HP 3000 Computer System

Systems Programming
Language

Reference Manual

)

il

= gl

HEWLETT hp, PACKARD
5303 STEVENS CREEK BLVD,, SANTA CLARA, CALIFORNIA, 95050

Printed in U.S.A, 9/76
Update Incorporated 12/76

Part No. 30000-90024
Product No. 32100A

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1976 by HEWLETT-PACKARD COMPANY

i

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If
a page is simplyre-arranged due to a technical change on a previous page, it is not listed as a changed page. Within the
manual, changes are marked with a vertical bar in the margin.

Page Effective Date
Title. e, Jun 1976
1 5 Jun 1976
HIEOIV . . v e e i e e e Feb 1977
122 Jun 1976
L T Feb 1977
Vil . . e e Jun 1976
IXtOXi ..o e Jun 1976
1-1to1-14. Jun 1976
D Feb 1977
2 e Jun 1976
2-3t024. Febh 1977
2 . Jun 1976
26t02-10. Feb 1977
211 . e Jun 1976
2-12t02-14. e Feb 1977
215 . e e Jun 1976
3-1to34. Jun 1976
2 Sep 1976
36t03-19. Jun 1976
4-1t04-2. e Jun 1976
e Sep 1976
4-4t04-15. Jun 1976
4-16 . . . Sep 1976
4-17Tt04-23. Jun 1976
7 Sep 1976
A2 e Jun 1976
FEB 1977

Page Effective Date
A-26 . . . e e e Feb 1977
4-2Tt04-29. e Jun 1976
51t05-20. e Jun 1976
6-1t06-T. e Jun 1976
B-8. e e Sep 1976
L Jun 1976
6-10t06-12. Oct 1976
6-13t06-16. Jun 1976
T-1 0 T-2T. . . e i e e e i e Jun 1976
B-1lto8-7. e Jun 1976
88089, Sep 1976
B8-10toB846. Jun 1976
B-4T e e Feb 1977
848to851., Jun 1976
9-1t09-19. e Jun 1976
920 . .. e Feb 1977
10-1t010-12. Jun 1976
1018 . . e Sep 1976
10:14t010-18, Jun 1976
Al Jun 1976
Bl Jun 1976
CltoC3 Jun 1976
DltoD4. ~Jun 1976
EltoE11 Jun 1976
FltoF-16 Jun 1976
Index-1tolIndex-3..................... Jun 1976

PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the title
page and back cover changes only when a new edition is published. If minor corrections and updates are incorporated,

the manual is reprinted but neither the date on the title page and back cover nor the edition change.

FirstEdition. Jun 1976
Second Edition. Sep 1976
Update #1 Incorporated. e . . Dec 1976
Update #2.............. e Feb 1977
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THi1S MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequentinl damages in conneetion with the furnishing, perfor-

mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is

not {urnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company

Copyright @ 1976 by HEWLETT-PACKARD COMPANY

iv

FEB 1977

PREFACE

This publication is the reference manual for the HP 3000 Series 11 Computer System Systems
Programming Language (SPL).

This publication contains the following sections:

Section I —

Section I —

Section III —

Section IV —

Section V. —

Section VI —

Section VII —

Section VIII —
Section IX —

Section X —

Appendix A —
Appendix B —
Appendix C —
Appendix D —
Appendix E —

Appendix F —

is an introduction to SPL source format and the HP 3000 Series 1I Computer
System.

describes SPL data storage formats, SPL constants, identifiers, arrays, and
pointers. -

describes the global declarations.

. : N
describes arithmetic and logical expressions, assignment, MOVE, and SCA
statements.

describes the various program control statements including GO TO,UI;(I)\I,
WHILE, FOR, IF, CASE, procedure call, subroutine call, and RET
statements.

describes the machine level constructs including the ASSEMBLE statemer:t(;to
use any machine instruction), the DELETE statement, the PUSH statement {ior

saving registers), and the SET statement (for setting registers).

describes the subprogram units (procedures, intrinsies, and subroutines) and the
local declarations.

discusses some of the more common MPE intrinsics for performing input/outp
discusses the various compiler commands.

. L
discusses the MPE commands used to compile, prepare, am.i execute an Stie
source program together with some introductory material on using
Segmenter.

lists the ASCII character set.

lists the reserved words in SPL.

describes how to build your own instrinsic file.

lists the MPE Operating System intrinsic procedures.

lists the diagnostic messages which can be generated by the SPL compiler.

shows the syntax for SPL.

CONTENTS

Section 1 Page
SPL STRUCTURE
Introduction to SPL 1-1
Conventionsciiiiiiiiiiinieenn. 1-1
Source Format 1-1
Delimiters i 1-2
Comments . ..o e 1-2
Program Structure i 1-3
Program 1-4
Subprograml 1-5
Introduction to Hardware Concepts 1-6
Code Segmentsccoiiiiiiiiiinneann.. 1-6
Data Segments 1-9
Procedures e 1-11
Subroutines 1-11
Intrinsics 1-12
Compound Statements 1-13
Entry Points 1-13
Section II Page
BASIC ELEMENTS
Data Storage Formats............................. 2-1
Integer Format 2-1
Double Integer Format.......................... 2-1
Real Format, 2.2
Long Formato i 2-3
Byte Format 2-4
Logical Format 2-4
Constant Types i, 2-5
Integer Constants 2-5
Double Integer Constants 2-5
Based Constants 2-6
Composite Constants............................ 2-7
Equated Integers 2-8
Real Constants 2-8
Long Constants 2-10
Logical Constants 2-11
String Constantsc..ooiiiinn. 2-11
Identifiers ... 2-12
ATTAYS © oo 2-12
Pointerso 2-13
Labels ... 2-15
Switches 2-15
Section III Page
GLOBAL DATA DECLARATIONS
Types of Declarations 3-1
Simple Variable Declarations 3-2
Array Declaration 3-4
Pointer Declaration 3-11
Label Declaration................................ 3-15
Switch Declaration 3-15
Entry Declaration 3-16
Define Declaration and Reference................. 3-17
Equate Declaration and Reference 3-18

Section IV Page
EXPRESSIONS, ASSIGNMENT, AND SCAN
STATEMENTS
Expression Typescccoiiiiiiiiiiiiiii., 4-1
Variables i 4-2
O o e 4-3
Address (@) and Pointers 4-3
Absolute Addressesl 4-4
Function Designator, 4-4
Bit Operationscovvvueiieneaanna ... 4-6
Bit Extraction oo 4-6
Bit Concatenationo i it 4-7
Bit Shifts 4-8
Arithmetic Expressions 4-11
Sequence of Operations 4-12
Type Mixingc ool 4-13
Logical Expressionscovveeininioano... 4-13
Sequence of Operations 4-16
Type Mixing i 4-16
Comparing Byte Strings 4-17
Condition Clausescooiiiiiiiienn.. 4-19
IF EXpressionscovuiiiennnneennennnnnnn 4-20
Assignment Statement oo L 4.22
MOVE Statementcoooiiiiin.. 4-25
SCAN Statementcoiiiiiieieiian.. 4-28
Section V Page
PROGRAM CONTROL STATEMENTS
Program Control 5-1
GO TO Statementoivvine.... 5-2
DO Statementc.c.oiiiiiii . 5-4
WHILE Statementc.... 5-5
FOR Statementccoiiiiinnn. 5-6
IF Statement ciiiiiiiii... 5-8
CASE Statement 5-10
Procedure Call Statement 5-11
Stacking Parameters 5-12
Missing Parameters in Procedure Calls 5-13
Passing Labels as Parameters 5-13
Passing Procedures as Parameters.............. 5-14
Subroutine Call Statement 5-18
RETURN Statement 5-20
Section VI Page
MACHINE LEVEL CONSTRUCTS
ASSEMBLE Statement............................ 6-1
Delete Statement 6-14
PUSH Statement 6-15

SET Statement

CONTENTS (continued)

Section VII

PROCEDURES, INTRINSICS, AND
SUBROUTINES

Subprogram Units
Procedure Declaration............................

Data Type
Parameters.............
Options ...t
OPTION UNCALLABLE
OPTION PRIVILEGED
OPTION EXTERNAL
OPTION CHECK
OPTION VARIABLE
OPTION FORWARDccouvnn..
OPTION INTERRUPT
OPTION INTERNAL
Local Declarationscon...
OWN Variablescooiiiinin...
Local Simple Variable Declarations
Standard Local Variables
OWN Simple Variables....................
EXTERNAL Simple Variables
Local Array Declarations
Standard Local Arrays
OWN Arrayscoiiimniniinnann.
EXTERNAL Arraysc.ooviiiiuinn ..
Local Pointer Declarations
Standard Local Pointers
OWN Pointerscoiiviiian..
EXTERNAL Pointers
Label Declarations
Switch Declarations
Entry Declaration
Define Declaration and Reference
Equate Declaration and Reference............
Procedure Body il
Intrinsic Declarations
Subroutine Declaration

Section VIII
INPUT/OUTPUT
Introduction to Input/Output
FOPEN i e
Opening a New Disc File
READ

Reading a File in Sequential Order.............
FREADDIR
PRINT ... o e
FWRITE i

Writing Records into a File

in Sequential Order
FWRITEDIR
FUPDATE i

Updatinga File,
FCLOSE

FCHECK i 8-37
FCONTROL ... i 8-42
FSPACE ... 8-45
Numeric Data Input/Qutput 8-46
ASCII .. 8-47
DASCIL ... 8-48
BINARY ... 8-49
DBINARY e 8-50
File Equations................................... 8-51
Section IX Page
COMPILER COMMANDS
Use and Format of Compiler Commands 9-1
$CONTROL Commandu... 9-2
$IF Commandttt 9-11
$SET Command coiiiiiiiinenn.. 9-12
$TITLE Commandcviinn.... 9-13
$PAGE Command, 9-14
$EDIT Command, 9-15
Mergingcoiiiiii e 9-15
Checking Sequence Fields...................... 9-16
Editing 9-17
$TRACE Commandcccvevnn.. 9-19
$COPYRIGHT Command 9-19
Cross Reference Listing 9-20
Section X Page
MPE COMMANDS
MPE Commands 10-1
Specifying Files for Programs 10-2
Specifying Files as Command Parameters 10-3
System-Defined Files 10-3
User Pre-Defined Files......................... 10-3
New Files..........cooi i 10-4
OldFiles.........oooii . 10-4
Input/Output Sets, 10-4
Specifying Files by Default 10-5
Compiling, Preparing, and
Executing SPL Source Programs.................. 10-5
SSPLCommand................................ 10-6
:RUN SPL.PUB.SYS Command 10-7
Entering Program Source Interactively 10-8
:SPLPREP Command 10-8
:SPLGO Command 10-9
:PREP Command 10-10
:PREPRUN Command 10-11
:RUN Command...................cooinns, 10-13
Using External Procedure Libraries 10-13
Relocatable Libraries 10-13
Creating and Maintaining
Relocatable Libraries 10-14
Segmented Libraries.......................... 10-22
Creating and Maintaining
Segmented Libraries 10-23

CONTENTS (continued)

Appendix A Page Appendix D Page
ASCII CHARACTER SET A-1 MPE INTRINSICS e D-1
Appendix B Page Appendix E Page
RESERVED WORDS B-1 COMPILER ERROR MESSAGES E-1
Appendix C Page Appendix F Page
BUILDING AN INTRINSIC FILE C-1 SPL SYNTAX i F-1
ILLUSTRATIONS
Title Page Title Page
Code Segment Registers, 1-7 Aoptions Bit Summary L 8-9
Sample Segmented Program 1-8 Opening a New Disc File 8-14
Data Stack Registers 1-10 FREAD Intrinsic Example 8-20
Accessing Array Elements......................... 3-5 Carriage Control Directives 8-24
Sample Global Array Declarations 3-12 Carriage Control Summary.......... 8-26
Pointers and Addresseso 4-4 FWRITE Intrinsic Example 8-28
Bit Extractionc.cooiiiiiiiiiiii 4-7 FUPDATE Intrinsic Example 8-33
Bit Concatenation 4-8 Symbol Map i 9-7
Bit Shift Operationst 4-10 $CONTROL CODE Outputooveeunenn.. 9-8
Passing a Label as a Parameter 5-15 $CONTROL ADR Outputcoooeeeeenion. 9.9
Instruction Formats 6-2 $CONTROL INNERLIST Qutput 9-10
Delete Statemento it 6-14 Cross Reference Listing 9-20
Foptions Bit Summary 8-6 BUILDINT Outputo.ovirriinannanannns Cc-2
TABLES
Title Page Title Page
Global Array Declaration Summary 3-10 New Files o 10-4
Comparison of DO, WHILE, and FOR Statements .. 5-7 Old Files i i 10-4
Machine Instruction Mnemonics 6-9 SPL Compiler File Designators 10-5
FCHECK Error Codes 8-38 PARM Valueso ... 10-8
Compiler Command Summary 9-4 BUILDINT Error Messages C-3
MPE Commands.....................ccouviiinnnn. 10-1 Summary of MPE Intrinsics D-1
System Defined Files 10-3 SPL Compiler Error Messages..................... E-1

Xi

SPL STRUCTURE

1-1. INTRODUCTION TO SPL

SPL (Systems Programming Language for the HP 3000 Computer System) is a high-level, machine
dependent programming language that is particularly well suited for the development of compilers,
operating systems, subsystems, monitors, supervisors, etc.

SPL has many features normally found only in high-level languages such as PL/I or ALGOL: free-form
structure, arithmetic and logical expressions, high-level statements (IF, FOR, GOTO, CASE, DO-
UNTIL, WHILE-DO, MOVE, SCAN, procedure call, assignment, and compound statements), recur-
sive procedures and subroutines, and variables and arrays of six data types (byte, integer, logical,
double integer, real, and long real). In addition, IF, FOR, CASE, DO-UNTIL, and WHILE-DO
statements can be indefinitely nested within each other and themselves. These features significantly
reduce the time required to write programs and make them much easier to read and update.

In addition, SPL provides machine-level constructs that insure the programmer has complete control
of the machine when he needs it. These constructs include direct register references; branches based on
actual hardware conditions; bit extracts, deposits, and shifts; delete statements; register push/set
statements; and an ASSEMBLE statement to generate any sequence of machine instructions.

1-2. CONVENTIONS

In the HP 3000, the bits of a word are numbered from left to right starting with bit 0. Thus, the sign, or
most significant, bit of a single word is bit 0 and the least significant bit is bit 15.

1-3. SOURCE PROGRAM FORMAT

An SPL source program can contain both program text and compiler commands in 80 column records.
Program text is entered in free format in columns 1-72. A statement is terminated with a semicolon (;)
and may continue to successive lines without an explicit continuation indicator. Statement labels are
identifiers followed by a colon (:) preceding the statement. For example,

START: SCAN BUF WHILE TEST;

Any compilation is bracketed by BEGIN and END statements. A period is required after the final
END. For example,

BEGIN
INTEGER I;
I:=2*373+ 275;

END.

11

Compiler commands are denoted by a $ in column 1 and may be interspersed with program text lines.
However, unlike program text lines, compiler commands which are to be continued must contain an
ampersand (&) as the last non-blank character of the line. If using EDIT/3000 to enter text, you must
explicitly enter a space following the ampersand and before pressing return. In addition, the continua-
tion lines must contain a $ in column 1. For example,

$CONTROL LIST,SOURCE,WARN MAP,.&
$CODE,LINES= 36

A compiler command line must never be separated from its continuation line by a program text line.
Refer to section IX for a discussion of all the SPL compiler commands.

1-4. DELIMITERS

Blanks are always recognized as delimiters in SPL, except within character strings (see paragraph
2-17 for the format of string constants). Therefore, blanks cannot be embedded in the following items:

Reserved words (see Appendix B).

Identifiers

= assignment

<< start of a comment
>> end of a comment

Special characters can also act as delimiters:

Punctuation : ;, .
Relational Operators = < >
Parentheses ()

Operators + — * /A

Brackets []

1-5. COMMENTS

A comment is used to document a program but has no effect upon the functioning of the program
itselfithat is, a comment does not generate any code.

1-2

where

comment
is any sequence of ASCII characters except a semicolon in Format 1 and >> in Format 2. The ASCII
character set is listed in Appendix A.

Format 1 is equivalent to a null statement and can be used anywhere a statement or declaration is
expected. Format 2 can be used anywhere in a program except in an identifier.

The characters within a comment are ignored by the compiler; they are not upshifted (changed to
uppercase) if lowercase.

1-6. PROGRAM STRUCTURE

SPL is a block structured language which takes advantage of the virtual memory scheme of the HP
3000 to provide program segmentation as a user option. Thus, by using procedures and segmentation,
the programmer can organize his program such that the entire program does not have to reside in
memory at the same time. The system automatically gets procedure segments from auxiliary memory
and loads them into main memory when necessary.

Additionally, SPL uses the stack architecture of the HP 3000 to handle both global and local variables.
Global variables may be referenced anywhere in the program except in procedures where a local
variable has the same identifier. Local variables are allocated memory locations upon entering a
procedure and can only be referenced within the procedure in which they are declared. The memory
locations assigned to local variables are released when the procedure is exited. When one procedure
calls another procedure, the local variables of the calling procedure are not available to the called
procedure unless they are passed as parameters; however, their memory locations are saved so that
upon returning to the original procedure, the local variables contain the same values as before the
procedure call.

1-3

Similarly, both global and local subroutines are allowed in SPL. However, unlike global variables,
global subroutines can only be called within the main program and not within a procedure. Local
subroutines may be called only within the procedure in which they are declared.

The SPL compiler accepts either complete programs or subprograms as source input. A program
consists of both declarations and a main body of executable statements. The declaration portion may
contain variable, procedure, intrinsic, and/or global subroutine declarations.

A subprogram consists of only the declaration portion and does not contain a main body. In a
subprogram compilation, global declarations (that is, declarations for variables which can be refer-
enced throughout the entire program) do not allocate any space and global subroutines are ignored if
present. A subprogram compilation generates code for procedures and local subroutines only and must
be linked to a separately compiled main program before being executed.

For example,

PROCEDURE B(A);
INTEGER A; << procedure declaration>>
A=A+1; main
program

1-7. PROGRAM

A program is an organized collection of declarations and statements designed to solve a specific
problem. A main program consists of global data declarations and subroutines and a main body.

where

global data declarations
are statements defining the attributes of the global identifiers used in the program (see section IID).

procedures/intrinsics

are statements which define all the procedures and intrinsics used in the program (see section VII). A
procedure definition includes data declarations for parameters and local variables followed by the
executable statements of the procedure.

global-subroutines
are the subroutines used by the main program.

main-body
is a sequence of statements separated by semicolons

statement |;...;statement]

statement
is an executable statement.

The program elements must be in the order shown above.

For example,

BEGIN
INTEGER A:=0,B,C:=1; << global data declaration>>
PROCEDURE N(X,Y,Z); << procedure>>
INTEGER X,Y,Z; <<local data declaration>>
X:=X*(Y+7Z);
FOR B:=1 UNTIL 20 DO << main program>>
N(A,B,C);
END.

1-8. SUBPROGRAM

A subprogram is a portion of a program which can be compiled by itself but must be linked to a main
program for execution. A $CONTROL SUBPROGRAM compiler command is used before the subprog-
ram text to put the compiler in subprogram mode. See section IX for the compiler commands used to
link a subprogram to a main program for execution.

The form of a subprogram is the same as a program except that a subprogram does not have a main
body.

where

global data declarations
are statements defining the attributes of the global identifiers used in the program (see section III).

procedureslintrinsics
are statements which define all the procedures and intrinsics used in the program (see section VII). A

procedure definition includes data declarations for the parameters and local variables followed by the
executable statements of the procedure.

global-subroutines
are the subroutines used by the main program. The global-subroutines can be omitted since the
compiler ignores them in subprogram compilations.

For example,

$CONTROL SUBPROGRAM
BEGIN
INTEGER N,M,0; <<does not allocate space>>
EQUATE A:=101, B:=202;
PROCEDURE C;
BEGIN

END;
PROCEDURE D;
BEGIN

END;
END.

1-9. INTRODUCTION TO HP 3000 HARDWARE CONCEPTS

A process is the unique execution of a program. If the same program is run by several users, it becomes
several processes. If the same user runs the program several times, each execution is a distinct process.
A process consists of a code domain (the machine instructions of the program) and a data area called a
“stack.” The code and data in the HP 3000 are always separated logically. The code may always be
shared, but the data stack cannot. The MPE Operating System schedules and dispatches a process for
execution. See the MPE General Information Manual for a further discussion of processes and the
stack.

1-10. CODE SEGMENTS

All machine instructions within the HP 3000 are organized into variable length segments accessed
through a hardware-known table called the Code Segment Table (CST). Since the hardware detects
references to segments which are not in main memory, the code domain of a process is not limited to

1-6

the size of main memory. Segments are brought from disc into main memory as needed. A process can
execute only one code segment at a time. The process “escapes” from its current code segment by
executing a Procedure Call (PCAL) instruction. A PCAL can reference procedures in different code
segments from the current one and cause control to be transferred to a different code segment. A PCAL
instruction is generated by either a function designator (see paragraph 4-6) or a procedure call
statement (see paragraph 5-8).

The current code segment of a process is defined by three hardware address registers:

1. PB — Program Base register. Contains the absolute address of the starting location of the segment
in main memory.

2. PL — Program Limit register. Contains the absolute address of the last location of the code
segment.

3. P — Program counter. Contains the absolute address of the instruction currently being executed.

The relationship of the three current code segment registers is shown in figure 1-1. The central
processor checks all instructions to insure that they stay within the bounds of the current code
segment. All addresses within a current code segment are relative to these registers. The operating
system can relocate the segment anywhere in main memory; only the three registers have to be
changed to define the segment’s locations.

Program Base Low Memory ‘ |
Register (PB) —> PB is the addressing base register; its absolute

address is set by the operating system.

Instructions
and constants

Program counter {P) —» P changes as each instruction is executed.

Program Limit
register (PL)

—> PL is the addressing limit register; its address is
High Memory set by the operating system.

Figure 1-1. Code Segment Registers

Code segmentation is controlled by using the SEGMENT parameter on $CONTROL commands (see
section IX). The segment name stays in effect until another segment name is specified. For procedures,
the $CONTROL SEGMENT command must precede the procedure declaration of the first procedure in
the segment. If a new segment is to be specified for the main program, the $CONTROL SEGMENT
command follows the procedure and intrinsic declarations and precedes the global subroutines and
main body. Global subroutines must be in the same segment as the main body. See figure 1-2 for a
sample SPL program which has two procedures in one segment and a global subroutine with the main
body in another.

1-7

00000
00000
00000
00000
0000¢
00000
00000
00000
00000
00000
00000
00000
00000
00000
000QQ0C
00000
00000
00000
00000
00000
00000
00006
00006
00006
00006
00006
00006
00010
00013
0no13
00022
00026
00027
00027

A N N D) o b el el B el Sl el ek bk b b b b b e d pd b B b b b b b ek = D) D)

SCONTROL USLINIT,MAINsMAINLINE
BEGIN
INTEGER LENGTH, TIME;
ARRRY BUFFER(0:35)
INTRINSIC PRINT,READ;

SCONTEOL SEGMENT=PROC*A’SEG
PROCEDURE PROC®A(LEN)
VALUE LEN}

INTEGER LEN}

PRINT (BUFFER,=LEN,0)}

PROCEDURE PROC’B(LEN):
VALUE LEN;

INTEGER LEN}
PRINT(BUFFER, =LEN,$320)}

SCONTROL SEGMENTSMAINLINESEG

SUBROUTINE READA’LINE}
LENGTH:=READ(BUFFER,=72)1

START OF MAINLINE >>

LQOP:

READ*A’LINE}
IF LENGTH <> 0 THEN

BEGIN
IF ((TIME:=TIME+1) MOD 2)=0 THEN PROC’A(LENGTH)
ELSE PROC’B(LENGTH)

END,

GO TO LOOPs

END3

MAINLINESEG 0
NAME STT CODE ENTRY SEG
MAINLINE 1 0 6
READ 2 7
PROC‘A 3 1
PROC’B 4 i
TERMINATE’ 5 ?
SEGMENT LENGTH 40

PROC®A’SEG 1
NAME STT CODE ENTRY SEG
PROC’B 1 0 0
PRINT 3 ?
PROC’A 2 6 6
SEGMENT LENGTH 20

Figure 1-2. Sample Segmented Program
1-8

1-11. DATA SEGMENTS

Each process has a completely private storage area for its data. This storage area is called a stack or a
data segment. When the process is executing, its stack r 1st be in main memory. A stack is delimited
by two stack addressing registers:

1.

DL — Data Limit register. Contains the absolute address of the first word of main memory
available in the stack.

Z — Stack limit register. Contains the absolute address of the last word of main memory available
in the stack.

Between DL and Z, there are separate and distinct areas set off by three other stack addressing
registers:

1.

DB — Data Base register. Contains the absolute address of the first location of the direct address
global area of the stack.

Q — Stack marker register. Contains the absolute address of the current stack marker being used
within the stack.

S — Top-of-stack register. Contains the absolute address of the top element of the stack. Manipu-
lated by hardware to produce a last-in, first-out stack. The top four words may be kept in hardware
registers.

The relationship of the five data addressing registers is shown in figure 1-2. Each process is also
described by a status register that contains its segment number and status, and a program-accessed,
one-word index register used for array indexing and other computing functions.

There is only one set of these hardware registers; their content is established for a process when it
starts executing.

1-9

) Low Memory
Data Limit register ——m DL can be changed for user by the operating
(DL) system.

User managed
array space

Data Base register —» DB is the addressing base register set by

DB operating system.
(0B) Global variables P 9%y

Procedure
Parameters

Stack
Marker

Stack marker —> Q changes with each procedure call and exit.
register (Q)
Local storage
and current
computation

|

Top of Stack
register (S)

S can change with each instruction.

not accessible

Stack limit register ——» Z is the addressing limit register which can be
(2) High Memory changed for the user by the operating system
when overflow occurs.

Figure 1-3. Data Stack Registers

Instructions are provided to access all regions indicated in this diagram except S to Z. The four
top-of-stack registers are not shown.

In the HP 3000, memory reference instructions specify an address relative to one of the hardware
registers. Each register has its own addressing range as indicated below:

+ —
P register 255 | 255
DB register 255 Hkkok ok
Q register 127 63
S register okokkok 63

1-10

Note that the DB register cannot be directly addressed with a negative range and that the S register
cannot be addressed with a positive range. The DB negative area can be accessed through indirect
addressing and indexing. The S positive area is undefined since S points to the top of the stack.

Any memory reference instruction specifies a displacement within the range of one of these registers.
This location is used as the operand; if another address is required, it is implicitly assumed to be the
top of stack (S—0).

The basic addressing mode in the HP 3000 is word addressing (one word = 16 bits); however, there are
also instructions to load and store bytes (half words — 8 bits) and doublewords (32 bits).

Many HP 3000 instructions use the top of the stack (the absolute address in the S register) as an
implicit operand. For example, the ADD instruction always uses the values in S—0 and S-1 for its

operands. The S register is constantly changing in a last-in, first-out manner such that data is
“pushed” onto the stack or “popped” off the stack.

1-12. PROCEDURES

A procedure is a self-contained section of code which is called to perform a function. Some of the
features of procedures are:

® Procedures can be passed parameters (either call-by-value or call-by-reference).
® Procedures can declare local variables and reference global variables.

¢ Procedures can return a value.

® Procedures can call themselves.

® Procedures can be called from either procedures or the main body.

® Procedures can have local subroutines (sections of code which can only be called from within the
procedure).

Procedure declarations precede the main body of the program and contain the local declarations and
the procedure body.

For example, a procedure to compute N factorial is

INTEGER PROCEDURE FACT(N); VALUE N; INTEGER N;
BEGIN
FACT:=IF N=0 THEN 1
ELSE N*FACT(N- 1);
END;

For a complete explanation of procedure declarations, see section VII.

1-13. SUBROUTINES

An SPL subroutine is a simpler and less powerful section of code than the procedure. Subroutines can
have parameters, can be typed functions and can be called recursively. A subroutine is called with an

1-11

SCAL instruction instead of a PCAL instruction. SCAL does not provide a 4-word stack marker to save
the environment; therefore,

® Values in the Q and index registers remain unchanged.
® A PB-relative return address is placed on the top of the stack.

® Subroutines cannot have local variables.

® Subroutines must be located in the same segment as the caller since the SCAL and SXIT
instructions do not bridge segment boundaries.

® Subroutines can be entered and exited faster than procedures since there is much less work for the
instructions to do.

® Subroutines can be declared within procedures and can reference procedure-local variables.

Global subroutines can be called only within the main body. Global subroutine declarations must
appear after the procedure and intrinsic declarations.

Local subroutines can be called only from the procedure in which they are declared. They are declared
in the body of the procedure, after any local data declarations, but before the executable statements of
the procedure body. For a complete description of subroutine declarations, see section VII.

1-14. INTRINSICS

An intrinsic is a procedure which has previously been defined, either as part of the MPE Operating
System or in a user’s own intrinsic file. The advantage of using intrinsics is that you do not have to
include the complete procedure in your program, but merely declare the name of the intrinsic in an
intrinsic declaration.

MPE intrinsics are available to:

Access and alter files.

Manage program libraries.

Obtain date, time, and accounting information.
Determine job status.

Determine device status.

Obtain device file information.

Transmit messages.

Insert comments in command stream.

Perform ASCIl/binary number conversion.
Perform input/output on job/session standard devices.
Obtain system timer information.

Obtain the user’s access mode and attributes.
Search arrays and format parameters.

Execute MPE commands programmatically.

Intrinsics must be declared with an intrinsic declaration (See section VII). Appendix C shows how to
build your own intrinsic file. Appendix D contains a list of the MPE intrinsics. Refer to the MPE
Intrinsics Reference Manual for a complete description of the system intrinsics.

1-12

1-15. COMPOUND STATEMENTS

BEGIN and END are used as a delimiting pair and are matched much like parentheses. Within the
body of a main program or a procedure, a BEGIN-END pair can be used to combine several statements
into one compound statement. Compound statements are useful in IF, FOR, CASE, DO-UNTIL, and
WHILE-DO statements.

where

statement
is any SPL executable statement (including compound statements).

For example,

IF A<B THEN
BEGIN

>

>

B
D;
F

= w

END;

Note that a semicolon is not required before the END statement. If it is included, it is a null statement.

1-16. ENTRY POINTS

Both main programs and procedures can have multiple entry points. The first executable statement of
a main program or procedure is an implicit entry point. Alternate entry points are labeled statements
whose labels are declared in an entry declaration (see paragraph 3-7 for the format of an entry
declaration). An entry point cannot be the object of a GO TO statement.

1-13

A program may be started at an alternate entry point with a parameter on the :RUN or :PREPRUN
command. An alternate entry point for a procedure is equivalent to another name for the procedure
that can be called with the same formal parameters. Local variables are set up and initialized
regardless of which entry point is used. For example, assume the following program has been compiled
and prepared (:SPLPREP) and the program file is $OLDPASS.

BEGIN
ENTRY P1,P2,P3;

P1: A:=100;

P2: A:=200;
P3: A:=300;
END.

To start execution at P2, use the command

:RUN $OLDPASS,P2

-1-14

BASIC ELEMENTS

2-1. DATA STORAGE FORMATS

SPL processes six types of data: integer, double integer, real, long (extended precision real), byte, and
- logical. Each data type has its own representation in memory. The following paragraphs describe the
data types and discuss the manner in which they are stored in memory.

2-2. INTEGER FORMAT

Integers are whole numbers containing no fractional part. Integer values are stored in one 16-bit
computer word. The leftmost bit (bit 0) represents the arithmetic sign of the number (1=negative,
0= positive). The remaining 15 bits represent the binary value of the number. Integer numbers are
represented in two’s complement form and range from — 32768 to + 32767.

Decimal Two’s
Value Complement
+ 32767 %077777
+ 1 %000001
0 % 000000
- 1 W%177777
- 2 177776
- 32768 % 100000

0 1 2 3 4 5 6 7 8 9 11011)12 |13]| 14 | 15

t }% value
sign bit 15-bits

Y

2-3. DOUBLE INTEGER FORMAT

When you wish to use integer values with magnitudes greater than the integer format allows, you may
use double integers. Double integers use 2 compufer,\words for a total of 32 bits. The leftmost bit of the

FEB 1977 FAEE SN

first word (bit 0) is the sign bit (1= negative, 0= positive). The remaining 31 bits represent the binary
value of the number. Double integer numbers are represented in two’s complement form and range
from — 2,147,483,648 to + 2,147,483,647.

Word 1 Word 2

0 15 0 15

|l value

, P 31-bits
sign bit

2-4. REAL FORMAT

Y

Real numbers are represented in memory by 32 bits (two consecutive 16-bit words) with three fields.
The fields are the sign, the exponent, and the mantissa. The format is that known as excess 256 —
exponents are biased by +256. Thus, a real number consists of:

Sign(8S)

Bit 0 of the first word (positive= 0, negative=1). A value X and its negative, — X, differ only in the
sign bit.

Exponent(E) . .
Bits 1 through 9 of the first word. The exponent ranges from 0 to 777 octal (511 decimal). Thl‘S
number represents a binary exponent, biased by 400 octal (256 decimal). The true exponent is
E-256; it ranges from ~ 256 to + 255.

Fraction(F)

A binary number of the form 1.xxx, where xxx is represented by 22 bits, stored in bits 10 through
15 of the first word and all of the second word. Note that the 1. is not actually stored, there i's an
assumed 1. to the left of the binary point. Floating-point zero is the only exception — it is
represented by all 32 bits being zero.

The range of the magnitude of non-zero real values is from 8.63617* 10°™ to 1.157921 * 10-7". Real
numbers are accurate to 6.9 decimal places.

The internal representation for real numbers is:

Word 1 Word 2
ol1 9 nﬂ 15| Jo 15

I l exponent P fraction ¢!
l 9-bits S . 22-bits

sign bit

The formula for computing the decimal value of a floating-point representation is:

Decimal value = (— 1) * F * -2

2-2

which is equivalent to:

Decimal value = (—1)% * (1.0 + (xxx * 27%%)) * 206759

For example, 7.0 is represented as

1.
0]1]0j0j010]0j0{1]0O]1]1]0])0]O]|O o|lofojojojojojojojojojojof0}j0jo
01 9 (10 15 0 . 15]

exponent L fraction >
sign bit

Sign (S) = 0 (positive)
Exponent (E) = 402 (octal) = 258 (decimal)
Fraction (F) = 1.11 (binary) = (1 x 29+ (1 x2H+ (1,x 2™

1 + 172+ 1/4
1.75 (decimal)

So, the decimal value of the real value is:

(-1°%x 175 x 2%% - % = 1 x 1,75 x 2°
= 175x 4
7.0

*NOTE: Throughout this discussion the following changes apply to Pre-Series II Systems: Long numbers are
48 bits (three words) accurate to 11.7 decimal places. The decimal value of a floating point repre-

sentation of a long value is (-1)5 * (1.0 + (xxx * 2-38)) * 2(E-256)

FEB 1977 2-3

68555094445 * 1077 to.
ecimal places. The formula for

The range of the magnitude of no
1.157920892373162 * 107, Long nur
computing the de*cimai ~value

Decimal value = (-1)° *
which, for 'I‘ﬁo‘ngu values, is eqmv
, ,Dec‘imaig valﬁg = EprQ

The internal representation for

 Word 4

: L__g__ exponent (9-bits)

sign bit

2-6. BYTE FORMAT

Character strings are stored using byte format. Character values are represented by 8-bit ASCII codes,
two characters packed in one 16-bit computer word. The number of words used to represent a character
value depends on the actual number of characters in the string. Appendix A shows the ASCII
characters and their octal codes.

The internal representation of byte values is:

0 1 4 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

character character
— —_— e — S —

8-bits 8-bits

2-7. LOGICAL FORMAT

Logical values are stored in one 16-bit computer word. They are treated as unsigned integer values
ranging from 0 to 65,535. A value is considered true if it is odd and false if it is even (i.e., only bit 15 is
checked). When a value is set to TRUE, a word of all ones is used (% 177777). A value set to FALSE is
all zeros.

The internal representation of a logical value is:

value |
16-bits .

2-4 FEB 1977

2-8. CONSTANT TYPES

Constants are literal values that stand for themselves. There are two basic types of constants in SPL:
numeric constants and string constants.

Numeric constants are broken down into five types:

Integer (16 bits — includes 1 sign bit)
Double integer (32 bits — includes 1 sign bit)
Real (32 bit floating point)

Long (64 bit floating point)

Logical (16 bits — no sign bit)

Al S

String constants are made up of ASCII characters which are packed two 8-bit characters to a word.
In SPL, constants are merely bit patterns that occupy a given number of bits. A given 16-bit pattern

can have many constant interpretations (two characters, an integer, a logical value, etc.). Note that
hardware instructions provide arithmetic capability for all of the constant types mentioned here.

2-9. INTEGER CONSTANTS

Integers are signed whole numbers containing no fractional part. Decimal integer constants use the
decimal digits 0 through 9. They can contain a leading plus (+) or minus (-) sign. A number without a
leading sign is positive. The range of an integer constant is from — 32768 to + 32767.

The form of a decimal integer constant is,
| sign| integer
where

sign
is + or —.

integer
is a string of the digits 0 through 9.

For example,

0

12345
-31766
+12384

2-10. DOUBLE INTEGER CONSTANTS

Double integers are signed whole numbers containing no fractional part. Decimal double integer
constants use the decimal digits 0 through 9 followed by a D. They can contain a leading plus (+) or

2-5

minus (—) sign. A number without a leading sign is positive. The range of a double integer constant is
from —2,147,483,648 to + 2,147,483,647. The form of a decimal double integer constant is:

[sign] integer D
where

sign
is + or —.

integer
is a string of the digits 0 through 9.

For example,

—~123456D
+99999999D
312735D

0D

2-11. BASED CONSTANTS

SPL allows you to use any base from 2 (binary) through 16 (hexadecimal) in constants. A based
constant can contain a leading sign and/or a trailing type designator. A leading per cent sign (%)
denotes a based constant. The base is enclosed in parentheses following the per cent sign. If a base is
not specified, the constant is octal (base 8). The letters A,B,C,D.E, and F represent the values
10,11,12,13,14, and 15 respectively in bases greater than 10. If a type designator is used with a base
greater than 10, a space must precede the type designator.

The form of a based constant is:
[sign] %l (base)] integer [type-designator]
where

sign
is + or —.

base
is any integer between 2 and 16. If the % is used without a base being specified, base 8 (octal) is
assumed.

integer
is a string of digits, where digit is between 0 and base—1.

type-designator
is D,E, or L for DOUBLE, REAL, or LONG respectively. If a type-designator is not specified, the
constant will be a single-word constant which can be used as type INTEGER, LOGICAL, or BYTE.

For REAL and LONG based constants, the bit pattern of the based integer is used directly as a right
justified real number — it is not converted to floating point form. A leading minus sign will generate

2.6 FEB 1977

the two’s complement form of single-word and type DOUBLE based constants, but will only reverse
the sign bit for REAL and LONG based constants.

For example,

+% 777

-%(2)10101010

%(16)ABC D <<type DOUBLE>>
% (16)ABCD << single-word>>

2-12. COMPOSITE CONSTANTS

Composite constants are a convenient way of representing specific bit patterns for tables and special
numbers such as the lowest possible real number. A composite constant consists of a series of bit fields
separated by commas which is enclosed in brackets {{]). Each bit field contains a field length‘ and an
unsigned integer value separated by a slash. The integer value may be an unsigned composite integer;

thus, composite integers may be nested within a composite constant. Composite constants may contain
a leading sign and/or a trailing type designator.

The form of a composite constant is:
I sign| composite-integer | type-designator)
where
sign
is + or —,

composite-integer
is of the form:

{length/value,... length/ valuel]

NOTE

The brackets|] in this case are literal symbols which are part of
the syntax for composite integers — they do not represent the
symbols used to denote optional items in this manual.

length

i8 an unsigned non-zero decimal, based, composite, or equated integer constant. The sum of the lengths
fe

Or a composite constant cannot exceed the number of bits used to represent the constant type. If the
sum of the lengths is greater than 16, a type-designator is required.
value

is any unsigned decimal, based, composite, or equated integer constant. T'ype-designators are not
allowed.

type-designator

is D,E, Or\L for DOUBLE, REAL, or LONG respectively. If a type-designator is not specified, the
constant will be a single-word constant which can be used as type INTEGER, LOGICAL, or BYTE.

FEB 1977 2-7

Composite constants are formed by left-to-right concatenation of binary bit fields. Within each bit
field, unspecified leading bits are set to zero and bits exceeding the field size are truncated on the left.
The resulting composite integer is right justified with leading bits set to zero. If a minus sign is used
with a single-word or a type DOUBLE composite constant, the two’s complement will be generated. Ifa
minus sign is used with a REAL or LONG composite constant, the sign bit will be reversed and the
other bits will be unchanged — no conversion to floating point form occurs with composite constants.

For example,

132/11D = % 00000000001
132/11E = % 00000000001
-132/11D = %377T7TT7TTT7T7
-[321)E = % 10000000001
13/2,12/% 5252} = %25252
[2/211,15/(3/%(2)101,12/0},10/123] D = %720000173
~13/2,12/% 5252] = % 152526

' 2.13. EQUATED INTEGERS

Equated integers are used to assign an integer value to an identifier for compile-time only. An equated
integer does not allocate any storage, but merely provides a form of abbreviation for constants. When
an equated identifier is used, the appropriate constant is substituted in its place. When Equate
declarations are used instead of actual constants, programs can be changed simply; instead of replac-
ing every occurrence of a constant, only the EQUATE declaration need be changed. An equated
integer reference may be preceded by a plus (+) or minus (-) sign. The value assigned to an identifier
in an EQUATE declaration must be a single-word value; however a D may be used after the identifier
to convert the single-word value to a double-word value whose first word is all zeros. If a D is used, a
space must separate the identifier from the D.

The form of an equated integer constant is
[sign| identifier [D}
where

sign
is + or —.

identifier
is a legal SPL identifier which has been declared in an EQUATE declaration (see paragraph 3-9).

2-14. REAL CONSTANTS

Real constants are represented by an integer part, a decimal point, and a decimal fraction. Either the
integer part or the decimal fraction may be omitted (but not both) to indicate a zero value for that part
only. A leading plus (+) or minus (~) sign may be used. A number without a sign is positive. The
constant can contain a scale factor to indicate a power of ten by which the value is multiplied.

The forms of a real constant are

Format 1: [sign| based/composite-integer E

2-8 FEB 1977

Format 2: [sign| decimal-number {E [sign] power]
Format 3: { sign] decimal-integer E [sign] power
where

sign
is either + or —.

based/composite-integer
is any unsigned based or composite integer constant.

dectmal-number
is of one of the following three forms:
n.n
n.
.n

{n being an unsigned decimal integer).

power
is an unsigned decimal integer constant.

decimal-integer
is an unsigned decimal integer constant.

. . The
Real numbers are accurate to 6.9 decimal digits of magnitude (0 can be represented e;‘(?::’tly’)l‘ he E
absolute value of non-zero real numbers can range from 8.63617 x 10 ™ to 1.157921)‘2 5 1'04
construct is used to indicate the scaling factor, if any. For example, 2.5E— 2 means 2. :

Note that when a composite or based integer is used, there is no power after the E, and t,h at the E s
required to indicate a real value. The bit pattern created for the integer is used d'lrectly iisfa
right-justified real number; it is not converted to floating-point form. This construct 1s ust;)fu ?;‘
creating special floating-point constants such as the smallest positive number. When the base
greater than 10, a space must precede the E.

For example,

+1.234

-.2024

~1.105E- 21

10E- 20

% (4)321000E
%(2)1111011110111E
{3/5,5/273,20/% (16)102AB39E

Some examples of invalid real constants are

+10.E << missing power>>
E-21 <<missing decimal-number>>
2E- << missing power>>

FEB 1977 2-9

2-15. LONG CONSTANTS

Long constants are represented by an integer part, a decimal point, and a decimal fraction. Either the
integer part or the decimal fraction may be omitted (but not both) to indicate a zero value for that part
only. A leading plus (+) or minus (—) sign may be used. A number without a sign is positive. The
constant can contain a scale factor to indicate a power of ten by which the value is multiplied.

The forms of a long constant are

Format 1: | sign| based/composite-integer L

Format 2: | sign| decimal-number |L [sign| power]

Format 3: | sign| decimal-integer L [sign) power
where

sign
is either + or —

based/composite-integer
is any unsigned based or composite integer constant.

decimal-number
is of one of the following three forms:
n.n
n.
.n
(n being an unsigned decimal integer).

power
is an unsigned decimal integer constant.

decimal-integer
is an unsigned decimal integer constant.

Long numbers are accurate to 16.5*decimal digits of magnitude (0 can be represented exactly). The
absolute value of non-zero long numbers can range from 8.636168555094445 x 10 ™ to
1.157920892373162 x 10" The L construct is used to indicate the scaling factor, if any. For example,

2.5L—2 means 2.5 x 10 *

Note that when a composite or based integer is used, there is no power after the L, and that the L is
required to indicate a long value. The bit pattern created for the integer is used directly as a
right-justified long number; it is not converted to floating-point form. This construct is useful for
creating special floating-point constants such as the smallest positive number. When the base is

greater than 10, a space must precede the L.

For example,

9321.678975L72
—.111015L- 27
% (8)3777777777L

*11.7 with pre-Series II Systems

2-10

FEB 1977

2-16. LOGICAL CONSTANTS

i i fo
Logical constants are 16-bit positive integers. Hardware operations on logical values are defined for
addition, subtraction, multiplication, division, and comparison.

Logical values can be represented by any of the following:

1. TRUE
2. FALSE
3. integer
where

TRUE and FALSE
are SPL Reserved words.

integer .
is any (single word) decimal, based, composite, or equated integer.

A logical value is considered true if its value is odd, false if its value is eve.n (i.e., onlt);'1 bl.t t1e5 ;:
checked). When the reserved words TRUE and FALSE are used, they are equivalent to ee:lnwgbe
values ~1 (all ones) and 0 (all zeros) respectively. Since logical values are alv.vays assumth -
positive, they range from 0 to +65,535. When negative integers are used as logical values, they &
interpreted as large positive numbers (e.g., — 1 equals % 177777).

2-17. STRING CONSTANTS

¢t) h
A string constant is a sequence of one or more ASCII characters bounded by quote marksw (o :d Eac
character is converted to its 8-bit representation ahd the characters are packed two per .

The form of a string constant is
“character-string”

where

character-string
is a sequence of ASCII characters (see Appendix A).

) wy 2 ithi a
A character string can contain from 1 to 127 ASCII characters. A quote .() is rep.resented within
character string by a pair of quotes (*”) to avoid ambiguity with the string terminator.

For example,
“THE CHARACTER " IS A QUOTE MARK.”

“A NORMAL STRING WOULD LOOK LIKE THIS”
“lowercase letters are not UPSHIFTED in strings”

2-11

2-18. IDENTIFIERS

Identifiers are symbols used to name data and code constructs in an SPL program. They consist of
uppercase letters and numbers, and are assigned uses by declarations. There is no implicit typing for
identifiers.

The form of an identifier is
letter | letter'digit-string|
where

letter
is a letter of the alphabet (A-Z).

letter'digit-string
is a string of letters (A-Z), digits (0-9), and apostrophes ().

An identifier always starts with a letter and may contain from 1 to 15 characters (letters, digits, and
apostrophes). Identifiers larger than 15 characters are truncated on the right (A123456789012345 =
A12345678901234). Lowercase letters are allowed, but are always converted to uppercase form (Aabc
= AABC). If the listing device has upper and lowercase characters, a lowercase identifier is printed in
lowercase, but SPL does not differentiate it from an uppercase identifier with the same characters.
The attributes of an identifier are determined by a declaration, not by the form of the identifier.

Reserved words are combinations of characters that cannot be used as identifiers, since they have
implied meanings in the language. (See Appendix B for a list of SPL reserved words).

For example,

MATRIX

A”"B

AN’ IDENTIFIER
MAT123

X

2-19. ARRAYS

An array is a block of contiguous storage which is treated as an ordered sequence of variables having
the same data type. These variables are accessed using a single identifier to denote the array and a
subscript number to denote the particular variable (element) within the array. Array elements are
sometimes called subscripted variables.

SPL allows one-dimensional arrays (only one subscript is permitted) in all data types (integer, logical,
real, byte, long, and double). Subscripting automatically uses the index register to indicate the
element number. Bounds checking is not done at either compile-time or run-time. Arrays can be
initialized but do not have a default initialization value. Arrays can be located in any region of the
user’s domain which can be addressed relative to the DB, Q, S, or P registers. Values in P-relative
arrays are constants which cannot be changed at run-time.

2-12 FEB 1977

2-20. POINTERS

A pointer is a type of variable which contains the 16-bit address of another data item in the progllialzl(;
The 16 bits of the pointer represent the address of a variable. A pointer can be changed dynamically

point to different data items during program execution. Pointers are declared in a pointer ;lecl::.rar:;())n
(see paragraph 3-4 for global pointer declarations and paragraph 7-24 for local pointer declarations).

There are three contexts in which pointers can be used:

. ie indirect
1. Anywhere that the object of the pointer could be used; this generates an automatic indirec
reference to the object of the pointer.,

2. On the left side of an assignment statement to change the value of the object of the pointer.
3. A pointer can be preceded by an @ to refer to the actual contents of the pointer (the data label), not
the object of the pointer.
For example, assume the following data declarations
INTEGER A,B:= 7,C:=300,DATA:= - 1;

INTEGER POINTER PTR:= @ DATA;

These declarations initialize the variables B, C, and DATA and set up PTR as a pointer to DATA as
shown below.

A
7 B
300 C
- -1 DATA
— PTR

Now, consider the statement

A:=PTR;

This statement assigns the object of the pointer PTR (i.e., DATA) to A.

-1 A
7 B
300 C
> -1 DATA
— PTR

FEB 1977 2-13

Using the pointer on the left side of an assignment statement can change the value of the object of the
pointer.

PTR:= B+ C;
The object of the pointer PTR (i.e., DATA) is assigned the value of B+ C.

| T A

7 B

300 C

l (_’ 307 DATA

L PTR

Preceding the pointer variable with an (v references the address contained in the pointer instead of the
value of the object of the pointer. Using this construct on the right side of an assignment statement
assigns the DB-relative address of the object of the pointer to a variable. For example,

A:=PTR,;

A is assigned the address contained in PTR (that is, the address of DATA).

I DBrelative | __ ,
address of DATA
7 B
300 C
I —> 307 <— DATA
L—— PTR

To change the pointer to point to a different data item, use the @ construct on the left side of an
assignment statement as shown below.

@PTR:=@A;

This statement changes PTR to point to A instead of DATA.

DB-relative A
address of DATA
7 B
300 C
307 DATA
L PTR

2-14 FEB 1977

2-21. LABELS

Labels are used to identify statements for transfer of control and for documentation purposes. A label
must always be followed by a colon (:) to separate it from the statement that it identifies. For
consistency and documentation, labels may be declared with a label declaration; however, it is not
necessary to do so since labels declare themselves automatically when they are used. A label can be
used to identify only one statement within the scope of the identifier; that is, the same label can be
used to identify two different statements as long as the statements are not both in the main body or
both in the same procedure.

2-22. SWITCHES

The purpose of a switch is to transfer control to one of several labeled statements within a program. A
switch is first declared with a switch declaration (see paragraph 3-6 for the format of a switch
declaration). The switch declaration defines an identifier to represent an ordered set of labels. Each
label in the list (from left to right) is assigned a number from 0 to n— 1 (where n is the number of labels)
which indicates the position of the label in the list. A switch of program control is accomplished by
using a GO TO statement with the switch identifier and an index. The index is evaluated to an integer
value and control is transferred to the switch label specified by that number. Bounds checking on the
index to insure that the value has a corresponding labeled statement is optional. See paragraph 5-2 for
the form of the GO TO statement.

For example,

BEGIN
INTEGER INDX;
REAL A/B;
SWITCH SW:=L1,L.2,L3,L4;

INDX:=-1;
LOOP: INDX:=INDX+1;
GO TO SW(INDX),

L1: A:=B;

GO TO LOOP;
L2: B:=A;

GO TO LOOP;
L3: A:=A+B;

GO TO LOOP;
L4: B:=A+B;
END.

2-15

SECTION

GLOBAL DATA DECLARATIONS

3-1. TYPES OF DECLARATIONS

A declaration defines the attributes of an identifier before it is used in a program or procedure. All
identifiers in SPL programs (with the exception of labels) must be explicitly declared once only within
a single program or procedure. There are two possible levels of declarations in SPL:

Global (in a main program)
Local (in procedures)

Globally declared identifiers can be accessed throughout a program (even within procedures) and their
declarations are grouped together at the beginning of the program. Locally declared identifiers can be
accessed only within the procedure where declared and their declarations are grouped together at the
beginning of the procedure body. This section covers global data declarations only; refer to section VII
for local declarations.

Global data declarations immediately follow the opening BEGIN as shown below.

Global data declarations are composed of the following types of declarations (which are described
individually later in this section):

global simple variable declarations
global array declarations

global pointer declarations
label declarations

switch declarations
entry declarations

define declarations
equate declarations

Global data identifiers (simple variables, arrays, and pointers) are either allocated space in the stack
or use space in the stack allocated to another identifier. Normally, the next available DB-relative
location is allocated for the identifier. However, a register-relative or identifier-relative location may

be specified in the declaration to override the default allocation. In this case, the referenced location is
used without being allocated. When using identifier or register references, the compiler only checks
that the resulting address is within the direct address range of the register being used. You must
insure that this location does not exceed the bounds of your data stack when the identifier is referenced

3-1

at execution time. Additionally, when using a reference identifier, you must declare it before using it
as a reference identifier. For example, the declarations:

INTEGER A,B,C;
LOGICAL D=A+2;

indicate that D is a LOGICAL simple variable using the same location as the INTEGER variable C.
The syntax for register and identifier references is described in the appropriate paragraphs for the
type of indentifier (simple variable, array, or pointer) in this section. Data identifiers which are
register or identifier referenced cannot be initialized.

3-2. SIMPLE VARIABLE DECLARATIONS

A simple variable declaration specifies the type, addressing mode, storage allocation, and initializa-
tion value for identifiers to be used as single data items. The type assigned to a variable determines
the amount of space allocated to the variable and the set of HP 3000 instructions which can operate on
the variable.

Two methods can be used to link global variables to variables in separately compiled procedures. The
first method is to use the GLOBAL attribute in the global variable declaration and the EXTERNAL
attribute in the local variable declaration (see paragraph 7-19). The identifiers in both declarations
must be the same and the MPE Segmenter is responsible for making the correct linkages. (See the
MPE Segmenter Subsystem Reference Manual for a discussion of the Segmenter.) The second method is
to include dummy global declarations at the beginning of subprogram compilations. All global
declarations must be included, even for identifiers not referenced in the subprogram, and they must be
in the same order as in the main program. It is possible, although not recommended, to use different
identifiers for the same variable, but you are responsible for keeping them straight. The second
method is faster and requires less space in the USL (User Subprogram Library) files, but does not
protect you against improper linkages.

where

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

3-2

variable-declaration
can be any of the following forms:

variable [:= initial-value]
variable = register [sign offset]
variable = reference-identifier [sign offset]

|

variable
is a legal SPL identifier.

initial-value
is an SPL constant to be used as the value of the variable when program execution begins.

register
specifies the register to be used in a register reference. The register may be DB, Q, S, or X.

sign
is + or —.

offset

is an unsigned decimal, based, composite, or equated integer constant.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

Form 1 of the variable declaration allocates the next available DB-relative location(s) for the variable.
The amount of space allocated depends on the variable type. If an initial value is specified, the variable
is initialized when execution starts. If the constant used for the initial-value is too large, it is truncated
on the left, except string constants which are truncated on the right. If no initial-value is specified, the
variable is not initialized.

Form 2 of the variable declaration equivalences a variable either to the index register (X) or to a
location relative to the contents of one of the base registers (DB, Q, or S). Since the index register is 16
bits, only variables of type INTEGER, LOGICAL, and BYTE may be equivalenced to this register.

Form 3 of the variable declaration equivalences a variable to a location relative to another variable.
The reference-identifier must be declared first. For example, the declarations

LOGICAL A;
INTEGER B= A+ 5;

equivalence B to the location 5 words past the location of A. Simple variables which are address
referenced to arrays use either the location of the zero element of the array (if direct), or the location of
the pointer to the zero element of the array (if indirect). Note that if the reference-identifier is an array,
only the zero element may be used in a variable reference of a simple variable declaration. In any case,
the final address must be within the direct address range.

DB, PB, Q, S, and X cannot be used as the identifier on the right side of an equals sign in a variable
declaration, because they are interpreted as register references instead of variable references. For
example, consider the declaration
INTEGER A,B,C,DB,D=DB+2;
3-3

The variable D is equivalenced to the location 2 cells past the cell to which the DB register points —
not 2 cells past the location assigned to the variable DB.

The legal combinations of registers, signs, and offsets are shown below

Register Sign Offset
DB + 0 to 255
Q + 0 to 127
Q - Oto 63
S - 0to 63
X none none

3-3. ARRAY DECLARATION

An array declaration specifies one or more identifiers to represent arrays of subscripted variables. An
array is a block of contiguous storage which is treated as an ordered sequence of “variables” having the
same data type. Each “variable” or element of the array is denoted by a unique subscript (SPL provides
one-dimensional arrays only). An array declaration defines the following attributes of an array:

® The bounds specification (if any) which determines the size of the array and the legitimate range of
indexing.

® The data type of the array elements.
¢ The storage allocation method.

o The initial values, if desired.

® The access mode (direct or indirect).

There are two types of access modes used for arrays: indirect and direct. An indirect array uses a
pointer to the zero element of the array. Addressing an indirect array element uses both indirect
addressing and indexing. If the array is a BYTE array, the pointer contains a DB-relative byte
address. For all other data types, the pointer contains a DB-relative word address. A direct array uses
a location within the direct address range of one of the registers (DB, Q, or S) as the zero element of the
array and then uses indexing to address a specific array element. Figure 3-1 illustrates the differences
between direct and indirect arrays.

The area in the stack between DB and the initial value of Q is divided into two areas: Primary DB
Storage and Secondary DB Storage. The Primary DB area is used for global storage of simple
variables, direct arrays, and pointers to indirect global arrays. The Secondary DB area is used for
global storage of indirect arrays. The Primary DB area cannot normally extend past DB+ 255. The
only exception is when the last global data declaration is for a DB-relative direct array whose zero

3-4

Indirect Array

@A Primary DB
=]
£
g
©
©
<
5
£
A(0)
g
'g >- Secondary DB
°
£
A(3)
J
Index Register
3
Direct Array
A(0)
o
c
i
E k Primary DB
A(3)

Figure 3-1. Accessing Array Elements
SEP 1976 3.5

element falls between DB+ 0 and DB+ 255. Since the index register is used to address array elements,
the array may extend past DB+ 255. The Secondary DB area immediately follows the Primary DB area
regardless of the size of the Primary DB area.

There are two methods which can be used to link global arrays to arrays in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global array declaration and the
EXTERNAL attribute in the local array declaration (see paragraph 7-23). The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same array, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

where

GLOBAL
is used for arrays which are referenced in procedures compiled separately.

type
specifies the data type of the array. The type can be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or
LONG. If not specified, the array is type LOGICAL.

global-array-dec
is one of the following forms:

1. array-name(lower:upper) [=DB]

This form is used for an uninitialized array with defined bounds. If =DB is not specified, the
array is indirect and the next available DB Primary location is allocated for the pointer to the
zero element of the array. Storage for the array itself is allocated in the Secondary DB area. If
=DB is specified, the array is direct and the next available n cells in the DB Primary area are
allocated for the array (where n is the number of locations required to store the array). The
zero element of the array must be within the direct address range whether or not it is actually
an element of the array. For example, consider the declaration:

INTEGER ARRAY A(-20:-10)=DB;

The next available DB primary location is allocated to A(-20), but all indexing is done
relative to A(0) even though it is not an actual element of the array. The address which A(0)
would have if it were in the array must be between DB+ 0 and DB+ 255.

3-6

2.

3.

array-name(@)=DB [+ offset]

This form is used for an indirect array with undefined bounds. If no offset is specified, the next
available Primary DB location is used, without being allocated, as the pointer to the zero
element of the array. If an offset is specified, then that DB-relative cell is used, without being
allocated, as the pointer to the zero element. In either case, space is not allocated for the array
in the Secondary DB area nor is initialization allowed.

array-name(*)=DB [+ offset]

This form is used for a direct array with undefined bounds. If no offset is specified, the next
available Primary DB location is used, without being allocated, as the zero element of the
array. If an offset is specified, then that DB-relative location is used, without being allocated,
as the zero element of the array. In either case, space is not allocated for the array nor is
initialization allowed.

*4. array-name(@) [=register sign offset]

This form is used for an indirect array with undefined bounds whose pointer is DB, Q, or
S-relative. If a base-register reference is not specfied, the next available DB cell is allocated for
the pointer to the zero element of the array. If a base-register reference is specified, then that
Q-relative or S-relative cell is used, without being allocated, as the pointer to the zero element
of the array. Space is not allocated for the array nor is initialization allowed.

5. array-name()

This form can be used for an indirect array with undefined bounds. The next available DB cell
is allocated for the pointer to the zero element of the array. Space is not allocated for the array
nor is initialization allowed. This form is equivalent to array-name(@) without a base-register
reference.

6. array-name() = register sign offset

This form is used for direct arrays with undefined bounds which are Q-relative or S-relative.
The specified cell is used as the zero element of the array; however, space for the array is not
actually allocated and the array cannot be initialized.

7. array-name() = reference-identifier [sign offset]

This form is used for equivalencing an array to a location relative to another identifier. The
reference-identifier may be a simple variable, a pointer variable, or another array and must be
declared first. The array is a direct array except when the reference-identifier is an indirect
array or a pointer variable and no offset is specified. If an offset is specified, the resulting
address must be within the direct address range. For example, if A is at location DB+ 250, then
the declaration

INTEGER B(*)= A+ 10;

would not be allowed because the direct address range for the DB register is 0 to 255. If the
array is direct, the referenced location is used as the zero element of the array. If the array is
indirect, the referenced location is used as the pointer to the zero element except when either
the array or the reference-identifier (but not both) is type BYTE, in which case the next
available DB-cell is allocated for the pointer to the zero element. Space is not allocated for the

3-7

array nor can the array be initialized. DB, PB, Q, S, and X cannot be used as the reference-
identifer because they are interpreted as register references instead.

8. array-name() = reference-identifier (index)

This form is used for equivalencing one array to another array. The reference-identifier may be
either an array or a pointer variable and must be declared first. If the reference-identifier is a
direct array, the array is a direct array whose zero element is the location of the referenced
array element. If the reference-identifier is an indirect array or a pointer variable, the array is
indirect. In this case, the next available DB cell is allocated for the pointer to the zero element
of the array if a non-zero index is specified or if either the array or the reference-identifier (but
not both) is type BYTE; otherwise, both use the same location for the pointer to the zero
element. In any case, space is not allocated for the equivalenced array nor can the equiva-
lenced array be initialized. DB, PB, Q, S, and X cannot be used as the reference-identifier
because they are interpreted as register references instead.

*Forms 4 through 8 are not allowed if the word GLOBAL is included in the declaration.

array-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier except DB,PB,Q,S, or X which has been declared as a data item.

register
specifies the base register in a register reference. The register may be either Q or S.

sign
is + or —.

offset
is an unsigned decimal, based, composite, or equated integer constant within the direct address range
as shown below:

Register Sign Offset
DB + 0 to 255

Q + 0 to 127

Q - 0to 63

S - 0to 63

initialized-global-array
is of the form:

array-name(lower:upper) [=DB] = value-groupi,...,value-group]

3-8

lower
specifies the lower bound of the array. It can be any decimal, based, composite, or equated
single-word integer constant or constant expression.

upper
specifies the upper bound of the array. It can be any decimal, based, composite, or equated
single-word integer constant or constant expression.

index
indicates the element of the referenced array to be used as the reference location. The index can
be any decimal, based, composite, or equated single-word integer constant.

value-group
is either of the following:

initial-value
repetition-factor (initial-value [,...,initial-value])

initial-value
is any SPL numeric or string constant.

repetition-factor

specifies the number of times the initial value list will be used to initialize the array elements. The
repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

Global arrays with defined bounds can be initialized. Initialization consists of a ;= followed by a list of
numerical constants or strings. A group of constants can be surrounded by parentheses and preceded
by a repetition factor (n) to specify that the constants in parentheses are to be used n times in
initializing the array before going on to the next item in the list. These repeat groups cannot be nested.
Elements are initialized starting with the lowest subscript and continuing up until the constant list is
exhausted. The initialization list cannot contain more values than there are elements in the array. If
the constant used for the initial value is too large, it is truncated on the left except string constants
which are truncated on the right. If no initial value is specified, the variable is not initialized. Only the
last array in a declaration list can be initialized.

Table 3-1 summarizes the syntax and meanings for the various forms of global array declarations.
Figure 3-2 shows a series of array declarations with the locations assigned to the identifiers.

Table 3-1. Global Array Declaration Summary

OFFSET ADDRESSING POINTER ZERO ELEMENT

FORM RANGE MODE LOCATION LOCATION
id(low:up) Indirect next DB (A) Sec. DB (A)
id(low:up)=DB Direct Primary DB (A)
id({@)=0DB Indirect next DB C(next DB)
id(@)=DB+offset 0-255 Indirect DB+ offset C(DB+offset)
id(*)=0B Direct Primary DB
id(*)=DB+offset 0-255 Direct DB+offset
id(@) Indirect next DB (A) C(next DB)
id(@)= Q+offset 0-127 Indirect Q+offset C(Q+offset)
id(@)= Q-offset 0-63 Indirect Q-offset C(Q-offset)
id(@)=S—offset 0-63 Indirect S-offset C(S-offset)
id(*) Indirect next DB (A) C(next DB)
id(*)=id Note 1 Note 2 Note 3
id(*)=id+offset Note 4 Direct id+offset
id(*)=id—offset Note 4 Direct id—offset
id(*)=id(index) Note 5 Note 6 id(index)
id(*)=Q+offset 0-127 Direct Q+ offset
id(*)= Q-offset 0-63 Direct Q-offset
id(*)=S—offset 0-63 Direct S-offset

Legend

(A) — Storage is allocated for the designated pointer or array.

C() — The contents of the location in parentheses is the address of the zero element of the array.
id - identifier

low — lower bound

up — upper bound

3-10

NOTES

1. If the right side id is a direct array or a simple variable, the
addressing mode is direct. If the right side id is an indirect
array or a pointer variable, the addressing mode is indirect.

2. If the addressing mode is indirect, both identifiers use the
same pointer location unless one id is type BYTE and the
other is not, in which case, the next available DB-cell is
allocated for the pointer.

3. The zero element is in the same location as the right side id
(or its zero element if the right side id is an array).

4. The offset must result in an effective address within the
direct address range of the base register which the right side
id uses. i

5. Ifthe right side id is a direct array, the left side id is direct; if
the right side id is a pointer variable or an indirect array, the
left side id will be indirect.

6. If the addressing mode is indirect, the next available DB-cell
is allocated for the pointer if:

a. a non-zero index is specified.
and/or
b. one of the two identifiers is type BYTE and the other is
not.

Otherwise, both identifiers use the same pointer location. If the
addressing mode is direct, there is no pointer.

3-4. POINTER DECLARATION

A pointer declaration defines an identifier as a “pointer” — a single word quantity used to contain the
DB-relative address of another data item — the object of the pointer. A pointer declaration defines the
following attributes of a pointer:

e The data type.
o The storage allocation method.
e The initial address to be stored in the pointer (optional).

When the pointer is accessed, the object is accessed indirectly through the pointer address. The object
is assumed to be, or is treated as if it were, the type of the pointer.

There are two methods which can be used to link global pointers to pointers in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global pointer declaration and the
EXTERNAL attribute in the local pointer declaration (see paragraph 7-27). The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.

3-11

00001000 00000 O SCUNTROL ADR

00002000 00000 O BEGIN

00004000 00000 1 ARRAY A(0:10),A0(0:10):=11(%17);
DB+000
DB+001

00005000 00001 1 REAL ARRAY A1(0:10);
DB+002

00006000 00001 1 REAL ARRAY A2(0:10)=DB:
DB+Q03

00007000 00001 1 REAL ARRAY A3(e)=DB;
DB+031

00008000 00001 1 REAL ARRAY A4(R)=DB+5;
DB+005

00009000 00001 1 REAL ARRAY AS(#)=DB:
DB+031

00010000 00001 1 REAL ARRAY A6(#)=DB+6:
DB+006

00011000 00001 1 REAL ARRAY A7(e@):
DB+031

00012000 Q0001 1 REAL ARRAY A8(Q)=Q+3:
@ +003

00013000 00001 1 REAL ARRAY A9(@)=Q=3:
Q0 =003

00014000 00001 1 REAL ARRAY A10(@)=S=2:
S =002

00015000 00001 1 REAL ARRAY A11(#%);
DR+032

00016000 00001 1 REAL ARRAY A12(#)=A1l:
DB+002

00017000 00001 1 REAL ARRAY A13(#)=A1+4:;
DB+006

00018000 Q0001 1 REAL ARRAY Al4(%*)=A2-1;
DB+002

00019000 00001 1 REAL ARRAY A15(#)=A1(5);
DB+033

00020000 00001 1 REAL ARRAY Ate(#)=Q+3:
Q@ +003

00021000 00001 1 REAL ARRAY A17(%)=Q=3;
Q@ =003

00022000 00001 1 REAL ARRAY A18(*)=S5-2:
S =002

00023000 00001 1 BYTE ARRAY A19(®*)=AQ:
DB+034

00061000 00001 1 END,

PRIMARY DB STORAGE=%035; SECONDARY DB STORAGE=%00054
NO, ERRORS=000; NO, WARNINGS=000

PROCESSOR TIME=0:00:02; ELAPSED TIME=0:00:08

Figure 3-2. Sample Global Array Declarations
3-12

All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same pointer, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

where

GLOBAL
is used for pointers referenced in procedures compiled separately.

pointer-dec
is one of the following:

1. pointer-name [:= @reference-identifier [(index)]]

This form allocates the next available DB cell for the pointer variable. If the := @reference-
identifier is used, the pointer is initialized to the address of the reference-identifier or array-
element if an index is included. The reference-identifer must be declared first.

NOTE

Global pointers can only be initialized to point to identifiers
which have been declared to be DB-relative, either explicitly or
implicitly. They cannot be initialized to point to identifiers which
have been register referenced to the Q, S, or X registers. Thus, the
following is not allowed:

INTEGER A= Q+1; POINTER B:=@A;
However, you can use an assignment statement (see paragraph
4-20) to dynamically set the pointer to such a variable unless it
was equivalenced to the index register.
2. pointer-name = reference-identifier [sign offset]
This form is used to equivalence a pointer variable to a location relative to another identifier.

3-13

Space is not allocated for the pointer nor can the pointer be initialized. The resulting address

for the pointer variable must be within the direct address range of the base register which the
reference-identifier uses.

3. pointer-name = register [sign offset]

This form is used to equivalence a pointer variable to a location relative to a base-register.
Space is not allocated for the pointer nor can the pointer be intitialized. The resulting address
for the pointer variable must be within the direct address range of the specified base-register.

type
specifies the data type of the pointer variables in the declaration. The type can be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG.

pointer-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The register can be DB, Q, or S.

sign
is + or —.

offset
is an unsigned decimal, based, composite, or equated integer within the direct address range as shown
below.

Register Sign Offset
DB + 0 to 255
Q + 0 to 127
Q - 0to 63
S - Oto 63

index
indicates the array element whose address the pointer will be initialized to contain. The index can be
any decimal, based, composite, or equated single-word integer constant.

Pointers are initialized with addresses of other variables, not constants. The method is to follow the
pointer with :=@ and a data reference (simple variable, pointer element, or array element). The
address of the specified data item, adjusted to the address type of the pointer, is stored in the cell
allocated for the pointer. BYTE pointers contain DB-relative byte addresses, whereas all other types of
pointers contain DB-relative word addresses.

3-14

See “Pointers” (paragraph 2-20) for methods of referring to and through pointers. Pointers can be
indexed like arrays and can contain word or byte addresses.

Pointers can be declared with all data types; if no type is specified, type LOGICAL is assumed. The
type determines what data type the object of the pointer is assumed to have. This allows objects
declared with one type to be accessed as another data type by accessing them through pointers.

Pointers which are not address referenced are allocated the next available DB-relative location and
can be initialized. Pointers which are referenced use the address of the referenced item or the specified
register relative location and cannot be initialized.

3-5. LABEL DECLARATION

A label declaration specifies that an identifier will be used in the program as a label to identify a
statement. Labels are referenced when it is necessary to transfer control to a specific statement; they
need not be declared explicitly unless the programmer wishes.

where

label
is a legal SPL identifier.

Labels are used to identify statements as follows:

LABEL L1;

L1:A:=B;

The syntax for labeled statements is given in paragraph 1-3. In SPL, a label implicitly declares itself
when it is used to identify a statement, as the object of a GO TO statement, or in a switch declaration.
It need not be explicitly declared in a label declaration except as desired for documentation purposes.
See “GO TO Statement” (paragraph 5-2) and “Switch Declaration” below for use of labels.

3-6. SWITCH DECLARATION

A switch declaration relates an identifier to an ordered set of labels. The switch is accessed as a
computed (or indexed) GO TO statement. The purpose of a switch is to allow selective transfer of
control to any of the statements identified by the labels in the switch declaration.

3-15

where

switch-name
is a legal SPL identifier.

label
identifies the statement to which control is transfered when the switch is invoked.

Only one switch-name can be declared in each switch declaration. Associated with each label in the
label list from left-to-right is an ordinal integer from O to n— 1, where n is the number of labels in the
list. This integer indicates the position of the label in the list. Each position in the list must contain a
label; null elements are not allowed. When the switch-name is referenced (see “GO TO Statement” in
paragraph 5-2), the value of an integer subscript determines which label is selected from the list.
Bounds checking in this selection is optional. Entry points are not allowed in switch declarations.
Switch labels may not occur in subroutines.

3-7. ENTRY DECLARATION

The purpose of a global entry declaration is to specify multiple entry points to a main program beyond
the implicit entry point which is the first statement of the program. Each entry identifier must occur
somewhere in the body as a statement label, but cannot be the object of a GO TO.

where

label
identifies the statement to be used as an alternate entry point.

By specifying the entry point to the operating system, the program can be started at other than its
natural beginning. See “Entry Points” in paragraph 1-16.

3-16

For example, here is a sample entry declaration:

ENTRY P1,P2,P3;

3-8. DEFINE DECLARATION AND REFERENCE

A define declaration assigns a block of text to an identifier. Whenever the identifier is used in the
program thereafter, the assigned text replaces the identifier. This provides a convenient abbreviation
mechanism to avoid repeating long constructs that are used many times throughout a program.

where

identifier
is a legal SPL identifier.

text
specifies the block of text to be substituted when the define is invoked. The text can be any sequence of
ASCII characters; however, # can be used only within a string.

A define identifier can be referenced anywhere except within an identifier, string, or constant. The
text should make sense when inserted where the define is referenced.

At declaration time, a define has no effect on the compilation of the program. It has effect only in the
context where it is referenced. For this reason, undeclared identifiers can appear in defines; they need
to have been declared only when the define is referenced. Similarly, the define text is checked for
syntax errors in the context where it is referenced, not where it is declared.

Define declarations can be nested (define identifiers can be used in other definitions), but they cannot
be recursive (a define identifier appearing within its own text), since this leads to infinite nesting
when the define is referenced.

The number sign (#) terminates a define text only if it is not contained in a string. For example, the

string “"ABCD# ”# is valid text terminated by the second #. Incomplete comments cannot appear in
DEFINEs.

Only one block of text can be assigned to a particular identifier.

For example, here are some sample define declarations and references:

DEFINE I= ARRAY B(0:1)#;
INTEGER I; <<INTEGER ARRAY B(0:1);>>

3-17

DEFINE SUM= A+ B+ C+ D+ E#;
J:=SUM; <<J:=A+B+C+ D+ E;>>

3-9. EQUATE DECLARATION AND REFERENCE

An equate declaration assigns an integer value (determined by an expression of integer constants and
other equates) to an identifier. The equate mechanism is only a documentation and maintenance
convenience; it does not allocate any run-time storage, but merely provides a form of consistent
identification for constants. When an equate identifier is used, the appropriate constant is substituted
in its place. When equates are used instead of actual constants, programs can be updated easily;
instead of replacing every occurrence of a constant, only the equate declaration is changed.

where

identifier
is a legal SPL identifier.

equate-expression
can be either one of or a combination of two forms:

[sign] unsigned-integer [operator unsigned-equate-expr]
(equate-expression)

sign
is + or —.

unsigned-integer
is an unsigned decimal, based, composite, or equated single-word integer constant.

operator
is +,— %, or /.

unsigned-equate-expr
is an unsigned equate-expression.

The value to be assigned to an equate identifier is determined by an equate expression. Equate
expressions consist of operators (*,/,+,—), unsigned integers (including previously defined equated
integers), and parentheses. Evaluation of the expression proceeds from left to right, except that
multiplication and division (*,/) are done before addition and subtraction (+,—) and expressions in

3-18

parentheses are done before the operators that surround them. The value of an equate expression must
fit in a single-word or it will be truncated on the left. Since equate identifiers can be used in equate

expressions, a series of related equate declarations can be set up such that changing only the first
changes all the rest.

Equate identifiers can be used anywhere in the program that an integer or unsigned integer constant
is allowed.

For example, here are some sample equate declarations and references:

EQUATE M=1,N=M+ 1,P=N+1;
EQUATE T= 20*P/(20—- P+ M);
J:=136*T;

<<M=1, N=2, P=3, T=3, J=408>>

3-19

EXPRESSIONS, ASSIGNMENT,

AND SCAN STATEMENTS || v

4-1. EXPRESSION TYPES

An expression is a sequence of operations upon constants, variables, and indexed items which results
in a single value of a specified data type. If the data type is logical, the expression is a logical
expression and logical operators are allowed within it. If the data type is numeric (i.e., byte, integer,
double, real, or long), the expression is an arithmetic expression and arithmetic operators are used
within it. An IF expression allows a choice to be made between two expressions of the same word size
based on hardware or software conditions.

Within SPL expressions, only variables of the same data type can appear on either side of an operator.
That is, an integer can be multiplied by an integer, but not by a real. The only exception to this rule is
the exponentiate operator (A) in arithmetic expressions; real and long data items can be exponentiated
to integer powers. In all other cases, the combination of differing data types can only be accomplished
through type transfer functions. For example, the function FIXR converts an expression of type real
into one of type double and rounds the result to the closest integer:

FIXR(real-expression)

A corresponding function, FIXT, converts real to double and truncates the result:

FIXT(real-expression)

Type transfer functions are not available for all possible transformations. The following table shows
which transfers are provided and which functions should be used in each case. In some cases, it may be
necessary to specify nested type transfer functions (e.g., to convert from real to integer, either
INTEGER(FIXR(real-expression)) or INTEGER(FIXT(real-expression))).

FROM TO

LONG REAL DOUBLE INTEGER LOGICAL BYTE
Long | ------ REAL
Real LONG | - FIXR

FIXT

Double LONG REAL | - INTEGER LOGICAL
Integer REAL DOUBLE | ---- LOGICAL BYTE
Logical REAL DOUBLE INTEGER | ------ BYTE
Byte REAL DOUBLE INTEGER LOGICAL | -

4-1

4-2. VARIABLES

A variable is one of the items which can occur in expressions. Each variable, whether it is a simple
variable, an array element, a pointer reference, or the top of the stack, is associated with one data item

of a specific type. The address of any data item can be used as an integer variable since it is a 16-bit
signed quantity. '

where

data-item
is a simple-variable, array-name, or pointer-name.

index

specifies an offset. The index is either an expression or an assignment statement of type integer,
logical, or byte. If an index is not specified with an array-name, a pointer-name, or ABSOLUTE, then
zero is assumed.

TOS
is the Top Of Stack

identifier
is a simple-variable, array-name, pointer-name, label, or procedure-name whose DB- or PB-relative
address is used as an integer value.

ABSOLUTE
is used to denote an absolute memory location. To use this construct, you must have privileged mode
(PM) capability.

The three most common types of variables occurring in all data types are the simple variable, the
array reference, and the pointer reference. Array and pointer references specify an element by means
of a subscript or index; the index must always be a one-word value (byte, integer, or logical). The index
value specifies an element index, not a word index. It is loaded into the index register and used in an
indexed memory reference instruction. If no index is specified, the reference is to the zero element
which is more efficient than explicitly specifying 0 as the index since the index register is not used.

4-2

4-3. TOS

TOS is a reserved symbol that always refers to the top of the stack; it can be used anywhere a variable
can be used. When TOS is used on the left side of an assignment statement (TOS:=expression), the
normal store operation is omitted and the result is left on the top of the stack. If TOS occurs in an
expression, the contents of the top of the stack are used as the next operand. TOS must be used
carefully, since the compiler does not keep track of the number of elements pushed onto the stack prior
to encountering TOS. The data type of TOS is determined by context; it takes the type of the expression
or other operand. Thus, in one context TOS might refer to the top word, in another the top four words.
Note that TOS does not refer to the same memory location from one statement to the next, since S is
constantly changing. The default type for TOS is integer. A general rule for determining the effect of

TOS is to assume that TOS is a variable and then delete all LOAD and STOR operations for TOS. For
example,

TOS:=17; <<LOAD 7>
A:=TOS+6; <<A=13>>

4-4. ADDRESSES (@) AND POINTERS

When @ precedes a simple variable, it specifies that the DB-relative address of the simple variable is
desired. All addresses are signed, one-word integers and are treated as such in expressions. When @
precedes an array identifier, it refers to the DB- or PB-relative address of the zero element of the array
(whether direct or indirect). When @ precedes an array reference (identifier(index)), it refers to the
DB- or PB-relative address of the array element. When @ precedes a pointer identifier, it refers to the
address contained within a pointer cell; when an index is specified, @ refers to the address of the data
element relative to the zero element pointed at by the pointer. For example,

BEGIN
INTEGER A;
INTEGER ARRAY B(0:10);
POINTER P:=@B(5);
A=@A; <<A assigned address of A>>
A:=@P; < <A assigned address of B(5)>>
A:=@B; <<A assigned address of B(0)>>
END.

If the @ construct is used on the left of an assignment operator, it must be used with either a
pointer-name or an array-name of an indirect array and an index cannot be specified. This usage
changes the address which the pointer contains. For arrays, this means that there is a new zero
element. For example,

@ A= @ A(D);
would make A(1) the new A(0). For pointer variables, the statement:
@P:=@B;
changes P to point to the location assigned to B. The various combinations using the @ construct and

pointers are summarized in figure 4-1.

SEP 1976 4.3

POINTER P1,P2;

LOGICAL VAR,

P1.=P2; << The object of P2 is stored into the object of P1>>
Pl:=@P2; << The address in P2 is stored into the object of P1>>
@Pl:=@P2; << The address in P2 is stored into P1>>

@P1:=P2; < <The object of P2 is stored into P1>>

P1:=VAR; <<The value of VAR is stored into the object of P1>>
Pl:=@VAR; << The address of VAR is stored into the object of P1>>
@Pl:= @VAR; <<The address of VAR is stored into P1>>
@P1:=VAR; <<The value of VAR is stored into P1>>

VAR:=PI1; << The object of P1 is stored into VAR>>
VAR=@P1; <<The address in P1 is stored into VAR>>

Figure 4-1. Pointers and Addresses

4-5. ABSOLUTE ADDRESSES

The ABSOLUTE construct can only be executed in privileged mode. It provides access to the contents
of an absolute memory location. The address (index) is loaded into the index register. If ABSOLUTE
appears on the left side of an assignment statement (ABSOLUTE(index):=expression), a PSTA
(privileged store) instruction is generated which stores the top of the stack (expression) in the absolute
memory location specified by the index register. If ABSOLUTE appears within an expression, a PLDA
(privileged LOAD) instruction is generated which loads onto the stack the contents of the absolute
location specified by the index register. For example,

LOGICAL L1,L2,L3;
INTEGER A1,A2 A3=X;

L1:= ABSOLUTE(A1*A2);

ABSOLUTE(L2):= A1+ 5;

ABSOLUTE(A3):= A1+ 5; << A3 is the index register>>
L1:= ABSOLUTE(ABSOLUTE(3));

L1:= ABSOLUTE(A3);

4-6. FUNCTION DESIGNATOR

Function designators are another of the possible components of an expression. A function designator
specifies a function (a typed procedure or subroutine) to be executed and a list of actual parameters
(values or addresses) to be passed to the function. The function returns a value of the appropriate data
type to the place in the expression where it was called.

4-4

where

name
is the name of the function procedure or subroutine to be executed.

tdentifier
is a simple-variable, array-name, pointer-name, procedure-name, or label. The DB- or PB-relative
address is passed to the function. PB-relative arrays cannot be passed as parameters. An identifier

must be used if the formal parameter is not used in a VALUE statement within the procedure or
subroutine.

index

specifies an array or pointer element. The index is an expression or an assignment statement of type

INTEGER, LOGICAL, or BYTE. If an index is not specified for an array or pointer, then zero is
assumed.

arithmetic-expression logical-expression and assignment-statement
are evaluated and the result is passed as a call-by-value parameter. The forms for these items are
described fully later in this section.

The function procedure or subroutine must have been previously declared (see “Procedure Declara-
tion” and “Subroutine Declaration” in section VII). The actual parameters must match the formal
parameters one-to-one as specified in the declaration; correspondence is checked left-to-right. An
actual parameter may be omitted only if OPTION VARIABLE has been specified in the procedure
declaration.

4-5

A stacked parameter is specified by an asterisk (*) to indicate that you have already loaded the
necessary address or value onto the stack. Labels cannot be stacked. If any parameter is stacked, all
parameters to its left must also be stacked. In addition, functions require that a 1-, 2-, or 4-word zero
(depending on the function type) be pushed onto the stack before the function parameters to reserve
space for the return value. Normally, the compiler provides this zero automatically; however, if
stacked parameters are used, you must arrange for this zero. For example,

INTEGER PROCEDURE COMPUTE(N);VALUE N;..;
ASSEMBLE (ZERO);
TOS:=A;
B:= COMPUTE*)+ 1000;

For more details on calling procedures and subroutines, see “Procedure Call Statement” and “Sub-
routine Call Statement” in paragraphs 5-8 through 5-13.

Procedure calls use the PCAL instruction and subroutine calls use the SCAL instruction.

4-7. BIT OPERATIONS

Bit operations can be used in any type of expression. Bit extraction is the extraction of a contiguous bit
field starting at a particular bit position. Bit concatenation consists of extracting a bit field from a
specified position in one quantity and depositing it at a specified position in another quantity. Bit
shifts allow values to be shifted left or right, arithmetically, circularly, or logically. All bit operations
are performed on copies of the specified quantities so that the original variables remain unchanged.

A simple-variable of type BYTE is stored in bits 0-7. However, before performing a bit operation, the
value is loaded onto the stack into bits 8-15. Therefore, bit operations using BYTE simple-variables
should use bits 8 through 15 instead of 0 through 7.

Bit extraction and concatenation are defined for one-word quantities only. Bit shifts are provided for
one-, two-, three-, and four-word quantities. See “Assignment Statement” later in this section for bit
deposit.

4-8. BIT EXTRACTION

The purpose of bit extraction is to isolate a contiguous bit field from the 16 bits of a one-word value.
The result is a right justified value with leading bits set to zero. The maximum field that can be
extracted in a single operation is 15 bits. Bit extraction uses the EXF (extract field) instruction.
Extraction starts with the bit of the source specified by left-source-bit and continues to the right for the
number of bits indicated by length, wrapping around to bit 0, if necessary.

where

source
is a single-word integer, logical, or byte primary from which the bits are extracted. Refer to para-
graphs 4-11 and 4-14 for the definition of primary.

left-source-bit
specifies the bit of the source word at which the extraction begins. The left-source-bit is any unsigned
decimal, based, composite, or equated integer constant from 0 to 15 inclusive.

length
specifies the number of bits to be extracted. The length is any unsigned decimal, based, composite, or
equated integer constant from 1 to 15 inclusive.

See figure 4-2 for a sample bit extraction.

4-9. BIT CONCATENATION

Concatenation permits the formation of a new value by extracting a bit field from one word and
depositing it at a specified position in another word. The left-dest-bit indicates in which bit position of
the destination primary to deposit the field extracted from the source primary. The left-source-bit
indicates at which position in the source primary to begin extracting the bit field. The length indicates
how many contiguous bits to extract and subsequently deposit. Bit concatenation uses both the EXF
(extract field) and DPF (deposit field) instructions which are described in the Instruction Set Reference
Manual.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A0 1 o|0]1 1 110 1 1101 0|1 0
- —
—_—
A3 =y0ojo0]Jojojojoflo|lo|ojJojo|lofo]o]n 1

Figure 4-2. Bit Extraction

where

source
specifies the item from which bits are extracted. The source is a single-word integer, logical, or byte
primary (defined under “Arithmetic Expressions” and “Logical Expressions” later in this section).

destination
specifies the value into which bits are deposited. The destination is a single-word integer, logical, or
byte primary (defined under “Arithmetic Expressions” and “Logical Expressions” later in this section).

left-source-bit
specifies the starting bit position of the bit extraction. It is an unsigned decimal, based, composite, or
equated integer constant whose value is between 0 and 15 inclusive.

left-dest-bit
specifies the starting bit position of the bit deposit. It is an unsigned decimal, based, composite, or
equated integer constant whose value is between 0 and 15 inclusive.

length
specifies the number of bits to be copied. The length is an unsigned decimal, based, composite, or
equated integer constant whose value is between 1 and 15 inclusive.

See figure 4-3 for a sample bit concatenation.

jlLlfﬁ\:mf@?[i[’fﬂl?lﬁq'?ﬁZ(l\flfi@f;Z[lf;f;’i[f}'?('?ﬁf]

-~ A \ Ay o A -
ACATB(B:4:2)tL0[1!0 0|0| 1(1[0!0[1[0|1|1|1I0]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4-3. Bit Concatenation

4-10. BIT SHIFTS

In the bit shifts, the shift-op is a mnemonic for a hardware shift operation. Consult the hardware
documentation for complete details. In general, logical shifts fill with zero bits as they shift left or
right; arithmetic shifts preserve the sign bit on a left shift, and fill with zeros, and propagate the sign
bit on a right shift (in other words, fill with the sign bit); and circular shifts do not have a fill bit (that
is, bits shifted off one end are shifted in at the other end). SPL does not perform type or word-size tests
in bit shifts; if you specify a triple shift on a single-word quantity, a triple shift is generated. You are
responsible for maintaining compatibility. Note that if the shift count is not a constant less than 64,
the index register is used.

4-8

where

operand
is an arithmetic or logical primary of any SPL type (see “Arithmetic Expressions” and “Logical
Expressions” later in this section).

shift-op
specifies the shift operation to be performed. The skift-op is one of the following: LSL, LSR, ASL, ASR,
CSL, CSR, DASL, DASR, DLSL, DLSR, DCSL, DCSR, TASL, TASR, TNSL, QASR, or QASL.

shift-count
specifies the number of bits to be shifted. The shift-count is an integer expression (described in
“Arithmetic Expressions” later is this section).

See figure 4-4 for some sample bit shift operations.

4-9

A & LSL(3) o{ oo 1 111t o0f0jlojoj1f{o}l1r1jojoijo

A&LSR(3) |olo]loj1]|]1]1]l0fj0fol1[|[1]0

A& asLi3) |14 o0lol1l1|1]0]o]Jolo]1|o]1}0]0]0O

lost

A & ASR(3)

—_
-
Jury
(]
(]
(=]
(=]
-
o
-
-
-
-

A & CsL(3) 0] 0] 0

A & CSR(3)

—_
o
—_
-
—_
-
o
o
o
-
-
N
o
[=]
o
[=]

Figure 4-4. Bit Shift Operations
4-10

4-11. ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of operations upon numeric data which results in a single-
value of a specific data type. Execution of operators occurs left-to-right unless higher precedence
operators or parentheses are encountered. Type mixing of operands across operators is not allowed, but
type transfer functions are provided. Primaries, the basic components of an arithmetic expression, can
be constants, variables, bit expressions, arithmetic expressions in parentheses or backward slashes
(absolute value), function designators, or assignment statements in parentheses.

where

sign
is + or —.

operator
is +,—,* /A, or MOD.

primary

is one of the following:
variable
constant

bit operation

(arithmetic expression)
\\arithmetic expression\
function-designator
(assignment statement)

NOTE
Allowable exponentiation combinations are:

integer A integer
real A real
real A integer
long A long
long A integer

4-11

variable

designates an item whose value is determined at execution time and can be dynamically changed. The
form of a variable is described earlier in this section.

constant
designates a value which is established at compile-time and cannot change during execution. The
various constant types and their forms are described in section II.

bit-operation
is a bit-extraction, bit-concatenation, or bit-shift as described earlier in this section. The value used in
the expression is the result obtained after performing the bit-operation.

function-designator
specifies a call to a procedure which returns a value. The form of a function-designator is described
earlier in this section.

assignment-statement

specifies that an expression is to be evaluated and the result assigned to a variable or variables before
being used in the evaluation of the outer expression. The form of the assignmert-statement is described
later in this section.

4-12. SEQUENCE OF OPERATIONS

Arithmetic operations are ranked in order of precedence to determine the relative order in which
operations are executed. Higher precedence operations are performed first. When operations are of the
same rank, execution proceeds from left to right. The ranks, from highest to lowest, are:

1. Bit operations
Expressions in parentheses
Expressions in backward slashes (absolute value)
Function designators
Assignment statements in parentheses
(value assigned to variable and left on the stack)

2. Exponentiation (A, circumflex character)
(defined for integer, real, and long data, plus real to integer power and long to integer power)

3. Multiply (*) and divide(/) for integer, real, byte, double, and long data.
Modulo (MOD) or remainder for integer, byte, and double data.

4, Addition (+) and subtraction (—) for integer, real, byte, double, and long data.

The order in which operations are performed is determined by this rank. For example,

A-B+C Operators of the same rank are performed from left to right.

result

4-12

A+ B*C Operators of different rank are performed according to their posi-

I_—Lr' tion in the hierarchy of operators (highest rank first).

result

(A+By*C Operators enclosed in parentheses take precedence over operators

Li_‘ outside of parentheses, even those of higher rank.
result

A-B+C*D E Left-to-right order is maintained until an operator occurs that is
of lower rank than the next operator or the next item is in
parentheses.

result

A (B-C*D/E MOD F G

i

result

4-13. TYPE MIXING

Mixing of data types across operands is not allowed in SPL, except that real and long values can be
exponentiated to integer powers. Type transfer functions are available to handle conflicts (see “Ex-
pression Types” earlier in this section).

The type of operands determines the type of both the operation result and the operator used. Integer
operations are used when the operands are of type byte.

4-14. LOGICAL EXPRESSIONS

Logical expressions are evaluated in the same manner as arithmetic expressions. However, logical
expressions use more and different operators; allow only data of type LOGICAL and provide special
constructs, such as byte comparisons. The result of a logical expression is a logical value which can be
interpreted as a 16-bit unsigned integer or as true (odd) or false (even). The truth value of a logical
expression can be used to make decisions (see “IF Statement” in paragraph 5-6). Logical primaries can
be logical constants, variables, bit expressions, expressions in parentheses, functions, or assignment
statements in parentheses, or the complement of any logical primary. The operators LAND (Logical
AND) and LOR (Logical OR) should not be confused with AND and OR as used in the IF Statement.

4-13

where

operator

is LOR (Logical OR), XOR (Logical Exclusive OR), or LAND (Logical AND).

4-14

relational-operator
is > ,<,=,<>>=, or <=.

logical-operator
is +,—,/,MOD,**//, or MODD.

byte-compare
is a comparison of a byte array with another byte array, a string constant or constants, or a test of the
character type of a byte variable. See paragraph 4-17.

lower-value
is the lower bound of a range comparison. The lower-value is an integer expression.

test-value
is the value which is tested for being within the range of the lower and upper values. The test-value is
an integer expression.

upper-value
is the upper bound of a range comparison. The upper-value is an integer expression.

4-15

The purpose of a logical expression is to evaluate certain conditions and relations to produce a value
which can be interpreted either arithmetically (as a 16-bit positive number) or logically (as either

TRUE or FALSE). A logical expression is not a statement of fact, but an assertion that may be true or
false at any given time.

Logical quantities in SPL are 16-bit positive integers (see paragraph 2-7). A logical value is true if its
integer value is odd, false if its value is even (that is, only bit 15 is checked). The reserved words TRUE
and FALSE are equivalent to the numeric values —1 and 0 (% 177777 and % 000000) respectively.

In general, the result of a logical expression is left as a full word operand on the top of the stack. This
result is either a —1 or 0 when a relational operator is encountered. However, when the result of a
relational operator is used in a condition clause to make a decision (see IF Statement), the result is not
left on the stack but the condition code in the status register is set.

4-15. SEQUENCE OF OPERATIONS

Logical operations are ranked in order of precedence to determine the order in which the operations
are performed. Higher precedence operations are performed first. When operations are of the same
precedence, execution proceeds from right-to-left. All operands and results are type LOGICAL, unless
otherwise noted. There are seven ranks of operations as shown below:

1. Logical bit operation
Logical-expression in parentheses
Logical function-designator
Logical assignment statement in parentheses
NOT (unary one’s complement)

2. * (Logical multiply, one-word result)
/ (Logical divide, one-word dividend)
MOD (Logical meodulo or remainder, one-word dividend) Note: The MOD and MODD op-
% . . . erations divide the dividend by
(Log%cal l'ITu.ltlply,' r.esult l‘S type double) the divisor, discarding the quo-
1 (Logical divide, dividend is type double) tient and yielding the remainder
MODD (Logical modulo or remainder, dividend is type double) as the result. See example with
the assignment statement, para-
3. + (Logical addition) graph 4-20.

- (Logical subtraction)

4, Algebraic and logical comparisons (=,<>,<,> <=>=)
Byte comparisons and tests

5. LAND (Logical and)
6. XOR (Logical exclusive or)

7. LOR (Logical inclusive or)
Integer range test (such as, [<= J <= K)

4-16. TYPE MIXING

You cannot mix data types across operands in SPL; however, type transfer functions are available to
handle conflicts. In logical expressions, logical operands are used except when the both operands are
arithmetic and the result is logical (compares, byte tests, and range tests). See paragraph 4-1 for the
type transfer functions.

4-16 SEP 1976

4-17. COMPARING BYTE STRINGS

Logical expressions provide a mechanism for comparing byte strings to determine whether a particu-
lar relation between them is true or false. The test is made using the CMPB (compare bytes)
instruction. The byte strings are compared, byte by byte, using their numeric values until the
compared bytes are unequal or until a specified number of comparisons has been made. If the specified
rélation (<,>,=,<=,>=, or <>) holds, the result is TRUE (- 1); otherwise, it is FALSE (0).

The form of a byte-compare is one of the following:
byte-reference relational-operator byte-reference ,(count) [,stack-decrement]
byte-reference relational-operator *PB,(count) [,stack-decrement]
byte-reference relational-operator string-constant [,stack-decrement]
byte-reference relational-operator (value-group,..., value-group) [,stack-decrement]
byte-variable {= ALPHA

<> NUMERIC
SPECIAL

EXAMPLES:

A<B,(5),2

B(5) >= *PB,(5)
£ <= “ABC”

A <> NUMERIC

where

byte-reference
is one of the following:

1. array-name [(index)]
2. pointer-name [(index)]
3. *

array-name
is an identifier declared in an array declaration.

pointer-name
is an identifier declared in a pointer declaration.

index
is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

count
is the number of bytes to compare. The count is an integer expression. A positive count specifies
left-to-right comparison and a negative count specifies right-to-left.

4-17

stack-decrement

indicates how many words to delete from the stack after the compare. The stack-decrement is an
unsigned integer constant between 0 and 3 inclusive. If not specified, a stack-decrement of 3 is used.

value-group
is either of the following:

constant
repetition-factor (constant [,...,constant])

repetition-factor
specifies the number of times the constant list is used before going to the next value-group. The
repetition-factor is an unsigned decimal, based, composite, or equated single-word integer constant.

The string to the left of the relational operator can be specified by a byte pointer or array reference
(DB-relative only) or a stacked DB byte address (*). The asterisk specifies that you have already loaded
the byte address onto the stack.

The string to the right of the relational operator can be specified by a byte pointer or array reference

(DB- or PB-relative), a stacked DB address (*), a stacked PB address (*PB), a string constant, or a list
of constants in parentheses.

The absolute value of the count specifies how many bytes to compare. A positive count specifies
left-to-right comparison while a negative count specifies right-to-left comparison.

The stack-decrement specifies how many values to delete from the stack at the end of the compare
operation. If a stack-decrement is not specified, all three values are deleted. The contents of the stack
during the comparison are shown below:

S-2 first address
S-1 second address
S-0 count

Byte comparisons can be passed by-value as parameters to procedures and subroutines; however, some
extra requirements apply:

1. If a stack-decrement is allowed but not specified and the byte-comparison is not the last actual
parameter, the byte-comparison must be enclosed in parentheses. For example,

P(A,(B<C,(3)),2);

2. Byte comparisons which use stacked values must be enclosed in parentheses and all parameters to
the left must be stacked prior to stacking the values to the byte-comparison. For example,

P(*,(x=*,(5));
4-18

4-18. CONDITION CLAUSES

Condition clauses are used in IF expressions, IF statements, DO statements, and WHILE statements.
Two types of operands are used in condition clauses: logical-expressions and hardware branch words.
Both types of operands result in a value of true or false. These operands can be combined using AND
and OR. If two items are combined with OR, the result is true if either item is true or if both items are
true. If two items are combined with AND, the result is true only if both items are true. AND has
higher precedence than OR, but you can use parentheses around OR’ed expressions to override this
precedence. Parentheses cannot be used around items combined with AND.

where

condition-term
is either of the following:
condition-primary
(condition-primary [OR condition-primary]...OR condition-primary)

condition-primary

is either true or false. The condition-primary is one of the following:
branch-word
logical-expression

branch-word

is one of the following: CARRY, NOCARRY, OVERFLOW, NOVERFLOW, IABZ, DABZ, IXBZ,
DXBZ,=,<> <,> <=, or >=.

4-19

The hardware branch words test the Status Register, the Index Register, or the Top of Stack as shown
below: '

OR and AND generate branch instructions instead of arithmetic ANDs and ORs. All parts of a
condition are not always executed since OR and AND branch out of the condition as soon as the truth
value of the condition is determined. For example, if a series of items is joined by ANDs and the first
item is false, the whole condition is false so the remaining items are not checked.

NOTE

The CARRY and OVERFLOW bits are cleared after being tested.
The Condition Code, Index Register, and TOS are unaffected by
being tested.

4-19. IF EXPRESSIONS

Expressions are used to determine values to be used in statements. The IF expression consists of a
condition-clause and two alternative expressions. The condition-clause is a combination of logical
expressions and hardware branch words which results in a true or false value. The two expressions
must be of the same word size (byte is treated as one word). If the condition-clause is true, the value of
the IF expression is the value of the expression after the THEN; if the condition-clause if false, the
value of the IF expression is the value of the expression after the ELSE. The definition of condition-
clause is given earlier in this section.

4-20

where

condition-clause

determines which value to use as the value of the expression.
described earlier in this section.

true-value
is the value of the expression if the condition-clause is true.

false-value
is the value of the expression if the condition-clause is false.

4-21

The form of a condition-clause is

4-20. ASSIGNMENT STATEMENT

The assignment statement stores the result of an expression evaluation into a variable of the same
size. Multiple assignments allow the same result to be stored in several variables. Bit deposits allow a
one-word result to be stored into a variable starting at a specific bit position.

where

variable
designates the item(s) to which the value of the expression is assigned. The form of a variable is
described earlier in this section.

left-deposit-bit
specifies the starting bit position of a bit deposit. The left-deposit-bit is an unsigned decimal, based,
composite, or equated integer constant between 0 and 15 inclusive.

length
specifies the number of bits to be stored. The length is an unsigned decimal, based, composite, or
equated integer constant between 1 and 15 inclusive.

expression

is evaluated to determine the value to store into the variable(s) on the left of the assignment operator.
The expression is an arithmetic or logical-expression whose result is the same word size, although not
necessarily the same data type, as the variable(s).

The result of the expression evaluation is stored in the variable(s) specified on the left side of the
assignment operator (:=). Blanks cannot be embedded between the colon and the equals sign of an
assignment operator. The result must be the same word size, but not necessarily the same data type, as
the assignment variable. Type BYTE is treated as a one-word quantity.

When a deposit field is specified, the expression result must be a one-word quantity. The rightmost n
bits of the result, where n is the deposit field length, are stored in the variable starting with the bit
position specified. Note that only the leftmost assignment can be a deposit field.

4-22

An assignment statement can be used as a term in an expression. In this case, the result of the
expression in the assignment statement is first stored into the variable(s) and then used as the value of
the term in the outer expression. For example, the statement:

J=K+ I=1+1)-M;
is equivalent to the sequence of statements:

I.=1+1;
J=K+I-M;

Note that a semicolon is not used to terminate an assignment statement used within an expression.

Assignment statements can also be used as array or pointer subscripts and as call-by-value parame-
ters to procedures and subroutines. Array subscripts on the left side of an assignment statement can be
evaluated either before or after the expression on the right side of the assignment statement depend-
ing on the complexity of the subscript. Therefore, you should avoid changing the value of a variable on

the right side of an assignment statement if the variable is used as a subscript on the left of the
assignment statement. For example,

AD:=BI:=1+1);
is not evaluated the same as:
A(I+ 0):=BI:=1+1);

In the first case, I is incremented and then used as the subscript for both B and A. In the second case,
the original value of I is used as the subscript of A. In general, if a subscript which is used on the left
side of an assignment statement is evaluated without using the top of the stack, the evaluation of the

subscript is done just prior to storing the value in the array element. Subscripts in this category
include:

Simple variables 0]

Increment by one I=I+1
Decrement by one I.=I-1)
Addition of zero I.=1+0)
Subtraction of zero (I=1I-0)

For example,
Al=I+1):=BI=I+2);

is evaluated as:

IL=1+1;
I.=1+2;
AD:=B{d);

Note that if the left-side subscript is itself an assignment statement, it is executed before the right side
of the outer assignment statement is evaluated even though the subscript used to determine the
element being stored into may not be evaluated until afterwards. However, if the left side subscript

4-23

uses the top of the stack, the evaluation of the right side expression does not effect the value of the left
side subscript. For example,

A(l=1+2):=BI:=1+ 1),
is evaluated the same as:

I=1+2;
I=1+1;
A(I-1)= B,

If in doubt, you can use the $CONTROL INNERLIST option to check the code which the compiler

generates (see paragraph 9-2).

The following examples illustrate the use of assignment statements involving type DOUBLE data and -
the logical operators **, 11, and MODD:

LOGICAL L1:= 20000, L2:= 2, L3:= 3;

DOUBLE Di;

D1:= L1**L2 << D1:= 40000D >> ; Product
L4:= D1/L3 << Ld4:= 13333 >> ; Quotient
L5:= D1 MODD L3 << L5:=1>> ; Remainder

4-24 SEP 1976

4-21. MOVE STATEMENT

The MOVE statement moves words or bytes from one location to another. The locations can be either
DB- or PB-relative. There are three types of move operations corresponding to the three types of
hardware move instructions:

& Move words MOVE,MVBL, and MVLB)
e Move bytes (MVB)
& Move bytes while alphabetic and/or numeric with or without upshifting (MVBW)

Move operations do not change the contents of the source.

The two forms of a move statement are:
source,(count)
- MOVE destination := . [?B},(count) [stack-decrementl . -
: string
(value-group)
and
MOVE destination = { iou‘me} WHILE condition
. EXAMPLES:
MOVE OUT:= IN,(10),2;
MOVE OUT:=*PB,(— 10);
MOVE OUT:=(10¢° 2, "STRING?,5(" 7)),1;
MOVE OUT:=IN WHILE AN;
MOVE OUT:=* WHILE N;
MOVE *:=* WHILE ANS;
where
destination

specifies the starting location to be stored into. The destination is one of the following:

array-namel (index)]
pointer-namel (index)]

il

source
specifies the starting location of the item to be copied. The source is either of the following:

array-namel (index))
pointer-namel (index))

4-25

array-name
i8 an identifier declared in an array declaration.

pointer-name
is an identifier declared in a pointer declaration.

index

is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

count
is the number of bytes to move. The count is an integer expression. A positive count specifies
left-to-right move and a negative count specifies right-to-left.

stack-decrement

indicates how many words to delete from the stack after the move. The stack-decrement is an unsigned
integer constant between 0 and 3 inclusive for a MOVE and between 0 and 2 inclusive for a MOVE
WHILE. If not specified, a stack-decrement of 3 is used for a MOVE and 2 for a MOVE WHILE.,

value-group
is either of the following:

constant
repetition-factor (constant {,...,constant])

repetition-factor
specifies the number of times the constant list is used before going to the next value-group. The
repetition-factor is an unsigned decimal, based, composite, or equated single-word integer constant.

condition
specifies the criteria for continuing the move to the next character. The condition is one of the
following: A,N,AS, AN, or ANS.

The move statements in SPL are machine dependent because they are based on specific hardware
instructions.

The first reference after the MOVE is the destination; the item after the assignment operator (:=) is
the source. INTEGER, REAL, LONG, and DOUBLE arrays use the move words instructions whereas
BYTE arrays use the move bytes instructions. When the source is a string or a list of constants, the
constants are generated in the code stream and moved from there. The syntax for the list of constants
is the same as for a list of constants used to initialize an array in an array declaration.

Where * or *PB appears in place of an address, the DB- or PB-relative address must have been
previously loaded onto the stack by the user. The source can be PB-relative except when the
MOVE...WHILE statement is used. The destination cannot be PB-relative. If both addresses are
stacked, a byte move is assumed.

The count is an integer expression that specifies the number of words or bytes to move; a positive count
indicates a left-to-right move and a negative count indicates a right-to-left move. At the completion of
the move, the count equals zero and the addresses have been changed to point to the character fol-
lowing the last character moved.

4-26

The stack-decrement is an integer constant equal to 0, 1, 2, or 3. This item specifies how many
temporary values required by the move instruction are to be deleted from the stack after the move. If a
stack-decrement is not specified, then all the temporary values are deleted.

The stacked values used by the move words and move bytes instructions are shown below:

S-2 destination address
S-1 source address
S-0 count

The stacked values used for a move bytes while instruction are:

S-1 destination address

S-0 source address

In a MOVE ... WHILE statement, the condition specifies the condition for continuing the move to the
next character. The conditions are shown below:

A Current character is alphabetic
N Current character is numeric
AS Current character is alphabetic; upshift if lower case

AN Current character is alphabetic or numeric
ANS Current character is alphabetic or numeric; upshift if lower case

4-27

4-22. SCAN STATEMENT

The SCAN statement is used to examine a contiguous string of bytes looking for two specified
characters (the test and terminal characters) without actually moving any data. When the statement
ends, pointers and indicators are left to show what was found and where. There are two scan
operations, corresponding to the two hardware scan instructions:

e Scan until a test character is found (SCU instruction).
® Scan while a test character is found (SCW instruction).

The scan statements in SPL are machine dependent because they are based on specific hardware
instructions.

where

byte-reference
is one of the following:

array-name [(index)]

pointer-name [(index)]
*

array-name
is an identifier declared in an array declaration.

pointer-name
is an identifier declared in a pointer declaration.

index
is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

4-28

testword
is one of the following:

A decimal, based, composite, or equated single-word integer constant.
A simple-variable of type INTEGER or LOGICAL.

“terminal-character test-character”
%

terminal-character
is any ASCII character. Note that “ is represented by *”.

test-character
is any ASCII character. Note that “ is represented by *”.

stack-decrement
indicates how many words to delete from the stack after the SCAN. The stack-decrement is an
unsigned integer constant between 0 and 2 inclusive. If not specified, a stack-decrement of 2 is used.

The byte-reference which specifies where to start scanning can be a byte array reference, a byte pointer
reference, or an asterisk (*) to indicate that the DB-relative address is already on the stack. PB-
relative arrays cannot be scanned. If either an array or pointer reference is specified, the address is
loaded onto the stack.

The testword is an integer or logical simple variable, an integer constant, or a two character string
where the first character (bits 0 through 7) specifies the terminal-character and the second character

(bits 8 through 15) specfies the test-character. In both cases, each byte in the string is tested against
both the test and terminal characters.

In a SCAN UNTIL, the scan continues until either the test-character or the terminal-character is
found. In a SCAN WHILE, the scan continues until a byte is found that matches the terminal-
character or does not match the test-character. The carry bit in the status register is set to 0 after a scan
to indicate that the test-character was found; it is set to 1 to indicate the terminal-character was found.
This bit can be tested with the IF statement:

IF CARRY THEN ..;
IF NOCARRY THEN ..;

The carry bit is cleared after being tested. The stack-decrement specifies how many words to delete
from the stack after the scan operation. The stack-decrement is very important in a scan operation
because when the scan terminates, the address of the terminating byte can be left in the stack. The
stack for a SCAN UNTIL or a SCAN WHILE appears as show below:

S-1 byte address
S-0 testword

A stack-decrement of 1 deletes the testword but leaves the byte address which can be saved as follows:

SCAN’STOP:=TOS;

An empty stack-decrement field generates a stack-decrement of 2 and leaves the stack as it was before
the scan statement.

4-29

PROGRAM CONTROL STATEMENTS

5-1. PROGRAM CONTROL

Program execution normally proceeds sequentially from statement to statement. By using control
statements, you can alter this sequence by transferring control to another statement, by executing a
group of statements (a procedure or a subroutine) and then returning to the original flow, or by
repeating a pre-determined group of statements. Statements in a program to which control is to be
passed are labeled by identifiers preceding the statement. A colon (:) is used to separate the label from
the statement. Procedures and subroutines are named by identifiers in declarations (see section VII).

This section covers the following control statements:

GO TO statement

DO statement

WHILE statement

FOR statement

IF statement

CASE statement
Procedure call statement
Subroutine call statement
RETURN statement

5-1

5-2. GO TO STATEMENT

The GO TO statement is used to transfer control to a labeled statement. There are two forms of the GO
TO statement: the unconditional form and the indexed form. When an unconditional GO TO statement
is executed, control is transferred to the statement specified. An indexed GO TO statement is used to
invoke a switch to selectively transfer to one of several statements.

where

label
identifies the statement to which control is transferred. The label is an identifier which is used to label
a statement other than an entry-point.

switch-name
identifies the switch to be invoked. The switch-name is an identifier which has been declared in a
switch declaration.

index
indicates which label in the switch declaration is to be used. The index is an expression or assignment
statement whose result is a single-word value.

The three forms GO, GOTO, and GO TO are equivalent. In an indexed GO TO statement, bounds
checking is performed on the index value unless an asterisk (*) is used before the switch-name.

The object of a GO TO statement in the main-body must be a global label or switch-name and the object
of a GO TO statement in a procedure or subroutine must be a local label or switch-name. You cannot
use a GO TO statement to transfer into a procedure and you can only use a GO TO statement to
transfer out of a procedure if the label has been passed to the procedure as a parameter. Switches
cannot be passed as parameters.

Switches are invoked using an indexed GO TO statement; the index is an integer value that specifies
the label desired. Labels in a switch declaration are numbered consecutively starting with 0. Nor-
mally, if the index value is less than zero or greater than the number of labels minus one, control is
transferred to the statement following the GO TO statement. However, if the asterisk option is
specified, bounds checking is not performed and invalid indexes cause unpredictable results. When a
switch is invoked, the index value is stored in the index register.

5-2

NOTE

A switch cannot be invoked within a subroutine nor can any
labels assigned to a switch appear in a subroutine.

5-3. DO STATEMENT

The DO statement is used to repeatedly execute a statement until a specified condtion-clause becomes

true. When the condition-clause is true, control is transferred to the next statement after the DO
statement.

where

loop-statement
is the statement which is executed each pass through the loop. The loop-statement may be either a
simple or compound statement including another DO statement.

condition-clause
determines whether or not to execute the loop-statement another time. See paragraph 4-18 for the form
of a condition-clause.

Note that a semicolon is not used to separate the loop-statement from the reserved word UNTIL.
After the loop-staterment is executed, the condition-clause is evaluated and tested. If the condition-
clause is false, the loop-statement is executed again; if the condition-clause is true, control is trans-

ferred to the statement following the DO statement. The condition-clause is evaluated and tested after
each execution of the loop-statement (the loop-statement is always executed at least once).

5-4

5-4. WHILE STATEMENT

The WHILE statement is used to repeatedly execute a statement as long as a specified condition-clause
is true. The WHILE statement differs from the DO statement in that the condition-clause is tested
before executing the loop-statement instead of after and the condition-clause must be true for the
loop-statement to be executed instead of false. When the condition-clause is false, control is transferred
to the statement following the WHILE statement.

where

condition-clause
determines whether or not to execute the loop-statement. See paragraph 4-18 for the form of a
condition-clause.

loop-statement
is the statement which is executed each pass through the loop while the condition-clause is true. The
loop-statement may be either a simple or compound statement including another WHILE statement.

The condition-clause is always tested before executing the loop-statement. Thus, if the condition-clause
is false on the first pass, the loop-statement will not be executed at all. The condition-clause consists of
logical-expressions and hardware branch words as described in paragraph 4-18. However, the follow-
ing branch words have different meanings when used in a WHILE statement:

IABZ Increment TOS. Execute loop-statement if TOS is non-zero.
DABZ Decrement TOS. Execute loop-statement if TOS is non-zero.
IXBZ Increment the index register. Execute loop-statement if the index-register is non-zero.
DXBZ Decrement the index register. Execute loop-statement if the index-register is non-zero.

5-5

5-5. FOR STATEMENT

The FOR statement is used to repeatedly execute a statement, changing an integer test-variable by a
specified amount each time, until the test variable exceeds a specified limit. The FOR statement uses
hardware loop control instructions which require special stack markers so you should be very careful
when performing your own stack manipulation within a FOR statement.

where

test-variable

is the variable which is altered by the step-value each pass through the loop and is tested for exceeding
the ending-value. The test-variable is an integer simple-variable.

starting-value

is the value assigned to the test-variable before the first pass through the loop. The starting-value is an
INTEGER, LOGICAL, or BYTE expression.

step-value
is the amount by which the test-variable is changed each time the loop is executed. The step-value is an
INTEGER, LOGICAL, or BYTE expression. If omitted, a step-value of 1 is used.

ending-value
is the value against which the test-variable is tested each pass through the loop to determine whether
or not to execute the loop-statement again.

loop-statement
is the statement which is executed each pass through the loop. The loop-statement may be either a
simple or compound statement including another FOR statement.

The starting-value, step-value, and ending-value are calculated once upon entry into the FOR state-
ment. The starting-value is stored into the test-variable and tested before the loop-statement is first
executed. After each execution of the loop-statement, the variable is changed by the step-value and
compared with the ending-value. If the step-value is positive and the test-variable is less than or equal
to the ending-value, the loop-statement is executed again. If the test-variable is greater than the

5-6

ending-value, control is transferred to the statement after the FOR statement. For negative step-
values, the loop is executed again if the test-variable is greater than or equal to the ending-value. After
the FOR statement is executed, the test-variable contains the value which exceeds the ending-value.
Thus, the statement:

FOR J:=1 UNTIL 10 DO ...;
executes the loop-statement 10 times and J has a value of 11 when the loop is completed.

You can use an asterisk (*) after FOR to specify that the loop-statement is to be executed once without
testing the test-variable against the ending-value. This guarantees that the loop-statement is executed
at least once even if the starting-value is past the ending-value.

If the test-variable is equivalenced to the index register, the TBX and MTBX instructions are used for
loop-control; otherwise, the TBA and MTBA instructions are used. Since all of these instructions use
values placed in the stack, if you alter the stack during the execution of the loop-statement, unpredict-
able results may occur. Additionally, if you exit a FOR statement, for example, with a GO TO or
RETURN, from within the loop-statement, the test-variable address, the step-value, and the ending-
value are left on the stack. If the index register is used as the test-variable, any operation within the
loop-statement which changes the index register, such as array referencing, can destroy the loop
control.

Table 5-1. Comparison of DO, WHILE, and FOR Statements

COMPARISON OF DO, WHILE, AND FOR STATEMENTS

DO STATEMENT

The condition-clause is evaluated and tested after the loop-statement is executed.
The loop-statement is repeated if the condition-clause is false.
The loop-statement is always executed at least once.

WHILE STATEMENT

The condition-clause is evaluated and tested before the loop-statement is executed.
The loop-statement is executed if the condition-clause is true.
The loop-statement is not always executed at least once.

FOR STATEMENT

The test-variable is checked before the loop-statement is executed.
The loop-statement is executed if the test-variable is less than or equal to the ending-value

(for positive step-values) or greater than or equal to the ending-value (for negative step-
values).

The loop-statement is always executed at least once if an asterisk is specified after the
reserved word FOR.

5-6. IF STATEMENT

The IF statement is used either to execute one of two alternative statements or to execute or skip a
single statement based on whether a condition-clause is true or false.

where

condition-clause
determines whether or not to execute the true-branch. The form of a condition-clause is described in
paragraph 4-18.

true-branch
is the statement which is executed if the condition-clause is true. The true-branch may be either a
simple or a compound statement including another IF statement.

false-branch
is the statement which is executed if the condition-clause is false. The false-branch may be either a
simple or compound statement including another IF statement.

There are two forms of the IF statement: single-branch and double-branch. The single-branch IF
statement is used when the two alternatives are to execute a statement or not to execute a statement.
If the condition-clause is true, the statement is executed and control proceeds to the statement after
the IF statement, unless the true-branch has tranferred to another statement with a statement such as
a GO TO or RETURN. If the condition-clause is false, the true-branch statement is not executed and
control is transferred to the statement after the IF statement. For example,

IF A<B THEN NX:= A+ B;
IF NOT (FINAL LOR LAST) THEN

BEGIN
TEST'DONE:=FALSE,;
GO TO AGAIN

END;

The double-branch IF statement is used to select one of two alternative statements. If the condition-
clause is true, the true-branch statement is executed. If the condition-clause is false, control is

5-8

transferred to the false-branch statement. When the selected statement has been executed, control is
transferred to the statement after the IF statement except when a transfer has been executed from the

selected statement with, for example, a GO TO or RETURN statement. Some sample double-branch IF
statements are shown below:

IF A<B THEN XA:=XA+ A
ELSE XA:=XA+B;
IF TESTVAR THEN Y:=Y+1
ELSE IF EXTRATEST THEN Y:=Y-1;
IF TEST THEN A:= A+ B ELSE A:=A-B;

Note that you cannot use a semicolon between the true-branch and the reserved word ELSE.

IF statements can be indefinitely nested. The innermost THEN is paired with the closest following
ELSE and pairing proceeds outward. For example,

IF condition-clause
THEN
IF condition-clause
THEN
IF condition-clause

THEN true-branch
ELSE false-branch

ELSE false-branch;

In the above example, the outermost IF statement is a one-branch IF statement.

As noted in paragraph 4-18, logical expressions and/or branch words can be combined using AND and
OR to form a condition-clause. These connectors should not be confused with the logical connectors
LAND and LOR which are used within logical expressions. If two items are combined with OR, the
result is true if either item is true or if both items are true. If two items are combined with AND, the
result is true only if both items are true. AND has higher precedence than OR, but you can use

parentheses around OR’ed expressions to override this precedence. Parentheses cannot be used around
items combined with AND.

9-7. CASE STATEMENT

The CASE statement is used to select one of a set of statements for execution by using an index value
into a compound statement. The statements of the compound statement are assigned index values
consecutively starting with 0 and incrementing by 1. After the selected statement has been executed,
control is transferred to the statement after the CASE statement unless a transfer is executed in the
selected statement such as a GO TO or RETURN statement.

where

index
determines which statement to execute. The index is an INTEGER, LOGICAL, or BYTE expression.

statement
is any simple or compound executable statement including another CASE statement. Null statements
are allowed.

Bounds checking on the index value is normally performed to insure that the index is between 0 and
n— 1 inclusive (where n is the number of statements in the body of the CASE statement). However, if
you do not want bounds checking to be performed, you can specify an * before the index. If the asterisk
option is specified, an invalid index will cause unpredictable results.

To transfer control immediately to the next statement, use a null statement in the case body. For
example,

CASE J OF
BEGIN
A:=100;

C:=200
END;

If J equals 1, control is transferred to the statement after the CASE statement.

The CASE statement uses the index register to store the index value.

5-10

5-8. PROCEDURE CALL STATEMENT

The procedure call statement is used to transfer control to a previously declared procedure and pass a
list of actual parameters to it. When a procedure is completed, control normally returns to the
statement following the call; however, the procedure can override this return (see “Passing Labels as
Parameters”, paragraph 5-11).

where

procedure-name

identifies the procedure to which control is transferred. The procedure-name is an identifier which has
been declared either in a procedure-declaration as a procedure-name or entry-point or in an intrinsic-
declaration.

actual-parameter
is one of the following:

identifier[(index)]
arithmetic-expression
logical-expression

assignment-statement
%

identifier
identifies a call-by-reference parameter. The following items can be passed: simple-variables, array-
names, pointer-names, procedure-names, entry-points, and labels.

index

denotes an array or pointer element. The index is an expression or an assignment statement of type
INTEGER, LOGICAL, or BYTE and can only be specified for array-names and pointer-names. If an
index is not specified, the zero element is used.

arithmetic-expression, logical-expression, and assignment-statement
are evaluated to pass a value as a call-by-value parameter. The forms for these items are described in
paragraphs 4-11 through 4-17 and 4-20.

5-11

The * is used to indicate that you have already put the parameter onto the stack. See paragraph 7-4 for
a discussion of the correspondence between the actual-parameters in a procedure-call and the formal-
parameters in a procedure-declaration.

If a function procedure is called using a procedure call statement instead of a function-designator in an

expression, the return value is deleted from the stack upon returning to the calling routine unless the
procedure overrides the normal return.

Two types of parameter passing is allowed in SPL: by reference and by value. A call-by-reference
parameter places an address onto the stack. A data item (simple-variable, array-element, or pointer-
element) which is passed by reference can have its value changed in the calling environment by
changing its value in the procedure. A call-by-value parameter is passed by evaluating the parameter
at the time of the procedure call and placing this value onto the stack. If a parameter is passed by

value, changes to the parameter value in the procedure will not alter the value of the parameter in the
calling environment.

When a procedure call statement is executed, the actual parameters are loaded onto the stack and a
PCAL instruction is executed. The PCAL instruction places a four-word stack marker onto the stack,
changes the Q-register to point to the top of this stack marker, and transfers control to the entry-point
of the procedure. The stack marker contains the following information:

Q-3 Index Register
Q-2 Return address
Q-1 Status Register
Q-0 delta Q

The return address is P+ 1— PB where P is the value of the P register when the PCAL instruction is
executed and PB is the base register for the code segment. The delta Q is the number of words between
the new value of Q and the previous value of Q.

Because of the stack architecture, recursive procedures (that is, procedures which call themselves) are
allowed.

5-9. STACKING PARAMETERS

Stacked parameters may be either call-by-reference or call-by-value. For call-by-reference parameters,
you must put the address of the actual-parameter onto the stack. For example,

TOS:=@ A;

For call-by-value parameters, you must put the value of the actual-parameter onto the stack. For
example,

TOS:=1+2;
If any parameter is stacked, all parameters to its left must also be stacked. For example,

P(*,*,B,C);
5-12

Labels cannot be stacked. Before stacking parameters for a call to a function procedure, you must push
a one-,two-,or four-word zero, depending on the data type of the function, onto the stack for the return
value. This zero is generated automatically if no parameters are stacked. For example, assume P is a
REAL procedure which has two call-by-reference parameters. The following steps are needed if you
want to stack the parameters:

TOS:=0D;
TOS:=@A;
TOS:=@ B;

5-10. MISSING PARAMETERS IN PROCEDURE CALLS

If the procedure is declared with OPTION VARIABLE, parameters can be omitted from the actual-
parameter list by leaving a comma to hold their place or by using a right parenthesis to terminate the
list if you want to omit the parameters at the end of the formal-parameter list. For example, consider
the procedure declaration:

PROCEDURE P(A,B,C,D,EF);...,OPTION VARIABLE;...

To pass only the first parameter, use a procedure call such as
P(R);

To pass the first and last parameters, use a procedure call such as
P(R1,,,,,R2);

If you want to omit all parameters, you can use either of the following:
P; or P();

The called procedure is responsible for checking the existence of actual parameters. See paragraph 7-9
for a discussion of how to perform this checking.

5-11. PASSING LABELS AS PARAMETERS

Labels may be passed to procedures as call-by-reference parameters to allow control to transfer to a
place other than the normal return address upon completion. Unlike other call-by-reference parame-
ters, however, a label is passed as a three-word label descriptor. If a label is passed to several levels of
procedure calls (such as A calls B which calls C), the label descriptor allows you to transfer to the label
without executing an EXIT instruction for each procedure through which the label was passed; only
the first procedure which received the label parameter is exited. This technique can be very useful for
error processing.

The label descriptor contains the following information:

EXIT Instruction

Label address

Q

5-13

The first word of the label descriptor is an exit instruction to exit the first procedure to which the label
is passed. The second word is the address of the label. The third word is the value of the Q register upon
entry to the first procedure to which the label is passed.

When a transfer to a label which was passed as a parameter is executed, the following steps are
performed:

1. The label descriptor is put on the top of the stack.

2. The Q register is reset to the value in TOS (which is the value it had upon entry to the first
procedure).

3. The label address is stored in Q—2 (the return address location for the first procedure).

4. The exit instruction on the top of the stack is executed to effectively exit the first procedure
and transfer control to the label.

The following situation is illustrated in figure 5-1:
a. The main body calls procedure A and passes the label L as a parameter.

b. Procedure A calls procedure B and passes an integer variable I by-value and the label L as
parameters.

c¢. While in procedure B, a transfer to L is executed —
1. The label descriptor is loaded onto the stack.
2. The Q register is reset to Q (A).

3. The address of L is stored into Q— 2 overriding the normal return address from A back to the
main body.

4. The EXIT instruction in S—0 is executed to:
1. Reset Q to the main body value.
2. Delete the stack marker for A and the label descriptor passed to A.
3. Tranfer control to L.

If the first procedure is a function procedure, the space for the return value is left on the stack should
you not perform a normal return, but transfer to a place other than where the call was made.

5-12. PASSING PROCEDURES AS PARAMETERS

Procedures may be passed to other procedures as call-by-reference parameters. The Load Label (LLBL)
instruction is used to load the external address of the procedure onto the stack. When calling a
procedure which was passed as a parameter, the parameters are assumed to be call-by-reference. To
pass call-by-value parameters to such a procedure, you must stack them before calling the procedure
and use the * in the procedure call. A procedure which has been declared with OPTION VARIABLE
requires a special technique for being passed to another procedure and then called. Such procedures

5-14

AlL);

EXIT3

ADDRESS OF L

Qp

X

RETURN ADDRESS

STATUS

Qs —»

Aa

-

B{l,L);

LABEL
DESCRIPTOR

STACK
MARKER

Qs —»

EXIT3

ADDRESS OF L

Qp

X

RETURN ADDRESS

STATUS

AQ

EXIT3

ADDRESSOF L

127

X

RETURN ADDRESS

STACK
MARKER

LABEL
DESCRIPTOR

1273

ANG

> PARAMETERS

)
)

STACK

STATUS

MARKER

Aa

JQB

Figure 5-1. Passing a Label as a Parameter

5-15

1. 2.

EXIT 3 EXIT 3

LABEL
ADDRESS OF L DESCRIPTOR ADDRESS OF L
Qa) Qa
X X
RETURN ADDRESS STACK RETURN ADDRESS

> MARKER

STATUS STATUS
aQ a, a AQ
|
EXIT 3

PARAMETERS
ADDRESS OF L
Qa
X
RETURN ADDRESS STACK

MARKER
STATUS

a-—» 4Q
Qg
EXIT 3 EXIT 3
ADDRESS OF L S —»l ADDRESSOF L
s CGa

EXIT 3

LABEL
DESCRIPTOR

ADDRESS OF L

.

-

Qa
X

stack @24 ADDRESSOF L

MARKER
STATUS
a0

Qu Q

!
s] EXIT3

LABEL
DESCRIPTOR

STACK
MARKER

Figure 5-1. Passing a Label as a Parameter (Continued)

5-16

require a bit mask in Q—4, and Q- 5 if there are more than 16 formal parameters. If you call such a
procedure you must generate your own bit mask. For example, consider the declarations:

PROCEDURE P(A,B);...;OPTION VARIABLE;...
PROCEDURE P1(F); PROCEDURE F;

If P is passed as an actual parameter to P1, such as:
P1(P);
Then, a call to P within P1 would look like
F(A,B,3);
where 3 is the bit mask indicating that both parameters are present. Since the last parameter is a

constant instead of an address reference, a warning message is issued. An alternative method is to
stack all parameters and the bit mask:

TOS:=@A;
TOS:=@B,;
TOS:=3;
F(*,*);

For further discussion of OPTION VARIABLE procedures, see paragraph 7-10.

517

5-13. SUBROUTINE CALL STATEMENT

The subroutine call statement is used to invoke a previously declared subroutine and pass a list of
actual parameters to it. When a subroutine is completed, control normally returns to the state-
ment following the call; however, the subroutine can override this return. A global subroutine can

branch to a label in the main body and a local subroutine can branch to a label in the procedure
body.

where

subroutine-name

identifies the subroutine to which control is transferred. The subroutine-name is an identifier which
has previously been declared in a subroutine declaration.

actual-parameter
is one of the following:

identifier((index))
arithmetic-expression
logical-expression

assignment-statement
k

identifier
identifies a call-by-reference parameter. The following items can be passed: simple-variables, array-
names, pointer-names, procedure-names, and entry-points.

index

denotes an array or pointer element. The index is an expression or assignment statement of type
INTEGER, LOGICAL, or BYTE and can only be specified for array-names and pointer-names. If an
index is not specified, the zero element is used. '

arithmetic-expression, logical-expression, and assignment-statement

are evaluated to pass a value as a call-by-value parameter. The forms for these items are described in
paragraphs 4-11 through 4-17 and 4-20.

The * is used to indicate that you have already put the parameter onto the stack. See paragraph 7-4 for
a discussion of the correspondence between the actual parameters in a subroutine call and the formal
parameters in a subroutine declaration.

5-18

Note that a label cannot be passed as a parameter to a subroutine nor can parameters be omitted

(OPTION VARIABLE cannot be specified for a subroutine). Alternate entry points are not allowed in
subroutines.

If a function subroutine is called using a subroutine call statement instead of a function-designator in

an expression, the return value is deleted from the stack upon returning to the calling routine unless
the subroutine overrides the normal return.

When a subroutine call statement is executed, the actual parameters are loaded onto the stack and an
SCAL instruction is executed. The SCAL instruction puts the return address onto the stack and
transfers control to the subroutine entry-point. The Q-register is not changed — all parameters are

addressed using S-negative addressing. Recursive subroutines (that is, subroutines which call them-
selves) are allowed.

The discussion in paragraphs 5-9 and 5-12 conncerning stacking parameters and passing procedures
as parameters applies to subroutines as well as procedures except that labels and subroutines cannot
be passed as parameters to a subroutine.

5-19

5-14. RETURN STATEMENT

The RETURN statement is used to exit a procedure or subroutine at some place other than the last
END of the body. Additionally, the RETURN statement can be used to leave some or all of the
parameters on the stack after returning to the point of call.

where

count
indicates how many words to delete from the stack. The count is an unsigned decimal, based,

composite, or equated integer constant.

A RETURN statement within a procedure generates an EXIT instruction, whereas a RETURN
statement within a subroutine generates an SXIT instruction. Multiple RETURN statements within a
single procedure or subroutine are allowed. You can also use a RETURN statement in the main-body
of a program to terminate the program.

If a count is not specified, all parameters are deleted from the stack. If the count equals n, then only the
top n words are deleted. If the count equals 0, all parameters are left on the stack. Note that count is a
word count and not a parameter count. You can specify a count greater than the number of words
passed as parameters; however, you should be very careful that you only delete values you want to
delete.

The calling program must know how many parameters will be left on the stack upon returning
because it must take care of them (examine, save, or delete them). INTEGER, LOGICAL, and BYTE
values use one word; DOUBLE and REAL values use two words; labels use three words; and LONG
values use four words. Call-by-reference parameters (except labels) use one word.

5-20

SECTION

MACHINE LEVEL CONSTRUCTS Vi

6-1. ASSEMBLE STATEMENT

The ASSEMBLE statement is used to generate code by specifying the mnemonics for the hardware
instructions. Instructions within an ASSEMBLE statement can be labeled and transferred to from
outside the ASSEMBLE statement. Additionally, identifiers which are outside the ASSEMBLE
statement can be referenced within the statement, but any indirect references or indexing must be
explicitly specified.

where

label
identifies the instruction. The label is an SPL identifier.

instruction

indicates a machine instruction to be executed or a pseudo-op to generate a constant. The instruction
conforms to one of the ten formats shown in figure 6-1.

The following conventions are used in the instruction formats:
1 Indirection
X Index Register or Indexing
label id A statement or instruction label within addressing range.
variable id A data item identifier within addressing range.

usi An unsigned integer less than or equal to the integer specified. For
example usi255 means an unsigned integer between 0 and 255
inclusive,

6-1

Format 1

la

1b

lc

1d

le

LOAD
LDX
LRA
CMPM
ADDM
SUBM
MPYM

LDB
LDD
STOR
STB
STD
INCM
DECM

BR

BR

BL
BE
BLE
BG
BNE
BGE

TBA
MTBA
TBX
MTBX

|

|
|

label id
variable id
DB + usi255
P + usi255
P - usi255
Q + usil27
Q - usi63

S - usi63

variable id
DB + usi255
Q + usil27
Q — usié3

S - usi63

label id
P + usi255
P - usi255

DB + usi255
Q + usil27
Q — usi63

S - usi63

label id
P + usi3l
P - usi3l

label id
P + usi255
P - usi255

|

|
|

LI [LX]

LI LX]

LI [LX]

I LX]

.1

Figure 6-1. Instruction Formats

6-2

where

variable id is a simple variable, pointer, or array identifier, (indirection is not supplied
automatically).

usi is an unsigned integer less than or equal to the number following.

label id is a label which is used to label a statement within the range of the instruction.

For example,

ASSEMBLE(STB S - 1, I, X; DECM VAR);

Format 2

stackop
or

stack op, stack op
In the first case the compiler fills in the second half of the instruction word with a NOP.

The legal stackops are as follows:

NOP DNEG XCH FLT NOT
DELB DXCH INCA FCMP OR
DDEL CMP DECA FADD XOR
XROX ADD XAX FSUB AND
INCX SUB ADAX FMPY FIXR
DECX MPY ADXA FDIV FIXT
ZERO DIV DEL FNEG INCB
DZRO NEG ZROB CAB DECB
DCMP TEST LDXB LCMP XBX
DADD STBX STAX LADD ADBX
DSUB DTST LDXA LSUB ADXB
MPYL DFLT DUP LMPY

DIVL BTST DDUP LDIV

For example,

ASSEMBLE(DDUP, DELB; STAX);

Format 3

3a [IABZ
IXBZ
DXBZ
BCY
BNCY label
CPRB P+ usi3l [.I]
DABZ * + ysi3l

BOV
BNOV

BRO
BRE

Figure 6-1. Instruction Formats (Continued)

6-3

In these branch instructions, the address can be specified as a label or a P relative address (Px
or ** are the same thing). If the label location is not within 31 locations of P (P * 31), the
compiler tags this as an error; indirection is not supplied automatically within an ASSEMBLE

statement.

3b

ASL
ASR
LSL
LSR
CSL
CSR

SCAN
TASL
TASR
TNSL
DASL
DASR
DLSL
DLSR
DCSL
DCSR

TBC

TRBC
TSBC

TCBC
QASL
QASR

usi63 1,X]

usi63 is a shift count or number of bits less than or equal to 63. For example,

Format 4

4a

4b{

ASSEMBLE(LSL 1; BRE QUIT);

LDI
LDXI
CMPI
ADDI
SUBI
MPYI
DIVI
PSHRT
LDNI
LDXN
CMPN
SETRT

EXF
DPF

usi255 . T = a privileged instruction for
some registers

} usil5 : usilb

For example,

ASSEMBLE (LDI 255; ADDI 5; EXF 7:9),

Figure 6-1. Instruction Formats (Continued)

6-4

Format 5

RSW
LLSH}
PLDAt
PSTAY
LSEA¥
SSEA+
LDEA+
SDEA¥
IXITH
LOCK+
PCN+
UNLK+

For example,

ASSEMBLE (RSW; PLDA; ... LLSH;

Format 6

PAUS
SED
XCHD
SMSK
RMSK
XEQ
SIO
RIO
WIO
TIO
CiO
CMD
SIN
HALT
LST
PSDB
DISP
PSEB
SCLK
RCLK
SST

For example,

usilb

ASSEMBLE (XEQ 4);

F = a privileged instruction

...PSTA);

All of these instructions except XEQ and RMSK are privileged.

Figure 6-1. Instruction Formats (Continued)

6-5

Format 7

PCAL
SCAL
EXIT
SXIT
ADXI
SBXI
LLBL
LDPP usi255
LDPN
ADDS
SUBS
ORI
XORI
ANDI

PCAL procedure identifier
SCAL (user must load label onto stack)
LLBL procedure identifier

For example,

ASSEMBLE (PCAL READ;. ... SCAL LOOPER;. .. ORI %377);
Format 8
82 (MovE "(1)
MVB [PB] ’2
CMPB ’3

’

If item two is empty, a DB relative move is assumed.
If item three is empty, the stack decrement is 3.

8b A
N ,0
MVBW AN 1
AS 2
ANS

If item three is empty, the stack decrement is 2.

8¢ | MVBLT 0
MVLBY 1 FPrivileged instruction.
SCW 9
SCU L’

Figure 6-1. Instruction Formats (Continued)

6-6

If item two is missing, the stack decrement is 2. For example,

ASSEMBLE (SCW, 1);
ASSEMBLE (MVBW AN, 0);
ASSEMBLE (CMPB PB, 1);

8d [MABS¥ 0
MTDS¥ 1
MDS+¥ 2
MFDS+ 3
4

5 for MABS and

MDS
Format 9

CON constant list

This format is actually a psuedo-mnemonic for constant generation; it is not a hardware
instruction.

CON stores a series of constants in the code starting at the current location. In addition to all
numerical and string constants, P relative address constants can be created by listing label
identifiers (this is used to create addresses for indirect references). The CON instruction itself
can be labeled so that other instructions can reference the constants symbolically.

ASSEMBLE(
BRP+1,I;
CON LABELNAME);

ASSEMBLE (TAB: CON “ABCDEFGH”;
LDBTAB, X;.........);

Format 10

10a DMUL
DDIV
EADD
ESUB
EMPY
EDIV
ENEG
ECMP
DMPY

10b | CVAD 0
CVBD 1

Figure 6-1. Instruction Formats (Continued)

6-7

If item 2 is O, 2 words are deleted from the stack.
If item 2 is 1 or empty, 4 words are deleted from the stack.

If item 2 is 0, 2 words are deleted from the stack.
If item 2 is 1 or empty, 3 words are deleted from the stack.

10d (ADDD
SUBD
MPYD
CMPD
SLD
NSLD
SRD

N =O

If item 2 is 0, no words are deleted from the stack.
If item 2 is 1, 2 words are deleted from the stack.
If item 2 is 2 or empty, 4 words are deleted from the stack.

10e
0

1
NABS 1

If 0 is specified, 1 word is deleted from the stack.

If 1 is specified, 3 words are deleted from the stack.

If neither 0 nor 1 is specified, 3 words are deleted from the stack.
If ABS is specified, the target sign will be negative if the source

is negative; otherwise, the target will be unsigned.

If NABS is specified, the target will be unsigned.

If neither ABS nor NABS is specified, the target sign will be the
same as the source.

Figure 6-1. Instruction Formats (Continued)

A list of the mnemonics with their meanings is shown in table 6-1. For a complete description of the
l instructions, refer to the Machine Instruction Set Reference Manual.

6-8 SEP 1976

Table 6-1. Machine Instruction Mnemonics

MNEMONIC

ADAX
ADBX
ADD
ADDD
ADDI
ADDM
ADDS
ADXA
ADXB
ADXI
AND
ANDI
ASL
ASR
BCC
BCY
BE
BG
BGE
BL
BLE
BNE
BNCY
BNOV
BOV
BR
BRE
BRO
BTST
CAB
CIO
CMD
CMP
CMPB
CMPD
CMPI
CMPM
CMPN
CPRB
CsL
CSR
CVAD
cveD
CVDA
CvDB
DABZ
DADD
DASL
DASR
DCMP
DCSL
DCSR

ALPHABETIC LISTING OF INSTRUCTIONS

FUNCTION

Add Ato X

Add B to X

Add

Decimal add

Add immediate

Add memory

Addto S

Add X to A

Add Xto B

Add immediate to X

And, logical

Logical AND immediate
Arithmetic shift left

Arithmetic shift right

Branch on condition code
Branch on carry

Branch on equals

Branch on greater than

Branch on greater than or equal
Branch on less than See BCC
Branch on less than or equal
Branch on not equal

Branch on no carry

Branch on no overflow

Branch on overflow

Branch

Branch on TOS even

Branch on TOS odd

Test byte on TOS

Rotate ABC

Control 110

Command

Compare

Compare bytes

Compare decimal

Compare immediate

Compare memory

Compare negative immediate
Compare range and branch
Circular shift left

Circular shift right

Convert ASCII to packed decimal
Convert binary to packed decimal
Convert packed decimal to ASCII
Convert-packed-decimal to binary
Decrement A, branch if zero
Double add

Double arithmetic shift left
Double arithmetic shift right
Double compare

Double circular shift left

Double circular shift right

FORMAT
2
2
2

10d
4a
1a
7
2
2
4a
2
7
3b
3b
1d
3a

3a
3a
3a
1c
3a

NN NN

10d

1a
4a
3a
3b
3b
10b
10b
10e
10c
3a

3b
3b

3b
3b

6-9

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT
DDEL Double delete 2
DDIV Double divide 10a
DDuP Double duplicate 2
DECA Decrement A 2
DECB Decrement B 2
DECM Decrement memory 1b
DECX Decrement X 2
DEL Delete A 2
DELB Delete B 2
DFLT Double float 2
DIv Divide 2
DIvi Divide immediate 4a
DivL Divide long 2
DLSL Double logical shift left 3b
DLSR Double logical shift right 3b
DMPY Double logical multiply 10a
DMUL Double multiply 10a
DNEG Double negate 2
DPF Deposit field 4b
bsuB Double subtract 2
DTST Test double word on TOS 2
bupP Duplicate A 2
DXBZ Decrement X, branch if zero 3a
DXCH Double exchange 2
DZRO Double push zero 2
EADD Extended-precision floating point add 10a
ECMP Extended-precision floating point compare 10a
EDIV Extended-precision floating point divide 10a
EMPY Extended-precision floating point multiply 10a
ENEG Extended-precision floating point negate 10a
ESUB Extended-precision floating point subtract 10a
EXF Extract field 4b
EXIT Procedure and interrupt exit 7
FADD Floating add 2
FCMP Floating compare 2
FDIV Floating divide 2
FIXR Fix and round 2
FIXT Fix and truncate 2
FLT Float 2
FMPY Floating multiply 2
FNEG Floating negate 2
FSUB Floating subtract 2
HALT Halt 6
IABZ Increment A, branch if zero 3a
INCA Increment A 2
INCB Increment B 2
INCM Increment memory 1b
INCX Increment index register 2
IXBZ Increment X, branch if zero 3a

Shaded instructions not available in pre-Series |l systems.

6-10 Oct 1976

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT
LCMP Logical compare 2
LDB Load byte 1b
LDD Load double 1b
LDI Load immediate 4a
LDIV Logical divide 2
LDNI Load negative immediate 4a
LDPN Load double from program, negative 7
LDPP Load double from program, positive
LDX Load Index 1a
LDXA Load X onto stack
LDXB Load X into B 2
LDXI Load X immediate 4a
LDXN Load X negative immediate 4a
LLBL Load Label 7
LLSH Linked list search 5
LMPY Logical multiply 2
LOAD Load 1a

LSL Logical shift left 3b
LSR Logical shift right 3b

Move words 8a
MPY Multiply 2
MPYD Decimal Multiply 10d
MPYI Multiply immediate 4a
MPYL Multiply long 2
MPYM Multiply memory la
MTBA Modify, test, branch, A 1e
MTBX Modify, test, branch, X 1e
MVB Move bytes 8a
MVBL Move from DB+ to DL+ 8c
MVBW Move bytes while 8b
MVLB Move from DL+ to DB+ 8c
NEG Negate 2
NOP No operation 2
NOT One's complement 2
NSLD Normalizing shift left decimal 10d
OR OR, logical 2
ORI Logical OR immediate 7
PAUS Pause 6
7

PLDA Priviieged load from absolute address 5

Shaded instructions not available in pre-Series |1 systems.

Oct 1976 6-11

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT
PSHR Push registers 4a
PSTA Privileged store into absolute address 5
RIO Read 1/0 - 6
RMSK Read mask 6
RSW Read switch register 5
SBXI Subtract immediate from X 7
SCAL Subroutine call 7
SCAN Scan bits 3

SCuU Scan until
SCwW ; while
SED Set enable/disable external interrupts 6
SETR Set registers 4a
SIN Set interrupt 6
SIO Start /1O 6
*SIRF Set internal interrupt reference flag 6
SLD Shift left decimal 10d
SMSK Set mask 6
SRD ~Shift right decimal 10d
STAX Store A into X 2
STB Store byte 1b
STBX Store B into X 2
STD Store double 1b
STOR Store 1a
SUB Subtract 2
SUBD Subtract decimal 10d
SUBI Subtract immediate 4a
SUBM Subtract memory 1a
SUBS Subtract from S 7
SXIT Subroutine exit 7
TASL Triple arithmetic shift left 3b
TASR Triple arithmetic shift right 3b
TBA Test, branch, A 1e
TBC Test bit and set condition code 3b
TBX Test, branch, X 1e
TCBC Test and complement bit and set CC 3b
TEST Test TOS 2
TIO Test I/O 6
TNSL Triple normalizing shift left 3b
TRBC Test and reset bit, set condition code 3b
TSBC Test, set bit, set condition code 3b

*TSBM Test and set bit in memory A 3b

WIO Write /0 6
XAX Exchange A and X 2
XBX Exchange B and X 2
XCH Exchange A and B 2

*Instructions preceded by asterisk only available in pre-Series 11 systems.
Shaded instructions not available in pre-Series Il systems.

6-12 Oct 1976

Table 6-1. Machine Instruction Mnemonics (Continued)

MNEMONIC

XCHD
XEQ
XOR
XORlI
ZERO
ZROB
ZROX

ALPHABETIC LISTING OF INSTRUCTIONS

FUNCTION

Exchange DB

Execute

Exclusive OR, logical

Logical exclusive OR, immediate
Push zero

Zero B

Zero X

FORMAT

DO ND NN O

6-13

6-2. DELETE STATEMENT

The delete statement allows you to delete words from the stack without using the ASSEMBLE
statement.

The mnemonics have the same meanings as in the ASSEMBLE statement:

DEL Delete the top of stack (S—0) and decrement the S-register by 1.
DELB Delete the contents of S—1 by storing S—0 into it and decrement the S-register by 1.
DDEL Delete the contents of S—0 and S—1 and decrement the S-register by 2.

See figure 6-2 for the effect of the delete statement on the stack.

BEFORE DEL AFTER DEL
s2 7 s1 7
S1 6 S0 6
S0 5
BEFORE DELB AFTER DELB
$-2 7 s 7
s-1 6 S0 5
S0 5
BEFORE DDEL AFTER DDEL
$2 7 S0 7
S-1 6
S0 5

Figure 6-2. Delete Statement
6-14

6-3. PUSH STATEMENT

The PUSH statement puts the contents of any or all of the registers onto the stack using the PSHR
instruction.

where

register
is one of the following hardware registers: S,Q,X,STATUS,Z,DL, DB, or SBANK.

If more than one register is specified, they are stacked in the order shown below (regardless of the
order in which they are listed in the PUSH statement):

REGISTER VALUE STACKED
S S— DB (relative S before PSHR instruction)
Q Q— DB (relative Q)
X Index Register
STATUS Status Register
Z Z— DB (relative Z)
DL DL—- DB (relative DL)
DB DB (absolute address — 2 words)
SBANK Stack Bank

Thus, if you use the statement:
PUSH(STATUS,X,DL);

The stack would look like:

S-2 Index Register
S-1 Status Register
S-0 Relative DL

Privileged mode is required to push either DB or SBANK.
6-15

6-4. SET STATEMENT

The SET statement is used to set the contents of any or all registers using values taken from the stack.
The SETR instruction is used to perform this operation:

where

register
is one of the following hardware registers: S,Q,X,STATUS,Z,DL,DB, or SBANK.

Privileged mode is required to set SBANK, DB, DL, Z, and parts of the Status register. If you are not in
privileged mode and you set the STATUS register, only the Traps Enabled bit, the Carry and Overflow
bits, and the Condition Code are set. The rest of the STATUS register is not altered.

Before using a SET statement, the appropriate values must be loaded onto the stack. If more than one
register is specified, they are taken from the stack in the following order (regardless of the order in
which they are listed in the SET statement):

REGISTER VALUE TAKEN FROM THE STACK
SBANK Stack Bank
DB DB (absolute address — 2 words)
DL DL- DB (relative DL)
Z Z— DB (relative Z)
STATUS Status Register
X Index Register
Q Q- DB (relative Q)
S S— DB (relative S)

Relative addresses in the stack are added to the absolute value of DB before setting the registers. The
values are deleted from the stack by the SETR instruction.

Note that the order in which the registers are set is the reverse of the order in which they are pushed.
This reversal is consistent with the last-in, first-out stack architecture of the HP 3000.

6-16

PROCEDURES, INTRINSICS, | Btk
AND SUBROUTINES || vn

7-1. SUBPROGRAM UNITS)

There are three types of subprogram units in SPL: procedures, intrinsics, and subroutines. Procedures
and intrinsics are identical except for their location and how they are declared in a program.
Subroutines are less powerful than procedures and intrinsics and use different hardware instructions
to call and exit. The declarations for procedures and intrinsics follow the global data declarations and
precede any global subroutine declarations as shown below.

Local subroutine declarations are within the procedure body following the other local declarations in
the procedure declaration and preceding the executable statements of the procedure body.

7-2. PROCEDURE DECLARATION

A procedure declaration defines an identifier as a procedure and specifies what attributes the proce-
dure will have:

Data type of result for function procedures.

Type and number of formal parameters.

Options (external body, variable number of parameters,etc.).
Local variables.

Statements of the procedure body.

Procedures are called by means of the identifier and a list of actual parameters. Procedure

declarations are not allowed within other procedures unless they are declared without a body (that
is, OPTION EXTERNAL).

where

type
indicates that the procedure is a function procedure which returns a value of the specified data type.
The type is INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG.

procedure-name
is an SPL identifier used to identify the procedure.

formal-parm
is an SPL identifier which is used as a local identifier to reference an actual parameter.

value-part

indicates which formal parameters are to be passed by-value. All parameters which are not specified in
the value-part are passed by-reference. The value-part is of the form: VALUE formal-parm
[,....,formal-parm];

specification-part
indicates the characteristics of each formal parameter. The specification-part is of the form: specifica-
tion [;...;specification];

specification

is one of the following:
type formal-parm [,....,formal-parm]
[type]l ARRAY formal-parm [,...,formal-parm]
LABEL formal-parm [,...,formal-parm]
[type] POINTER formal-parm |,...,formal-parm]
[type]l PROCEDURE formal-parm 1,...,formal-parm]

7-2

option-part
specifies which options are to be in effect. The option-part is of the form: OPTION option [,...,option]

option
is UNCALLABLE, PRIVILEGED, EXTERNAL, CHECK level, VARIABLE, FORWARD, INTER-
RUPT, or INTERNAL. Each option is described fully below, starting with paragraph 7-5.

level

is an unsigned decimal, based, composite, or equated integer constant between 0 and 3 inclusive.

procedure body
is one of the following:
1. statement
2. BEGIN
[local-data-declarations]
[external-procedurelintrinsic-declarations]
[local-subroutine-declarations]

statermnent [;...; statement]
END

Sstatement
is any executable SPL statement (see Sections IV through VI).

local-data-declarations
include any or all of the following (intermixed in any order):

define declaration(s)

equate declaration(s)

local simple variable declaration(s)
local array declaration(s)

local pointer declaration(s)

label declaration(s)

switch declaration(s)

entry declaration(s)

external-procedurelintrinsic-declarations
are intrinsic declarations and procedure declarations for external procedures, intermixed in any order.

local-subroutine-declarations
are local subroutine declarations (described fully later in this section).

A procedure is a self-contained section of code which is called to perform a function. Procedures are
hardware-dependent in SPL — they are called using the PCAL instruction and return using the EXIT
instruction; the PRIVILEGED and UNCALLABLE options are hardware-defined and checked; and
local variables can be allocated relative to the Q-register since it is set to a fresh area of the stack by
the PCAL instruction. Because of the hardware capability provided for procedures, they can be called
recursively (that is, a procedure can call itself). For the syntax and semantics of calling procedures, see
“Function Designator” in paragraph 4-6 and “Procedure Call Statement” in paragraph 5-8. Multiple
entry points for procedures are covered under “Entry Declaration” in paragraph 7-30.

7-3

7-3. DATA TYPE

If a data- type is specified for a procedure, that procedure is a function and can be called within
expressions. It returns a value of the type specified by assigning the value to its name somewhere
within the procedure body in an assignment statement. For details on calling functions, see “Function
Designator” in paragraph 4-6.

If a data type is not specified, the procedure does not return a value and cannot be called as a function.

7-4. PARAMETERS

The formal parameters (if any) of a procedure must be fully specified as to type and whether each is
call-by-value or call-by- reference. The formal parameters can then be used within the procedure body
as if they were locally declared identifiers. When the procedure is called, an actual parameéter is
supplied for each dummy (formal) parameter. Up to 31 formal parameters can be specified for each
procedure.

Simple variables, arrays, labels, pointers, and procedures can be passed as parameters. Simple
variables and pointers can be passed by value or by reference; procedures, labels, and arrays are
passed by reference only.

The VALUE list specifies which parameters are to be passed by value; parameters not listed in the
VALUE list are passed by reference. When a parameter is called by value, the value of the actual
parameter is specified by an expression and is loaded onto the stack. Value parameters are handled
exactly as local variables from that point on; any changes to them are limited to the scope of the
procedure. For reference parameters, the address of the parameter is loaded onto the stack instead of a
value; changes to reference parameters can change the value of the actual parameter outside the
procedure.

The VARIABLE option allows a variable number of parameters to be passed (see “Options,” paragraph
7-7).

Actual parameters (when the procedure is called) can be constants, expressions, simple variables,
array references, pointer references, procedure identifiers, label identifiers, or stacked values (* in
place of a parameter indicates that the parameter value or address has been loaded onto the stack by
the user; see “Procedure Call Statement” in paragraph 5-8 for details).

If the formal parameter is a simple variable, it is passed the address (call-by-reference) or actual value
(call-by-value) of a data item. If the formal parameter is an array, it is passed the address of the zero
element. Thus, all arrays, even direct arrays, are effectively passed as indirect arrays. If the formal
parameter is a pointer, it is passed the addresss (call-by-reference) or contents (call-by-value) of the
pointer. Parameters are stored in Q—3—n to Q—4 where n is the number of words required for

parameter storage (maximum 60). Call-by-reference parameters, except labels, use one word. IN-
TEGER, LOGICAL, and BYTE values also use one word; DOUBLE and REAL values use two words;
labels use three words; and LONG values use four words.

7-4

Table 7-1 shows what actual parameters can be passed to what formal parameters (a blank space
indicates an error condition):

NOTE

If the actual-parameter is a byte array and the formal-parameter
is an array with a different data type, the byte address is con-
verted to a word address by arithmetically right shifting the byte
address by one bit. Thus, the maximum byte address is
DB+ 32767 (which equals DB+ 16383 words). Additionally, the
array in the procedure begins on a word boundary regardless of
whether or not the starting byte of the actual-parameter starts on
a word boundary.

Table 7-1. Parameters Passed to Formal Parameters

Formal Parameter
Actual Simple Simple
Parameter Variables Variables Arrays ;zlfnterm?: Pm\r;tfreBy Procedures| Labels
By Reference | By Value ere au
Warning (uses | Must be Warning (uses |Warning (uses | Warning (uses
Constant 1 word as same word | 1 word as 1 word as 1 word as
address) size. address) address) address)
Must be
Expression same word
size,
Simple Variable OK Must be OK, loads ad- OK, load ad-
Identifier same word | dress of simple dress of simple
size. variable variable
Array oK Must be oK OK
Reference same word
size,
Pointer OK Must be OK OK oK
Reference same word
size.
Procedure
Identifier oK
Label ldentifier oK
(stacked) OK OK OK oK OK OK

7-b

7-5. OPTIONS

The option part of a procedure declaration consists of the reserved word OPTION followed by a list of
option words separated by commas and terminated by a semi-colon. The meaning of the various
options are discussed in the following paragraphs.

7-6. OPTION UNCALLABLE. This option causes the “uncallable” bit to be turned on in the
Segment Transfer Table entry for the procedure. Uncallable procedures can only be called by code
executing in privileged mode. If this option is not specified, the procedure is callable.

7-1. OPTION PRIVILEGED. This option causes the procedure to be run in privileged mode,
assuming that the person running the program is allowed to execute in privileged mode by the
operating system. If this option is not specified, the procedure runs in user mode.

7-8. OPTION EXTERNAL. This option specifies that the procedure body (or code) exists
external to the program being compiled. The procedure body is not included in the declaration and is
linked to the main program later by the operating system. If you need to refer to a procedure compiled
separately, you must include an OPTION EXTERNAL declaration for the procedure which indicates
to the compiler the type and number of parameters. Intrinsics are the only procedures not requiring a
procedure declaration (see “Intrinsic Declaration” in paragraph 7-34). When procedures are compiled
separately (to be called later as option EXTERNAL), they can use the EXTERNAL-GLOBAL
mechanism to establish data linkages.

7-9. OPTION CHECK. This option is provided for option external procedure declarations
which will subsequently be called as externals by other programs. The option specifies how much
checking is done by the operating system between the option external declaration in the calling
program and the actual procedure declaration as compiled.

If this option is not specified, no checking is performed. Otherwise, the smaller of the two levels, the
level specified in the calling program and the level specified in the external procedure, is used to
determine the level of checking. Intrinsics determine their level of checking, never the caller. The
check values are:

0 — no checking
1 — check procedure type only.
2 — check procedure type and number of parameters.

3 — check procedure type, number of parameters and type of each parameter.

7-10. OPTION VARIABLE. This option specifies that the procedure can be called with a
variable number of actual parameters. The compiler generates code (when the procedure is called) to
provide the procedure with a parameter bit mask in location Q-4 (also Q-5 if more than 16
parameters). If an actual parameter is missing (for example, NOW(A,,C)), the corresponding bit in the
mask is set to zero. The correspondence is from right to left with the rightmost bit (bit 15) correspond-
ing to the right parameter. In the procedure call, the occurrence of a right parentheses before the
parameter list is filled, implies that the rest of the parameters are missing. When the procedure is
entered, it is the responsibility of the procedure to examine the bit mask. Parameters always occur in
the same Q— address, but missing parameters have garbage in their locations.

7-6

7-11. OPTION FORWARD. This option specifies that the complete procedure declaration will
be introduced later in the program. FORWARD is used to circumvent contradictions incurred by
recursion when a procedure calls itself indirectly. Procedures must be declared before being refer-
enced.

7-12, OPTION INTERRUPT. This option specifies that the procedure is an external interrupt
procedure. The structure and uses of interrupt routines are covered in the HP 3000 Multiprogramming
Executive Operating System (MPE) manuals.

7-13. OPTION INTERNAL. A procedure with this option cannot be called from another seg-
ment. This makes processing of the procedure more efficient for the loader subsystem and allows more
than one segment to have a procedure with the same name. INTERNAL procedures cannot be moved
to another segment or called from a procedure in another segment.

7-14. LOCAL DECLARATIONS

Procedures can declare local variables that are known only within the procedure and are normally
allocated space in the Q+ area when the procedure is called. Thus, they occupy space only when the
procedure is called and are deleted when the procedure exits. As indicated in the syntax, all declara-
tion types are allowed within procedures with these comments:

® Procedures declared within procedures must be OPTION EXTERNAL.

® Data declarations (simple variables, arrays, pointers) must be of the “local” form (see the appro-
priate paragraphs in this section).

There are 127 words available for storage of local variables for each procedure. All simple variables,
pointers, direct arrays, and pointers to indirect arrays, must fit in 127 words. Indirect arrays can
extend past this range as long as the pointer to the zero element is within range.

7-15. OWN VARIABLES. OWN variables are a special variety of local variable; they are
allocated space in the DB area rather than on the top of the stack. If initialization is specified, they are
initialized at the beginning of the program, not every time the procedure is called. Since they are
allocated in the DB area, they are not deleted when a procedure exits, but are still in existence, with
their last value, when the procedure is called again. OWN variables can be simple variables, pointers,
or arrays.

7-16. LOCAL SIMPLE VARIABLE DECLARATIONS

A simple variable declaration specifies the data type, addressing mode, storage allocation, and
initialization value for identifiers to be used as single data items. The data type assigned to a variable
determines the amount of space allocated to the variable and the set of machine instructions which can
operate on the variable.

There are three types of local simple variable declarations: standard, OWN, and EXTERNAL. Stand-
ard simple variable declarations can allocate Q-relative storage each time the procedure is called or
can specify the use of a location relative to a base register or another variable. OWN variable
declarations allocate DB-relative storage at the beginning of the program. EXTERNAL variable
declarations link global variables in a separately compiled main program to variables in a procedure;
the global variables must be declared with the GLOBAL attribute.

7-7

There are two methods which can be used to link global variables to variables in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global variable declaration (see
paragraph 3-2) and the EXTERNAL attribute in the local variable declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same variable, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

7-117. STANDARD LOCAL VARIABLES. A standard local variable declaration specifies iden-
tifier(s) which can either be allocated storage each time the procedure is called or which use locations

relative to base registers or other identifiers. Local variables cannot be referenced outside the
procedure in which they are declared.

where

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variable-declaration
is one of the following forms:

variable [:= initial-value]
variable = register [sign offset]
variable = reference-identifier | sign offset)

variable
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

initial-value '
is an SPL constant to be used as the value of the variable when the procedure is called.

register
specifies the register to be used in a register reference. The register may be DB, Q, S, or X.

7-8

sign
is + or —.

offset

is an unsigned decimal, based, composite, or equated integer constant.

Form 1 of the variable declaration allocates the next available Q-relative location(s) for the variable.
The amount of space allocated depends on the variable type. If an initial value is specified, the variable
is initialized when the procedure is called. If the constant used for the initial value is too large, it is
truncated on the left except string constants which are truncated on the right. If no initial value is
specified, the variable is not initialized.

Form 2 of the variable declaration equivalences a variable either to the index register (X) or to a
location relative to the contents of one of the base registers (DB, Q, or S). Since the index register is 16
bits, only variables of type INTEGER, LOGICAL, and BYTE may be equivalenced to the Index
register (X).

Form 3 of the variable declaration equivalences a variable to a location relative to another variable.
The reference-identifier must be declared first. For example, the declarations

LOGICAL A4;
INTEGER B= A+ 5;

equivalence B to the location 5 cells past the location of A. Simple variables which are address
referenced to arrays use either the location of the zero element of the array (if direct) or the location of
the pointer to the zero element of the array (if indirect). Note that if the reference-identifier is an array,
only the zero element may be used in a variable reference of a simple variable declaration. In any case,
the final address must be within the direct address range.

DB, PB, Q, S, and X cannot be used as the identifier on the right side of an equals sign in a variable
declaration, because they are interpreted as register references instead of variable references. For
example, consider the declaration

INTEGER A,B,C,DB,D=DB+2;

The variable D is equivalenced to the location 2 cells past the cell to which the DB register points —
not 2 cells past the location assigned to the variable DB.

The legal combinations of registers, signs, and offsets are shown below

Register Sign Offset
DB + 0 to 2565
Q + 0 to 127
Q - 0to 63
S - 0Oto 63
X none none

7-18, OWN SIMPLE VARIABLES. OWN simple variables are allocated space in the DB-
relative area instead of the Q-relative area. Thus, an OWN variable retains its value from one
execution of the procedure to the next. However, the variable can only be referenced within the
procedure in which it is declared. If an OWN variable is initialized, it is initialized only at the start of
the program instead of each time the procedure is called.

where

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variable
is a legal SPL identifier.

initial-value
is an SPL constant to be used as the value of the variable when the procedure is called.

7-19, EXTERNAL SIMPLE VARIABLES. An EXTERNAL simple variable declaration is
used to link global variables for referencing in procedures compiled separately from the main program.
The identifiers must be the same used in the global declaration and the GLOBAL attribute must have
been specified.

where

type
specifies the data type of the variables in the declaration. The ¢ype may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variable
is a legal SPL identifier.

7-10

7-20. LOCAL ARRAY DECLARATIONS

An array declaration specifies one or more identifiers to represent arrays of subscripted variables. An
array is a block of contiguous storage which is treated as an ordered sequence of “variables” having the
same data type. Each “variable” or element of the array is denoted by a unique subscript; note that
SPL provides one-dimensional arrays only. An array declaration defines the following attributes of an
array:

e The bounds specification (if any) which determines the size of the array and the legitimate range of
indexing.

® The data type of the array elements.
® The storage allocation method.

® The initial values, if desired.

® The access mode (direct or indirect).

There are two types of access modes used for arrays: indirect and direct. An indirect array uses a
pointer to the zero element of the array. Addressing an indirect array element uses both indirect
addressing and indexing. If the array is a BYTE array, the pointer contains a DB-relative byte
address. For all other data types, the pointer contains a DB-relative word address. A direct array uses
a location within the direct address range of one of the registers (DB, Q, or S) as the zero element of the
array and then uses indexing to address a specific array element.

There are three types of local array declarations: standard, OWN, and EXTERNAL. A standard local
array declaration can allocate Q-relative storage each time the procedure is called, PB-relative
storage, or can specify the use of a location relative to a base register or another data item. OWN array
declarations allocate DB-relative storage at the beginning of the program. EXTERNAL array declara-
tions link global arrays in a separately compiled main program to arrays in a procedure. The global
arrays must be declared with the GLOBAL attribute.

There are two methods which can be used to link global arrays to arrays in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global array declaration (see
paragraph 3-3) and the EXTERNAL attribute in the local array declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers which are not referenced in the subprog-
ram, and they must be in the same order as in the main program. It is possible, although not
recommended, to use different identifiers for the same array, but you are responsible for keeping them
straight. The second method is faster and requires less space in the USL (User Subprogram Library)
files, but does not protect you against improper linkages.

7-21. STANDARD LOCAL ARRAYS. A standard local array declaration specifies identifier(s)
which can be allocated storage each time the procedure is called, stored in the code segment, or which

use locations relative to base registers or other data items. Local arrays cannot be referenced outside
the procedure in which they art declared.

7-11

where

type
specifies the data type of the array. The type can be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or
LONG. If not specified, the array is type LOGICAL.

local-array-dec
is one of the following forms:

1. array-name(lower:upper) [=Q]

This form is used for an uninitialized array with defined bounds. If = Q is not specified, the
array is indirect and the next available Q-relative location is allocated for the pointer to the
zero element of the array. If = Q is specified, the array is direct and the next available n cells in
the Q+ area are allocated for the array, where n is the number of locations required to store
the array. The zero element of the array must be within the direct address range whether or
not it is actually an element of the array. For example, consider the declaration:

INTEGER ARRAY A(-20:—-10)=Q;

The next available Q-relative location is allocated to A(— 20), but all indexing is done relative
to A(0) even though it is not an actual element of the array. The address which A(0) would
have if it were in the array must be between Q—63 and Q+127.

2. array-name(variable-lower:variable-upper)
This form is used for an indirect array with variable bounds. The bounds are evaluated each
time the procedure is called and storage is allocated accordingly at execution time. The array
cannot be initialized.

3. array-name(@)=Q
This form is used for an indirect array with undefined bounds. The next available Q-relative
location is used, without being allocated, as the pointer to the zero element of the array. Space
is not allocated for the array nor is initialization allowed.

4. array-name(*)=Q
This form is used for a direct array with undefined bounds. The next available Q-relative
location is used, without being allocated, as the zero element of the array. Space is not
allocated for the array nor is initialization allowed.

5. array-name(@) [=register sign offset]

This form is used for an indirect array with undefined bounds whose pointer is DB, Q, or

7-12

S-relative. If a base-register-reference is not specfied, the next available Q-relative cell is
allocated for the pointer to the zero element of the array. If a base-register reference is
specified, then that DB-, Q-, or S-relative cell is used, without being allocated, as the pointer to
the zero element of the array. Space is not allocated for the array nor is initialization allowed.

6. array-name(*)

This form can be used for an indirect array with undefined bounds. The next available
Q-relative cell is allocated for the pointer to the zero element of the array. Space is not
allocated for the array nor is initialization allowed. This form is equivalent to array-name(@)
without a base-register reference.

7. array-name(*) = register sign offset

This form is used for direct arrays with undefined bounds which are DB-, Q-, or S-relative. The
specified cell is used as the zero element of the array; however, space for the array is not
actually allocated and the array cannot be initialized.

8. array-name(*) = reference-identifier [sign offset]

This form is used for equivalencing an array to a location relative to another identifier. The
reference identifier may be a simple variable, a pointer variable, or another array and must be
declared first. The array is a direct array except when the reference-identifier is an indirect
array or a pointer variable and no offset is specified. If an offset is specified, the resulting
address must be within the direct address range. For example, if A is at location Q+ 125, then
the declaration

INTEGER B(*)= A+ 10;

would not be allowed because the direct address range for the Q register is — 63 to + 127, If the
array is direct, the referenced location is used as the zero element of the array. If the array is
indirect, the referenced location is used as the pointer to the zero element except when either
the array or the reference-identifier, but not both is type BYTE, in which case the next
available Q-relative cell is allocated for the pointer to the zero element. Space is not allocated
for the array nor can the array be initialized. DB, PB, Q, S, and X cannot be used as the
reference-identifer because they are interpreted as register references instead.

9. array-name(*) = reference-identifier (index)

This form is used for equivalencing one array to another array. The reference-identifier may be
either an array or a pointer variable and must be declared first. If the reference-identifier is a
direct array, the array is a direct array whose zero element is the location of the referenced
array element. If the reference-identifier is an indirect array or a pointer variable, the array is
indirect. In this case, the next available Q-relative cell is allocated for the pointer to the zero
element of the array when a non-zero index is specified or when either the array or the
reference-identifier (but not both) is type BYTE; otherwise, both use the same location for the
pointer to the zero element. In any case, space is not allocated for the equivalenced array nor
can the equivalenced array be initialized. DB, PB, Q, S, and X cannot be used as the
reference-identifier because they are interpreted as register references instead.

array-name
is a legal SPL identifier.

7-13

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The register may be DB, Q, or S.

sign
is + or —.

offset

is an unsigned decimal, based, composite, or equated integer constant within the direct address range
as shown below:

Register Sign Offset
DB + 0 to 255

Q + 0 to 127

Q - 0to 63

S - Oto 63

constant-array-dec
is of the form:

array-name(lower:upper) = PB := value-groupl,...,value-group]

lower
specifies the lower bound of the array. It can be any decimal, based, composite, or equated single-word
integer constant or constant expression.

upper
specifies the upper bound of the array. It can be any decimal, based, composite, or equated single-word
integer constant or constant expression.

variable-lower

specifies the lower bound of a variable bounds array. The variable-lower is an INTEGER, LOGICAL, or
BYTE simple variable.

variable-upper
specifies the upper bound of a variable bounds array. The variable-upper is an INTEGER, LOGICAL,
or BYTE simple variable.

index
indicates the element of the referenced array to be used as the reference location. The index can be any
decimal, based, composite, or equated single-word integer constant.

value-group
is either of the following:

1. initial-value
2. repetition-factor (initial-value [,...,initial-value])

7-14

initial-value
is any SPL numeric or string constant.

repetition-factor
specifies the number of times the initial value list will be used to initialize the array elements. The

repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

Local PB-arrays with defined bounds must be initialized. Initialization consists of a := followed by a
list of numerical constants or strings. A group of constants can be surrounded by parentheses and
preceded by a repetition factor (n) to specify that the constants in parentheses are to be used n times
before going on to the next item in the list. These repeat groups cannot be nested. Elements are
initialized starting with the lowest subscript and continuing up until the constant list is exhausted.
The initialization list must not contain more values than there are elements in the array. If the
constant used for the initial value is too large, it is truncated on the left except string constants which
are truncated on the right. If no initial value is specified, the array element is not initialized. Only the
last array in a declaration list can be initialized.

A PB-relative array allocates storage in the code segment for an array of constants. The entire
PB-relative array must be initialized and cannot be changed during execution. PB-relative arrays can
only be accessed within the procedure in which they are declared and they cannot be passed as
parameters.

7-22. OWN ARRAYS. OWN arrays are allocated space in the DB-relative area instead of the
Q-relative area. Thus, an OWN array retains its values from one execution of the procedure to the
next. However, the array can only be referenced within the procedure in which it is declared. An OWN

array can be passed as a parameter, however. An OWN array must have defined bounds and may be
initialized.

where

own-dec
is of the form: array-name(lower:upper)

own-dec-initial
is of the form: array-name(lower:upper)|:=value-group,...,value-group] 1

array-name
is a legal SPL identifier.

7-15

lower

specifies the lower bound of the array. It is a decimal, based, composite or equated single-word integer
constant.

upper
specifies the upper bound of the array. It is a decimal, based, composite, or equated single-word integer
constant.

value-group
is either of the following:

1. initial-value
2. repetition-factor (initial-value [,...,initial-value])

initial-value
is an SPL numeric or string constant.

repetition-factor

specifies the number of times the initial value list will be used to initialize the array elements. The
repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

7-23. EXTERNAL ARRAYS. An EXTERNAL array declaration is used to link global arrays to
arrays in procedures compiled separately from the main program. The array-names must be the same
as used in the global declarations and the GLOBAL attribute must have been specified.

where

type
specifies the data type of the array. The type may be INTEGER, LOGICAL, BYTE, DOUBLE, REAL,
or LONG. If not specified, the array is LOGICAL.

array-name

is a legal SPL identifier.

Array bounds are not specified in an EXTERNAL array declaration. An asterisk (*) is used to signify a
direct array and an @ is used for an indirect array.

7-16

7-24. LOCAL POINTER DECLARATIONS

A pointer declaration defines an identifier as a “pointer” — a single word quantity used to contain the
DB-relative address of another data item — the object of the pointer. A pointer declaration defines the
following attributes of a pointer:

o The data type of the object of the pointer.
® The storage allocation method.
® The initial address to be stored in the pointer (optional).

When the pointer is accessed, the object is accessed indirectly through the pointer address. The object
is assumed to be (or treated as if it were) the type of the pointer.

As with simple variables and arrays, there are three types of local pointer declarations: standard,
OWN, and EXTERNAL. The standard pointer declaration can allocate the next available Q-relative
cell or specify a location relative to a base register or another data item to be used as the pointer
location. OWN pointer declarations allocate a DB-relative cell for each pointer at the beginning of
program execution. EXTERNAL pointer declarations link global pointers in a separately compiled
main program to a pointer in a procedure (the global pointers must be declared with the GLOBAL
attribute).

There are two methods which can be used to link global pointers to pointers in separately compiled
procedures. The first method is to use the GLOBAL attribute (see paragraph 3-4) in the global pointer
declaration and the EXTERNAL attribute in the local pointer declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same pointer, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

7-25. STANDARD LOCAL POINTERS. A standard local pointer declaration specifies iden-
tifier(s) which can either be allocated storage each time the procedure is called or which use locations
relative to base registers or other identifiers. Local pointers cannot be referenced outside the procedure
in which they are declared.

7-17

where

pointer-dec
is one of the following:

1. pointer-name [:= @reference-identifier [(index)]]

This form allocates the next available Q-relative cell for the pointer variable. If the
=@reference-identifier is used, the pointer is initialized to the address of the reference-
identifier or array-element if an index is included. The reference-identifer must be declared
first.

2. pointer-name = reference-identifier [sign offset]

This form is used to equivalence a pointer variable to a location relative to another identifier.
Space is not allocated for the pointer nor can the pointer be initialized. The resulting address
for the pointer variable must be within the direct address range of the base register which the
reference-identifier uses.

3. pointer-name = register [sign offset]

This form is used to equivalence a pointer variable to a location relative to a base-register.
Space is not allocated for the pointer nor can the pointer be intitialized. The resulting address
for the pointer variable must be within the direct address range of the specified base-register.

type
specifies the data type of the pointer variables in the declaration. The type can be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG.

pointer-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The register can be DB, Q, or S.

sign
is + or —.

7-18

offset

is an unsigned decimal, based, composite, or equated integer within the direct address range as shown
below.

Register Sign Offset
DB + 0 to 255

Q + 0 to 127

Q - 0to 63

S - Oto 63

index
indicates the array element whose address the pointer will contain. The index can be any decimal,
based, composite, or equated single-word integer constant.

Pointers are initialized with addresses of other variables, not constants. The method is to follow the
pointer with :=@ and a data reference (simple variable, pointer element, or array element). The
address of the specified data item, adjusted to the address type of the pointer, is stored in the cell
allocated for the pointer. BYTE pointers contain DB-relative byte addresses, whereas all other types of
pointers contain DB-relative word addresses.

See “Pointers” (paragraph 2-20) for methods of referring to and through pointers. Pointers can be
indexed like arrays and can contain word or byte addresses.

Pointers can be declared with all data types; if no type is specified, type LOGICAL is assumed. The
type determines what data type the object of the pointer is assumed to have. This allows objects
declared with one type to be accessed as another data type by accessing them through pointers.

Pointers which are not address referenced are allocated the next available Q-relative location and can

be initialized. Pointers which are referenced use the address of the referenced item or the specified
register relative location and cannot be initialized.

7-26. OWN POINTERS. OWN pointers are allocated space in the DB-relative area instead of
the Q-relative area. Thus, an OWN pointer retains its value from one execution of the procedure to the

next. However, the pointer can be referenced only within the procedure where it is declared. An OWN
pointer cannot be initialized.

7-19

where

type
specifies the data type of the objects of the pointers in the declarations. The type may be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not specified, type LOGICAL is assumed.

pointer-name
is a legal SPL identifier.

7-27. EXTERNAL POINTERS. An EXTERNAL pointer declaration is used to link global
pointers for referencing in procedures compiled separately from the main program. The identifiers
must be the same as used in the global declarations and the GLOBAL attribute must have been
specified.

where

type
specifies the data type of the objects of the pointers in the declaration. The type may be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not specified, type LOGICAL is assumed.

pointer-name
is a legal SPL identifier.

7-28. LABEL DECLARATIONS

A label declaration specifies that an identifier is used in the program as a label to identify a statement.
Labels are referenced when it is necessary to transfer control to a specific statement; they need not be
declared explicitly unless the programmer wishes.

7-20

where

label
is a legal SPL identifier.

Labels are used to identify statements as follows:

LABEL L1;

L1:A:=B;

The syntax for labeled statements is given in paragraph 1-3. In SPL, a label implicitly declares itself
when it is used to identify a statement, as the object of a GO TO statement, or in a switch declaration.
It need not be explicitly declared in a label declaration except as desired for documentation purposes.
See “GO TO Statement” (paragraph 5-2) and “Switch Declaration” (below) for use of labels.

7-29. SWITCH DECLARATIONS

A switch declaration relates an identifier to an ordered set of labels. The switch is accessed as a
computed (indexed) GO TO statement. The purpose of a switch is to allow selective transfer of control
to any of the statements identified by the labels in the switch declaration.

where

switch-name
is a legal SPL identifier.

label
identifies the statement to which control is transfered when the switch is referenced.

Only one switch-name can be declared in each switch declaration. Associated with each label in the
label list, from left-to-right, is an ordinal integer from 0 to n— 1, (where n is the number of labels in the
list). This integer indicates the position of the label in the list. Each position in the list must contain a
label — null elements are not allowed. When the switch is referenced by a GO TO statement (see
paragraph 5-2), the value of an integer subscript determines which label is selected from the list.
Bounds checking in this selection is optional. Entry points are not allowed in switch declarations.
Switch labels may not occur in subroutines.

7-21

7-30. ENTRY DECLARATION

The purpose of a local entry declaration is to specify multiple entry points to a procedure beyond the
implicit entry point which is the first statement of the procedure. Each entry identifier must occur
somewhere in the body as a statement label, but cannot be the object of a GO TO.

where

label
identifies the statement to be used as an alternate entry point.

By substituting an entry point label for the procedure-name in a function designator or a procedure

call statement, the procedure can be entered at an alternate entry point. Refer to paragraph 4-6 for the
form of a function designator and paragraph 5-8 for the form of a procedure call statement.

7-31. DEFINE DECLARATION AND REFERENCE

A define declaration assigns a block of text to an identifier. Thereafter, when the identifier is used in
the program, the assigned text replaces the identifier. This provides a convenient abbreviation
mechanism to avoid repeating long constructs used many times in a program.

where

identifier
is a legal SPL identifier.
7-22

text
specifies the block of text to be substituted when the define is referenced. The text can be any sequence
of ASCII characters; however, # can only be used within a string.

A define reference may occur anywhere except within an identifier, string, or constant. The text should
make sense when inserted where the define is referenced.

At declaration time, a define has no effect on the compilation of the program. It has effect only in the
context where it is referenced. For this reason, undeclared identifiers can appear in defines as long as
they have been declared when the define is referenced. Similarly, the define text is checked for syntax
errors in the context where it is referenced, not where it is declared.

Define declarations can be nested, that is, define identifiers can be used in other definitions, but they
cannot be recursive, that is, a define identifier must not appear within its own text, since this leads to
infinite nesting when the define is referenced.

The number sign (#) terminates a define text only if it is not contained in a string. For example, the

string “ABCD# ”# is valid text terminated by the second #. Incomplete comments cannot appear in
DEFINEs.

Only one block of text can be assigned to a particular identifier.

For example, here are some sample define declarations and references.

DEFINE I= ARRAY B(0:1)#;

INTEGER I; <<INTEGER ARRAY B(0:1);>>
DEFINE SUM= A+ B+ C+ D+ E#;

J:=SUM; <<J:=A+B+C+D+E;>>

7-32. EQUATE DECLARATION AND REFERENCE

An equate declaration assigns an integer value determined by an expression of integer constants and
other equates, to an identifier. The equate mechanism is only a documentation and maintenance
convenience; it does not allocate any run-time storage, but merely provides a form of consistent
identification for constants. When an equate identifier is used, the appropriate constant is substituted
in its place. When equates are used instead of actual constants, programs can be updated easily;
instead of replacing every occurrence of a constant, only the equate declaration is changed.

7-23

where

tdentifier
is a legal SPL identifier.

equate-expression
can be either one of or a combination of two forms:

[sign] unsigned-integer [operator unsigned-equate-expr]
(equate-expression)

sign
is + or —.

unsigned-integer
is an unsigned decimal, based, composite, or equated single-word integer constant.

operator
is +,— %, or /.

unsigned-equate-expr
is an unsigned equate-expression.

The value to be assigned to an equate identifier is determined by an equate expression. Equate
expressions consist of operators (*,/,+,—), unsigned integers, including previously defined equated
integers, and parentheses. Evaluation of the expression proceeds from left to right, except that
multiplication and division (*,/) are done before addition and subtraction (+,—) and expressions in
parentheses are done before the operators that surround them. The value of an equate expression must
fit in a single-word or it will be truncated on the left. Since equate identifiers can be used in equate
expressions, a series of related equate declarations can be set up such that changing only the first
changes all the rest.

Equate identifiers can be used anywhere in the program that an integer or unsigned integer constant
is allowed.

For example, here are some sample equate declarations and references:

EQUATE M=1N=M+1P=N+1;
EQUATE T=20*P/(20—- P+ M);
J:=136*T;

<<M=1, N=2, P=3, T=3, J=408>>

7-33. PROCEDURE BODY

The procedure body consists of the local declarations and the statements of the procedure, preceded by
a BEGIN and terminated by an END;. The body can contain any executable SPL statements. If the
body does not contain any local declarations and only one statement, the BEGIN-END pair can be
omitted. The end of the body generates an EXIT instruction; additional exits can be generated using
the RETURN statement (see “RETURN Statement”, paragraph 5-14).

7-24

EXAMPLES

PROCEDURE BLANKBUF << Name>>
(BUFFER,COUNT); <<Formal Parameters>>
VALUE COUNT; <<Value part>>
LOGICAL ARRAY BUFFER; << Specification>>
INTEGER COUNT; << Specification>>
<<Empty Option Part>>
<< Procedure-Body>>
BEGIN
LOGICAL BLANKWORD := * ”; <<Data Group>>
BUFFER := BLANKWORD; << Statements>>
MOVE BUFFER(1):= BUFFER,(COUNT);

END; <<End Procedure Declaration>>

<< Sample Function and Call>>
BEGIN
INTEGER NUM:=108,NIX;
INTEGER PROCEDURE VAL(A,B,C); <<Function Declaration>>
VALUE A,B,C;
INTEGER A,B,C;
VAL:=(A+ B)*C;
<<Main Program>>
NIX:=NUM/VAL(4,5,6); <<Equivalent to NIX:= NUM/((4+5)¥6);>>
END.

<< OPTION FORWARD example>>
PROCEDURE PROC1; OPTION FORWARD; <<Dummy declaration>>
PROCEDURE PROC2; OPTION FORWARD; <<Dummy declaration>>

PROCEDURE PROCI1; << Real declaration>>
IF X=(Y:=Y+ 1) THEN PROCZ2;

PROCEDURE PROCZ2; <<Real declaration>>
IF X= (Z:=Z+1) THEN PROC],

7-34. INTRINSIC DECLARATIONS

An intrinsic declaration specifies that one or more of the system-provided procedures (intrinsics) will
be used by the program. Intrinsics are pre-compiled procedures supplied to SPL programmers for
performing input/output, file access, and utility functions as part of the Multiprogramming Executive
(MPE). SPL provides a simple interface to intrinsics because SPL does not have built-in ¢onstructs for
input/output as provided by FORTRAN, BASIC, COBOL, and other high-level languages. Input and
output of data in SPL programs must be performed with the MPE file system intrinsics. The user can

also declare intrinsics from his own intrinsic file.

7-25

where

file
is any valid random-access file of the operating system.

procedure-name.
is the name of an intrinsic procedure.

Unless an intrinsic file is specified, the procedure names in an intrinsic declaration must be included
in an installation-defined intrinsic file. The SPL compiler searches the file for the intrinsic name and,
ifit is found, inserts the declaration for the intrinsic into the program. The declaration is equivalent to
an OPTION EXTERNAL procedure declaration (see “Procedure Declaration”, paragraph 7-2) and
specifies the procedure’s parameters, etc. Operating System intrinsics are described in the MPE
Intrinsics Reference Manual. These intrinsics are called like normal external procedures.

The programmer can specify his own intrinsic file in parentheses. In this case, the compiler searches
for the procedure name and declaration in the file specified, rather than in the system file. Appendix C
describes how to build intrinsic files.

7-35. SUBROUTINE DECLARATION

A subroutine declaration defines an identifier as a subroutine and specifies what attributes the
subroutine will have:

¢ Data type of result for function subroutines.
¢ Type and number of formal parameters.
® Statements of the subroutine body.

Subroutines are called by the identifier and a list of actual parameters. Subroutines can be declared
either globally or locally, but global subroutines cannot be accessed locally. Local declarations are not
allowed within subroutines.

7-26

where

type
indicates that the procedure is a function procedure that returns a value of the specified data type. The
type is INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG.

subroutine-name
is an SPL identifier used to identify the subroutine.

formal-parm
is an SPL identifier which is used as a local identifier to reference an actual-parameter.

value-part
indicates which formal parameters are to be passed by-value. All parameters which are not specified in

the value-part are passed by-reference. The value-part is of the form: VALUE formal-parm
[,....,formal-parm];

specification-part
indicates the characteristics of each formal parameter. The specification-part is of the form: specifica-
tion [;...;specification]

specification

is one of the following:
type formal-parm [,...,formal-parm]
[type]l ARRAY formal-parm [,...,formal-parm]
[type] POINTER formal-parm [,....,formal-parm]
[type]l] PROCEDURE formal-parm [,...,formal-parm]

statement
is an executable SPL single or compound statement (see sections IV through VI).

Subroutines have the same parameter conventions as procedures except that options such as VARIA-
BLE, EXTERNAL, and CHECK are not provided and subroutines cannot be passed labels. Sub-
routines can have a data type and can be functions just as procedures can. The subroutine body
consists of an executable SPL statement, including a compound statement, but cannot contain declara-
tions. Global subroutines can reference global variables and local subroutines can reference both local
and global variables. Subroutines can be called recursively. Subroutines are called using the SCAL
instruction and return using the SXIT instruction. For details on calling subroutines, see “Function
Designator” (paragraph 4-6) and “Subroutine Call Statement” (paragraph 5-13).

NOTE

You must not explicitly modify the stack within a subroutine
without immediately correcting for any changes. All subsequent
parameter addressing may be incorrect and S may not point to the
return address when SXIT is executed.

7-27

EXAMPLES:

INTEGER SUBROUTINE S(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;
S:i=(A— 2)+ (B*C);

SUBROUTINE ZERO (ARRY,HISUB);
VALUE HISUB;
INTEGER HISUB;

INTEGER ARRAY ARRY;

BEGIN
I:=0; <<global variable>>
WHILE I <= HISUB DO
BEGIN
ARRY(D):=0;
I=1+1,
END;
END;

7-28

SECTION Vi
INPUT/QUTPUT || viil

8-1. INTRODUCTION TO INPUT/OUTPUT

To perform input/output in SPL, you must call MPE Intrinsics directly since SPL does not have any
input/output statements. This section discusses some of the more common input/output intrinsics. For
a complete description of all the system intrinsics, refer to the MPE Intrinsics Reference Manual. For a
complete discussion of MPE file commands, refer to the MPE Commands Reference Manual.

All input/output is performed on a word basis using two bytes per word. Although you can pass a byte
array to a system intrinsic, the address is converted to a word address and a warning message issued.
To avoid this, you can use array equivalencing:

BYTE ARRAY BUF(0:71);
ARRAY WBUF(*)=BUF;

For all non-input/output operations, you would use BUF, (for example, to prepare the buffer for
writing), whereas for all calls to the input/output intrinsics, you would pass WBUF.

Each intrinsic description discussed in this section includes the following information:
e The intrinsic name and a brief summary of its function.
® The complete intrinsic call description as shown for the READ intrinsic:

I A v
lgth:= READ(message, expectedl);

Required parameters such as message are shown in bold face italics; optional parameters and
return values such as lgth are shown in reqular italics. Superscripts are used to describe the types
of parameters and whether they must be passed by value instead of by reference. The superscripts
have the following meanings:

A Array (Logical)
BA Byte array

BP Byte pointer

D Double

DA Double array
DV Double value

I Integer
1A Integer array
v Integer value
L Logical

LV Logical value
O-V OPTION VARIABLE

An O-V superscript at the end of the parameter list indicates that some or all of the parameters are
optional.

81

FUNCTIONAL RETURN: For those intrinsics which return a value to the calling program
(function procedures), the return value is described. If the intrinsic is not a function procedure, this
portion of the description is omitted.

PARAMETERS: All parameters are described. In the intrinsic call description, required parame-
ters are shown in bold face italics.

CONDITION CODES: The Condition Codes are included for each intrinsic:

CCL (Condition Code set to Less than)
CCE (Condition Code set to Equals)
CCG (Condition Code set to Greater than)

SPLIT STACK OPERATIONS: During normal operation, the DB register points to the user
process stack. Some operations with extra data segments require that DB be set to the base of the
extra data segment while DL and all other data registers remain associated with the stack. When
a process is operating in this mode, it is said to have a split stack. Several of the MPE intrinsics
deal with DB in this manner, however, you need not be concerned with the mechanics of the
operation because while the stack is “split” only system code is executing. It is possible, however, if
you are a privileged mode user, to force your process to operate in split stack mode explicitly. If you
do this, you must recognize that some of the normal callable intrinsics may not be called when DB
does not point to the stack. Such intrinsics, if called by a privileged process in split stack mode, can
result in sytsem failures. If you are not a privileged mode user, you need not concern yourself with
this restriction and you may assume that all intrinsics described in this section will not operate in
split stack mode unless otherwise stated.

8-2. FOPEN

The FOPEN intrinsic opens a file.

The FOPEN intrinsic makes it possible to access a file. In the FOPEN intrinsic call, a particular file is
referenced by its formal file designator, described later in this section. When the FOPEN intrinsic is
executed, it returns to the user’s process a file number by which the system uniquely identifies the file.
This file number, rather than the file designator, then is used by subsequent intrinsics in referencing
the file.

8-2

FUNCTIONAL RETURN:

This intrinsic returns an integer file number used to identify the opened file in other intrinsic
calls.

PARAMETERS:

formaldesignator byte array (optional)
Contains a string of ASCII characters interpreted as a formal file designator, as defined in the
MPE Commands Reference Manual. This string must begin with a letter, contain al-
phanumeric characters, slashes, or periods, and terminate with any non-alphanumeric charac-
ter except a slash or a period. If the string names a system-defined file, it can begin with a
dollar sign ($); if it names a user pre-defined file, it can begin with an asterisk (*). Default: A
temporary file that can be read or written on, but not saved, is assigned.

foptions logical value (optional)
The foptions parameter allows you to specify six different file characteristics, by setting
corresponding bit groupings in a 16-bit word. The correspondence is from right to left, begin-
ning with bit 15. These characteristics are as follows, proceeding from the rightmost bit groups
to the leftmost bit groups in the word. The bit settings are summarized in figure 8-1.

NOTE
Bit groups are denoted using the standard SPL notation. Thus,
bits (14:2) indicates bits 14 and 15; bits (10:3) indicates bits 10,11,
and 12.
Bits (14:2) - Domain Foption

The file domain to be searched by MPE to locate the file, indicated by these bit settings:

00

The file is a new file, created at this point. No search is necessary.
01 = The file is an old permanent file, and the system file domain should be searched.

10 = The file is an old temporary file, and the job file domain should be searched.

11 = The file is an old file that is to be located by first searching the job file domain and then, if
the file is not found, by searching the system file domain.

Bit (13:1) - ASCII/Binary Foption

The code (ASCII or Binary) in which a new file is to be recorded when it is written to a device
that supports both codes. In the case of disc files, this also affects padding than can occur when
a direct-write intrinsic call (FWRITEDIR) is issued to a record that lies beyond the current
logical end-of-file indicator. In ASCII files, any dummy records between the previous end-of-
file and the newly-written records are padded with blanks. In binary files, such records are
padded with binary zeros. All files not on disc are treated as ASCII files.

For ASCII files, this bit is 1.

For Binary files, this bit is 0.

Bits (10:3) - Default File Designator Foption.

The actual file designator equated with the formal file designator specified in FOPEN, if

1. No explicit or implicit :FILE command equating the formal file designator to a different
actual file designator occurs in the job or session; or

2. The Disallow File Equation Foption (bit 5) is specified.

The bit settings are:

000 = The actual file designator is the same as the formal file designator.
001 = The actual file designator is $STDLIST.

010 = The actual file designator is $NEWPASS.

011 = The actual file designator is $OLDPASS.

100 = The actual file designator is $STDIN.

101 = The actual file designator is $STDINX.

110 = The actual file designator is $NULL.

Bits (8:2) - Record Format Foption.
The format in which the records in the file are recorded, indicated by these bit settings:
00 = Fixed-length records. The file is composed of logical records of uniform length.

01 = Variable-length records. The file contains logical records of varying length. This format
is restricted to records that are written in sequential order. The size of each record is
recorded internally. The actual record size used is determined by multiplying the recsize
(specified or default) by the blockfactor, and adding two words reserved for system use.
This option is not allowed when NOBUTF is specified. In such a case, the record format
used is undefined-length records, discussed below.

10 = Undefined-length records. The file contains records of varying length that were not
written using the variable length foption (01). All files not on disc or magnetic tape are
treated as containing undefined-length records.

Bit (7:1) - Carriage Control Foption.

If selected, this specifies that you will supply a carriage control character in the calling
sequence of each FWRITE call that writes records onto the file.

0 = No carriage control character expected.

= Carriage control character expected.

8-4

Carriage control will be defined only for character oriented, i.e., ASCII, files. This option and
binary are mutually exclusive and attempts to open new files with both binary and this option
will result in an access violation.

This option is a physical attribute of the file and its state cannot be modified when opening an
old disc file.

A carriage control character passed through the control parameter of FWRITE will be recog-
nized and acted upon only for files for which carriage control is specified in FOPEN. Embedded
control will be treated strictly as data on files for which no carriage control is specified, and
will not invoke spacing for such files. You may specify spacing action on files for which
carriage control has been specified, either by embedding the control in the record, indicated
with a control parameter of one in the call to FWRITE, or by sending the control code directly
via the control parameter of FWRITE.

A carriage control character sent to a file on which the control cannot be executed directly, for
example, line spacing to a disc or tape file, will result in having the control character
embedded as the first byte of the record. Thus, the first byte of each record in a disc file having
a carriage control character will be control information. Control sent to other types of files
results in transmission of the control to the driver.

The control codes % 400 through % 403 will be remapped to % 100 through % 103 so that they
will fit into one byte and thus can be embedded. Records written to the line printer with one of
the above controls should not contain information other than control information. In order that
the FWRITE of such a control record acts the same as the equivalent call to FCONTROL, the

printer driver will execute the control portion of the record and will not transfer any other data
included in the record.

For the purpose of computing record size, carriage control information will be considered by
the file system to be part of the data record. As such, specifying the carriage control option will
add one byte to the record size at the time the file is created. For example, a specification of
REC=-132,1,F,ASCII;CCTL will result in a recsize of 133 characters.

You always may read up to and including the recsize as returned by the FGETINFO intrinsic.

On writes of files for which carriage control is specified, however, the data transferred is

limited to recsize-1 unless a control of one is passed indicating the data record is prefixed with
embedded control.

Bit (6:1) - Reserved for MPE. Should be set to zero.
Bit (5:1) - Disallow File Equation.

This option ignores any corresponding :FILE command, so that the specifications in the
FOPEN call take effect (unless preempted by those in the file label, for disc files).

0 = Allow :FILE.
1 = Disallow :FILE.

Bits (0:5) Reserved for MPE. Should be set to zero.

Default: All bits are set to zero.

BITS (0:5) (5:1) (6:1) (7:1) (8:2) {10:3) (13:1) (14:2)
DISALLOW CARRIAGE RECORD DEFAULT ASCIl/
FIELD (RESERVED) FILE (RESERVED) CONTROL FORMAT DESIGNATOR BINARY DOMAIN
MEANING 1= No:FILE 0= NOCCTL | 00 = Fixed 000 = filename 0= Binary | 00 = New file
0= FILE 1= CCTL 01 = Variable 001 = $STDLIST 1= ASCtl] 01= Old System File
10 = Undefined | 010= $NEWPASS 10 = Temporary File
011 = $OLDPASS 11 = Old User File
100 = $STDIN
101 = $STDINX
110 = SNULL

Figure 8-1. Foptions Bit Summary

aoptions logical value (optional)

The aoptions parameter permits you to specify up to five different access options established by
bit groupings in a 16-bit word. These access options are described below. The bit settings are
summarized in figure 8-2.

Bits (12:4) - Access Type Aoptions.

The type of access allowed users of this file:

0000 = Read access only. The FWRITE, FUPDATE, and FWRITEDIR intrinsic calls cannot
reference this file.

0001 = Write access only. Any data written in the file prior to the current FOPEN request is
deleted. The FREAD, FREADSEEK, FUPDATE, and FREADDIR intrinsic calls can-
not reference this file.

0010 = Write-access only, but previous data in the file is not¢ deleted. The FREAD, FREAD-
SEEK, FUPDATE, and FREADDIR intrinsics cannot reference this file.

0011 = Append access only. The FREAD, FREADDIR, FREADSEEK, FUPDATE, FSPACE,
FPOINT, and FWRITEDIR intrinsic calls cannot reference this file. This option is not
valid for files containing variable-length records.

0100 = Input/output access. Any file intrinsic except FUPDATE can be issued for this file.

0101 = Update access. All file intrinsics, including FUPDATE, can be issued for this file.
8-6

0110 = Execute access. Allows users with privileged mode capability input/output access to
any loaded file.

Bit (11:1) - Multirecord Aoption.

Signifies that individual read or write requests are not confined to record boundaries. Thus, if
the number of words or bytes to be transferred (specified in the tcount parameter of the read or
write request) exceeds the size of the physical record (i.e., block) referenced, the remaining
words or bytes are taken from subsequent successive records until the number specified by
tcount have been transferred. This option is available only if the inhibit buffering aoption
described below, is selected also.

0 = Non-multirecord mode.

1 = Multirecord mode.

Bit (10:1) - Dynamic Locking Aoption.

Indicates that you want to use the FLOCK and FUNLOCK intrinsics to dynamically permit or
restrict concurrent access to the file by other processes at certain times. The user process can
continue this temporary locking/unlocking until it closes the file. Dynamic locking/unlocking
is made possible through a Resource Identification Number (RIN) assigned to the file and
temporarily acquired by the FOPEN intrinsic. The calling process must use the RIN in
cooperation with other processes also using it to guarantee the integrity of the file, as
discussed in the MPE Intrinsics Reference Manual. Non-cooperating processes are allowed
concurrent access at all times, unless other provisions prohibit this.

0 = Disallow dynamic locking/unlocking.

—
N

Allow dynamic locking/unlocking.

A file may be multiple accessed only if all FOPEN requests for the file specify dynamic locking,
or if none of them do. An FOPEN request that disagrees with the current access, if any, will
fail.

Bits (8:2) - Exclusive Aoption.

This aoption specifies whether you have continuous exclusive access to this file, from the time
it is opened to the time it is closed. This option often is used when performing some critical
operation, such as updating the file.

01 = Exclusive access. After this file is opened, prohibits another FOPEN request, whether
issued by this or another process, until this process issues the FCLOSE request or
terminates. If any process already is accessing this file when this FOPEN call is issued, a
CCL error code is returned to the calling process. If another FOPEN call is issued for this
file while the exclusive access aoption is in effect, an error code is returned to that calling
process. The exclusive aoption can be requested only by users allowed the file locking
access mode by the security provisions for the file.

10 = Semi-exclusive access. After the file is opened, prohibits concurrent output access to this
file through another FOPEN request, whether issued by this or another process, until
this process issues the FCLOSE request or terminates. A subsequent request for the

8-7

input/output or update aoption access type will obtain read only access. Other types of
read access, however, are allowed. If any process already has output access to the file
when this FOPEN call is issued, a CCL error code is returned to the calling process. If
another FOPEN call that violates the read-only restriction is issued while the semi-
exclusive aoption is in effect, that call fails and an error code is returned to the calling
process. The semi-exclusive access can be requested only by users allowed the file-locking
access mode by the security provisions for the file.

11 = Share access. After the file is opened, permits concurrent access to this file by any
process, in any access mode, subject to other basic MPE security provisions in effect.

00 = Default value. If the read access only access type aoption is selected, share access (11)
takes effect. Otherwise, exclusive access (01) takes effect.

Bit (7:1) - Inhibit Buffering Aoption.

When selected, this aoption inhibits automatic buffering by MPE and allows input/output to
take place directly between the user’s stack or extra data segment and the applicable
hardware device.

0 = Allow normal buffering.

1 = Inhibit buffering.

NOBUF access is oriented to the transfer of physical blocks rather than logical records.

With NOBUF access, you have responsibility for blocking and deblocking of records in the file
(Refer to the MPE Intrinsics Reference Manual). To be consistent with files built using
buffered /O, records should begin on word boundaries, and when the information content of
the record is less than the defined record length, the record should be padded with blanks by
you if the file is ASCII or with zeros if the file is binary.

The recsize and block size for files manipulated under NOBUF access will follow the same
rules as those files that are created using buffering. The default blockfactor for a file created
under NOBUF is one.

When a NOBUTF file is opened without multirecord access, the amount of data transferred per
read or write is limited to a maximum of one block.

The end-of-file, next record pointer, and record transfer count are maintained in terms of
logical records for all files. The number of logical records affected by each transfer will be
determined from the size of the transfer.

Transfers always begin on a block boundary. Those transfers which do not transfer whole
blocks leave the next record pointer set to the first record in the next block. The end-of-file
pointer always points at the last record in the file.

For files opened with NOBUF access, the FREADDIR, FWRITEDIR, and FPOINT intrinsics
will consider the recnum parameter as a block number.

8-8 SEP 1976

Bit (6:1) - Multi-Access Mode Aoption.

When selected, this aoption provides the accessor with a means of sharing access to the file,
including file system buffers. Thus, the accessor can “sequentially” access records within the

file in conjunction with other such accessors in the same job. This option is not allowed if the
file is accessed exclusively, if NOBUF is selected, or if the multirecord option is requested.

Bit (5:1) - Reserved for MPE. Should be set to zero.

Bit (4:1) - No-Wait I/O.

The selection of this aoption allows you to initiate an I/O request and to have control returned
before the completion of the I/O. The IOWAIT intrinsic must be called after each I/O request to
confirm the completion of the I/O. Also, multirecord access is not available.

Bits (0:3) - Reserved for MPE. Should be set to zero.

Default: All bits are set to zero.

BITS (0:3) (4:1) (5:1) (6:1) (7:1) (8:2) (10:1) (11:1) (12:4)
MULTI-
NO WAIT MULTI INHIBIT EXCLUSIVE DYNAMIC RECORD ACCESS
FIELD (RES.) /0 (RES.) ACCESS BUFFERING ACCESS LOCKING ACCESS TYPE
MEANING 1= No-Wait 1 = Multi 1 = NOBUF 01 = Exclusive 0= No Dynamic | 1= Multi-record { 0000= Read only
Q0 = Non access Lock
No-Wait 0 = BUF 10 = Semi-exclusive 0 = No multi- 0001 = Write only
0 = Non-Multi 1 = Dynamic record
access 11 = Share Lock 0010 = Write
(save) only
00 = Default

0011 = Append
only

0100 = Read/write
0101 = Update

0110 = Execute

Figure 8-2. Aoptions Bit Summary

recsize integer value (optional)

An integer indicating the size of the logical records in the file. If a positive number, this
represents words; bytes are represented by a negative number. If the file is a newly-created
file, this value is recorded permanently in the file label. If the records in the file are of variable
length, this value indicates the maximum logical record length allowed.

Binary files are word oriented. A record size specifying an odd byte count for a binary file is
rounded up by FOPEN to the next highest even number.

ASCII files may be created with logical records which are an odd number of bytes in length.
Within each block, however, records begin on word boundaries.

SEP 1976 89

For either ASCII or binary files with fixed or undefined length records, the record size is
rounded up to the nearest word boundary. For example, a recsize specified as — 106 for an
ASCII file will be 106 characters (53 words) in length. A recsize of — 113 for a binary file will be
114 characters (57 words) in length. The rounded sizes should be used in computations for
blockfactor or block size.

Default: For unit-record devices, the default value is the physical record width of the as-
sociated device. For all other devices the default value is 128 words.

device byte array (optional)

Contains a string of ASCII characters terminating with any non-alphanumeric character
except a slash or period, designating the device on which the file is to reside. The string may
represent a device class name up to eight alphanumeric characters beginning with a letter or a
logical device number consisting of a three-byte numeric string. Device class names and
logical device numbers are defined and assigned to devices during system configuration. See
the MPE General Information Manual for a discussion of device class names and logical device
numbers.

If the file is a newly-created disc file and the device specification is a device class, then all
extents of the file will be restricted to members of the class. Similarly, if the device specifica-
tion is a logical device number, then all extents will be restricted to the specified logical device.

Default: DISC.

formmsg byte array (optional)
Contains a forms message that can be used for such purposes as telling the console operator
what type of paper to use in the line printer. This message must be displayed to the operator
and verified before this file can be printed on a line printer. The message itself is a string of
ASCII characters terminated by a period. The maximum number of characters allowed in the
array is 49, which includes the period terminating character. Arrays with more than 49
characters are truncated by MPE.

Default: No forms message is available.

userlabels integer value (optional)
An integer specifying the number of user-label records to be written for this file.

Default: The default number of user-label records is zero.

blockfactor integer value (optional)

An integer containing the size of each buffer to be established for the file, specified as a
number equal to the logical records per block. For fixed-length records, blockfactor is the
actual number of records in a block. For variable-length records, blockfactor is interpreted as a
multiplier used to compute the block size (maximum recsize X blocfactor). For undefined-
length records, blockfactor is always one logical record per block. The blockfactor value
specified by you may be overridden by MPE. The valid range for blockfactor is from 1 to 255.
Specification of a negative or zero value results in the default blockfactor setting. Values
greater than 255 are defaulted to blockfactor modulo 256.

Default: 1.
8-10

numbuffers integer value (optional)
A 16-bit word whose bits specify the following:

Bits (11:5) - Number of buffers.

Specifies the number of buffers to be allocated to the file. This parameter is not used for files
representing interactive terminals, since a system-managed buffering method is always used

in such cases. If omitted, set to zero, or set to a negative number, the default value of 2 is set by
MPE.

Bits (4:7) - Number of copies.

For spooled output devices, specifies the number of copies of the entire file to be produced by
the spooling facility. This can be specified for a file already FOPENed (for example,
$STDLIST), in which case the highest value supplied before the last FCLOSE will take effect.
The copies will not appear contiguously if the console operator intervenes or if a file of higher
outputpriority becomes READY before the last copy is complete. This parameter is ignored for
non-spooled output devices. The default value is 1.

Bits (0:4) - Output priority.

Specifies the outputpriority to be attached to this file. This priority is used to determine the
order in which files will be produced when several are waiting for the same device. This
parameter must be a number between 1 (lowest priority) and 13 (highest priority), inclusive. If
this value is less than the current output fence set by the console operator, the file will be
deferred from printing/punching until the operator raises the outputpriority of the file or
lowers the output fence. This parameter can be specified for a file already FOPENed (for
example, $STDLIST), in which case the highest value supplied before the last FCLOSE will
take effect. This parameter is ignored for non-spooled devices. The default value is 8.

Default: The default values of all bit groupings are taken.

filesize double value (optional)
A double-word integer specifying the maximum file capacity in terms of physical records for
files containing variable-length and undefined-length records, and logical records for files
containing fixed-length records. A zero or negative value results in the default filesize setting.
The maximum capacity is over one million (22!) sectors. The number of sectors in a file is found
by the formula shown in the MPE Intrinsics Reference Manual.

Default: 1023 physical records.

numextents integer value (optional)
An integer specifying the number of extents (integral number of contiguously-located disc
sectors) that can be dynamically allocated to the file as logical records are written to it. The
size of each extent is determined by the filesize parameter value divided by the numextents
parameter value. If specified, numextents must be an integer from 1 to 32. A zero or negative
value results in the default setting.

Default: 8 extents.

8-11

NOTE

Extents are allocated on any disc in the device class specified in
the device parameter when the file was created. If it is necessary
to insure that all extents of a file are on a particular disc, a single
disc device class or a logical device number must be used in the

device parameter.

initialloc integer value (optional)

An integer specifying the number of extents to be allocated to the file when it is opened. This
must be an integer from 1 to 32. If an attempt to allocate the requested disc space fails, the
FOPEN intrinsic returns an error condition code to the calling program.

Default: 1 extent.

filecode integer value (optional)

An integer recorded in the file label and made available for general use to anyone accesssing
the file through the FGETINFO intrinsic. This parameter is used for new files only. For this
parameter, any user can specify a positive integer ranging from 0 to 1023. If your process is
running in privileged mode, you can specify a negative integer for filecode when initially
opening a file. Then, any future accesses of the file must be requested in privileged mode and
also must specify the correct filecode. Certain positive integers beyond 1023 have particular

HP-defined meanings, as follows:

1024
1025
1026
1027
1028
1029
1030
1031
1040
1041
1042
1050
1051
1052
1060
1070

Default: 0.

A USL file.

A BASIC data file.

A BASIC program file.

A BASIC fast program file.

A relocatable library (RL) file.

A program file.

A STAR file.

A segmented library (SL) file.

A Cross Loader ASCII file (SAVE).
A Cross Loader relocated binary file.
A Cross Loader ASCII file (DISPLAY).
An EDIT KEEPQ file (non-COBOL).
An EDIT KEEPQ file (COBOL).

An EDIT TEXT file (COBOL).

An RJE punch file.

A QUERY procedure file.

CONDITION CODES:

CCE

CcCG

Request granted. The file is open.

Not returned by this intrinsic.

812

CCL Request denied. This may be because another process already has exclusive or
semi-exclusive access for this file, or an initial allocation of disc space cannot be
made due to lack of disc space. The file number value returned by FOPEN if the
file is not opened successfully will be zero.

8-3. OPENING A NEW DISC FILE
Figure 8-3 contains an SPL program which opens two files: a card reader file and a new disc file.

The second FOPEN call in figure 8-3

OUT:=FOPEN(OUTPUT,%4,%101,128);
opens the new disc file. The parameters specified are
formaldesignator DATAONE, which is contained in the byte array OUTPUT

foptions %4, for which the bit pattern is as follows:

The above bit pattern specifies the following file options:

Domain: New file, no search of system or job temporary file directory is
necessary. Bits (14:2) = 00.

ASCII/Binary: ASCII. Bit (13:1) = 1.

aoptions %101, for which the bit pattern is as follows:

The above bit pattern specifies the following access options:

Access Type: Write access only. Bits (12:4)=0001 Exclusive: Exclusive
access. Bits (8:2)=01.

All other parameters are omitted from the FOPEN intrinsic call.

813

PAGE non1

00001000
00002000
00003Nn00
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
N0026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000

PRIMARY

HEWLETT=-PACKARD 32100A,05,.1

00000
00000
00000
00005
00004
00005
00005
00005
00005
00005
00005
00005
00005
00012
00013
00013
00015
00017
00017
00017
00030
00031
00031
nno33
00035
00035
00035
00035
00043
00044
00044
00046
00050
00050
00051
00051
00056
00057
00057
n0061
00063
00063
00063
00066
00066
00066
00072
00073
00073
00075
00077
00077

NN N = bt 0t 0t gt ot s N\ N N\ bt bt o 0t et 1\) N) 0=t 0t s et et T\ TN TN o 0t ot 0t N I\) 0t bl et ot bl ot Dt ot ot bt et s st (D D

1

SPL/3000 TUE,

SCONTROL USLINIT
BEGIN

BYTE ARRAY INPUT(0$K) $="INFILE "}
BYTE ARRAY DEV(0:4)3:="CARD "3
BYTE ARRAY OUTPUT(0:7):="DATAONE
ARRAY BUFFER(0:127)3

INTEGER INsOQOUTsLGTHS

1975, 10:30 AM

INTRINSIC FOPENFREADsFWRITEJFCLOSEZPRINTIFILEYINFOSQUITS

<< END OF DECLARATIONS >>

IN:=FOPEN(INPUTs%599409sDEV) §
IF < THEN
BEGIN
PRINT*FILE*INFO(IN)$
QUIT(1)#
ENDS

COPY'LOOP:

LGTHI=FREAD(INsBUFFER,40)3
IF < THEN
BEGIN
PRINT'FILEYINFO(IN) Y
QUIT(3) 3
END}
IF > THEN GO END'OF'FILE}

FWRITE (OUT9BUFFERsLGTHy0)
IF <> THEN
BEGIN
PRINTT'FILE'INFO(OUT)
QUIT{4})3
ENDY

GO COPY'LOOPS

END'OF *FILES

FCLOSE (OUT+%11+0) 3
IF < THEN
BEGIN
PRINT*FILE*INFO(OUT)}
QUIT(5)3
END}

END,
DB STORAGE=%0073
NO, FRRORS=0001%

PROCESSOR TIME=0:00t033

SECONDARY DB STORAGE=%00213
NO., WARNINGS=000
ELAPSED TIME=0:100144

<<CARD READER>>
<<CHECK FOR ERROR>>»

<<PRINT ERROR>>
<<ABORT>>

<<READ A CARD>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABQORT>>

<<CHECK FOR EOF>>

<<COPY CARD TO DISC>>.
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<CONTINUE COPYING>>
<<MAKE PERMANENT>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

Figure 8-3. Opening a New Disc File

814

Once the file is opened, the file number (used by other file system intrinsics when referencing this file)
is returned to the variable OUT.

The condition code is checked with the

IF < THEN

statement. If the condition code is CCL, signifying that the FOPEN request was denied, the next four
statements, starting with the BEGIN statement are executed.

PRINT'FILE'INFOOUT);

calls the PRINT’FILE’INFO intrinsic, which prints a FILE INFORMATION DISPLAY on the stand-
ard list device, enabling you to determine the error number returned by FOPEN. The parameter
(OUT) specifies the file number returned through the FOPEN intrinsic. If the file was not opened
successfully, OUT=0, where 0 specifies that the FILE INFORMATION DISPLAY will reflect the
status of the file referenced in the last call to FOPEN. See the MPE Intrinsics Reference Manual for a

discussion of the FILE INFORMATION DISPLAY.
The QUIT intrinsic call
QUIT(2);
aborts the process. The parameter (2) is an arbitrary user-supplied number. When a QUIT intrinsic is
executed, this number is printed as part of the resulting abort message, allowing you to determine, in
the case of multiple QUIT intrinsic calls in a program, which specific QUIT call was executed.
NOTE
The QUIT intrinsic causes MPE to close all files with no change.

Thus, new files are deleted, old files are saved and assigned to the
same domain to which they belonged previously.

815

8-4. READ

The READ intrinsic reads a string of ASCII characters from a job/session input device into an array in
your program. This intrinsic is similar to issuing an FREAD intrinsic call against the file $STDIN.
The READ intrinsic is limited in its usefulness, however, in that the full capability of the file system is
not available to a user of this intrinsic. For example, :FILE commands are not allowed and certain file
intrinsics cannot be used because the filenum parameter, obtained from the FOPEN intrinsic, is not
available to normal users of the READ intrinsic.

Basic line editing such as cancellation of lines and backspacing are performed automatically by the
input/output driver. If the input device is a terminal and it is in full-duplex mode and the echo facility
is on, or if the terminal is in half-duplex mode, the characters read are printed.

FUNCTIONAL RETURN:

This intrinsic returns a positive value representing the length of the ASCII string which was
read. If expetedl is positive, this length specifies words; if expeted! is negative, length specifies
bytes.

PARAMETERS:

message array (required)
The array into which the ASCII characters are read.

expectedl integer value (required)
An integer specifying the maximum length of the array message. If expected! is positive, this
specifies the length in words; if expectedl is negative, this specifies the length in bytes. When

the record is read, the first expected! characters are input. If expected! equals or exceeds the size
of the physical record, the entire record is transmitted.

CONDITION CODES:
CCE Request granted.

CCG A record with a colon in the first column, signalling the end of data, or a
hardware end-of-file was encountered.

CCL Request denied because a physical input/output error occurred. Further error
analysis through the FCHECK intrinsic is not possible.

8-16

8-5. READX

The READX intrinsic reads a string of ASCII characters from a job/session input device into an array
in your program. This intrinsic is similar to issuing an FREAD intrinsic call against the file
$STDINX. The READX intrinsic is limited in its usefulness, however, in that the full capability of the
file system is not available to a user of this intrinsic. For example, :FILE commands are not allowed
and certain file intrinsics cannot be used because the filenum parameter, obtained from the FOPEN
intrinsie, is not available to normal users of the READX intrinsic.

Basic line editing such as cancellation of lines and backspacing are performed automatically by the
input/output driver. If the input device is a terminal and it is in full-duplex mode and the echo facility
is on, or if the terminal is in half-duplex mode, the characters read are printed.

FUNCTIONAL RETURN:

This intrinsic returns a positive value representing the length of the ASCII string which was

read. If expected! is positve, this length specifies words; if expected! is negative, length specifies
bytes.

PARAMETERS:

message array (required)
The array into which the ASCII characters are read.

expected! integer value (required)
An integer specifying the maximum length of the array message. If expected! is positive, this
specifies the length in words; if expected! is negative, this specifies the length in bytes. When
the record is read, the first expectedl characters are input. If expectedl equals or exceeds the size
of the physical record, the entire record is transmitted.

CONDITION CODES:
CCE Request granted.
CCG An :EOD, :EOF, or in a job, :EQJ, :JOB, or :DATA command was encountered.

CCL Request denied because a physical input/output error occurred. Further error
analysis through the FCHECK intrinsic is not possible.

8-17

8-6. FREAD

The FREAD intrinsic reads a logical record, or a portion of such a record, from a file on any device to
the user’s stack.

When the logical end-of-data is encountered during reading, the CCG condition code is returned to the
user process. On magnetic tape, the end-of-data can be denoted by a physical indicator such as a tape
mark. On disc, the end-of-data occurs when the last logical record of the file is passed. In this case, the
CCG condition code is returned and no record has been read. If the file is embedded in an input source
containing MPE commands, the end-of-data is indicated when an :EOD command is encountered, but
the :EOD command itself is not returned to the user. The end-of-data is indicated by a hardware
end-of-file, including :EOF:, or on $STDIN by an MPE command, or on $STDINX by :EOD. In addition,
on the standard input device for a job, as opposed to a session, :JOB, :EOJ, or :DATA indicate
end-of-data.

When an old file containing carriage-control characters, supplied through the control parameter of the
FWRITE intrinsic, is read, and the carriage-control foption parameter of the FOPEN intrinsic, or the
CCTL parameter of the :FILE command is specified, the carriage-control byte is read as follows:

Data Read

L Y

Carriage
Control
Byte

(If file has carriage control specified)

It is possible to skip portions of records inadvertently if the multirecord aoption of FOPEN is set and
the tcount parameter specified is greater than one logical record. For example, if you read all of record
11 and half of record 12 in a file, the logical record pointer will be set to the beginning of record 13 after
the FREAD intrinsic executes. Thus, the second half of record 12 may be skipped.

FUNCTIONAL RETURN:

The FREAD intrinsic returns a positive integer value showing the length of the information
transferred. If the tcount parameter in the FREAD call was positive, the positive value returned
represents a word count; if the fcount parameter was negative, the positive value returned
represents a byte count.

PARAMETERS:

filenum integer value (required)
A word identifier supplying the file number of the file to be read.

8-18

target array (required)
An array to which the record is to be transferred. This array should be large enough to hold all
of the information to be transferred.

tcount integer value (required)
An integer specifying the number of words or bytes to be transferred. If this value is positive, it
signifies the length in words; if it is negative, it signifies the length in bytes; if it is zero, no
transfer occurs. If fcount is less than the size of the record, only the first tcount words or bytes
are read from the record.

If tcount is larger than the size of the physical record (i.e., block), and the multirecord aoption
was not specified in FOPEN, transfer is limited to the length of the physical record. If the
multirecord aoption was specified in FOPEN, the remaining words or bytes specified in fcount
will be read from succeeding records.

CONDITION CODES:

CCE The information was read.
CCG The logical end-of-data was encountered during reading.
CCL The information was not read because an error occurred, a terminal read was

terminated by a special character as specified in the FCONTROL intrinsic, or a
tape error was recovered and the FSETMODE option was enabled.

SPLIT STACK CALLS ARE PERMITTED.

8-7. READING A FILE IN SEQUENTIAL ORDER

To read records, or portions of records, from a file in sequential order, you use the FREAD intrinsic.

When the FREAD intrinsic executes, a logical record pointer advances to the next record. Then, the
next time the FREAD intrinsic is called, the next record is read. Even if a portion of a record is read, a
subsequent FREAD ignores the unread portion of the last record (because the logical record pointer
has advanced) and begins reading the next record.

NOTE

The logical record pointer is a number kept by MPE to indicate
the next sequential record to be accessed in a file.

The program shown in figure 8-4 reads a card file. The FREAD statement
LGTH:=FREAD(IN,BUFFER,40);

reads a record from the card reader file designated by the variable IN (the file number was assigned to
IN when the FOPEN intrinsic opened the file) and transfers this record to the array BUFFER in the
stack. The statement reads up to 40 words from the record, then returns a positive value to LGTH
which indicates the actual length of the information transferred.

819

PAGE 0001 HEWLETT-PACKARD 32100A,0541 SPL/3000 TUEs OCT 7y 1975, 10:30 AM
00001000 00000 O $CONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 1 BYTE ARRAY INPUT(Q16K) I="INFILE "4

00004000 00005 1 BYTE ARRAY DEV(0t4)t=nCARD "3

00005000 00004 1 BYTE ARRAY OUTPUT(0:7):=nDATAONE "}

00006000 00005 1 ARRAY BUFFER(0:127)3%

00007000 00005 1 INTEGER INsOUTsLGTHS

00008000 00005 1

00009000 00005 1 INTRINSIC FOPENSFREADsFWRITEsFCLOSEoPRINTIFILE*INFO,0OUITS
00010000 00005 1

00011000 00005 1 << END OF DECLARATIONS >>

00012000 00005 1

00013000 00005 1 INI=FOPEN(INPUT+%5+9404+DEV) $ <<CARD READER>>
00014000 00012 1 IF < THEN <<CHECK FOR ERROR>>
00015000 00013 1 BEGIN

00016000 00013 2 PRINT'FILE*INFO(IN) <<PRINT ERROR>>
00017000 00015 2 QUIT(1) <<ABORT>>
00018000 00017 2 END3

00019000 00017 1

00020000 00017 1 OUTt=FOPEN(OUTPUT+%64+%101,128) ¢ <<NEW DISC FILE>>
00021000 00030 1 IF < THEN <<CHECK FOR FRROR>>
00022000 00031 1 BEGIN

00023000 00031 2 PRINT'FILEYINFO(OUT)S <<PRINT ERROR>>
00024000 00033 2 QUIT(2)3 <<ABORT>>
00025000 00035 2 END1Y

N0026000 00035 1

60027000 00035 1

00028000 00035 1

00029000 00043 1

00030000 00044 1

00031000 00044 2

00032000 00046 2

00033000 00050 2

00034000 00050 1

00035000 00051 1

00036000 000S1 1

00037000 00056 1

00038000 000S7 1

00039000 00057 2

00040000 00061 2

00041000 00063 2

000642000 00063 1

00043000 00063 1 GO COPY'LOOP} <<CONTINUE COPYING>>
00044000 00066 1

00045000 00066 1 END'OF*FILES

00046000 00066] FCLOSE(OUT+%11+0) 3 <<MAKE PERMANENT>>
00047000 00072 1 IF < THEN <<CHECK FOR ERROR>>
00048000 00073 1 BEGIN

00049000 00073 2 PRINT!FILEYINFO(OUT)} <<PRINT ERROR>>
00050000 00075 2 QUIT(S)$ <<ABORT>>
00051000 00077 2 END3

00052000 00077 1 END,

PRIMARY DB STORAGE=%0073 SECONDARY DB STORAGE=%00213

NO, FRRORS=0003 NO, WARNINGS=000

PROCESSOR TIME=0:00:03%

ELAPSED TIME=0:00t44

Figure 8-4. FREAD Intrinsic Example
8-20

If an error occurs during execution of the FREAD intrinsic, a condition code of CCL is returned. The
statement

IF < THEN

checks the condition code and, if the condition code is CCL, the next four statements are executed. The
PRINTFILE’INFO intrinsic call causes a FILE INFORMATION DISPLAY to be printed on the output
device so that you can determine the error number returned by FREAD, and the QUIT intrinsic aborts
the process.

When the end-of-file is encountered on the card file, a condition code of CCG is returned. The
statement

IF > THEN GO END'OFFILE;
checks for this condition code and, when it occurs, transfers program control to the label
END’OF’FILE. If the end-of-file condition is not encountered, the FWRITE statement is executed and
the

GO COPY’LOOP;

statement transfers program control back to the beginning of the copy loop. The FREAD intrinsic is
called again and the next record is read.

8-21

8-8. FREADDIR

The FREADDIR intrinsic reads a specific logical record, or a portion of such a record, from a disc file to
the user’s data stack. This intrinsic differs from the FREAD intrinsic in that the FREAD intrinsic
reads only the record pointed to by the logical record pointer. The FREADDIR intrinsic may be issued
only for disc files composed of fixed-length or undefined-length records.

After the FREADDIR intrinsic is executed, the logical record pointer is set to the beginning of the next
logical record, or first logical record of the next block for NOBUF files, in the file.

It is possible to skip portions of records inadvertently if the multirecord aoption of FOPEN is set and
the tcount parameter specified is greater than one logical record. For example, if you read all of record
11 and half of record 12 in a file, the logical record pointer will be set to the beginning of record 13 after
the FREADDIR intrinsic executes. Thus the second half of record 12 may be skipped.

PARAMETERS:

filenum integer value (required)
A word identifier supplying the file number of the file to be read.

target array (required)
An array to which the record is to be transferred. This array should be large enough to hold all
of the information to be transferred.

teount integer value (required)
An integer specifying the number of words or bytes to be transferred. If this value is positive, it
signifies words; if negative, it signifies bytes; and if it is zero, no transfer occurs. If tcount is
less than the size of the record, only the first tcount words or bytes are read from the record.

If tcount is larger than the size of the logical record and the multirecord aoption was not
specified in FOPEN, the transfer is limited to the length of the logical record. If the mu!-
tirecord aoption was specified in FOPEN, the remaining words or bytes specified in tcount will
be read from succeeding records.

recnum double value (required)

A double-word integer indicating the relative number, in the file, of the logical record to be
read. The first record is indicated by 0D (double word zero).

CONDITION CODES:

CCE The specified information was read.
CCG The logical end-of-data was encountered during reading.
CCL The information was not read because an error occurred.

SPLIT STACK CALLS ARE PERMITTED.
8-22

8-9. PRINT

You can write a string of ASCII characters from an array to the job/session listing device by using the
PRINT intrinsic. This intrinsic is similar to issuing an FWRITE intrinsic call against the file
$STDLIST. The PRINT intrinsic is limited in its usefulness, however, in that the full capability of the
file system is not available to a user of this intrinsic. For example, :FILE commands are not allowed
and certain file intrinsics cannot be used because the filenum parameter, obtained from the FOPEN
intrinsic, is not available to normal users of the PRINT intrinsic.

PARAMETERS:

message array (required)
Contains the character string to be output.

NOTE

You can avoid annoying warning messages in the compiled out-

put by equivalencing a byte array to a logical array for the
message parameter.

length integer value (required)
An integer denoting the length of the character string to be transmitted. If length is positive, it
specifies the length in words; if length is negative, it specifies the length in bytes.

control integer value (required)
An integer representing a carriage-control code as shown in figure 8-5.

CONDITION CODES:
CCE Request granted.
CCG End-of-data encountered.

CCL Request denied because of input/output error. Further error analysis through the
FCHECK intrinsic is not possible.

8-23

Octal Code ASCIl Symbol Carriage Action
%40 *Single-space.
%60 :‘O" *Double-space.
%61 e Page-eject (form-feed).
%53 e No space, return (next printing at column 1),
%2nn Space nn lines. (No automatic page eject.)

(where n is any digit
from O through 7)

%300
%301
%302
%303

%304
%305
%306
%307
%310
%311
%312
%313
%320

%0-%37
%41-%52
%54-%57
%62-%77

%314-%317
%321-%377

%400 or %100

%401 or %101
%402 or %102

%403 or %103

Page-eject (Tape Channel 1).
Skip to bottom of form (Tape Channel 2).
Single-spacing (with automatic page eject). (Tape Channel 3.)

Single-space on next odd-numbered line (with automatic page
eject). (Tape Channel 4.)

Triple-space (with automatic page eject). (Tape Channel 5.)
Space 1/2 page (with automatic page eject). (Tape Channel 6.)
Space 1/4 page (with automatic page eject). (Tape Channel 7.)
Space 1/6 page (with automatic page eject). (Tape Channel 8.)
Space to bottom of form. (Tape Channel 9.)

Skip to Tape Channel 10. (User option.)

Skip to Tape Channel 11. (User option.)

Skip to Tape Channel 12. (User option.)

No space, no return. (Next printing physically follows this.)

**Same as %40

Set post-space movement option; this first prints, then spaces. If
previous option set was pre-space movement option, the driver
outputs a line (and suppresses spacing) to clear the buffer.

Set pre-space movement option; this first spaces, then prints.
Set single-space option, with automatic page eject (60 lines per
page).

Set single-space option without automatic page eject (66 lines per
page).

* Spacing with or without automatic page eject can be selected.
**Future MPE/3000 requirements may necessitate redefinition of these octal codes.

Figure 8-5. Carriage Control Directives

8-24

8-10. FWRITE

The FWRITE intrinsic writes a logical record, or a portion of such a record, from the user’s stack to a
file on any device.

When information is written to a fixed-length record, and the NOBUF aoption was not specified in
FOPEN, any unused portion of the record will be padded with binary zeros for a binary file or ASCII
blanks for an ASCII file.

When the FWRITE intrinsic is executed, the logical record pointer is set to the record immediately
following the record just written, or the first logical record in the next block for NOBUF files.

When an FWRITE call writes a record beyond the current logical end-of-file indicator, this indicator is
advanced to a farther location. If the physical bounds of the file are reached, the CCL condition code is
returned.

PARAMETERS:

filenum integer value (required)
A word identifier supplying the file number of the file to be written on.

target array (required)
Contains the record to be written.

tcount integer value (required)
An integer specifying the number of words or bytes to be written to the record. If this value is
positive, it signifies words; if it is negative, it signifies bytes; if it is zero, no transfer occurs. If
tcount is less than the recsize parameter associated with the record, only the first tcount words
or bytes are written.

If tcount is larger than the recsize value, and the multirecord aoption was not specified in
FOPEN, the FWRITE request is refused and condition code CCL is returned. If the multirecord
aoption was specified in FOPEN, the excess words or bytes are written to succeeding records.
For files for which carriage control is specified, the actual data transferred is limited to recsize
minus one byte.

control logical value (required)
A logical value representing a carriage control code, effective if the file is transferred to a line
printer or terminal (including a spooled file whose ultimate destination is a line printer or a

terminal). This parameter is effective only for files opened with carriage control specified. The
options are:

0 = Print the full record transferred, using single spacing. This results in a maximum of 132
characters per printed line.

1 = Use the first character of the data written to signify space control, and suppress this
character on the printed output. This results in a maximum of 132 characters of data per
printed line. Permissible control characters are shown in figure 8-5.

8-25

Any octal code from figure 8-5 can be used to determine space control and print the full record
transferred. This results in a maximum of 132 characters per printed line. No data will be
transferred if the octal code is 100 through 103 or 400 through 403, or if the octal code is 1 and
the embedded control is octal 100 or 103.

If the control parameter is not 0 or 1, and fcount is 0, only the space control is executed — no
data is transferred.

The effect of the FWRITE control parameter in combination with the FOPEN carriage control
foption (or overriding :FILE command CCTL/NOCCTL parameter) upon the data written is

summarized in figure 8-6.

FWRITE Control Parameter

FOPEN
OR
:FILE =0 =1 = Greater than 1

Carriage Byte Byte

Control 1 1

Foption

Specified 1:) record record (t::)c':I- record

or

CCTL . T . .
Data output contains Data output contains Data output contains
132 characters; the 132 characters; the 132 characters; the
first byte contains 0. carriage control first character is a

character in the first carriage-control
byte is suppressed. character specified by
the FWRITE contro/
parameter.

Carriage

Control

Foption

not record record record

specified

or . . T .

NOCCTL Data output contains Data output contains Data output contains

132 characters.

132 characters

132 characters.

-

EFFECT ON DATA QUTPUT

Figure 8-6. Carriage Control Summary

You determine whether the carriage control directive takes effect before printing (pre-space
movement) or after printing (post-space movement), through the FCONTROL intrinsic.

All of the carriage control codes listed in figure 8-5 may be used as the value of the param
parameter in FCONTROL (when controlcode = 1), regardless of whether the file is opened with

8-26

CCTL or NOCCTL. When the file is opened with CCTL, these carriage control codes may be
used in either of the following ways via FWRITE:

a. As the value of the control parameter.
b. When control = 1, as the first byte of the target array.

The default carriage control code is post spacing with automatic page eject. This applies to all
HP-supported subsystems except FORTRAN which is prespacing with automatic page eject.

CONDITION CODES:
CCE Request granted.

CCG The physical bounds of the file prevented further writing; all disc extents are
filled.

CCL Request denied because an error occurred, such as tcount exceeding the size of the
record in non-multirecord mode; or the FSETMODE option is enabled to signify
recovered tape errors; or the end-of-tape marker was sensed.

SPLIT STACK CALLS ARE PERMITTED.

8-11. WRITING RECORDS INTO A FILE IN SEQUENTIAL ORDER

To write records, or portions of records, from your buffer to a file in sequential order, you use the
FWRITE intrinsic.

When the FWRITE intrinsic executes, the logical record pointer advances to the next record. Then, the
next time the FWRITE intrinsic is called, information is written into the next record position. When
information is written to a file composed of fixed-length records (and buffering is not specified in the
FOPEN call), the file system will pad all short records with binary zeros for a binary file, or ASCII
blanks for an ASCII file to bring the records up to the fixed length required. If nobuff was specified in
FOPEN, automatic buffering is not provided by MPE.

The FWRITE statement in figure 8-7
FWRITE(OUT,BUFFER,LGTH,0);

writes a record from the array BUFFER into the disc file designated by the variable OUT. The file
number was assigned to OUT when the FOPEN intrinsic opened the file. The length of the record is
specified by LGTH. LGTH was assigned its value when the FREAD intrinsic read the record and
transferred it to BUFFER, so in this case the same number of words being read from the card reader
are being written to the disc.

The control parameter is specified as 0, which specifies that no carriage control code is included in the

record. Carriage control, of course, is not necessary for a disc file but the parameter is included because
all of FWRITE’s parameters are required.

8-27

PAGE 0001

HEWLETT-PACKARD 32100A,05,.1

SPL/3000 TUE,

ocT

Te

1975, 10:30 AM

<<CARD READER>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<NEW DISC FILE>>
<<CHECK FOR FRROR>>»

<<PRINT ERRQOR>>
<<ABORT>>

<<CONTINUE COPYING>>

<<MAKE PERMANENT>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

00001000 00000 O $CONTROL USLINIT

00002000 00000 O BEGIN

00003000 00000 1 BYTE ARRAY INPUT(0t6)I=MINFILE t}
00004000 00005 1 BYTE ARRAY DEV(034)33"CARD "}
00005000 00004 1 BYTE ARRAY OUTPUT(01317) 3="DATAONE "}
00006000 00005 1 ARRAY BUFFER(0:127)3

00007000 00005 1 INTEGER INsQUTLGTH}

00008000 00005 1

00009000 00005 1 INTRINSIC FOPENsFREADsFWRITE+FCLOSEsPRINT!FILE*INFO,QUITS
00010000 00005 1

00011000 00005 1 << END OF DECLARATIONS >>
00012000 00005 1

00013000 00005 1 IN:=FOPEN(INPUT +%5++404+DEV) §
00014000 00012 1 IF < THEN

00015000 00013 1 BEGIN

00016000 00013 2 PRINT'FILE*INFO(IN)S
00017000 00015 2 QUIT(1)3

00018000 00017 2 ENDS

00019000 00017 1

00020000 00017 1 OUTt=FOPEN(OUTPUT+%44+%101,128) 3
00021000 00030 1 IF < THEN

00022000 00031 1 BEGIN

00023000 00031 2 PRINT'FILEYINFO(OUT)S
00024000 00033 2 QUIT(2)3

00025000 00035 2 END3

00026000 00035 1

00027000 00035 1

00028000 00035 1

00029000 00043 1

00030000 00044 1

00031000 00044 2

00032000 00046 2

00033000 00050 2

00034000 00050 1

00035000 00051 1

00036000 00051 1

00037000 00056 1

00038000 00057 1

00039000 00057 2

00040000 00061 2

00041000 00063 2

00042000 00063 1

00043000 00063 1 GO COPY'LOOP}

00064000 00066)

00045000 00066 1 END'OF'FILE!

00046000 00066 1 FCLOSE(OUT+%11+0) 3

00047000 00072 1 IF < THEN

00048000 00073 1 BEGIN

00049000 00073 2 PRINT'FILEYINFO(OUT)$
00050000 00075 2 QUIT(S)3

00051000 00077 2 END3

00052000 00077 1 END,

PRIMARY DB STORAGE=%0073 SECONDARY DB STORAGE=%00213
NO, ERRORS=0001 NO. WARNINGS=000

PROCESSOR TIME=0300303%

ELAPSED TIME=Q100144

Figure 8-7. FWRITE Intrinsic Example

828

A condition code of CCE signifies that the FWRITE request was granted. The statement

IF <> THEN

checks for a “not equal” condition code and, if CCG or CCL is returned, the next four statements are
executed. The PRINT'FILE'INFO intrinsic causes a FILE INFORMATION DISPLAY to be printed

on the output device, enabling you to determine the error number returned by FWRITE. The QUIT
intrinsic aborts the process.

If CCE is returned, the next four statements are not executed, the GO COPYLOOP statement is

executed, and the FREAD and FWRITE intrinsic calls are repeated until FREAD detects the end of
the card file.

8-29

8-12. FWRITEDIR

The FWRITEDIR intrinsic writes a specific logical record, or a portion of such a record, from the user’s
stack to a disc file. This intrinsic differs from the FWRITE intrinsic in that the FWRITE intrinsic
writes only the record pointed to by the logical record pointer. The FWRITEDIR intrinsic may be used
only for disc files composed of fixed or undefined-length records.

When information is written to a fixed-length record and NOBUF was not specified in the FOPEN call
that opened the file, any unused portion of the record will be padded with binary zeros for a binary file,
or ASCII blanks for an ASCII file.

When the FWRITEDIR intrinsic is executed, the logical record pointer is set to the record immediately
following the record just written, or the first logical record of the next block for NOBUTF files.

When an FWRITEDIR call writes a record beyond the current logical end-of-file indicator, the
indicator is advanced to a farther location. This can result in the creation of dummy records to pad the
records between the previous end-of-file and the newly-written record. These dummy records are filled
with binary zeros for a binary file, or with ASCII blanks for an ASCII file.

When the physical bounds of the file prevent further writing, because all allowable extents are filled,
the end-of-file condition (CCG) is returned to the user’s program.

PARAMETERS:

filenum integer value (required)
A word identifier specifying the file number of the file to be written on.

target array (required)
Contains the record to be written. This array should be large enough to hold all the informa-
tion to be transferred.

tcount integer value (required)
An integer specifying the number of words or bytes to be written to the record. If this value is
positive, it signifies words; if it is negative, it signifies bytes; if it is zero, no transfer occurs. If
tcount is less than the recsize parameter associated with the record, only the first tcount words
or bytes are written.

If tcount is larger than the size of the logical record and the multirecord aoption was not
specified in FOPEN, the transfer is limited to the length of the logical record. If the mul-
tirecord aoption was specified in FOPEN, the remaining words or bytes are written to suc-
ceeeding records.

recnum double value (required)
A double integer indicating the relative number of the logical record, or block number for
NOBUF files, to be written. The first record is indicated by 0D.

8-30

CONDITION CODES:
CCE Request granted.
CCG The physical end-of-file was encountered.

CCL Request denied because an error occurred.

SPLIT STACK CALLS ARE PERMITTED

831

8-13. FUPDATE

The FUPDATE intrinsic updates a logical record in a disc file. This intrinsic affects the logical record
(or block for NOBUTF files) last referenced by an intrinsic call for the file specified. FUPDATE moves
the specified information from the user’s stack into this record. The file containing this record must

have been opened with the update aoption specified in the FOPEN call, and must not have variable-
length records.

PARAMETERS:

filenum integer value (required)
A word identifier supplying the file number of the file to be updated.

target array (required)
Contains the record to be written in the updating.

tcount integer value (required)
An integer specifying the number of words or bytes to be written to the record. If this value is
positive, it signifies words; if it is negative, it signifies bytes; if it is zero, no transfer occurs. If
tcount is less than the recsize parameter associated with the record, only the first tcount bytes
or words are written. For buffered files, tcount is limited to the block size. FUPDATE cannot
perform multirecord updates.

CONDITION CODES:
CCE Request granted.
CCG An end-of-file condition was encountered during updating.

CCL Request denied because of an error, such as the file not residing on disc, or tcount
exceeding the size of the record when multirecord mode is not in effect.

SPLIT STACK CALLS ARE PERMITTED.

8-14. UPDATING A FILE

To update a logical record of a disc file, you use the FUPDATE intrinsic.

The FUPDATE intrinsic affects the logical record (or block for NOBUF files) last accessed by any
intrinsic call for the file named, and writes information from a buffer in the stack into this record. Note
that the record number is not supplied in the FUPDATE intrinsic call, FUPDATE automatically
updates the last record referenced in any intrinsic call.

The file containing the record to be updated must have been opened with the update aoption specified
in the FOPEN call and must not contain variable-length records.

8-32

PAGE 0001

00001000 00000 O
00002000 00000 O BEGIN
00003000 00000 1
00004000 00005 1
00005000 00005 1
00006000 00005 1
00007000 00005 1
00008000 00005 1
00009000 00005 1
00010000 00005 1
00011000 00000 1
00012000 00000 1
00013000 00000 1
00014000 00000 2
00015000 00002 2
00016000 00004 2
00017000 00000 1
00018000 00000 1
00019000 00000 1
00020000 00000 1)
00021000 00011 1}
00022000 00015 1
00023000 00015 1
00024000 00024 1
00025000 00030 1}
00026000 00030 1
00027000 00040 1
00028000 00044 1
00029000 00044 1
00030000 00044 1
00031000 00047 1
00032000 00053 1
00033000 00053 1
00034000 00061 1
00035000 00065 1
00036000 00070 1
00037000 00070 1
00038000 00075 1
00039000 00101 1
00040n00 00101 1
00041000 00110 1
00042000 00114 1
00043000 00115 1
00044000 00115 1
00045000 00121 1
00046000 00125 1
00047000 00125 1
00048000 00127 1
00049000 00133 1
00050000 00133 1
00051000 00140 1
00052000 00140 1
00053000 00140 1
00054000 00142 1
00055000 00146 1
00056000 00146 1
00057000 00151 1
00058000 00155 1 END,

PRIMARY DR STORAGE=%0073$
NO, FRRORS=000%
PROCFSSOR TIME=0:00103%

HEWLETT=PACKARD 32100A.05.1

$CONTROL USLINIT

BYTE ARRAY DATA1(037)t="DATAONE "3}
ARRAY BUFFER(03127)3
INTEGER DFILE1+sLGTHoDUMMY,IN,LIST}S

SPL/3000 TUEs OCT

1975, 10t32 AM

INTRINSIC FOPENsFREADsFUPDATE » FLOCK s FUNLOCK+FCLOSE »

PRINT!FILE'INFOsQUIT+FWRITE+FREADS

PROCEDURE FILERROR(FILENO,QUITNO)S
VALUE QUITNOS
INTEGER FILENOSQUITNOS
BEGIN

PRINT*FILE*INFO(FILENO) 3
QUIT(QUITNO) §

END3
<<END OF DECLARATIONS>>

DFILE13=FOPEN(DATAl +%5+%345,128) %

IF < THEN FILERROR(DFILE141)38

INt=FOPEN(+%244)}
IF < THEN FILERRORI(INs2)$

LISTtSFOPEN(s%6144+%1) %
IF < THEN FILERROR(LIST+3)3

UPDATE*LOOP:

FLOCK(DFILEls1)3
IF < THEN FILFRROR(DFILEly4)$

LGTHI=FREAD(DFILE) +BUFFER,128)3%
IF < THEN FILERROR(DFILE1,5)3
IF > THEN GO END'OF'FILES

FWRITE(LISTsBUFFER»=20+%320) %
IF <> THEN FILERROR(LISTy6)%

DUMMY 1 =FREAD {IN+BUFFER(30)+5) 3
IF < THEN FILERROR(IN,7)}
IF > THEN GO ENO'OF'FILE}

FUNLOCK (DFILEL) S
IF <> THEN FILERROR(DFILE1+9)%

GO UPDATE*LOOP}

END*OF 'FILE?

FUNLOCK(DFILEL)
IF <> THEN FILERROR(DFILE1+10)3

FCLOSE(DFILEL1+040)%
IF < THEN FILERROR(DFILE1y11)}1

SECONDARY DB STORAGE=%00204
NO., WARNINGS=000
ELAPSED TIME=0100117

<<OLD DISC FILE>>
<<CHECK FOR ERROR>>

<<$STDIN>>
<<CHECK FOR ERROR>>

<<$STDLIST>>
<<CHECK FOR ERROR>>

<<LOCK FILE/SUSPEND>>
<<CHECK FOR ERROR>>

<<GET EMPLOYEE RECD>>
<<CHECK FOR FRROR>>
<<CHECK FOR EOF>>

<<EMPLOYEE NAME>>
<<CHECK FOR ERROR>>

<<EMPLOYFE NUMBER>>
<<CHECK FOR ERROR>>

<<ALLOW OTHER ACCESS>>
<<CHECK FOR ERROR>>

<<CONTINUE UPDATE>>
<<ALLOW OTHER ACCESS>>
<<CHECK FOR ERROR>>

<<DISP=NO CHANGE>>
<<CHECK FOR ERROR>>

Figure 8-8. FUPDATE Intrinsic Example

8-33

Figure 8-8 contains a program that opens an old disc file and updates records in the file. The update
information (employee number) is entered from a terminal (the program was run interactively) into a
buffer in the stack, then the contents of the buffer are used to update the record.

The statement

LGTH:=FREAD(DFILE1,BUFFER,128);
reads an employee record from the file specified by DFILE1 into the array BUFFER in the stack.
The statement

FWRITE(LIST,BUFFER,—20,%320);

then displays this record on the terminal ($STDLIST has been opened with the FOPEN intrinsic and
the resulting file number was assigned to LIST).

The statement
DUMMY:=FREAD(IN,BUFFER(30),5);

reads an employee number, entered on the terminal ($STDIN has been opened with the FOPEN
intrinsic and the resulting file number was assigned to IN), into word 30 of the array BUFFER.

The statement
FUPDATE(DFILE1,BUFFER,128);

then calls the FUPDATE intrinsic to update the last record accessed in the file specified by DFILE1.
The contents of BUFFER (including the employee number entered from the terminal) are written into
this record. Up to 128 words are written.

If the FUPDATE request was granted, a CCE condition code results. The statement

IF <> THEN FILERROR(DFILE1,9);

checks for a “not equal” condition code and, if such is the case, calls the error-check procedure
FILERROR. The procedure FILERROR prints a FILE INFORMATION DISPLAY on the terminal,
enabling you to determine the error number returned by FUPDATE, then aborts the programs’s
calling process.

8-34

8-15. FCLOSE

The FCLOSE intrinsic terminates access to a file. This intrinsic applies to files on all devices. FCLOSE
deletes the buffers and control blocks through which the user process accessed the file. It also
deallocates the device on which the file resides and it may change the disposition of the file. If you do
not issue FCLOSE calls for all files opened by your process, such calls are issued automatically by
MPE when the process terminates. When a file on magnetic tape is saved, the tape is rewound. All
magnetic tape files are left offline after an FCLOSE to indicate to the operator that they may be
removed (i.e., the magnetic tape drive has been deallocated).

PARAMETERS:

filenum integer value (required)
A word identifier supplying the file number of the file to be closed.

disposition integer value (required)
Indicates the disposition of the file, significant only for files on disc and magnetic tape. This
disposition can be overridden by a corresponding parameter in a :FILE command entered prior
to program execution. The disposition options are defined by two bit fields, as follows:

Bits (13:3) - Domain Disposition

0 = No change. The disposition code remains as it was before the file was opened. Thus, if the
file is new, it is deleted by FCLOSE; otherwise, the file is assigned to the domain to which
it belonged previously.

1 = Permanent file. The file is saved in the system file domain. If the file is a new or old
temporary file on disc, an entry is created for it in the system file directory. An error code
is returned if a file of the same name already exists in the directory. If the file is an old
permanent file on disc, this disposition value has no effect. If the file is stored on magnetic
tape, that tape is rewound and unloaded.

2 = Temporary job file (rewound). The file is retained in the user’s temporary (job/session) file
domain and can thus be requested by any process within the job/session. The uniqueness of
the file name is checked. If a file of the same name already exists, an error code is
returned. If the file resides on magnetic tape, the tape is rewound but not unloaded.

3 = Temporary job file (not rewound). This option has the same effect as disposition code 2,
except that tape files are not rewound.

S~
1l

Released file. The file is deleted from the system.

8-35

NOTE

Although the basic functions covering magnetic tape files are
covered above in dispositions 0 through 4, it is recommended that
you read the discussion of magnetic tape files in the MPE Intrin-
sics Reference Manual for special considerations not mentioned
here.

Default value for this field is 0 (no change)

Bit (12:1) - Disc Space Disposition

1 = Returns to the system any disc space allocated beyond the end-of-file indicator.
0 = Does not return any disc space allocated beyond the end-of-file indicator.

The default value for this field is 0 (no return).

When a file is opened by the FOPEN intrinsic, a file count (maintained by the system) is
incremented by one. When the file is FCLOSEd, the file count is decremented by one. If more
than one FOPEN is in effect for a particular file, its disposition is saved but not affected by the
FCLOSE call until the file count is decremented to zero. Then the effective (saved) disposition
is the smallest non-zero disposition parameter specified among all FCLOSE calls issued
against the file. For example, a file XYZ is opened three successive times by a process. The first
FCLOSE disposition is 1, the second FCLOSE disposition is %4, and the third (and last)
FCLOSE disposition is %12. The final disposition on the file XYZ will be disposition 1
(permanent file and no return of disc space).

Bits (0:12) are reserved for MPE and should be set to zero.

seccode integer value (required)
Denotes the type of security initially applied to the file, significant only for new permanent
files. The options are:

0 = Unrestricted access — the file can be accessed by any user, unless prohibited by current
MPE provisions.

1 = Private file creator security — the file can be accessed only by its creator.
The default value is 0.
CONDITION CODES:
CCE The file was closed successfully.
CCG Not returned by this intrinsic.

CCL The file was not closed, perhaps because an incorrect filenum was specified, or
because another file with the same name and disposition exists in the system.

SPLIT STACK CALLS ARE PERMITTED.

8-36

8-16. FCHECK

When a file intrinsic returns a condition code indicating a physical input/output error, additional
details may be obtained by using the FCHECK intrinsic call. This intrinsic applies to files on any
device.

FCHECK accpets zero as a legal filenum parameter value. When zero is specified, the information
returned in errorcode reflects the status of the last call to FOPEN. When an FOPEN fails, there is
obviously no file number which can be referenced in filenum. Therefore, when an FOPEN fails, a
filenum of zero can be used in the FCHECK intrinsic call to obtain the errorcode only. If the tlog,
blknum, or numrecs parameters are specified, a zero value will be returned to these parameters. If a
filenum of zero is used for a file which has been previously FOPENed, but not yet FCLOSEd, the
returned errorcode will be meaningless.

PARAMETERS:

filenum integer value (required)

A word identifier supplying the file number of the file for which error information is to be
returned.

errorcode integer {(optional)

A word to which is returned a 16-bit code, specifying the type of error that occurred. If the

previous operation was successful, all 16 bits are set to zero. The errorcodes are shown in table
8-1.

Default: The errorcode is not returned.

tlog integer (optional)
A word to which is returned the transmission log value recorded when an erroneous data
transfer occurs. This word specifies the number of words not read or written (those left over) as
the result of the input/output error.

Default: The transmission log value is not returned.

blknum double (optional)
A double word to which is returned the relative number of the block involved in the error.

Default: The block number is not returned.

numrecs integer (otional)
A word to which is returned the number of logical records in the bad block.

Default: The number of logical records is not returned.
CONDITION CODES:

CCE Request granted.
8-37

CCG Not returned by this intrinsic.

CCL Request denied because filenum was invalid or a bounds violation occurred while
processing this request and errorcode is 73.

SPLIT STACK CALLS ARE PERMITTED.

CODE
(DECIMAL) MEANING
0 End of file.
1 llegal DB register setting (typically, a request in split-stack
mode when it is illegal).
8 lllegal parameter value.
20 Invalid operation.
21 Data parity error.
22 Software time-out.
23 End of tape.
24 Unit not ready.
25 ’ No write ring on tape.
26 Transmission error.
27 Input/output time-out.
28 Timing error or data overrun.
29 Start input/output (S10) failure.
30 Unit failure.
31 End of line (special character terminator).
32 Software abort of input/output operation.
33 Data lost.
34 Unit not on line.
35 Data set not ready.
36 Invalid disc address.
37 Invalid memory address.
38 Tape parity error.

Table 8-1. FCHECK Error Codes
8-38

CODE
(DECIMAL)

39
40
41
42

43

44

45
46
47
48
49
50
51
52

53

54
55
56
57

58

59
60

61

MEANING
Recovered tape error.
Operation inconsistent with access type.
Operation inconsistent with record type.
Operation inconsistent with device type.
The tcount parameter value exceeded the recsize parameter
value in this intrinsic, but the multirecord access aoption was
not specified in the currently-effective FOPEN intrinsic.
The FUPDATE intrinsic was called, but the file was positioned
at record zero. (FUPDATE must reference the last record
read, but no previous record was read.)
Privileged file violation.
Insufficient disc space.
Input/output error occurs on a file label.
Invalid operation due to multiple file access.
Unimplemented function.
The account referenced does not exist.
The group referenced does not exist.

The file referenced does not exist in the system file domain.

The file referenced does not exist in the job temporary file
domain.

The file reference is invalid.

The device referenced is not available.

The device specification is invalid or undefined.
Virtual memory is not sufficient for the file specified.

The file was not passed (typically, a request for $OLDPASS
when there is no $OLDPASS).

Standard label violation.
Global RIN not available.

Group disc file space exceeded.

Table 8-1. FCHECK Error Codes (Continued)

8-39

CODE
(DECIMAL)

62

63

64
66
67
68
69
71

72
73
77
78
79

80

81

82

83

84

85

86
89

90

N

MEANING

Account disc file space exceeded.

Non-sharable device (ND) capability required but not
assigned.

Multiple RIN (MR) capability required but not assigned.
Plotter limit switch reached.

Paper tape error.

System internal error.

Miscellaneous (ATTACHIO) input/output error.

Too many files opened for process.

Invalid file number.

Bounds check violation.

NO-WAIT input/output operation is pending.

There is no NO-WAIT input/output for any file.
There is no NO-WAIT input/output for file specified.

Configured maximum number of spoolfile sectors would be
exceeded by this output request.

No SPOOL class defined in system.

Insufficient space in SPOOL class to honor this input/output
request.

Extent size exceeds maximum allowable.

The next extent in this spoolfile resides on a device which is
unavailable to the system (i.e., the device is =DOWN).

Operation inconsistent with spooling; e.g., attempt to read
hardware status.

Spool process internal error.
Power failure.

The callling process requested exclusive access to a file to
which another process has access.

The calliing process requested access to a file to which
another process has exclusive access.

Table 8-1. FCHECK Error Codes

8-40

CODE
(DECIMAL)

92
93

94

95

96

97

98

99

100
101

102
103
104
106
107
108
109

110

MEANING
Lockword violation.
Security violation.

Creator conflict in use of FRENAME intrinsic (user is not the
creator).

“BROKEN" terminal read.

Miscellaneous disc input/output error (device may require
HP Customer Engineer attention).

CONTROL Y processing requested but no CONTROL Y PIN
exists.

Input/output read time has overflowed.

Magnetic tape error. Beginning of tape (BOT) found while
requesting a backspace record (BSR) or a backspace file
(BSF).

Duplicate file name in the system file directory.

Duplicate file name in the job temporary file directory.
Directory input/output error.

System directory overflow.

Job temporary directory overflow.

Extent size exceeds maximum allowable.

Offset to data is greater than 255 words.

Inaccessible file due to a bad file label.

lllegal carriage control option.

The intrinsic attempted to save a system file in the job
temporary file directory.

Table 8-1. FCHECK Error Codes (Continued)
8-41

8-17. FCONTROL

The FCONTROL intrinsic performs various control operations on a file or on the device on which the
file resides. These operations include:

Supplying a printer or terminal carriage-control directive.

Verifying input/output.

Reading the hardware status word pertaining to the device on which the file resides.
Setting a terminal’s time-out interval.

Rewinding the file.

Writing an end-of-file indicator.

Skipping forward or backward to a tape mark.

The FCONTROL intrinsic applies to files on disc, tape, terminal, or line printer.

NOTE

The FCONTROL intrinsic also can be used to perform various
terminal functions, such as changing the terminal speed or enabl-
ing parity checking. See the MPE Intrinsics Reference Manual for
descriptions of these functions.

PARAMETERS:

NOTE

The parameters described here pertain to the FCONTROL intrin-
sic as it is used to perform control operations on a file or on the
device on which the file resides. Descriptions of FCONTROL
parameters when the intrinsic is used to change terminal charac-
teristics are described in the MPE Intrinsics Reference Manual.

filenum integer value (required)
A word identifier supplying the file number of the file for which the control operation is to be
performed.

controlcode integer value (required)
An integer identifying the operation to be performed:

0 = General Device Control. The param parameter is transmitted to the appropriate device
driver, and the value returned is transmitted to the user through the param parameter.

8-42

1 = Line Control. A request to send the value specified in the param parameter to the terminal
or line printer driver as a carriage-control directive. Use line controls provided by
FWRITE when directing to a disc or a spooled file.

2 = Complete Input/Output. This insures that requested input/output has been physically
completed. Valid only for buffered files. Posts the block being transferred whether full or
not.

3 = Read Hardware Status Word. This operation will return in param the status word from the
device on which the file resides. The returned value is the status of the device from the
previous input/output operation, including FOPEN of the file.

4 = Set Time-Out Interval. This code indicates that a time-out interval is to be applied to input
from the terminal. If input is requested from the terminal but is not received in this
interval, the FREAD request terminates prematurely with condition code CCL. The
interval itself is specified, in seconds, in a word in the user’s stack, indicated by param. If
this interval is zero, any previously established interval is cancelled, and no time-out
occurs. Controlcode 4 is ignored if the addressed file is not being read from the terminal.

5 = Rewind File. This repositions the file at its beginning, so that the next record read or
written is the first record read or written is the first record in the file. This code is valid
only for files on disc and magnetic tape.

6 = Write End-of-File. This operation is used to denote the end of a file on disc or magnetic
tape.

7 = Space Forward to Tape Mark. This moves the tape forward until a tape mark is encoun-
tered.

= Space Backward to Tape Mark. This moves the tape backward until a tape mark is
encountered.

9 = Rewind and Unload Tape File. This repositions the tape file at its beginning and places the
tape offline.

NOTE

Control codes 0, 1, and 3 will be rejected for spooled devicefiles.
Control codes 5 through 9 (magnetic tape control) will be rejected
for spooled :DATA tapes.

Although the basic functions covering magnetic files are covered above, it is recommended
that you read the discussion of magnetic tape files in the MPE Intrinsics Reference Manual for
special considerations not covered here.

param logical (required)
If controlcode is 1, param denotes a word containing the value to be transmitted to the
terminal or line printer driver as a carriage control or mode control directive. The carriage
control directive is selected from figure 8-5.

The mode control determines whether any carriage control directive transmitted through the
FWRITE intrinsic takes effect before printing (pre-space movement) or after printing (post-

8-43

space movement). The mode control directive is selected from the octal codes %400 or %401 in
figure 8-5.

If param contains a mode control directive, then a value is returned to param that shows the
mode setting of the device as it was before the call to FCONTROL, as follows:

Value Meaning

0 Post-Spacing
1 Pre-Spacing

If controlcode is 4, param denotes a word in the user’s stack that contains the time-out interval,
in seconds, to be applied to input from the terminal.

If controlcode is 2, 5, 6, 7, 8, or 9, param is any variable or word identifier. This parameter is

needed by FCONTROL to satisfy the internal requirements of the intrinsic. It serves no other
purpose, however, and is not modified by the intrinsic.

CONDITION CODES:
CCE Request granted.
CcCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

SPLIT STACK CALLS ARE PERMITTED.

8-44

8-18. FSPACE

You can space forward or backward on a fixed-length or undefined-length file by using the FSPACE
intrinsic. This results in resetting the logical record pointer. The FSPACE intrinsic applies to files on
disc and magnetic tape devices only.

The FSPACE intrinsic cannot be used with variable-length record files or with spooled files on disc. An
attempt to use this intrinsic on such files results in a CCL error condition code and the logical record
pointer is left at its current position.

See the MPE Intrinsics Reference Manual for special considerations for magnetic tape files.
PARAMETERS:

filenum integer value (required)
A word identifier supplying the file number of the file on which spacing is to be done.

displacement integer value (required)
A signed integer indicating the number of logical records for buffered disc files, or blocks for
NOBUF files and all tape files, to be spaced over, relative to the current position of the logical
record pointer. A positive value signifies forward spacing, a negative value signifies backward
spacing. The maximum positive value is 32767, the maximum negative value is —32768. For
positve values, the sign is optional.

CONDITION CODES:
CCE Request granted.

CCG A logical end-of-file indicator was encountered during spacing. For disc files, the
logical record pointer has not been changed. For magnetic tape files, the logical
record pointer will be pointing to the logical end-of-file. The magnetic tape,
however, will be positioned such that it will be one record past the file mark on
the tape.

CCL Request denied because an error occurred; the file resides on a device that
prohibits spacing.

SPLIT STACK CALLS ARE PERMITTED.

8-45

8-19. NUMERIC DATA INPUT/OUTPUT

There are several intrinsics available for converting integer data for transfer between an ASCII file
and the data stack. These intrinsics are discussed in the following paragraphs:

e ASCII — Converts 16-bit binary number to ASCII representation.

e DASCII — Converts 32-bit binary number to ASCII representation.

e BINARY — Converts an ASCII numeric string to a 16-bit binary numeric.
s DBINARY — Converts an ASCII numeric string to a 32-bit binary number.

For handling floating point numbers, refer to the EXTIN’ and INEXT procedures in the Compiler
Library Reference Manual.

8-46

8-20. ASCII

Any 16-bit binary number can be converted to a different base and represented as a numeric character
ASCII string by using the ASCII intrinsic call.

FUNCTIONAL RETURN:

This intrinsic returns the number of characters in the resulting string.

PARAMETERS:

word logical value (required)
The number to be converted to an ASCII string.

base integer value (required)
An integer indicating octal or decimal conversion.

8 = octal
10 = decimal (left justified)
—10 = decimal (right justified)

If any other number is entered in this parameter, the intrinsic causes the process to abort.

string byte array (required)
A byte array into which the converted value is placed. This array must be long enough to
contain the result. No result, however, exceeds six characters. For octal conversion (Base = 8),
six characters including leading zeros, are always returned in string, showing the octal
representation of word. In octal conversions, the length returned by ASCII is the number of
significant (right-justified)characters in string (excluding leading zeros). If word = 0, the
length returned by ASCII is 1.

For decimal conversions, word is considered as a 16-bit, 2’s complement integer ranging from
— 32768 to +32767. If the value of word is negative, the first byte of string contains a minus
sign. Ifword = 0, only one zero character is returned in s¢ring. The length returned by ASCII is

the total number of characters in string (excluding the sign). If word = 0, the length returned
by ASCII is 1.

For decimal left-justified conversions (base = 10), leading zeros are removed ahd the numeric
ASCII result is left justified in string.

For decimal right justified conversions (base = —10), the result is right justified with string
defining the rightmost byte of the field. Leading bytes in string are not changed.

CONDITION CODES:

The condition code remains unchanged.

FEB 1977 8-47

8-21. DASCII

A 32-bit double-word binary number can be converted to a different base and represented as a numeric
character ASCII string with the DASCII intrinsic call.

FUNCTIONAL RETURN:

This intrinsic returns the number of characters in the resulting string.
PARAMETERS:

dword double value (required)
A double-word value indicating the number to be converted to ASCII code.

base integer value (required)
An integer indicating octal or decimal conversion.

8 = octal
10 = decimal (left justified)

If any other number is entered in this parameter, the intrinsic causes the user process to abort.

string byte array (required)
The byte array into which the converted value is placed. This array must be long enough to
contain the result. No result, however, exceeds 11 characters.

For octal conversion (base = 8), 11 characters, including leading zeros, are always returned in
string, showing the octal representation of dword. The length returned by DASCII is the
number of significant (right justified) characters in string, excluding leading zeros. If dword =
0, the length returned by DASCII is 1.

For decimal conversions (base = 10), dword is considered as a 32-bit, 2’s complement integer
ranging from —2,147,483,648 to +2,147,483,647. Leading zeros are removed and the numeric
DASCII result is left justified in string. If the value of dword is negative, the first byte of the
string returned contains a minus sign. If dword = 0, only one zero character is returned to
string. String can contain up to 11 characters, including the sign. If dword = 0, the length
returned by DASCII is 1.

CONDITION CODES:

The condition code remains unchanged.

8-48

8-22. BINARY

The BINARY intrinsic converts a number from an ASCII string to a binary word.

FUNCTIONAL RETURN:

This intrinsic returns the binary equivalent of the numeric string.

PARAMETERS:

string byte array (required)
Contains the octal or signed decimal number (ASCII characters) to be converted. If the
character string in this array begins with a percent sign (%), it is treated as an octal value. If
the string begins with a plus sign, minus sign, or a number, it is treated as a decimal value.

length integer value (required)
An integer representing the length (number of bytes) in the byte array containing the
ASCII-coded value. If the value of length is 0, the intrinsic returns 0 to the calling process. If
the value of length is less than 0, the intrinsic causes the user process to abort.

CONDITION CODES:

ssful conversion. A one-word binary value is returned to user’s process.
CCE Successful (3 A d binary value t d to the ’s process

CCG A word overflow, possibly resulting from too many characters (s¢tring number too
large), occurred in the word returned.

CCL An illegal character was encountered in the byte array specified by string. For
example, the digits 8 or 9 specified in an octal value.

8-49

8-23. DBINARY

The DBINARY intrinsic performs double-integer ASCII to binary conversion.

FUNCTIONAL RETURN:
This intrinsic returns the converted double-word value.

PARAMETERS:

string byte array (required)
Contains the octal or signed decimal number as ASCII characters to be converted. If the

character string in this array begins with a percent sign (%), it is treated as an octal value. If
the string begins with a plus sign, minus sign, or number, it is treated as a decimal value.

length integer value (required)

An integer represénting the length (number of bytes) in the string containing the ASCII-coded
value. If the value of length is 0, the intrinsic returns 0 to the calling process. If the value of
length is less than 0, the intrinsic causes the user process to abort.

CONDTION CODES:

CCE Successful conversion. A double-word binary value is returned to the program.

CCG A word overflow, possibly resulting from too many characters (string number too
large), occurred in the word returned.

CCL An illegal character was encountered in string. For example, the digits 8 or 9
specified in an octal value.

8-50

8-24. FILE EQUATIONS

The standard attributes of files used by an SPL program can be modified through the use of the
MPE :FILE command.

NOTE

Read the discussion of files in the MPE Commands Reference
Manual before attempting to change file attributes with the
:FILE command.

The specifications in a :FILE command do not take effect until the compiled program is running and
the referenced file is opened. The :FILE command specifications hold throughout the entire program
unless superseded by another :FILE command or revoked by a :RESET command. At job or session
termination, however, all :FILE commands are cancelled.

8-51

SECTION

COMPILER COMMANDS

9-1. USE AND FORMAT OF COMPILER COMMANDS

In general, compiler options such as source input merging, listing, format specification, or warning
message suppression are determined by default settings assigned by the compiler. However, the user
can override these settings and select different options by issuing compiler commands. These com-
mands take effect only after access to the compiler is established. They are directed only to the
compiler and are not effective during program execution.

Compiler commands differ in both function and format from compiler language source statements, and
thus are not considered true SPL statements even though they are part of the source program file. The
SPL compiler commands do conform, however, to the general formats for other HP 3000 language
translators such as FORTRAN, COBOL, and RPG. For each function used by more than one language
translator, the same command name is used and, in most cases, the same command parameters also
apply.

where

command-name

specifies the compiler command. The command-name is one of the following: CONTROL, IF, SET,
TITLE, PAGE, EDIT, TRACE or COPYRIGHT.

parameter
specifes an option of the compiler command. The form of a parameter is dependent on the command-
name and is discussed with the appropriate command. In general a parameter is one of the following:

character-string
symbolic-name
keyword [=sub-parameter]

The first dollar sign ($) is required and must be in column 1. The second dollar sign is optional. If
specified, the command is not transmitted to the newfile if a newfile is created during compilation. The
command-name must follow the first $ (or second $ if present) without any intervening spaces. The list
of parameters is separated from the command-name by one or more spaces. Within the list, parameters
are separated from each other by commas. Spaces are allowed before and after the parameters. The
parameter list may continue through column 72 of the source record.

9-1

The sequence field (columns 73-80) of a record containing a compiler command is not part of the
command; however, it may be used for sequence checking during editing and merging operations as
described later under the EDIT command.

NOTE

Only upper-case letters, numbers, and special characters are used
in compiler commands. When lower-case letters are entered as
part of a command, the compiler interprets them as their upper-
case equivalent except within character strings as defined below.

A character-string consists of a sequence of ASCII characters enclosed in quotation marks (). Blank
characters may be included in the string and null strings are allowed. Quotation marks within a string
are entered as two adjacent quotation marks, (*”) to distinguish them from the quotation marks that
begin and end the string.

A keyword is a reserved word with respect to a given command; they are described under the
appropriate commands. A sub-parameter is a character-string, a symbolic name, or a decimal number.

Comments may be included within any command. A comment is generally used to document the
purpose of coding or to make notations about program logic. A comment is not interpreted as part of
the command, and has no effect upon compilation. It is syntactically treated as a space and can appear
in either of the following locations:

e Following the command-name, separated from it by at least one space.
e DPreceding or following any parameter in the parameter list.

A comment cannot be embedded within a parameter; for instance, it cannot appear within a keyword,
preceding or following an equals sign, or within a quoted string. Furthermore, a comment cannot be
continued from one record to the next.

A comment can contain any ASCII character. The comment must begin with two adjacent less-than
signs (<<) and terminate with two adjacent greater-than signs (>>). Since adjacent greater-than
signs terminate a comment, they cannot appear within the comment itself. The comment may

continue through column 72.

The following examples illustrate various ways in which comments can be included in compiler
commands.

1. Following the command-name:

$PAGE <<PAGE EJECT,NO TITLE CHANGE.>>
2. Following the last parameter in a parameter list:

$SET X1=0ON,X2=0N,X3=0N<<SWITCHES 1-3 ON.>>
3. Embedded within the parameter list:

$SET X1=ON,X2=ON,<<LAST SW OFF>>X3= OFF

When the length of a command exceeds one physical record (source card or entry line), the user can
enter an ampersand (&) as the last non-blank character of this record and continue the command on

9-2

the next record. This is called a continuation record. The text portion of the continuation record, in
turn, must begin with a dollar sign ($) in column 1. Even when a command begins with double dollar
signs, its continuation records still begin with only a single dollar sign. When EDIT/3000 is used to
enter a source program containing compiler command continuation records, a space must be entered
after the ampersand so the ampersand is not interpreted as an EDIT/3000 continuation line.

NOTE

A compiler command record must never be separated from its
continuation record by an SPL source record.

In continuing a command onto another record, you cannot divide a primary command element (a
command-name, keyword, subparameter — including strings, or comment) — no primary element is
allowed to span more than one line.

When the compiler encounters a command containing one or more continuation records, each continu-
ation record is concatenated to the preceding record beginning with the character following the $; each
$ and continuation ampersand is replaced by a space.

The following command is continued onto a second record:

$CONTROL LIST,SOURCE,WARN,MAP,&
$CODE,LINES= 36

It is interpreted as:

$CONTROL LIST,SOURCE,WARN,MAP, CODE,LINES= 36

Even though a comment cannot be divided over more than one line, extensive commentary text
requiring several lines can be entered by enclosing it within separate comments that each occupy one
line.

The following command includes commentary text spread over three lines:

$CONTROL NOWARN << WARNING MESSAGES ON TRIVIAL ERRORS>>&
$ <<WILL NOT BE LISTED, BUT MESSAGES ON>>&
$ <<FATAL ERRORS WILL APPEAR.>>

A command does not take effect until all of its parameters have been interpreted. Thus, a command
that suppresses source listing output does not affect the listing of any continuation records within the
command itself. Parameters are interpreted from left-to-right. In some cases, parameters may be
redundant or supersede previous parameters within the same command. In other cases, certain
parameters are allowed only once within a command.

In the following command, the redundant parameters LIST and NOLIST each appear twice:

$CONTROL LIST,NOLIST,NOLIST,LIST

Because the final redundant parameter in any $CONTROL command always takes effect, the above
command is equivalent to:

$CONTROL LIST

A summary of the compiler commands for SPL appears in table 9-1.

9-3

Table 9-1. Compiler Command Summary

COMMAND PURPOSE

$SCONTROL Restricts access to listfile; suppresses source text, object code, and symbol table
listing; suppresses warning messages; sets maximum number of lines listed per
page; sets maximum number of severe errors allowed; starts a new segment;
initializes the USL file; lists mnemonics for code generated; assigns a name to the
outer block; allows subprogram compilation; makes outer block privileged,;
makes outer block uncallable; lists address mode and displacement of variables
declared.

$IF Interrogates software switches for conditional compilation.

$SET Sets software switches for conditional compitation.

$TITLE Establishes or changes page title on listing.

$PAGE Establishes or changes page title, and ejects page.

SEDIT Specifies editing options during merging such as, omitting sections of old source
program and re-numbering sequence fields.

$TRACE Specifies identifiers to be traced at run-time.

SCOPYRIGHT Specifies copyright information to be copied to the list, USL, and program files.

9-4

9-2. $CONTROL COMMAND

When you call the compiler without specifying a $CONTROL command, the following default options
are in effect:

The compiler is given unrestricted access to listfile.

All source records passed to the compiler by its editor are listed unless the listfile and primary
input file (normally the textfile) are assigned to the same terminal.

Warning messages are listed.

Listing of the symbol table is suppressed.

Listing of the object code generated is suppressed.

The number of lines appearing on each printed page (output to listfile) is a maximum of 60.
The maximum number of severe errors allowed before compilation is terminated is 100.
SPL is called in the program mode, as opposed to subprogram mode.

The segment name is SEG’.

The outer block name is OB’.

The mnemonic listing is suppressed.

The USL (User Subprogram Library) file is not initialized unless it is a new file.

Callable, non-privileged outer block.

The above default options can be overridden by entering the $CONTROL compiler command. This
command allows you to restrict access to the listfile, suppress source record listings, produce object
code and symbol table listings, change the maximum number of lines per printed page, and otherwise
alter the normal compiler control options.

where

parameter
specifies an option of the $CONTROL command. A parameter is one of the following: LIST, NOLIST,

9-5

SOURCE, NOSOURCE, WARN, NOWARN, MAP, NOMAP, CODE, NOCODE, LINES=nnnn, ER-
RORS =nnn, USLINIT, SEGMENT = segname, ADR, INNERLIST, MAIN = program-name, UN-
CALLABLE, PRIVILEGED, or SUBPROGRAM [(procedure-name[*] [,procedure-name[*]]...)].

Each parameter in the parameter list specifies a different option as described below. Unless otherwise
noted, each parameter can appear in a $CONTROL command placed anywhere in the source input.
Each parameter remains in effect until explicitly cancelled by an opposing parameter (for example,
NOLIST cancelling LIST), or until the compilation terminates. In any $CONTROL command, at least
one parameter must be specified. Within the parameter list, the parameters can appear in any order. In
the descriptions below, default parameters are shown in

Allows the compiler unrestricted access to the listfile, permitting the SOURCE, MAP, CODE, and
LINES parameters to take effect when issued. The LIST parameter remains in effect until a $CON-
TROL command specifying NOLIST is encountered.

NOLIST

Allows only source records that contain errors, appropriate error messages, and subsystem initiation
and completion messages to be written to the listfile. NOLIST remains in effect until a $CONTROL
command specifying LIST appears.

Requests listing of all source records, as edited by the compiler’s editor, while LIST is in effect. When
the compiler is called with listfile and the primary input file assigned to the same terminal,
NOSOURCE is initially the default. In all other cases SOURCE is the default.

NOSOURCE
Suppress the listing of source text, cancelling the effect of any previous SOURCE parameter.
NOSOURCE remains in effect until SOURCE is subsequently encountered.

Permits the reporting of doubtful minor error conditions in the source input. These reports are
transmitted to the listfile in the form of a warning message. The WARN parameter remains in effect
until a $CONTROL command specifying the NOWARN parameter is encountered.

NOTE

NOLIST does not suppress warning messages — they are sup-
pressed solely by NOWARN.

NOWARN
Suppresses warning messages. The NOWARN parameter remains in effect until a $CONTROL

command specifying WARN appears.

MAP
Requests printing of user-defined symbols and their addresses following the source text listing if LIST
is in effect. The MAP parameter remains in effect until a NOMAP parameter is encountered.

Figure 9-1 shows a sample symbol map.

Suppresses printing of symbol map of user-defined symbols thereby cancelling any previous MAP
parameter. The NOMAP option remains in effect until a MAP parameter is encountered.

9-6

0001000 @00BQ
goea20008 00CaAa
Qoee3000 0oR0a
000043008 00000
PPANS000 (AR3000
006000 00BGH3
P00 TO00 02004
0208000 06711

—

$CONTROL MAP |
BEG IN
INTEGER 1,J:=10;
REAL R1,R2;
ARRAY A(0:10);
R1:=R2:=20E9;
FOR I:=@ UNTIL J DO
ACI):1=2%13

—— . s e b —) D

PR@a2900a QRG22 END.
IDENTIFIER CLASS TYPE ADDRESS

A ARRAY LOGICAL DB+@206
I SIMP. VAR, INTEGER DB+000
J SIMP. VAR. INTEGER DBE+02021
R1 SIMP. VAR. REAL DB+0@2
R2 SIMP. VAR. REAL DB+3034
TERMINATE" PROCEDURE

PRIMARY DB STORAGE=%@097; SECONDARY DB STORAGE=%000613
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:003 ELAPSED TIME=@:01:16

END OF PROGRAM

Figure 9-1. Symbol Map

CODE
Requests listing of object code generated following the listing of the source text if LIST is in effect. The

CODE parameter remains in effect until the NOCODE parameter is encountered. Figure 9-2 shows a
sample CODE listing.

Suppresses listing of object code, thereby cancelling the effect of any previous CODE parameter. The
NOCODE parameter remains in effect until a CODE parameter is encountered.

LINES=nnnn

Limits the number of lines printed on listfile to nnnn lines per page. Whenever the next line sent to
listfile would overflow the line count (nnnn), the page is ejected and the standard page heading and
two blank lines are printed at the top of the page, followed by the line to be transmitted. A page
heading and its following two blank lines are counted against the total line count, nnnn. The
subparameter nnnn is an integer ranging from 10 to 9999. The LINES=nnnn parameter remains in

effect until another LINES=nnnn parameter appears. If this parameter is omitted, the default value
assigned is:

60 lines per page for devices other than terminals.
32767 lines per page for terminals.

9-7

oP201000 @AR0C0
Peee2006 072000 BEGIN
20203000 00000 INTEGER 1,J:=18;5

@ | SCONTROL CODE |

2

1
2304000 GOCGD 1 REAL R1,R2;

1

1

1

1

1

20305008 00AER ARRAY A(@:10);
|eraoerns @oaen P1:=R2:=2QEG; |
70007008 @AO34 FOR 1:=¢ UNTIL J DO
000a833a @8811 ACI):=2%1;
00029008 @Ga22 END.

\

ZGG@@[734013 004600 161084 161G62|GGG60® 251000 171000 021001
PA010 ©G41001 250074 140013 @44212 18@575 021002 111000 131000
Qo027 0B57006 952404 000000

PRIMARY DB STORAGE=%0073 SECONDARY DB STORAGE=%006013
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=Q:00:00’ ELAPSED TIME=0:00:55

END OF PROGRAM

Figure 9-2. $CONTROL CODE Output

ERRORS=nnn

Sets the maximum number of severe errors allowed during compilation to nnn; if this limit is
exceeded, compilation terminates and the usifile is unchanged. If the limit specified has already been
exceeded when the ERRORS=nnn parameter is encountered, compilation terminates. If the ER-
RORS=nnn parameter is omitted, nnn is set to 100 by default.

USLINIT

Initializes the usifile to empty status prior to generation of object code. If you do not specify a uslfile or
if you specify a uslfile whose contents are obviously incorrect, the compiler automatically initializes
the uslfile to empty status whether or not USLINIT is specified.

SEGMENT=segname

Starts a new segment with the specified segname. The segname can consist of up to 15 alphanumeric
characters starting with an alphabetic character. Apostrophes are allowed within the segname except
as the first character. The segname stays in effect until explicitly overridden by another $CONTROL
SEGMENT or compilation terminates. For a main-body which is to be in a segment by itself, the
$CONTROL SEGMENT should be placed after the procedure and intrinsic declarations and before the
global subroutines and main-body. See figure 1-2 for a sample program using this parameter.

ADR

After each declaration, a record is sent to the listfile if LIST is in effect showing the addressing mode
and displacement of the declared variables. This option is turned off by NOLIST. Figure 9-3 shows a
sample compilation with ADR specified.

9-8

Az 10080 00000 @ $CONTROL ADR
2002000 0020 O BEGIN
003000 Q00060 1 INTEGER I1,J:=16;
DB+00g —!
DB+@0 1 1
2004068 20003 1 REAL RI1,R23
DB+@02
DB+ 224
PeOOS50P3 20000 1 ARRAY A(@:1@);
DB+@0@6

P60 G000
PP0B7300 OGOO04 FOR I:=¢ UNTIL J DO

00080008 02011 ACI):=2%1;

22009008 06022 1 END.

PRIMARY DB STORAGE=%Z007; SECONDARY DB STORAGE=2%00013
NO. ERRORS=000; NO. WARNINGS=0060

PROCESSOR TIME=Q:80:09; ELAPSED TIME=P:01:05

R1:=R2:=20E9;

— et

END OF PROGRAM

Figure 9-3. $CONTROL ADR Output

INNERLIST
After each statement line, the mnemonics for unoptimized code generated by the compiler are sent to

the listfile if LIST is in effect. In addition to the mnemonic, the octal value and approximate execution
time in microseconds of each instruction are shown. This option is turned off by NOLIST. Figure 9-4
shows a sample INNERLIST output.

MAIN=program-name
Assigns the specified program-name to the main program. The format for program names is the same

as for segment names. Starting with page 2, the program-name is listed in columns 13-27 of the
heading.

UNCALLABLE

Makes the outer block entry point uncallable except by code running in privileged mode. If used, this
parameter must be specified at the beginning of the source file.

PRIVILEGED

Makes the code segment containing the outer block privileged. If used, this parameter must be
specified before the first BEGIN.

SUBPROGRAM [(procedure-name[*] [,...,procedure-namel*] 1)]
Places the compiler is subprogram mode. If used, this parameter must be specified at the beginning of

the program. If no parameters are specified, all of the procedures in the merged source program are
compiled, but the outer block or main program if present is not compiled.

9-9

CAP0109068 €00¢¥ @ |[SCONTROL INNERLIST

8002003 Q0006 O BEGIN
1
1
1
1

0Ccoe3203 oeuan INTEGER 1,J:=10;
pARR4000 @2230 REAL R1,R2;
0335000 ea200 ARRAY A(Q:10)3
B006000 00200 R1:=R2:=20E9;

Coeap LDPP, 205 034000 23.68
e0an1 DDUP, NOP 004620 22.80
PoAe? STD DB @04 . 161084 _ 04.083
208063 STD DB gog Mnemonics oy nao Time g4, 43
va087000 1 FOR 1:=@ UNTIL J DO
\ [eeees] [zERO, noP | ‘//,ngzeegl l21.a40]
Instruction 02085 STOR DB 700 Instruction gsi1ece2e P2.63
Address 90306 LRA DB €60 (o) 171000 81.92
eo0e07 LDl ,@el 821001 81.05
2ealo LOAD DB 601 es1e01 @2.28
P0008ePe 02811 | ACI):=2%1;
eaz]) TBA P+ 002 250002 08.¢0
geg12 BR P+ 200 140600 23.50
Pe015 LDI @02 821282 G1.05
eo016 MPYM DB 000 111¢00 #8.23
@0017 LDX DB 0@ 131000 g2.28
20020 STOR DB 086,1,X £570086 82.63
eoe21 MTRA P- 002 052400 38.00
0069008 0222 1 END.
goe2e PCAL, 252 000C00 25.00
PRIMARY DB STORAGE=%0G7; SECONDARY DB STCRAGE=200013
NO. ERRORS=G47; NO. WARNINGS=Z@@
PROCESSOR TIME=8:00: 68 ELAPSED TIMFE=0:02:47

Figure 9-4. $CONTROL INNERLIST Output

If procedure parameters appear, only those procedures specified are compiled. All others are skipped.
In addition, procedure-names which are followed by an asterisk (*) are compiled with LIST, CODE,
and MAP options on. Those without an * are compiled but not listed. The asterisk mechanism is
overridden by explicit CONTROL commands specifying LIST, ADR, etc.

The default mode for compilation is program mode.

Even in subprogram mode, global declarations and OPTION FORWARD and OPTION EXTERNAL
procedure declarations must be included in the source file, if they are to be referenced by the
procedures being compiled. The compiler includes these items in its symbol table, but does not allocate
any space. All INTERNAL procedures and secondary entry points should be declared OPTION
FORWARD.

Compiler commands are recognized at any point in the source file. For segmented programs, the
segmentation scheme should be preserved in the subprogram mode. The compiler gives procedures the
last segment name declared and links each procedure to all other procedures in the same USL file
which have the same segment name, even those resulting from a previous compilation. The compiler

9-10

also automatically CEASEs any existing procedures in the file with the same procedure-name as the
one currently being compiled, except for INTERNAL procedures. See the MPE Segmenter Subsystem
Reference Manual for a discussion of CEASE.

EXAMPLES:

$CONTROL SUBPROGRAM
$CONTROL SUBPROGRAM(PROC1,PROC2¥)

The default parameters of $CONTROL are:

LIST

WARN

NOMAP

ERRORS=100

NOCODE

SEGMENT=SEG’

MAIN=O0OPB’

program mode

ADR off

INNERLIST off

LINES=60 (except for terminals)
USL file not initialized
CALLABLE, non-privileged outer block.

The following $CONTROL command requests unrestricted access to the listfile, listing of all source
text, symbol table information, and object code, suppression of warning messages but not of error
messages. By default, the maximum number of lines per printed page is limited to 60, the maximum
number of errors allowed is 100, the usifile is not initialized to empty status, and SPL is in program
mode.

$CONTROL LIST,SOURCE,MAP,CODE,NOWARN

The following $CONTROL command illustrates the default values for the command parameters. It
produces the same effect as if no $CONTROL command were entered:

$CONTROL LIST,SOURCE,WARN,NOMAP,NOCODE,LINES= 60,ERRORS= 100

9-3. S$IF COMMAND (CONDITIONAL COMPILATION)

Generally, when you submit a program to the compiler, you want the entire program compiled.
However, occasionally, you may only want to have a portion of the program compiled. You can request
such conditional compilation by delimiting the source code to be compiled (or omitted) with a series of
$IF compiler commands. These $IF commands, interrogate any of ten switches, X0 through X9,
inclusive. You can set these switches by using the $SET command described in paragraph 9-4. When
the condition specified in the $IF command is true, all source records are compiled until the next $IF
command is encountered which is false. When the condition specified is false, all source records are
omitted until a $IF command which is true is executed. However, $EDIT, $PAGE, and $TITLE
commands are never ignored.

9-11

where

n
specifies which switch is to be tested. It is any digit between 0 and 9 inclusive.

Spaces are not allowed between the X and the digit n.

A $IF command can appear anywhere in the source text. The appearance of a $IF command always
terminates the influence of any preceding $IF command. When a $IF command is entered without a
parameter, it has the same effect as an $IF command whose condition is true. That is, the text
following the command is compiled and any previous $IF command is cancelled.

The source text is listed regardless of whether or not it is compiled if the $CONTROL command LIST
and SOURCE options are in effect.

The textfile-masterfile merging operation and transmission of merged/edited text to the newfile are not
affected by $IF commands. Merging and editing are described in the discussion of the $EDIT com-
mand.

An example illustrating the use of the $IF command is presented together with the $SET command
discussion below.

9-4. $SET COMMAND (SOFTWARE SWITCHES FOR CONDITIONAL
COMPILATION)

When the compiler is first called, all ten switches (X0-X9) are turned off. You can turn them on and off
again with the $SET command.

9-12

where

n

indicates which switch is to be set. It can be any digit between 0 and 9 inclusive.

A $SET command can appear anywhere in the source text. If a $SET command is encountered which
does not have a parameter list, all ten switches are turned off.

In the following source text, switches X4 and X5 are set on and interrogated with the results indicated

by the comments:

$SET X4=O0N, X5=0N

$IF X5=0N
(SOURCE BLOCK 1)

$IF X5=OFF
$

(SOURCE BLOCK 2)

$IF

(SOURCE BLOCK 3)

<<SET SWITCHES X4 AND X5 ON>>

<<REQUESTS COMPILATION OF SOURCE BLOCK 1>>

<<REQUESTS THAT SOURCE BLOCK 2 BE IGNORED>> &
<<BY CANCELLING PREVIOUS $IF COMMAND>>

<<CANCELS PREVIOUS $IF COMMAND SO THAT>>&
<<SOURCE BLOCK 3 IS COMPILED>>

9-5. $TITLE COMMAND (PAGE TITLE IN STANDARD LISTING)

On each page of output listed during compilation, a standard heading appears. Positions 29 through
132 of this heading are reserved for a title, usually describing the page content, optionally specified

with the $TITLE command.

9-13

Each string parameter is a character string bounded by quotation marks that is combined with any
other strings specified to form the title. In forming the title, the strings are stripped of their delimiting
quotation marks and they are then concatenated left-to-right. The entire parameter list can specify up
to 104 characters, including spaces within the strings but excluding delimiters and spaces between the
strings. If the title contains fewer than 104 characters, the unused portion is filled to the right with
spaces. If no string parameters are present in the $TITLE command, or if no $TITLE command or
$PAGE command with a title specification is entered, the title portion of the heading is blank. When a
new $TITLE command is encountered, it supersedes any previously specified title from that point on.

When a $TITLE command is interpreted and the NOLIST parameter of the §CONTROL command is
in effect, title specification or replacement occurs even when the $TITLE command appears within the
range of an $IF command whose relation is evaluated as false.

9-6. $PAGE COMMAND (PAGE TITLE AND EJECTION)

You can specify a program title (as with the $TITLE command) together with page ejection by entering
the $PAGE command. This allows varied listing formats. For example, individual sections of the
program can be listed starting on a new page, and each section can have its own descriptive title.

Each string parameter has the same format, meaning, result, and constraints as in the $TITLE
command. If no parameter is specified in the $PAGE command, the previous title, if any, remains in

effect.
9-14

If the LIST parameter of the §CONTROL command is in effect when a $PAGE command is encoun-
tered, the following steps take place:

1. A page eject is generated.

2. The standard page heading including the new title, if one is specified, is printed followed by two
blank lines.

If a new title is not specified, the standard heading with the old title is printed followed by two blank
lines.

If the LIST parameter is not in effect, the new title replaces any previous title, but no printing or page
ejecting occurs. The new title appears when LIST is put into effect.

The $PAGE command itself is never listed.

9-7. S$EDIT COMMAND (SOURCE TEXT MERGING AND EDITING)

You can request the following merging and editing operations:

® Merge corrections or additional source text on fextfile with an existing source program and
commands on masterfile to produce a new source program and commands. This new input is
compiled and optionally copied to newfile, which can be saved for recycling through an MPE :FILE
command.

® Check source-record sequence numbers for ascending order.
® Omit sections of the old source program during merging.
® Re-number the sequence fields of the records in the new, merged source program.

The editing done by the compiler is limited to linear source text modification. Extensive or more
sophisticated editing is possible with the HP 3000 text editor, EDIT/3000.

9-8. MERGING

You can specify merging simply by using actual file names for the fextfile, masterfile, and (optionally)
newfile parameters of the MPE :SPL command when the compiler is called. A sample merging
operation is shown below; however, for a complete description of the :SPL. command see paragraph
10-11.

To specify merging of a textfile TFILE with a masterfile MFILE, you could enter the following :SPL
command:

:SPL TFILE,MFILE,NFILE

The merged source text is copied to the newfile NFILE, with the object code and listing output written
to the default files NEWPASS and $STDLIST respectively.

9-15

Prior to merging, the records in both textfile and masterfile must be arranged in ascending order
according to the value of the sequence field on any record, or the sequence fields must be blank. The
order of sequencing is based on the ASCII Collating Sequence as shown in Appendix A. There are no
restrictions regarding blank sequence fields; the sequence fields of some or all of the records in either

the textfile or masterfile, or both files, can be blank, and such records can appear anywhere in either
file.

The merging operation is also based on ascending order of sequence fields according to the ASCII
Collating Sequence. During merging, the sequence fields of the records in both files are checked for
ascending order. If their order is improper, the offending records are skipped during merging and
appropriate diagnostic messages are sent to the listfile. During each comparison step in merging, one
record is read from each file and these records are compared with one of three results:

1. If the values of the sequence fields of the masterfile and the textfile are equal, then the textfile
record is compiled and, optionally, passed to the newfile; the masterfile record is ignored; and one
more record is read from each file for the next comparison.

2. Ifthe value of the sequence field of the masterfile record is less than that of the fextfile record, the
masterfile record is compiled and, optionally, passed to the newfile; the textfile record is retained for
comparison with the next masterfile record; and the next masterfile record is read.

3. If the value of the sequence field of the textfile record is less than that of the masterfile record, the
textfile record is compiled and, optionally, passed to the newfile; the masterfile record is retained for
comparison with the next fextfile record; and the next textfile record is read.

During merging, a record with a blank sequence field is assumed to have the same sequence field as
that of the last record with a non-blank sequence field read from the same file, or as a null sequence
field, if no record with a non-blank sequence field has yet been encountered in the file. Thus, a group of
one or more records with blank sequence fields residing on the masterfile are never replaced by records
from the textfile; they can only be deleted through use of the $EDIT command as explained below.

Records from the masterfile that are replaced during merging and thus neither compiled nor sent to
the newfile are not listed during compilation.

When an end-of-file condition is encountered on either the textfile or the masterfile, merging termi-
nates, except for the continuing influence of an unterminated VOID parameter in an $EDIT command,
as discussed later. At this point, the subsequent records on the remaining file are checked for proper
sequence, compiled, and, optionally, passed to the newfile. However, masterfile records within the
range of a VOID parameter are neither compiled nor sent to the newfile.

The sequence field values of records transmitted to the newfile are not normally changed by the
merging operation. However, you can request the assignment of new sequence characters by using the
$EDIT command.

9-9. CHECKING SEQUENCE FIELDS

The presence of a masterfile during compilation implicitly requests the checking of source records for
proper sequence. Thus, when you specify both a textfile and a masterfile as input files for the compiler,
or when you specify a masterfile alone, sequence-checking is done on both files. But when you specify a
textfile as the only input file, sequence checking is not performed. Therefore, when you want to have

9-16

your input sequence-checked without merging two input files, you can read the input from either the
textfile or the masterfile and use $NULL for the other file. For example,

:SPL SOURCE,,$NULL
9-10. EDITING
Editing operations during merging consist of omitting sections of the old source program residing on

the masterfile and/or renumbering the sequence fields of the new, merged source program residing on
the newfile. Both of these operations are requested through the $EDIT command.

where

parameter
specifies an option of the $EDIT command. The parameter is one of the following: VOID=sequence-
value, SEQNUM=sequence-number, NOSEQ, or INC=incnumber.

The parameters are discussed individually below. The parameters can be specified in any order.

VOID=sequence-value

Requests the compiler to bypass during merging all records on the masterfile whose sequence fields
contain a value less than or equal to the sequence-value, plus any subsequent records with blank
sequence fields. This parameter remains in effect until a masterfile record with a sequence field value
higher than the sequence-value is encountered. The VOID parameter is initially disabled when the
compiler is invoked. The sequence-value is either a legal sequence number of from one to eight digits or
a character string. If the sequence-value is less than eight characters, SPL left-fills with ASCII zeros
and sequence character strings with spaces.

SEQNUM-=sequence-number

Requests re-numbering of the merged source records on the newfile, beginning with the value specified
by the sequence-number. This value replaces the sequence-number of the next record sent to the
newfile. The sequence-number of each succeeding record is incremented according to the value
specified by the INC parameter or its default as described below. If the SEQNUM=sequence-number
parameter is present but a newfile does not exist, the re-numbering request is ignored. If this
parameter is present and the newfile exists, the re-numbering request remains in effect until an
$EDIT command with the NOSEQ parameter is encountered. When the merged output is listed,
records actually transmitted to the newfile appear with blank sequence fields. The re-sequencing
request is initially disabled when the compiler is called. The sequence-number is a legal sequence-

number of from one to eight digits. If less than eight digits, the SPL compiler left-fills with ASCII
Zeros.

9-17

NOSEQ
Suspend re-numbering of merged records on the newfile; the current sequence numbers are retained. If

neither SEQNUM nor NOSEQ are specified, NOSEQ takes effect by default until superseded by
SEQNUM.

INC=incnumber

Sets the increment by which records sent to the newfile are renumbered if SEQNUM is in effect. The
increment is specified by incnumber, which is a value ranging from 1 through 99999999. Notice,
however, that very large increments are of limited value since they may cause the eight-digit
sequence-number to overflow. Re-numbering only occurs if SEQNUM is specified or the last parameter
is not overridden by a NOSEQ parameter, and a newfile exists. [f SEQNUM is specified but INC is not,
the sequence-number is incremented by the default value of 1000 for each succeeding record. This
default value applies until an INC parameter specifying a new value is encountered.

$EDIT commands are normally input from the textfile. You can input them from the masterfile, but
this procedure is not recommended since any $EDIT command containing a VOID parameter on the
masterfile could void its own continuation records. $EDIT commands themselves are never sent to the
newfile; thus, the $$EDIT... form of the command, while permitted, is redundant.

While sequence fields are allowed, and usually necessary, on records containing $EDIT commands,
continuation records for such commands should have blank sequence fields.

During merging, a group of one or more masterfile records with blank sequence fields are never
replaced by lines from the textfile; they can only be deleted by an $EDIT command with a
VOID=sequence-value parameter at least as great as the last non-blank sequence field preceding the
group. In this case, the entire group of masterfile records with blank sequence number fields is deleted.

Since voided records are never passed to the uslfile or newfile, their sequence is never checked, and
they never generate an out-of-sequence diagnostic message.

A VOID parameter does not affect records in the textfile.
Any masterfile record replaced by a textfile record is treated as if voided, except that following records

with blank sequence fields are not also voided. If a replaced record would have been out-of-sequence,
the textfile record that replaces it produces an out-of-sequence diagnostic message.

In general, whenever a record sent to the newfile has a non-blank sequence field lower in value than
that of the last record with a non-blank sequence field, a diagnostic message is printed.

For example, suppose you want to merge text input from the standard input device (default for textfile
is $STDIN) with an old program on the file OLDPROG, creating new source input on the file
NEWPROG and you want to re-number the merged source records on NEWPROG beginning with the
value 50, incrementing the sequence number of each subsequent record by 10. After logging on, you
would enter:

:SPL ,,,OLDPROG,NEWPROG

$EDIT SEQNUM=50,INC=10

9-18

(New text or corrections to be merged with old program.)

9-11. $STRACE COMMAND

The $TRACE command specifies identifiers within the outer block or procedures to be traced at
run-time. The tracing is implemented through calls to the SYMBOL TRACE subsystem. This subsys-
tem allows references to variables, arrays, pointers, labels, and procedures to be monitored with
appropriate printout and breakpoints. For further details, refer to the TRACE/3000 Reference
Manual.

where

program-unit
specifies the procedure where the identifiers will be traced. If a program-unit is not specified, the main
program or outer block is used.

identifier

specifies the item to be traced. The identifier is a simple-variable, array-name, pointer-name, label, or
procedure-name.

9-12. $COPYRIGHT COMMAND

You ean specify copyright information which is transmitted to the USL and program files by using the
$COPYRIGHT command.

9-19

Each string parameter is a character string bounded by quotation marks that is combined with any
other strings specified to form the copyright information copied to the USL and program files. The
$COPYRIGHT command must precede the outer block BEGIN. The maximum number of characters is

510.

9-13. CROSS REFERENCE LISTING

To obtain a cross reference listing of the identifiers used in an SPL program, run the CROSSREF
program. Use file equations for the formal designators LIST and TEXT for the list file and text file
respectively. Figure 9-5 shows a sample CROSSREF output. The listing shows, for each identifier, the
sequence number of each record in the source program in which the identifier occurs.

tFILE LIST=$%$STDLIST
tFILE TEXT=SPLEYX
tRUN CRCSSREF.PUB.SYS
S.P.L. CROSS REFERENCE TABLE--- AUG
SPLEX.PUB.GNOMON
MON, JAN 26, 1976,

NUMBER OF CARD IMAGES=9. NUMBER OF SYMBOLS=S5.

3:26 PM

A (ARRAY)
GEACSANE CREC8000
I CINTEGER),
Glp036e0 CCRRTRBR GO0CGRBCC BOBRHECEd
J C(INTEGER)
Geee3008 O0HZTE00
Rl (REAL)
GEOCAGRE GACBEROO
R2 (REAL)
POBGLE0E DCOERO0

9, 1974 VERSION

NUMBER OF REFERENCES=7.

Figure 9-5. Cross Reference Listing

*The CROSSREF program is available through the HP 3000 Contributed Library package offered by HP General

Systems Division. Contact your local HP Sales Office for more information.

9-20

FEB 1977

MPE COMMANDS

10-1. MPE COMMANDS

Communication with the MPE Operating System is initiated through commands. Commands are
requests issuesd to MPE to perform various functions external to an SPL source program. For
example, commands are used to initiate and terminate batch jobs and interactive sessions, compile and
execute source programs, call various MPE subsystems, and obtain job/session status information.
Commands can be entered through any standard input file such as a card reader file or a terminal file.
Commands which you will use most often with SPL programs are summarized in table 10-1. A
complete description of all MPE commands is in the MPE Commands Reference Manual..

Table 10-1. MPE Commands

COMMAND FUNCTION

JOB Initiates a batch job

‘HELLO Initiates an interactive session

:FILE Specifies characteristics of a file

:BUILD Creates a new file

:PURGE Deletes a file from the system

:CONTINUE Disregards batch job error condition

:SPL Compiles an SPL source program

‘SPLPREP Compiles and prepares an.SPL source program
SPLGO Compiles, prepares, and executes an SPL source program
:PREP Prepares a compiled program

:PREPRUN Prepares and executes a compiled program
‘RUN Executes a prepared program

:EOD Signifies the end of data

EOJ Terminates a job

:BYE Terminates a session

In general, the form of of an MPE command is:
. command [parameter-list]

In interactive mode, the colon is prompted by MPE; however, in batch mode, you must provide the
colon in column 1 of the command record.

10-1

The parameter-list can contain zero, one, or more parameters that specify files, values, and options for
the command. The end of each parameter in a list is signified by a delimiter. A delimiter is a character

that separates one item from another. Delimiters consist of commas, semicolons, equal signs, or other
punctuation marks.

A space must separate the command from the parameter-list; however, the command must im-
mediately follow the colon without any intervening spaces.

The meanings of parameters in some commands are determined by their positions in the parameter-
list. For example, in an :SPL command:

:SPL textfile,uslfile,listfile, masterfile,newfile

the parameters are positional and their positions in the list designate their meanings. The omission of
an optional positional parameter from a parameter-list is signified by adjacent delimiters, as shown
below:

:SPL textfile,,listfile

When parameters are omitted from the end of a list, no adjacent delimiters are required as shown in
the example by the omission of masterfile and newfile.

10-2. SPECIFYING FILES FOR PROGRAMS

Both the SPL compiler and the MPE Operating System read input from and write output to files
handled through the MPE file facility. For example, the compiler reads source code from a textfile,
writes object code to an object file (uslfile), produces listings to a listfile, and performs editing and
merging operations using an old masterfile for input and a newfile for output. Each file has a formal
file designator. You are responsible for equating actual file designators to these formal file designators
in one of three ways.

1. By naming the files as positional parameters in the MPE commands to compile, prepare, and
execute.

2. By omitting optional parameters from the MPE compilation, preparation, or execution command,
thus allowing default file designators to be in effect.

3. By using MPE :FILE commands to equate the formal file designators to the actual file designators.
If you use this method, you must call the compiler with the MPE :RUN command using a PARM=
parameter signifying which files are present, as described later. This method can only be used for
compilation and not for preparation or execution.

You can also use MPE :FILE commands to equate the formal file designators for your execution-time

files to actual file designators. See the MPE Commands Reference Manual for a complete description of
the :FILE command.

10-2

10-3. SPECIFYING FILES AS COMMAND PARAMETERS

You can name the following types of files as parameters in a compilation, preparation, or execution
command:

System Defined Files
User Pre-defined Files
New Files

Old Files

10-4. SYSTEM-DEFINED FILES. System-defined file designators indicate those files that
MPE uniquely identifies as standard input/output files for a job/session. These files are shown in table
10-2.

10-5. USER PRE-DEFINED FILES. A user pre-defined file is any file that was previously
defined or redefined in a :FILE command. In other words, it is a back-reference to that :FILE
command. In compilation, preparation, or execution commands, the actual file designator of this type
of file is the formal file designator preceded by an asterisk to indicate that it was previously defined.
For example,

:FILE S= MYTEXT

:FILE LP;DEV=LP
:SPL *S,*LP

Table 10-2. System-Defined Files

ACTUAL FILE
DESIGNATOR DEVICE/FILE REFERENCED

$STDIN A filename indicating the standard job or session input file (from which the job
or session is initiated). For a job, this is typically a card reader; for a session
this typically indicates a terminal. Input data records in the $STDIN file
should not contain a colon in position one, since this indicates the end of the
source input. Use the :EOD command to indicate the physical end of a source
program. (The same command is used to indicate the end of a data file.)

$STDINX Equivalent to $STDIN, except that MPE/3000 command records (those with a
colon in position one) encountered in a data file are read without indicating the
end of data. (However, the commands :JOB, :DATA, :EQJ, and :EOD are
exceptions that always indicate the end of data and are never read as data.)

$STDLIST A filename indicating the standard job or session listing file corresponding,
the particular job or session input device being used. (For each potential jobs
session input device, a user with MPE/3000 System Supervisor capability
designates a corresponding job/session listing device during system con-
figuration.) The job or session listing device is customarily a printer for a batch
job and a terminal for a session.

SNULL The name of a non-existent “ghost” file that is always treated as an empty
file. When referenced as an input file by a program, that program receives only
an end of data indication upon first access. When referenced as an output
file, the associated write request is accepted by MPE/3000 but no physical
output is actually performed. Thus, $NULL can be used to discard unneeded
output from an executing program.

10-3

10-6.

NEW FILES. New files are files that have not yet been created, and are being created for

the first time by the current batch job or interactive session. New files can have actual file designators
as shown in table 10-3.

Table 10-3. New Files

FORMAL FILE DEFAULT FILE
FILE PURPOSE DESIGNATOR DESIGNATOR
Textfile Contains source program, correction text to be SPLTEXT $STDIN
merged, and/or compiler subsystem
commands.
Listfile Destination of listing output. SPLLIST $STDLIST
Uslfile Destination of object program code. SPLUSL SNEWPASS
Masterfile Old source program to be merged and edited SPLMAST SNULL
with new text input from textfife.
Newfile New source program resulting from (optional) SPLNEW $NULL
merging of textfile and masterfite.
Progfile Destination of executable object program. None SNEWPASS

10-7.

OLD FILES. Old files are existing files in the system. They may be named by the
designators shown in table 10-4.

Table 10-4. Old Files

ACTUAL FILE
DESIGNATOR FILE REFERENCED
$OLDPASS The name of the temporary file last closed as SNEWPASS.

filereference

Any other old file to which you have access. It may be a job/session
temporary file created in the current or a previous program in the current job/
session, or a permanent file saved by any program in any job/session. The
format is the same as filereference, noted in table 10-5.

10-8.

INPUT SET
$STDIN
$STDINX
$OLDPASS
$NULL

*formaldesignator
filereference

INPUT/OUTPUT SETS. All of the preceding actual file designators can be classified as
those used as input parameters (input set) and those used as output parameters (output set). These sets
are defined as follows:

The job/session input file.

The job/session input file with commands allowed.

The last file passed.

A constantly-empty file that will produce an end-of-file condition
whenever it is read.

A back-reference to a previously defined file.

A file name, and perhaps account and group names and a
lockword.

104

OUTPUT SET
$STDLIST
$OLDPASS
$NEWPASS
$NULL
*formaldesignator
filereference

The job/session listing file.

The last file passed.

A new temporary file to be passed.

A constantly-empty file.

A back-reference to a previously defined file.

A file name, and perhaps account and group names and a
lockword.

10-9. SPECIFYING FILES BY DEFAULT

When you omit an optional file parameter from a compilation, preparation, or execution command,
MPE assigns one of the members of the input or output sets by default. The file designator assigned
depends on the specific command, parameter, and operating mode as noted later in this section. The

default file designators are shown in table 10-5.

Table 10-5. SPL Compiler File Designators

ACTUAL FILE
DESIGNATOR

FILE REFERENCED

SNEWPASS

A temporary disc file that can be passed automatically to any succeeding
MPE/3000 command within the same job or session which references it by the
filename $OLDPASS. (Passing is explained in the compilation, preparation,
and execution command examples.) Only one such file can exist in the job or
session at any one time. (When $SNEWPASS is closed, its name is changed to
$OLDPASS automatically, and any previous file named $OLDPASS is deleted.)

filereference

Any other new file to which you have access. Unless you specify otherwise,
this is a temporary file, residing on disc, that is destroyed upon termination of
the program. If no :FILE command specifies otherwise, any such SPL files
are closed as job/session temporary files, saved until the end of the job/
session, and then are purged. If closed as permanent files (by specifying
SAVE in a :FILE command), they are saved until you purge them. Typically,
this format consists of a file name containing up to eight alphanumeric char-
acters, beginning with a letter. In addition, other elements (such as a group
name, account name, or lockword) can be specified. The complete rules
governing the filereference format are contained in the MPE Commands
Reference Manual.

10-10. COMPILING, PREPARING, AND EXECUTING SPL SOURCE

PROGRAMS

The commands used for compilation, preparation, and execution of SPL source programs are:

:SPL
or
:RUN SPL.PUB.SYS

Compiles a source program.

10-5

:SPLPREP Compiles and prepares a source program.

:SPLGO Compiles, prepares, and executes a source program.

:PREP Prepares source programs which have been compiled into a
USL file.

:RUN Executes programs that have been compiled and prepared

(and therefore exist on program files).

:PREPRUN Prepares and executes programs compiled into USL files.

10-11. :SPL. COMMAND

The :SPL command compiles an SPL source program.

where

textfile
is the name of an input file from which the source program is to be read. If omitted, the program will be
read from the standard input file $STDIN. Do not use the designator SPLTEXT for this parameter.

uslfile
is the name of the USL (User Subprogram Library) file on which the object program is to be written. If
this parameter is included in an :SPL command, it must indicate a file previously created in one of two
ways:

1. By saving a USL file with a :SAVE command from a previous compilation.

2. By creating a new file with a :BUILD command and designating it as a USL file with a file code of
1024 or USL. For example,

:BUILD MYUSL;CODE= 1024 or :BUILD MYUSL;CODE=USL

If the uslfile is omitted, the default file $OLDPASS is used. Do not use the designator SPLUSL for this
parameter.

listfile

is the name of the file to which the program listing is to be sent. If omitted, the default file $STDLIST
is assigned. Typically $STDLIST is the terminal in a session or the line printer in batch. Do not use the
designator, SPLLIST for this parameter.

10-6

masterfile
is the name of a file to be optionally merged with textfile and written onto a file named newfile. If
masterfile is omitted, no merging takes place. Do not use the designator SPLMAST for this parameter.

newfile

is the name of a file on which the re-sequenced records from the fextfile and the masterfile are
optionally merged. When newfile is omitted, no newfile is created. Do not use the designator SPLNEW
for this parameter.

All parameters of an :SPL command are optional. However, direct interactive input is not recom-
mended since it is impossible to correct an error after pressing the carriage return key. To create
source files, use the HP 3000 Text Editor (See the EDIT/3000 Reference Manual).

10-12. RUN SPL.PUB.SYS COMMAND

An alternative way to call the SPL compiler is by using the :RUN command. Before using the :RUN
command, you must use file equations for the files normally specified on the :SPL command. The
formal file designators are:

SPLTEXT (textfile)
SPLLIST (listfile)
SPLUSL (uslfile)
SPLMAST (masterfile)
SPLNEW (newfile)

Thus, to compile from the file MYSOURCE and send the listing to the line printer, you would use

:FILE SPLTEXT=MYSOURCE
:FILE SPLLIST;DEV=LP

before using the :RUN command.
Additionally, you must specify a PARM=parameternum parameter on the :RUN command to indicate
which files are present unless the default values are used. The value is between 0 and 31 as shown in

table 10-6. Basically, the low order five bits in parameternum represent the five files which can be
specified as shown below:

| 11 1 12 I 13 14 i 15 |

newfile masterfile uslfile listfile textfile

For example, to invoke the compiler with the textfile and listfile present, you would use the command:

:RUN SPL.PUB.SYS;PARM=3

10-7

Table 10-6. PARM Values

PARAMETERNUM FILES PRESENT

0 None

1 textfile

2 listfile

3 listfile, textfile

4 uslfile

5 uslfile, textfile

6 uslfile, listfile

7 uslfile, listfile, textfile

8 masterfile

9 masterfile, textfile

10 masterfile, listfile
11 masterfile, listfile, textfile
12 masterfile, uslfile
13 masterfile, uslfile, textfile

14 masterfile, uslfile, listfile

15 masterfile, uslfile, listfile, textfile
16 newfile .

17 newfile, textfile

18 newfile, listfile

19 newfile, listfile, textfile
20 newfile, uslfile
21 newfile, uslfile, textfile
22 newfile, uslfile, listfile
23 newfile, uslfile, listfile, textfile
24 newfile, masterfile
25 newfile, masterfile, textfile
26 newfile, masterfile, listfile
27 newfile, masterfile, listfile, textfile
28 newfile, masterfile, uslfile
29 newfile, masterfile, uslfile, textfile
30 newfile, masterfile, uslifile, listfile
31 newfile, masterfile, uslfile, listfile, textfile

10-13. ENTERING PROGRAM SOURCE INTERACTIVELY

If you do not specify a textfile when compiling in session mode, you must enter the program source
from the terminal. You are prompted for each source line with a greater-than sign (>). Each program
unit (procedure, subroutine, or main body) is compiled as it is completed. To exit from the compiler,
enter :EOD in response to the prompt character >,

10-14. :SPLPREP COMMAND

The :SPLPREP command compiles and prepares an SPL source program.
10-8

where

textfile, listfile, masterfile, newfile
have the same meanings as described under the :SPL command.

14
li)s Z}élfljame of the file on which the prepared program is written. If this parameter is included, it must
reference a file created in one of two ways:
1. By using the :BUILD command with a filecode of 1029 or PROG. For example,
:BUILD PROGF;CODE= 1029
or

:BUILD PROGF;CODE=PROG

2. By specifying a non-existent file in the parameter, in which case a temporary file of the correct size

and type will be created. To save the file for future jobs/sessions, you must use the :SAVE
command after preparation.

If the progfile parameter is omitted, the default file NEWPASS is assigned. This file is renamed
$OLDPASS upon completion.

All :SPLPREP parameters are optional.

10-15. :SPLGO COMMAND

The :SPLGO command compiles, prepares, and executes an SPL source program.

109

where

textfile, listfile, masterfile, newfile
all have the same meaning as described under the :SPL command.

All :SPLGO parameters are optional.

10-16. :PREP COMMAND

The :PREP command prepares source programs that have been compiled into a USL file.

where

uslfile
is the name of the USL file onto which the program file has been compiled.

progfile
is the name of the program file onto which the prepared program is to be written. This file must be
created in one of two ways:

1. By creating a new file with the :BUILD command using a filecode of 1029 or PROG, as follows:
:BUILD PROGF;CODE= 1029
or
:BUILD PROGF;CODE=PROG
2. By specifying a non-existent file in this parameter, in which case a temporary file of the correct

size and type will be created. To save this file for future jobs/sessions, you must use the :SAVE
command.

Both the usifile and the progfile parameters are required in a :PREP command.

ZERODB)
is a request to set the initially defined DL-DB and DB-Q (initial) areas of the stack to zero.

PMAP
is a request to list certain information about the prepared program.

10-10

segsize
specifies a maximum size for the stack area in words. The segmenter normally establishes this value,
but you can use this value to override the Segmenter’s estimate.

stacksize

When a process is created by the system, the user is allocated MAXDATA words of virtual memory,
but only stacksize words in main memory. The main memory space is expanded as required. This
parameter allows you to override the Segmenter estimate.

dlsize

the DL-DB area size to be initially assigned to the stack. If not specified, MPE will estimate the value
for each program.

caplist
the capability-class attributes associated with your program. The default values are BA (batch access)
and IA (interactive access).

filename

the name of a relocatable procedure library to be searched to satisfy external references during
program preparation. If not specified, no library is searched.

10-17. :PREPRUN COMMAND

The :PREPRUN command prepares and executes programs that have been compiled into USL files.

where

uslfile
is the name of the USL file on which the program has been compiled.

entry-point

specifies the entry-point where execution is to begin. If not specified, execution begins at the primary
entry-point.

NOPRIV

is a request to place a privileged program in non-privileged mode. If not specified, a privileged program
executes in privileged mode.

10-11

PMAP

is a request to list certain information about the prepared program.

DEBUG

is a request to set a breakpoint on the first executable instruction of the program for entering debug
commands. Refer to the MPE DEBUG/ STACK DUMP Reference Manual.

LMAP
is a request to list certain information about the loaded program.

ZERODB
is a request to set the initially defined DL-DB and DB-Q (initial) areas to zero.

segsize
specifies the maximum stack area (Z— DL) size permitted, in words. This value is normally set by the
Segmenter, but you can use this parameter to override the Segmenter estimate.

parameternum

is a value that can be passed to your program as a general parameter for control or other purposes. If
not specified, a zero is passed.

stacksize

When a process is created by the system, the user is allocated MAXDATA words of virtual memory but
only stacksize words in main memory. The main memory is expanded as required. This parameter
allows you to override the Segmenter estimate. If not specified, the stacksize is determined by the
Segmenter for each individual program.

dlsize

is the size of the DL-DB area to be initially assigned to the stack. If not specified, it is established by
MPE.

filename

is the name of a relocatable procedure library to be searched to satisfy external references during
program preparation. If not specified, no library is searched.

library .

specifies the order in which segmented procedure libraries are to be searched to satisfy external
references during segmentation. The library can be either G (Group first), P (Public group first), or S
(System first). If not specified, the System library is searched first.

caplist
specifies the capability-class attributes associated with your program. If not specified, BA (Batch
Access) and [A (Interactive Access) are used.

NOCB
Requests that the file system not use stack segment (PCBX) for its control blocks, even if sufficient
space is available. This permits you to expand your stack (via the DLSIZE or ZSIZE intrinsics) to the

maximum possible limit at a later time, but causes the File Management System to operate more
slowly for this program.

NOTE

You should only use this parameter if the program absolutely
requires the largest stack possible.

10-12

10-18. :RUN COMMAND

The :RUN command executes a program that has been compiled and prepared into a program file.

where

progfile
is the name of the file which contains the compiled and prepared program to be executed.

The other parameters have the same meaning as shown with the :PREPRUN command.

10-19. USING EXTERNAL PROCEDURE LIBRARIES

Compiled SPL programs are stored in files called User Subprogram Libraries (USL’s) that reside on
disc. In any particular USL, each compiled program unit exists as a Relocatable Binary Module
(RBM). To prepare a program, and any program unit it references, for execution, the MPE Segmenter
selects the appropriate RBM’s from the USL and binds them into linked segments written on a
program file. For more information on the Segmenter, USL’s and RBM’s, refer to the MPE Segmenter

Subsystem Reference Manual.

When you prepare and run programs in SPL, it is possible to reference external procedures in
procedure libraries. You can build, modify, and maintain two types of procedure libraries within your
log-on group and account: Relocatable Libraries (RL’s) and Segmented Libraries (SL’s).

10-20. RELOCATABLE LIBRARIES .

A Relocatable Library (RL) is a specially formatted file that is searched at program preparation time
to satisfy references to external procedures called by your program. Within such libraries, these
procedures are placed in a single segment and linked to your program. Within such libraries, these
procedures exist in RBM form (as they would on a USL). When a program is prepared, these
procedures are placed in a single segment and linked to your program in the resulting program file.

For example, to specify that an RL named RLPROC be searched during preparation of a program from
the USL file USL1 to the program file PROG1, you would enter the following :PREP command:

:PREP USL1,PROG1;RL=RLPROG
SEP 1976 10-13

10-21. CREATING AND MAINTAINING RELOCATABLE LIBRARIES. To create and

maintain relocatable libraries, you must access the Segmenter by entering the MPE :SEGMENTER
command.

where

listfile

is an ASCII file from the output set (the formal designator is SEGLIST) to which is written any listable
output generated by the Segmenter commands. The designator SEGLIST should not be used as the
actual file designator. If the listfile is omitted, the standard job/session list device (3STDLIST) is
assigned by default.

If you are in an interactive session, the Segmenter prompts you with a dash (-). Once the Segmenter is
accessed, the following commands are used to create and maintain an RL:

-BUILDRL
Creates a permanent, formatted RL file.

-USL
References the USL file from which the procedure is to be obtained.

-RL
Identifies an existing RL.

-ADDRL
Adds a procedure to the currently identified RL.

-PURGERL
Deletes a procedure from an RL.

-LISTRL
Lists information concerning the currently identified RL.

where

filereference
is the file name of the new RL, optionally including group and account identifiers.

records
is the total maximum capacity of the file, specified in terms of 128-word, binary logical records.

10-14

extents

is the total number of disc extents that can be dynamically allocated to the file as logical records are
written to it. The size of each extent is determined by the records parameter value divided by the
extents parameter value. The extents value must be between 1 and 16 inclusive.

where

filereference
is the name and optional group and account names, of the USL file to be manipulated.

where

filereference
is the name, plus optional group and account names, of the RL to be modified.

where

name

is the name of the procedure to be added to the RL. This name is called the primary entry-point of the
RBM containing the procedure.

index

is an integer further identifying the RBM. The index may be used when the currently-managed USL
contains more than one active RBM of the same name. If index is omitted, a value of zero is assigned.

10-15

where

rispec

is either UNIT or ENTRY. UNIT is used to delete the procedure identified by name. ENTRY is used to
delete the entry-point identified by name. If rispec is omitted, ENTRY is used.

name

if rispec is UNIT, name is the name of the procedure to be deleted. If rispec is ENTRY, name is the
name of the entry-point to be deleted.

Refer to the MPE Segmenter Subsystem Reference Manual for further diseussions of these Segmenter
commands.

10-22. SEGMENTED LIBRARIES

Segmented libraries (SL’s) are specially formatted files that are searched at program run time to
satisfy references to external procedures. These libraries, like program files, contain procedures in
segmented (prepared) form. An individual procedure may exist in a segment containing many other
procedures. When a procedure is referenced, the segment containing it is loaded with your program.
Since the segmentation is not altered when different programs reference procedures in an SL, these
procedures may be shared concurrently by other programs.

To specify that an SL file in your group account be searched, add the keyword parameter LIB=library
in the :RUN command as follows:

:RUN PROGL;LIB=G

10-23. CREATING AND MAINTAINING SEGMENTED LIBRARIES. To create and main-

tain segmented libraries, you must first access the Segmenter by entering the MPE :SEGMENTER
command.

where

listfile

is an ASCII file from the output set (the formal designator is SEGLIST) to which is written any listable
output generated by the Segmenter commands. The designator SEGLIST should not be used as the
actual file designator. If the listfile is omitted, the standard job/session list device ($STDLIST) is
assigned by default.

10-16

If in an interactive session, you are prompted with a dash (-) for Segmenter commands. Once the
Segmenter is accessed, the following commands are used to create and maintain an SL:

-BUILDSL
Creates a permanent, formatted SL file.

-SL
Identifies an existing SL file.

-ADDSL
Adds a procedure to the SL file currently being managed.

-PURGESL
Purges an entry-point from a segment in an SL, or the entire segment from the SL.

-LISTSL
Lists the procedures in the currently managed SL file.

In addition, the -USL and -LISTUSL Segmenter commands can be used as discussed under “Relocata-
ble Libraries” (paragraph 10-20).

where

filereference
is a file whose local name is SL, plus optional group and account names.

NOTE

You can create an SL file with a local name other than SL, but
such a file cannot be searched by the :RUN command.

records
is the total maximum file capacity, specified in terms of 128-word binary logical records.

extents ‘

is the total number of disc extents that can be dynamically allocated to the file as logical records are
written to it. The size of each extent is determined by the records parameter value divided by the
extents parameter value. The extents value must be an integer between 1 and 16 inclusive.

10-17

where

filereference
is the name of the SL to be modified, optionally including group and account names.

where

name
is the name of the segment to be added to the SL.

PMAP
indicates that a listing describing the prepared segment will be produced on the listfile device specified
in the :SEGMENTER command. If PMAP is omitted, the prepared segment is not listed.

where

unitspec

is either ENTRY or SEGMENT. ENTRY is used to delete the entry-point identified by name.
SEGMENT is used to delete the segment identified by name. If neither ENTRY nor SEGMENT is
specified, ENTRY is used.

name
is the name of the entry-point or segment to be deleted.

For further descriptions of these Segmenter commands, see the MPE Segmenter Subsystem Reference
Manual.

10-18

ASCIl CHARACTER SET

APPENDIX

A

BYTE POSITION BYTE POSITION
CHAR Left Right Dec CHAR Left Right Dec.
NUL 000000 000000 0 @ 040000 000100 64
SOH 000400 000001 1 A 040400 000101 65
STX 001000 000002 2 B 041000 000102 66
ETX 001400 000003 3 C 041400 000103 67
EOT 002000 000004 4 D 042000 000104 68
ENQ 002400 000005 5 E 042400 000105 69
ACK 003000 000006 6 F 043000 000106 70
BEL 003400 000007 7 G 043400 000107 Al
BS 004000 000010 8 H 044000 000110 72
HT 004400 000011 9 | 044400 000111 73
LF 005000 000012 10 J 045000 000112 74
vT 005400 000013 1 K 045400 000113 75
FF 006000 000014 12 L 046000 000114 76
CR 006400 000015 13 M 046400 000115 77
SO 007000 000016 14 N 047000 000116 78
Sl 007400 000017 15 o 047400 000117 79
DLE 010000 000020 16 P 050000 000120 80
DC1 010400 000021 17 Q 050400 000121 81
DC2 011000 000022 18 R 051000 000122 82
DC3 011400 000023 19 S 051400 000123 83
DC4 012000 000024 20 T 052000 000124 84
NAK 012400 000025 21 U 052400 000125 85
SYN 013000 000026 22 \ 053000 000126 86
ETB 013400 000027 23 w 053400 000127 87
CAN 014000 000030 24 X 054000 000130 88
EM 014400 000031 25 Y 054400 000131 89
suB 015000 000032 26 z 055000 000132 90
ESC 015400 000033 27 [055400 000133 91
FS 016000 000034 28 \ 056000 000134 92
GS 016400 000035 29 1 056400 000135 93
RS 017000 000036 30 n 057000 000136 94
uUs 017400 000037 31 — 057400 000137 95
SPACE 020000 000040 32 * 060000 000140 96
! 020400 000041 33 a 060400 000141 97
" 021000 000042 34 b 061000 000142 98
021400 000043 35 c 061400 000143 99
$ 022000 000044 36 d 062000 000144 100
% 022400 000045 37 e 062400 000145 101
& 023000 000046 38 f 063000 000146 102
! 023400 000047 39 g 063400 000147 103
(024000 000050 40 h 064000 000150 104
) 024400 000051 41 i 064400 000151 105
" 025000 000052 42 i 065000 000152 106
+ 025400 000053 43 k 065400 000153 107
, 026000 000054 44 | 066000 000154 108
- 026400 000055 45 m 066400 000155 109
. 027000 000056 46 n 067000 000156 110
/ 027400 000057 47 o 067400 000157 11
0 030000 000060 48 [070000 000160 112
1 030400 000061 49 q 070400 000161 113
2 031000 000062 50 r 071000 000162 114
3 031400 000063 51 5 071400 000163 115
4 032000 000064 52 t 072000 000164 116
5 032400 000065 53 u 072400 000165 117
6 033000 000066 54 v 073000 000166 118
7 033400 000067 55 w 073400 000167 119
8 034000 000070 56 x 074000 000170 120
9 034400 000071 57 Y 074400 000171 121
: 035000 000072 58 b3 075000 000172 122
; 035400 000073 59 { 075400 000173 123
< 036000 000074 60 ! 076000 000174 124
= 036400 000075 61 } 076400 000175 125
> 037000 000076 62 ~ 077000 000176 126
? 037400 000077 63 DEL 077400 000177 127

A-l

RESERVED WORDS

APPENDIX

The following symbols have special meaning in SPL/3000 and thus, cannot be used as identifiers:

ABSOLUTE
ALPHA
AND
ARRAY
ASSEMBLE
BEGIN
BYTE
CARRY
CASE

CAT
CHECK
COMMENT
DABZ
DDEL
DEFINE
DEL

DELB

DO
DOUBLE
DXBZ

ELSE

END
ENTRY
EQUATE
EXTERNAL
FALSE
FIXR

FIXT

FOR
FORWARD
GLOBAL
GO

GOTO

IABZ

IF
INTEGER
INTERNAL
INTERRUPT
INTRINSIC
IXBZ

LABEL
LAND
LOGICAL
LONG

LOR

MOD

MODD

MOVE
NOCARRY
NOT
NOVERFLOW
NUMERIC
OF

OPTION

OR
OVERFLOW
OWN
POINTER
PRIVILEGED
PROCEDURE

PUSH

REAL
RETURN
SCAN

SET

SPECIAL
STEP
SUBROUTINE
SWITCH
THEN

TO

TOS

TRUE
UNCALLABLE
UNTIL
VALUE
VARIABLE
WHILE

XOR

APPENDIX

C

BUILDING AN INTRINSIC FILE

The program BUILDINT is used to build or change intrinsic disc files. The program uses formal
designators INTDECL and OUT for input and list output files respectively. The default files are
$STDIN and $STDLIST. The intrinsic data file is opened as SPLINTR.

The command to execute the program is
:RUN BUILDINT.PUB.SYS

The input data consists of SPL procedure head declarations (OPTION EXTERNAL is required) and
optional commands.

Without commands, the procedure head declarations are added to the intrinsic file.
Commands have the following purposes:
$PURGE Removes all entries from the intrinsic file.

$REMOVE Removes all entries which follow this command, until a $BUILD.
Input has the same format as for adding entries.

$BUILD Adds all subsequent input entries to the intrinsic file. $BUILD is
required only if REMOVE is used.

Any input data which is not a procedure head terminates input. At this point, the program prints a
formatted list of all intrinsics and terminates.

For example,

:PURGE MYFILE

:BUILD MYFILE

:FILE SPLINTR=MYFILE

:RUN BUILDINT.PUB.SYS

INTEGER PROCEDURE M(A,B,C); VALUE A; INTEGER A,B;LOGICAL C;

OPTION EXTERNAL; PROCEDURE COMP(N,M’); VALUE N,M’; DOUBLE N;REAL M’;
OPTION EXTERNAL;

PROCEDURE BYT(L,M,N,O); LABEL L; PROCEDURE M; BYTE ARRAY N;

LOGICAL POINTER O; OPTION EXTERNAL;

:EOD

See the next page for the formatted output for this file.

C1

a2

61 8l L1

13avA

3¥NA32048d

¥3INIOd

Avddv

378VIHVA INdWIS
€ NWNI09

91

naar-J

sl

1 [21

3dAl 33s
2 NWNI0J
SY3L3WvYvd

1

mding INIAIING ‘T1-D 2in3ig

S¥ SI¥ SIA

SYHA
d vey INY

|4 a1 6 8 L 9 S k4 € 4
SHIALIWVHVd
378VIIVONN
LdNUYIALNI
AON3IYI 43 o 37aVIYVA
Nva A IVYNY3ALX3
T NWNI02 ONINI3HI 40 13AIN
SNOIldo

¥307IN8 JDISNIHINI dS

000
€ 30 I
SQA 4 30 N
INY Y 30 N
1
4Vd# SNOILdO 3IdAlL
d3aN
n n
I
A 439
3 v
€¢2¢1¢0
QYVNIVd=L113TM3IH

=SHOHY3 °*ON
W
dW0D

1A8
INVYN

3lx3
I
anoq
EJPY:
3INI
1907
3ANON
3dAlL

ZA=-0O0oxWw

2000 3I9vd

N
@

Table C-1. BUILDINT Error Messages

MESSAGE

MEANING

ACTION

DECLARED TWICE

EXPECTS A SEMICOLON

EXPECTS IDENTIFIER

EXPECTS NUMBER

FORWARD OPTION IS
ILLEGAL

ILLEGAL SYMBOL

INTERRUPT PROCEDURE
MUST NOT HAVE PARAMETER

MISSING SPECIFICATION

NUMERIC SYMBOL NOT

ALLOWED

READ ERROR

SPECIFICATION DOES NOT
CORRESPOND

SUBROUTINES NOT
ALLOWED
TOO MANY PARAMETERS

TOO MANY OR ILLEGAL
ATTRIBUTES

VALUE SPECIFICATION
DOES NOT CORRESPOND

The identifier in question is not
unigue.

Only a comma or a semicolon
is legal at this point.

An identifier is the only legal
symbol at this point.

The CHECK option has been
specified but no legal check
level follows.

The FORWARD option
has been specified in a context
where it is illegal.

A left bracket, asterisk, or slash
has been encountered, none of
which are acceptable.

An interrupt procedure has
been declared with a param-
eter; a parameter is illegal in
this context.

A formal parameter has not
been given a type specification.

A fraction has been encoun-
tered which is not acceptable.

An error occurred while reading
from the input file.

There is no formal parameter
with the name used in this
specification.

Subroutines are illegal in the
intrinsic file.

There are more than 31 formal
parameters.

A specification for an identifier
was made with more than one
type or more than one class.

A value specification exists
for a non-existent formal
parameter.

Correct to unique
identifier.

Rewrite the intrinsic
without subroutines.

Reduce the number of
formal parameters.

Either include the formal
parameter or remove
the value specification.

MPE INTRINSICS

APPENDIX

Table D-1. Summary of MPE Intrinsics

INTRINSIC
NAME PURPOSE CAPABILITY REQUIRED
ACTIVATE Activates a process. Proceés Handling
ADJUSTUSLF Adjusts directory space in a USL file. Standard
ALTDSEG Alters the size of an extra data segment. Data-Segment Management
ARITRAP Enables or disables internal interrupt signals from all | Standard
hardware arithmetic traps.
ASCII Converts a number from binary to ASCH code. Standard
BINARY Converts a number from ASCII to binary code. Standard
CALENDAR Returns the calendar date. Standard
CAUSEBREAK Requests a session break Standard
CLOCK Returns the actual time. Standard
COMMAND .Executes an MPE command programmatically. Standard
CREATE Creates a process. Process Handling
CTRANSLATE Converts a string of characters from EBCDIC to ASCIl or | Standard
from ASCII to EBCDIC. ’
DASCII Converts a value from double-word binary to ASCll code. | Standard
DBINARY Converts a number from ASCIl code to a double-word | Standard
binary value.
DLSIZE Changes size of DL to DB area. Standard
DMOVIN Copies block from data segment to stack. Data-Segment Management
DMOVOUT Copies block from stack to data segment. Data-Segment Management
EXPANDUSLF Changes length of a USL file. Standard
FATHER Requests Process ldentification Number (PIN) of father | Process Handling
process.
FCHECK Requests details about file input/output errors. Standard
FCLOSE Closes a file. Standard
FCONTROL Performs control operations on a file or terminal device. Standard

D-1

Table D-1. Summary of MPE Intrinsics (Continued)

INTRINSIC
NAME PURPOSE CAPABILITY REQUIRED

FGETINFO Reguests access and status information about a file. Standard
FLOCK Dynamically locks a file. Standard
FOPEN Opens a file. Standard
FPOINT Resets the logical record pointer for a sequential disc file. | Standard
FREAD Reads a logical record from a sequential file (on any | Standard

device) to the user's data stack.
FREADDIR Reads a logical record from a direct-access file to the | Standard

user's data stack.
FREADLABEL Reads a user file label. Standard
FREADSEEK Prepares, in advance, for reading from a direct-access file. | Standard
FREEDSEG Releases an extra data segment. Data-Segment Management
FREELOCRIN Frees all local Resource Identification Numbers (RIN’s) | Standard

from allocation to a job.
FRELATE Determines if a file pair is interactive or duplicative. Standard
FRENAME Renames a disc file. Standard
FSETMODE Activates or de-activates file-access modes. Standard
FSPACE Spaces forward or backward on a file. Standard
FUNLOCK Dynamically uniocks a file. Standard
FUPDATE Updates a logical record residing in a disc file. Standard
FWRITE Writes a logical record from the user’s stack to a sequential | Standard

file (on any device).
FWRITEDIR Writes a logical record from the user’s stack to a direct- { Standard

access disc file.
FWRITELABEL Writes a user's file label. Standard
GETDSEG Creates an extra data segment. Data-Segment Management
GETJCW Fetches contents of job control word. Standard
GETLOCRIN Acquires local RIN's. Standard
GETORIGIN Determines source of process activation call. Process Handling
GETPRIORITY Changes the priority of a process. Process Handling

GETPRIVMODE

Dynamically enters privileged mode.

Privileged Mode

D-2

Table D-1. Summary of MPE Intrinsics (Continued)

INTRINSIC
NAME PURPOSE CAPABILITY REQUIRED
GETPROCID Requests PIN of a son process. Process Handling

GETPROCINFO

Requests status information about a father or son
process.

Process Handling

GETUSERMODE Dynamically returns to non-privileged mode. Privileged Mode
INITUSLF initializes a USL file to the empty state. Standard
IOWAIT initiates completion operations for an /O request. Standard
KILL Deletes a process. Process Handling
LOADPROC Dynamically loads a library procedure. Standard
LOCKGLORIN Locks a global RIN. Standard
LOCKLOCRIN Locks a local RIN. Standard
MAIL Tests mailbox status. Process Handling
MYCOMMAND Parses (delineates and defines parameters) for user- | Standard
supplied command image.
PAUSE Suspends calling process for a specified number of | Standard
seconds.
PRINT Prints character string on job/session list device. Standard
PRINTOP Prints a character string on the Operator's Console. Standard
PRINTOPREPLY Prints character string on Operator's Console and Standard
solicits a reply.
PROCTIME Returns a process accumulated central processor time. Standard
PTAPE Accepts input from paper tapes which do not contain X | Standard
OFF control characters.
QUIT Aborts a process. Standard
QUITPROG Aborts the user process structure. Standard
READ Reads an ASCII string from the job/session input ‘device Standard
($STDIN).
READX Reads an ASCI! string from the job/session input device 1 Standard
(3STDINX).
RECEIVEMAIL Receives mail from another process. Process Handling
RESETCONTROL Resets terminal to accept CONTROL-Y signal. Standard
SEARCH Searches an array for a specified entry or name. Standard

D-3

Table D-1. Summary of MPE Intrinsics (Continued)

INTRINSIC
NAME PURPOSE CAPABILITY REQUIRED

SENDMAIL Sends mail to another process. Process Handling
SETJCW Sets bits in job control word. Standard
SUSPEND Suspends a process. Process Handling
SWITCHDB Switches DB-register pointer. Privileged Mode
TERMINATE Terminates a process. Standard

TIMER Returns system timer bit count. Standard
UNLOADPROC Dynamically unloads a library procedure. Standard
UNLOCKGLORIN Unlocks a global RIN. Standard
UNLOCKLOCRIN Unlocks a local RIN. Standard

WHO Returns user attributes. Standard
XARITRAP Arms or disarms the software arithmetic trap. Standard
XCONTRAP Arms or disarms the CONTROL-Y trap. Standard
XLIBTRAP Arms or disarms the software library trap. Standard
XSYSTRAP Arms or disarms the system trap. Standard

ZSIZE Changes size of Z to DB area. Standard

D-4

COMPILER ERROR MESSAGES

E

Table E-1. SPL Compiler Error Messages

MESSAGE

MEANING

ACTION

ARITHMETIC RIGHT SHIFT
EMITTED

Compiler has issued an ASR to
convert a byte address to a
word address.

None, unless word
address is supposed to
be greater than DB+
16383 in which case the
ASR causes an error.

BEGIN END DO NOT MATCH

When END. encountered, there
were more BEGINs than ENDs.

Check your code and
correct.

CASE STATEMENT
OVERFLOW

The number of cases in a CASE
statement exceeds 256.

Check your code;
decrease the number of
cases.

CONVERSION ERROR

An illegal type conversion was
attempted.

Check manual for legal
type conversions; note
that types cannot be
mixed in arithmetic
operations.

DECLARATION NOT
ALLOWED IN SUBROUTINE

A subroutine may not have
declarations.

Check the subroutine
code and move decla-
rations to main program
or procedure.

DECLARATION OUT OF
ORDER

Declarations must be ordered
as: data, procedures, sub-
routines.

Check the order;
correct.

DECLARED TWICE

An identifier has been declared
twice at the same level.

Check declarations;
correct.

DEFINE TOO LARGE

A DEFINE declaration has too
many characters in its de-
scription.

Check declaration,
reduce to 511 charac-
ters excluding extrane-
ous blanks.

DISPLACEMENT OUT OF
RANGE

The displacement is too large
or has the wrong sign for the
addressing mode.

DISPLACEMENT TOO LARGE

The displacement is too
large for the addressing mode.

Displacement varies
with addressing mode:
DB + 255
Q+ 127, Q — 63
S—- 863
P+ 255; P — 255

EXPECTS ALPHA

The next symbol must be an
alphabetic character.

Check code; change to
alphabetic character.

EXPECTS ARRAY IDENTIFIER

Only an array identifier is legal
in this context.

Check code; use array
identifier.

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

EXPECTS ASTERISK

An asterisk is expected in this
context.

Check code; use
asterisk.

EXPECTS BOUNDS

An array declaration of this
type requires bounds.

Check code; enter
bounds.

EXPECTS CONSTANT

A constant is expected in this
context; for example, as a par-
tial word designator.

Check code; correct.

EXPECTS DOLLAR

A $ command with continuation
symbol is not followed by
image with $ in column 1.

Correct by entering $ at
beginning of continua-
tion line or deleting
continuation symbol.

EXPECTS EQUAL

An equals sign is expected
in this context.

Check code and enter
= where expected.

EXPECTS INTEGER VARIABLE

Only as integer variable is
legal in this context.

Check code, correct.

EXPECTS LABEL

A label must appear in this
context.

Check code, correct.

EXPECTS OPTION

A $ command has an illegal

command or is followed by an
illegal parameter.

Check command, cor-
rect.

EXPECTS POINTER

Only a pointer is legal in this
context.

Check code, correct.

EXPECTS REFERENCE
PARAMETER

A value parameter is passed to
a procedure that expects a
parameter passed by refer-
ence.

Check parameters and
specifications; correct.

EXPECTS RELATIONAL

A relational operator is ex-
pected at this point.

Check code, correct by
including relational

‘operator (=,<>,<,<=,

> >=)

EXPECTS RELATIONAL OR
COMMA

Either a comma or a relational
operator is expected in this
context.

Check code, correct
by including comma or
relational operator (=,
<>, <, <=,>,>=) as
appropriate.

EXPECTS SYMBOL

No symbol where a symbol,
such as an identifier, is
expected.

Check code, include
symbol.

EXPECTS UNDEFINED
BOUNDS

An array declaration of this type
requires an asterisk (*).

Check declaration,
include *

EXPECTS VARIABLE

Only a variable is allowed in
this context.

Check code, correct.

E-2

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

ILLEGAL EXTERNAL
VARIABLE

An error occurred in an exter-
nal variable declaration or in its
use.

Check the declaration
and also the procedure
where it is used; correct.

ILLEGAL FORMAL
PARAMETER

The attributes specified for this
formal parameter are not
valid.

Check the parameter;
correct,

ILLEGAL GLOBAL EXTERNAL
VARIABLE

An error has occurred in a
global or an external variable
declaration.

Check deciarations;
correct.

ILLEGAL IDENTIFIER
REFERENCE

The reference identifier for this
declaration is incorrect.

Check the declaration;
reference identifier
must be declared first.

ILLEGAL INITIALIZATION

The initialization list for this
array is invalid.

Make sure that list con-
tains only numeric
values or strings.

ILLEGAL IF STATEMENT

This IF statement contains an
error.

Check the statement,
correct.

ILLEGAL ITEM IN
EXPRESSION

The item is either not declared
or is of the wrong class.

Check declarations,
include if necessary,
otherwise correct.

ILLEGAL LEFT PARENTHESIS

A left parenthesis has been
used in a context where it is
illegal.

Remove the paren-
thesis.

ILLEGAL MODE IN THIS
CONTEXT

An address mode (relative to
DB, Q, S, or PB) cannot be
used in this context.

Change to a mode that

is legal in this context.

ILLEGAL OPERATOR

An operator is used that is not
recognized by the compiler.

Valid operators are: */,
** I+ ,— ,MOD,MODD,
=<, <> <=>>=,
LAND, LOR, XOR.

ILLEGAL OWN
INITIALIZATION

The initialization list for an OWN
array is invalid.

Check; correct the list
to include only numbers
and strings.

ILLEGAL OWN VARIABLE

An error occurred in an OWN
variable declaration or in its
use.

Check the OWN
variable declaration
and also where it is
used; correct.

ILLEGAL PARAMETER

This parameter contains an
illegal item.

Check the parameter;
correct.

ILLEGAL S-RELATIVE
ADDRESS

The displacement to S is either
positive or less than — 63.

Correct the address to
fall within range S-0
through S-63.

E-3

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

EXPECTS WHILE OR UNTIL

The reserved word WHILE or
UNTIL is missing.

Check code, include
WHILE or UNTIL.

EXPECTS @

The compiler expects an @ as
the next symbol in this context.

Check code, include @.

ERROR IN CATENATE
EXPRESSION

A catenate expression must be
of the form (L:M:N) where L, M,
and N are integer constants.

Check expression and
correct.

ERROR IN PARTIAL WORD
DESIGNATOR

A partial word designator must
be of the form (M:N) where M
and N are integer constants.

Check code; correct
form of partial word
designator.

ERROR IN SHIFT
DESIGNATOR

An illegal mnemonic follows the
&.

Change mnemonic to a
valid shift identifier.

ERROR IN USL FILE

USL file contains a bad entry.

Compilation terminates.

Check source for errors;
correct and try again.

ERROR OVERFLOW

Maximum number of errors has
been generated.

Default maximum = 100
errors; change with
$CONTROL command.

FORWARD PROCEDURE
DECLARATION
INCOMPATIBLE

Forward and actual procedure
declarations do not match.

Check declarations and
correct.

ILLEGAL ADDRESS MODE

The specified address mode is
not legal in this context.

Address mode relative
to DB, Q, S, or PB must
be changed.

ILLEGAL ADDRESS STORE

An attempt has been made to
store into a non-existent
pointer; for example:
@PTR(1): =0.

Change to @PTR:=n or
PTR(1):=n.

ILLEGAL ASSEMBLE
STATEMENT

An error occurred in an
ASSEMBLE statement.

Check the statement;
correct.

ILLEGAL ATTRIBUTE

Attribute inconsistent with
identifier; e.g., LONG LABEL.

Check the specification;
correct.

ILLEGAL BOUNDS
SPECIFICATIONS

The bounds for this array
declaration are invalid.

Check that bounds are
*, @ or integer constant.

ILLEGAL CLASS

Symbol class (POINTER,
ARRAY, etc.) incorrect in
context.

Check the symbol;
correct the symbol
class.

[LLEGAL CONSTANT

This symbol is not a valid
constant.

Check the constant,
enter a valid constant.

ILLEGAL DYNAMIC BOUNDS

The dynamic bounds must be
either an integer formal param-
eter or a global integer.

Correct as indicated.

E-4

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

ILLEGAL SEGMENTATION

A $CONTROL SEGMENT card
is within a procedure.

Change the card to
appear outside the
procedure.

ILLEGAL STATEMENT
BEGINNER

A statement cannot begin with
this class; possibly is an un-
declared variable.

Check the class, and if
undeclared variable,
declare it.

ILLEGAL STATEMENT
TERMINATOR

A statement must be termi-
nated by END or a semicolon.

Correct the terminator.

ILLEGAL STRING

A string is expected in this
context but there are no quote
marks.

Enclose the string in
quotes.

ILLEGAL SYMBOL

Not an ASCII character valid
for SPL.

Check and enter a valid
ASCII character accept-
able to SPL.

ILLEGAL TO STACK
PARAMETER

Parameter must not be loaded
directly to stack in this context
or stack will be out of order.

Correct so that param-
eter is not stacked.

ILLEGAL TRACE CARD

A $TRACE card is either in
the wrong position or contains
an error.

Check the $TRACE
card and move or cor-
rect as appropriate.

ILLEGAL TRACE
IDENTIFIER

The identifier being traced is of
a class that cannot be traced.

Change class to
SIMPLE VARIABLE,
ARRAY, POINTER,
LABEL, or PROCEDURE.

ILLEGAL TYPE

A type mismatch has occurred
in an arithmetic operation.

Check the types and
change to matching
types.

ILLEGAL TYPE TRANSFER

The type of the operand may
not be converted to the type of
the object in SPL.

Check the statement
and correct to avoid
type mismatch.

ILLEGAL USE OF PB BYTE

ARRAY

Byte cannot be loaded from
a PB byte array since the load
byte instruction is not PB-
relative.

Correct code so
attempt is not made to
load byte from PB byte
array.

ILLEGAL VARIABLE

Form of variable is not valid.

Check variable and
insure that it starts with
letter.

ILLEGAL X ON OR OFF

Parameter on $IF command is
invalid; may be X0 through X9
= ON or OFF only.

Check $IF parameter
and correct.

E-5

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

ILLEGAL X REGISTER
REFERENCE

Either the type or the class of the
variable referencing the X
reqgister is illegal.

Change type and/or
class to that of a one-
word variable.

INDEX NOT ALLOWED

An attempt was made to index
a simple variable.

Change declaration to
array or remove index.

INITIALIZATION QUT OF
RANGE

An array has been initialized
with a list that is larger than the
array size.

Either change the array
size or decrease the list.

INTEGER OVERFLOW

A constant expression resulted:
in an integer overflow.

Check constants used
in expressions for a
resulting value greater
than 32767 or less than
- 32767.

INVALID BRANCH EMITTED

Compiler has emitted a bad
branch in ASSEMBLE state-
ment; probably label out of
range.

Check label range;
change to indirect
branch.

INVALID BYTE INITIALIZATION

The initialization list of a byte
array is incorrect.

Check byte array and
its initialization list;
correct.

INVALID COMMENT

Comment has been used in an
illegal context.

Check code; either
move Or remove
comment.

INVALID EXPONENT
PARAMETER

An exponent expression con-
tains an error.

Check the expression;
correct.

INVALID NUMBER

Either the field is not numeric
or the number is out of range in
this context.

Check field and range
of number; correct.

INVALID OPERATOR

The mnemonic in ASSEMBLE

Check code for invalid

MNEMONIC statement not identifiable. instruction mnemonic;
correct.
INVALID SDEC Stack decrement (SDEC) field Check range for this

in statement such as MOVE
or SCAN is out of range.

SDEC constant and
correct.

INVALID SUBSCRIPT

An index must be an integer
expression.

Check expression used
as index; correct.

LABEL IN ASSEMBLE
STATEMENT MUST OCCUR

A label referenced in an
ASSEMBLE statement cannot
be found.

Check statement; either
include label or remove
reference.

LOCAL DECLARATION
OVERFLOW

Too many local declarations;
up to 127 words allowed.

Check and remove
extra declarations.

E-6

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

LOCAL INITIALIZATION MUST
BE PB

A local array can be initialized
only in PB mode.

Check array declara-
tion; change mode to
PB, or make array
global.

LOGICAL COMPARE
EMITTED

Issued when a logical com-
pare always gives the same
result.

Warning that compare
such as L>=0is always
true, L<0 always false
if L is logical variable.

MAY NOT GO TO ENTRY

A GO TO statement may not
transfer to an entry label.

Check GO TO, change
label.

MAY NOT TRACE EXTERNAL
LABEL

Trace can only be made on
tabel in program unit being
compiled.

Check TRACE; change
label to one in current
program unit.

MAXIMUM REPEAT FACTOR
8191

The largest repeat factor al-
lowed in an initialization list is
8191.

Check initialization list;
lower repeat factor.

MISSING ASSIGNMENT
OPERATOR

An assignment operator must
appear in this context.

Check code; include
assignment operator.

MISSING BEGIN The compiler expects a BEGIN Check code; include
as the next symbol. BEGIN.
MISSING CCF This ASSEMBLE instruction Check code; include

requires a CCF specification.

CCF specification.

MISSING COLON

A colon (:) must appear in this
context.

Check code; include
colon.

MISSING COMMA

A comma (,) is expected in this
context.

Check code; include
comma.

MISSING DO A DO must appear in this Check code; include
context. DO.
MISSING ELSE An ELSE must appear in this Check code; include

context.

ELSE.

MISSING EXPONENT

A valid exponent must follow a
caret (A).

Check code; enter valid
exponent.

MISSING FORMAL
PARAMETER

A specification is made for a
non-existent formal parameter.

Check code; include
formal parameter or
delete specification.

MISSING LEFT PARENTHESIS

A left parenthesis is expected
in this context.

Check code; include
left parenthesis.

MISSING OF

A CASE statement does not
contain the word OF.

Check CASE statement;
include OF.

MISSING RIGHT BRACKET

A right bracket is only accept-
able symbol at this point.

Check code and
include right bracket.

E-7

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

MISSING RIGHT
PARENTHESIS

A right parenthesis is expected
at this point.

Check code; include
right parenthesis.

MISSING SEMICOLON

A semicolon (;) or other sep-
arator is required in this context.

Check code; include
semicolon.

MISSING SLASH

A slash is the only acceptable
symbol at this point.

Check code; include
slash.

MISSING SPECIFICATION

There is no specification for a
formal parameter.

Check code; include
specification for formal
parameter.

MISSING SUBPROGRAM

A procedure specified in a
SCONTROL SUBPROGRAM
command cannot be found.

Check code; correct
name in command or
include procedure.

MISSING THEN A THEN must appear in this Check code; include
context. word THEN.
MISSING UNTIL An UNTIL must appear in this Check code; include

context.

word UNTIL.

MULTIPLE FORWARD
DECLARATION

There is more than one forward
declaration for this procedure.

Check declarations;
remove redundant for-
ward declaration.

MULTIPLE SPECIFICATIONS

A formal parameter is specified
more than once.

Check code; remove
extra formal parameter.

MUST BE DB

Only DB-relative addressing is
allowed in this context.

Check address; correct
to DB-relative.

MUST BE DB OR Q

Only DB-relative or Q-relative
addressing allowed in this
context.

Check address; correct
to DB-relative or Q-
relative.

MUST BE DOUBLE OR
LOGICAL

Only a double-word or logical
variable is allowed in this
context.

Check variable; change
to double or logical.

MUST BE INTEGER TYPE

The only valid type for this
construct is integer.

Check code; use
integer.

MUST BE INTEGER, LOGICAL
OR BYTE

A one-word quantity is ex-
pected in this context.

Check code; correct to
use one-word guantity.

MUST BE LOCAL

Action allowed only for local is
being performed on global
variable.

Check code; correct
variable.

MUST BE TYPE BYTE

Symbol must be type byte in
this context.

Check symbol; correct
if ilegal or change to
type byte.

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

MUST BE TYPE LOGICAL

Only a logical variable can
appear in a Boolean expression.

Check expression;
change to logical
variable.

MUST BE TYPE PROCEDURE

in this context, procedure must
be typed.

Check code; change to
typed procedure.

MUST BE VALUE FORMAL
PARAMETER

A reference parameter is not
legal in this context.

Check parameter;
change to formal
parameter.

NESTED PROCEDURE NOT
ALLOWED

A procedure declaration is
within another procedure.

Check code; remove
procedure declaration
for other procedure.

NOT END OF COMMENT

Two greater-than symbols are
separated by one or more
blanks.

If intended as comment,
remove blanks so sym-
bols are adjacent (>>).

NOT INTRINSIC FILE

A file specified as an intrinsic
file in INTRINSIC statement is
not an intrinsic file.

Check file name;
change to name of in-
trinsic file.

NOT ON INTRINSIC FILE

Procedure referenced in an
INTRINSIC declaration is not on
the intrinsic file.

Check procedure name
and intrinsic file;
change name or in-
clude intrinsic in file.

OUT OF RANGE BRANCH

An ASSEMBLE statement con-
tains branch that is beyond
range of direct branch.

Check statement;
change range of
branch or use in-
direct addressing.

PARAMETER NOT ALLOWED

Interrupt procedure that should
have no parameters has a
parameter.

Check procedure;
remove parameter.

PARAMETER NUMBER
INCOMPATIBLE

A procedure call has an in-
correct number of parameters.

Check procedure;
change number of
parameters accordingly.

PARAMETER OUT OF RANGE

This parameter exceeds the
maximum allowable displace-
ment for this address mode.

Displacements may be:
DB+ 255, Q+ 127, Q—-63,
S—-63, P+255, P—255,

PARAMETER OVERFLOW

There are more than 31 param-
eters in this procedure.

Reduce number of
parameters to 31 or
fewer.

PARTIAL WORD ILLEGAL
HERE

A partial word designator is
not allowed in multiple store.

Break into several store
statements to allow bit
deposit.

PRIMARY DB OVERFLOW

A variable cannot be assigned
with a DB-relative address
greater than 255.

Correct to address
within accepted bounds
possibly by removing
declarations.

E-9

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

PRIMARY Q OVERFLOW

Variable cannot be assigned
with Q-relative address greater
than 127.

Correct assignment to
address within accept-
able bounds.

PROCEDURE TOO LARGE

The number of instructions in
this procedure exceeds the
limit,

Decrease number of in-
structions in procedure
or increase segment
size.

RECURSIVE DEFINE

Invoking this DEFINE statement
would result in infinite loop.

Check text of DEFINE
statement for identifier
being defined.

RESERVED SYMBOL
REDEFINED

Cannot define a constant or
reserved word.

Check definition; omit
reserved word or
symbol.

SDEC TOO LARGE

Stack decrement in an ASSEM-
BLE statement is larger than
largest allowed value.

Check statement;
reduce stack decre-
ment to acceptable
value for context.

SECONDARY DB OVERFLOW

There are too many declara-
tions in the outer block.

Check code, and
reduce the number of
declarations.

SEMICOLON NOT ALLOWED

A semicolon (;) cannot be
used in this context.

Remove semicolon.

SEQUENCE ERROR

Input files contain images that
are out of order.

Check input files;
correct order.

SIZE INCOMPATIBILITY

Parameter passed to a pro-
cedure has wrong number of
words.

Check parameter size
in procedure, and cor-
rect call.

SORT TABLE OVERFLOW

Table used to sort map output
is full (over 1162 procedures/
symbols, 1912 globals)

Symbol table map can-
not be produced.

STRING TOO LARGE

This string exceeds 128
characters.

Reduce string size to
acceptable limit.

SYMBOL TABLE ERROR

Some entries in the symbol
table are no longer valid.

Symbol table map can-
not be produced.

SYMBOL TABLE OVERFLOW

The compiler limit for the
number of symbols has been
exceeded.

Reduce number of sym-
bols in program and
recompile.

STACK OVERFLOW MAY BE
IRRECOVERABLE

If stack overflow occurs and Q
and S set in same instruction,
process may terminate.

Separate into two in-
structions; e.g., SET (Q),
SET (S), not SET (Q,S).

E-10

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE

MEANING

ACTION

SUBPROGRAM TABLE
OVERFLOW

Overflow in table where sub-
program names to be compiled
are stored.

Reduce number or size
of names to total of 252
characters plus 1 extra
for each name.

SUBPROGRAM & USLINIT

This compilation specifies both
subprogram and USLINIT,
resulting in no outer block.

Compile an outer block
before preparing the
program file.

TRACE HEADER TOO LARGE

Too many symbols being
traced resulting in table
overflow.

Reduce number of sym-
bols to be traced.

TYPE INCOMPATIBILITY

In arithmetic statement, two
operands of different type are
combined.

Change one or both
operands so that they
are the same type
(REAL, LONG, etc.)

TYPE PROCEDURE STORE
OUT OF RANGE

A procedure name can appear
on the left-hand side of a
replacement operator (:=) only
within the scope of the proce-
dure with the same name.

Check procedure
name; correct name or
remove statement.

UNDECLARED IDENTIFIER

An identifier used in a state-
ment has not been declared in
a declaration.

Declare identifier or
change identifier name
to a declared identifier.

USL FILE OVERFLOW

The USL file is full.

Build larger USL file;
recompile.

@ NOT ALLOWED

An @ is not legal in this context.

Remove @.

E-11

SPL SYNTAX

APPENDIX

F

N

10.

11.
12.

13.
14.

15.
16.
17.

18.
19.

20.

21.

22.
23.
24.
25.
26.

27.
28.

< program>

< subprogram>
<main body>

<declarations>

<data group>

< data declaration>

<sub proc group>

<proc int group>
<proc int dec>
< global sub group>

< define dec>
< define list>

< define element>
<def text>

< def char>
<equate dec>
<equate list>

<equate element>
<equate expression>
<equate term>
<equate primary>
<equate identifier>
<sign>

< addop>
<muldiv>

< global simple var dec>

<type>
<simple var list>

:=BEGIN <declarations> <main body>END.|

BEGIN <main body> END.
::=BEGIN <declarations> END.
1=<statement> |

< statement> ;< main body>
u=<data group> <sub proc group>|

<data group>,

<sub proc group>
i=<data declaration>;

< data declaration>;<data group>
=<define dec> |

<equate dec>!

< global simple var dec>

< global array dec>|

< global pointer dec>

<label declaration>

<switch declaration>

<entry declaration>
=< proc int group><global sub group>|

<proc int group>,

< global sub group>
=< proc int dec>;

< proc int dec> ;< proc int group>
=< procedure declaration>,

<intrinsic declaration>
::=<subroutine dec>;,

<subroutine dec>;<global sub group>
:=DEFINE <define list>
::=<define element>,

< define element>,<define list>
=< identifier>= <def text>#
u=<def char>

<def char> <def text>
n={any ASCII character except #}
:=EQUATE <equate list>
i=<equate element>

<equate element> ,<equate list>
u=<equate identifier>=<equate expression>
=<sign> <equate term>,

<equate term>

< equate expression> <addop> <equate term>

n=<equate primary> |

<equate term> <muldiv> <equate primary>

n=<unsigned integer> |
<equate identifier> |
(<equate expression>)

= <identifier>

=+ =

=+ | -

u=*|/

n=<type> <simple var list>
GLOBAL <type> <simple var list>

= INTEGER/LOGICAL BYTE DOUBLE REALLONG

= <simple var element> |
< simple var element> ,<simple var list>

F-1

29.

30.

31.

32,

33.

34.
35.

36.

37.

38.
39.

40.
41.

42.

43.

44.

45.
46.
47.

48.
49.
50.

51.
52.

53.
54.
55.
56.

<simple var element> :=<simple variable>|
<simple variable> = <initial value>|
<simple variable>=<id reg reference>

<simple variable> =< identifier>
<local simple var dec> =<type> <simple var list>|
OWN <type> <nonref var dec list>|
EXTERNAL <type> <simple variable list>
<nonref var dec list> = <nonref var dec>
< nonref var dec>,<nonref var dec list>
<nonref var dec> =< simple variable> |
<simple variable>:=<initial value>
<initial value> =< constant>
<id reg reference> ;=< variable reference> |
<register reference>
< variable reference> i=<data identifier>,
< data identifier> <sign> <offset>
<data identifier> =<simple variable>
< array name> |
< pointer name>
< offset> ;=< unsigned integer>
<register reference> ==X,
DB+ < offset>
Q+ < offset>,
Q— <offset>
S—<offset>
< constant> r=<number> <string>
<number> =< integer>
<real number>
<double integer>
<long real number> |
< logical value>
<integer> u=<unsigned integer>
<sign> <unsigned integer>
<decimal integer> s=<digit>,
<decimal integer> <digit>
< unsigned integer> =<decimal integer>:
<based integer> |
< composite integer>
< equate invocation>
<equate invocation> =< equate identifier>
<digit> #=0(123/4/567,89
<based integer> »=%<base digit>,
%< base part> <base digit>!
< based integer> <base digit>
<base part> ::=(<base>)
< base> :={any unsigned integer from 2 to 16 inclusive}
< base digit> »={any digit from 0 to <base>—1 inclusive, taken
from the set (0,1,2,3,4,5,6,7,8,9,A,B,C,D,
E.F)}
< composite integer> i=[<integer field list>]
<integer field list> = <integer field> |
< integer field> <integer field list>
<integer field> :=<number of bits>/<unsigned integer>
<number of bits> ;=< unsigned integer>
<double integer> u=<integer> D
<real number> ::=< unsigned real number>

<sign> <unsigned real number>

<unsigned real number> = <fraction>|
< decimal integer>E< power>
< fraction>E<power>|
< composite integer>E|

< based integer> E

<fraction> :=<decimal integer> |
<digit>
<fraction> <digit>
< power> =< decimal integer>|

<sign> <decimal integer>
:=< unsigned long real no>|

<sign> <unsigned long real no>
=< decimal integer>L<power>|

< fraction>L< power>|

< composite integer>1)

<based integer>L
:=TRUE|

FALSE|

<integer>

<long real number>

<unsigned long real no>

<logical value>

63.
64.

65.
66.

67.

68.

69.

70.

71.

72.

73.

74.

75.
76.
717.
78.

<string>
< character string>

< character>
<identifier>

<letter>

< expression>

<variable>

< integer variable>

<index>

<function designator>

<procedure id>

< bit operation>

< bit extraction>

< bit extract field>
<left extract bit>
<extract field length>

:="“<character string>"
=< character>|

< character string> <character>
:={a member of the ASCII character set}
=< letter>|

< identifier> <letter>|
< identifier> <digit>|
<identifier>’

2= A|B|C/D|

E/FGHIJK|
LM

NIOPQRS

TIUViw
X Y|Z

=< arithmetic expression>|

<logical expression>|

=< simple variable>|
<pointer name>|< pointer name> <index>|
<array name>|<array name> <index>|

TOS

=@<simple variable>|
@< pointer name>|@ < pointer name> <index>|
@< array name>|@<array name> <index>|

@<label>|
@ < procedure name>>|
@ <entry point>|

ABSOLUTE/ABSOLUTE<index>
= (< expression>)

(< assignment statement>)

=< procedure id>|
<procedure id> <actual param part>|

< subroutine name>|

<subroutine name> < actual sparam part>
=< procedure name>|

<entry point>

=< bit extraction>|

< bit concatenation>|
< bit shift>

=< primary>.(<bit extract field>)

= <left extract bit>:<extract field length>
u=<unsigned integer>
»=<unsigned integer>

F-3

79.
80.
81.
82.
83.

84.
85.
86.
87.
88.
89.

90.

91.
92.

93.

94.

95.
96.

97.

98.

99.

< bit concatenation>
<bit cat field>
<left deposit bit>

< bit shift>

<shift op>

< shift count>

<integer expression>
< arithmetic expression>

< aexp>
< term>
< factor>

< primary>

<mulop>
< logical expression>

<IF expression>

<lexp>

< disjunction>
< conjunction>

<logical element>

<logical term>

<logical factor>

nw=<primary> CAT <primary>(<bit cat field>)
:=<left deposit bit>:<bit extract field>
::=<unsigned integer>
=< primary> &<shift op> (<shift count>)
= LSL|LSR|ASLASR|
CSL|CSR/DASL|DASR|DLSL|
DLSR DCSL|DCSR, TASL|TASR, TNSL|
QASL|QASR
=< integer expression>
=< arithmetic expression>
=< aexp>|
< addop> <aexp>|
<IF expression>
= <term>|
<aexp> <addop> <term>
=< factor>|
<term> <mulop> <factor>
i=<primary>|
<factor>—<primary>
= < variable>|
< constant>|
< bit operation>|
(< aexp>)
N\ <aexp>\
<function designator>|
< assignment statement>
w=%/MOD
u=<lexp>|
<IF expression>
:=1IF <condition clause> THEN <expression> ELSE
< expression>
= <disjunction>|
<lexp> LOR <disjunction>|
<integer expression> <= <integer expression>
<= <integer expression>
=< conjunction>|
<disjunction> XOR <conjunction>
:=<logical element>|
< conjunction> LAND <logical element>
i=<logical term>|
<logical term> <relop> <logical term>|
< arithmetic expression> <relop>
< arithmetic expression>|
< byte ref> <relop> <byte ref> <count>|
< byte ref> <relop> <byte ref>
< count>,<sdec>|
< byte ref> <relop>*PB< count>|
<byte ref> <relop>*PB< count>,<sdec>|
< byte ref> <relop> <string>|
< byte ref> <relop> <string>,<sdec>|
<byte ref> <relop> (< listelmt>)
< byte ref> <relop>(<listelmt>),<sdec>|
< byte variable> = < btestword>|
< byte variable> <> <btestword>
::=<logical factor>|
<logical term> <addop> <logical factor>
.= <logical primary>|
<logical factor> <logical mulop>
<logical primary>

100.

101.
102.
103.
104.
105.
106.
107.
108.

109.
110.
111.
112.

113.

114.

115.

1186.

117.

118.

119.

120.

121.

122.
123.
124.
125.
126.

127.

< logical primary>

<byte variable>
<logical variable>

<logical bit operation>

<logical func desig>
<logical assign stmt>
<relop>

<logical mulop>
<byte ref>

< byte pointer name>
<byte array name>
< btestword>

< global array dec>

<type>

<local array dec>

< G-dec>

< G-dec initial>

< G-dec list>

< G-dec list1>

< g-array dec list>

< g-array dec>

< array name>

<db>
<lower>
<upper>
<udb>

< E-dec list>

< E-dec>

:=<logical variable>|
< logical value>|
<string>|
<logical bit operation>|
(<lexp>)
<logical func desig>|
(<logical assign stmt>)
NOT <logical primary>
=< variable>
=< variable>
::=<bit operation>
=< function designator>
< assignment statement>
n= > = <= =
:=*/MOD/**/AMODD
::=<byte pointer name>|
< byte pointer name> <index>|
<byte array name>|

< byte array name> <index>|
*

::=<pointer name>
:=<array name>
= ALPHANUMERIC|SPECIAL
= ARRAY<g-array dec list>|
<type>ARRAY< g-array dec list>|
GLOBAL ARRAY <G-dec list>|
GLOBAL <type> ARRAY < G-dec list>
= INTEGER|LOGICALBYTE|DOUBLE| REAL
LONG
::=ARRAY <l-array dec list>|
<type> ARRAY <l-array dec list>|
EXTERNAL ARRAY <E-dec list>|
EXTERNAL < type> < E-dec list>]
OWN ARRAY <own array dec list>|
OWN <type> ARRAY <own array dec list>
=< array name>(<db>)
<array name>(<db>)=DB|
<array name>(*)=DB|
< array name>(@)=DB
ii=<array name>(<db>):=<array init>
<array name> (<db>)=DB:=<array init>
=< G-dec initial>|
<G-dec list1>]
< G-dec list1> < G-dec initial>
=< G-dec>|
< G-dec>,< G-dec list1>
:=<G-dec initial>|
< g-array dec list1>|
< g-array dec list1>,<G-dec initial>
=< G-dec>|
<array name> (@)< indirect base reg ref>|
<array name> (< udb>)<reference part>
= <identifier>

= <lower>:<upper>
1=<integer>
== <integer>
n=*
=< E-dec>|
< E-dec>,< E-dec list>
=< array name>(<udb>)<array name>(@)

F-5

128.

129.

130.
131.

132.

133.

134.
135.
136.
137.
138.
139.

140.

141.
142.

143.

144,

145.

146.

147.
148.

149.

150.

151.

152.

153.

154.
155.

<l-array dec list>
<l-array dec list1>

<l-array initial>
<l-array dec>

<own array dec list>

<own array dec list1>
<own array dec>
<own array initial>
<vh>

<lower variable>
<upper variable>
<reference part>

<indexed ident ref>

< array init>
<listelmt>
<initial value list>
< listelmt list>
<repetition>

< var reference>

<indirect base reg ref>
<base reg ref>

< global pointer dec>

<local pointer dec>

< pointer dec list>
< pointer name list>
< pointer dec>

< pointer name>
< pointer init>

i=<l-array initial>|
<l-array dec list1>
n=<l-array dec>|
<l-array dec>,<l-array dec list1>
;=<array name> <db>=PB:=<array init>
i=<array name>(<db>)
<array name>(<db>)=Q
<array name> (*)=Q)
< array name>(@)=Q
< array name> (< vb>)|
<array name>(<udb>)<reference part>|
< array name> (@)<indirect base reg ref>
n=<own array initial>|
<own array dec list1>|
<own array dec list]> ,<own array initial>
n=<own array dec>|
<own array dec>,<own array dec listl>
w=<array name>(<db>)
u=<array name>(<db>):=<array init>
= <lower variable>:<upper variable>
::=<simple variable>
;= <simple variable>
=< var reference>|
=<indexed ident ref>
=< array name>|
< pointer name>|
< array name> (<integer>)
< pointer name> (< integer>)
= <listelmt>
= <initial value>|
<repetition> (< initial value list>)|
<listelmt list>
:=<initial value>|
<initial value> <initial value list>
n=<listelmt>
< listelmt> < listelmt list>
:=<unsigned integer>
==<base reg ref>|
=<data identifier>|
=<data identifier> <sign> <offset|
:==<bhase reg ref>
;.= DB+ < offset>|
Q+ < offset>|
Q— <offset>|
S—< offset>
= POINTER <pointer dec list>|
GLOBAL POINTER < pointer dec list>|
GLOBAL <atype> POINTER <pointer dec list>|
<type> POINTER <pointer dec list>
i=<type> POINTER <pointer dec list>|
OWN <type> POINTER <pointer name list>|
EXTERNAL <type> POINTER <pointer name list>
= <pointer dec>|
< pointer dec> ,<pointer dec list>
::=<pointer name>|
< pointer name>,< pointer name list>
;=< pointer name> <pointer init>|
< pointer name> < var reference>
;= <identifier>
=@< address specification>

F-6

156.

157.
158.

159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.

175.

176.

177.

178.

179.

180.
181.

182.
183.
184.

185.

< address specification>

<label declaration>
< label list>

<label>

<switch declaration>
<switch name>

< entry declaration>
< entry point list>
<entry point>

< procedure declaration>
< for-ext proc dec>

< external proc dec>
<proc head>

< procedure name>
<formal part>
<formal param list>
< formal param>

< value part>

< spec part>

< specification>

<simple variable list>
< array name list>
< procedure name list>
< procedure id list>

< option part>
< option list>

< option>
<level>

< proc body>

<proc data group>

::=<simple variable>|
<indexed ident ref>
= LABEL <label list>
=<label>|
< label> ,<label list>
= <identifier>
:=SWITCH <switch name>:=<label list>
=< identifier>
:=ENTRY <entry point list>
::=<entry point>|
<entry point>,<entry point list>
= < identifier>
::=<type> PROCEDURE <proc head> <proc body>|
PROCEDURE < proc head> <proc body>|
<for-ext proc dec>
:=<type> PROCEDURE < proc head=>|
PROCEDURE < proc head>
.= <for-ext proc dec>
;=< procedure name> <formal part> <option part>|
< procedure name> <formal part>|
< procedure name> ;< option part>
.= <identifier>
;= (<formal param list>);< value part> <spec part>
(<formal param list>);<spec part>
=< formal param>|
<formal param>,<formal param list>
:=<identifier>
::= VALUE <formal param list>;
::= < specification> |
< spec part> <specification>;
i=<type> <simple variable list>|
<type>ARRAY <array name list>|
ARRAY <array name list>|
LABEL <label list>|
POINTER <pointer name list>|
<type> POINTER <pointer name list>
PROCEDURE < procedure id list>|
<type> PROCEDURE <procedure id list>
=< simple variable>|
<simple variable>,<simple variable list>
u=<array name>|
<array name>,<array name list>
=< procedure name>|
< procedure name> < procedure name list>
=< procedure id>|
< procedure id>,< procedure id list>
= OPTION <option list>
=< option>|
<option> ,<option list>
:=UNCALLABLE PRIVILEGED|EXTERNAL|CHECK <level>|
VARIABLE FORWARD|INTERRUPT/ INTERNAL
»=0123
=< statement>
BEGIN <proc data group> < procedure group>
< compound tail>
=< proc data group> <proc data declaration>}
< proc data declaration>;

F-7

186.

187.

188.

189.

190.

191.

192.

193.

194.
195.
196.
197.
198.
199.

200.

201.

< proc data declaration>

< procedure group>

< proc group>

< intrinsic declaration>

< file-ref>

< file>

< group>

<accet>

< subroutine dec>
<sub head>

< sub body>

< subroutine name>
<sformal part>

< s-spec part>

< s-specification>

< statement>

== <define declaration>|
<equate declaration>|
<local simple variable dec>|
<local array dec>|
<local pointer dec>|
<label declaration>|
<switch declaration>|
< entry declaration>
::==<procedure group> <subroutine dec>|
< proc group>
;=< external proc dec> |
<proc group> < intrinsic declaration>;
= INTRINSIC < procedure name list>
INTRINSIC (<file-ref>) < procedure name list>
=< file>|
< file> < group>|
<file>.< group>.<acct>
n=<letter>|
<file> <letter>|
<file> <digit>
= <letter>|
< group> <letter>|
<group> <digit>
= <letter>|
<acct> <letter>|
<acet> <digit>
::=SUBROUTINE <sub head> <sub body>|
<type>SUBROUTINE <sub head> <sub body>
::= <subroutine name> < sformal part>|
< subroutine name>
=< statement>
= <identifier>
.= (<formal param list>);<value part>
<s-spec part>|
(<formal param list>);<s-spec part>
::= < s-specification>}|
< g-spec part> < s-specification>;
=<type> <simple variable list>|
ARRAY <array name list>|
<type> ARRAY <array name list>]
POINTER <pointer name list>|
<type> POINTER <pointer name list>|
PROCEDURE <procedure name list>|
<type> PROCEDURE < procedure name list>
= <label>:<statement>|
< compound statement>|
< assignment statement>|
<GO TO statement>|
<IF statement>|
<CASE statement>|
<FOR statement>|
<DO statement>|
<WHILE statement>|
<MOVE statement>|
<SCAN statement>|
<PROCEDURE call stmt>|
<RETURN statement>|
<SUBROUTINE call stmt>|
<DELETE statement>|
<PUSH statement>|
<SET statement>|
< ASSEMBLE statement>

F-8

202.
203.

204.
205.

206.

207.

208.

209.

210.

211.
212.
213.

214.
215.

216.

217.

218.
219.
220.

221.

222.

223.

<compound statement>

<compound tail>

< ASSEMBLE statement>

<instruction slist>
<instruction>

<opcode format>

<format-1>

<memory ref opcode>

<sub memref op>

<address part>
< var identifier>
< addr mode>

<IX fields>
< format-2>

<stack opcode>

< format-3>

<I-field>
<X-field>
<argl>

<branch subopl>

<non-branch subopl>

< format-4>

::=BEGIN <compound tail>
= <statement>END|

< statement> ;< compound tail>

= ASSEMBLE(< instruction slist>)
;= <instruction>|

<instruction slist>;<instruction>

::=<label>:< opcode format>|

<opcode format>

;= <format-1>|<format-2>|<format-3>|

< format-4>|<format-5>|< format-6>|
<format-7>|<format-8>|<format-9>|
<format-10>

::=<memory ref opcode> <address part>|

<memory ref opcode> <address part> <IX fields>|
<sub memref opcode> <label>

= <sub memref op>|

STOR INCM DECMLDB|LDD|STB STD

::= LOAD|LDX|LRA/CMPM ADDM|

SUBMMPYM BR/BL|BE|
BLE/BG/BNE|BGE|
TBA/MTBA| TBX| MTBX

;=< var identifier>|<addr mode> <offset>

:=<simple variable>|<pointer name>|<array name>
»=DB+ | Q+ | Q— |

P+ | P- | S-

n=<I-field>|< X-field>|<I-field> <X-field>
:=<stack opcode>|

<stack opcode>,<stack opcode>

:= NOP|DELB DDEL|ZROX|

INCX|DECX|ZERO| DZRO|DCMP|
DADD DSUBMPYL|DIVL|DNEG|
DXCH|CMP ADD|SUB]|
MPY|DIVINEG/TEST|STBX]
DTST DFLTIBTST|XCH|
INCA|DECA|LDXA|DUP DDUH
FLT)FCMP FADD|FSUB|
FMPY|FDIVIFNEG/CAB/LCMP|
LADD|LSUB LMPY|LDIV]
NOT|OR XOR AND|FIXR|
FIXT{INCB/DECB|XBX|ADBX]|
ADXB
u=<branch subopl> <argl>|
<branch subopl> <argl> <I-field>|
<non-branch subopl> <unsigned integer>|

<non-branch subopl> <unsigned integer> < X-field>

u=,1
w=,X

u= <’label>[

P<sign> <offset>|
*<gign> < offset>

:=IABZ IXBZ DXBZ/ DABZ

BCY/BNCY|CPRB BOV|BNOV]
BRO|BRE

.= ASL|ASR/LSLJLSR|

CSL|CSR|SCAN|TASL/TASR
TNSL|
DASL DASR DLSL DLSR/ DCSL)
DCSR TBC|TRBC|TSBC|
TCBC|/QASLQASR

i=<sub op2> <unsigned integer>|

EXF<unsigned integer>:<unsigned integer>|
DPF<unsigned integer>:<unsigned integer>

F-9

224.

225.

226.
227.

228.

229

230.

231.
232.
233.

234.
235.
236.
237.

238.
239.

240.

241.

242.

243.

244.

245.

246.
247.

248.
249.

<sub op2>

< format-5>

<format-6>
<special op>

< format-7>

. <sub op3>

< format-8>

<sdec>
< sdec-8a>
< sdec-8d>

<cef>

<sub move op>
<sub pmove op>
<scan op>

< format-9>
<const list>

< const>

< format-10>

<ext arith op>

< decimal op>
<decimal conv>
<decimal conv inst>

< sdec-10b>
< decimal-ASCII>

< abs>
< decimal arith>

== LDILDXI]CMPI ADD]
SUBIMPYI DIVIPSHR|
LDNI
LDXN|CMPN|SETR
::= RSW|LLSH|/PLDA|PSTA|
LSEA|SSEA|LDEA|SDEA|IXIT!
LOCK|PCN|UNLK
::=<special op> <unsigned integer>
:=PAUSSED| XCHD|SMSK|
RMSK|XEQ|SIO|RIQ|
WIO|TIO] CIO|CMDJSIN|
HALT\LSTPSDB|DISP PSEB|
SCLK|RCLK|SST
:=<sub op3> <unsigned integer>|
PCAL< procedure id>|
SCAL 0]
LLBL <procedure id>
= PCAL|SCAL EXIT|SXIT|
ADXISBXILLBL/LDPP|
LDPN/ADDS SUBS ORI XOR] ANDI
::=<sub move op>|
<sub move op> PB
<sub move op>,<sdec-8a>|
<sub move op> PB,<sdec-8a>"
<sub pmove op>|
<sub pmove op>,<sdec-8d>|
MVBW <ccf>|
MVBW <ccf>,<sdec>|
<scan op>,<sdec>
=012
#=0{123
2=0123
5

= A[NJANJAS ANS
= MOVE MVB/CMPB
== MABSMTDSMDSMFDS
::=SCW|SCUMVBL MVLB
::=CON <const list>
=< const>|
< const>,<const list>
=< constant>|
<label>
n=<ext arith op>|
<decimal op>
::= DMUL/DDIV|EADD|ESUB|
EMPY|EDIVIENEG
ECMP DMPY
=< decimal conv>|
<decimal arith>
=< decimal conv inst>|
<decimal conv inst> <sdec-10b>|
< decimal-ASCII>
»=CVAD|CVBDCVDB
u=01
x=CVDA]
CVDA<sdec-10b>|
CVDA <abs>|
CVDA < abs>,<sdec-10b>
= ABSNABS
i=<decimal arith op>|
<decimal arith op> <sdec>

F-10

250.

251.

252

253.
254.
255,
256.
257.
258.
259.
260.
261.
262.

263.
264.

265.

266.
267.
268.
269.
270.
271.
272.

273.
274.

275.

276.

2717.

278.
279.

<decimal arith op>

< assignment statement>

. <left part>

<deposit field>

<left deposit bit>
<deposit field length>
<right part>

< CASE statement>

< case body>
<DELETE statement>
<DO statement>
<FOR statement>
<FOR clause>

<STEP clause>
<GO TO statement>

<label ref>

<IF statement>

< condition clause>
< condition element>
<condition term>

< condition factor>

< condition primary>
<THEN part>

<ELSE part>
<branch word>

c¢5fiMOVE statement>

<MOVE stmt>

<dest ref>

<MOVE-WHILE stmt>
<byte ref>

::= ADDD|SUBD|MPYD|CMPD|
SLD|NSLD{SRD
:=<left part>:=<right part>|
<left part>:=<assignment statement>
::=<variable>|
< variable> .(< deposit field>)
=< left deposit bit>:<deposit field length>
=< unsigned integer>
::=<unsigned integer>
::= < expression>
:=CASE <expression> OF <case body>|
CASE* <expression> OF <case body>
=< compound statement>
»:=DELDELB/DDEL
u=DO <statement> UNTIL <condition clause>
1:=<FOR clause> <statement>
»=FOR <simple variable>:= <expression>
< STEP clause> UNTIL <expression> DQO|
FOR <simple variable>:= <expression>
UNTIL < expression> DO
FOR* <simple variable>:= < expression>
<STEP clause> UNTIL <expression> DO
FOR* <simple variable>:= <expression>
UNTIL <expression> DO
;== STEP < expression>
=GO <label ref>|
GO TO <label ref>|
GOTO <label ref>
u=<label>|
<switch name> <index>|
*< switch name> <index>
::=1IF <condition clause> <THEN part>|
IF <condition clause> <THEN part> <ELSE part>
;=< condition element>|
< condition clause> OR <condition element>
=< condition term>
< condtion ¢lement> AND <condition term>
;=< condition primary>|
(< condition factor>)
;= <condition primary> OR <condition factor>|
< condition primary> OR <condition primary>
::i=<branch word>|
<logical expression>
:=THEN <statement>
:=ELSE <statement>
= CARRY|NOCARRY|OVERFLOW,|
NOVERFLOW|IABZ DABZ
IXBZ DXBZ <relop>
:=<MOVE stmt>|
<MOVE stmt>,<sdec>|
<MOVE-WHILE stmt>|
<MOVE-WHILE stmt> <sdec>
:=MOVE <dest ref>:=<pointarr> <count>|
MOVE <pointarr>:=*<count>|
MOVE < pointarr>:=*PB< count>|
MOVE < pointarr>:=<string>|
MOVE <pointarr>:= (<listelmt>)
1= <pointarr>|
)
== MOVE <byte ref>:=<byte ref> WHILE < ccf>
:=<byte pointarr>|
*

F-11

280. <pointarr> =< pointer name>|
<pointer name> <index>|
< array name>|
< array name> <index>

281. <byte pointarr> ;=< pointarr>
282. <count> = ,(<integer expression>)
283. <PROCEDURE call stmt> = <procedure id>|
<procedure id> <actual param part>
284. <actual param part> = (<actual param list>)

(<stacked param list>)

(<stacked param list>,<actual param list>)
285. <actual param list> u=<actual param>|

< actual param>,<actual param list>|

,<<actual param list>

286. <actual param> == <reference param>|
<value param>
287. <stacked param list> =
* <stacked param list>
288. <reference param> :=<simple variable>|

< array name>|
<array name> <index>|
<pointer name>|
< pointer name> <index>|

< procedure id>|

<label>

289. < value param> =< arithmetic expression>|

<logical expression>|
< assignment statement>

290. <PUSH statement> .= PUSH(< register spec list>)
291. <SET statement> = SET(<register spec list>)
292. <register spec list> == register|

register,<register spec list>
293. <register> =8 QX|STATUS

Z|DL/DB|SBANK

294. <RETURN statement> = RETURN|

RETURN <pcount>
295. <pcount>| ;= <unsigned integer>
296. <SCAN statement> :=<SCAN-WHILE stmt>|

<SCAN-WHILE stmt>,<sdec>|
<SCAN-UNTIL stmt>|
<SCAN-UNTIL stmt>,<sdec>

297. <SCAN-WHILE stmt> :=SCAN <byte ref> WHILE <testword>
298. <testword> »=<simple variable>|
<integer>|

“<char> <char>"|
*

299. <SCAN-UNTIL stmt> 1= SCAN <byte ref> UNTIL <testword>
300. <char> ::={any member of the ASCII character set}
301. <SUBROUTINE call stmt> =< subroutine name>|

<subroutine name> < actual sparam part>
302. <actual sparam part> = (< actual sparam list>)

(<stacked param list>)
(<stacked param list>,<actual sparam list>)

303. <actual sparam list> =< actual sparam>|
< actual sparam>,<actual sparam list>
304. <actual sparam> ::=<reference sparam>|

< value param>

F-12

305. <reference sparam> :=<simple variable>|
<array name>|
<array name> <index>|
< pointer name>|
< pointer name> <index>|
<procedure name>
306. <WHILE statement> ;= WHILE <condition clause> DO <statement>

F-13

Index to SPL Syntax

<ASSEMBLE statement> 204.
<CASE statement>c..... 257.
<DELETE statement> 259.
<DO statement> 260.
<E-declist>ciiiiiiiii 126.
<E-dec> 127.
<ELSE part> ...t 273.
<FOR clause>couiiiiiin. 262.
<FOR statement>ccouuii.n. 261.
<G-dec initial> L. 116.
<G-dec list1> 118.
<G-dec list> 117.
<G-dec> ... 115.
<GO TO statement>cccvvvei.... 264,
<Ifield> 218.
<IF eXxpression>ccciiieiiiiiinannnn 93.
<IF statement> 266.
<IXfields> 214,
<MOVE statement> 2175,
<MOVE stmt> i 276.
<MOVE-WHILE stmt>c...... 278.
<PROCEDURE call stmt> 283.
<PUSH statement> 290.
<RETURN statement> 294,
<SCAN statement>c.... 296.
<SCAN-UNTIL stmt> 299.
<SCAN-WHILE stmt> 297.
<SET statement> 291.
<STEP clause> 263.
<SUBROUTINE call stmt> 301.
<THEN part>, 272.
<WHILE statement> 306.
<Xfield> 219.
A e e e 248,
CACCE ™ ottt e 193.
<actual param list> 285,
<actual param part> 284.
<actual param> e 286.
<actual sparam list> 303.
<actual sparam part> 302.
<actual sparam> i 304.
<addop™ .. e 24,
<addrmode> 213.
<address part> i 211.
< address specification™> 156.
125 N 87.
<argl> 220.
< arithmetic expression>cccoveinin. 86.
<array init> e 141.
<array name list> i 1717.
<Array NAMESt ee et 121.
< assignment statement> 251.
<base digit> 50.
<base part> e 48,
<baseregref> 148.
<bAasSE™ . e 49.
<based integer> i 47.
<bitcat field> 80.
< bit concatenation™> i 79.
<bit extract field> 76.

F-14

<bit extraction™ i 75.
<bit operation™> o oo 4.
<bit shift> i 82.
<branch subopl> 221.
<branch word> 274.
<btestword> 111.
<byte array name> ... 110.
<byte pointarr> i 281.
<byte pointer name> 109.
<byteref> 108.
<byteref> 279.
<byte variable> 101.
<case body> 258.
<eol> L 234,
<char> 300.
<character string> 64.
<character> 65.
<composite integer> 51.
< compound statement> 202,
<compound tail>l 203.
<condition clause> 2617.
<condition element> 268,
<condition factor> 270.
<eondition primary>l 271.
<condition term>, 269.
<econjunction™ 96.
<eonst list> 239.
<COMSE> e 240.
<constant> 40.
<COUNLE™ .. e e e 282.
<data declaration> i 6.
<data group> 5.
<data identifier> 317.
LA e 122.
<decimal arithop> 250.
<decimal arith> 249,
<decimal conv inst>, 245,
<decimal conv> il 244,
<decimal integer> 43.
<decimal op> 243.
<decimal-ASCII> 2417.
<declarations> i, 4.
<defchar> e, 15.
<def text> e 14
<definedec> 11.
<define element> 13.
<define list> 12,
<deposit field length> 255,
<deposit field> 253.
<destref> 2717.
ALt o e 46.
<disjunction™> 95.
<double integer> L. 55.
<entry declaration> 162,
<entry point list> i 163.
<entry point> 164.
<equate dec> ... 16.
<equate element> 18.
<equate exXpression™ o iiiaan... 19.
<equate identifier> oL 22,

<equate invocation> il 45.
<equate list> i 17.
<equate primary>c.iiiiiiiiiiinian., 21.
<equate term> i 20.
E=5'4 9) =153 10] ¢ DA 68.
<extarithop>, 242.
<external procdec> il 167.
<extract field length> 78.
<factor> 89.
<file-ref> 190.
B 51 > PP 191.
<for-ext procdec>l 166.
<formal param list>cc.ciiiiin, 171.
<formal param> i 172,
<formal part> il 170.
<format-10> i 241.
<format-1> e 208.
<format-2> 215,
<format-3> e 217.
<format-4> e 223.
<format-5> 225,
<format-6> 226.
<format-7> e 228.
<format-8> 230.
<format-9> 238.
<fractionm> 58.
<function designator> 72.
<g-array dec list> oL 119.
<g-array dec> ... 120.
<global array dec> il 112.
<global pointer dec> 149.
<global simple var dec> 26.
<global sub group> i 10.
CEIOUP™ oottt ittt et et et e e 192.
<id reg reference> it 35.
<identifier> e 66.
<Index™ ... 71.
<indexed ident ref> Ll 140.
<indirect baseregref> 147.
<initial value list> 143.
<initial value> e 34.
<instruction slist> 205.
<instruction> i 206.
<integer expression™>iiiiiiiaain. 85,
<integer field list> 52,
<integer fleld>o il 53.
<integer variable> ol 70.
<Integer™ 42.
<intrinsic declaration> 189.
<l-array dec list1> 129.
<l-array dec list> 128.
<l-array dec> 131.
<l-array initial> L 130.
<label declaration> 157.
<label List> i 158.
<label ref> 265.
<label> 159.
<left deposit bit> o il 81.
<left deposit bit>o 254,
<left extract bit> 77.
<left part> 252,
<letter> e 67.

F-15

<level>
LD o e
<listelmt list>
<listelmt>
<local array dec>
<local pointer dec>l
<local simple var dec>
<logical assign stmt>
<logical bit operation>
<logical element> il
<logical expression>
<logical factor> il
<logical func desig>
<logical mulop>o it
<logical primary>
<logical term>
<logical value> il
<logical variable>
<long real number>
<lower variable>
CIOWEE>
<main body> i
<memory ref opcode>
<muldiv>
<mulop>
<non-branch subopl>
<nonref var dec list>

<nonrefvardec>o
<number of bits>
<number>
<offset™> s
<opecode format>l
<option list>o il
<option part> il
<option™>
<own array dec list1> 133.
<own array dec list> 132.
<own array dec> 134.
<own array initial> oL 135.
<peount>> 295.
<pointarr> i 280.
<pointer dec list> o il 151.
<pointer dec>ot 153.
<pointer init> o oo 155.
<pointer name list> ol 152.
<pointer name>co ittt 154.
POWEL ™ | oottt ittt ettt e 59.
CPTIMALY > Lottt ettt e e eiae e 90.
<procbody> 184.
<proc data declaration> 186.
<proc data group> i 185.
CPLOC GIOUP > o\t teee vt ettt eae e e eenaaeennnns 188.
<prochead> 168.
<procint dec> 9.
<Proc int Group>oiiiiiiiiiii e 8.
< procedure declaration> 165.
<procedure group>iieiiiiiiiiiieaann 187.
<procedure id list> 179.
<procedure id>l 73.
<procedure name list> 178.
<procedure NAME>c.ceveiiiiiiiiian.. 169.
D o) 07 - 1 1 1.

<real number> 56.
<reference param>> oot 288.
<reference part>l 139.
<reference Sparam™c.ccooeiiieinnns 305.
<register reference> 39.
<register spec list> 292.
<register= e 293.
<Lrelop™ .o 106.
<repetition> 145.
<rightpart> 256.
<s-Spec part™t 199.
<s-gpecification> ool 200.
T - o) 237.
<sdec-10b> 246.
<sdec-8a™ e 232.
<sdec-8d> 233.
CBAEC> .. e 231.
<sformal part> 198.
<shift count> il 84.
<ShIfb OP> .t 83.
LGN e s 23.
<simple var element> oL 29.
<simple var list> i 28.
<simple variable list> 176.
<simple variable> oL 30.
<spec Part™ e 174.
<special op> 227.
<sgpecification> ol 175.
<stack opcode> il 216.
<stacked param list>a 287.
<statement™ i 201.

F-16

BTN .o e 63.
<subbody> 196.
<subhead> e 195.
<sub memrefop>, 210.
<submove op> ... 235.
<subop2> 224.
<sub Op3>> ... e 229.
<sub pmove OpP> 236.
<sub proc group> ... 7.
<subprogram> e, 2.
<subroutine dec> 0iiiiiia.. 194.
<subroutine name> 197.
<switch declaration> 160.
<switch name> 161.
<EOIrmMI™> . e 88.
<testword> e 298.
RS 74 1= g 217.
P> .o 113.
<udb> L. 125.
<unsigned integer> i, 44.
<unsigned long real no> 61.
<unsigned real number> 57.
<upper variable> oo, 138.
CUPPOT™ oottt i e 124.
<value param> 289.
<valuepart> i 173.
<var identifier> 212,
<var reference> ieiiien, 146.
<variable reference> 36.
<variable> 69.
<Vb> e 136.

INDEX

A

ABSOLUTE addressing, 4-2, 4-4
Absolute value, 4-12

Actual-parameter, 4-5, 5-11—5-19
Addition, 4-12, 4-16

Addresses, 4-3

Addressing range, register, 1-10, 1-11, 3-4
ALPHA, 4-17

AND, 4-13, 4-19, 5-9

Aoptions, 8-7—8-9, 8-13

Arithmetic expression, 4-5, 4-11—4-13
Arithmetic operators, 4-11, 4-12, 4-13
Array, 2-12, 3-4—3-11, 7-11—7-16

ASCII character set, A-1

ASCII intrinsic, 8-47

ASSEMBLE statement, 6-1—6-13
Assignment statement, 4-5, 4-11, 4-12, 4-22—4-24

B

Based constant, 2-6
BEGIN statement, 1-1
BINARY intrinsic, 8-49
Bit operations,
concatenation, 4-7, 4-8
deposit, 4-22
extraction, 4-6, 4-7
shift, 4-8—4-10
Byte comparison, 4-15, 4-17, 4-18
Byte format, 2-4

C

Call by reference, 5-12, 5-13

Call by value, 5-12, 5-13, 7-2
Carriage control, 8-4, 8-5, 8-18, 8-24, 8-26
CARRY, 4-19, 4-20, 4-29

CASE statement, 5-1, 5-10
Character string, 2-11

Code segmentation, 1-6—1-8
Comments, 1-2, 9-2, 9-3

Compiler commands, 1-2, 9-1—9-20
Composite constant, 2-7
Compound statement, 1-13
Concatenation, bit, 4-7, 4-8

Condition clauses, 4-19, 4-20, 4-21, 5-4, 5.5, 5-7, 5-8, 5-9

Constants
based, 2-6
composite, 2-7
double integer, 2-5
equated integer, 2-8
integer, 2-5

Constants
logical, 2-11

long, 2-10

real, 2-8, 2-9

string, 2-11
$CONTROL command, 9-5—9-11
Control, program, 5-1—5-20
$CONTROL SEGMENT, 1.7, 1-8, 9-8
$CONTROL SUBPROGRAM, 1-5, 1-6, 9-9
$COPYRIGHT command, 9-19, 9-20
Cross reference, 9-20

D

DABZ, 4-19, 4-20, 5-5
DASCII intrinsic, 8-48
Data item, 4-2
Data segment, 1-9—1-11
DBINARY intrinsic, 8-50
DB register, 1-9, 1-10, 1-11, 6-15, 6-16
Declarations, global
array, 3-1, 3-4—3-11, 3-13
define, 3-1, 3-17
entry, 3-1, 3-16
equate, 3-1, 3-18, 3-19
label, 3-1, 3-15
pointer, 3-1, 3-11, 3-13—3-15
simple variable, 3-1, 3-2, 3-3, 3-4
switch, 3-1, 3-15, 3-16
Declarations, local
arrays, 7-11—7-16
pointers, 7-17—7-20
simple variable, 7-7—7-10
Define declaration, 3-17, 3-18, 7-3, 7-22
DELETE statement, 6-14
Delimiters, 1-2
Deposit, bit, 4-22
Digit, 2-5, 2-6
Direct array, 3-4—3-8, 3-10, 3-11, 3-12, 7-12, 7-13
Division, 4-12, 4-16
DL register, 1-9, 1-10, 6-15, 6-16
DO statement, 5-1, 5-4, 5-7
Double integer constant, 2-5
Double integer format, 2-1, 2-2
DXBZ, 4-19, 4-20, 5-5

E

$EDIT command, 9-15—9-19

ELSE part, 4-20, 4-21, 5-6, 5-7

Ending value, 5-6, 5-7

END statement, 1-1

Entry point, 1-13, 1-14, 3-16, 3-17, 5-11, 7-22

Index-1

Equated integer constant, 2-8, 3-18, 7-23, 7-24
Error messages, C-3, E-1—E-11
Exponentiation, 4-11, 4-12
Expression
arithmetic, 4-5, 4-11—4-13
IF, 4-20, 4-21
logical, 4-5, 4-13—4-18
types, 4-1, 4-11
EXTERNAL attribute, 3-2, 3-6, 3-11, 3-13, 7-10, 7-11,
7-16, 7-20
Extraction, bit, 4-6, 4-7

F

FALSE, 2-11, 4-16

FCHECK intrinsic, 8-37—8-41
FCLOSE intrinsic, 8-35—8-36
FCONTROL intrinsic, 8-42—8-44
Filecode, 8-12

File equations, 8-51

FOPEN intrinsic, 8-2—8-15
Foptions, 8-3—8-6, 8-13

Formal designator, 8-3, 10-4, 10-5
Format, data, 2-1—2-4

Format, source, 1-1

FOR statement, 5-1, 5-6, 5-7
FREAD intrinsic, 8-18
FREADDIR intrinsic, 8-22
FSPACE intrinsic, 8-45

Function designator, 4-4, 4-11
FUPDATE intrinsic, 8-32—8-34
FWRITE intrinsic, 8-25—8-29
FWRITEDIR intrinsic, 8-30, 8-31

G

GLOBAL attribute, 3-2, 3-6, 3-11, 3-13, 7-10, 7-11, 7-16,
7-20

Global data declarations, 1-5, 1-6, 3-1—3-19

Global variables, 1-3, 1-11, 3-1—3-19

GO TO statement, 5-1, 5-2, 5-3

H

Hexadecimal constants, 2-6

I

IABZ, 4-19, 4-20, 5-5

$IF command, 9-11—9-13

IF expressions, 4-20, 4-21

IF statement, 5-1, 5-8, 5-9

Identifier, 2-12

Index
ABSOLUTE, 4-2
array, 3-5, 3-8, 3-9, 3-10, 4-2, 4.5
pointer, 3-13, 3-15, 4-2, 4-5
switch, 2-15, 5-2

Index register, 1-9, 3-3, 34, 3-5, 3-7, 3-8, 3-14, 4-2, 44,
4.8, 4-20, 5-2, 5-10, 6-15, 6-16
Indirect array, 3-4—3-8, 3-10, 3-11, 3-12,7-12, 7-13
Initialization
array, 3-8, 3-9, 7-14, 7-15, 7-16
pointer, 3-13, 3-15, 7-18, 7-19
simple variables, 3-3, 7-8, 7-9, 7-10
Instruction formats, 6-1—6-13
Integer constant, 2-5
Integer format, 2-1
Intrinsic, 1-5, 1-6, 1-12, 7-25, 7-26, C-1—C-3, D-1—-D-4
IXBZ, 4-19, 4-20, 5-5

L

Labels, statement, 1-1, 2-15, 5-2, 5-3, 5-13—5-16, 7-20, 7-21
LAND, 4-13, 4-14, 4-16, 5-9

Local variables, 1-3, 1-11

Logical constant, 2-11

Logical expression, 4-5, 4-13—4-18
Logical format, 2-4

Logical operators, 4-14, 4-15

Long constant, 2-5, 2-10

Long format, 2-3, 2-4

Loop statement, 5-4—5-7

LOR, 4-13, 4-14, 4-16, 5-9

M

Main body, 1-5

MODD, 4-16

MOD, 4-12, 4-16

Modulo, 4-12, 4-16

MOVE statement, 4-25—4-27
MPE commands, 10-1—10-18
Multiplication, 4-12, 4-16

N

Names, 2-12

NOCARRY, 4-19, 4-20, 4-29
NOVERFLOW, 4-19, 4-20
NUMERIC, 4-17

o)

Octal constants, 2-6

Operators
arithmetic, 4-11, 4-12, 4-13
logical, 4-14, 4-15
relational, 4-15, 4-17

Options, procedure, 7-2, 7-3, 7-6, 7-7

OPTION VARIABLE, 4-5, 5-13, 5-14, 5-17, 5-19, 7-2, 74,
7-6

OR, 4-13, 4-19, 5-9

OVERFLOW, 4-19, 4-20

Own variables, 7-7, 7-10, 7-15, 7-19

Index-2

P :SPLPREP command, 10-8, 10-9
S register, 1-9, 1-10, 1-11, 6-15, 6-16

$PAGE command, 9-14, 9-15 SPECIAL, 4-17

Parameters, 4-4—4-16, 5-11—5-20, 7-2, 7-4, 7-5 Specification, parameter, 7-2, 7-27, 7-28
Precedence, operation, 4-12, 4-13 Stack decrement, 4-17, 4-18, 4-26, 4-27
PB addressing, 4-17 Stacking parameters, 4-4—4-6, 5-12, 5-13
PB register, 1-7 Stack marker, 5-12—5-16

PL register, 1-7 Starting value, 5-6, 5-7

Pointer, 2-13, 2-14, 3-11, 3-13—3-16, 4-2, 4-3, 7-17—7-19 Statement, 1-1, 1-5, 1-13

Power, 2-9, 2-10 Status register, 4-20, 4-29, 5-12, 6-15, 6-16
P register, 1-7 Step value, 5-6, 5-7

:PREP command, 10-10, 10-11 String constant, 2-11

:PREPRUN command, 10-11, 10-12 Subprogram, 1-4, 1-5, 1-6, 7-1

Primary DB, 3-4—3-6 Subroutine, 1-4, 1-5, 1-6, 1-11, 7-26—7-28
PRINT intrinsic, 8-23 Subroutine call statement, 5-1, 5-18
Procedure, 1-3, 1-5, 1-6, 1-11, 5-11—5-17, 7-2—7-25 Subscripts, array, 2-12, 4-2, 4-23, 4-24
Procedure call statement, 5-1, 5-11—5-17 Subtraction, 4-12, 4-16

Procedure name, 5-11 Switch, 2-15, 5-2, 5-3, 7-21

Program, 1-4 Symbol map, 9-6, 9-7

Program file, 10-1, 10-4, 10-6, 10-9, 10-10, 10-13
PUSH statement, 6-15

T
Q Terminal character, 4-28, 4-29
Test character, 4-28, 4-29
Q register, 1-9, 1-10, 5-12—5-17, 5-19, 6-15, 6-16, 7-4, Test variable, 5-6, 5-7
7-6—17-9, 7-11-7-15, 7-18, 7-19 Testword, 4-28, 4-29

THEN part, 4-20, 4-21, 5-6, 5-7
$TITLE command, 9-13, 9-14

R Top of stack (TOS), 1-10, 1-11, 4.2, 4.3
$TRACE command, 9-19
Range test, 4-14, 4-16 TRUE, 2-11, 4-16
READ intrinsic, 8-16 Two’s complement, 2-1
READX intrinsic, 8-17 Type, data, 2-1, 3-2, 3-15, 7-4
Real constant, 2-5, 2-8, 2-9 Type designator, 2-6, 2-7, 2-9, 2-10
Real format, 2-2, 2-3 Type mixing, 4-13, 4-16
Reference, call by, 5-12, 5-13 Type transfer functions, 4-1
Reference-identifier, 3-3, 3-7, 3-8, 3-13, 3-14, 7-8, 7-9,
7-13, 7-14, 7-18, 7-19
Registers, 1.7, 1-9, 1-10, 1-11, 6-15, 6-16 U
Relational operators, 4-15, 4-17
Relocatable libraries, 10-13—10-16 USL file, 3-2, 10-2, 10-4, 10-6, 10-7, 10-9, 10-10, 10-11,
Reserved words, B-1 10-13,10-14
RETURN statement, 5-1, 5-20
:RUN command, 1-14, 10-18 Vv

Value, call by, 5-12, 5-13, 7-2

S Variable, simple, 3-2, 3-3, 3-4, 4-2, 7-7—17-10

SBANK register, 6-15, 6-16

SCAN statement, 4-28, 4-29 w
Secondary DB, 3-4—3-6
Segment, 1-6—1-11 WHILE statement, 5-1, 5-5, 5-7

Segmented libraries, 10-16—10-18
Segmenter, 10-13—10-18

Sequence numbers, 9-16—9-18 X

$SET command, 9-11—9-13

SET statement, 6-16 XOR, 4-14,4-16

Shift, bit, 4-8—4-10

Simple variable, 3-2, 3-3, 3-4, 7-7—7-10 z

:SPL command, 10-6, 10-7

:SPLGO command, 10-9, 10-10 Z register, 1-9, 1-10, 6-15, 6-16

Index-3

ll‘

HEWLETT |

Sales and service from 172 offices in 65 countries.
5303 Stevens Creek Blvd., Santa Clara, California 95050

Sl

; PACKARD

Part No. 30000-90024

Printed in U.S.A. 9/76
Update No. 1 Incorporated 12/76

