Intrinsics Used in Example Conversations

Intrinsic Definition

MCAllocate Establishes a mapped conversation between TPs.

MCConfirm Sends a confirmation request to the remote TP and waits for a reply.

MCConfirmed Sends a confirmation response to a remote TP that has issued a
confirmation request.

MCDeallocate Ends a mapped conversation between TPs.

MCPrepToRcv Informs the remote TP that the local TP is now ready to receive data.

MCRcvAndWait Waits for information to arrive on the mapped conversation and then
receives the information. The information can be data, conversation status,
or request for confirmation.

MCSendData Sends data to the remote TP.
37

Using Intrinsics
One-Way Conversation Without Confirm
One-Way Conversation Without Confirm
In this section, the one-way conversation introduced in Chapter 2 ,
“Conversations,” is described in terms of the intrinsics you would use to
create it.

Figure 3-1, the one-way phone conversation without confirm, is
reproduced below. In the following sections, the intrinsics used to create
this conversation will be discussed and added to the illustration.

Figure 3-1 One-Way Phone Conversation Without Confirm
38 Chapter 3

Using Intrinsics
One-Way Conversation Without Confirm
MCAllocate

MCAllocate allocates network resources and establishes a conversation
with the remote TP. After the MCAllocate intrinsic has executed, the
local TP is ready to send data, and the remote TP is ready to receive it.
The MCAllocate intrinsic replaces “person dials number,” as shown in
Figure 3-2.

Figure 3-2 Conversation Using MCAllocate
Chapter 3 39

Using Intrinsics
One-Way Conversation Without Confirm
MCSendData

The MCSendData intrinsic is the vehicle used by the local TP to send
information to the remote TP. The MCSendData intrinsic replaces
“person gives message,” as shown in Figure 3-3.

Figure 3-3 Conversation Using MCSendData
40 Chapter 3

Using Intrinsics
One-Way Conversation Without Confirm
MCDeallocate

The local TP calls MCDeallocate to end the conversation and deallocate
the resources used by the conversation. The MCDeallocate intrinsic
replaces “person hangs up,” as shown in Figure 3-4.

Figure 3-4 Conversation Using MCDeallocate
Chapter 3 41

Using Intrinsics
One-Way Conversation With Confirm
One-Way Conversation With Confirm
The synchronization level of a conversation (whether it will use confirm
or not) is established when the conversation is initiated, in a parameter
of the MCAllocate intrinsic. Figure 3-5 illustrates a one-way
conversation with confirm, using the MCConfirm intrinsic.

MCConfirm

The MCConfirm intrinsic sends a confirmation request to the remote TP
and waits for a response. MCConfirm replaces (person asks “Did you get
the message?”).

Figure 3-5 Conversation Using MCConfirm
42 Chapter 3

Using Intrinsics
Two-Way Conversation Without Confirm
Two-Way Conversation Without Confirm
In order to carry on a two-way conversation, a TP must be able to
inform its partner that it is finished sending data and is ready to
receive. It also must wait for data sent by its partner and receive the
data when it arrives. The two-way conversation illustrated in Figure
3-6 uses the MCPrepToRcv and MCRcvAndWait intrinsics as well as the
intrinsics already introduced.

MCPrepToRcv

The local TP uses the MCPrepToRcv intrinsic to relinquish control of the
conversation and give the remote TP permission to send data. It
replaces “person relinquishes control of conversation.”

MCRcvAndWait

The MCRcvAndWait intrinsic waits for data from the remote TP and
receives data when it arrives. The WhatReceived parameter of the
MCRcvAndWait intrinsic tells the local TP what it has received: control
information or data. A TP cannot receive both control information and
data in the same call to MCRcvAndWait ; it must issue a separate call to
MCRcvAndWait for each one.

The two calls to MCRcvAndWait in Figure 3-6 perform different
functions: The first call receives the data being sent, and the second call
receives notification that the remote TP is ready to receive data.
Chapter 3 43

Using Intrinsics
Two-Way Conversation Without Confirm
Figure 3-6 Using MCPrepToRcv and MCRcvAndWait
44 Chapter 3

Using Intrinsics
Two-Way Conversation With Confirm
Two-Way Conversation With Confirm
Figure 3-7 illustrates a two-way conversation with confirm. Notice that,
in this example, the MCDeallocate intrinsic is used to request
confirmation, wait for a confirmation response, and then deallocate the
conversation. This type of deallocation is specified by setting the
DeallocateType parameter of the MCDeallocate intrinsic to
CONFIRM.

MCConfirmed

In a two-way conversation with confirm, the MCConfirmed intrinsic is
called in response to a confirmation request from the remote TP. It
replaces person responds “Yes.”

Figure 3-7 Conversation Using MCConfirmed
Chapter 3 45

Using Intrinsics
LU 6.2 API Intrinsics
LU 6.2 API Intrinsics
LU 6.2 API intrinsics are used to set up the resources for distributed
transactions, allocate and conduct conversations between transaction
programs, and release LU 6.2 resources after transactions have
completed. Table 3-2 lists all the LU 6.2 API intrinsics and gives a brief
description of each.

Table 3-2 LU 66.2 API Intrinsics

Intrinsic Definition

TPStarted Initializes access to the LU 6.2 API intrinsics and reserves resources for a transaction
program.

TPEnded Terminates access to the LU 6.2 API intrinsics and releases resources for a transaction
program.

MCAllocate Establishes a mapped conversation between TPs.

MCConfirm Sends a confirmation request to the remote TP and waits for a reply.

MCConfirmed Sends a confirmation response to a remote TP that has issued a confirmation request.

MCDeallocate Ends a mapped conversation between TPs.

MCErrMsg Provides the message corresponding to a given status info value.

MCGetAllocate Receives the request from a remote TP to start a conversation and then establishes the
conversation.

MCGetAttr Returns information about a mapped conversation.

MCFlush Flushes the LU’s send buffer.

MCPostOnRcpt Allows the LU to check the contents of the receive buffer for the specified conversation.

MCPrepToRcv Informs the remote TP that the local TP is now ready to receive data.

MCRcvAndWait Waits for information to arrive on the mapped conversation and then receives the
information. The information can be data, conversation status, or request for
confirmation.

MCRcvNoWait Similar to MCRcvAndWait , this intrinsic receives any information that has arrived on
the conversation but will not wait if no data has arrived.

MCReqToSend Notifies the remote TP that the local TP is requesting to send data.

MCSendData Sends data to the remote TP.

MCSendError Informs the remote TP that the local TP has detected an error.

MCTest Tests the conversation for the receipt of information.

MCWait Waits for the receipt of information on one or more conversations.
46 Chapter 3

Using Intrinsics
Control Operator Intrinsics
Control Operator Intrinsics
In addition to the intrinsics used by transaction programmers, LU 6.2
API/XL provides a set of control operator intrinsics that allow node
managers and system managers to control APPC sessions and manage
the APPC subsystem. The control operator intrinsics are described in
detail in the APPC Subsystem on MPE XL Node Manager’s Guide.
Table 3-3 lists the control operator intrinsics and gives a brief
description of each.

NOTE The control operator intrinsics are available only on MPE XL.

Table 3-3 Control Operator Intrinsics

Intrinsic Description

APPCStart Starts up the APPC subsystem and all APPC sessions configured for
automatic activation.

APPCSessions Changes the session limits for a session type and activates or deactivates
APPC sessions to meet the new limits.

APPCStatus Returns an integer code that indicates whether the APPC subsystem is
active.

APPCStop Terminates the APPC subsystem and all active APPC sessions.
Chapter 3 47

Using Intrinsics
Control Operator Intrinsics
48 Chapter 3

4 Conversation States
Conversation states indicate the status of each side of a conversation.
Application programmers on different processors use conversation
states to discuss how their TPs will communicate. Certain intrinsics (or
verbs, depending on the implementation) can be called from each state,
and control information is exchanged through parameters of the
intrinsics. Control information sent by the remote TP may determine
the state of the local side of the conversation.

This chapter defines all the possible states of a conversation and
explains how the various intrinsics affect these states. The possible
states of a conversation are listed in Table 4-1.

Table 4-1 Conversation States

State Meaning

Reset The TP can allocate a mapped conversation.

Send The TP can send data or request confirmation.

Receive The TP can receive information from the remote TP.

Confirm The TP can reply to a confirmation request and enter or reenter
Receive state.

Confirm Send The TP can reply to a confirmation request and enter Send state.

Confirm Deallocate The TP can reply to a confirmation request and enter Deallocate state.

Deallocate The TP can Deallocate the mapped conversation locally.
49

Conversation States
Reset State
Reset State
A TP calls the TPStarted intrinsic to gain access to LU 6.2 API. Once
TPStarted has executed successfully, the TP is in Reset state.

Reset state is the only state associated with the entire TP. The
remainder of the states are associated with individual conversations.
From Reset state, a TP can call either MCAllocate or MCGetAllocate to
allocate a conversation with a remote TP.

When the local TP calls MCAllocate , two things occur: 1) the local side
of a conversation is established and placed in Send state; 2) a request is
sent to the remote TP to start a conversation.

The local TP calls MCGetAllocate when it receives a request from a
remote TP to start a conversation. When a conversation is requested by
the remote TP, the local side of the conversation begins in Receive state.

On MPE V, a single TP can allocate up to 8 conversations, but it can call
MCGetAllocate only once, so only one of its conversations can be
initiated by the remote TP; the local TP must allocate the rest of its
conversations by calling the MCAllocate intrinsic. On MPE XL, a single
TP can allocate up to 256 conversations, and any number of these can
be initiated by the remote TP.

Table 4-2 lists the intrinsics that can be called from Reset state. It also
indicates what state the local side of the conversation is in after each
intrinsic executes successfully. See Chapter 5 , “Intrinsic Descriptions,”
for more information on intrinsics.

Table 4-2 Reset State Intrinsics

Intrinsic State Entered Upon Successful Execution

MCAllocate Send

MCGetAllocate Receive
50 Chapter 4

Conversation States
Send State
Send State
In Send state, a TP controls the conversation. A TP in Send state stays
in Send state unless it requests to enter another state or the remote TP
detects an error and forces the local TP to enter another state.

Table 4-3 lists all the intrinsics that can be called from Send state. It
also indicates what state the local TP is in after each intrinsic executes
successfully. Notice that MCRcvAndWait can place the local side of the
conversation in several different states, depending on the type of
information it receives from the remote TP.

The MCDeallocate and MCTest intrinsics have certain parameters
listed with them, because only calls with those parameters are allowed
in Send state. See the descriptions of MCDeallocate and MCTest in
Chapter 5 , “Intrinsic Descriptions,” for more information.

Table 4-3 Send State Intrinsics

Intrinsic State Entered
Upon Successful
Execution

MCConfirm Send

MCDeallocate
DeallocateType=

{ 1 (FLUSH) }
{ 2 (ABEND) }
{ 6 (CONFIRM) }

Reset

MCErrMsg Send

MCFlush Send

MCGetAttr Send

MCPrepToRcv Receive

MCRcvAndWait
WhatReceived=

{ 1 (DATA_COMPLETE) }
{ 2 (DATA_INCOMPLETE) }
{ 4 (SEND) }
{ 5 (CONFIRM) }
{ 6 (CONFIRM_SEND) }
{ 7 (CONFIRM_DEALLOCATE) }

Receive
Receive
Send
Confirm
Confirm Send
Confirm Deallocate

MCSendData Send

MCSendError Send

MCTest Test = 1 (REQUEST_TO_SEND_RECEIVED Send
Chapter 4 51

Conversation States
Receive State
Receive State
In Receive state, a local TP can receive data and control information
from a remote TP. A local TP can enter Receive state from Send state by
calling either MCPrepToRcv or MCRcvAndWait . Both of these intrinsics
cause the local side of the conversation to change from Send state to
Receive state and the remote side to change from Receive state to Send
state.

Since the TP in Send state controls the conversation, a TP in Receive
state must wait to be placed in Send state by the controlling TP. A local
TP in Receive state can request to enter Send state by calling the
MCReqToSend intrinsic. The remote TP in Send state receives the
request, enters Receive state, and places the local TP in Send state.

NOTE If a TP in Receive state detects an error, it can enter Send state directly
by calling MCSendError .

Table 4-4 lists the intrinsics that can be called from Receive state. It
also indicates what state the TP is in after each intrinsic executes
successfully. MCRcvAndWait and MCRcvNoWait can place the local side of
the conversation in several different states, depending on the type of
information received from the remote TP.

From Receive state, the MCDeallocate intrinsic can be called only with
the DeallocateType parameter set to 2 (ABEND). See the description
of MCDeallocate in Chapter 5 , “Intrinsic Descriptions,” for more
information.
52 Chapter 4

Conversation States
Receive State
Table 4-4 Receive State Intrinsics

Intrinsic State Entered
Upon Successful
Execution

MCDeallocate
DeallocateType= 2 (ABEND)

Reset

MCErrMsg Receive

MCGetAttr Receive

MCPostOnRcpt Receive

MCRcvAndWait or MCRcvNoWait

WhatReceived= { 1 (DATA_COMPLETE) }
{ 2 (DATA_INCOMPLETE) }
{ 4 (SEND) }
{ 5 (CONFIRM) }
{ 6 (CONFIRM_SEND) }
{ 7 (CONFIRM_DEALLOCATE) }

Receive
Receive
Send
Confirm
Confirm Send
Confirm Deallocate

MCReqToSend Receive

MCSendError Send

MCTest Receive

MCWait Receive
Chapter 4 53

Conversation States
Confirm State
Confirm State
A local TP enters Confirm state from Receive state whenever it
receives a confirmation request from the remote TP. Table 4-5 lists the
intrinsics that can be called from Confirm state. The MCDeallocate
intrinsic can be called from Confirm state only with the
DeallocateType parameter set to 2 (ABEND). See the description of
MCDeallocate in Chapter 5 , “Intrinsic Descriptions,” for more
information.

Table 4-5 Confirm State Intrinsics

Intrinsic State Entered Upon
Successful Execution

MCConfirmed Receive

MCDeallocate
DeallocateType= 2
(ABEND)

Reset

MCErrMsg Confirm

MCGetAttr Confirm

MCReqToSend Confirm

MCSendError Send
54 Chapter 4

Conversation States
Confirm Send State
Confirm Send State
A TP enters Confirm Send state from Receive state when the remote
TP issues the equivalent of the MCPrepToRcv intrinsic with a
confirmation request, asking the local TP to respond to the confirmation
request and enter Send state.

Table 4-6 lists the intrinsics that can be called from Confirm Send state.
The MCDeallocate intrinsic can be called from Confirm Send state only
with the DeallocateType parameter set to 2 (ABEND). See the
description of MCDeallocate in Chapter 5 , “Intrinsic Descriptions,” for
more information.

Table 4-6 Confirm Send State Intrinsics

Intrinsic State Entered Upon
Successful Execution

MCConfirmed Send

MCDeallocate
DeallocateType= 2
(ABEND)

Reset

MCErrMsg Confirm Send

MCGetAttr Confirm Send

MCSendError Send
Chapter 4 55

Conversation States
Confirm Deallocate State
Confirm Deallocate State
A TP enters Confirm Deallocate state from Receive state when it
calls MCRcvAndWait or MCRcvNoWait and the WhatReceived parameter
returns 7 (CONFIRM_DEALLOCATE). This indicates that the remote
TP has issued the equivalent of the MCDeallocate intrinsic with a
confirmation request.

Table 4-7 lists the intrinsics that can be called from Confirm Deallocate
state. The MCDeallocate intrinsic can be called from Confirm
Deallocate state only with the DeallocateType parameter set to 2
(ABEND). See the description of MCDeallocate in Chapter 5 , “Intrinsic
Descriptions,” for more information.

Table 4-7 Confirm Deallocate State Intrinsics

Intrinsic State Entered Upon
Successful Execution

MCConfirmed Deallocate

MCDeallocate
DeallocateType= 2
(ABEND)

Reset

MCErrMsg Confirm Deallocate

MCGetAttr Confirm Deallocate

MCSendError Send
56 Chapter 4

Conversation States
Deallocate State
Deallocate State
The local TP enters Deallocate state when it encounters an error
condition or when the remote TP deallocates the conversation. Table
4-8 lists the intrinsics that can be called from Deallocate state. The
MCDeallocate intrinsic can be called from Deallocate state only with
the DeallocateType parameter set to 5 (LOCAL). See the description
of MCDeallocate in Chapter 5 , “Intrinsic Descriptions,” for more
information.

Table 4-8 Confirm Deallocate State Intrinsics

Intrinsic State Entered Upon
Successful Execution

MCDeallocate
DeallocateType= 5
(LOCAL)

Reset

MCErrMsg Deallocate

MCGetAttr Deallocate
Chapter 4 57

Conversation States
One-Way Conversation Without Confirm
One-Way Conversation Without Confirm
Figure 4-1 shows the state transitions for a one-way conversation
without confirm.

Figure 4-1 Conversation States — One-Way W/O Confirm
58 Chapter 4

Conversation States
One-Way Conversation With Confirm
One-Way Conversation With Confirm
Figure 4-2 shows the state transitions for a one-way conversation with
confirm.

Figure 4-2 Conversation States — One-Way With Confirm
Chapter 4 59

Conversation States
Two-Way Conversation Without Confirm
Two-Way Conversation Without Confirm
Figure 4-3 shows the state transitions for a two-way conversation
without confirm.

Figure 4-3 Conversation States — Two-Way W/O Confirm
60 Chapter 4

Conversation States
Two-Way Conversation With Confirm
Two-Way Conversation With Confirm
Figure 4-4 shows the state transitions for a two-way conversation with
confirm.

Figure 4-4 Conversation States — Two-Way With Confirm
Chapter 4 61

Conversation States
Two-Way Conversation With Confirm
62 Chapter 4

5 Intrinsic Descriptions
This chapter describes all the LU 6.2 API intrinsics. It is divided into
the following sections:

The Syntax Conventions section explains how formatting and
typefaces are used to describe the intrinsics and their parameters.

The Parameter Data Types section defines the mnemonics listed
above the intrinsic parameters. These mnemonics indicate the data
types of the parameters.

The Status Parameter section explains the fields of the Status
parameter, used by all LU 6.2 API intrinsics.

The TP Intrinsics section describes the intrinsics used to start and
stop a TP.

The Conversation Intrinsics section describes the intrinsics that can
be used in a conversation.

CAUTION For all LU 6.2 API intrinsics running on MPE V, the minimum stack
size necessary is 4000 words.

Do not call any LU 6.2 API intrinsics in split stack mode on MPE V. If
you do, a status info value of -1 will be returned.
63

Intrinsic Descriptions
Syntax Conventions
Syntax Conventions
The syntax description for each intrinsic is given in the following form:

Syntax

 I32 I16V I16
INTRINSIC NAME (parameter1 , [parameter2], parameter3)

Optional parameters, like parameter2 , are enclosed in square brackets.
Required parameters, like parameter1 and parameter3 , are not
enclosed in brackets.

NOTE Any optional parameters that are not used in an intrinsic call must
have place holders. In most languages, a comma serves as a place
holder.

Output parameters (parameters whose values are returned to the
program after intrinsic execution) are underlined. In the example
above, parameter3 is an output parameter.

Input parameters (parameters whose values are passed to the intrinsic
in the intrinsic call) are not underlined. In the example above,
parameter1 and parameter2 are input parameters.

Input/output parameters are underlined. Input/output parameters are
used to pass a value to the intrinsic and then to return a value to the
program after intrinsic execution.

The mnemonics that appear over the parameters indicate their data
type and whether they are passed by reference (the default) or by value.
The mnemonics are defined in Table 5-1 and Table 5-2.

A parameter passed by value will have a V next to the mnemonic. For
example, I16V indicates a 16-bit integer passed by value. A parameter
without a V next to the mnemonic is passed by reference. All arrays are
passed by reference.
64 Chapter 5

Intrinsic Descriptions
Parameter Data Types
Parameter Data Types
Above each intrinsic parameter is a mnemonic that indicates the data
type of the parameter. Data types are defined generically; they are not
language-specific. Table 5-1 maps each mnemonic to its generic
definition, to its definition in COBOL II, and to its definition in
Transact.

Table 5-2 maps each mnemonic to its generic definition, to its definition
in Pascal, and to its definition in C.

Table 5-1 Data Types for COBOL II and Transact

Mnemonic Generic type COBOL II Transact

I16 16-bit signed integer computational 1–4 digits integer 1–4 digits

I32 32-bit signed integer computational 5–9 digits integer 5–9 digits

C character USAGE DISPLAY or group
item

ASCII character

A array USAGE DISPLAY, USAGE
COMP-3, or group item

compound item

Table 5-2 Data Types for Pascal and C

Mnemonic Generic type Pascal C (MPE XL only)

I16 16-bit signed integer shortint or range type
(user-defined)

short

I32 32-bit signed integer integer or range type
(user-defined)

int

C character char char

A array (any type) array (any type) array (any type)
Chapter 5 65

Intrinsic Descriptions
Status Parameter
Status Parameter
When a TP calls an intrinsic, information about the execution of the
intrinsic is returned to the TP in the Status parameter. The Status
parameter is 32 bits long and is divided into two 16-bit fields: the
status info field and subsystem field, as shown in Figure 5-1.

Figure 5-1 Status Parameter Fields

The status info field is a 16-bit integer that indicates whether an error
has occurred or a message has been generated. The status info field can
be positive, negative, or zero.

• A value of zero indicates that the intrinsic executed successfully, and
no messages were generated.

• A positive value indicates that the intrinsic executed successfully,
and further information is available. The positive number in the
status info field is the number of a status info message.

• A negative value indicates that the intrinsic did not complete
successfully. The negative number in the status info field is the
number of a status info message describing the error that has
occurred.

All status info messages are listed in Appendix A , “Status Info,” in this
manual, along with their causes and any actions you should take to
resolve problems.

The subsystem field is a 16-bit integer that represents the subsystem
from which the status info message was returned.

• A value of zero indicates that the intrinsic executed successfully and
no other information is necessary. A zero is returned in the
subsystem field when the status info field is zero.

• A value of 732 indicates that the message in the status info field was
returned by the APPC subsystem.
66 Chapter 5

Intrinsic Descriptions
Status Parameter
Programs should be able to reference the Status parameter as a full
32-bit integer and as two 16-bit fields.

After executing an intrinsic, always compare the 32-bit value in the
Status parameter to zero (successful completion).

If Status is not zero, compare the 16-bit value in the status info field
with the numbers of any messages that can be generated by the
intrinsic. At the end of every intrinsic description in this chapter is a
list of the important status info messages that can be generated by that
intrinsic.

Work with the application programmers at the remote site to determine
the procedures you will follow if you encounter errors.

See Appendix B , “Sample Programs,” for programming examples using
LU 6.2 intrinsics with the Status parameter.
Chapter 5 67

Intrinsic Descriptions
TP Intrinsics
TP Intrinsics
In Hewlett-Packard’s implementation of the LU 6.2 architecture, the
TPStarted intrinsic initializes access to LU 6.2 API and sets up the
resources necessary to establish conversations. The TPEnded intrinsic
terminates access to LU 6.2 API and releases all the resources used by
the TP. The TP intrinsics and their descriptions are given in Table 5-3.

Table 5-3 LU 6.2 API TP Instrinsics

TPStarted Initializes access to LU 6.2 API and allocates resources.

TPEnded Terminates access to LU 6.2 API and releases resources.
68 Chapter 5

Intrinsic Descriptions
TPStarted
TPStarted
Initializes access to LU 6.2 API and allocates resources.

Syntax

CA I16 I32
TPStarted(LocalTPName , TPID, Status ,

 I16 I16V CA CA
[TraceOn], [TraceSize], [TraceFile], [DefaultFile]);

Parameters

LocalTPName Required; character array; input. This parameter is
an 8-character array, left justified and padded with
blanks. It identifies the name of the transaction
program being executed. For remotely initiated TPs on
MPE XL, this parameter must match the
LocalTPName of the MCGetAllocate intrinsic.

TPID Required; 16-bit signed integer; output. This number
is assigned to the specific execution instance of the TP.
(More than one instance of the same TP may be
executing at once, and the TPID uniquely identifies a
single instance of a TP.)

Status Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

TraceOn 16-bit signed integer; input. Indicates the type of
intrinsic tracing, if any, to be enabled. Possible values
are as follows:

0 = no tracing

1 = API intrinsic tracing

2 = APPC subsystem intrinsic tracing

3 = API and APPC subsystem intrinsic
tracing

Default: 0 (no tracing)

NOTE Specify TraceOn values of 2 and 3 only when asked to do so by your HP
representative.

TraceSize 16-bit signed integer by value; input. This is a number
Chapter 5 69

Intrinsic Descriptions
TPStarted
from 1 through 32767 that specifies the maximum
number of logical records in the user trace file. When
the maximum number of records is reached, the first
record is overwritten.

Default: 1024 logical records.

TraceFile character array; input. This character array contains
an actual file designator of the trace file to be used. The
TraceFile parameter is used only when tracing is
turned on with the TraceOn parameter. TraceFile
can contain a fully qualified 35-character file name,
with lockword, in the following form:

filename/lockword.groupname.acctname

The TraceFile array must be terminated with a blank.
If the TraceFile parameter is used, the specified trace
file is overwritten every time the TP is invoked. If more
than one active TP specifies the same trace file name,
or if you try to execute more than one instance of the
same TP that references the file name, a status info
value of -1033 will be returned.

Default: The default trace file name is PSTRACnn,
where nn is a number from 00 through 49. The default
trace file is created in the user’s logon group and
account. A new trace file is created every time
TPStarted is called with tracing enabled.

DefaultFile character array; output. This is a 28-character ASCII
array, padded with blanks. It returns the name of the
default trace file in the form
PSTRACnn.group.account , where nn is a number
from 00 through 49, and group.account is the user’s
logon group and account.

When user tracing is enabled, but the TraceFile
parameter is not passed, you can use the DefaultFile
parameter to get the name of the current trace file.

Description

The TPStarted intrinsic is executed only once within a TP. It allocates
resources for the TP and allows the TP to establish conversations.
When TPStarted is called, the LocalTPName is passed to LU 6.2 API.
LU 6.2 API then assigns a TPID to the instance of the TP that called
TPStarted . The TPID uniquely identifies each execution instance of a
TP. If several users execute the same TP at the same time, every
instance of that TP will have the same LocalTPName , but each instance
will have its own TPID.
70 Chapter 5

Intrinsic Descriptions
TPStarted
NOTE For remotely initiated TPs on MPE XL, the LocalTPName parameter of
the TPStarted intrinsic must match the LocalTPName parameter of the
MCGetAllocate intrinsic.

The TraceOn parameter can have four possible values. When you are
writing and debugging programs, it is useful to turn API intrinsic
tracing on by setting the TraceOn parameter to 1. API intrinsic tracing
is documented in Chapter 7 , “Debugging.” It will help you diagnose
errors in your TP. Use TraceOn values of 2 and 3 only when asked to do
so by your HP representative.

Since tracing can be turned on or off only during the execution of
TPStarted , you might want to write your TP so that it will accept an
info string that specifies the type of tracing to be performed. This would
save having to recompile the program to change the type of tracing.

Status Info Values

 0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-19 APPC subsystem is inactive.
-20 Not enough stack space for intrinsic to run.
-21 Insufficient memory space to allocate a conversation.
-90 An internal error in Presentation Services has occurred.
-95 Internal Error: Unable to create Transaction Program port.(MPE XL)
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1005 Insufficient Heap Space. (MPE V)
-1030 TPStarted request rejected.
-1033 Unable to open file specified in the 'TraceFile' parameter.
-1034 Out of range 'TraceSize' parameter specified in intrinsic call.
-1036 Out of range 'TraceOn' parameter specified in intrinsic call.
-1044 Multiple calls made to TPStarted.
Chapter 5 71

Intrinsic Descriptions
TPEnded
TPEnded
Terminates access to LU 6.2 API and releases resources.

Syntax

 I16V I32
TPEnded(TPID, Status);

Parameters

TPID Required; 16-bit signed integer by value; input. This
number is assigned to the specific instance of the TP
during the execution of the TPStarted intrinsic. (More
than one instance of the same TP may be executing at
once, and the TPID uniquely identifies a single instance
of a TP.)

Status Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The TPEnded intrinsic is used to release all resources allocated for the
execution of this TP. If the TPStarted intrinsic has been called within a
TP, the TPEnded intrinsic should be called before the TP finishes
executing.

If a TP terminates abnormally, and TPEnded cannot execute
successfully, LU 6.2 API will attempt to release the resources allocated
for the TP.

NOTE Always call TPEnded to end your TPs. If all conversations have been
deallocated, the TP is still executing, and TPEnded has not been called,
the node manager cannot bring down the APPC subsystem without first
aborting the TP. Call TPEnded as soon as all conversations have been
deallocated.
72 Chapter 5

Intrinsic Descriptions
TPEnded
Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-15 Invalid 'TPID' parameter specified in intrinsic call.
-19 APPC subsystem is inactive.
-20 Not enough stack space for intrinsic to run.
-90 An internal error in Presentation Services has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1040 Conversation(s) not deallocated before calling TPEnded.
Chapter 5 73

Intrinsic Descriptions
Conversation Intrinsics
Conversation Intrinsics
This section describes the intrinsics used to manage a conversation
between TPs on different processors. Table 5-4 lists the LU 6.2 API
conversation intrinsics and their descriptions.

Table 5-4 LU 6.2 API Conversation Intrinsics

Intrinsic Definition

MCAllocate Establishes a mapped conversation between TPs.

MCConfirm Sends a confirmation request to the remote TP and waits for a reply.

MCConfirmed Sends a confirmation response to a remote TP that has issued a
confirmation request.

MCDeallocate Ends a mapped conversation between TPs.

MCErrMsg Provides the message corresponding to a given status info value.

MCGetAllocate Receives the request from a remote TP to start a conversation and then
establishes the conversation.

MCGetAttr Returns information about a mapped conversation.

MCFlush Flushes the LU’s send buffer.

MCPostOnRcpt Allows the LU to check the contents of the receive buffer for the specified
conversation.

MCPrepToRcv Informs the remote TP that the local TP is now ready to receive data.

MCRcvAndWait Waits for information to arrive on the mapped conversation and then
receives the information. The information can be data, conversation status,
or request for confirmation.

MCRcvNoWait Similar to MCRcvAndWait , this intrinsic receives any information that has
arrived on the conversation but will not wait if no data has arrived.

MCReqToSend Notifies the remote TP that the local TP is requesting to send data.

MCSendData Sends data to the remote TP.

MCSendError Informs the remote TP that the local TP has detected an error.

MCTest Tests the conversation for the receipt of information.

MCWait Waits for the receipt of information on one or more conversations.
74 Chapter 5

Intrinsic Descriptions
MCAllocate
MCAllocate
Establishes a conversation initiated by a local TP.

Syntax

I16V CA CA I16V
MCAllocate (TPID, SessionType , RemoteTPName, RemoteTPLen ,

 I16 I32 I16V I16V
ResourceID , Status , [ReturnControl], [SyncLeve l],

 I16V I16V I16V I16A
 [Timer], [Security], [NumPIPs], [PIPLengths],

 CA CA CA
 [PIP1 ,] [PIP2 ,] . . . [PIP16]);

Parameters

TPID

Required; 16-bit signed integer by value; input. This
number is assigned to the specific instance of the TP
during the execution of the TPStarted intrinsic. (More
than one instance of the same TP may be executing at
once, and the TPID uniquely identifies a single instance
of a TP.)

SessionType

Required; character array; input. This is an
8-character ASCII array, left justified and padded with
blanks. It contains the name of a session type that is
configured for the APPC subsystem. For more
information on session types and configuration of the
APPC subsystem, see the LU 6.2 API/V Node
Manager’s Guide or the APPC Subsystem on MPE XL
Node Manager’s Guide.

RemoteTPName

Required; character array; input; EBCDIC. This is an
array of up to 64 EBCDIC characters. It contains the
name of the remote TP to be connected at the other end
of the conversation. The remote TP must be written to
use mapped conversations.

Because LU 6.2 API performs no translation on this
array, the local TP must convert it from ASCII to
Chapter 5 75

Intrinsic Descriptions
MCAllocate
EBCDIC. The MPE CTRANSLATE intrinsic, or the
NLTRANSLATE intrinsic on MPE XL, may be used.

RemoteTPLen

Required; 16-bit signed integer by value; input. This
parameter contains the length, in characters, of the
RemoteTPName. It must be an integer from 1 through
64.

ResourceID

Required; 16-bit signed integer; output. This number
identifies the conversation being allocated. It must be
used in all subsequent intrinsic calls, so that LU 6.2
API can determine which conversation the intrinsic
calls belong to.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

ReturnControl

6-bit signed integer by value; input. Specifies when the
local LU will return control to the local TP after
allocating or attempting to allocate a session. Possible
values are as follows:

0 = IMMEDIATE

If an active session is immediately available, it will be
allocated, and control will be returned to the calling
program. If no session is immediately available, no
session will be allocated, and control will be returned to
the calling program.

1 = WHEN_SESSION_ALLOCATED

The requested session will be allocated before control is
returned to the calling program. If no session is
immediately available, the request will be queued, and
the calling program will be suspended until a session is
activated or freed, or until the allocation request fails.

Default: 0 (IMMEDIATE)

SyncLevel

16-bit signed integer by value; input. This parameter
determines the synchronization level (whether or not
confirmation will be used) for this conversation.
Possible values are as follows:
76 Chapter 5

Intrinsic Descriptions
MCAllocate
0 = CONFIRM Denotes that the MCConfirm and
MCConfirmed intrinsics can be called.
It also means that the confirm request
option of any intrinsic may be used.

2 = NONE Denotes that no confirmation will be
used. If a SyncLevel of 2 is specified,
the MCConfirm and MCConfirmed
intrinsics cannot be called during this
conversation, nor can the confirm
request option of any intrinsic be used
during this conversation. If any
confirmation is attempted with
SyncLevel set to 2, a status info value
of -31 is returned.

Default: 2 (NONE)

Timer

16-bit signed integer by value; input. This is an integer
from 0 through 28800 that indicates the maximum
number of seconds LU 6.2 API will wait after executing
an intrinsic before returning control to the TP. (28800
seconds = 8 hours.) For example, if the local TP sets its
Timer to 600 (10 minutes) and issues MCRcvAndWait ,
and no data arrives within 10 minutes, LU 6.2 API will
issue a status info of +80 to the local TP, which
indicates that the allotted time has expired.

A Timer value of zero indicates that no timer is to be
used, which means that the program will wait
indefinitely for an intrinsic call to complete.

The intrinsics that use the Timer are:

MCConfirm

MCDeallocate DeallocateType = CONFIRM)

MCPrepToRcv (PrepToRcvType = CONFIRM)

MCRcvAndWait

MCWait

See the intrinsic descriptions in this chapter for more
information.

Default: 0

Security

16-bit signed integer by value; input. Reserved for
future use.
Chapter 5 77

Intrinsic Descriptions
MCAllocate
NumPIPs

16-bit signed integer by value; input. This is the
number (from 0 through 16) of Program Initialization
Parameters (PIPs) to be sent to the remote TP. A
NumPIPs value of 0 indicates that no PIP data will be
sent.

Default: 0

PIPLengths

16-bit signed integer array; input. This is an array of up
to 16 integers that indicate the lengths, in bytes, of the
Program Initialization Parameters (PIP1...PIP16).
The combined length of all the PIPs must not be greater
than 1980 bytes.

NOTE If NumPIPs is greater than 0, the PIPLengths parameter is required. If
NumPIPs is zero, the PIPLengths parameter is ignored.

PIP1, PIP2,...PIP16

character array; input; EBCDIC. Each PIP is a
character array containing a Program Initialization
Parameter for the remote TP. PIPs are used to transmit
any special information the local TP wants to send to
the remote TP at conversation initiation. The combined
length of all the PIPs must not be greater than 1980
bytes.

Because LU 6.2 API performs no translation on this
array, the local TP must convert it from ASCII to
EBCDIC. The MPE CTRANSLATE intrinsic, or the
NLTRANSLATE intrinsic on MPE XL, may be used.

NOTE If NumPIPs is greater than 0, the specified number of PIPs must be
supplied. If NumPIPs is zero, all PIPs are ignored.

Description

The MCAllocate intrinsic establishes a conversation between the local
TP that calls it and the remote TP specified in the RemoteTPName
parameter. Once the MCAllocate intrinsic has executed successfully,
the local TP is in Send state and the remote TP is in Receive state.

When the local TP initiates a conversation, the MCAllocate intrinsic
must be the first LU 6.2 API intrinsic called after TPStarted , unless
the TPEnded intrinsic is called and the program terminated. See
MCGetAllocate , later in this chapter, for information about
conversations initiated by the remote TP.
78 Chapter 5

Intrinsic Descriptions
MCAllocate
When the MCAllocate intrinsic executes successfully, a ResourceID is
assigned to the allocated conversation. Just as the TPID uniquely
identifies one among many possible instances of the same TP, the
ResourceID uniquely identifies one among many possible
conversations conducted by one instance of a TP. Every time
MCAllocate is called, a new conversation is established, and a unique
ResourceID is assigned to it.

Every conversation requires one APPC session. On MPE V, only 8
sessions may be active on the APPC subsystem at once. On MPE XL,
the APPC subsystem can support a maximum of 256 active sessions.
The available active sessions must be shared among all the TPs
running on the APPC subsystem, so your TP can allocate only as many
conversations as there are available sessions.

In addition to the session limit for the whole APPC subsystem, there is
also a session limit configured for each session type. For more
information on session limits and session type configuration, see the LU
6.2 API/V Node Manager’s Guide or the APPC Subsystem on MPE XL
Node Manager’s Guide.

The ReturnControl parameter determines what your program will do
if no session is available when it calls MCAllocate . If you specify 0
(IMMEDIATE) in the ReturnControl parameter, your program will not
wait for a session to be activated or freed; control will be returned to
your program immediately. If you specify 1
(WHEN_SESSION_ALLOCATED) in the ReturnControl parameter,
your program will be suspended until a session is activated or until a
conversation is deallocated, freeing a session.

NOTE If you specify 1 (WHEN_SESSION_ALLOCATED) in the
ReturnControl parameter, your program can be suspended
indefinitely. If no session becomes available, or if there is an error with
the session type, your program will be suspended until the APPC
subsystem shuts down or discovers the error.

LU 6.2 API does not wait for a response from the host before it returns
a status info value. Therefore, allocation errors due to host problems do
not appear in the Status parameter of the MCAllocate intrinsic. (See
Chapter 6 , “Buffer Management.”) To verify that a conversation has
been allocated successfully, call MCAllocate with a SyncLevel of 0
(CONFIRM), and then call MCConfirm . See MCConfirm , later in this
chapter, for more information.

MCAllocate allows you to send initialization information to the remote
TP in the Program Initialization Parameters (PIPs). These parameters
can be used, for example, to indicate whether a TP is processing daily
information or an end-of-month report. They can also be used to inform
the remote TP of the type of data it will receive, the size of the records,
etc. PIPs can be used to transmit any special information the local TP
must send to the remote TP before it executes.
Chapter 5 79

Intrinsic Descriptions
MCAllocate
Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-4 Out of range 'ReturnControl' parameter specified in intrinsic call.
-5 Out of range 'SyncLevel' parameter specified in intrinsic call.
-6 PIP data length is out of range.
-7 Out of range 'Timer' parameter specified in intrinsic call.
-15 Out of range 'TPID' parameter specified in intrinsic call.
-19 APPC subsystem is inactive.
-20 Not enough stack space for intrinsic to run.
-21 Insufficient memory space to allocate a conversation.
-22 Internal error: Unable to create Presentation Services port.
-23 Unable to allocate a conversation.
-24 Unable to obtain an LU-LU session.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1005 Insufficient Heap Space. (MPE V)
-1006 Out of range 'RemoteTPLen' parameter specified in intrinsic call.
-1007 Out of range 'NumPIPs' parameter specified in intrinsic call.
-1009 Combined length of PIPs is out of range.
80 Chapter 5

Intrinsic Descriptions
MCConfirm
MCConfirm
Sends a confirmation request to the remote program and waits for a
reply. A status info value of 0 indicates that the remote TP has returned
a positive confirmation response (the equivalent of an MCConfirmed).

Syntax

 I16V I16 I32
MCConfirm (ResourceID , RequestToSendReceived , Status);

Parameters

ResourceID

Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

RequestToSendReceived

Required; 16-bit signed integer; output. This is a flag
that indicates whether a RequestToSend notification
has been received from the remote TP.

1 = YES

A RequestToSend notification has been received from
the remote TP. The remote TP has issued the
equivalent of MCReqToSend, requesting that the local
TP enter Receive state and place the remote TP in Send
state. See the description of the MCReqToSendintrinsic,
later in this chapter.

0 = NO

No RequestToSend notification has been received.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCConfirm intrinsic is used to determine whether the two sides of a
conversation are synchronized. It can be used only if the conversation is
allocated with a synchronization level of CONFIRM (that is, if the
Chapter 5 81

Intrinsic Descriptions
MCConfirm
MCAllocate or MCGetAllocate intrinsic was called with the SyncLevel
parameter set to 0). It is used to request confirmation from the remote
TP and wait for a reply. A TP must be in Send state to call MCConfirm .

How confirmation is used in a conversation is up to the TP
programmers. It can be used, for example, to verify that a conversation
has been allocated properly and that the remote TP is ready to receive
data. It can also be used after data is sent, to verify that the remote TP
received everything the local TP sent.

When MCConfirm executes, the send buffer is flushed, and then a
confirmation request is sent to the remote TP. The remote TP is placed
in Confirm state. It may respond to the confirmation request with the
equivalent of any of the intrinsics listed in Table 5-5. Table 5-5 also lists
the conversation state of the remote TP after issuing each intrinsic. See
Chapter 4 , “Conversation States,” for more information on states and
the intrinsics that may be called from them.

The conversation is suspended until the MCConfirm intrinsic completes.

Because this intrinsic causes the send buffer to be flushed, it may be
called after MCAllocate to determine whether the conversation was
successfully allocated on the remote side. See Chapter 6 , “Buffer
Management,” for more information on receiving allocation errors.

Some status info values commonly returned to the MCConfirm intrinsic
are described below:

0 Successful Completion.

The remote TP has responded with the equivalent of MCConfirmed .

31 Confirm not allowed.

The conversation was not allocated with a synchronization level of
CONFIRM.

50 Allocation Error.

The conversation was not allocated properly by the remote TP.

60 Program Error: Data may have been purged.

The remote TP has sent the equivalent of MCSendError .

Table 5-5 Intrinsics With Confirmation Responses

Intrinsic Callable from
Confirm State

State of Remote TP
After Execution

MCConfirmed Receive state

MCDeallocate
(DeallocateType = ABEND)

Reset state

MCSendError Send state
82 Chapter 5

Intrinsic Descriptions
MCConfirm
Following is a complete list of status info values that may be returned
to the MCConfirm intrinsic.

Status Info Values

 0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-31 Confirm not allowed.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: No retry possible.
-52 Resource Failure: Retry possible.
-60 Program Error: Data may have been purged.
+80 Timer has expired.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
Chapter 5 83

Intrinsic Descriptions
MCConfirmed
MCConfirmed
Sends a positive confirmation response to the remote TP.

Syntax

I16V I32
MCConfirmed(ResourceID , Status);

Parameters

ResourceID Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Status Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCConfirmed intrinsic sends a positive response to a confirmation
request that was issued by the remote. The remote TP can send a
confirmation request with the equivalent of any of the intrinsics listed
in Table 5-6. Table 5-6 also lists the conversation state of the local TP
after the remote TP issues each intrinsic.

The MCConfirmed intrinsic can be used only if the conversation was
allocated with a synchronization level of CONFIRM (that is, if the
MCAllocate or MCGetAllocate intrinsic was called with the SyncLevel
parameter set to 0).
84 Chapter 5

Intrinsic Descriptions
MCConfirmed
The local side of the conversation must be in one of the Confirm states
to issue the MCConfirmed intrinsic.

The MCConfirmed intrinsic can be used only to send a positive response
to a confirmation request. Use the MCSendError intrinsic to send a
negative response to a confirmation request.

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-40 Intrinsic called in invalid state.
-51 Resource Failure: No retry possible.
-52 Resource Failure: Retry possible.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.

Table 5-6 Intrinsics With Confirmation Requests

Intrinsic Requesting Confirmation State of Local TP After
Remote Calls Intrinsic

MCConfirm Confirm state

MCPrepToRcv Confirm Send state

 (PrepToRcvType = CONFIRM or
PrepToRcvType = CONVERSATION_SYNC_LEVEL,
if conversation was allocated with SyncLevel of CONFIRM)

MCDeallocate Confirm Deallocate state

 (DeallocateType = CONFIRM or
DeallocateType = CONVERSATION_SYNC_LEVEL,
if conversation was allocated with SyncLevel of CONFIRM)
Chapter 5 85

Intrinsic Descriptions
MCDeallocate
MCDeallocate
Deallocates the specified conversation.

Syntax

I16V I16V I32
MCDeallocate(ResourceID , [DeallocateType], Status);

Parameters

ResourceID

Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

DeallocateType

16-bit signed integer by value; input. The type of
deallocation to be performed. Possible values are as
follows:

0 = CONVERSATION_SYNC_LEVEL

Denotes that the conversation should be deallocated
with the synchronization level specified by the
SyncLevel parameter of the MCAllocate or
MCGetAllocate intrinsic. The SyncLevel parameter
can specify synchronization levels of CONFIRM and
NONE.

If the conversation was allocated with a SyncLevel of
CONFIRM, then the conversation is deallocated as if
CONFIRM were given as the DeallocateType . See the
discussion of CONFIRM (DeallocateType = 6).

If the conversation was allocated with a SyncLevel of
NONE, then the conversation is deallocated as if
FLUSH were given as the DeallocateType . See the
discussion of FLUSH (DeallocateType = 1).

1 = FLUSH

Causes the local LU to empty its send buffer and
release the conversation resources normally. The
conversation must be in Send state to use a
DeallocateType of FLUSH. A DeallocateType of
FLUSH may be specified no matter what the
synchronization level of the conversation is.
86 Chapter 5

Intrinsic Descriptions
MCDeallocate
2 = ABEND

Allows the conversation to deallocate in any state
except Deallocate state. All buffers are flushed. If the
conversation is in Receive state, loss of data can occur.

5 = LOCAL

Deallocates the conversation from Deallocate state.

6 = CONFIRM

Causes an internal execution of the MCConfirm
intrinsic. The remote TP must respond with positive
confirmation before the conversation can be
deallocated. This DeallocateType can be used only if
the synchronization level of the conversation is
CONFIRM. The conversation must be in Send state to
use a DeallocateType of CONFIRM.

Default: 0 (CONVERSATION_SYNC_LEVEL) Note
that the default cannot be used in all cases, because the
conversation must be in Send state to use a
DeallocateType of CONVERSATION_SYNC_LEVEL.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCDeallocate intrinsic releases the resources used for a
conversation. Before the TPEnded intrinsic can be called to stop the TP,
MCDeallocate must be called for each conversation the TP is engaged
in.

MCDeallocate with DeallocateType of ABEND ends posting. See the
MCPostOnRcpt intrinsic description, later in this chapter, for more
information about posting.

A TP in Deallocate state calls MCDeallocate with a DeallocateType of
LOCAL. Unless there is an error, a DeallocateType of LOCAL is used
when the remote TP deallocates first. Figure 5-2 shows the remote TP
deallocating a conversation. When the remote calls the equivalent of
MCDeallocate , the local TP is placed in Deallocate state. From
Deallocate state, the local TP deallocates its side of the conversation
with a DeallocateType of LOCAL.
Chapter 5 87

Intrinsic Descriptions
MCDeallocate
Figure 5-2 Remote TP Deallocating a Conversation

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-8 Out of range 'DeallocateType' specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-31 Confirm not allowed.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: No retry possible.
-52 Resource Failure: Retry possible.
-60 Program Error: Data may have been purged.
+80 Timer has expired.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation
 level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
88 Chapter 5

Intrinsic Descriptions
MCErrMsg
MCErrMsg
Provides the message corresponding to a status info value that was
returned in a previous intrinsic call.

Syntax

I32V CA I16 I32
 MCErrMsg(OldStatus, MessageBuffer , MessageLength , Status);

Parameters

OldStatus

Required; 32-bit signed integer by value; input. The
status info value for which a corresponding message is
desired. This is a value that was returned in the
Status parameter of a previous intrinsic call.
MCErrMsg returns the message that corresponds to the
value in this parameter.

MessageBuffer

Required; character array; output. A 256-byte
character array in which the error message is returned.

MessageLength

Required; 16-bit signed integer; output. An integer
representing the length, in bytes, of the message
returned in MessageBuffer .

Status

Required; 32-bit signed integer; output. This status
info value contains information about the execution of
the MCErrMsg intrinsic. See the “Status Parameter”
section, earlier in this chapter, for more information.

Description

The MCErrMsg intrinsic gives you the message that corresponds to the
status info value you received in a previous intrinsic call. The MCErrMsg
intrinsic obtains only local information; it will not return messages
generated on the remote side.

MCErrMsg can be called from any conversation state, and it does not
change the state of the conversation.
Chapter 5 89

Intrinsic Descriptions
MCErrMsg
Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-16 Unable to open catalog file.
-17 GENMESSAGE failed. (MPE V)
-17 CATREAD failed. (MPE XL)
-20 Not enough stack space for intrinsic to run.
-28 Invalid 'OldStatus' passed to error message intrinsic.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
90 Chapter 5

Intrinsic Descriptions
MCFlush
MCFlush
Flushes the local LU’s send buffer, sending everything in it to the
remote LU’s receive buffer.

Syntax

I16V I32
MCFlush(ResourceID , Status);

Parameters

ResourceID Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Status Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCFlush intrinsic can be issued only in Send state. It causes the
contents of the send buffer to be sent immediately to the remote LU’s
receive buffer. If the send buffer is empty, no transmission takes place.

On the HP 3000 side, each conversation has a send buffer. On MPE V,
the size of the send buffer is always 2044 bytes. On MPE XL, the send
buffer is the same size as the maximum RU size for that session. (The
maximum RU size is a configured value associated with the session
type. See the APPC Subsystem on MPE XL Node Manager’s Guide.)
Data sent from the HP 3000 side accumulates in the send buffer until
the buffer is full or until an intrinsic is called that causes all the data in
the buffer to be sent.

The following intrinsics cause the send buffer to be flushed:

MCFlush
MCConfirm
MCDeallocate
MCPrepToRcv
MCRcvAndWait (when called from Send state)
MCSendError (when called from Send state)
Chapter 5 91

Intrinsic Descriptions
MCFlush
Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-40 Intrinsic called in invalid state.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
92 Chapter 5

Intrinsic Descriptions
MCGetAllocate
MCGetAllocate
Establishes a conversation initiated by a remote TP.

Syntax

 I16V CA CA I16
MCGetAllocate(TPID, SessionType , LocalTPName , ResourceID ,

 I32 I16 I16V I16V
Status , [SyncLevel], [Timer], [Security],

 I16V I16A CA CA CA
 [NumPIPs], [PIPLengths], [PIP1 ,] [PIP2 ,] . . . [PIP16]);

Parameters

TPID Required; 16-bit signed integer by value; input. This
number is assigned to the specific instance of the TP
during the execution of the TPStarted intrinsic. (More
than one instance of the same TP may be executing at
once, and the TPID uniquely identifies a single instance
of a TP.)

SessionType Required; character array; output. This is an
8-character ASCII array, left justified and padded with
blanks. It contains the name of a session type that is
configured for the APPC subsystem. For more
information on session types and configuration of the
APPC subsystem, see the LU 6.2 API/V Node
Manager’s Guide or the APPC Subsystem on MPE XL
Node Manager’s Guide.

LocalTPName Required; character array; output in EBCDIC on
MPE V; input in ASCII on MPE XL.;

NOTE If you are migrating a TP to LU 6.2 API/XL from LU 6.2 API/V or from
a version of LU 6.2 API/XL prior to the Node Type 2.1 version, you must
change the LocalTPName parameter from an output parameter to an
input parameter.

On MPE V, LocalTPName is an output parameter, received in EBCDIC
from the remote TP. It contains the name of the job file sent by the
remote TP. The job file name must be 8 characters long; if it is shorter
than 8 characters long, it must be padded with blanks. The job file must
be located in the APPC.SYS group and account. When the HP 3000
receives the job file name, it streams the job, which runs the local TP.

Because LU 6.2 API performs no translation on the LocalTPName array,
Chapter 5 93

Intrinsic Descriptions
MCGetAllocate
the local TP must convert it from EBCDIC to ASCII. The MPE
CTRANSLATE intrinsic, or the intrinsic on MPE XL, may be used.

On MPE XL, LocalTPName is an input ASCII parameter. It must match
the value in the LocalTPName parameter of the TPStarted intrinsic.
The LocalTPName parameter contains the TP name sent by the remote
TP. This TP name must be configured in the APPC configuration branch
of NMMGR. The configuration file associates each TP name with a job
file, which may be located in any group and account. When LU 6.2 API
receives the TP name from the remote TP, it does one of two things:

1. If the local TP is already active, and if it is configured to receive
multiple allocate requests from remote TPs, LU 6.2 API waits until
any conversation with the local TP process has been deallocated, and
then it allocates a conversation with the local TP process.

2. If the local TP is not active, or if it is configured to receive only one
allocate request per execution instance, LU 6.2 API initiates a new
local TP process by streaming the job file associated with the TP
name. Then, it allocates a conversation with the local TP process.

A remotely initiated TP on MPE XL is configured to conduct either
single or multiple conversations with the remote TP. A TP that
conducts a single conversation must call MCGetAllocate only once;
another instance of the TP will be started each time a remote TP
requests a conversation. A TP that conducts multiple conversations can
call MCGetAllocate many times; only one instance of it may be running
at once. See the APPC Subsystem on MPE XL Node Manager’s Guide
for more information on TP configuration.

ResourceID Required; 16-bit signed integer; output. This number
identifies the conversation being allocated. It must be
used in all subsequent intrinsic calls, so that LU 6.2
API can determine which conversation the intrinsic
calls belong to.

Status Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

SyncLevel 16-bit signed integer; output. This parameter
determines the synchronization level (whether or not
confirmation will be used) for this conversation.
Possible values are as follows:

0 = CONFIRM

Denotes that the MCConfirm and MCConfirmed
intrinsics can be called. It also means that the confirm
request option of any intrinsic may be used.

2 = NONE
94 Chapter 5

Intrinsic Descriptions
MCGetAllocate
Denotes that no confirmation will be used. If a
SyncLevel of 2 is specified, the MCConfirm and
MCConfirmed intrinsics cannot be called during this
conversation, nor can the confirm request option of any
intrinsic be used during this conversation. If any
confirmation is attempted with SyncLevel set to 2, a
status info value of -31 is returned.

Timer 16-bit signed integer by value; input. This is an integer
from 0 through 28800 that indicates the maximum
number of seconds LU 6.2 API will wait after executing
an intrinsic before returning control to the TP. (28800
seconds = 8 hours.) For example, if the local TP sets its
Timer to 600 (10 minutes) and issues MCRcvAndWait ,
and no data arrives within 10 minutes, LU 6.2 API will
issue a status info of +80 to the local TP, which
indicates that the allotted time has expired.

A Timer value of zero indicates that no timer is to be
used, which means that the program will wait
indefinitely for an intrinsic call to complete.

The following intrinsics use the Timer :

MCConfirm
MCDeallocate (DeallocateType = CONFIRM)
MCPrepToRcv (PrepToRcvType = CONFIRM)
MCRcvAndWait
MCWait

Default: 0

Security 16-bit signed integer by value; input. Reserved for
future use.

NumPIPs 16-bit signed integer by value; input/output. Indicates
the number of Program Initialization Parameters
(PIPs) to be used for this conversation.

Input:

The NumPIPs value that the local TP passes to the
intrinsic specifies the maximum number of PIPs the
local TP can receive from the remote TP on this
conversation.

Output:

The NumPIPs value that the intrinsic returns to the
local TP indicates the number of PIPs that the remote
TP actually sent to the local TP.
Chapter 5 95

Intrinsic Descriptions
MCGetAllocate
NOTE If the remote TP sends more PIPs than the value specified in the
NumPIPs parameter, the PIPLengths parameter and all PIPs are
ignored. A status info value of -1010 is returned.

PIPLengths 16-bit signed integer array; input/output. This is an
array of up to 16 integers that indicate the lengths, in
bytes, of the Program Initialization Parameters
(PIP1 ...PIP16). The combined length of all the PIPs
must not be greater than 1980 bytes.

Input:

The values the local TP passes in PIPLengths indicate
the maximum number of characters each PIP can
receive.

Output:

The values the intrinsic returns in PIPLengths indicate
the actual lengths of the PIPs sent by the remote to the
local TP.

NOTE If NumPIPs is greater than 0, the PIPLengths parameter is required. If
NumPIPs is zero, the PIPLengths parameter is ignored.

PIP1, PIP2,...PIP16

character array; output; EBCDIC. Each PIP is a
character array containing a Program Initialization
Parameter received from the remote TP. PIPs are used
to transmit any special information the remote TP
wants to send to the local TP at conversation initiation.
The combined length of all the PIPs must not be greater
than 1980 bytes.

Because LU 6.2 API performs no translation on this
array, the local TP must convert it from EBCDIC to
ASCII. The MPE CTRANSLATE intrinsic, or the intrinsic
on MPE XL, may be used

NOTE If NumPIPs is greater than 0, the specified number of PIPs must be
supplied. If NumPIPs is zero, all PIPs are ignored.

Description

MCGetAllocate is called to receive a conversation allocation request
from the remote TP and initialize all the resources the local TP needs to
conduct a conversation. When the remote TP issues the equivalent of
the MCAllocate intrinsic, it sends a TP name to the HP 3000,
indicating the local TP with which it wants a conversation. The
96 Chapter 5

Intrinsic Descriptions
MCGetAllocate
HP 3000 then runs the local TP, which calls MCGetAllocate to allocate
the local side of the conversation.

Once the MCGetAllocate intrinsic has executed successfully, the local
TP is in Receive state and the remote TP is in Send state.

When the MCGetAllocate intrinsic executes successfully, a ResourceID
is assigned to the allocated conversation. Just as the TPID uniquely
identifies one among many possible instances of the same TP, the
ResourceID uniquely identifies one among many possible
conversations conducted by one instance of a TP.

Every conversation requires one session on the APPC subsystem. On
MPE V, only 8 sessions may be active on the APPC subsystem at once.
On MPE XL, the APPC subsystem can support a maximum of 256
active sessions. The available active sessions must be shared among all
the TPs running on the APPC subsystem. For more information on
session limits, see the APPC Subsystem on MPE V Node Manager’s
Guide or the APPC Subsystem on MPE XL Node Manager’s Guide.

MCGetAllocate allows you to receive initialization information from
the remote TP in the Program Initialization Parameters (PIPs). These
parameters can be used, for example, to indicate whether a TP is
processing daily information or an end-of-month report. They can also
be used to inform the local TP of the type of data it will receive, the size
of the records, etc. PIPs can be used to transmit any special information
the local TP must receive from the remote TP before it executes.

Remotely Initiated Conversations on MPE V

On MPE V, MCGetAllocate can be called only once during the
execution of a TP. That is, each execution instance of a TP can have only
one conversation initiated by the remote TP.

On MPE V, when a conversation is initiated by the remote TP, the
MCGetAllocate intrinsic must be the first LU 6.2 API intrinsic called
after the TPStarted intrinsic, unless the TPEnded intrinsic is called and
the program terminated.

On MPE V, the TP name sent by the remote TP is the name of a job file
located in the APPC.SYS group and account. This TP name must match
the name of the job file exactly. The job file contains the MPE RUN
command that starts up the local TP. The executable TP file can reside
in any group and account. When LU 6.2 API receives the TP name from
the remote TP, it streams the job, which in turn runs the local TP. The
value returned in the LocalTPName parameter is the TP name sent by
the remote TP.

Remotely Initiated Conversations on MPE XL

On MPE XL, the TP name sent by the remote TP is configured in the
APPC subsystem branch of NMMGR. The TP name is associated with a
Chapter 5 97

Intrinsic Descriptions
MCGetAllocate
job file through configuration. When the HP 3000 receives the TP name
from the remote TP, it does one of two things:

1. If the local TP is already active, and if it is configured to receive
multiple allocate requests from remote TPs, LU 6.2 API waits for
any current conversation with the local TP process to be deallocated,
and then it allocates a conversation with the local TP process.

2. If the local TP is not active, or if it is configured to receive only one
allocate request per execution instance, LU 6.2 API initiates a new
local TP process by streaming the job file associated with the TP
name. Then, it allocates a conversation with the local TP process.

A remotely initiated TP on MPE XL is configured to conduct either
single or multiple conversations with the remote TP. A TP that
conducts a single conversation must call MCGetAllocate only once;
another instance of the TP will be started each time a remote TP
requests a conversation. A TP that conducts multiple conversations can
call MCGetAllocate many times; only one instance of it may be running
at once. See the APPC Subsystem on MPE XL Node Manager’s Guide
for more information on TP configuration.

On MPE XL, a timer for the MCGetAllocate intrinsic may be
configured. The timer prevents the local TP from being suspended
indefinitely if no allocate request arrives from the remote TP. The timer
is a value from 0 (no timer) to 480 minutes (8 hours), configured
through NMMGR/XL. If your program calls MCGetAllocate , and no
allocate request arrives from the remote TP before the timer expires,
control is returned to your program. See the APPC Subsystem on
MPE XL Node Manager’s Guide for more information.

The LocalTPName passed in the MCGetAllocate intrinsic must be
configured in the APPC subsystem branch of NMMGR. It must match
the TP name sent by the remote TP, and it must match the
LocalTPName passed in the TPStarted intrinsic.

NOTE If you are migrating a TP to LU 6.2 API/XL from LU 6.2 API/V or from
a version of LU 6.2 API/XL prior to the Node Type 2.1 version, you must
change the LocalTPName parameter from an output parameter to an
input parameter.

Figure 5-3 shows how a local TP is started when a conversation
allocation request is received from a remote TP.
98 Chapter 5

Intrinsic Descriptions
MCGetAllocate
Figure 5-3 Remotely Initiated TP on the HP 3000

Figure 5-4 shows how, on MPE XL, allocate requests from the remote
TP can be queued to wait until the local TP calls the MCGetAllocate
intrinsic. The TP in Figure 5-4 loops through the same conversation,
beginning with MCGetAllocate and ending with MCDeallocate , until it
receives the last allocate request.

The TP could be written to handle a predetermined number of allocate
requests, or it could loop through the conversation until the last
MCGetAllocate call timed out because the queue was empty. When
MCGetAllocate times out, +29 is returned in the Status parameter.
(The MCGetAllocate time-out value must be configured through
NMMGR/XL. See the APPC Subsystem on MPE XL Node Manager’s
Guide.)
Chapter 5 99

Intrinsic Descriptions
MCGetAllocate
Figure 5-4 Queued Allocate Requests from Remote TPs

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-5 Out of range 'SyncLevel' parameter specified in intrinsic call.
-6 PIP data length is out of range.
-7 Out of range 'Timer' parameter specified in intrinsic call.
-15 Invalid 'TPID' parameter specified in intrinsic call.
-19 APPC subsystem is inactive.
-20 Not enough stack space for intrinsic to run.
-21 Insufficient memory space to allocate a conversation.
-22 Internal error: Unable to create Presentation Services port.
-23 Unable to allocate a conversation.
-24 Unable to obtain an LU-LU session.
-25 Could not find a conversation for this transaction program.
+29 Could not find a conversation for this transaction program -
 timer popped. (MPE XL)
-51 Resource failure: No retry possible.
-65 Received an invalid attach from the remote LU.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1005 Insufficient Heap Space. (MPE V)
-1007 Out of range 'NumPIPs' parameter specified in intrinsic call.
-1008 Invalid 'LocalTPName' parameter specified in intrinsic call.
 (MPE XL)
-1009 Combined length of PIPs is out of range.
-1010 Too many PIP subfields.
100 Chapter 5

Intrinsic Descriptions
MCGetAttr
MCGetAttr
Returns information pertaining to the specified conversation.

Syntax

 I16V I32 CA
MCGetAttr(ResourceID , Status , [OwnFullyQualifiedLUName],

 CA CA
 [PartnerLUName], [PartnerFullyQualifiedLUName],

 CA I16
 [ModeName], [SyncLevel]);

Parameters

ResourceID

Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

OwnFullyQualifiedLUName

character array; output. If the specified conversation is
using a dependent LU to communicate with a Type 5
node (like an IBM mainframe), this parameter is not
implemented and returns a 17-character array of
blanks.

If the specified conversation is using an independent
LU on MPE XL to communicate with a Type 2.1 node
(like an IBM AS/400), this is a 17-character array that
returns the fully qualified LU name of the local LU. It
has the form NetID.LUName , where NetID and LUName
are the names of the local SNA network and the local
LU configured in the APPC subsystem configuration.
See the APPC Subsystem on MPE XL Node Manager’s
Guide for information on APPC subsystem
configuration.
Chapter 5 101

Intrinsic Descriptions
MCGetAttr
PartnerLUName

character array; output. This is an 8-character ASCII
array, left justified and padded with blanks. It returns
the name of the remote LU used by the remote TP.
PartnerLUName is the name by which the local LU
knows the remote LU. PartnerLUName is returned
only on a conversation using a dependent LU to
communicate with a Type 5 node (like an IBM
mainframe).

PartnerFullyQualifiedLUName

character array; output. If the specified conversation is
using a dependent LU to communicate with a Type 5
node (like an IBM mainframe), this parameter is not
implemented and returns a 17-character array of
blanks.

If the specified conversation is using an independent
LU on MPE XL to communicate with a Type 2.1 node
(like an IBM AS/400), this is a 17-character array that
returns the fully qualified LU name of the LU used by
the remote TP. It has the form NetID.LUName , where
NetID is the name of the SNA network where the
remote node resides, and LUName is the local name for
the remote LU configured in the APPC subsystem
configuration. See the APPC Subsystem on MPE XL
Node Manager’s Guide for information on APPC
subsystem configuration.
PartnerFullyQualifiedLUName is returned only on
conversations using independent LUs.

ModeName

character array; output. This is an 8-character array,
left justified and padded with blanks. It returns the
mode name configured for the APPC session on which
the conversation is allocated. This parameter matches
the mode name configured for the SessionType
specified in the call to MCAllocate or
MCGetAllocate . For more information on mode
configuration, see the LU 6.2 API/V Node Manager’s
Guide or the APPC Subsystem on MPE XL Node
Manager’s Guide.

SyncLevel

16-bit signed integer; output. The synchronization level
(whether or not confirmation is used) established for
this conversation. Possible values are as follows:
102 Chapter 5

Intrinsic Descriptions
MCGetAttr
0 = CONFIRM

Denotes that the MCConfirm and MCConfirmed
intrinsics can be called. It also means that the confirm
request option of any intrinsic may be used.

2 = NONE

Denotes that no confirmation will be used. If the
SyncLevel is 2, the MCConfirm and MCConfirmed
intrinsics cannot be called during this conversation, nor
can the confirm request option of any intrinsic be used
during this conversation.

Description

This intrinsic allows the local TP to get information about the
conversation specified in the ResourceID parameter.

Status Info Values

 0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
Chapter 5 103

Intrinsic Descriptions
MCPostOnRcpt
MCPostOnRcpt
Allows the LU to check the contents of the receive buffer for the
specified conversation.

Syntax

 I16V I16V CA I32
MCPostOnRcpt(ResourceID , Length , Data , Status);

Parameters

ResourceID Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Length Required; 16-bit signed integer by value; input. This
parameter specifies the minimum amount of data (in
bytes) that must be received in the receive buffer before
the TP is to be notified. If the logical record length is
less than the number specified in this parameter, the
TP will be notified when a complete logical record is
received. A value of 0 or 1 in this parameter indicates
that the TP is to be notified when any amount of data is
received. The value of Length may not exceed 4092
bytes.

Data Required; character array; input. This is the character
array into which data will be received after it arrives in
the receive buffer. Its length must be greater than or
equal to the Length parameter.

Status Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCPostOnRcpt intrinsic causes LU 6.2 API to set up resources to
check the contents of the receive buffer for the specified conversation.
The MCTest or MCWait intrinsic can then be called to interrogate these
resources and find out if any data has arrived for the conversation. See
the descriptions of MCTest and MCWait, later in this chapter.

Once MCPostOnRcpt has executed successfully, posting is active. It
remains active until something is received into the receive buffer or an
104 Chapter 5

Intrinsic Descriptions
MCPostOnRcpt
intrinsic is called that ends posting and releases the resources. The
following intrinsics end posting:

MCDeallocate
MCRcvAndWait
MCRcvNoWait
MCSendError

When the MCTest or MCWait intrinsic indicates that something is
waiting in the receive buffer, call MCRcvAndWait or MCRcvNoWait with
the same Data parameter you used in the last call to MCPostOnRcpt .

The MCPostOnRcpt intrinsic can be called only from Receive state. It
can be called many times during the execution of a TP. If the Length
parameter is changed from one call to the next, the Length value from
the last call will be used to determine the minimum amount of data
that must arrive before the TP is notified.

Status Info Values

 0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-11 Out of range 'Length' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-40 Intrinsic called in invalid state.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1050 Invalid 'Data' parameter specified in intrinsic call.
Chapter 5 105

Intrinsic Descriptions
MCPrepToRcv
MCPrepToRcv
Changes the conversation state of the local TP from Send to Receive,
and changes the conversation state of the remote TP from Receive to
Send.

Syntax

 I16V I32 I16V I16V
MCPrepToRcv(ResourceID , Status , [PrepToRcvType], [Locks]);

Parameters

ResourceID

Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

PrepToRcvType

16-bit signed integer by value; input. The type of
MCPrepToRcv to be executed. Possible values are as
follows:

0 = CONVERSATION_SYNC_LEVEL

Denotes that the MCPrepToRcv intrinsic will be
executed with the synchronization level specified by the
SyncLevel parameter of the MCAllocate or
MCGetAllocate intrinsic. The SyncLevel parameter
can specify synchronization levels of CONFIRM and
NONE.

If the conversation was allocated with a SyncLevel of
CONFIRM, then MCPrepToRcv is executed as if
CONFIRM were given as the MCPrepToRcvType . See
the discussion of CONFIRM MCPrepToRcvType = 2).

If the conversation was allocated with a SyncLevel of
NONE, then MCPrepToRcv is executed as if FLUSH
were given as the MCPrepToRcvType . See the discussion
of FLUSH (MCPrepToRcvType = 1).
106 Chapter 5

Intrinsic Descriptions
MCPrepToRcv
1 = FLUSH

Causes the local LU to empty its send buffer and the
local TP to enter Receive state.

6 = CONFIRM

Causes the local LU to flush its send buffer and
immediately send a confirmation request to the remote
TP. The remote TP is then placed in Confirm Send state
and must respond with positive confirmation before it
can enter Send state. If the MCPrepToRcv intrinsic does
not execute successfully, the state of the local TP is
determined by the value returned in the Status
parameter, as follows:

Default: 0 (CONVERSATION_SYNC_LEVEL)

Locks

16-bit signed integer by value; input. This parameter
specifies when control is to be returned to the local TP
after it calls MCPrepToRcv with a PrepToRcvType of
CONFIRM (or CONVERSATION_SYNC_TYPE, if the
conversation has a SyncLevel of CONFIRM). If
MCPrepToRcv is called with a PrepToRcvType of
FLUSH, the Locks parameter has no meaning and is
ignored. Possible values for this parameter are as
follows:

0 = SHORT

Control will be returned to the local TP as soon as the
remote TP sends back an appropriate reply. The
equivalent of any of the following LU 6.2 API intrinsics
will generate an appropriate reply:

MCConfirmed
MCDeallocate (DeallocateType = ABEND)
MCSendError

1 = LONG

status info value state of local TP

-50 Allocation Error Deallocate state

-51 Resource Failure — No Retry Deallocate state

-52 Resource Failure — Retry Deallocate state

-60 Program Error Receive state

+80 Timer Has Expired Receive state

-1020 Deallocate Abend Deallocate state
Chapter 5 107

Intrinsic Descriptions
MCPrepToRcv
Control will not be returned to the local TP until
information, such as data, is received from the remote
TP following a positive confirmation response.

Default: 0 (SHORT)

Description

The MCPrepToRcv intrinsic flushes the local TP’s send buffer, changes
the conversation state of the local TP from Send to Receive, and
changes the state of the remote TP from Receive to Send. No data can
be received through this intrinsic. To receive data, you must call either
MCRcvAndWait or MCRcvNoWait.

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-26 Out of range 'PrepToRcvType' parameter specified in intrinsic call.
-27 Out of range 'Locks' parameter specified in intrinsic call.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: Retry possible.
-52 Resource Failure: No retry possible.
-56 Program Error: No data truncation has occurred.
-60 Program Error: Data may have been purged.
+80 Timer has expired.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
-1105 Internal Error: Conversation deallocated.
108 Chapter 5

Intrinsic Descriptions
MCRcvAndWait
MCRcvAndWait
Waits for information to arrive on the specified conversation and then
receives the information.

Syntax

 I16V I16 I16
MCRcvAndWait(ResourceID , Length , RequestToSendReceived ,

 CA I16 I32
Data , WhatReceived , Status);

Parameters

ResourceID

Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Length

Required; 16-bit signed integer by value;
input/output.

Input:

The Length value that the local TP passes to the
remote TP indicates the maximum amount of data, in
bytes, that the local TP can receive in its Data
parameter. The Length value must not exceed 4092
bytes on MPE V, or 32763 bytes on MPE XL. A Length
of 0 means that only control or error information can be
received (no data).

Output:

If data is received (WhatReceived =
DATA_COMPLETE or DATA_INCOMPLETE), the
Length value that the remote TP returns to the local
TP is the actual length of the data received. If control
information is received (WhatReceived = SEND,
CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE), the remote TP does not
change the value in the Length parameter, so it
contains whatever was supplied as input.
Chapter 5 109

Intrinsic Descriptions
MCRcvAndWait
RequestToSendReceived

Required; 16-bit signed integer; output. Indicates
whether the remote TP has issued a RequestToSend.
Possible values are as follows:

1 = YES

Indicates a RequestToSend has been received from the
remote TP. The remote TP has issued the equivalent of
the MCReqToSendintrinsic, requesting that the local TP
enter Receive state and place the remote TP in Send
state.

0 = NO

No RequestToSend has been received.

Data

Required; character array; output; EBCDIC. The
character array into which the local TP will receive
data sent by the remote TP. The length of the Data
array must be greater than or equal to the value in the
Length parameter.

If the data comes from an EBCDIC application, the
local TP must convert it from EBCDIC to ASCII. The
MPE CTRANSLATE intrinsic, or the NLTRANSLATE
intrinsic on MPE XL, may be used.

WhatReceived

Required; 16-bit signed integer; output. If the value
returned in the Status parameter is 0, then the
WhatReceived parameter contains a value indicating
the type of information received. Possible values are as
follows:

1 = DATA_COMPLETE

Indicates that a complete data record, or the final
portion of a data record, has been received. The Length
parameter determines the amount of data that can be
received in a single call to MCRcvAndWait . If a data
record is larger than the value in the Length
parameter, you must call MCRcvAndWait more than
once to receive a complete record.

2 = DATA_INCOMPLETE

Indicates that less than a complete record has been
received, and you must call MCRcvAndWait again to
receive the next portion of it. Incomplete data records
are received when the size of a record exceeds the value
110 Chapter 5

Intrinsic Descriptions
MCRcvAndWait
in the Length parameter. When the final portion of a
data record is received, the WhatReceived parameter
returns 1 (DATA_COMPLETE).

4 = SEND

Indicates that the remote TP has issued the equivalent
of MCPrepToRcv or MCRcvAndWait and has entered
Receive state. The local TP is now in Send state and can
issue only those intrinsics that are callable from Send
state.

5 = CONFIRM

Indicates that the remote TP has issued the equivalent
of MCConfirm , placing the local TP in Confirm state.
Unless it detects an error, the local TP must respond
with a call to MCConfirmed .

6 = CONFIRM_SEND

Indicates that the remote TP has issued the equivalent
of MCPrepToRcv with a synchronization level of
CONFIRM. The local TP is placed in Confirm Send
state. Unless it detects an error, it must send a
confirmation response to the remote and enter Send
state.

7 = CONFIRM_DEALLOCATE

Indicates that the remote TP has issued the equivalent
of MCDeallocate with a synchronization level of
CONFIRM. The local TP is placed in Confirm
Deallocate state. Unless it detects an error, it must
send a confirmation response to the remote and call
MCDeallocate with a DeallocateType of LOCAL.
When the remote TP deallocates normally, a status info
value of +100 is returned to the local TP.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCRcvAndWait intrinsic waits for information to arrive on the
conversation specified in the ResourceID parameter, then it receives
the information from the receive buffer into the Data parameter.
MCRcvAndWait is used to receive data and control information.
Chapter 5 111

Intrinsic Descriptions
MCRcvAndWait
NOTE A TP cannot receive both data and control information in the same call
to MCRcvAndWait . If both data and control information have been
received in the receive buffer, a TP must make separate calls to
MCRcvAndWait for each one.

The only control information that can be received in the same
MCRcvAndWait call with data is the RequestToSendReceived
notification.

If posting has been set on the specified conversation, MCRcvAndWait
ends posting.

The local TP does not have to call MCPrepToRcv to enter Receive state
before it calls MCRcvAndWait . A TP can call MCRcvAndWait directly from
Send state. The send buffer will be flushed, the remote TP will be
placed in Send state, and the local TP will be placed in Receive state.

When logical records sent by the remote are larger than the receive
buffer (4092 bytes on MPE V, or 32763 bytes on MPE XL), the local TP
must call MCRcvAndWait more than once to receive each record.

NOTE If the local TP will be receiving data records larger than the receive
buffer, it must allocate more than one location for storing data. Data
received in the Data parameter during the first call to MCRcvAndWait
will be overwritten during the second call unless it is moved to another
location.

The MCRcvAndWait intrinsic differs from the MCRcvNoWait intrinsic in
the following ways:

1. MCRcvAndWait can be used to change the conversation state of the
local TP from Send state to Receive state. MCRcvNoWait can be
called only from Receive state.

2. MCRcvAndWait waits for information from the remote before
returning control to the calling TP. MCRcvNoWait does not wait for
information to arrive. It checks to see if any information is available
in the receive buffer, and if the buffer is empty, it returns a status
info value of +38 (Not Posted) and returns control to the TP.

3. MCRcvAndWait can receive 4092 bytes on MPE V, or 32763 bytes on
MPE XL, in a single intrinsic call. MCRcvNoWait can receive a
maximum of 4092 bytes in a single intrinsic call, on MPE V or
MPE XL.

Figure 5-5 shows a conversation in which both sides call MCRcvAndWait .
Notice that, when MCRcvAndWait is called from Send state, the TP that
called it is placed in Receive state and must wait for data to arrive
before it can continue processing. The MCRcvAndWait intrinsic does not
finish executing until information arrives for it to receive (or until the
112 Chapter 5

Intrinsic Descriptions
MCRcvAndWait
Timer expires. See MCAllocate or MCGetAllocate for information on
the Timer).

Figure 5-5 Conversation with Calls to MCRcvAndWait

Status Info Values

 0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-11 Out of range 'Length' parameter specified in intrinsic call.
-13 Data buffer specified in intrinsic call is out of bounds.
-20 Not enough stack space for intrinsic to run.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: Retry possible.
-52 Resource Failure: No retry possible.
-56 Program Error: No data truncation has occurred.
-60 Program Error: Data may have been purged.
+80 Timer has expired.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
+100 Deallocate Normal received from the remote TP.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
-1050 Invalid 'Data' parameter specified in intrinsic call.
-1105 Internal Error: Conversation deallocated.
Chapter 5 113

Intrinsic Descriptions
MCRcvNoWait
MCRcvNoWait
Receives any information available for the specified conversation but
does not wait for information to arrive before returning control to the
calling TP.

Syntax

 I16V I16 I16
MCRcvNoWait(ResourceID , Length , RequestToSendReceived ,

 CA I16 I32
Data , WhatReceived , Status);

Parameters

ResourceID

Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Length

Required; 16-bit signed integer by value;
input/output.

Input:

The Length value that the local TP passes to the
remote TP indicates the maximum amount of data, in
bytes, that the local TP can receive in its Data
parameter. The Length value must not exceed 4092
bytes. A Length of 0 means that only control or error
information can be received (no data).

Output:

If data is received (WhatReceived =
DATA_COMPLETE or DATA_INCOMPLETE), the
Length value that the remote TP returns to the local
TP is the actual length of the data received. If control
information is received (WhatReceived = SEND,
CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE), the remote TP does not
change the value in the Length parameter, so it
contains whatever was supplied as input.
114 Chapter 5

Intrinsic Descriptions
MCRcvNoWait
RequestToSendReceived

Required; 16-bit signed integer; output. Indicates
whether the remote TP has issued a RequestToSend.
Possible values are as follows:

1 = YES

Indicates a RequestToSend has been received from the
remote TP. The remote TP has issued the equivalent of
the MCReqToSendintrinsic, requesting that the local TP
enter Receive state and place the remote TP in Send
state.

0 = NO

No RequestToSend has been received.

Data

Required; character array; output; EBCDIC. The
character array into which the local TP will receive
data sent by the remote TP. The length of the Data
array must be greater than or equal to the value in the
Length parameter.

If the data comes from an EBCDIC application, the
local TP must convert it from EBCDIC to ASCII. The
MPE CTRANSLATE intrinsic, or the NLTRANSLATE
intrinsic on MPE XL, may be used.

WhatReceived

Required; 16-bit signed integer; output. If the value
returned in the Status parameter is 0, then the
WhatReceived parameter contains a value indicating
the type of information received. Possible values are as
follows:

1 = DATA_COMPLETE

Indicates that a complete data record, or the final
portion of a data record, has been received. The Length
parameter determines the amount of data that can be
received in a single call to MCRcvAndWait . If a data
record is larger than the value in the Length
parameter, you must call MCRcvAndWait more than
once to receive a complete record.

2 = DATA_INCOMPLETE

Indicates that less than a complete record has been
received, and you must call MCRcvAndWait again to
receive the next portion of it. Incomplete data records
are received when the size of a record exceeds the value
Chapter 5 115

Intrinsic Descriptions
MCRcvNoWait
in the Length parameter. When the final portion of a
data record is received, the WhatReceived parameter
returns 1 (DATA_COMPLETE).

4 = SEND

Indicates that the remote TP has issued the equivalent
of MCPrepToRcv or MCRcvAndWait and has entered
Receive state. The local TP is now in Send state and can
issue only those intrinsics that are callable from Send
state.

5 = CONFIRM

Indicates that the remote TP has issued the equivalent
of MCConfirm , placing the local TP in Confirm state.
Unless it detects an error, the local TP must respond
with a call to MCConfirmed .

6 = CONFIRM_SEND

Indicates that the remote TP has issued the equivalent
of MCPrepToRcv with a synchronization level of
CONFIRM. The local TP is placed in Confirm Send
state. Unless it detects an error, it must send a
confirmation response to the remote and enter Send
state.

7 = CONFIRM_DEALLOCATE

Indicates that the remote TP has issued the equivalent
of MCDeallocate with a synchronization level of
CONFIRM. The local TP is placed in Confirm
Deallocate state. Unless it detects an error, it must
send a confirmation response to the remote TP and call
MCDeallocate with a DeallocateType of LOCAL.
When the remote TP deallocates normally, a status info
value of +100 is returned to the local TP.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCRcvNoWait intrinsic receives any data that has arrived in the
receive buffer for the specified conversation. It differs from the
MCRcvAndWait intrinsic in the following ways:
116 Chapter 5

Intrinsic Descriptions
MCRcvNoWait
1. MCRcvNoWait can be called only from Receive state. Unlike
MCRcvAndWait , it cannot be used to change the conversation state
of the local TP from Send state to Receive state.

2. Unlike MCRcvAndWait , which waits for information from the remote
before returning control to the calling TP, MCRcvNoWait does not
wait for information to arrive. It checks to see if any information is
available in the receive buffer, and if the buffer is empty, it returns a
status info value of +38 (Not Posted) and returns control to the TP.

3. The MCRcvNoWait intrinsic can receive a maximum of 4092 bytes in
a single intrinsic call. The MCRcvAndWait intrinsic can receive 4092
bytes on MPE V, or 32763 bytes on MPE XL, in a single intrinsic call.

MCRcvNoWait may not be used in conjunction with posting. Posting ends
as soon as MCRcvNoWait is called. For more information on posting, see
the description of MCPostOnRcpt , earlier in this chapter.

When logical records sent by the remote processor are larger than 4092
bytes, the local TP must call MCRcvNoWait more than once to receive
each record.

NOTE If the local TP will be receiving data records larger than 4092 bytes, it
must allocate more than one location for storing data. Data received in
the Data parameter during the first call to MCRcvNoWait will be
overwritten during the second call unless it is moved to another
location.

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-11 Out of range 'Length' parameter specified in intrinsic call.
-13 Data buffer specified in intrinsic call is out of bounds.
-20 Not enough stack space for intrinsic to run.
+38 Not Posted.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: Retry possible.
-52 Resource Failure: No retry possible.
-56 Program Error: No data truncation has occurred.
-60 Program Error: Data may have been purged.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
+100 Deallocate Normal received from the remote TP.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
-1050 Invalid 'Data' parameter specified in intrinsic call.
-1105 Internal Error: Conversation deallocated.
Chapter 5 117

Intrinsic Descriptions
MCReqToSend
MCReqToSend
Notifies the remote TP that the local TP wants to enter Send state.

Syntax

 I16V I32
MCReqToSend(ResourceID , Status);

Parameters

ResourceID Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Status Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCReqToSend intrinsic can be called from either Receive state or
Confirm state. It does not cause a state change; it requests that the
remote TP, which is in Send state and therefore controls the
conversation, enter Receive state and place the local TP in Send state.

After calling MCReqToSend, the local TP must call MCRcvAndWait or
MCRcvNoWait to find out whether the remote TP performed the
requested state change. If the state change was successful, the
WhatReceived parameter of the MCRcvAndWait or MCRcvNoWait
intrinsic will return 4 (SEND). See the descriptions of MCRcvAndWait
and MCRcvNoWait, earlier in this chapter.

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-40 Intrinsic called in invalid state.
-51 Resource failure: No retry possible.
-52 Resource failure: Retry possible.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
118 Chapter 5

Intrinsic Descriptions
MCSendData
MCSendData
Sends one data record to the remote TP.

Syntax

 I16V CA I16V I16
MCSendData(ResourceID , Data , Length , RequestToSendReceived ,

 I32
Status);

Parameters

ResourceID

Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Data

Required; character array; input; EBCDIC. This byte
array holds the data that is to be sent to the remote TP.
Data that is to be sent to an EBCDIC application must
be translated from ASCII to EBCDIC. The MPE
CTRANSLATE intrinsic, or the NLTRANSLATE intrinsic
on MPE XL, may be used.

Length

Required; 16-bit signed integer by value; input. This is
an integer from 0 through 32763 that specifies the
length, in bytes, of the data record to be sent. If Length
= 0, a null record is sent.

RequestToSendReceived

Required; 16-bit signed integer; output. Indicates
whether the remote TP has issued a RequestToSend.
Possible values are as follows:

1 = YES

Indicates a RequestToSend has been received from the
remote TP. The remote TP has issued the equivalent of
the MCReqToSendintrinsic, requesting that the local TP
enter Receive state and place the remote TP in Send
state.
Chapter 5 119

Intrinsic Descriptions
MCSendData
0 = NO

No RequestToSend has been received.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCSendData intrinsic sends data to the remote TP. When it is
called, the data in the Data parameter is moved to the send buffer.
When the send buffer is full, or when an intrinsic is called that flushes
the send buffer, all the data in the send buffer is transmitted to the
remote TP.

On MPE V, the send buffer is 2044 bytes for every conversation. On
MPE XL, the send buffer is the same size as the maximum RU size for
the session. The maximum RU size is a configured value from 256
through 2048 associated with the session type. For more information on
configuring RU sizes, see the APPC Subsystem on MPE XL Node
Manager’s Guide.

If you call MCSendData with a Data parameter smaller than the send
buffer, the data might not be transmitted immediately to the remote TP.
To empty the send buffer and transmit all data immediately to the
remote TP, call the MCFlush intrinsic. See the description of MCFlush ,
earlier in this chapter. See Chapter 6 , “Buffer Management,” for more
information on the send and receive buffers.

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-11 Out of range 'Length' parameter specified in intrinsic call.
-13 Data buffer specified in intrinsic call is out of bounds.
-20 Not enough stack space for intrinsic to run.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: Retry possible.
-52 Resource Failure: No retry possible.
-60 Program Error: Data may have been purged.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
-1105 Internal Error: Conversation deallocated.
120 Chapter 5

Intrinsic Descriptions
MCSendError
MCSendError
Informs the remote TP that the local TP has detected an error in an
application. Places the remote TP in Receive state and the local TP in
Send state.

Syntax

 I16V I16 I32
MCSendError(ResourceID , RequestToSendReceived , Status);

Parameters

ResourceID

Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

RequestToSendReceived

Required; 16-bit signed integer; output. Indicates
whether the remote TP has issued a RequestToSend .
Possible values are as follows:

1 = YES

Indicates a RequestToSend has been received from the
remote TP. The remote TP has issued the equivalent of
the MCReqToSendintrinsic, requesting that the local TP
enter Receive state and place the remote TP in Send
state.

0 = NO

No RequestToSend has been received.

Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

Description

The MCSendError intrinsic informs the remote TP that the local TP has
detected an application error and is unable to receive any further
information. It can be called from any state except Deallocate state or
Reset state. Successful execution of this intrinsic places the remote TP
Chapter 5 121

Intrinsic Descriptions
MCSendError
in Receive state (if it is not already in Receive state) and the local TP in
Send state (if it is not already in Send state).

The most common use of MCSendError is to respond negatively to a
confirmation request.

A call to MCSendError ends posting. For more information on posting,
see the description of MCPostOnRcpt , earlier in this chapter.

The MCSendError intrinsic operates differently depending on the
current state of the TP that calls it. Following are descriptions of what
MCSendError does in each conversation state:

Send state

When MCSendError is called from Send state, it flushes the send buffer.

Receive state

When MCSendError is called from Receive state, the states of the local
and remote TPs are immediately reversed: The local TP is placed in
Send state and the remote TP is placed in Receive state. All data in the
receive buffer of the local TP is purged. However, if a RequestToSend
indicator is waiting in the receive buffer, it is preserved for the next call
to an intrinsic that uses the RequestToSendReceived parameter.

All Confirm states

When MCSendError is called from one of the Confirm states, all data
from the remote TP has already been received, so the buffers are
already empty. The local TP is placed in Send state, and the remote TP
is placed in Receive state. The call to MCSendError serves as a negative
response to the remote TP’s confirmation request, so the request is no
longer pending.

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: Retry possible.
-52 Resource Failure: No retry possible.
-56 Program Error: No data truncation has occurred.
-60 Program Error: Data may have been purged.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
+100 Deallocate Normal received from the remote TP.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
-1105 Internal Error: Conversation deallocated.
122 Chapter 5

Intrinsic Descriptions
MCTest
MCTest
Tests the specified for the receipt of information.

Syntax

 I16V I16V I32 I16
MCTest(ResourceID , [Test], Status , [PostedType]);

Parameters

ResourceID Required; 16-bit signed integer by value; input. This is
the unique resource ID number assigned to this
conversation when it was allocated. See MCAllocate or
MCGetAllocate , in this chapter, for more information.

Test 16-bit signed integer by value; input. This parameter
specifies whether to look for information waiting in the
receive buffer or to check for a RequestToSend indicator
sent from the remote TP.

0 = POSTED

Tests for information waiting in the receive buffer. The
value returned in the Status parameter indicates the
result of the test, as follows:

1 = REQUEST_TO_SEND_RECEIVED

Tests for the receipt of a RequestToSend indicator from
the remote TP. The value returned in the Status
parameter indicates the result of the test, as follows:

Default: 0 (POSTED)

status info
value

meaning

0 Something is waiting in the receive buffer.

-37 Posting is not active. (See MCPostOnRcpt .

+38 Nothing is waiting in the receive buffer.

statusinfo
value

meaning

0 A RequestToSend indicator has been received.

+36 No RequestToSend indicator has bee received.
Chapter 5 123

Intrinsic Descriptions
MCTest
Status Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

PostedType 16-bit signed integer; output. This parameter indicates
the kind of information received. It is valid only when
Test = 0 (POSTED) and Status = 0 (something is
waiting in the receive buffer). Possible values are as
follows:

0 = DATA

Indicates that the receive buffer contains at least the
amount of data specified in the Length parameter of
the MCPostOnRcpt intrinsic.

1 = NOT_DATA

Indicates that the receive buffer contains control
information, not data.

Description

The MCTest intrinsic tests the receive buffer of the specified
conversation to see whether any information has been received and
what kind of information it is (data or control information). The MCTest
intrinsic can also indicate whether the remote TP has issued the
equivalent of MCReqToSend, requesting that the local TP enter Receive
state and place the remote TP in Send state.

Before calling MCTest, you must call MCPostOnRcpt to set up the
resources necessary to check the contents of the receive buffer. See the
description of MCPostOnRcpt , earlier in this chapter.

The MCWait intrinsic, described later in this chapter, is similar to the
MCTest intrinsic; however, MCTest and MCWait differ in the following
ways:

1. The MCTest intrinsic can test only one conversation at a time, while
the MCWait intrinsic can monitor the receive buffers of many
conversations at once.

2. The MCWait intrinsic can return only information about the contents
of the receive buffer and, unlike the MCTest intrinsic, cannot check
whether a RequestToSend has been received from the remote TP.

3. The MCTest intrinsic does not wait for information to arrive. After it
tests for the specified information, no matter what it finds, it returns
control to the conversation. The MCWait intrinsic waits until
information arrives in the receive buffer of one of the conversations
it is monitoring before it returns control to the conversation.
124 Chapter 5

Intrinsic Descriptions
MCTest
Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-35 Out of range 'Test' parameter specified in intrinsic call.
+36 Request To Send Not Received.
-37 Posting Not Active.
+38 Not Posted.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: Retry possible.
-52 Resource Failure: No retry possible.
-56 Program Error: No data truncation has occurred.
-60 Program Error: Data may have been purged.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
+100 Deallocate Normal received from the remote TP.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
-1105 Internal Error: Conversation deallocated.
Chapter 5 125

Intrinsic Descriptions
MCWait
MCWait
Waits for information to arrive for any of a list of conversations.

Syntax

 IA16 I16V I16
MCWait(ResourceList , NumResources , ResourcePosted ,

 I32 I16
Status , [PostedType]);

Parameters

ResourceList

Required; 16-bit integer array; input. This array is a
list of ResourceIDs for current conversations. It
specifies the conversations that MCWait will monitor
for incoming information. At least one of the
conversations specified must have posting active; that
is, MCPostOnRcpt must have been called. MCWait can
monitor only conversations for which posting is active.

On MPE V, up to 8 ResourceIDs can be listed in the
ResourceList , because MPE V supports a maximum of
8 active conversations.

On MPE XL, up to 256 ResourceIDs can be listed in
the ResourceList , because MPE XL supports a
maximum of 256 active conversations.

NumResources

Required; 16-bit signed integer by value; input. This
parameter specifies the number of ResourceIDs listed
in the ResourceList array. On MPE V,
NumResources must be from 1 through 8. On MPE XL,
NumResources must be from 1 through 256.

ResourcePosted

Required; 16-bit signed integer; output. When the
Status parameter returns 0, the ResourcePosted
parameter contains the ResourceID of the
conversation for which information has arrived.
126 Chapter 5

Intrinsic Descriptions
MCWait
Status

Required; 32-bit signed integer; output. Indicates the
result of intrinsic execution. See the “Status
Parameter” section, earlier in this chapter, for more
information.

PostedType

16-bit signed integer; output. This parameter indicates
the kind of information received. It is valid only when
Status = 0 (something is waiting in the receive buffer
for one of the posted conversations). Possible values are
as follows:

0 = DATA

Indicates that the receive buffer contains at least the
amount of data specified in the Length parameter of
the MCPostOnRcpt intrinsic.

1 = NOT_DATA

Indicates that the receive buffer contains control
information, not data.

Description

The MCWait intrinsic waits for information to arrive in the receive
buffer of any in a list of active conversations. When it executes
successfully, it returns the ResourceID of the conversation for which
information has arrived. It may also indicate the type of information
that has arrived: control information or data.

Before calling MCWait, you must call MCPostOnRcpt for each of the
conversations you want to monitor, to set up the resources necessary to
check the contents of their receive buffers. See the description of
MCPostOnRcpt , earlier in this chapter.

The MCTest intrinsic, described earlier in this chapter, is similar to the
MCWait intrinsic; however, MCTest and MCWait differ in the following
ways:

1. The MCTest intrinsic can test only one conversation at a time, while
the MCWait intrinsic can monitor the receive buffers of many
conversations at once.

2. The MCWait intrinsic can return only information about the contents
of the receive buffer, while the MCTest intrinsic can check whether a
RequestToSend has been received from the remote TP.

3. The MCTest intrinsic does not wait for information to arrive. After it
tests for the specified information, no matter what it finds, it returns
control to the conversation. The MCWait intrinsic waits until
Chapter 5 127

Intrinsic Descriptions
MCWait
information arrives in the receive buffer of one of the conversations
it is monitoring before it returns control to the conversation.

Status Info Values

0 Successful Completion.
-1 Intrinsic called with parameter out of bounds.
-2 Invalid 'ResourceID' parameter specified in intrinsic call.
-20 Not enough stack space for intrinsic to run.
-34 Out of range 'NumResources' parameter specified in intrinsic call.
-37 Posting Not Active.
-40 Intrinsic called in invalid state.
-50 Allocation Error.
-51 Resource Failure: Retry possible.
-52 Resource Failure: No retry possible.
-56 Program Error: No data truncation has occurred.
-60 Program Error: Data may have been purged.
+80 Timer has expired.
-90 An internal error in Presentation Services has occurred.
-91 An internal error in the APPC subsystem has occurred.
+100 Deallocate Normal received from the remote TP.
-1002 An internal error at the mapped conversation level has occurred.
-1003 Required parameter missing.
-1020 Deallocate Abend.
-1105 Internal Error: Conversation deallocated.
128 Chapter 5

6 Buffer Management
LU 6.2 API optimizes the use of the data communications line by
buffering the data that is sent and received. This chapter explains how
LU 6.2 API handles control information and how it uses the send and
receive buffers to manage the data traffic between transaction
programs.

Control Information
For every conversation allocated, LU 6.2 API establishes and maintains
a set of flags or indicators that keep track of certain control information
necessary to manage the conversation. Whenever an intrinsic is called,
LU 6.2 API checks these flags before executing the intrinsic to see if any
information must be relayed to the TP. The following flags are
associated with each conversation:

• Error flag. The error flag is used to inform the TP that some type of
error has occurred.

• RequestToSendReceived flag. The RequestToSendReceived
flag tells the TP whether a RequestToSend notification has been
received from the remote TP. A RequestToSend is the only control
information that can be received in the same intrinsic call with data.

• State indicator. The state indicator keeps track of the conversation
state of the local TP. If the state changes, the state indicator
changes. When an intrinsic is called, the state indicator is checked to
ensure that the intrinsic can be called from the current state.

• Synchronization level indicator. The synchronization level
indicator records the synchronization level that is established when
a conversation is allocated. If an intrinsic is called that can be
executed only at a certain synchronization level, the synchronization
level indicator is checked to verify that the conversation was
allocated with the appropriate synchronization level.
129

Buffer Management
Send Buffer
Send Buffer
For each conversation allocated, LU 6.2 API establishes a send buffer.
On MPE V, the send buffer is always 2044 bytes. On MPE XL, the send
buffer is the same size as the maximum RU size for the session. The
maximum RU size is a configured value from 256 through 2048
associated with the session type. For more information on configuring
RU sizes, see the APPC Subsystem on MPE XL Node Manager’s Guide.

Whenever the MCSendData intrinsic is called, data is transferred to the
send buffer from the Data parameter specified in the intrinsic call.
When the send buffer is full, LU 6.2 API flushes the buffer and
transmits the data to the remote TP. No data is transmitted until the
send buffer is full or until an intrinsic is called that flushes the buffer.

Example 1: Sending Small Data Records

Figure 6-1 shows how data flows from the send buffer of the local TP to
the receive buffer of the remote TP in a one-way file transfer
application. This example application sends 16-byte data records. The
send buffer in this example holds 2044 bytes.

Figure 6-1 Send and Receive Buffers

Because each data record in figure 6-1 is only 16 bytes long, LU 6.2 API
can store 127 data records in the 2044-byte send buffer (127 records of
16 bytes = 2032 bytes). When MCSendData is called for the 128th time,
130 Chapter 6

Buffer Management
Send Buffer
LU 6.2 API checks to see if 16 more bytes will fit in the send buffer.
Only 12 more bytes will fit, so LU 6.2 API transmits the 127 records in
the send buffer and then stores the 128th record in the send buffer.

Example 2: An Allocation Error

In example 2, a local TP receives an allocation error from the remote
TP. After executing the MCAllocate intrinsic, LU 6.2 API does not wait
for a response from the remote TP before it starts executing calls to
MCSendData. If the conversation could not be allocated on the remote
side, the allocation error could be received on any of the calls to
MCSendData. In Figure 6-2, the allocation error does not reach the local
TP until the local TP has made three calls to MCSendData. The TP is
informed of the error through the Status parameter in the fourth call
to MCSendData.

Figure 6-2 The Local TP Receives an Allocation Error

To verify that a conversation is allocated successfully, call MCAllocate
with the SyncLevel parameter set to 0 (CONFIRM), and then call
MCConfirm . MCConfirm flushes the send buffer and requests that the
remote TP send a reply, confirming that the conversation was allocated
successfully.
Chapter 6 131

Buffer Management
Receive Buffer
Receive Buffer
Unless the data records exchanged by TPs are very large, they are
transmitted and received in groups of more than one at a time.
However, a TP can logically send and receive only one record at a time.
So each group of records that a TP receives is stored in its receive
buffer, and the TP takes the records out of the receive buffer one at a
time.

LU 6.2 API allocates a receive buffer for every active conversation. On
MPE V, the size of the receive buffer is 4092 bytes. On MPE XL, the
receive buffer is a different size depending on which intrinsic you call to
receive data. On MPE XL, the MCRcvAndWait intrinsic uses a
32763-byte receive buffer, and the MCRcvNoWait intrinsic uses a
4092-byte receive buffer.

Because MCRcvAndWait and MCRcvNoWait can receive control
information as well as data, an additional area is assigned with the
receive buffer. This area contains the state the TP is to enter once it
receives all the data from the receive buffer.

NOTE Hewlett-Packard’s implementation of LU 6.2 API does not allow data
and control information to be received on the same intrinsic call. Other
LU 6.2 implementations may allow data and control information to be
received at the same time. This could affect how the TP must be
designed at the remote location.

Example 3: Receiving Data and Changing State

In example 3, the remote TP is sending 80-byte data records during a
two-way conversation without confirm. When the remote TP is finished
sending data, it issues the equivalent of the MCRcvAndWait intrinsic,
which flushes its send buffer and tells the local TP to enter Send state.

The data and the state change instruction are transmitted to the local
receive buffer. The local TP receives the data from the receive buffer
through calls to MCRcvAndWait or MCRcvNoWait. After the local TP
receives all the data, one record at a time, it calls MCRcvAndWait once
more to receive the instruction to change to Send state. When the
MCRcvAndWait intrinsic returns, the state indicator flag is updated to
reflect the new state. Figure 6-3 illustrates this example.
132 Chapter 6

Buffer Management
Receive Buffer
Figure 6-3 Receiving Data and Changing State

Example 4: Receiving Large Data Records

In example 4, the remote TP has a large send buffer, and the data
records that it sends to the local TP are 5000 bytes long. The local
receive buffer will hold 4092 bytes. It is too small to receive a complete
data record, so the local TP must call MCRcvAndWait or MCRcvNoWait
twice to receive a complete record: once to receive the first 4092 bytes,
and a second time to receive the remaining 908 bytes of the 5000-byte
record.

When the local TP calls MCRcvAndWait or MCRcvNoWait the first time,
the WhatReceived parameter returns DATA_INCOMPLETE, telling
the local TP that it has received an incomplete data record and must
make another intrinsic call to receive the rest of the record. When the
local TP receives the last 908 bytes, the WhatReceived parameter
returns DATA_COMPLETE, telling the local TP that it has received
the end of a data record. Figure 6-4 illustrates this example.

NOTE If the local TP will be receiving data records larger than the receive
buffer, it must allocate more than one location for storing data. Data
received in the Data parameter during the first call to MCRcvAndWait or
MCRcvNoWait will be overwritten during the second call unless it is
moved to another location. (See Figure 6-4.)
Chapter 6 133

Buffer Management
Receive Buffer
Figure 6-4 Receiving Large Data Records
134 Chapter 6

7 Debugging
This chapter shows you how to isolate problems in your TPs. It contains
the following sections:

• Debugging Steps. This section tells you the steps to follow to
minimize the time you spend debugging.

• The User Trace. This section explains how to enable user tracing,
how to identify and format the trace files, and how to read a user
trace.
135

Debugging
Debugging Steps
Debugging Steps
To minimize the time spent isolating TP problems, follow the procedure
below.

1. Format and analyze the user trace. The user trace is the most useful
point of departure when debugging. If you have not enabled user
tracing, you will have to recreate the problem with user tracing
enabled. See the description of the TPStarted intrinsic, in Chapter
5 , “Intrinsic Descriptions,” for more information on enabling user
tracing.

Scan the user trace for status info values other than 0 (successful
completion). Determine the meaning of any non-zero status info
values.

2. If you cannot find any problems with your code, verify that the
remote TP name passed through MCAllocate is the correct name
for the remote TP that will communicate with the local TP.

3. If you do not find a problem with the local TP, and you have verified
that the local TP is communicating with the correct remote TP, talk
with the remote programmer to determine whether the problem lies
with the remote TP. Many problems occur because the local and
remote programs are out of synchronization.
136 Chapter 7

Debugging
The User Trace
The User Trace
User tracing records intrinsic calls and data for a single transaction
program, including all conversations in which the transaction program
is engaged. Tracing can be turned on using the TraceOn parameter of
the TPStarted intrinsic. Once the trace has been turned on, it remains
on until TPEnded is called. Entries are written to the trace file at the
completion of each intrinsic call. See Chapter 5 , “Intrinsic
Descriptions,” for descriptions of the TPStarted and TPEnded intrinsics.

User tracing should be enabled during program development so that
the trace will always be available for debugging. It is common practice
to disable user tracing after a program has been debugged. However, if
a problem arises after the program is in use, enabling tracing again
may help to diagnose the problem.

You can enable or disable user tracing without recompiling the program
by creating a control file that passes the desired tracing value to the
TPStarted intrinsic, or by coding your program to accept an info string
from the MPE RUN command that contains the TraceOn value.

NOTE Develop each TP in a separate group on the HP 3000 to avoid trace file
confusion.

You can specify a name for your trace file in the TraceFile parameter
of the TPStarted intrinsic, or you can allow the trace file name to
default.

If you specify a name for the trace file, the file will be overwritten each
time the program is run with tracing enabled. Separate processes of the
same TP will try to open and overwrite the same trace file. The first
process started will overwrite the old trace file, but subsequent
processes will be unable to start, because the trace file they need to
open is in use.

If you use the default name, each TP process will open a separate trace
file. You can use the DefaultFile parameter of the TPStarted intrinsic
to find out which trace file is associated with which process, or you can
distinguish between trace files of different processes or different TPs by
reading the time stamp at the beginning of the trace.
Chapter 7 137

Debugging
The User Trace
Collecting the User Trace

The user trace file is created in the group and account from which the
TP is run. The default name is PSTRACnn, where nn is a number from
00 through 49 that increments each time a new file is opened.

After 25 user trace files are created, the system purges one trace file
each time a new one is opened. Trace files are created and numbered as
follows:

1. Trace files PSTRAC00 through PSTRAC24 are created.

2. PSTRAC25 is created and file PSTRAC00 is purged.

3. The next trace file created is PSTRAC26. When PSTRAC26is created,
PSTRAC01 is purged.

4. When PSTRAC27 is created, PSTRAC02 is purged, and so on.

5. After trace file PSTRAC49 is created, the numbering wraps and the
next file created is PSTRAC00.

There are never more than twenty-five trace files in the group and
account where the TP is running, because, after the twenty-fifth file is
created, an old file is purged for each new one created. Because the
numbering wraps to 00 after it reaches 49, the youngest trace file could
be numbered either low or high. The key to finding the youngest file is
determining whether the file numbers have wrapped.

If the file numbers have not wrapped, the numbering will be
contiguous; that is, no gaps will exist between numbers. In the
following example, PSTRAC00 to PSTRAC21 have been purged, and
PSTRAC47 to PSTRAC49 do not exist. Therefore, the files have not
wrapped, and the file with the highest number is the youngest.
138 Chapter 7

Debugging
The User Trace
:listf pstrac@.testpgms.api,2
<F100P12>ACCOUNT= API GROUP= TESTPGMS

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

 SIZE TYP EOF LIMIT R/B SECTORS #X MX

PSTRAC22 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC23 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC24 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC25 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC26 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC27 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC28 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC29 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC30 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC31 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC32 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC33 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC34 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC35 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC36 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC37 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC38 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC39 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC40 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC41 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC42 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC43 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC44 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC45 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC46 NTRAC 128W FB 1000 1000 8 1008 16 16

:

The youngest trace file is PSTRACE46, because the file numbers are
contiguous, and 46 is the highest number.
Chapter 7 139

Debugging
The User Trace
If the file numbers have wrapped, the file with the highest number is
not the youngest. In the following example, notice that the numbering
jumps from PSTRAC02 to PSTRAC28. There is a gap of 26 file numbers
after PSTRAC02. The youngest file will always be at the lower end of
the gap. In this example, the youngest file is PSTRAC02. The files
PSTRAC03 through PSTRAC27 have been purged, and the numbering
has wrapped.

:listf pstrac@.testpgms.api,2
<F100P12>ACCOUNT= TESTPGMS GROUP= API

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

 SIZE TYP EOF LIMIT R/B SECTORS #X MX

PSTRAC00 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC01 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC02 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC28 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC29 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC30 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC31 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC32 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC33 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC34 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC35 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC36 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC37 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC38 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC39 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC40 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC41 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC42 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC43 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC44 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC45 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC46 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC47 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC48 NTRAC 128W FB 1000 1000 8 1008 16 16
PSTRAC49 NTRAC 128W FB 1000 1000 8 1008 16 16

:

NOTE When you delete some of the trace files from a group, you no longer
have a complete set, and finding the youngest file becomes difficult. If
you must clean up trace files, copy the files that you need to another
group and purge all the trace files at once.
140 Chapter 7

Debugging
The User Trace
Formatting the User Trace

The trace file must be formatted before you can read it. On MPE V, use
the utility APPCDUMP.APPC.SYS to format the user trace. APPCDUMP
requires that you specify an input file and an output file. The syntax for
running APPCDUMP is as follows:

:FILE TRACEIN = trace file name
:FILE TRACEOUT = { $STDLIST } (terminal)
 { *LP } (printer)
 { file designator }

:RUN APPCDUMP.APPC.SYS

On MPE XL, use the NMS utility NMDUMP.PUB.SYS to format the user
trace. To run NMDUMP, type the following command at the MPE colon
prompt:

:RUN NMDUMP.PUB.SYS

NMDUMP will respond with a menu. You use the menu to indicate the
type of file you want to format and which subsystem generated the file.
NMDUMP will prompt you for an input file and an output file. The
default output file is $STDLIST. You can use a file equation to
back-reference the name of an input or output file. For more
information on NMDUMP, see Using the Node Management Services
(NMS) Utilities.

Reading the User Trace

The user trace records information for each intrinsic the local TP calls.
This section explains how to read the information in the user trace.

Figure 7-1 is an example trace of a two-way conversation.
Chapter 7 141

Debugging
The User Trace
Figure 7-1 User Trace of a Two-Way Conversation

NMDUMP output of data file: PSTRAC26.USERTPS.API
Time of output: MON, SEP 16, 1991, 2:27 PM
Subsystems being formatted: 16

**
TPSTARTED RetCode: 0

 TPID = 14
 TPName = LOCALTP
 TraceSize = 1024
 TraceFile = PSTRAC26.USERTPS.API

**
MCALLOCATE RetCode: 0 Rsrc: 15 ConvState: SEND

 TPID = 14
 SessionType = STYPE01
 ReturnControl = WHEN_SESSION_ALLOCATED
 SyncLevel = CONFIRM
 Timer = 0
 TPNameLength = 8
 TPName = D9C5D4D6E3C5E3D7

**
MCSENDDATA RetCode: 0 Rsrc: 15 ConvState: SEND

 RTS = NO
 Length = 12
 Offset = 328.4033BDA8

 E2 C5 D5 C4 C9 D5 C7 40 C4 C1 E3 C1 SENDING DATA

**
MCPREPTORCV RetCode: 0 Rsrc: 15 ConvState: RECEIVE

 Locks = SHORT
 Type = FLUSH

**
MCRCVANDWAIT RetCode: 0 Rsrc: 15 ConvState: RECEIVE

 RTS = NO
 Length = 14
 Offset = 328.4056DE96
 WhatRcvd = DATA_COMPLETE

 D9 C5 C3 C5 C9 E5 C9 D5 C7 40 C4 C1 E3 C1 RECEIVING DATA<$&figure 7-1>

@COMPUTERSMALL =
**
MCRCVANDWAIT RetCode: 0 Rsrc: 15 ConvState: CONF_DEALL

 RTS = NO
 Length = 256
 Offset = 328.4056DE96
 WhatRcvd = CONFIRM_DEALLOCATE

**

MCCONFIRMED RetCode: 0 Rsrc: 15 ConvState: DEALLOCATE

**

MCDEALLOCATE RetCode: 0 Rsrc: 15

 DeallocateType = LOCAL

**

TPENDED RetCode: 0

 TPID = 14

**
142 Chapter 7

Debugging
The User Trace
Field Descriptions

Figure 7-1 is an example of a trace of a two-way conversation. This
section explains the meaning of each field in the user trace.

Intrinsic name

The name of each LU 6.2 API intrinsic the local TP
calls appears on the left side of the display.

RetCode

(Return Code) This is the status info value returned in
the Status parameter of the intrinsic. The status info
is the most useful piece of diagnostic information in the
user trace. It directs you to areas of investigation that
help you identify problems with your TP. Chapter 5 ,
“Intrinsic Descriptions,” lists the values that each
intrinsic can return, and Appendix A , “Status Info,”
lists the causes and recommended actions for all status
info values.

Rsrc

(Resource ID) This is the conversation identifier
returned by MCAllocate or MCGetAllocate . It
identifies the conversation for which each intrinsic was
called. In the example, only one conversation (with
Resource ID of 15) was allocated, so all intrinsics were
called for that conversation. If more than one
conversation had been allocated (that is, if MCAllocate
had been called more than once by the TP), the
different Resource IDs would tell you which intrinsic
calls belonged to which conversations.

ConvState

This is the conversation state of the local TP after the
intrinsic has executed.

Intrinsic parameters

The rest of the fields in the trace are the parameters
specific to each intrinsic. Different parameters are
traced for different intrinsics. The parameters are
listed here by intrinsic. See Chapter 5 , “Intrinsic
Descriptions,” for more information on intrinsics and
their parameters.

TPStarted:

TPID Transaction program identifier

TPName Name of transaction program

TraceSize Trace file size in records
Chapter 7 143

Debugging
The User Trace
TraceFile Name of trace file for user tracing

TPEnded:

TPID Transaction program identifier

MCAllocate:

TPID Transaction program identifier

SessionType Configured session type used by the
conversation

SyncLevel Synchronization level for the
conversation (CONFIRM or NONE)

ReturnControl When control is returned to your
program if no session is available
(IMMEDIATE or
WHEN_SESSION_ALLOCATED)

Timer How long your program will wait on an
intrinsic call for data or confirmation
from the remote TP before control is
returned to your program

NameLength Length (in bytes) of remote TP name

RemoteTPName Name of remote TP (in hex)

PIPxx PIP data (xx = 1 through 16). On the
left, the PIP data is displayed in
hexadecimal. On the right, it is
displayed in EBCDIC.

MCGetAllocate:

TPID Transaction program identifier

SessionType Configured session type used by the
conversation

SyncLevel Synchronization level for the
conversation (CONFIRM or NONE)

Timer How long your program will wait on an
intrinsic call for data or confirmation
from the remote TP before control is
returned to your program

TPName Name of local transaction program

PIPxx PIP data (xx = 1 through 16). On the
left, the PIP data is displayed in
hexadecimal. On the right, it is
displayed in EBCDIC.
144 Chapter 7

Debugging
The User Trace
MCConfirm:

RTS Request to send received

MCDeallocate:

DeallocateType Type of deallocation for the
conversation
(CONVERSATION_SYNC_LEVEL,
FLUSH, ABEND, LOCAL, or
CONFIRM)

MCPostOnRcpt:

Length Length of data to be received before
local TP is notified

Offset Stack offset of data to be posted (This
value is in decimal on MPE V and
hexadecimal on MPE XL.)

MCPrepToRcv:

Locks Lock specifying when control is
returned to the conversation

Type Type of PrepToRcv (FLUSH,
CONFIRM or
CONVERSATION_SYNC_LEVEL)

MCRcvAndWait, MCRcvNoWait:

RTS Request to send received

Length Length of data received

Offset Stack offset of data received (This value
is in decimal on MPE V and
hexadecimal on MPE XL.)

WhatRcvd What was received (data or control
information)

Data Data received. On the left, the data is
displayed in hexadecimal. On the right,
it is displayed in EBCDIC.

MCSendData:

RTS Request to send received

Length Length of data sent

Offset Stack offset of data sent (This value is
in decimal on MPE V and hexadecimal
on MPE XL.)
Chapter 7 145

Debugging
The User Trace
Data Data sent. On the left, the data is
displayed in hexadecimal. On the right,
it is displayed in EBCDIC.

MCSendError:

RTS Request to send received

MCTest:

PostedType Type of information posted (DATA or
NOT_DATA)

Test Condition being tested (POSTED or
REQUEST_TO_SEND_RECEIVED)

MCWait:

PostedType Type of information posted (DATA or
NOT_DATA)

ResourcePosted Resource ID of the conversation
being posted.
146 Chapter 7

A Status Info
This appendix contains all of the status info values that are returned to
LU 6.2 API intrinsics through the Status parameter.

The status info values are listed here in order by absolute value. No
status info value has both a positive and a negative meaning. A positive
value indicates that an intrinsic executed successfully and further
information is available. A negative value indicates that an intrinsic
did not execute successfully.

0 MESSAGE: Intrinsic called with parameter out of bounds.

CAUSE: Intrinsic executed successfully.

ACTION: None.

-1 MESSAGE: Successful Completion.

CAUSE: (MPE V only) The address of a parameter is outside of the DL
to S stack boundary. (That is, it is either less than DL or greater than
S).

ACTION: Verify that the stack data has not been corrupted by
overwriting.

Verify that parameters are being passed to the intrinsic as specified in
Chapter 7 , “Debugging.”

CAUSE: (MPE V only) Intrinsic called in split stack mode.

ACTION: Change your program so that it does not call an intrinsic in
split stack mode.

CAUSE: (MPE XL only) The address of a parameter is outside the
process data area.

ACTION: Verify that the data has not been corrupted.

CAUSE: (MPE XL or V) The value of the Length parameter is greater
than the length of the Data array specified in the intrinsic call.

ACTION: Verify that the value of the Length parameter is less than or
equal to the length of the Data array.

-2 MESSAGE: Invalid 'ResourceID' parameter specified in intrinsic call.

CAUSE: A ResourceID has been specified that does not correspond to
any value returned by the MCAllocate intrinsic for an active
conversation.

ACTION: Verify that the value specified in the intrinsic call is the same
value returned by the MCAllocate or MCGetAllocate intrinsic for an
active conversation.
147

Status Info
-4 MESSAGE: Out of range 'ReturnControl' parameter specified in
intrinsic call.

CAUSE: (MPE V only) The ReturnControl parameter has been set to a
value other than 0.

ACTION: Because this parameter is not currently implemented, the
value must always be 0. The parameter can be explicitly set to 0 in the
intrinsic call, or it can be omitted from the intrinsic call and allowed to
default to 0.

CAUSE:(MPE XL only) The ReturnControl parameter has been set to a
value other than 0 or 1.

ACTION: The ReturnControl parameter of the MCAllocate intrinsic
can be either 0 (IMMEDIATE) or 1 (WHEN_SESSION_ALLOCATED).
Check to see that it is set to a valid value.

-5 MESSAGE: Out of range 'SyncLevel' parameter specified in intrinsic
call.

CAUSE: The value of the Synclevel parameter is not valid.

ACTION: Verify that Synclevel is either 0 or 2.

-6 MESSAGE: PIP data length is out of range.

CAUSE: The length of an individual PIP is out of range.

ACTION: Verify that the length of each PIP is greater than or equal to 0
bytes and less than or equal to 1980 bytes.

-7 MESSAGE: Out of range 'Timer' parameter specified in intrinsic call.

CAUSE:The value for the Timer parameter is not within its valid range.

ACTION: Verify that the Timer parameter is a value from 0 through
28800 seconds.

-8 MESSAGE: Out of range 'DeallocateType' parameter specified in
intrinsic call.

CAUSE: The DeallocateType parameter is not a valid value.

ACTION: Verify that the DeallocateType parameter is 0, 1, 2, 5 or 6.

-8 MESSAGE: Out of range 'DeallocateType' parameter specified in
intrinsic call.

CAUSE: The DeallocateType parameter is not a valid value.

ACTION: Verify that the DeallocateType parameter is 0, 1, 2, 5 or 6.

-11 MESSAGE: Out of range 'Length' parameter specified in intrinsic call.

CAUSE: The value of the Length parameter is out of its valid range.
148 Appendix A

Status Info
ACTION: Verify that the Length parameter is a value from 0 through
4092 bytes (or from 0 through 32763 bytes for the MCRcvAndWait
intrinsic on MPE XL).

CAUSE:The value of the Length parameter is greater than the length of
the Data array specified in the intrinsic call.

ACTION: Verify that the value of the Length parameter is less than or
equal to the length of the Data array.

CAUSE: The Length parameter may be corrupted.

ACTION: Verify that addresses are not being corrupted.

-13 MESSAGE: Data buffer specified in intrinsic call is out of bounds.

CAUSE: The address of the Data array in the MCRcvAndWait ,
MCRcvNoWait, MCPostOnRcpt , or MCSendData intrinsic is invalid or
corrupted.

ACTION: Verify that the Data array address is not being modified
accidentally before it is passed to the intrinsic.

-15 MESSAGE: Invalid 'TPID' parameter specified in intrinsic call.

CAUSE: The TPID value specified in the intrinsic call does not
correspond to the value returned by the TPStarted intrinsic.

ACTION: Verify that the TPID specified in the intrinsic call contains the
value that was returned by TPStarted .

-16 MESSAGE: Unable to open catalog file.

CAUSE: The catalog files for LU 6.2 API do not exist.

ACTION: Verify that the files CATAPI.PUB.SYS and CATAPPC.APPC.SYS
exist.

CAUSE: The catalog files for LU 6.2 API have not been released for
system use.

ACTION: Verify that the files CATAPI.PUB.SYS and CATAPPC.APPC.SYS
have been released for general system use.

-17 MESSAGE: GENMESSAGE failed. (MPE V only)

CAUSE: GENMESSAGE file is corrupted.

ACTION: Verify that GENMESSAGE file is not corrupted.

CAUSE: The MPE GENMESSAGE intrinsic did not execute properly.

ACTION: Notify your HP representative.

-17 MESSAGE: CATREAD failed. (MPE XL only)

CAUSE: CATREAD file is corrupted.

ACTION: Verify that CATREAD file is not corrupted.
Appendix A 149

Status Info
CAUSE: The MPE CATREAD intrinsic did not execute properly.

ACTION: Notify your HP representative.

-19 MESSAGE: APPC subsystem is inactive.

CAUSE: The APPC subsystem has not been started or is no longer
active.

ACTION: Request that the node manager start the APPC subsystem.

-20 MESSAGE: Not enough stack space for intrinsic to run.

CAUSE: The minimum amount of stack space required to call and
execute an intrinsic is not available.

ACTION: (MPE V only) Increase the maximum stack size using the
Stack parameter of the MPE RUN command. Increase the maximum
stack size using the Stack or MaxData parameter of the MPE PREP
command. For information on the RUNand PREPcommands, refer to the
MPE V Command Reference Manual or the online help facility.

ACTION: (MPE XL only) Increase the maximum stack size using the
NMStack parameter of the MPE RUN command. Increase the maximum
stack size using the NMStack parameter of the MPE LINK command. For
information on the RUN and LINK commands, refer to the MPE XL
Command Reference Manual or the online help facility.

-21 MESSAGE: Insufficient memory space to allocate a conversation.

CAUSE: Not enough space for the TP process to allocate an Available
File Table (AFT) entry for the conversation.

ACTION: (MPE V only) Allocate more space for the process using the
MPE PREP command (DL=DLsize) or the MPE RUN command
(DL=DLsize). For information on the RUN and PREP commands, refer to
the MPE V Command Reference Manual or the online help facility.

ACTION: (MPE XL only) Allocate more space for the process using the
MPE RUNcommand (DL=DLsize). For information on the RUNcommand,
refer to the MPE XL Command Reference Manual or the online help
facility.

-22 MESSAGE: APPC subsystem is inactive.

CAUSE: Presentation Services was unable to build the InterProcess
Communication (IPC) port.

ACTION: Notify your HP representative.

-23 MESSAGE: Unable to allocate a conversation.

CAUSE:The SessionType specified in the intrinsic call was not found in
the APPC subsystem configuration.

ACTION: Verify that the correct SessionType is specified in the
intrinsic call.
150 Appendix A

Status Info
Verify that the specified SessionType has been configured in the
NMCONFIG file for the APPC subsystem. For information on APPC
subsystem configuration, see the LU 6.2 API/V Node Manager’s Guide
or the APPC Subsystem on MPE XL Node Manager’s Guide.

CAUSE: No conversations are available because the maximum number
of conversations has been allocated.

ACTION: Run programs at a time when resources are not in heavy
demand.

-24 MESSAGE: Unable to obtain an LU-LU session.

CAUSE: All sessions for the specified session type are busy or
unavailable.

ACTION: Have the node manager increase the number of active sessions
using the APPCCONTROL SESSIONS command. See the APPC Subsystem
on MPE V Node Manager’s Guide or the APPC Subsystem on MPE XL
Node Manager’s Guide for information on APPCCONTROL commands.

Run programs at a time when resources are not in heavy demand.

Request that more sessions be configured for the specified session type.
(The maximum number of sessions is 8 on MPE V, or 256 on MPE XL.)

-25 MESSAGE: Could not find a conversation for this transaction
program.

CAUSE:LU 6.2 API was not able to find a request to start a conversation
with the local TP.

ACTION: Check the stream file in the APPC.SYS account to make sure
that the jobname in the MPE JOB command matches the file name of
the stream file.

Make sure that MCGetAllocate is not being called by a locally initiated
TP.

-26 MESSAGE: Out of range 'PrepToRcvType' parameter specified in
intrinsic call.

CAUSE: The value of the PrepToRcvType parameter is not within its
valid range.

ACTION: Verify that the PrepToRcvType value is 0, 1 or 2.

-27 MESSAGE: Out of range 'Locks' parameter specified in intrinsic call.

CAUSE: The value of the Locks parameter is not within its valid range.

ACTION: Verify that the Locks value is 0 or 1.

-28 MESSAGE: Invalid Return Code 'oldstatus' passed to intrinsic.

CAUSE: The OldStatus parameter specified in the MCErrMsg intrinsic
call is undefined or was corrupted.
Appendix A 151

Status Info
ACTION: Verify that the OldStatus value is a valid status info value
and that it has not been corrupted.

+29 MESSAGE: Could not find a conversation for this transaction program
- timer popped. (MPE XL only)

CAUSE: The configured Time-out value for the remotely initiated
transaction program expired before an allocate request arrived from a
remote TP.

ACTION: If this message indicates a problem, verify that the remote TP
is sending the correct TP name in the allocate request. Verify that the
remotely initiated TP is configured correctly through NMMGR. If
necessary, raise the configured Time-out value .

-31 MESSAGE: Confirm not allowed.

CAUSE:A confirmation was requested and the synchronization level for
the conversation was not set to CONFIRM.

ACTION: Set the SyncLevel parameter to CONFIRM in the
MCAllocate or MCGetAllocate intrinsic if confirmation will be used
during this conversation. This status info value can be returned when
you call MCConfirm , MCPrepToRcv with PrepToRcvType = CONFIRM,
or MCDeallocate with DeallocateType = CONFIRM.

-34 MESSAGE: Out of range 'NumResources' parameter specified in
intrinsic call.

CAUSE: The value of the NumResources parameter is not within its
valid range.

ACTION: Verify that the NumResources parameter is a value from 1
through 8 on MPE V, or from 1 through 256 on MPE XL.

-35 MESSAGE: Out of range 'Test' parameter specified in intrinsic call.

CAUSE: The value of the Test parameter is not within its valid range.

ACTION: Verify that the Test value is 0 or 1.

+36 MESSAGE: Request To Send not received.

CAUSE: This status info value is returned to the MCTest intrinsic (Test
= REQUEST_TO_SEND_RECEIVED) when a RequestToSend has not
been received.

ACTION: Informational message. No action necessary.

-37 MESSAGE: Posting not active.

CAUSE: This status info value is returned to the MCTest (Test =
POSTED) or MCWait intrinsic when posting is not active (MCPostOnRcpt
has not been called) for the specified mapped conversation.
152 Appendix A

Status Info
ACTION: Before calling MCTest or MCWait, verify that the
MCPostOnRcpt intrinsic has executed successfully for the specified
conversation.

+38 MESSAGE: Not Posted.

CAUSE: No data or conversation status information has been received
for the specified conversation.

ACTION: Informational message. No action necessary.

-40 MESSAGE: Intrinsic called in invalid state.

CAUSE: The program called an intrinsic from a state in which the
intrinsic is not allowed.

ACTION: Refer to Appendix C , “State Transition Tables,” or Chapter 5 ,
“Intrinsic Descriptions,” to verify that the conversation is in the
appropriate state for this intrinsic call.

-50 MESSAGE: Allocation Error.

CAUSE: Allocation could not be completed. Reasons may include the
following:

CAUSE: The conversation is now in Deallocate state and can be
deallocated.

CAUSE:A conversation type mismatch. The remote LU does not support
mapped conversations, so it rejected an allocation request from the local
TP.

ACTION: Verify that the remote LU supports mapped conversations.

CAUSE: An unrecognized RemoteTPName. The remote LU rejected the
allocation request from the local TP because the TP name specified in
the RemoteTPName parameter of the MCAllocate intrinsic was not
recognized.

ACTION: Verify that the RemoteTPNamematches the name of the correct
program on the remote system.

Verify that the RemoteTPName has been converted from ASCII to
EBCDIC correctly.

CAUSE: PIP data is not allowed. The remote TP does not support PIP
data.

ACTION: Verify that the remote system accepts PIP data. If it does not,
your program will have to be redesigned.

CAUSE: The remote system will not accept the PIP data as it has been
specified.

ACTION: Verify that the PIP data is in the form that the remote system
can accept.
Appendix A 153

Status Info
CAUSE: An unavailable remote TP. The remote LU rejected the
allocation request because the remote TP could not be started.

ACTION: Determine why the remote TP could not be started. Do not try
to restart the TP until the problem has been resolved.

-51 MESSAGE: Resource Failure: No retry possible.

CAUSE:A conversation failure has occurred and the APPC subsystem is
unable to reactivate the conversation.

Possible reasons include the following:

LU 6.2 API detected a violation of mapped conversation protocol.

A session failure has occurred.

The APPC subsystem has been stopped by the node manager.

The partner LU has deallocated the conversation, indicating a protocol
error.

ACTION: Do not attempt the transaction again until the condition has
been identified and corrected.

Verify that the APPC subsystem is active.

Verify that the partner LU is transmitting data that does not violate
the LU 6.2 protocol.

-52 MESSAGE: Resource Failure: Retry possible.

CAUSE: The conversation has been prematurely terminated, probably
due to a session failure because of a power outage or modem failure.

ACTION: The conversation is now in Deallocate state and must be
deallocated. The program may be designed to reallocate the
conversation and continue processing. The TP does not have to be
restarted.

-56 MESSAGE: Program Error: No data truncation has occurred.

CAUSE: The remote TP has discovered an error. It flushed its send
buffer, issued the equivalent of the MCSendError intrinsic, and is now
in Send state. No truncation of received data has occurred at the
mapped conversation protocol boundary.

ACTION: The required action depends on the error recovery procedure
for the local program.

-60 MESSAGE: Program Error: Data may have been purged.

CAUSE:While in Receive or Confirm state, the remote TP discovered an
error and issued the equivalent of the MCSendError intrinsic. Any data
sent to the local TP may have been purged.

ACTION: The required action depends on the error recovery procedure
for the local program.
154 Appendix A

Status Info
-65 MESSAGE: Received an invalid attach from the remote LU.

CAUSE: The APPC subsystem rejected the remote TP’s request to start
a conversation, because it was invalid.

The APPC subsystem could not receive the PIP data successfully.

ACTION: Have remote programmer verify the parameters used to
allocate the conversation.

PIP data length must be specified correctly by the remote TP.

+80 MESSAGE: Timer has expired.

CAUSE:No data or status information was received from the remote TP
in the time limit specified in the Timer parameter of the MCAllocate
intrinsic.

ACTION: This message is an event indicator. Any required action is
program dependent.

-90 MESSAGE: An internal error in Presentation Services has occurred.

CAUSE:

ACTION: Note the circumstances and report them to your HP
representative.

-91 MESSAGE: An internal error in the APPC subsystem has occurred.

CAUSE:

ACTION: Note the circumstances and report them to your HP
representative.

-95 MESSAGE: Internal Error: Unable to create Transaction Program port.
(MPE XL only)

CAUSE: Presentation Services was unable to build the InterProcess
Communication (IPC) port for the transaction program.

ACTION: Notify your HP representative.

+100 MESSAGE: Deallocate Normal received from the remote TP.

CAUSE: The conversation has been deallocated by the remote TP,
without any errors.

ACTION: Deallocate the local TP using the MCDeallocate intrinsic
(DeallocateType = LOCAL).

-1002 MESSAGE: An internal error at the mapped conversation level has
occurred.

CAUSE: The conversation has been deallocated by the remote TP,
without any errors.

ACTION: Note the circumstances and report them to your HP
representative.
Appendix A 155

Status Info
-1003 MESSAGE: Required parameter missing.

CAUSE: A required parameter was not included in the call to an LU 6.2
API intrinsic.

ACTION: Verify that all the required parameters are included in the
intrinsic call.

-1005 MESSAGE: Insufficient Heap Space. (MPE V)

CAUSE: The size of the DL to DB area was insufficient for the
MCAllocate intrinsic to start a conversation.

ACTION: Increase the maximum stack size using the Stack parameter
of the MPE RUNparameter of the MPE PREPcommand. For information
on the RUN and PREP commands, refer to the MPE V Command
Reference Manual or the online help facility.

-1006 MESSAGE: Out of range 'RemoteTPLen' parameter specified in
intrinsic call.

CAUSE: The RemoteTPLen parameter is not within its valid range.

ACTION: Verify that the RemoteTPLen parameter is a value from 1
through 64, indicating the number of characters in the RemoteTPName.

-1007 MESSAGE: Out of range 'NumPIPs' parameter specified in intrinsic
call.

CAUSE: The value of the NumPIPs parameter is not within its valid
range.

ACTION: Verify that the NumPIPs parameter is a value from 0 through
16.

-1008 MESSAGE: Invalid 'LocalTPName' parameter specified in intrinsic
call. (MPE XL only)

CAUSE:1. The LocalTPName parameter of the MCGetAllocate intrinsic
is coded as an output parameter when it should be passed as an input
parameter

2. The LocalTPName parameter of the MCGetAllocate intrinsic does not
match the LocalTPName parameter of the TPStarted intrinsic.

3. The LocalTPName is not configured as a remotely initiated TP.

ACTION: Verify that the LocalTPName parameter is being passed as an
input parameter to the MCGetAllocate intrinsic. Verify that the
LocalTPName parameter is the same in both the MCGetAllocate and
TPStarted intrinsic calls. Verify that the LocalTPName is configured
through NMMGR as a remotely initiated TP.

-1009 MESSAGE: Combined length of PIPs is out of range.

CAUSE: The combined length of PIP1 through PIP16 is greater than
1980 bytes.
156 Appendix A

Status Info
ACTION: Reduce the lengths of the PIPs until their combined length is
less than or equal to 1980 bytes.

-1010 MESSAGE: Too many PIP subfields.

CAUSE: The remote TP has sent more PIPs than the number specified
in the NumPIPs parameter of the MCGetAllocate intrinsic.

ACTION: Consult with the remote programmer to make sure the
number of PIPs sent matches the value in the NumPIPs parameter.

-1020 MESSAGE: Deallocate Abend.

CAUSE: The remote TP issued the equivalent of the MCDeallocate
intrinsic, specifying the deallocate type ABEND.

ACTION: All buffers have been flushed. If the local TP was in Receive
state, data may been lost. After receiving this status info value, the
local TP is in Deallocate state and must issue the MCDeallocate
intrinsic with DeallocateType = LOCAL.

-1030 MESSAGE: TPStarted request rejected.

CAUSE: The TPStarted intrinsic did not execute successfully because
the maximum number of concurrently active TPs has been reached.

ACTION: Attempt program execution at a time when resources are not
in heavy demand. The maximum number of TPs allowed to be
executing at one time is 8 on MPE V, or 256 on MPE XL.

-1033 MESSAGE: Unable to open file specified in the 'TraceFile' parameter.

CAUSE: Invalid TraceFile parameter specified in intrinsic call. The
disc file name specified in the TraceFile parameter is not a valid
name, is not terminated with a blank, or specifies an unknown file
name, lockword, group name, or account name.

ACTION: Verify that the disc file name specified in the TraceFile
parameter is valid, is terminated with a blank, and specifies a valid file
name, lockword, group name, and account name.

CAUSE: If two TP processes try to open the same trace file, the first
process will be successful, and the second process will receive this
status info value.

ACTION: Verify that different TPs specify different trace file names. If
more than one instance of the same TP will be executing at the same
time, allow the trace file name to default.

-1034 MESSAGE: Out of range 'TraceSize' parameter specified in intrinsic
call.

CAUSE: The TraceSize parameter is not within its valid range.

ACTION: Verify that the TraceSize parameter is a value from 1
through 32767.
Appendix A 157

Status Info
-1036 MESSAGE: Out of range 'TraceOn' parameter specified in intrinsic
call.

CAUSE: The value of the TraceOn parameter is not within its valid
range.

ACTION: Verify that the TraceOn parameter is a value from 0 through
3.

-1040 MESSAGE: Conversation(s) not deallocated before calling TPENDED.

CAUSE: One or more conversations were not deallocated before the
TPEnded intrinsic was called.

ACTION: Verify that the MCDeallocate intrinsic was executed for any
active conversations before calling TPEnded.

-1044 MESSAGE: Multiple calls to TPSTARTED.

CAUSE: The program attempted to call the TPStarted intrinsic more
than once during program execution.

ACTION: Verify that TPStarted intrinsic is called only once.

-1050 MESSAGE: Invalid 'Data' parameter specified in intrinsic call.

CAUSE: The Data parameter specified in the MCRcvAndWait ,
MCRcvNoWait, or MCPostOnRcpt intrinsic does not match the Data
parameter specified in a previous call to MCPostOnRcpt .

ACTION: Verify that the MCRcvAndWait or MCRcvNoWait intrinsic and
the MCPostOnRcpt intrinsic are using the same variable in their Data
parameters.

-1105 MESSAGE: Internal Error: Conversation deallocated.

CAUSE:

ACTION: Contact your HP representative.
158 Appendix A

B Sample Programs
This appendix contains an example LU 6.2 application. The application
in this example enables a clerk in a retail store to check the credit of a
buyer before allowing the buyer to charge a purchase to a credit card.
The retail store has an HP 3000 running LU 6.2 API. The credit
information is stored in a VSAM database on an IBM processor running
CICS. The TP on the HP 3000 calls the MCAllocate intrinsic to allocate
the conversation, and the TP on the IBM processor is started up in
response to the allocate request.

The example TP on the HP 3000 is written in COBOL II and in Pascal.
It performs the following tasks:

1. It calls the TPStarted intrinsic to initialize the TP, and then it calls
the MCAllocate intrinsic to allocate a conversation with the CICS
TP on the IBM processor.

2. It prompts a terminal user for a social security number and name,
and then it reads the data from the terminal.

3. It translates the data to EBCDIC and sends it to the CICS TP on the
IBM processor.

4. It receives a data record from the CICS TP and translates it to
ASCII.

5. It interprets the information in the data record and displays “Credit
Approved” or “Credit Denied” on the terminal screen.

6. It asks the user whether he or she wants to quit. If the user responds
with “Y,” it deallocates the conversation; otherwise, it prompts the
user for another social security number and name.

The example TP on the IBM processor is written in PL/1. It performs
the following tasks:

1. It receives a social security number and name sent by the TP on the
HP 3000.

2. Using the social security number as a key, it searches the VSAM
database for credit information on the buyer.

3. It sends the information from the database to the TP on the
HP 3000, or it reports an error. The remote TP can return any of 3
error codes:

001 — The SS# is not in the database.

002 — The SS# is in the database, but the name does not match the
name sent by the HP 3000.

003 — Miscellaneous system errors.

4. It waits for another data record or a deallocate request from the TP
on the HP 3000.
159

Sample Programs
Figure B-1 is a sample credit card verification report generated from
the database on the IBM processor. This is the data set used by the
example application in this appendix.

Figure B-1 is a sample credit card verification report generated from
the database on the IBM processor. When the CICS TP receives a social
security number and name from the TP on the HP 3000, it sends the
data record associated with the social security number and name.

Figure B-1 Data Set for the Example Program

SOCIAL NAME
SECURITY LAST FIRST MI CREDIT CARD NAME BALANCE RISK
NUMBER CODE

567894321 REAGAN RONALD R VICES INC $9999.99 1
 MASTER BLASTER $9999.99
 PARTY HARDY $9999.99
 DESTITUTE PLUS $9999.99
568231942 REAGAN NANCY Q VICES INC $0100.00 5
568542874 APPLESEED JOHNNY P RAPID SPEND $0978.42 2
 PARTY HARDY $0187.43
 DESTITUTE PLUS $0069.58
 MASTER BLASTER $0987.65
569274321 HUBBARD MOTHER C MASTER BLASTER $1765.48 4
 VICES INC $0895.38
 RAPID SPEND $0987.65
 PARTY HARDY $1069.53
 DESTITUTE PLUS $9872.13
569358731 PAN PETER A MASTER BLASTER $0098.76 1
570743216 BAILEY BEETLE G VICES INC $0000.00 4
 MASTER BLASTER $0000.00
 PARTY HARDY $0000.00
 DESTITUTE PLUS $9085.42
573590451 CROCKER BETTY N PARTY HARDY $9816.54 3
577287453 RUBBLE BARNEY B DESTITUTE PLUS $0000.42 1
 VICES INC $0010.10
589022876 BEEBLEBROX ZAPHOD X VICES INC $1090.43 3
 RAPID SPEND $0016.54
 PARTY HARDY $7612.01
 DESTITUTE PLUS $1087.94
160 Appendix B

Sample Programs
COBOL II Program
COBOL II Program
Figure B-2 is a chart of the program structure for the COBOL II TP
that runs on the HP 3000.

Figure B-2 Structure of Example COBOL II Program
Appendix B 161

Sample Programs
COBOL II Program
001000$CONTROL CROSSREF,SYMDEBUG
001100*--*
001200 IDENTIFICATION DIVISION.
001300*--*
001400 PROGRAM-ID.
001500 AUTHOR.
001600 INSTALLATION.
001700 DATE-WRITTEN.
001800 DATE-COMPILED.
001900*
002000 REMARKS.
002100*
002200*--*
002300 ENVIRONMENT DIVISION.
002400*--*
002500 CONFIGURATION SECTION.
002600 SOURCE-COMPUTER. HP 3000.
002700 OBJECT-COMPUTER. HP 3000.
002800 SPECIAL-NAMES.
002900 CONDITION-CODE IS CCODE.
003000*
003100*--*
003200 DATA DIVISION.
003300*--*
003400*
003500*--*
003600 WORKING-STORAGE SECTION.
003700*--*
003800*
003900 01 INTRINSIC-COMP.
004000 05 TPID PIC S9(4) COMP.
004100 05 TRACEON PIC S9(4) COMP VALUE +1.
004200 05 LENGTH-REMOTE-TP-NAME PIC S9(4) COMP VALUE +4.
004300 05 RESOURCE-ID PIC S9(4) COMP.
004400 05 TRANS-LENGTH PIC S9(4) COMP VALUE +30.
004500 05 RECEIVE-LENGTH PIC S9(4) COMP.
004600 05 WHAT-RECEIVED PIC S9(4) COMP.
004700 05 FULL-RECORD PIC S9(4) COMP VALUE +80.
004800 05 REQ-TO-SEND-REC PIC S9(4) COMP.
004900 05 DATA-COMPLETE PIC S9(4) COMP VALUE +1.
005000 05 SEND-RECEIVED PIC S9(4) COMP VALUE +4.

005100 05 DEALLOCATE-TYPE PIC S9(4) COMP VALUE +0.
005200 05 TRANSLATE-TO-EBCDIC PIC S9(4) COMP VALUE +2.
005300 05 TRANSLATE-TO-ASCII PIC S9(4) COMP VALUE +1.
005400*
005500 01 INTRINSIC-STATUS PIC S9(8) COMP.
005600 01 INTRINSIC-STATUS-ALL REDEFINES INTRINSIC-STATUS.
005700 05 INTRINSIC-STATUS-INFO PIC S9(4) COMP.
005800 05 INTRINSIC-STATUS-SUBSYS PIC S9(4) COMP.
005900*
006000 01 RETURN-CODE.
006100 05 ALLOCATE-RTRNCD PIC X(5).
162 Appendix B

Sample Programs
COBOL II Program
006200 05 DEALLOCATE-RTRNCD PIC X(5).
006300 05 ENDED-RTRNCD PIC X(5).
006400 05 SENDDATA-RTRNCD PIC X(5).
006500 05 TPSTART-RTRNCD PIC X(5).
006600 05 RCVANDWAIT-RTRNCD PIC X(5).
006700*
006800 01 DISPLAY-WHAT-RECEIVED PIC X(5).
006900*
007000 01 API-PARAMETERS.
007100 05 TPSTARTED-PARAMETERS.
007200 10 LOCAL-TP-NAME PIC X(8) VALUE "USERTP ".
007300 05 ALLOCATE-PARAMETERS.
007400 10 SESSION-TYPE PIC X(8) VALUE "DISOSS1 ".
007500 05 REMOTE-TP-NAME.
007600 10 REMOTE-TP-NAME-EBCDIC PIC X(4) VALUE SPACES.
007700 10 REMOTE-TP-NAME-ASCII PIC X(4) VALUE "Z027".
007800*
007900 01 DEBUGGING-ERROR-MESSAGES.
008000 05 STARTED-ERR-MSG PIC X(20) VALUE 'TP STARTED ERROR'.
008100 05 ALLOCATE-ERR-MSG PIC X(20) VALUE 'ALLOCATE ERROR'.
008200 05 SENDDATA-ERR-MSG PIC X(20) VALUE 'SEND DATA ERROR'.
008300 05 DEALLOCATE-ERR-MSG PIC X(20) VALUE 'DEALLOCATE ERROR'.
008400 05 ENDED-ERR-MSG PIC X(20) VALUE 'ENDED ERROR'.
008500 05 CTRANSLATE-ERR-MSG PIC X(20) VALUE 'CTRANSLATE ERROR'.
008600 05 RCVANDWAIT-ERR-MSG PIC X(20) VALUE 'RCVANDWAIT ERROR'.
008700 05 WHAT-RECEIVED-MSG PIC X(20) VALUE 'WHAT RECEIVED ERROR'.
008800*

008900 01 CONTROL-FLAGS.
009000 05 QUIT-SW PIC X.
009100*
009200 01 TRANSACTION-ERROR-CODES.
009300 05 SYSTEM-ERROR-CD PIC 9(4) VALUE 0003.
009400 05 SOCSEC-ERROR-CD PIC 9(4) VALUE 0001.
009500*
009600 01 CONTROL-VALUES.
009700 05 YES-SW PIC X VALUE 'Y'.
009800 05 NO-SW PIC X VALUE 'N'.
009900*
010000 01 CONSOLE-HEADING PIC X(17) VALUE
010100 "CREDIT RISK CHECK".
010200*
010300 01 ACCEPT-CODE PIC X VALUE "3".
010400*
010500 01 MASTER-DATA.
010600 05 SOCSEC-MASTER.
010700 10 SOCSEC1-MASTER PIC X(3).
010800 10 SOCSEC2-MASTER PIC X(2).
010900 10 SOCSEC3-MASTER PIC X(4).
011000 05 NAME-MASTER.
011100 10 LAST-NAME-MASTER PIC X(10).
011200 10 FIRST-NAME-MASTER PIC X(10).
011300 10 MI-NAME-MASTER PIC X.
Appendix B 163

Sample Programs
COBOL II Program
011400 05 CREDIT-INFO-MASTER OCCURS 5 TIMES.
011500 10 CO-CODE-MASTER PIC X.
011600 10 BALANCE-MASTER PIC 9(4)V9(2).
011700 05 FILLER PIC X(14).
011800 05 RISK-CODE-MASTER PIC X(1).
011900*
012000 01 ERROR-RECORD REDEFINES MASTER-DATA.
012100 05 ERROR-CODE PIC 9(4).
012200 05 FILLER PIC X(76).
012300*

012400 01 TRANS-DATA.
012500 05 SOCSEC-TRANS.
012600 10 SOCSEC1-TRANS PIC X(3).
012700 10 SOCSEC2-TRANS PIC X(2).
012800 10 SOCSEC3-TRANS PIC X(4).
012900 05 NAME-TRANS.
013000 10 LAST-NAME-TRANS PIC X(10).
013100 10 FIRST-NAME-TRANS PIC X(10).
013200 10 MI-NAME-TRANS PIC X.
013300*
013400*
013500*--*
013600 PROCEDURE DIVISION.
013700*--*
013800*
013900*--*
014000 000000-MAINLINE SECTION.
014100*--*
014200*
014300 PERFORM 101000-BEGIN-HOUSEKEEPING.
014400*
014500 PERFORM 102000-PROCESS-RECORDS
014600 UNTIL QUIT-SW = YES-SW.
014700*
014800 PERFORM 103000-END-HOUSEKEEPING.
014900*
015000 000099-EXIT.
015100 STOP RUN.
015200*
164 Appendix B

Sample Programs
COBOL II Program
015300*--*
015400 101000-BEGIN-HOUSEKEEPING SECTION.
015500*--*
015600* This section calls TPStarted to initialize resources
015700* for the local TP, and then it calls MCAllocate to
015800* allocate a conversation with the remote TP.
015900*
016000 MOVE NO-SW TO QUIT-SW.
016100*
016200 CALL INTRINSIC "TP'STARTED" USING LOCAL-TP-NAME,
016300 TPID,
016400 INTRINSIC-STATUS,
016500 TRACEON.
016600 IF INTRINSIC-STATUS IS NOT EQUAL TO ZERO
016700 MOVE YES-SW TO QUIT-SW
016800 MOVE INTRINSIC-STATUS-INFO TO TPSTART-RTRNCD
016900 DISPLAY STARTED-ERR-MSG,TPSTART-RTRNCD
017000 GO TO 101099-EXIT.
017100*
017200 CALL INTRINSIC "CTRANSLATE" USING TRANSLATE-TO-EBCDIC,
017300 REMOTE-TP-NAME-ASCII,
017400 REMOTE-TP-NAME-EBCDIC,
017500 LENGTH-REMOTE-TP-NAME.
017600 IF CCODE << ZERO
017700 DISPLAY CTRANSLATE-ERR-MSG,
017800 "CCL - REMOTE-TP-NAME NOT TRANSLATED"
017900 MOVE YES-SW TO QUIT-SW
018000 GO TO 101099-EXIT.
018100*
018200 CALL INTRINSIC "MCALLOCATE" USING TPID,
018300 SESSION-TYPE,
018400 REMOTE-TP-NAME-EBCDIC,
018500 LENGTH-REMOTE-TP-NAME,
018600 RESOURCE-ID,
018700 INTRINSIC-STATUS.
018800 IF INTRINSIC-STATUS IS NOT EQUAL TO ZERO
018900 MOVE YES-SW TO QUIT-SW
019000 MOVE INTRINSIC-STATUS-INFO TO ALLOCATE-RTRNCD
019100 DISPLAY ALLOCATE-ERR-MSG,ALLOCATE-RTRNCD
019200 GO TO 101099-EXIT.
019300*
019400 PERFORM 501000-FULL-SCREEN.
019500 101099-EXIT.
019600 EXIT.
019700*
019800*--*
019900 102000-PROCESS-RECORDS SECTION.
020000*--*
020100* This section calls SEND-DATA and RECEIVE-DATA.
020200*
020300 PERFORM 201000-SEND-DATA.
020400*
Appendix B 165

Sample Programs
COBOL II Program
020500 IF QUIT-SW IS EQUAL TO YES-SW
020600 GO TO 102099-EXIT.
020700*
020800 PERFORM 202000-RECEIVE-DATA.
020900*
021000 102099-EXIT.
021100 EXIT.
021200*
021300*--*
021400 103000-END-HOUSEKEEPING SECTION.
021500*--*
021600* This section deallocates the conversation and calls
021700* TPEnded to free the resources used by the local TP.
021800*
021900 CALL INTRINSIC "MCDEALLOCATE" USING RESOURCE-ID,
022000 DEALLOCATE-TYPE,
022100 INTRINSIC-STATUS.
022200 IF INTRINSIC-STATUS IS NOT EQUAL TO ZERO
022300 MOVE INTRINSIC-STATUS-INFO TO DEALLOCATE-RTRNCD
022400 DISPLAY DEALLOCATE-ERR-MSG,DEALLOCATE-RTRNCD.
022500*
022600 CALL INTRINSIC "TPENDED" USING TPID,
022700 INTRINSIC-STATUS.
022800 IF INTRINSIC-STATUS IS NOT EQUAL TO ZERO
022900 MOVE INTRINSIC-STATUS-INFO TO ENDED-RTRNCD
023000 DISPLAY ENDED-ERR-MSG,ENDED-RTRNCD.
023100*
023200 103099-EXIT.
023300 EXIT.
023400*

023500*--*
023600 201000-SEND-DATA SECTION.
023700*--*
023800* This section translates the data received from the
023900* user’s screen into EBCDIC and sends it to the remote TP.
024000*
024100 CALL INTRINSIC "CTRANSLATE" USING TRANSLATE-TO-EBCDIC,
024200 TRANS-DATA,
024300 TRANS-DATA,
024400 TRANS-LENGTH.
024500 IF CCODE << ZERO
024600 DISPLAY CTRANSLATE-ERR-MSG,
024700 "CCL - TRANS-DATA NOT TRANSLATED"
024800 MOVE YES-SW TO QUIT-SW
024900 GO TO 201099-EXIT.
025000*
025100 CALL INTRINSIC "MCSENDDATA" USING RESOURCE-ID,
025200 TRANS-DATA,
025300 TRANS-LENGTH,
025400 REQ-TO-SEND-REC,
025500 INTRINSIC-STATUS.
025600 IF INTRINSIC-STATUS IS NOT EQUAL TO ZERO
166 Appendix B

Sample Programs
COBOL II Program
025700 MOVE YES-SW TO QUIT-SW
025800 MOVE INTRINSIC-STATUS-INFO TO SENDDATA-RTRNCD
025900 DISPLAY SENDDATA-ERR-MSG,SENDDATA-RTRNCD.
026000*
026100 201099-EXIT.
026200 EXIT.
026300*
026400*--*
026500 202000-RECEIVE-DATA SECTION.
026600*--*
026700* This section calls MCRcvAndWait twice: once to
026800* receive a data record from the remote TP and once
026900* to receive the instruction to change to Send state.
027000* If this section receives a complete data record,
027100* it calls CTranslate to translate it to ASCII.
027200*

027300 MOVE FULL-RECORD TO RECEIVE-LENGTH.
027400*
027500 CALL INTRINSIC "MCRCVANDWAIT" USING RESOURCE-ID,
027600 RECEIVE-LENGTH,
027700 REQ-TO-SEND-REC,
027800 MASTER-DATA,
027900 WHAT-RECEIVED,
028000 INTRINSIC-STATUS.
028100*
028200 IF INTRINSIC-STATUS IS NOT EQUAL TO ZERO
028300 MOVE INTRINSIC-STATUS-INFO TO RCVANDWAIT-RTRNCD
028400 DISPLAY RCVANDWAIT-ERR-MSG,RCVANDWAIT-RTRNCD
028500 MOVE YES-SW TO QUIT-SW
028600 GO TO 202099-EXIT.
028700*
028800 IF WHAT-RECEIVED IS NOT EQUAL TO DATA-COMPLETE
028900 MOVE WHAT-RECEIVED TO DISPLAY-WHAT-RECEIVED
029000 DISPLAY WHAT-RECEIVED-MSG,DISPLAY-WHAT-RECEIVED
029100 MOVE YES-SW TO QUIT-SW
029200 GO TO 202099-EXIT.
029300*
029400 CALL INTRINSIC "MCRCVANDWAIT" USING RESOURCE-ID,
029500 RECEIVE-LENGTH,
029600 REQ-TO-SEND-REC,
029700 MASTER-DATA,
029800 WHAT-RECEIVED,
029900 INTRINSIC-STATUS.
030000*
030100 IF INTRINSIC-STATUS IS NOT EQUAL TO ZERO
030200 MOVE INTRINSIC-STATUS-INFO TO RCVANDWAIT-RTRNCD
030300 DISPLAY RCVANDWAIT-ERR-MSG,RCVANDWAIT-RTRNCD
030400 MOVE YES-SW TO QUIT-SW
030500 GO TO 202099-EXIT.
030600*
030700 IF WHAT-RECEIVED IS NOT EQUAL TO SEND-RECEIVED
030800 MOVE WHAT-RECEIVED TO DISPLAY-WHAT-RECEIVED
Appendix B 167

Sample Programs
COBOL II Program
030900 DISPLAY WHAT-RECEIVED-MSG,DISPLAY-WHAT-RECEIVED
031000 MOVE YES-SW TO QUIT-SW
031100 GO TO 202099-EXIT.
031200*

031300 CALL INTRINSIC "CTRANSLATE" USING TRANSLATE-TO-ASCII,
031400 MASTER-DATA,
031500 MASTER-DATA,
031600 RECEIVE-LENGTH.
031700 IF CCODE << ZERO
031800 DISPLAY CTRANSLATE-ERR-MSG,
031900 "CCL - MASTER-DATA NOT TRANSLATED"
032000 MOVE YES-SW TO QUIT-SW
032100 GO TO 202099-EXIT.
032200*
032300 IF RECEIVE-LENGTH IS EQUAL TO FULL-RECORD
032400 PERFORM 301000-DISPLAY-ACCEPTANCE
032500 ELSE
032600 PERFORM 302000-DISPLAY-ERROR-MESSAGE.
032700*
032800 202099-EXIT.
032900 EXIT.
033000*
033100*--*
033200 301000-DISPLAY-ACCEPTANCE SECTION.
033300*--*
033400* This section evaluates the Risk Code received from
033500* the remote TP to determine whether to approve or deny
033600* credit, and then it writes a message to the user's terminal.
033700*
033800 IF RISK-CODE-MASTER IS LESS THAN ACCEPT-CODE
033900 DISPLAY "CREDIT DENIED"
034000 ELSE
034100 DISPLAY "CREDIT APPROVED".
034200*
034300 PERFORM 401000-QUIT-SCREEN.
034400*
034500 301099-EXIT.
034600 EXIT.
034700*
168 Appendix B

Sample Programs
COBOL II Program
034800*--*
034900 302000-DISPLAY-ERROR-MESSAGE SECTION.
035000*--*
035100* This section evaluates the errorcode returned by the
035200* remote TP and writes an error message to the user’s
035300* terminal. The remote TP can return any of 3 error codes:
035400* 001 - The SS# is not in the database.
035500* 002 - The SS# is in the database, but the name does
035600* not match the name sent by the HP 3000.
035700* 003 - Miscellaneous system errors.
035800* Error codes 001 and 002 cause this section to call
035900* QUIT-SCREEN. Error code 003 causes this section to
036000* set QUIT_SW to YES_SW.
036100*
036200 IF ERROR-CODE IS EQUAL TO SYSTEM-ERROR-CD
036300 DISPLAY SYSTEM-ERROR-CD
036400 MOVE YES-SW TO QUIT-SW
036500 GO TO 302099-EXIT.
036600*
036700 IF ERROR-CODE IS EQUAL TO SOCSEC-ERROR-CD
036800 DISPLAY "SS# not on file - CREDIT DENIED"
036900 ELSE
037000 DISPLAY "Invalid Name".
037100*
037200 PERFORM 401000-QUIT-SCREEN.
037300*
037400 302099-EXIT.
037500 EXIT.
037600*

037700*--*
037800 401000-QUIT-SCREEN SECTION.
037900*--*
038000* This section asks the user if he or she is ready
038100* to quit. If the user responds 'Y', this section
038200* changes QUIT_SW to YES_SW.
038300*
038400 DISPLAY "READY TO QUIT (Y/N)?".
038500 ACCEPT QUIT-SW FREE.
038600*
038700 IF QUIT-SW IS NOT EQUAL TO YES-SW
038800 PERFORM 501000-FULL-SCREEN.
038900*
039000 401099-EXIT.
039100 EXIT.
039200*
Appendix B 169

Sample Programs
COBOL II Program
039300*--*
039400 501000-FULL-SCREEN SECTION.
039500*--*
039600* This section prompts the user for data and
039700* receives the data from the terminal.
039800*
039900 MOVE SPACE TO TRANS-DATA.
040000 MOVE SPACES TO MASTER-DATA.
040100*
040200 DISPLAY CONSOLE-HEADING.
040300*
040400 DISPLAY "SOCSEC # :".
040500 PERFORM 601000-ACCEPT-SOCSEC
040600 UNTIL SOCSEC-TRANS IS NUMERIC.
040700*
040800 DISPLAY "LASTNAME :".
040900 ACCEPT LAST-NAME-TRANS FREE.
041000*
041100 DISPLAY "FIRSTNAME :".
041200 ACCEPT FIRST-NAME-TRANS FREE.
041300*
041400 DISPLAY "MI :".
041500 ACCEPT MI-NAME-TRANS FREE.
041600*
041700 501099-EXIT.
041800 EXIT.
041900*
042000*--*
042100 601000-ACCEPT-SOCSEC SECTION.
042200*--*
042300* This section prompts the user for a social security
042400* number and accepts it from the terminal.
042500*
042600 ACCEPT SOCSEC-TRANS FREE.
042700*
042800 IF SOCSEC-TRANS IS EQUAL TO SPACES
042900 DISPLAY "SOCSEC # MUST BE NUMERIC"
043000 DISPLAY "SOCSEC # :"
043100 GO TO 601099-EXIT.
043200*
043300 IF SOCSEC-TRANS IS NOT NUMERIC
043400 DISPLAY "SOCSEC # MUST BE NUMERIC"
043500 DISPLAY "SOCSEC # :".
043600*
043700 601099-EXIT.
043800 EXIT.
170 Appendix B

Sample Programs
Pascal Program
Pascal Program
Figure B-3 is a chart of the program structure for the Pascal TP that
runs on the HP 3000.

Figure B-3 Structure of Example Pascal Program
Appendix B 171

Sample Programs
Pascal Program
$uslinit$
$standard_level 'HP3000'; tables on; code_offsets on; xref on$
$global 'SPL'$
$PAGE$

program credit(input,output);

{ Date written: August, 1987.}
{ Date compiled: August, 1987.}

const
 ACCEPT_CODE = '3';
 DATA_COMPLETE = 1;
 FULL_RECORD = 80;
 LENGTH_REMOTE_TPNAME = 4;
 NO_SW = false;
 YES_SW = true;
 ON = 2;
 CONVSYNCLEVEL = 0;
 SEND = 4;
 SOC_SEC_ERROR_CD = 1;
 SYSTEM_ERROR_CD = 3;
 TRANSLATE_TO_ASCII = 1;
 TRANSLATE_TO_EBCDIC = 2;
 TRANSLENGTH = 30;
 YES = ['y', 'Y'];

 AllocateErrMsg = text ['Allocate Error '];
 CTranslateErrMsg = text ['CTranslate Error '];
 DeallocateErrMsg = text ['Deallocate Error '];
 EndedErrMsg = text ['TP Ended Error '];
 RcvAndWaitErrMsg = text ['RcvAndWait Error '];
 SendDataErrMsg = text ['Send Data Error '];
 StartedErrMsg = text ['TP Started Error '];
 WhatReceivedErrMsg = text ['What Received Error '];

type
 shortint = -32768..32767;
 pac4type = packed array [1..4] of char;
 nametype = packed array [1..10] of char;
 errmsgtype = packed array [1..20] of char;
 ssnumtype = packed array [1..9] of char;
 balancetype = packed array [1..6] of char;

 MasterDataType = record
 case shortint of
 0: (SocSecMaster : ssnumtype;
 LastNameMaster : nametype;
 FirstNameMaster : nametype;
 MINameMaster : char;
 CoCodeMaster1 : char;
 BalanceMaster1 : balancetype;
 CoCodeMaster2 : char;
172 Appendix B

Sample Programs
Pascal Program
 BalanceMaster2 : balancetype;
 CoCodeMaster3 : char;
 BalanceMaster3 : balancetype;
 CoCodeMaster4 : char;
 BalanceMaster4 : balancetype;
 CoCodeMaster5 : char;
 BalanceMaster5 : balancetype;
 Filler : packed array [1..14] of char;
 RiskCodeMaster : char);
 1: (ErrorCode : pac4type;
 ErrorFiller : packed array [1..76] of char);
 end;

 short_text = packed array [1..8] of char;
 text = packed array [1..20] of char;
 TPNameType = packed array [1..LENGTH_REMOTE_TPNAME] of char;

 TransDataType = record
 SocSecTrans : ssnumtype;
 LastNameTrans : nametype;
 FirstNameTrans: nametype;
 MINameTrans : char;
 end;
hpe_status = record
 case integer of
 0 : (all : integer);
 1 : (info : shortint;
 subsys : shortint);
 end;

var
 LocalTPName,
 SessionType : short_text;
 RemoteTPNameASCII : TPNameType;
 ResourceID,
 TPID,
 TraceOn,
 ReceiveLength,
 WhatReceived,
 DeallocateType : shortint;
 TransData : TransDataType;
 Ready : char;
 Quit_SW : boolean;

procedure TPStarted; intrinsic;
procedure TPEnded; intrinsic;
procedure MCAllocate; intrinsic;
procedure MCDeallocate; intrinsic;
procedure MCSendData; intrinsic;
procedure MCRcvAndWait; intrinsic;
procedure CTranslate; intrinsic;
function bin $alias 'binary'$: shortint; intrinsic;
$PAGE$
Appendix B 173

Sample Programs
Pascal Program
{**
 ErrorHandler
 This procedure returns the error message associated
 with a status info value.
**}

procedure ErrorHandler (IntrinsicMsg : text;
 Status : shortint;
 var Quit_SW : boolean);

begin
 Quit_SW := YES_SW;
 writeln (IntrinsicMsg, Status:3);
end;

$PAGE$

{**
 GetFullScreenData
 This procedure prompts the user for data and receives
 the data from the terminal.
**}

procedure GetFullScreenData (var TransData : TransDataType);

begin
 with TransData do
 begin
 SocSecTrans := ' ';
 LastNameTrans := ' ';
 FirstNameTrans := ' ';
 MINameTrans := ' ';

 writeln ('Credit Risk Check.');
 writeln;

 writeln ('Social Security Number:');
 readln (SocSecTrans);

 writeln ('Last Name:');
 readln (LastNameTrans);

 writeln ('First Name:');
 readln (FirstNameTrans);

 writeln ('Middle Initial:');
 readln (MINameTrans);

 end;
end;

$PAGE$
174 Appendix B

Sample Programs
Pascal Program
{**
 BeginHouseKeeping
 This procedure calls TPStarted to initialize resources
 for the local TP, and then it calls MCAllocate to
 allocate a conversation with the remote TP.
**}

procedure BeginHouseKeeping (LocalTPName : short_text;
 RemoteTPNameASCII : TPNameType;
 SessionType : short_text;
 var TPID, ResourceID : shortint;
 TraceOn : shortint;
 var Quit_SW : boolean);

var
 IntrinsicStatus : hpe_status;
 RemoteTPNameEBCDIC : TPNameType;

begin
 Quit_SW := NO_SW;

 TPStarted (LocalTPName, TPID, IntrinsicStatus, TraceOn);

 if IntrinsicStatus.all <<>> 0 then
 ErrorHandler (StartedErrMsg, IntrinsicStatus.info, Quit_SW)

 else
 begin
 CTranslate (TRANSLATE_TO_EBCDIC, RemoteTPNameASCII,
 RemoteTPNameEBCDIC, LENGTH_REMOTE_TP_NAME);

 if CCode = 1 then
 begin
 Quit_SW := YES_SW;
 writeln (CTranslateErrMsg, 'CCL - Remote TP Name not translated.');
 end

 else
 begin
 MCAllocate (TPID, SessionType, RemoteTPNameEBCDIC,
 LENGTH_REMOTE_TP_NAME, ResourceID, IntrinsicStatus);

 if IntrinsicStatus.all <<>> 0 then
 ErrorHandler (AllocateErrMsg, IntrinsicStatus.info, Quit_SW);

 end;
 end;
end;

$PAGE$
Appendix B 175

Sample Programs
Pascal Program
{**
 SendData
 This procedure translates the data received from the
 user's screen into EBCDIC and sends it to the remote TP.
**}

procedure SendData (ResourceID : shortint;
 TransData : TransDataType;
 var Quit_SW : boolean);

var
 IntrinsicStatus : hpe_status;
 ReqToSendRec : shortint;

begin
 CTranslate (TRANSLATE_TO_EBCDIC, TransData, TransData, TRANSLENGTH);

 if CCode = 1 then
 begin
 Quit_SW := YES_SW;
 writeln (CTranslateErrMsg, 'CCL - TransData not translated.');
 end

 else
 begin
 MCSendData (ResourceID, TransData, TRANSLENGTH,
 ReqToSendRec, IntrinsicStatus);

 if IntrinsicStatus.all <<>> 0 then
 ErrorHandler (SendDataErrMsg, IntrinsicStatus.info, Quit_SW);
 end;
end;

$PAGE$

{**
 QuitScreen
 This procedure asks the user if he or she is ready to
 quit. If the user responds 'Y', this procedure changes
 Quit_SW to YES_SW.
**}

procedure QuitScreen (var Quit_SW : boolean);

begin
 writeln ('Ready to quit (Y/N)?');
 readln (Ready);

 if Ready in YES then
 Quit_SW := YES_SW;
end;

$PAGE$
176 Appendix B

Sample Programs
Pascal Program
{**
 DisplayAcceptance
 This procedure evaluates the Risk Code received from the
 remote TP to determine whether to approve or deny credit,
 and then it writes a message to the user's terminal.
**}

procedure DisplayAcceptance (RiskCode : shortint;
 var Quit_SW : boolean);

begin
 if ord(RiskCode) << ord(ACCEPT_CODE) then
 writeln ('Credit Denied.')

 else
 writeln ('Credit Approved.');

 QuitScreen (Quit_SW);
end;

$PAGE$

{**
 DisplayErrorMessage
 This procedure evaluates the errorcode returned by the
 remote TP and writes an error message to the user's
 terminal. The remote TP can return any of 3 error codes:
 001 - The SS# is not in the database.
 002 - The SS# is in the database, but the name does
 not match the name sent by the HP 3000.
 003 - Miscellaneous system errors.
 Error codes 001 and 002 cause this procedure to call
 QuitScreen. Error code 003 causes this procedure to
 set Quit_SW to YES_SW.
**}

procedure DisplayErrorMessage (ErrorCode : shortint;
 var Quit_SW : boolean);

begin
 if ErrorCode = SYSTEM_ERROR_CD then
 begin
 writeln (errorcode:4);
 Quit_SW := YES_SW;
 end

 else
 begin
 if ErrorCode = SOCSEC_ERROR_CD then
 writeln ('SS# not on file - Credit Denied.')
 else
 writeln ('Invalid Name');
 QuitScreen (Quit_SW);
Appendix B 177

Sample Programs
Pascal Program
 end;
end;

$PAGE$

 {**
 ReceiveData
 This procedure calls MCRcvAndWait twice: once to
 receive a data record from the remote TP and once to
 receive the instruction to change to Send state. If
 this procedure receives a complete data record, it
 calls CTranslate to translate it to ASCII.
**}

procedure ReceiveData (ResourceID : shortint;
 var Quit_SW : boolean);

var
 IntrinsicStatus : hpe_status;
 MasterData : MasterDataType;
 ReqToSendRec : shortint;

begin
 ReceiveLength := FULL_RECORD;

 MCRcvAndWait (ResourceID, ReceiveLength, ReqToSendRec, MasterData,
 WhatReceived, IntrinsicStatus);

 if IntrinsicStatus.all <<>> 0 then
 ErrorHandler (RcvAndWaitErrMsg, IntrinsicStatus.info, Quit_SW)

 else
 begin
 if WhatReceived <<>> DATA_COMPLETE then
 ErrorHandler (WhatReceivedErrMsg, WhatReceived, Quit_SW)

 else
 begin
 MCRcvAndWait (ResourceID, ReceiveLength, ReqToSendRec,
 MasterData, WhatReceived, IntrinsicStatus);

 if IntrinsicStatus.all <<>> 0 then
 ErrorHandler (RcvAndWaitErrMsg, IntrinsicStatus.info, Quit_SW)

 else
 begin
 if WhatReceived <<>> SEND then
 ErrorHandler (WhatReceivedErrMsg, WhatReceived,
 Quit_SW)

 else
 begin
 CTranslate (TRANSLATE_TO_ASCII, MasterData, MasterData,
178 Appendix B

Sample Programs
Pascal Program
 ReceiveLength);

 if CCode = 1 then
 begin
 Quit_SW := YES_SW;
 writeln (CTranslateErrMsg,

 'CCL - MasterData not translated.');
 end;

 if not Quit_SW then
 begin
 if ReceiveLength = FULL_RECORD then
 DisplayAcceptance (MasterData.RiskCodeMaster,
 Quit_SW)

 else
 DisplayErrorMessage (bin(MasterData.ErrorCode, 4),
 Quit_SW);
 end
 end
 end
 end
 end
end;

$PAGE$

{**
 ProcessRecords
 This procedure calls GetFullScreenData, SendData, and
 ReceiveData.
**}

procedure ProcessRecords (ResourceID : shortint;
 var Quit_SW : boolean);

begin
 GetFullScreenData (TransData);
 SendData (ResourceID, TransData, Quit_SW);

 if not Quit_SW then
 ReceiveData (ResourceID, Quit_SW);
end;

$PAGE$
Appendix B 179

Sample Programs
Pascal Program
{**
 EndHousekeeping
 This procedure deallocates the conversation and calls
 TPEnded to free the resources used by the local TP.
**}

procedure EndHousekeeping (ResourceID, TPID : shortint);

var
 IntrinsicStatus : hpe_status;

begin
 MCDeallocate (ResourceID, DeallocateType, IntrinsicStatus);

 if IntrinsicStatus.all <<>> 0 then
 ErrorHandler (DeallocateErrMsg, IntrinsicStatus.info, Quit_SW)

 else
 begin
 TPEnded (TPID, IntrinsicStatus);

 if IntrinsicStatus.all <<>> 0 then
 ErrorHandler (EndedErrMsg, IntrinsicStatus.info, Quit_SW)
 end;
end;

$PAGE$

{**
 Main Program
**}

begin
 LocalTPName := 'USERTP ';
 RemoteTPNameASCII := 'Z027';
 Traceon := ON;
 SessionType := 'APISESS ';
 DeallocateType := CONVSYNCLEVEL;

 BeginHousekeeping (LocalTPName, RemoteTPNameASCII, SessionType,
 TPID, ResourceID, Traceon, Quit_SW);

 While not Quit_SW do
 ProcessRecords (ResourceID, Quit_SW);

 EndHousekeeping (ResourceID, TPID, DeallocateType);

end.
180 Appendix B

Sample Programs
CICS Program (PL/I)
CICS Program (PL/I)
CICS provides a high-level command interface to the LU 6.2 verbs.
Table B-1 gives the mappings between the LU 6.2 verbs and the
equivalent CICS commands issued by the CICS TP.

The EXEC Interface Block (EIB) returns parameter values from the
LU 6.2 verbs to the PL/I TP. Table B-2 lists the EIB values used in the
PL/I TP and their meanings in the conversation.

Table B-1 Mapping of CICS Commands to LU 6.2 Verbs

LU 6.2 Verb CICS Command

MCGetAllocate EXEC CICS EXTRACT PROCESS

MCRcvAndWait EXEC CICS RECEIVE

MCSendData EXEC CICS SEND

MCConfirmed EXEC CICS ISSUE CONFIRMATION

Table B-2 Meanings of EXEC Interface Block Values

EIB Value Meaning

EIBFREE The remote TP called MCDeallocate to end the
conversation normally.

EIBCONF The remote TP called MCConfirm < to request confirmation.

EIBEOC End-of-chain indicator.

EIBCOMPL The CICS TP has received a complete data record.

EIBRECV The CICS TP is in Receive state.
Appendix B 181

Sample Programs
CICS Program (PL/I)
S027:

 PROCEDURE OPTIONS (MAIN);

DCL
 1 RECEIVE_AREA,
 2 KEY CHAR(9) INIT((9)' '),
 2 NAME CHAR(21) INIT((21)' ');

DCL
 1 SEND_AREA,
 2 KEY CHAR(9) INIT((9)' '),
 2 NAME CHAR(21) INIT((21)' '),
 2 DATA CHAR(50) INIT((50)' ');

/*** error codes ***/
DCL NOT_FOUND CHAR(4) INIT('0001');
DCL INVALID_NAME CHAR(4) INIT('0002');
DCL MISC_ERROR CHAR(4) INIT('0003');

DCL ADDR BUILTIN;
DCL CSTG BUILTIN;
DCL HIGH BUILTIN;
DCL LOW BUILTIN;
DCL SUBSTR BUILTIN;
DCL STG BUILTIN;
DCL VERIFY BUILTIN;

DCL CONV_GONE BIT(1) INIT('0'B);
DCL CONFIRM_REQ BIT(1) INIT('0'B);
DCL DATA_COMPLETE BIT(1) INIT('0'B);
DCL INLEN FIXED BIN(31) INIT(30);
DCL RSC CHAR(6) INIT('TPFILE');
DCL SYNC FIXED BIN(15) INIT(0);

/*** Begin MAIN ***/

 EXEC CICS HANDLE CONDITION NOTFND(L_NFD)
 ERROR(L_ERR);

/* Receive attach from HP 3000. Equivalent to MCGetAllocate. */

 EXEC CICS EXTRACT PROCESS SYNCLEVEL(SYNC);

RCV_LOOP:
 DO WHILE ((CONV_GONE = '0'B) &
 (CONFIRM_REQ = '0'B));

/* Until the partner TP deallocates the conversation or */
/* the partner TP issues MCConfirm to request confirmation, */
/* receive another 30-byte record with 9-digit key and 21-character name. */

 EXEC CICS RECEIVE INTO(RECEIVE_AREA) LENGTH(INLEN);
182 Appendix B

Sample Programs
CICS Program (PL/I)
/* If the partner TP deallocated, exit the receive loop. */

 IF DFHEIBLK.EIBFREE = HIGH(1) THEN
 DO;
 CONV_GONE = '1'B;
 LEAVE RCV_LOOP;
 END;

/* If the partner TP called MCConfirm, exit the receive loop. */

 IF DFHEIBLK.EIBCONF = HIGH(1) THEN
 DO;
 CONFIRM_REQ = '1'B;
 LEAVE RCV_LOOP;
 END;

/* If End-Of-Chain & DATA_COMPLETE & partner TP called MCPrepToRcv */

 IF ((DFHEIBLK.EIBEOC = HIGH(1)) &
 (DFHEIBLK.EIBCOMPL = HIGH(1)) &
 (DFHEIBLK.EIBRECV = LOW(1))) THEN
 DO;

 IF VERIFY(RECEIVE_AREA.KEY,'0123456789') = 0 THEN
 DO;

/* Query the database for the key received from the remote TP. */

 EXEC CICS ENQ RESOURCE(RSC) LENGTH(6);
 EXEC CICS READ DATASET('TPFILE') INTO(SEND_AREA)
 RIDFLD(RECEIVE_AREA.KEY);
 EXEC CICS DEQ RESOURCE(RSC) LENGTH(6);

IF RECEIVE_AREA.NAME ¬ = SEND_AREA.NAME THEN

/* The above line contains a logicalnot or (NOT EQUAL) sign. */
/* If the name in the database doesn't match the name from the remote TP, */
/* issue an error code and call McPrepToRcv (INVITE WAIT). */

 DO;
 EXEC CICS SEND FROM(INVALID_NAME) INVITE WAIT;
 END;

/* If names match, send the data record and call MCPrepToRcv (INVITE WAIT).
*/

 ELSE DO;
 EXEC CICS SEND FROM(SEND_AREA) INVITE WAIT;
 END;
 END;

/* Otherwise, report a misc. error and call MCPrepToRcv (INVITE WAIT). */
Appendix B 183

Sample Programs
CICS Program (PL/I)
 ELSE DO;
 EXEC CICS DEQ RESOURCE(RSC) LENGTH(6);
L_ERR: EXEC CICS SEND FROM(MISC_ERROR) INVITE WAIT;
 END;
 END;
END RCV_LOOP;

/* If the partner TP called MCConfirm, */
/* respond with MCConfirmed (EXEC CICS ISSUE CONFIRMATION). */

L_BYE:
 IF ((SYNC = 1) & (CONFIRM_REQ = '1'B)) THEN
 DO;
 EXEC CICS ISSUE CONFIRMATION;
 CONFIRM_REQ = '0'B;
 END;

/* If the remote TP deallocated, deallocate the local conversation. */

 IF DFHEIBLK.EIBFREE = HIGH(1) THEN
 DO;
 EXEC CICS RETURN;
 END;

/* If the key sent by the remote TP is not in the database, */
/* report an error, call MCPrepToRcv (INVITE WAIT), and */
/* return to the receive loop to receive another record. */

L_NFD:
 DO;
 EXEC CICS DEQ RESOURCE(RSC) LENGTH(6);
 EXEC CICS SEND FROM(NOT_FOUND) INVITE WAIT;
 GOTO RCV_LOOP;
 END;

END S027;
184 Appendix B

C State Transition Tables
This appendix contains the state transition tables for all the
conversation states. Each table contains the following information:

• The intrinsics that can be called from the state.

• The state of the local side of the conversation after the intrinsic has
executed and a status info value has been returned.

• The state of the remote side of the conversation after the intrinsic
has executed.

*** means that the state cannot be determined from the local side of the
conversation.

Table C-1 shows the Confirm State transition table.

Table C-1 Confirm State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution

MCConfirmed 0 Successful
Completion

Receive Send

MCDeallocate
(ABEND)

0 Successful
Completion

Reset Deallocate

MCErrMsg Any value Confirm Send

MCGetAttr Any value Confirm Send

MCReqToSend Any value Confirm Send

MCSendError 0 Successful
Completion

Send Receive

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***
185

State Transition Tables
Table C-2 shows the Confirm Deallocate State transition table.

Table C-3 shows the Confirm Send State transition table.

Table C-2 Confirm Deallocate State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution

MCConfirmed 0 Successful
Completion

Deallocate Reset

MCDeallocate
(ABEND)

0 Successful
Completion

Reset Deallocate

MCErrMsg Any value Confirm Deallocate Send

MCGetAttr Any value Confirm Deallocate Send

MCSendError 0 Successful
Completion

Send Receive

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

Table C-3 Confirm Send State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution

MCConfirmed 0 Successful
Completion

Send Receive

MCDeallocate
(ABEND)

0 Successful
Completion

Reset Deallocate

MCErrMsg Any value Confirm Send Receive

MCGetAttr Any value Confirm Send Receive

MCSendError 0 Successful
Completion

Send Receive

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***
186 Appendix C

State Transition Tables
Table C-4 shows the Deallocate State transition table.

Table C-5 show the Receive State transition table.

Table C-4 Deallocate State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution

MCDeallocate
(LOCAL)

0 Successful
Completion

Reset Reset

MCErrMsg Any value Deallocate Reset

MCGetAttr Any value Deallocate Reset

Table C-5 Receive State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution

MCDeallocate
(ABEND)

0 Successful
Completion

Reset Deallocate

MCErrMsg Any value Receive Send

MCGetAttr Any value Receive Send

MCPostOnRcpt Any value Receive Send
Appendix C 187

State Transition Tables
MCRcvAndWait
or MCRcvNoWait

0 Successful
Completion

WhatReceived=
DATA_COMPLETE

Receive Send

WhatReceived=
DATA_INCOMPLETE

Receive Send

WhatReceived= SEND Send Receive

WhatReceived=
CONFIRM

Confirm Send

WhatReceived=
CONFIRM_SEND

Confirm Send Receive

WhatReceived=
CONFIRM_DEALLOCATE

Confirm Deallocate Deallocate

-50 Allocation Error Deallocate ***

-51 Resource Failure
No Entry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-56 Prog Error
No Truncation

Receive Send

-60 Prog Error
Data Purged

Receive Send

+80 Timer has expired Receive ***

+100 Deallocate Normal Deallocate Reset

-1020 Deallocate Abend Deallocate ***

MCReqToSend 0 Successful
Completion

Receive Send

MCSendError 0 Successful
Completion

Send Receive

-51 Resource Failure
No Entry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

+100 Deallocate Normal Deallocate Reset

Table C-5 Receive State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution
188 Appendix C

State Transition Tables
MCTest (POSTED) 0 Successful
Completion

Receive Send

-37 Posting Not Active Receive Send

-38 Not Posted Receive Send

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-56 Prog Error
No Truncation

Receive Send

-60 Prog Error
Data Purged

Receive Send

+100 Deallocate Normal Deallocate Reset

-1020 Deallocate Abend Deallocate ***

MCTest
(RequestToSend
Received)

Any value Receive Send

MCWait 0 Successful
Completion

Receive Send

-37 Posting Not Active Receive Send

-50 Allocation Error Deallocate ***

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-56 Prog Error
No Truncation

Receive Send

-60 Prog Error
Data Purged

Receive Send

+100 Deallocate Normal Deallocate Reset

-1020 Deallocate Abend Deallocate ***

Table C-5 Receive State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution
Appendix C 189

State Transition Tables
Table C-6 shows the Reset State transition table.

Table C-7 shows the Send State transition table.

Table C-6 Reset State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution

MCDeallocate 0 Successful
Completion

Send Receive

Any other value Reset ***

MCGetAllocate 0 Successful
Completion

Receive Send

Any other value Reset ***

Table C-7 Send State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution

MCConfirm 0 Successful
Completion

Send Confirm

-50 Allocation Error Deallocate ***

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-60 Prog Error
Data Purged

Receive Send

+80 Timer has expired Send Receive

-1020 Deallocate Abend Deallocate ***

MCDeallocate
(FLUSH)

0 Successful
Completion

Reset Deallocate
190 Appendix C

State Transition Tables
MCDeallocate
(CONFIRM)

0 Successful
Completion

Reset Confirm Deallocate

-50 Allocation Error Deallocate ***

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-60 Prog Error
Data Purged

Receive Send

+80 Timer has expired Send Receive

-1020 Deallocate Abend Deallocate ***

MCDeallocate
(ABEND)

0 Successful
Completion

Reset Deallocate

MCErrMsg Any value Send Receive

MCFlush Any value Send Receive

MCGetAttr Any value Send Receive

MCPrepToRcv
(FLUSH)

0 Successful
Completion

Receive Send

MCPrepToRcv
(CONFIRM)

0 Successful
Completion

Receive Send

-50 Allocation Error Deallocate ***

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-60 Prog Error
Data Purged

Receive Send

+80 Timer has expired Receive ***

-1020 Deallocate Abend Deallocate ***

Table C-7 Send State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution
Appendix C 191

State Transition Tables
MCRcvAndWait 0 Successful
Completion

WhatReceived=
DATA_COMPLETE

Receive Send

WhatReceived=
DATA_INCOMPLETE

Receive Send

WhatReceived=
SEND

Send Receive

WhatReceived=
CONFIRM

Confirm Send

WhatReceived=
CONFIRM_SEND

Confirm Send Receive

WhatReceived=
CONFIRM_DEALLOCATE

Confirm Deallocate Deallocate

-50 Allocation Error Deallocate ***

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-56 Prog Error
No Truncation

Receive Send

-60 Prog Error
Data Purged

Receive Send

+80 Timer has expired Receive ***

+100 Deallocate Normal Deallocate Reset

1020 Deallocate Abend Deallocate ***

MCSendData 0 Successful
Completion

Send Receive

-50 Allocation Error Deallocate ***

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-60 Prog Error
Data Purged

Receive Send

-1020 Deallocate Abend Deallocate ***

Table C-7 Send State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution
192 Appendix C

State Transition Tables
MCSendError 0 Successful
Completion

Send Receive

-50 Allocation Error Deallocate ***

-51 Resource Failure
No Retry

Deallocate ***

-52 Resource Failure
Retry

Deallocate ***

-60 Prog Error
Data Purged

Receive Send

-1020 Deallocate Abend Deallocate ***

MCTest Any value Send Receive

Table C-7 Send State

Intrinsics You
Can Call

Status Info Local State After
Intrinsic Execution

Remote State After
Intrinsic Execution
Appendix C 193

State Transition Tables
194 Appendix C

D LU 6.2 Verb Table
The following Table D-1, is Hewlett-Packard’s LU 6.2 API intrinsics to
IBM’s architected LU 6.2 verbs.

Table D-1 LU 6.2 Verb Table

HP 3000 Intrinsic LU 6.2 Mapped Conversation Verb

TPStared none

TPEnded none

MCAllocate MC_ALLOCATE

MCConfirm MC_CONFIRM

MCConfirmed MC_CONFIRMED

MCDeallocate MC_DEALLOCATE

(FLUSH) (FLUSH)

(CONFIRM) (CONFIRM)

(ABEND) (ABEND)

(LOCAL) (LOCAL)

MCFlush MC_Flush

MCGetAllocate none

MCGetAttr MC_GET_ATTRIBUTES

MCPostOnRcpt MC_POST_ON_RECEIPT

MCPrepToRcv MC_PREPARE_TO_RECEIVE

MCRcvAndWait MC_RECEIVE_AND_WAIT

MCRcvNoWait MC_RECEIVE_IMMEDIATE

MCReqToSend MC_REQUEST_TO_SEND

MCSendData MC_SEND_DATA

MCSendError MC_SEND_ERROR

MCTest MC_TEST

MCWait WAIT
195

LU 6.2 Verb Table
196 Appendix D

E Transact Parameter Masks
LU 6.2 API intrinsics contain optional parameters that may or may not
be passed on any given call. Whenever intrinsics that take optional
parameters are used, a communication mechanism must exist between
the calling program and the intrinsic to indicate which parameters are
being passed and which have been omitted. In many languages, this
communication mechanism is handled by the compiler. TPs written in
the Transact language running on MPE V must provide this
communication mechanism by including a parameter mask in each
intrinsic call that specifies which parameters are being passed and
which are being omitted.

NOTE The parameter mask is required in Transact programs only on MPE V.
It must not be included in Transact TPs running on MPE XL. When
migrating Transact TPs from MPE V to MPE XL, be sure to remove any
code pertaining to the parameter masks.
197

Transact Parameter Masks
The Parameter Mask
The Parameter Mask
The parameter mask, or bit mask, is a string of bits, each corresponding
to an intrinsic parameter. The leftmost bit corresponds to the first
parameter in the intrinsic call. If a bit is set to 1, the corresponding
parameter is passed, and if the bit is set to 0 the parameter is omitted.
For intrinsics with up to 16 parameters, a 16-bit mask is used. For
intrinsics with 17 through 32 parameters, a 32-bit mask is used.

Parameters for Future Expansion

To allow for future expansion on MPE V, all LU 6.2 API intrinsics
contain additional parameters that are not documented in this manual.
When coding the bit mask, you must account for these “hidden”
parameters as well as the documented parameters. In the future, if the
hidden parameters are implemented, you will not have to change and
re-compile your TP.

Parameter Mask Templates

Table E-1 and Table E-2 describe the parameter mask for each intrinsic.
Table E-1 lists the intrinsics that require 16-bit masks

The parameter mask templates for each intrinsic indicate which bits
correspond to required, optional, and hidden parameters. Required
parameters are represented by 1’s, and hidden parameters are
represented by 0’s. Optional parameters are represented by x’s in the
templates, and you must replace them with 0's or 1's when you code the
parameter mask into your TP. If you are passing an optional parameter,
put a 1 in the corresponding bit of the parameter mask, and if you are
omitting it, put a 0 in the bit mask.

After you replace every x with a 0 or 1, translate the bit string to a
decimal value to be coded into your TP. For intrinsics with no optional
parameters, the mask value will always be the same and is given in the
“Mask Constant” column.
198 Appendix E

Transact Parameter Masks
The Parameter Mask
Table E-2 lists the intrinsics that require 32-bit masks.

Table E-1 Intrinsics Requiring a 16-Bit Mask

Intrinsic Number of
Hidden
Parameters

Bit Map
Template
1 = required
x = optional
0 = hidden

Mask Constant

TPStarted 7 111xxxx0000000 n/a

TPEnded 5 1100000 96

MCConfirm 5 11100000 224

MCConfirmed 5 1100000 96

MCDeallocate 5 1x100000 n/a

MCErrMsg 4 11110000 240

MCFlush 5 1100000 96

MCPostOnRcpt 5 111100000 480

MCPrepToRcv 5 11xx00000 n/a

MCRcvAndWait 6 111111000000 4032

MCRcvNoWait 6 111111000000 4032

MCReqToSend 5 1100000 96

MCSendData 7 111110000000 3968

MCSendError 5 11100000 224

MCTest 5 1x1x00000 n/a

MCWait 5 1111x00000 n/a

Table E-2 Intrinsics Requiring a 32-Bit Mask

Intrinsic Number of
Hidden
Parameters

Bit Map Template
1 = required
x = optional
0 = hidden

Mask Constant

MCAllocate 3 111111xxxxxxxxxxxxxxxxxxxxxx000 n/a

MCGetAllocate 3 11111xxxxxxxxxxxxxxxxxxxxx000 n/a

MCGetAttr 24 11xxxxx000000000000000000000000 n/a
Appendix E 199

Transact Parameter Masks
The Parameter Mask
Using the Parameter Mask in TPs

To use the parameter mask in the TP you must do the following:

1. Declare both the 16-bit and 32-bit parameter masks at the beginning
of the program.

2. Assign the appropriate number to the parameter mask in a LET
statement before each LU 6.2 API intrinsic call. The number in the
parameter mask must be the decimal representation of the bit mask
described in “Parameter Mask Templates.”

3. Include place holders for the hidden parameters in the intrinsic call.
Commas serve as place holders in Transact.

4. List the parameter mask in the intrinsic call as the last parameter
passed. The parameter mask is passed by value.

Examples

Following are examples of LU 6.2 API intrinsic calls in Transact.
Optional parameters are marked, and they must have their mask bits
set to 0 or 1, depending on whether or not they are passed. All commas
shown are required. Parameters common to several intrinsics appear in
the example declarations for every intrinsic that uses them. These
parameters need to be declared only once in a program.

Example E-1 Example Parameter Mask Declaration

< Declarations of bit masks and status parameter >>

DEFINE(ITEM) MASK16 I(4): << 16-bit parameter mask >>
 MASK32 I(9): << 32-bit parameter mask >>
 STATUS I(9):
 INFO I(4) = STATUS(I):
 INFO I(4) = STATUS (3);

LIST MASK16: MASK32: STATUS;

--
200 Appendix E

Transact Parameter Masks
The Parameter Mask
Example E-2 TPStarted Declarations and Intrinsic Call

DEFINE(ITEM) LOCAL-TP-NAME X(8):
 TP-ID I(4):
 TRACE-ON I(4):
 TRACE-SIZE I(4):
 TRACE-FILE X(35):
 DEFAULT-FILE X(28);

@COMPUTERTEXTW = LIST LOCAL-TP-NAME: TP-ID: TRACE-ON: TRACE-SIZE: TRACE-FILE:
DEFAULT-FILE;

LET (MASK16) = 15872; << "11111000000000" >>

PROC TPSTARTED (%(LOCAL-TP-NAME),
 (TP-ID),
 (STATUS),
 (TRACE-ON), << optional >>
 #(TRACE-SIZE), << optional >>
 << %(TRACE-FILE), optional, not used >>
 << %(DEFAULT-FILE), optional, not used >>
 , , , , , , , << 7 hidden parameters >>
 #(MASK16));

--

Example E-3 TPEnded Declarations and Intrinsic Call

DEFINE(ITEM) TP-ID I(4);

LIST TP-ID;

LET (MASK16) = 96; << "1100000" >>

PROC TPENDED (#(TP-ID),
 (STATUS),
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--
Appendix E 201

Transact Parameter Masks
The Parameter Mask
Example E-4 MCAllocate Declarations and Intrinsic Call

DEFINE(ITEM) TP-ID I(4):
 SESSION-TYPE X(8):
 REMOTE-TP-NAME X(64):
 REMOTE-TP-LEN I(4):
 RESOURCE-ID I(4):
 RETURN-CONTROL I(4):
 SYNC-LEVEL I(4):
 TIMER I(4):
 SECURITY I(4):
 NUM-PIPS I(4):
 PIP-LENGTHS[16] I(4):
 PIP1 X(1980):
 PIP2 X(1980): << The lengths given in the PIP >>
 PIP3 X(1980): << declarations may vary from >>
 PIP4 X(1980): << 0 to 1980 bytes. >>
 PIP5 X(1980):
 PIP6 X(1980): << The maximum combined length >>
 PIP7 X(1980): << of all PIP parameters is >>
 PIP8 X(1980): << 1980 bytes. >>
 PIP9 X(1980):
 PIP10 X(1980):
 PIP11 X(1980):
 PIP12 X(1980):
 PIP13 X(1980):
 PIP14 X(1980):
 PIP15 X(1980):
 PIP16 X(1980);

LIST TP-ID: SESSION-TYPE: REMOTE-TP-NAME: REMOTE-TP-LEN:
 RESOURCE-ID: RETURN-CONTROL: SYNC-LEVEL: TIMER:
 SECURITY: NUM-PIPS: PIP-LENGTHS: PIP1: PIP2: PIP3:
 PIP4: PIP5: PIP6: PIP7: PIP8: PIP9: PIP10: PIP11:
 PIP12: PIP13: PIP14: PIP15: PIP16;

LET (MASK32) = 2115960832; << "1111110000111110000000000000000" >>

PROC MCALLOCATE (#(TP-ID),
 %(SESSION-TYPE),
 %(REMOTE-TP-NAME),
 #(REMOTE-TP-LEN),
 (RESOURCE-ID),
 (STATUS),
 << #(RETURN-CONTROL), << optional, not used >>
 << #(SYNC-LEVEL), << optional, not used >>
 << #(TIMER), << optional, not used >>
 << #(SECURITY), << optional, not used >>
 #(NUM-PIPS), << optional >>
 (PIP-LENGTHS), << optional >>
 %(PIP1), << optional >>
 %(PIP2), << optional >>
202 Appendix E

Transact Parameter Masks
The Parameter Mask
 %(PIP3), << optional >>
 << %(PIP4) >>, << optional, not used >>
 << %(PIP5), << optional, not used >>
 << %(PIP6), << optional, not used >>
 << %(PIP7), << optional, not used >>
 << %(PIP8), << optional, not used >>
 << %(PIP9), << optional, not used >>
 << %(PIP10), << optional, not used >>
 << %(PIP11), << optional, not used >>
 << %(PIP12), << optional, not used >>
 << %(PIP13), << optional, not used >>
 << %(PIP14), << optional, not used >>
 << %(PIP15), << optional, not used >>
 << %(PIP16), << optional, not used >>
 , , , << 3 hidden parameters >>
 #(MASK32));

Example E-5 MCConfirm Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 REQUEST-TO-SEND-RECEIVED I(4);

LIST RESOURCE-ID: REQUEST-TO-SEND-RECEIVED;

LET (MASK16) = 224; << "11100000" >>

PROC MCCONFIRM (#(RESOURCE-ID),
 (REQUEST-TO-SEND-RECEIVED),
 (STATUS),
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--

Example E-6 MCConfirmed Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4);

LIST RESOURCE-ID;

LET (MASK16) = 96; << "1100000" >>

PROC MCCONFIRMED (#(RESOURCE-ID),
 (STATUS),
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--
Appendix E 203

Transact Parameter Masks
The Parameter Mask
Example E-7 MCDeallocate Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 DEALLOCATE-TYPE I(4);

LIST RESOURCE-ID: DEALLOCATE-TYPE;

LET (MASK16) = 160; << "10100000" >>

@COMPUTERTEXTW = PROC MCDEALLOCATE (#(RESOURCE-ID),
 << #(DEALLOCATE-TYPE), optional, not used >>
 (STATUS),
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--

Example E-8 MCErrMsg Declarations and Intrinsic Call

DEFINE(ITEM) OLD-STATUS I(9):
 MESSAGE-BUFFER X(256):
 MESSAGE-LENGTH I(4);

LIST OLD-STATUS: MESSAGE-BUFFER: MESSAGE-LENGTH;

LET (MASK16) = 240; << "11110000" >>

PROC MCERRMSG (#(OLD-STATUS),
 %(MESSAGE-BUFFER),
 (MESSAGE-LENGTH),
 (STATUS),
 , , , , << 4 hidden parameters >>
 #(MASK16));

--

Example E-9 MCFlush Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4);

LIST RESOURCE-ID;

LET (MASK16) = 96; << "1100000" >>

PROC MCFLUSH (#(RESOURCE-ID),
 (STATUS),
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--
204 Appendix E

Transact Parameter Masks
The Parameter Mask
Example E-10 MCGetAllocate Declarations and Intrinsic Call

DEFINE(ITEM) TP-ID I(4):
 SESSION-TYPE X(8):
 TP-NAME X(64):
 RESOURCE-ID I(4):
 SYNC-LEVEL I(4):
 TIMER I(4):
 SECURITY I(4):
 NUM-PIPS I(4):
 PIP-LENGTHS[16] I(4):
 PIP1 X(1980):
 PIP2 X(1980): << The lengths given in the PIP >>
 PIP3 X(1980): << declarations may vary from >>
 PIP4 X(1980): << 0 to 1980 bytes. >>
 PIP5 X(1980):
 PIP6 X(1980): << The maximum combined length >>
 PIP7 X(1980): << of all PIP parameters is >>
 PIP8 X(1980): << 1980 bytes. >>
 PIP9 X(1980):
 PIP10 X(1980):
 PIP11 X(1980):
 PIP12 X(1980):
 PIP13 X(1980):
 PIP14 X(1980):
 PIP15 X(1980):
 PIP16 X(1980);

LIST TP-ID: SESSION-TYPE: TP-NAME: RESOURCE-ID:
 SYNC-LEVEL: TIMER: SECURITY: NUM-PIPS: PIP-LENGTHS:
 PIP1: PIP2: PIP3: PIP4: PIP5: PIP6: PIP7: PIP8: PIP9:
 PIP10: PIP11: PIP12: PIP13: PIP14: PIP15: PIP16;

LET (MASK32) = 522125312; << "11111000111110000000000000000" >>

PROC MCGETALLOCATE (#(TP-ID),
 %(SESSION-TYPE),
 %(TP-NAME),
 (RESOURCE-ID),
 (STATUS),
 << #(SYNC-LEVEL), optional, not used >>
 << #(TIMER), optional, not used >>
 << #(SECURITY), optional, not used >>
 #(NUM-PIPS), << optional >>
 #(PIP-LENGTHS), << optional >>
 %(PIP1), << optional >>
 %(PIP2), << optional >>
 %(PIP3), << optional >>
 << %(PIP4), optional, not used >>
 << %(PIP5), optional, not used >>
 << %(PIP6), optional, not used >>
 << %(PIP7), optional, not used >>
 << %(PIP8), optional, not used >>
Appendix E 205

Transact Parameter Masks
The Parameter Mask
 << %(PIP9), optional, not used >>
 << %(PIP10), optional, not used >>
 << %(PIP11), optional, not used >>
 << %(PIP12), optional, not used >>
 << %(PIP13), optional, not used >>
 << %(PIP14), optional, not used >>
 << %(PIP15), optional, not used >>
 << %(PIP16), optional, not used >>
 , , , << 3 hidden parameters >>
 #(MASK32));

--

Example E-11 MCGetAttr Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 OWN-FULLY-QUALIFIED-LU-NAME X(17):
 PARTNER-LU-NAME X(8):
 PARTNER-FULLY-QUALIFIED-LU-NAME X(17):
 MODE-NAME X(8):
 SYNC-LEVEL I(4);

@COMPUTERTEXTW = LIST RESOURCE-ID: OWN-FULLY-QUALIFIED-LU-NAME:
 PARTNER-LU-NAME: PARTNER-FULLY-QUALIFIED-LU-NAME:
 MODE-NAME: SYNC-LEVEL;

LET (MASK32) = 1795162112; << "1101011000000000000000000000000" >>

PROC MCGETATTR (#(RESOURCE-ID),
 (STATUS),
 << %(OWN-FULLY-QUALIFIED-LU-NAME), optional, not used >>
 %(PARTNER-LU-NAME), << optional >>
 << %(PARTNER-FULLY-QUALIFIED-LU-NAME), optional, not used >>
 %(MODE-NAME), << optional >>
 (SYNC-LEVEL), << optional >>
 , , , , , ,
 , , , , , ,
 , , , , , ,
 , , , , , , << 24 hidden parameters >>
 #(MASK32));

--
206 Appendix E

Transact Parameter Masks
The Parameter Mask
Example E-12 MCPostOnRcpt Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 LENGTH I(4):
 DATA X(4092);

LIST RESOURCE-ID: LENGTH: DATA;

LET (MASK16) = 480; << "111100000" >>

PROC MCPOSTONRCPT (#(RESOURCE-ID),
 #(LENGTH),
 %(DATA),
 (STATUS),
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--

Example E-13 MCPrepToRcv Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 PREP-TO-RCV-TYPE I(4):
 LOCKS I(4);

LIST RESOURCE-ID: PREP-TO-RCV-TYPE: LOCKS;

LET (MASK16) = 384; << "110000000" >>

PROC MCPREPTORCV (#(RESOURCE-ID),
 (STATUS),
 << #(PREP-TO-RCV-TYPE), optional, not used >>
 << #(LOCKS), optional, not used >>
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--
Appendix E 207

Transact Parameter Masks
The Parameter Mask
Example E-14 MCRcvAndWait Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 LENGTH I(4):
 REQUEST-TO-SEND-RECEIVED I(4):
 DATA X(4092):
 WHAT-RECEIVED I(4);

LIST RESOURCE-ID: LENGTH: REQUEST-TO-SEND-RECEIVED:
 DATA: WHAT-RECEIVED;

LET (MASK16) = 4032; << "111111000000" >>

PROC MCRCVANDWAIT (#(RESOURCE-ID),
 (LENGTH),
 (REQUEST-TO-SEND-RECEIVED),
 %(DATA),
 (WHAT-RECEIVED),
 (STATUS),
 , , , , , , << 6 hidden parameters >>
 #(MASK16));

--

Example E-15 MCRcvNoWait Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 LENGTH I(4):
 REQUEST-TO-SEND-RECEIVED I(4):
 DATA X(4092):
 WHAT-RECEIVED I(4);

LIST RESOURCE-ID: LENGTH: REQUEST-TO-SEND-RECEIVED:
 DATA: WHAT-RECEIVED;

LET (MASK16) = 4032; << "111111000000" >>

PROC MCRCVNOWAIT (#(RESOURCE-ID),
 (LENGTH),
 (REQUEST-TO-SEND-RECEIVED),
 %(DATA),
 (WHAT-RECEIVED),
 (STATUS),
 , , , , , , << 6 hidden parameters >>
 #(MASK16));

--
208 Appendix E

Transact Parameter Masks
The Parameter Mask
Example E-16 MCReqToSend Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4);

LIST RESOURCE-ID;

LET (MASK16) = 96; << "1100000" >>

PROC MCREQTOSEND (#(RESOURCE-ID),
 (STATUS),
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--

Example E-17 MCSendData Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 DATA X(4092):
 LENGTH I(4):
 REQUEST-TO-SEND-RECEIVED I(4);

LIST RESOURCE-ID: DATA: LENGTH: REQUEST-TO-SEND-RECEIVED;

LET (MASK16) = 3968; << "111110000000" >>

PROC MCSENDDATA (#(RESOURCE-ID),
 %(DATA),
 #(LENGTH),
 (REQUEST-TO-SEND-RECEIVED),
 (STATUS),
 , , , , , , , << 7 hidden parameters >>
 #(MASK16));

--

Example E-18 MCSendError Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 REQUEST-TO-SEND-RECEIVED I(4);

LIST RESOURCE-ID: REQUEST-TO-SEND-RECEIVED;

LET (MASK16) = 224; << "11100000" >>

PROC MCSENDERROR (#(RESOURCE-ID),
 (REQUEST-TO-SEND-RECEIVED),
 (STATUS),
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--
Appendix E 209

Transact Parameter Masks
The Parameter Mask
Example E-19 MCTest Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-ID I(4):
 TEST I(4):
 POSTED-TYPE I(4);

LIST RESOURCE-ID: TEST: POSTED-TYPE;

LET (MASK16) = 480; << "111100000" >>

PROC MCTEST (#(RESOURCE-ID),
 #(TEST), << optional >>
 (STATUS),
 (POSTED-TYPE), << optional >>
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--

Example E-20 MCWait Declarations and Intrinsic Call

DEFINE(ITEM) RESOURCE-LIST[8] I(4):
 NUM-RESOURCES I(4):
 RESOURCE-POSTED I(4):
 POSTED-TYPE I(4);

LIST RESOURCE-LIST: NUM-RESOURCES: RESOURCE-POSTED:
 POSTED-TYPE;

LET (MASK16) = 992; << "1111100000" >>

PROC MCWAIT ((RESOURCE-LIST),
 #(NUM-RESOURCES),
 (RESOURCE-POSTED),
 (STATUS),
 (POSTED-TYPE), << optional >>
 , , , , , << 5 hidden parameters >>
 #(MASK16));

--
210 Appendix E

F Migrating Transaction Programs
This appendix describes any source code changes you might have to
make in order to migrate a TP from LU 6.2 API/V to LU 6.2 API/XL (or
from an early version of LU 6.2 API/XL to the version that supports
Node Type 2.1).

You must change your TPs to migrate them to LU 6.2 API/XL if any of
the following is true:

1. Your TPs issue APPCCONTROL commands programmatically.

2. Your TPs call the MCGetAllocate intrinsic.

3. Your TPs are written in Transact on MPE V.

General information on migrating COBOL II and Pascal applications
from MPE V to MPE XL can be found in the MPE XL Languages
Migration Guides.
211

Migrating Transaction Programs
TPs that Issue APPCCONTROL Commands
TPs that Issue APPCCONTROL Commands
If your TPs start or stop the APPC subsystem or change the number of
active sessions programmatically, you must change them to run on the
Node Type 2.1 version of LU 6.2 API/XL. On the Node Type 2.1 version,
TPs cannot call the MPE COMMAND intrinsic to issue APPCCONTROL
commands programmatically, because APPCCONTROLcommands are not
interpreted by the MPE command interpreter.

A command interpreter for APPCCONTROL commands is installed with
the Node Type 2.1 version of LU 6.2 API/XL. A system UDC file, which
is installed with the product, translates APPCCONTROL commands into
MPE RUN commands that invoke the APPCCONTROL command
interpreter.

Control Operator Intrinsics

If you want to start or stop the APPC subsystem or change the number
of active sessions programmatically, Hewlett-Packard recommends that
you use the control operator intrinsics instead of APPCCONTROL
commands in your transaction programs. Unlike APPCCONTROL
commands, control operator intrinsics will return status information to
programs that call them. The control operator intrinsics are
documented in the APPC Subsystem on MPE XL Node Manager’s
Guide.

MPE HPCICOMMAND Intrinsic

If necessary, you can still issue APPCCONTROL commands
programmatically. However, because APPCCONTROL commands are
implemented with UDCs, you must use the MPE HPCICOMMANDintrinsic
instead of the COMMAND intrinsic. See the MPE XL Intrinsics Reference
Manual.

TRACEON Parameter of APPCCONTROL START

If your TPs issue the APPCCONTROL STARTcommand, you cannot specify
the TRACEOFF parameter, because it is not supported on the Node Type
2.1 version of LU 6.2 API/XL. On the Node Type 2.1 version, APPC
subsystem internal tracing is turned off by default, and the TRACEON
parameter of the APPCCONTROL START command turns it on at
subsystem startup. You must remove the TRACEOFF parameter of the
APPCCONTROL START command from all transaction programs and job
streams.
212 Appendix F

Migrating Transaction Programs
Remotely Initiated TPs
Remotely Initiated TPs
On all versions of LU 6.2 API prior to the Node Type 2.1 version,
whenever a remote TP sends an allocate request to initiate a
conversation with a local TP, LU 6.2 API streams a job that runs the
local TP. This method of starting up remotely initiated TPs can be very
slow, because a job must be streamed every time an allocate request is
received from a remote TP.

The Node Type 2.1 version of LU 6.2 API/XL allows a single TP process
on the HP 3000 to receive multiple allocate requests from remote TPs.
Each remotely initiated local TP must be configured through NMMGR.
The configuration file specifies whether a TP is to receive multiple or
single allocate requests.

A local TP configured to receive multiple allocate requests from remote
TPs is started up only once. Allocate requests for that TP are queued,
and the TP must make multiple calls to the MCGetAllocate intrinsic in
order to receive all the allocate requests.

A local TP configured to receive a single allocate request is started up
every time an allocate request is received from the remote TP. Multiple
instances of it may be running at once, and each instance must call the
MCGetAllocate intrinsic only once.

For information on TP configuration, see the APPC Subsystem on
MPE XL Node Manager’s Guide.

Source Code Changes to TPs

You must change your remotely initiated TPs in the following ways in
order to run them on the Node Type 2.1 version of LU 6.2 API/XL:

1. Change the LocalTPName parameter of the MCGetAllocate
intrinsic from an output parameter to an input parameter. Instead of
receiving the LocalTPName from the intrinsic, your program must
pass the LocalTPName to the intrinsic. Chapter 5 , “Intrinsic
Descriptions,” of this manual contains a complete description of the
MCGetAllocate intrinsic.

2. Make sure the LocalTPName parameter of the TPStarted intrinsic
matches the LocalTPName parameter of the MCGetAllocate
intrinsic. For older versions of LU 6.2 API, these parameters did not
need to match, but for the Node Type 2.1 version of LU 6.2 API/XL,
they must match.

3. Have the node manager configure the remotely initiated TP through
NMMGR/XL. The LocalTPName parameter of the MCGetAllocate
and TPStarted intrinsics must match a configured TP name in the
APPC subsystem configuration. See the APPC Subsystem on
Appendix F 213

Migrating Transaction Programs
TPs In Transact
MPE XL Node Manager’s Guide for information on TP configuration.

The remote TP must send this configured TP name in the allocate
request. In older versions of LU 6.2 API, the remote TP sends the
name of the job file that runs the local TP. In order to avoid changing
the remote TP, make the configured TP name (and the LocalTPName
parameter) match the job file name.

4. If you want your TPs to receive multiple (queued) allocate requests
from remote TPs, modify them to call the MCGetAllocate intrinsic
multiple times — once for each allocate request.

You can write a TP to receive a predetermined number of allocate
requests, or you can write it to loop through the conversation
intrinsics, from MCGetAllocate to MCDeallocate , until no more
allocate requests arrive from the remote system. (See the
MCGetAllocate intrinsic description in Chapter 5 , “Intrinsic
Descriptions.”)

A time-out value for the MCGetAllocate intrinsic may be configured
through NMMGR. If no allocate request arrives from the remote TP
before the time-out value expires, the MCGetAllocate intrinsic
returns with a status info value of +29. If you want your TP to
receive an unknown number of allocate requests, you can design it to
loop through the conversation intrinsics until +29 is returned in the
Status parameter of the MCGetAllocate intrinsic. See the APPC
Subsystem on MPE XL Node Manager’s Guide for information on
configuring the time-out value.

TPs In Transact
On MPE V, TPs written in Transact must pass a parameter mask in
each intrinsic call, telling the intrinsic which parameters are being
passed and which are being omitted. When you migrate a Transact TP
from MPE V to MPE XL, you must remove the parameter mask from all
intrinsic calls. The parameter mask is described in Appendix E ,
“Transact Parameter Masks.”
214 Appendix F

Glossary
A

Advanced
Program-to-Program
Communication (APPC):

Programmatic communication
based on IBM's LU 6.2
architecture. APPC provides
partner programs with a common
set of rules for communication.

Application Program
Interface (API): A set of
subprograms, callable from inside
applications, that carry out data
communications tasks.

B

basic conversation: A
programmatic conversation in
which the applications must be
able to create and interpret GDS
headers (see GDS header) for
transmitting and receiving data.

basic conversation verbs: the
programmatic implementation of
functions and protocols in a basic
conversation between transaction
programs. (See mapped
conversation verbs.)

C

cluster controller: A machine
that allows multiple devices to
send and receive data over the
same communications link.

communications controller: A
device that controls network data
traffic for the hosts in the
network.

Confirm state: The conversation
state from which a TP can reply
to a confirmation request and
enter Receive state.

Confirm Deallocate state: The
conversation state from which a
TP can reply to a confirmation
request and enter Deallocate
state.

Confirm Send state: The
conversation state from which a
TP can reply to a confirmation
request and enter Send state.

confirmation request: A
request sent by a TP, asking its
partner TP to confirm the receipt
of data.

control information:

Information exchanged by TPs to
control conversations. Examples
are requests for conversation
allocation and deallocation,
confirmation requests, and error
notifications

conversation: The logical
communication between two
transaction programs.

conversation states: The
conditions of programmatic
conversations under which
certain activities can occur. For
example, if one side of a
conversation is in the condition of
Send state, it can send data, but
it cannot receive data until it
changes to the condition of
Receive state.
215

conversation with confirm: A
conversation established in such
a way that confirmation requests
and responses can be sent and
received.

conversation without
confirm: A conversation
established in such a way that
confirmation requests and
responses cannot be sent or
received.

Customer Information
Control System (CICS): An
IBM application subsystem that
provides file handling and data
communications services for
application programs.

D

Deallocate state: The
conversation state from which a
TP can deallocate the mapped
conversation locally.

dependent LU: An LU capable
of conducting only one LU-LU
session at a time. A dependent
LU always functions as a
secondary LU and cannot send a
BIND to initiate an LU-LU
session; to request a session, it
must send an INIT_SELF to the
host and wait for the host to send
the BIND. See independent
LU.

E

end user: The ultimate
destination of data in a
communications network. An end
user can be a human user, a

peripheral device (like a printer
or a terminal), or an application
program.

G

Generalized Data Stream
(GDS): The name of the LU 6.2
data stream. LU 6.2 data packets
must include GDS headers (see
GDS header).

GDS header A portion of an LU
6.2 data packet that contains
information about the kind of
data being sent or received.

I

independent LU: An LU
capable of conducting multiple,
simultaneous (parallel) APPC
sessions with another
independent LU on a remote
system. An independent LU can
function as either a primary or
secondary LU. See dependent
LU.

intrinsic: A subprogram
provided by Hewlett-Packard to
perform common functions such
as opening files, opening
communications lines, performing
subsystem-defined functions, or
transmitting data over a
communications line.

L

local TP: The TP running on the
local processor.
216

Logical Unit (LU): The SNA
entity through which application
data is transmitted within an
SNA network. Logical Units are
the ports through which end
users have access to the network
(see end user).

LU type: A Logical Unit type,
defined by SNA to perform a
particular type of communication.

LU-LU session: See session.

LU 6.2: An SNA LU type which
defines the communication that
can take place between two
application programs on separate
processors. LU 6.2 includes
specifications for programmatic
interfaces, document interchange,
and data distribution.

M

mapped conversation: A
programmatic conversation in
which the application is freed
from handling the GDS headers
required by LU 6.2 architecture.

mapped conversation verbs:

The programmatic
implementation of functions and
protocols in a mapped
conversation between transaction
programs. (See basic
conversation verbs.)

N

node type: A node type defined
by SNA to perform a particular
type of communication. Some
common SNA node types are
defined as follows:

Node Type 2.0: the node type for
a peripheral node or cluster
controller. Node Type 2.0 is
supported by LU 6.2 API on MPE
V and MPE XL.

Node Type 2.1: the node type for
a peripheral node or cluster
controller capable of peer-to-peer
communication. Node Type 2.1 is
supported by LU 6.2 API on
MPE XL.

Node Type 4: the node type for a
subarea node with a
communications controller.

Node Type 5: the node type for a
host node with an SSCP (System
Services Control Point).

O

one-way conversation: A
conversation in which data is sent
from only one TP.

P

parameter mask: A bit mask
that must be passed in intrinsic
calls in Transact on MPE V. The
parameter mask tells the
intrinsic which parameters are
being passed and which are being
omitted.

peripheral: A device on the
network.
217

Physical Unit: An SNA term
that refers to the software and
hardware that controls the
resources of a node.

PU: See Physical Unit.

PU 2.0: See Node Type 2.0.

PU 2.1: See Node Type 2.1.

R

Receive state: The conversation
state from which a TP can receive
information from the remote TP.

remote TP: The TP running on
the remote processor.

Reset state: The conversation
state from which a TP can
allocate a mapped conversation.

S

Send state: The conversation
state from which a TP can send
data or request confirmation.

session: The logical connection
between two logical devices in an
SNA network.

Systems Network
Architecture (SNA): IBM's
comprehensive specification for
data communications networks.

synchronization level: A term
that refers to the amount of
synchronization information
(confirmation requests and
responses) that can be sent in a
conversation.

T

transaction program (TP): An
application program that
processes distributed
transactions.

two-way conversation: A
conversation in which data is sent
and received by both TPs.

U

UDC: User-Defined Command.
An MPE feature that allows a
user to create file of commands to
be executed as a single program
when the user types a command.
UDCs are set with the MPE
SETCATALOG command

V

verbs: The programmatic
implementation of functions and
protocols in a conversation
between transaction programs.
218

Index
A
Advanced Program-to-Program

Communication (APPC), 23
allocate a conversation remotely,

93
allocate requests

queued, 35, 36
allocation errors, 79, 82

receiving, 131
AOOC sybststem, 21
APPC subsystem

session limit, 27
APPC subsystem configuration

LUs, 101
mode name, 102
remotely initiated TPs, 34, 35,

36, 98
session types, 75, 79, 93, 97

APPCDUMP.APPC.SYS, 141
application error

inform remote TP of, 122
Application Program Interface

(API), 25
attributes of conversation, 101
automatic TP startup, 36

B
basic conversation, 25
basic conversations, 25
BIND, 22
brackets in intrinsic descriptions,

64

C
check contents of receive buffer,

123, 126
check for control information

received, 124, 127
check for data received, 124, 127
cluster controller, 19
commas in intrinsic calls, 64
communications controller, 19
configuration

HP 3000, 33
LUs, 101
mode name, 102
remotely initiated TPs, 34, 35,

36
session types, 75, 79, 93, 97

confirm
definition of, 27
establishing conversation with

or without, 76, 94
Confirm Deallocate state, 56, 111,

116
intrinsics callable from, 56

Confirm Send state, 55, 107, 111,
116

intrinsics callable from, 55
Confirm state, 54, 82, 116

intrinsics callable from, 54, 82
Confirm states

calling MCSendError from, 122
confirmation request, 81

intrinsics used to send one, 84
confirmation response, 84

negative, 122
control information, 28
conversation

deallocating, 87
definition of, 27
initiating, 75
locally initiated, 32
maximum number supported,

27, 79
remotely initiated, 32, 36
remotely initiated on MPE V,

33, 34
remotely initiated on MPE XL

, 34
synchronization, 76, 82, 94

Conversation Intrinsics, 63
conversation intrinsics, 74
conversation requests

queued, 36
conversation requests, queued, 35
conversation states, 49
CTRANSLATE intrinsic

MPE, 76, 78, 94, 96, 110, 115,
119

Customer Information Control
System (CICS), 25

D
Data parameter

MCPostOnRcpt and
MCRcvAndWait intrinsics,
105

MCPostOnRcpt intrinsic, 104
MCRevAndWait intrinsic, 110,

111
MCRevNoWait intrinsic, 115
MCSendData intrinsic, 119, 130
overwritten, 112

data traffic
illustration of, 131

data traffic management, 129
data types of parameters, 65
deallocate a conversation, 86
Deallocate state, 57, 122

intrinsics callable from, 57
deallocate synchronization level,

86

deallocate with confirm, 86, 87
DeallocateType = ABEND from

Receive state, 87
DeallocateType parameter

MCDeallocate intrinsic, 86
DeallocateType state, 87
DeallocateType=CONFIRM, 45
debugging, 136
DefaultFile parameter

TPStarted intrinsic, 70, 137
dependent LUs, 22
distributed transactions, 23

E
end user, 21
error

inform remote TP of, 121
error flag, 129
error messages corresponding to

status info values, 89
establishing a conversation, 75

F
flushing the send buffer

MCFlush intrinsic, 91

G
generalized data stream, 22

H
host application programs, 25
HP 3000 node types, 21

I
independent LUs, 22
INIT_SELF, 22
initiating a conversation, 75
input parameters, 64
input/output parameters, 64
intrinsics, 37

definition of, 25
list of LU 6.2 API, 46

J
job file

remotely initiated conversation,
97

job for running the TP, 33, 34, 35,
36

job name
sent by remote TP, 33, 34

job name, sent by remote TP, 34

L
languages supported, 25
Index 219

Index
length of data record to be sent,
119

Length parameter
MCPostOnRcpt intrinsic, 104
MCRevAndWait intrinsic, 109
MCRevNoWait intrinsic, 114
MCSendData intrinsic, 119

locally initiated conversations, 32
LocalTPName parameter

MCGetAllocate intrinsic, 93, 94
TPStarted intrinsic, 69

Locks parameter
MCPrepToRcv intrinsic, 107

logical record length, 104
Logical Unit (LU), 21, 22
LU 6.2, 22
LU type, 21

M
mapped conversation verbs, 25
mapped conversations, 25
MCAllocate intrinsic, 39

description of, 75
MCConfirm intrinsic, 42, 81

description of, 81
verifying allocation, 79, 82

MCConfirmed intrinsic, 45
description of, 84

MCDeallocate intrinsic, 41
description of, 86

MCDeallocate with confirm, 87
MCErrMsg intrinsic

description of, 89
MCFlush intrinsic, 120

description of, 91
MCGetAllocate intrinsic

description of, 93
number of calls per TP, 97
time-out value, 36

MCGetAttr intrinsic
description of, 101

MCPostOnRcpt intrinsic, 124,
126, 127

description of, 104
MCPrepToRcv intrinsic

description of, 106
MCPrepToRev intrinsic, 43
MCReqToSend intrinsic

description of, 118
MCRevAndWait intrinsic, 43

description of, 109
multiple calls to, 112

MCRevNoWait intrinsic
description of, 114

MCSendData intrinsic, 40, 130
description of, 119

MCSendError intrinsic, 52, 85

description of, 121
MCTest intrinsic, 104, 127

description of, 123
MCWait intrinsic, 104, 124

description of, 126
MessageBuffer parameter

MCErrMsg intrinsic, 89
MessageLength parameter

MCErrMsg intrinsic, 89
migrating TPs

MCGetAllocate intrinsic, 93
ModeName parameter

MCGetAttr intrinsic, 102
multiple allocate requests, 35, 36
multiple conversations, 27
multiple sessions, 22
multiplexing terminals, 19

N
negative confirmation response,

85, 122
NLTRANSLATE intrinsic

MPE XL, 76, 78, 94, 96, 110,
115, 119

NMDUMP.PUB.SYS, 141
node type, 19
Node Type 2.0, 20
Node Type 2.1, 20
Node Type 5, 22
node types

HP 3000, 21
NumPIPs parameter

MCAllocate intrinsic, 78
MCGetAllocate intrinsic, 95

NumResources parameter
MCWait intrinsic, 126

O
OldStatus parameter

MCErrMsg intrinsic, 89
optional parameters, 64

place holders, 64
output parameters, 64
OwnFullyQualifiedLUName

parameter
MCGetAttr intrinsic, 101

P
parallel sessions, 22
Parameter Data Types, 63
parameter data types, 65
parameters

passed by reference, 64
passed by value, 64

PartnerFullyQualifiedLUName
parameter

MCGetAttr intrinsic, 102
PartnerLUName parameter

MCGetAttr intrinsic, 102
peer nodes, 20
peer-to-peer communication, 20
PIP parameter

MCAllocate intrinsic, 78
PIP parameters

MCGetAllocate intrinsic, 96
PIPLengths parameter

MCAllocate intrinsic, 78
MCGetAllocate intrinsic, 96

PIPs
Program Initialization

Parameters, 78
PIPs (Program Initialization

Parameters), 79, 96, 97
positive confirmation response, 84
PostedType parameter

MCTest intrinsic, 124
MCWait intrinsic, 127

posting
ended, 87, 112, 122
intrinsics that end it, 105
set up resources for, 104
started, 104

posting multiple conversations,
126

PrepToRcvType parameter
MCPrepToRcv intrinsic, 106

Program Initialization
Parameters (PIPs), 78, 79,
96, 97

programming languages
supported, 25

protocol
two-way conversation, 30

PSTRACnn, 70, 138

Q
queued allocate requests, 35, 36

R
receive buffer, 129

check contents of, 104, 123, 126
getting data from, 116
size of, 132

receive information from remote,
109, 114

Receive state, 52
calling MCSendError from, 122
changing to, 106
entering through

MCRevAndWait, 112
intrinsics callable from, 52

receivie buffer
allocation, 132
220 Index

Index
receiving change to Send state,
111, 116, 132

receiving complete data record,
110, 111, 115

receiving confirmation request,
111, 116

receiving control information,
111, 116

receiving incomplete data record,
116, 133

receiving records larger than
receive buffer, 112, 117, 133

record length, 104
remotely initiated conversation,

36, 93
on MPE V, 33, 34
on MPE XL, 34

remotely initiated conversations,
32

remotely initiated TP
configuration, 34, 35, 36
manual or automatic startup, 36

RemoteTPLen parameter
MCAllocate intrinsic, 76

RemoteTPName parameter
MCAllocate intrinsic, 75

request to enter Send state, 118
RequestToSendReceive

parameter
MCRevAndWait intrinsic, 110

RequestToSendReceived flag, 129
RequestToSendReceived

parameter
MCConfirm intrinsic, 81
MCRevNoWait intrinsic, 115
MCSendData intrinsic, 119
MCSendError intrinsic, 121

Reset state, 50, 122
intrinstics callable from, 50

ResourceID
assignment of, 76, 79, 94, 97

ResourceList parameter
MCWait intrinsic, 126

ResourcePosted parameter
MCWait intrinsic, 126

ReturnControl parameter
MCAllocate intrinsic, 76

RUN command
MPE, 137

S
Security parameter

MCAllocate intrinsic, 77
MCGetAllocate intrinsic, 95

send buffer, 129
allocation, 130

flushing, 82, 86, 91, 107, 108,
120, 130, 132

intrinsics that flush it, 91
putting data into it, 120
size of, 91, 120, 130

Send state, 51
calling MCSendError from, 122
intrinsics callable from, 51
request to enter, 118

Send state to Receive state
changing from, 106

sending data, 119
sending one data record, 119
session

activating, 32, 33, 34
allocating conversation over, 32
multiple, 22
parallel, 22

session limit, 27
MPE V, 79, 97
MPE XL, 79, 97

session management, 27
session type name in TP, 32, 33,

34, 35, 36
SessionType parameter

MCAllocate intrinsic, 75
MCGetAllocate intrinsic, 93

split stack mode on MPE V, 63
square brackets in intrinsic

descriptions, 64
stack size

minimum on MPE V, 63
starting a conversation, 75
starting a TP, 70

manual or automatic, 36
state change, 132
state indicator flag, 129, 132
state of TP after calling

MCSendError, 121
state transitions, 58, 59, 60, 61
status info values

corresponding messages, 89
MCConfirm, 83

Status Parameter, 63
Status parameter, 66

status info field, 66
subsystem field, 66

stopping a conversation, 87
stopping a TP, 72
supported languages, 25
synchronization, 29
synchronization level, 76, 82, 94
synchronization level indicator,

129
SyncLevel parameter

MCAllocate intrinsic, 76
MCGetAllocate intrinsic, 94

MCGetAttr intrinsic, 102
Syntax Conventions, 63
Systems Network Architecture

(SNA), 19

T
Test parameter

MCTest intrinsic, 123
time-out value, MCGetAllocate,

36
Timer parameter

intrinsics that use it, 77
MCAllocate and MCGetAllocate

intrinsics, 113
MCAllocate intrinsic, 77
MCGetAllocate intrinsic, 95

TP
configuring remotely initiated,

34, 35, 36
location of executable file, 34, 36
manual or automatic startup, 36
shutdown, 72
startup, 70

TP conversations, 32
TP file

remotely initiated conversation,
97

TP intrinsic descriptions, 68
TP Intrinsics, 63
TP name

coding into TP, 35
configured through NMMGR, 35
in remote conversation request,

34, 36, 97
TPEnded intrinsic

description of, 72
TPID

assignment of, 70
TPID parameter

MCAllocate intrinsic, 75
MCGetAllocate intrinsic, 93
TPEnded intrinsic, 72
TPStarted intrinsic, 69

TPStarted intrinsic
description of, 69

trace file
default name, 70
formatting, 141
name of, 70, 137
numbering, 138
purging, 140
reading, 141
size, 70
time stamp, 137
writing to, 137

TraceFile parameter
TPStarted intrinsic, 70, 137
Index 221

Index
TraceOn parameter
TPStarted intrinsic, 69, 137

TraceSize parameter
TPStarted intrinsic, 70

tracing
enabling, 69, 71, 136, 137

transaction program (TP), 27
translation

ASCII to EBCDIC, 76, 78, 119
EBCDIC to ASCII, 94, 96, 110,

115
transmitting data, 120
treading user trace, 141
Type 5 node, 22
typical IBM network, 19

U
underlined parameters in

intrinsic descriptions, 64
user trace file

default name, 70
name of, 70
reading it, 141
size, 70

user tracing
enabling, 69, 71, 136, 137

V
verbs, 25

basic conversation, 25
mapped conversations, 25

verifying allocation, 79, 82

W
wait for information to arrive, 126
wait to receive information, 109
WhatReceived parameter

MCRcvNoWait intrinsic, 115
MCRevAndWait intrinsic, 110
222 Index

	1� The SNA Network and LU 6.2 API
	Systems Network Architecture (SNA)
	Peer-to-Peer Communication
	Logical Units (LUs)
	LU Type 6.2
	APPC

	Hewlett-Packard’s LU 6.2 API
	Supported Languages
	IBM’s CICS

	2� Conversations
	One-Way Conversation Without Confirm
	One-Way Conversation With Confirm
	Two-Way Conversation Without Confirm
	Two-Way Conversation With Confirm
	Establishing Conversations
	Locally Initiated Conversations
	Remotely Initiated Conversations on MPE V
	Remotely Initiated Conversations on MPE XL

	3� Using Intrinsics
	One-Way Conversation Without Confirm
	MCAllocate
	MCSendData
	MCDeallocate

	One-Way Conversation With Confirm
	MCConfirm

	Two-Way Conversation Without Confirm
	MCPrepToRcv
	MCRcvAndWait

	Two-Way Conversation With Confirm
	MCConfirmed

	LU 6.2 API Intrinsics
	Control Operator Intrinsics

	4� Conversation States
	Reset State
	Send State
	Receive State
	Confirm State
	Confirm Send State
	Confirm Deallocate State
	Deallocate State
	One-Way Conversation Without Confirm
	One-Way Conversation With Confirm
	Two-Way Conversation Without Confirm
	Two-Way Conversation With Confirm

	5� Intrinsic Descriptions
	Syntax Conventions
	Syntax

	Parameter Data Types
	Status Parameter
	TP Intrinsics
	TPStarted
	Syntax
	Parameters
	Description
	Status Info Values

	TPEnded
	Syntax
	Parameters
	Description
	Status Info Values

	Conversation Intrinsics
	MCAllocate
	Syntax
	Parameters
	Description
	Status Info Values

	MCConfirm
	Syntax
	Parameters
	Description
	Status Info Values

	MCConfirmed
	Syntax
	Parameters
	Description
	Status Info Values

	MCDeallocate
	Syntax
	Parameters
	Description
	Status Info Values

	MCErrMsg
	Syntax
	Parameters
	Description
	Status Info Values

	MCFlush
	Syntax
	Parameters
	Description
	Status Info Values

	MCGetAllocate
	Syntax
	Parameters
	Description
	Status Info Values

	MCGetAttr
	Syntax
	Parameters
	Description
	Status Info Values

	MCPostOnRcpt
	Syntax
	Parameters
	Description
	Status Info Values

	MCPrepToRcv
	Syntax
	Parameters
	Description
	Status Info Values

	MCRcvAndWait
	Syntax
	Parameters
	Description
	Status Info Values

	MCRcvNoWait
	Syntax
	Parameters
	Description
	Status Info Values

	MCReqToSend
	Syntax
	Parameters
	Description
	Status Info Values

	MCSendData
	Syntax
	Parameters
	Description
	Status Info Values

	MCSendError
	Syntax
	Parameters
	Description
	Status Info Values

	MCTest
	Syntax
	Parameters
	Description
	Status Info Values

	MCWait
	Syntax
	Parameters
	Description
	Status Info Values

	6� Buffer Management
	Control Information
	Send Buffer
	Example 1: Sending Small Data Records
	Example 2: An Allocation Error

	Receive Buffer
	Example 3: Receiving Data and Changing State
	Example 4: Receiving Large Data Records

	7� Debugging
	Debugging Steps
	The User Trace
	Collecting the User Trace
	Formatting the User Trace
	Reading the User Trace

	A� Status Info
	B� Sample Programs
	COBOL II Program
	Pascal Program
	CICS Program (PL/I)

	C� State Transition Tables
	D� LU 6.2 Verb Table
	E� Transact Parameter Masks
	The Parameter Mask
	Parameters for Future Expansion
	Parameter Mask Templates
	Using the Parameter Mask in TPs
	Examples

	F� Migrating Transaction Programs
	TPs that Issue APPCCONTROL Commands
	Control Operator Intrinsics
	MPE HPCICOMMAND Intrinsic
	TRACEON Parameter of APPCCONTROL START

	Remotely Initiated TPs
	Source Code Changes to TPs

	TPs In Transact

