



## MAINTENANCE MANUAL

## 30001A

## CENTRAL PROCESSOR UNIT/INPUT OUTPUT PROCESSOR

(FOR HP 3000 COMPUTER SYSTEMS)

Printed-Circuit Assemblies:

30001-60001 30001-60002 30001-60003 30001-60005 30001-60006 30001-60007 30001-60008 30001-60009 30001-60016 30001-60021 Changed pages are designated by a change date in the lower corner of the page. Original pages do not indicate a change date. Insert latest changed pages and destroy superseded pages.

| PAGE NUMBER       | ISSUE      | PAGE NUMBER                                                | ISSUE      |
|-------------------|------------|------------------------------------------------------------|------------|
| Title             | . Original | 3-91                                                       |            |
| ii and iii        |            | 3-92 Blank                                                 |            |
| iv Blank          |            | 3-93                                                       |            |
| v thru xii        | . Original | 3-94 Blank                                                 |            |
| 1-1 thru 1-14     | . Original | 3-95                                                       |            |
| 2-1 thru 2-17     |            | 3-96 Blank                                                 |            |
| 2-18 Blank        | . Original | 3-97                                                       |            |
| 3-1 thru 3-40     |            | 3-98 Blank                                                 |            |
| 3-41              |            | 3-99                                                       |            |
| 3-42 Blank        |            | 3-100 Blank                                                |            |
| 3-43              |            | 3-101                                                      | . Original |
| 3-44 Blank        | . Original | 3-102 Blank                                                | . Original |
| 3-45              | . Original | 3-103                                                      | . Original |
| 3-46 Blank        | . Original | 3-104 Blank                                                |            |
| 3-47              | . Original | 3-105                                                      | . Original |
| .3-48 Blank       | . Original | 3-106 Blank                                                | . Original |
| 3-49              | . Original | 3-107                                                      | . Original |
| 3-50 Blank        | . Original | 3-108 Blank                                                | . Original |
| 3-51 thru 3-58    |            | 3-109                                                      | . Original |
| 3-59              |            | 3-110 Blank                                                |            |
| 3-60 Blank        |            | 3-111                                                      |            |
| 3-61              |            | 3-112 Blank                                                |            |
| 3-62 Blank        |            | 3-113                                                      |            |
| 3-63              |            | 3-114 Blank                                                |            |
| <b>3-64 Blank</b> |            | 3-115                                                      |            |
| 3-65              |            | 3-116 Blank                                                |            |
| 3-66 Blank        | . Original | 3-117                                                      |            |
| 3-67              |            | 3-118 Blank                                                |            |
| 3-68 Blank        |            | 3-119                                                      |            |
| 3-69              |            | 3-120 Blank                                                |            |
| 3-70 Blank        |            | 3-121                                                      |            |
| 3-71              |            | 3-122 Blank                                                | . Original |
| 3-72 Blank        |            | 3-123                                                      |            |
| 3-73              |            | 3-124 Blank                                                |            |
| 3-74 Blank        |            | 3-125                                                      |            |
| 3-75              |            | 3-126 Blank                                                |            |
| <b>3-76 Blank</b> |            | 3-127                                                      |            |
| 3-77              |            | 3-128 Blank                                                |            |
| 3-78 Blank        |            | 3-129                                                      |            |
| 3-79              |            | 3-130 Blank                                                | -          |
| <b>3-80 Blank</b> |            | 3-131                                                      | •          |
| 3-81              |            | 3-132 Blank                                                |            |
| <b>3-82 Blank</b> |            | 3-133                                                      |            |
| <b>3-83</b>       |            | <b>3-134 Blank</b>                                         |            |
| <b>3-84 Blank</b> |            | 3-135                                                      |            |
| <b>3-85</b>       |            | <b>3-136 Blank</b>                                         | •          |
| 3-86 Blank        | -          | <b>3-130 Mark 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </b> |            |
| 3-80 Diank        |            | 3-137                                                      |            |
| 3-87              |            | <b>3-138 Diank</b>                                         | -          |
| 3-89              |            | 3-139                                                      |            |
| 3-89              |            |                                                            |            |
| 0-70 DIANK        | . Ouginar  |                                                            | · Onginal  |

# LIST OF EFFECTIVE PAGES (Continued)

| ISSUI    |   |   |   |   |   |   |   |   |   |   |   | R | Ef | B   | NUM   | PAGE N    | UE   | ISSU     |   |   |   |   |  |   |   |   |   | 1 | ER | B   | ENUM    |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|----|-----|-------|-----------|------|----------|---|---|---|---|--|---|---|---|---|---|----|-----|---------|
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    |     |       | 3-183     | inal | . Origi  |   |   |   |   |  |   |   |   |   |   |    | ς.  | 2 Blank |
|          |   |   |   |   |   | • |   |   |   |   |   |   |    | ζ   | lank  | 3-184 B   |      | . Origi  |   |   |   |   |  |   |   |   |   |   |    |     | 3.      |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    |     |       | 3-185     | inal | . Origi  |   |   |   |   |  |   |   |   |   |   |    | c   | 4 Blank |
|          |   |   |   |   |   |   |   |   |   |   |   |   |    |     |       | 3-186 B   |      | . Origi  |   |   |   |   |  |   |   |   |   |   |    |     | 5.      |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    |     |       | 3-187     |      | . Origi  |   |   |   |   |  |   |   |   |   |   |    | C I | 6 Blank |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    | K   | lank  | 3-188 B   |      | . Origi  |   |   |   |   |  |   |   |   |   |   |    |     | 7.      |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    |     |       | 3-189     |      | . Origin |   |   |   |   |  |   |   |   |   |   |    | c   | 8 Blank |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    | s   | lank  | 3-190 B   | inal | . Origi  |   |   | , |   |  |   |   |   |   |   |    |     | 9.      |
| . Origin |   |   |   |   | • |   |   |   |   |   |   |   |    |     |       | 3-191     | inal | . Origin |   |   |   |   |  | • |   |   | • |   | •  | C I | 0 Blank |
| . Origin |   |   |   |   |   | • |   |   |   |   |   |   |    | C   | Blank | 3-192 B   | inal | . Origin | • |   |   |   |  |   |   |   |   |   |    |     | 1.      |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    |     |       | 3-193     | inal | . Origin |   |   |   |   |  | • |   |   | • |   |    | c   | 2 Blank |
| . Origin |   |   |   | • |   |   |   |   |   |   | • |   |    | s   | lank  | 3-194 B   | inal | . Origin |   |   |   |   |  |   |   |   |   |   |    |     | 3.      |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    |     |       | 3-195     | inal | . Origin | • | • |   |   |  |   |   |   |   |   |    | C I | 4 Blank |
| . Origin |   |   |   |   | • | • |   |   |   |   |   |   |    | C   | lank  | 3-196 B   | inal | . Origin |   |   | , |   |  |   |   |   | • |   |    |     | 5.      |
| . Origin |   |   | • |   | • | • |   |   |   |   |   |   |    |     |       | 3-197     | inal | . Origin | • |   |   |   |  |   | • |   | • |   |    | C   | 6 Blank |
| . Origin |   |   |   |   | • | • |   |   |   |   |   |   |    | s   | lank  | 3-198 B   | inal | . Origin |   |   | , |   |  |   |   |   |   |   |    | •   | 7.      |
| . Origin |   |   |   | • | • |   |   |   |   |   |   |   |    |     | •     | 3-199     | inal | . Origi  | • | • |   | • |  |   |   |   | • | • |    | c   | 8 Blank |
| . Origin |   |   |   | • | • | • |   |   |   |   |   |   |    | s   | lank  | 3-200 B   | inal | . Origin |   |   |   |   |  | • |   |   |   |   | •  | •   | 9.      |
| . Origin |   |   |   |   |   | • |   |   |   |   |   |   |    |     |       | 3-201     | inal | . Origi  | • |   |   |   |  |   | • |   | • |   |    | C   | 0 Blank |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    | K   | lank  | 3-202 B   | inal | . Origin |   | • | , |   |  |   |   |   |   |   |    |     | 1,      |
| . Origin |   |   |   | • |   | • |   |   |   |   |   |   |    |     |       | 3-203     | inal | . Origin |   |   |   |   |  |   |   |   |   |   |    | C   | 2 Blank |
| . Origin |   |   |   |   | • | • |   |   |   |   |   |   |    | S   | lank  | 3-204 B   | inal | . Origin | • |   |   |   |  |   | • |   |   |   |    |     | 3.      |
| . Origin |   |   |   |   |   | • |   |   |   | • |   |   |    | • ' |       | 3-205     | inal | . Origin |   |   |   |   |  |   | • |   |   |   |    | C I | 4 Blank |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    | c   | lank  | 3-206 B   | inal | . Origin |   |   |   |   |  |   |   |   |   |   |    |     | 5.      |
| . Origin |   |   |   | • |   | • |   |   |   |   |   |   |    |     |       | 3-207     | inal | . Origin |   |   |   |   |  |   |   | • |   |   |    | c   | 6 Blank |
| . Origin |   |   |   | • |   | • |   |   |   | ÷ |   |   |    | c   | lank  | 3-208 B   | inal | . Origin | • |   | , | • |  |   |   |   |   |   |    | •   | 7.      |
| . Origin |   |   |   |   |   |   |   |   | • | • | • |   |    |     |       | 3-209     | inal | . Origin |   |   |   | • |  | • |   |   |   |   |    | c   | 8 Blank |
| . Origin |   |   |   |   |   | • |   |   |   |   |   |   |    | s   | lank  | 3-210 B   | inal | . Origin |   |   |   |   |  |   |   |   |   |   |    | •   | 9.      |
| . Origin |   |   |   |   |   | • |   |   |   |   |   |   |    | •   | •     | 3-211     | inal | . Origin | • | • |   |   |  |   | • |   | • |   |    | C C | 0 Blank |
| . Origin |   |   |   | • |   | • |   |   |   |   |   |   |    | s   | lank  | 3-212 B   |      | . Origin | • | • |   |   |  |   | • | • |   |   | •  |     | 1.      |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    |     |       | 3-213     |      | . Origin | • | • |   | • |  |   | • | • |   |   | •  | C I | 2 Blank |
| . Origin |   |   |   |   | _ | _ |   |   |   |   |   |   |    | ζ   | lank  | 3-214 B   |      | . Origi  | • | • |   | • |  |   | • | • | • |   | •  | •   | 3.      |
| . Origin | • | · | • | • | • |   | • | • |   | • |   |   |    | -   |       | 3-215     |      | . Origiı | • | • |   | • |  |   | • |   |   | • | •  | C I | 4 Blank |
| . Origin | • | • | • | - | • | • | - | - | : | • | - |   | •  |     | llank | 3-216 B   |      | . Origi  | • | • |   | • |  | • | • | • | • |   |    | •   | 5.      |
| -        | • | - | - | - |   | - | - |   |   |   |   |   | •  | 7   | nalik | 3-210 D   | inal | . Origi  |   | • |   | • |  |   |   | • |   |   |    | C I | 6 Blank |
| . Origin |   |   |   |   |   |   |   |   | • |   |   | • | •  | •   | •     |           |      | . Origin | • |   |   |   |  |   |   |   | • |   | •  | •   | 7.      |
| . Origin |   |   |   |   |   |   |   |   | • |   | • | • | •  |     |       | 3-218 B   |      | . Origi  | • |   |   |   |  |   |   |   |   |   |    | C I | 8 Blank |
| . Origin |   | - |   |   |   |   |   |   | • |   | • | • | 9. |     |       | 4-1 thru  | inal | . Origin |   |   |   |   |  |   |   |   |   |   |    |     | 9.      |
| . Origin |   |   |   |   |   |   |   |   | • |   |   |   |    |     |       | 4-130 B   |      | . Origin |   |   |   |   |  |   |   |   |   |   |    | C C | 0 Blank |
| . Origin | • |   | • | • | • | • |   |   |   | • | • |   |    |     |       | Certifica | inal | . Origin | • |   |   |   |  |   |   | • |   |   |    |     | 1.      |
| . Origin |   |   |   |   |   |   |   |   |   |   |   |   |    |     | over  | Back Co   | inal | . Origin |   |   |   |   |  |   |   |   |   |   |    | c   | 2 Blank |

# HP Computer Museum www.hpmuseum.net

For research and education purposes only.

This manual contains maintenance information for the HP 30001A Central Processor Unit and Input/ Output Processor (CPU/IOP). The HP 30001A CPU/IOP is part of the HP 3000 Computer System.

The contents of this manual are organized in four sections as follows:

- a. Section I contains general information of the CPU/IOP physical features and specifications.
- b. Section II contains operating parameters for the CPU/IOP including a list of all machine instructions for the HP 3000 Computer System.
- c. Section III contains theory of operation for the CPU/IOP.
- d. Section IV contains servicing instructions including preventive maintenance information and troubleshooting instructions.

This manual should be retained and used with related documentation for the HP 3000 Computer Systems. The related documentation should include the following publications:

- a. HP 3000 Computer System Reference Manual, part no. 03000-90019.
- b. The following detailed diagram sets in the HP 3000 Computer System Detailed Diagrams Manual, part no. 03000-90023.
  - 1) DD Set No. 200. Read-Only Memory Printed-Circuit Assembly (PCA), part no. 30001-60001.
  - 2) DD Set No. 201. Skip and Special Field PCA, part no. 30001-60002.
  - 3) DD Set No. 202. Arithmetic and Logic Unit PCA, part no. 30001-60003.
  - 4) DD Set No. 203. R-Bus PCA, part no. 30001-60004.
  - 5) DD Set No. 204. S-Bus PCA, part no. 30001-60005.
  - 6) DD Set No. 205. Current Instruction Register PCA, part no. 30001-60006.
  - 7) DD Set No. 206. Module Control Unit PCA, part no. 30001-60007.
  - 8) DD Set No. 207. Input/Output Processor PCA, part no. 30001-60008.
  - 9) DD Set No. 208. Central Data Bus Terminator PCA, part no. 30001-60009.
  - 10) DD Set No. 209. Input/Output Processor Bus Terminator PCA, part no. 30001-60016.
  - 11) DD Set No. 210. Power Bus Terminator PCA, part no. 30001-60021.
- c. HP 3000 Computer System Illustrated Parts Breakdown (IPB) Manual, part no. 03000-90021.
- d. HP 3000 Manual of Stand-Alone Diagnostics, Stand-Alone HP 30001A CPU Diagnostic, part no. 03000-90027.
- e. HP 3000 Computer System Diagnostic Monitor, part no. 03000-90016.
- f. CPU Microprogram Listing Manual, part no. 03000-90022.

- g. CPU Microdiagnostic Listings, part no. 32300-90001A, 32300-90002A, 32300-90003A, 32300-90004A, and 32300-90005A.
- h. HP 3000 System Support Log.
- i. HP 30350A Auxiliary Control Panel Maintenance Manual, part no. 30350-90002 and Operator's Guide, part no. 30350-90001.
- j. HP 30035A Multiplexer Channel Maintenance Manual, part no. 30035-90001.
- k. HP 30005A/30006A Memory Subsystem Maintenance Manual, part no. 30005-90001.
- I. HP 30310A Power Supply Maintenance Manual, part no. 30310-90003.

## CONTENTS

| Secti | on                             |                                                                                                        | Pages  |
|-------|--------------------------------|--------------------------------------------------------------------------------------------------------|--------|
| I     | GENER                          | AL INFORMATION                                                                                         |        |
| •     | 1.1.                           | Introduction $\ldots$ | . 1-1  |
|       | 1-3.                           | General Description                                                                                    |        |
|       | 1-5.                           | Central Processor Unit                                                                                 | •      |
|       | 1- <b>0</b> .<br>1- <b>7</b> . |                                                                                                        | •      |
|       | 1-10.                          |                                                                                                        |        |
|       | 1-10.<br>1-12.                 | Equipment Description                                                                                  |        |
|       | 1-12.                          |                                                                                                        | • = -  |
|       | 1-15.                          |                                                                                                        |        |
|       | 1-17.                          |                                                                                                        | . 1-2  |
| II    |                                | TING PARAMETERS                                                                                        | _      |
|       | <b>2-1</b> .                   | Introduction                                                                                           |        |
|       | 2-3.                           | HP 3000 Computer System Instructions                                                                   |        |
|       | 2-6.                           | Stack Op Instructions                                                                                  |        |
| •     | 2-8.                           | Shift Instructions                                                                                     | . 2-1  |
|       | 2-10.                          | Branch Instructions                                                                                    | . 2-1  |
|       | 2-12.                          | Bit Test Instructions                                                                                  | . 2-1  |
|       | 2-14.                          | Move Instructions                                                                                      |        |
|       | 2-16.                          | Special Instructions                                                                                   |        |
|       | 2-18.                          | Immediate Instructions                                                                                 |        |
|       | 2-20.                          | Field Instructions                                                                                     | . 2-7  |
|       | 2-22.                          | Register Control Instructions                                                                          | 2-7    |
|       | 2-24.                          | Program Control Instructions                                                                           |        |
|       | 2-26.                          | I/O and Interrupt Instructions                                                                         |        |
|       | 2-20.<br>2-28.                 | Loop Control Instructions                                                                              |        |
|       | 2-20.<br>2-30.                 | Memory Address Instructions                                                                            |        |
|       | 2-30.<br>2-32.                 | Microinstruction Coding                                                                                | • = -  |
|       | 2-32.<br>2-35.                 | Format 1                                                                                               |        |
|       | 2-35.<br>2-37.                 | Format 2                                                                                               |        |
|       | 2-37.<br>2-39.                 | Format 2                                                                                               | . 2-10 |
|       |                                |                                                                                                        |        |
|       | 2-42.                          | Format 4                                                                                               |        |
|       | 2-44.                          | Format 5                                                                                               | . 2-12 |
| III   |                                | RY OF OPERATION                                                                                        |        |
|       | 3-1.                           | Introduction                                                                                           |        |
|       | 3-3.                           | System-Level Description                                                                               | . 3-1  |
|       | 3-8.                           | Block-Level Description                                                                                |        |
|       | 3-11.                          | Next Instruction Register                                                                              | . 3-3  |
|       | 3-13.                          | Current Instruction Register                                                                           |        |
|       | 3-15.                          | <b>ROM Mapper</b>                                                                                      | . 3-3  |
|       | 3-25.                          | ROM Output Register Rank 1                                                                             | . 3-4  |
|       | 3-28.                          | ROM Output Register Rank 2                                                                             |        |
|       | 3-30.                          | Microinstruction Field Decoders                                                                        |        |
|       | 3-40.                          | Name Register                                                                                          |        |
|       | 3-44.                          | Top-Of-Stack Mappers                                                                                   |        |
|       | 3-46.                          | Top-Of-Stack Registers                                                                                 |        |
|       | 3-48.                          | Index Register                                                                                         |        |
|       | 3-50.                          | Stack Limit Register.                                                                                  | 3-31   |
|       | 3-52.                          | Program Limit Register                                                                                 |        |
|       | 3-52.<br>3-54.                 | Scratch Pad 0 Register                                                                                 |        |
|       | 3-54.<br>3-56.                 |                                                                                                        |        |
|       | 3-56.<br>3-58.                 | Scratch Pad 1X Register                                                                                |        |
|       |                                |                                                                                                        |        |
|       | 3-60.                          | Stack Register                                                                                         | . 3-31 |
|       | 3-62.                          | Program Base Register                                                                                  |        |
|       | 3-64.                          | Data Limit Register                                                                                    |        |
|       | 3-66.                          | Stack Memory Register                                                                                  | . 3-31 |

vii

## CONTENTS (Continued)

Section

| ion             | P                                                     | ages         |
|-----------------|-------------------------------------------------------|--------------|
| 3-68.           | Data Base Register                                    | 3-32         |
| 3-70.           | Q-Register                                            |              |
| 3-72.           | Scratch Pad 2 Register                                |              |
| 3-74.           | Scratch Pad 3 Register                                |              |
| 3-76.           | Program Counter Register                              |              |
| 3-78.           | Counter Register                                      |              |
| <b>3-81</b> .   | Status Register                                       |              |
| <b>3-84</b> .   | Pre-Adder                                             |              |
| 3-86.           | R-Bus Register                                        |              |
| 3-88.           | S-Bus Register                                        |              |
| <b>3-9</b> 0.   | ALU Function Generator                                |              |
| 3-92.           |                                                       |              |
| 3-94.           | Flag 1 Register                                       |              |
| 3-94.           | Flag 2 Register                                       | 3-33<br>0 00 |
| 3-98.           |                                                       |              |
| 3-30.<br>3-100. | Mappers                                               |              |
|                 |                                                       |              |
| 3-102.          | P-CPU Output Register                                 |              |
| 3-104.          | P-Register or U-Bus Memory Operation Register         |              |
| 3-106.          | Command Memory Operation Register                     | 3-34         |
| 3-108.          | Command-To Register                                   |              |
| 3-110.          | P-To Register                                         |              |
| 3-112.          | U-To Register                                         |              |
| 3-114.          | P-To-Next Instruction Register                        |              |
| 3-116.          | U-To-Next Instruction Register                        |              |
| 3-118.          | U-To Operand Register                                 |              |
| 3-120.          | To-From Comparators                                   |              |
| 3-122.          | Ready Decoder and Comparator                          |              |
| 3-124.          | Interrupt Module Number Register                      |              |
| 3-126.          | CPU Request/Select Logic                              |              |
| 3-128.          | Interrupt Device Number Register                      |              |
| 3-130.          | Input/Output Processor Control Register               |              |
| 3-132.          | Direct Output Data Register                           | 3-35         |
| 3-134.          | IOP Direct Control Logic                              | 3-36         |
| 3-136.          | Flag 3 Register                                       | 3-36         |
| 3-138.          | IOP Service Out Logic                                 |              |
| <b>3</b> -140.  | IOP Multiplexer Control Logic                         |              |
| 3-142.          | Multiplexed Input Data Register                       |              |
| 3-144.          | Multiplexed Output Data Register                      |              |
| 3-146.          | Direct Input Data/Multiplexed Memory Address Register |              |
| 3-148.          | Operand Register                                      |              |
| <b>3-15</b> 0.  | MCU I/O Request/Select Logic                          |              |
| 3-152.          | MCU Error Logic                                       |              |
| 3-154.          | IOP Interrupt Control and Error Logic                 |              |
| 3-157.          | CPX1 Register                                         | 3-37         |
| 3-159.          | CPX2 Register                                         | 3-37         |
| 3-161.          | Mask Register                                         |              |
| 3-164.          | NOP1, NOP2 Logic                                      | 3-38         |
| 3-166.          | Next Logic                                            |              |
| 3-168.          | MCU Operation Decoder                                 | 3-38         |
| 3-170.          | Freeze Logic                                          |              |
| 3-172.          | Overflow Flip-Flop                                    |              |
| 3-174.          | Carry Flip-Flop                                       |              |
| 3-176.          | Condition Code Logic                                  |              |
| 3-181.          | Functional-Level Description                          |              |
| 3-190.          | Next Instruction Fetch                                |              |
| 3-200.          | Operand Fetch                                         | 3-51         |

## CONTENTS (Continued)

## Section

IV

## Pages

| 3-205.<br>3-207.<br>3-257. | Operand Store         3-51           Direct I/O         3-51           Programmed I/O         3-57 |
|----------------------------|----------------------------------------------------------------------------------------------------|
|                            |                                                                                                    |
|                            | TENANCE                                                                                            |
| 4-1.                       | Introduction                                                                                       |
| 4-4.                       | General Servicing Information                                                                      |
| <b>4-6</b> .               | Safety Precautions                                                                                 |
| 4-8.                       | Wiring Information                                                                                 |
| 4-10.                      | CPU/IOP Signals and Mnemonics                                                                      |
| 4-12.                      | Test Equipment and Data Required                                                                   |
| 4-14.                      | Preventive Maintenance                                                                             |
| 4-16.                      | Troubleshooting                                                                                    |
| 4-18.                      | On-Line Diagnostics                                                                                |
| 4-21.                      | Stand-Alone Diagnostic                                                                             |
| 4-23.                      | Microdiagnostics                                                                                   |

## **ILLUSTRATIONS**

| Figure                                       | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page                             |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1-1.<br>1-2.<br>1-3.<br>1-4.<br>1-5.<br>1-6. | HP 30001A Central Processor Unit/Input Output Processor       Read-Only Memory Printed-Circuit Assembly A3, Part No. 30001-60001       Skip and Special Field Printed-Circuit Assembly A4, Part No. 30001-60002         Arithmetic and Logic Unit Printed-Circuit Assembly A5, Part No. 30001-60003       R-Bus Printed-Circuit Assembly A6, Part No. 30001-60004       Semultical Content of the semulti | . 1-3<br>. 1-4<br>. 1-5<br>. 1-6 |
| 1-7.                                         | Current Instruction Register Printed-Circuit Assembly A8, Part No. 30001-60006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |
| 1-8.                                         | Module Control Unit Printed-Circuit Assembly A9, Part No. 30001-60007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| 1-9.                                         | Input Output Processor Printed-Circuit Assembly A10, Part No. 30001-60008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-10                             |
| 1-10.                                        | Central Data Bus Terminator Printed-Circuit Assembly, Part No. 30001-60009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-11                             |
| 1-11.                                        | Input Output Processor Bus Terminator Printed-Circuit Assembly,<br>Part No. 30001-60016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-12                             |
| 1-12.                                        | Power Bus Terminator Printed-Circuit Assembly, Part No. 30001-60021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| 2-1.                                         | Instruction Formats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| 2-2.                                         | Consolidated Microinstruction Coding Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| 2-3.                                         | Microinstruction Word Formats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| <b>2-4</b> .                                 | Microinstruction Word Format 1 Flow Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-11                             |
| 2-5.                                         | Execution of Microinstruction Containing Skip Condition (Condition Met)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-12                             |
| 2-6.                                         | Microinstruction Word Format 2 Flow Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
| 2-7.                                         | Execution of Microinstruction Containing Data Dependent JMP or JSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                              | (Condition Met) to Target Address T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-14                             |
| 2-8.                                         | Execution of Microinstruction Containing JMP or JSB (Condition Met)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-14                             |
| 2-9.                                         | Microinstruction Word Format 3 Flow Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-15                             |
| 2-10.                                        | Microinstruction Word Format 4 Flow Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-16                             |
| <b>2-11</b> .                                | Microinstruction Word Format 5 Flow Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-17                             |
| 3-1.                                         | HP 3000 Computer System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
| 3-2.                                         | CPU/IOP Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-41                             |

# ILLUSTRATIONS (Continued)

| Figure                       | Title                                                            | Page         |
|------------------------------|------------------------------------------------------------------|--------------|
| 3-3.                         | Execution of Microinstruction Containing Next Skip Field Code    | 0.40         |
| 3-4.                         | Next Instruction Fetch Operational Flow Diagram                  | . 3-40       |
| 3-4.<br>3-5.                 | Operand Fetch Operational Flow Diagram                           | . 3-43       |
| 3-6.                         | Operand Store Operational Flow Diagram                           |              |
| 3-0.<br>3-7.                 | RIO Command Operational Flow Diagram                             |              |
| 3-8.                         | FS-K Subroutine (Device Address Fetch) Operational Flow Diagram  |              |
| 3-8.<br>3-9.                 | CIOP Subroutine (CPU-IOP Communication) Operational Flow Diagram | 3-73         |
| 3- <i>3</i> .<br>3-10.       | PSHM Subroutine (Operational Flow Diagram                        | 3-79         |
| 3-10.<br>3-11.               | PUL1 Subroutine Operational Flow Diagram                         | 3-07<br>3-91 |
| 3-11.<br>3-12.               | WIO Command Operational Flow Diagram                             | 3-91         |
| 3-12.<br>3-13.               | TIO Command Operational Flow Diagram                             |              |
| 3-14.                        | CIO Command Operational Flow Diagram                             |              |
| 3-14.<br>3-15.               | SIN Command Operational Flow Diagram                             |              |
| 3-16.                        | SED Command Operational Flow Diagram                             |              |
| 3-10.<br>3-17.               | SMSK Command Operational Flow Diagram                            |              |
| <b>3-1</b> 1.                | SIO Command Operational Flow Diagram                             |              |
| 3-19.                        | DRTE Fetch/Store Operational Flow Diagram                        |              |
| <b>3-20</b> .                | Memory Bound Transfer Operational Flow Diagram                   | 9 1 4 1      |
| 3-20.<br>3-21.               | Device Bound Transfer Operational Flow Diagram                   |              |
| 3-21.<br>3-22.               | CPU/IOP Simplified Logic Diagrams                                |              |
| <b>4-1</b> .                 | Instruction to Microprogram Index                                | 4 90         |
| <b>4-1</b> .<br><b>4-2</b> . | Current Instruction Register Servicing Diagram                   | . 4-20       |
| 4-2.<br>4-3.                 | RA (TROS) Register Servicing Diagram                             | . 4-04       |
| 4-3.<br>4-4.                 | RA (TROS) Register Servicing Diagram                             | . 4-00       |
| 4-4.<br>4-5.                 | RA (TRIS) Register Servicing Diagram                             | . 4-07       |
| 4-6.                         | RA (TR3S) Register Servicing Diagram                             | . 4-50       |
| 4-7.                         | RB (TROS) Register Servicing Diagram                             |              |
| 4-8.                         | RB (TR1S) Register Servicing Diagram                             |              |
| 4-9.                         | RB (TR2S) Register Servicing Diagram                             |              |
| 4-10.                        | RB (TR3S) Register Servicing Diagram                             |              |
| 4-11.                        | RC (TROS) Register Servicing Diagram                             |              |
| 4-12.                        | RC (TR1S) Register Servicing Diagram                             |              |
| 4-13.                        | RC (TR2S) Register Servicing Diagram                             |              |
| 4-14.                        | RC (TR3S) Register Servicing Diagram                             |              |
| 4-15.                        | RD (TROS) Register Servicing Diagram                             |              |
| 4-16.                        | RD (TR1S) Register Servicing Diagram                             |              |
| 4-17.                        | RD (TR2S) Register Servicing Diagram                             |              |
| 4-18.                        | RD (TR3S) Register Servicing Diagram                             | . 4-71       |
| 4-19.                        | SP2 Register Servicing Diagram                                   | . 4-72       |
| 4-20.                        | SP3 Register Servicing Diagram                                   |              |
| 4-21.                        | OPND Register Servicing Diagram                                  | . 4-74       |
| 4-22.                        | IDN Register Servicing Diagram                                   |              |
| 4-23.                        | DID/MUXMA Register Servicing Diagram                             | . 4-76       |
| 4-24.                        | CNTR Register Servicing Diagram                                  | . 4-77       |
| 4-25.                        | CPX1 Register Servicing Diagram                                  | . 4-78       |
| 4-26.                        | CPX2 Register Servicing Diagram                                  | . 4-80       |
| 4-27.                        | MUXID Register Servicing Diagram                                 | . 4-83       |
| 4-28.                        | MOD NO (IMN) Register Servicing Diagram                          | . 4-84       |
| 4-29.                        | PADD Servicing Diagram                                           |              |
| 4-30.                        | SR Register Servicing Diagram                                    |              |
| 4-31.                        | Status Register Servicing Diagram                                |              |
| 4-32.                        | X-Register Servicing Diagram                                     |              |
| 4-33.                        | PB Reigster Servicing Diagram                                    |              |
| 4-34.                        | P-Register Servicing Diagram                                     |              |
| 4-35.                        | PL Register Servicing Diagram                                    |              |
| 4-36.                        | DL Register Servicing Diagram                                    | . 4-92       |

# ILLUSTRATIONS (Continued)

| Figure | Title                                                   | Page   |
|--------|---------------------------------------------------------|--------|
| 4-37.  | DB Register Servicing Diagram                           | . 4-93 |
| 4-38.  | Q-Register Servicing Diagram                            | . 4-94 |
| 4-39.  | Z-Register Servicing Diagram                            | . 4-95 |
| 4-40.  | Mask Register Servicing Diagram                         |        |
| 4-41.  | RUN, SYSTEM HALT Servicing Diagram                      |        |
| 4-42.  | MCUDPRTY Servicing Diagram                              |        |
| 4-43.  | TO Lines Servicing Diagram                              |        |
| 4-44.  | FROM Lines Servicing Diagram                            |        |
| 4-45.  | MOP Lines Servicing Diagram                             |        |
| 4-46.  | SYSPRTY Servicing Diagram                               |        |
| 4-47.  | SYSPE and MCUDPE Servicing Diagram                      |        |
| 4-48.  | CPUSEL, CPULRFF, CPUHRFF Servicing Diagram              | .4-104 |
| 4-49.  | IOSELECT Servicing Diagram                              |        |
| 4-50.  | ENABLE, READY, MPIFRZ, IOLOREQ, IOHREQ and Serializer B |        |
|        | Servicing Diagram                                       | .4-106 |
| 4-51.  | Flag 1, Flag 2, Flag 3 Servicing Diagram                |        |
| 4-52.  | TNAME (0:1) Servicing Diagram                           |        |
| 4-53.  | NOP1, NOP2, REPEAT Servicing Diagram                    |        |
| 4-54.  | ALU CARRY, ALU OVFL, and BNDV Servicing Diagram         | .4-110 |
| 4-55.  | EXT INT and INTRP Servicing Diagram                     |        |
| 4-56.  | IOTIMER and CUPTIMER Servicing Diagram                  |        |
| 4-57.  | Freeze Servicing Diagram                                | .4-113 |
| 4-58.  | DISPFLAG and INTFLAG Servicing Diagram                  |        |
| 4-59.  | NXT = 1 and NXT = 2 Servicing Diagram                   |        |
| 4-60.  | IOINP, OPINP, and NIP Servicing Diagram                 |        |
| 4-61.  | W-Bit Servicing Diagram                                 |        |
| 4-62.  | DS and QS Servicing Diagram                             |        |
| 4-63.  | Skip Servicing Diagram                                  |        |
| 4-64.  | LUTGATE Servicing Diagram                               |        |
| 4-65.  | OPNDSEL and INSTSEL Servicing Diagram                   |        |
| 4-66.  | SI, JMP, IN BND, and DRT REQ Servicing Diagram          |        |
| 4-67.  | Service Out Servicing Diagram                           |        |
| 4-68.  | SIOACT, IOFLG1, and DPOLL Servicing Diagram             |        |
| 4-69.  | DATA CYC, XERR, STO DRT, and ECFF Servicing Diagram     |        |
| 4-70.  | CE and IOBENB Servicing Diagram                         |        |
| 4-71.  | INTPOLL and INTACK Servicing Diagram                    |        |
| 4-72.  | Serializer A Servicing Diagram                          |        |
| 4-73.  | Serializer C Servicing Diagram                          |        |
| 4-74.  | SP1 Register Servicing Diagram                          |        |

## TABLES

-----

## Table

Title

| Pa | ge |
|----|----|

| 1-1.                           | CPU/IOP Specifications                                                                        |
|--------------------------------|-----------------------------------------------------------------------------------------------|
| 2-1.                           | HP 3000 Computer System Instructions                                                          |
| 2-2                            | Stack Op Instructions                                                                         |
| 2-3.                           | Shift Instructions                                                                            |
| 2-3.<br>2-4.                   | Branch Instructions                                                                           |
| 2-1.<br>2-5.                   | Bit Test Instructions                                                                         |
| 2-0.<br>2-6.                   | Move Instructions                                                                             |
| 2-0.<br>2-7.                   | Special Instructions                                                                          |
| 2-1.<br>2-8.                   | Immediate Instructions                                                                        |
| 2-0.<br>2-9.                   | Field Instructions                                                                            |
| 2-3.<br>2-10.                  | Register Control Instructions                                                                 |
| <b>2-10</b> .<br><b>2-11</b> . | Program Control Instructions                                                                  |
| 2-11.<br>2-12.                 | I/O and Interrupt Instructions                                                                |
| 2-12.<br>2-13.                 | Loop Control Instructions                                                                     |
| 2-13.<br>2-14.                 | Memory Address Instructions                                                                   |
| 2-14.<br>3-1.                  | S-Bus Field Code Definitions                                                                  |
| 3-1.<br>3-2.                   |                                                                                               |
|                                | Store Field Code Definitions                                                                  |
| 3-3.                           | Function Field Code Definitions       3-13         Particle Field Code Definitions       3-10 |
| 3-4.                           | Function Field Code Signals                                                                   |
| 3-5.                           | Skip Field Code Definitions 3-21                                                              |
| 3-6.                           | Shift Field Code Definitions                                                                  |
| 3-7.                           | Special Field Code Definitions 3-24                                                           |
| 3-8.                           | MCU Option Field Code Definitions                                                             |
| 3-9.                           | R-Bus Field Code Definitions                                                                  |
| 3-10.                          | Condition Codes                                                                               |
| 3-11.                          | Direct I/O Commands                                                                           |
| 4-1.                           | CPU/IOP/MCU Signals                                                                           |
| <b>4-2</b> .                   | Circuit-to-Servicing Diagram Cross Reference Index                                            |
| 4-3.                           | LUT-to-Microprogram ROM Index                                                                 |
|                                |                                                                                               |

•

SECTION

# GENERAL INFORMATION

## 1-1. INTRODUCTION.

1-2. This section describes the functional and physical features of the HP 30001A Central Processor Unit/Input Output Processor (figure 1-1). Specifications and equipment identification data are also provided. Related publications that may be required for operation of the central processor unit/input output processor are listed in the preface of this manual.

## 1-3. GENERAL DESCRIPTION.

1-4. The central processor unit/input output processor is divided into three major functional sections: Central processor unit (CPU), input output processor (IOP), and module control unit (MCU). The MCU is shared by the CPU and IOP.

### 1-5. CENTRAL PROCESSOR UNIT.

1-6. The CPU contains most of the logic circuitry to perform the CPU/IOP functions. The major elements are a read-only memory (ROM) containing a microprogram,

registers, and logic to transfer data or operands to or from memory or the IOP. Briefly, the sequence of events for the CPU is as follows: The CPU requests an instruction from memory via the MCU. When the instruction is received by the CPU, it is loaded into the next instruction register (NIR). When the current instruction is executed, the new instruction is transferred from the NIR to the current instruction register (CIR). The information contained in the new instruction causes the CPU to begin executing a microprogram which is read out of the ROM. The microprogram is decoded into a set of control signals and the contents of the CPU registers are manipulated in accordance with the microprogram. The microprogram may change the state of one or more of the registers and may initiate the transfer of operands or data to or from memory. At the conclusion of the microprogram, the desired action (such as a computation between two registers) is complete. The last step of the microprogram is to load the new NIR contents into the CIR for execution of the next instruction.

## 1-7. INPUT OUTPUT PROCESSOR.

1-8. The primary functions of the IOP are to provide communication between the CPU and the I/O subsystem

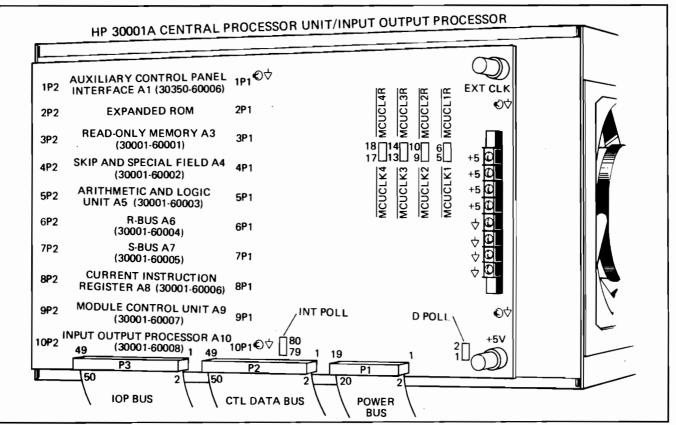





Figure 1-1. HP 30001A Central Processor Unit/Input Output Processor

under control of the CPU and communication between the I/O subsystems and the memory under control of the multiplexer channel. These two functions are known as direct I/O and multiplexed I/O, respectively. In addition, the IOP receives I/O interrupts and resolves interrupt priorities. There are eight direct I/O commands which, when executed by the CPU, cause the IOP logic to perform some function. These I/O commands are as follows:

a. Set Interrupt (SIN).

- b. Reset Interrupts (RIN).
- c. Start I/O (SIO).
- d. Set Mask (SMSK).
- e. Control I/O (CIO).
- f. Test I/O (TIO).
- g. Write I/O (WIO).
- h. Read I/O (RIO).

1-9. Operation under control of the multiplexer channel is described in detail in the *HP 30035A Multiplexer Channel Maintenance Manual*, part no. 30035-90001.

1-10. MODULE CONTROL UNIT.

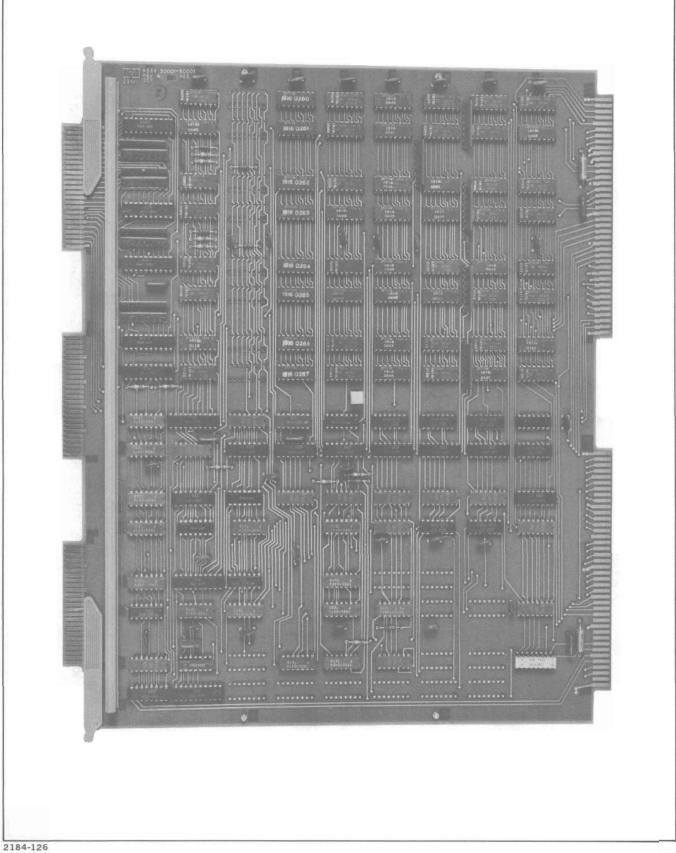
1-11. The MCU consists of two nearly identical units, one for the CPU and one for the IOP. The MCU controls inter-module communication via the central data bus and establishes priority between the CPU and the IOP. Normally, the IOP has higher priority in gaining access to the bus; however, when the CPU is attempting to complete a semiexecuted operation, the CPU takes higher priority.

## 1-12. EQUIPMENT DESCRIPTION.

1-13. The HP 30001A Central Processor Unit/Input Output Processor consists of the following components:

- a. Read-only memory printed-circuit assembly A3, part no. 30001-60001 (see figure 1-2).
- b. Skip and special field printed-circuit assembly A4, part no. 30001-60002 (see figure 1-3).

- c. Arithmetic and logical unit printed-circuit assembly A5, part no. 30001-60003 (see figure 1-4).
- d. R-bus printed-circuit assembly A6, part no. 30001-60004 (see figure 1-5).
- e. S-bus printed-circuit assembly A7, part no. 30001-60005 (see figure 1-6).
- f. Current instruction register printed-circuit assembly A8, part no. 30001-60006 (see figure 1-7).
- g. Module control unit printed-circuit assembly A9, part no. 30001-60007 (see figure 1-8).
- h. Input output processor printed-circuit assembly A10, part no. 30001-60008 (see figure 1-9).
- i. Central data bus terminator printed-circuit assembly, part no. 30001-60009 (see figure 1-10).
- j. Input output processor bus terminator printed-circuit assembly, part no. 30001-60016 (see figure 1-11).
- k. Power bus terminator printed-circuit assembly, part no. 30001-60021 (see figure 1-12).
- 1. Maintenance manual, part no. 30001-90003.


1-14. The maintenance data for the CPU/IOP consists of this maintenance manual (listed above) and detailed diagram sets DD200 through DD211, part no. 30001-90005 through 30001-90019, contained in the HP 3000 Computer System Detailed Diagrams Manual, part no. 03000-90023.

## 1-15. SPECIFICATIONS.

1-16. Specifications for the CPU/IOP are listed in table 1-1.

## 1-17. IDENTIFICATION.

1-18. Printed-circuit assembly (PCA) revisions are identified by a letter, series code, and a division code stamped on the PCA (eg, A-1130-22). The letter identifies the version of the etched trace pattern on the unloaded PCA. The series code (middle digits) refers to the electrical characteristics of the loaded PCA. The division code (last two digits) identifies the Hewlett-Packard division that manufactured the PCA.



,

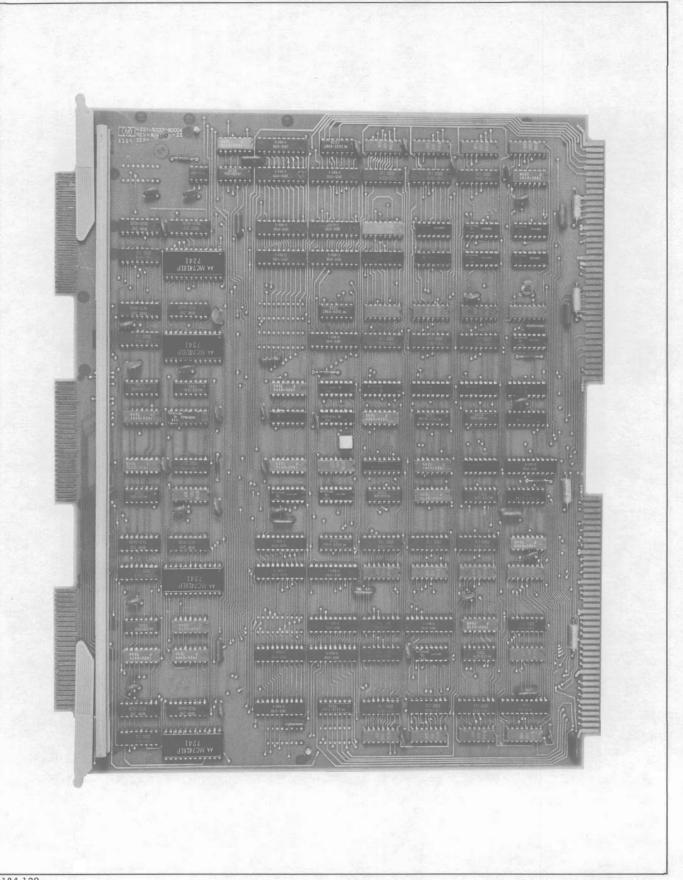


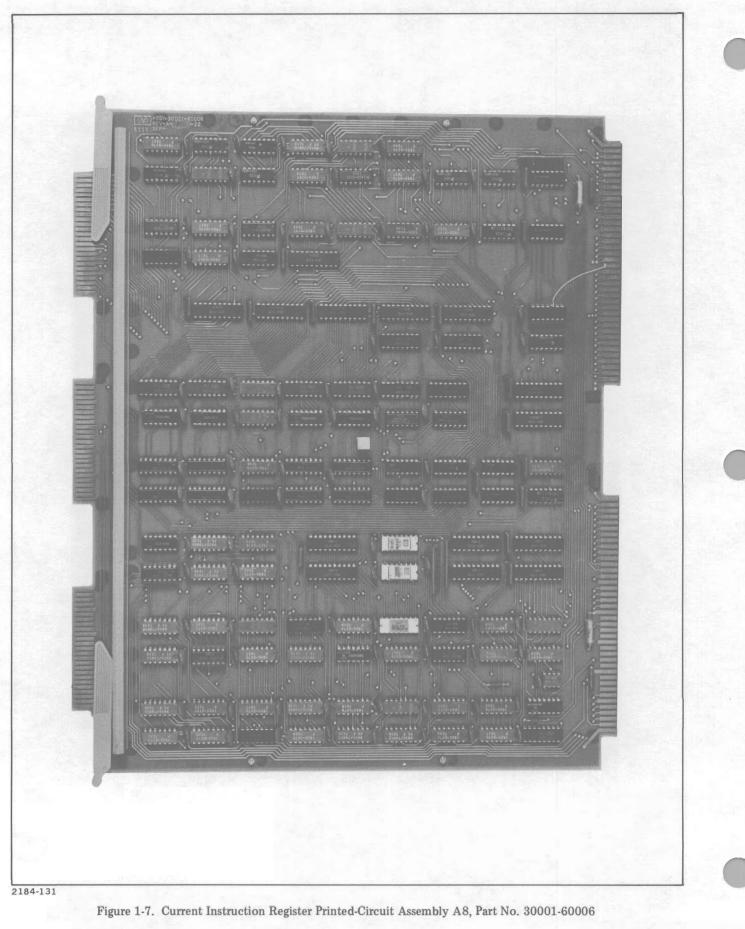
Figure 1-2. Read-Only Memory Printed-Circuit Assembly A3, Part No. 30001-60001.

2

| 2342 3         | 557-30001-60003<br>EV-A -22<br>ER-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 10                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | anne anna anna anna anna anna anna anna |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                         | Banner Valanter,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | A REPAIRS                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | - montronner (12                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . march faite                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | ••••••••••••••••••••••••••••••••••••••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                         | Reference of the second |                                        | - 1021<br>dT812/2000 vv                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                         | and and a second and a second  | ······································ |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | illeral Ribert                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N <sup>a</sup> |                                         | addadaan andaraan Hiliami Hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | 1541                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | state and state and state               | Tilland Silicard -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | illioni                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | A CARACTER CONTRACTOR                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | · · · · · · · · · · · · · · · · · · ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Second States                           | <u>iddiaid</u> 'nabaaba'' a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 126                                    | ביון אין הרווין אין איי                 | Contraction of the local distance of the loc |
|                | and a second                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | : Allesterie in                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |







Figure 1-5. R-Bus Printed-Circuit Assembly A6, Part No. 30001-60004

|                     |                                        |        |            | 1-727-0<br>Ka20-1225 |                   |                  | 1 and<br>Marian              |       |
|---------------------|----------------------------------------|--------|------------|----------------------|-------------------|------------------|------------------------------|-------|
|                     |                                        |        |            |                      |                   |                  |                              |       |
|                     | Transa .                               |        |            |                      |                   |                  |                              | 1     |
| E CARLES CONTRACTOR |                                        |        |            |                      | ······            |                  |                              | Trum) |
|                     | · · · · · ·                            |        |            | ******               |                   |                  | LASSES HIT                   |       |
|                     |                                        |        | ))));ar    | - letan              |                   |                  |                              | Ì     |
| 1                   | 1                                      |        |            | 1.4.                 | · · · · ·         |                  | ALLELLALLA<br>Totro<br>avien |       |
|                     | · ···· · · · · · · · · · · · · · · · · | ······ |            |                      |                   |                  |                              |       |
|                     | - 1 min - 1                            | iling  |            |                      |                   | Second           |                              |       |
| 4                   |                                        |        |            |                      |                   |                  |                              | ilmin |
|                     | · · · · · · · ·                        |        |            |                      |                   |                  |                              |       |
|                     | - <b>(</b> , ) /                       |        |            |                      | 1<br>55555555<br> |                  |                              |       |
|                     | · farthand -                           |        | a Constant | in the second        | andine            | dannik<br>Street |                              |       |

Figure 1-6. S-Bus Printed Circuit Assembly A7, Part No. 30001-60005

WHERE ADDREED

## 30001A



**General Information** 

|     | 1 1997-199                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         |                                         | Constant of the local division of the local |                                        |                                        |   |
|-----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---|
|     | A TETTER                                  | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·  |                                         | iiii                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | Mile and                               |   |
|     |                                           | And a second sec |                                        | 111<br>110-111                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | ······································ |   |
|     | (                                         | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                      |                                         |                                         | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                      |                                        |   |
|     | Ale and and a                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | •                                       | New Con                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                        |   |
| 1   | inimi<br>Sandaraa<br>Sana<br>Sana<br>Sana |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ************************************** | ·                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ************************************** |                                        |   |
|     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | · ·                                    |   |
|     | ACCASES                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         | ALAAL S                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                        |   |
|     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | . million                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                        |   |
|     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | ******                                  |                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                        |   |
|     |                                           | • .•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mr. Ol                                 | ·                                      |   |
|     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | ···· .                                  |                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                        | • |
|     |                                           | Still-ersi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                        |   |
|     | A second second                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | illiant .                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                        |   |
|     | Pression .                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         | ********                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                        |   |
|     | 1 minus                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 4.2.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | ananna a                                | 2.5.554=5.5.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |   |
|     | Frend .                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | . dagadar<br>Antenni                    | +++++++++++++++++++++++++++++++++++++++ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>                               |                                        |   |
| , h |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.                                     |                                         |                                         | -• ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                      |                                        |   |

Figure 1-8. Module Control Unit Printed-Circuit Assembly A9, Part No. 30001-60007

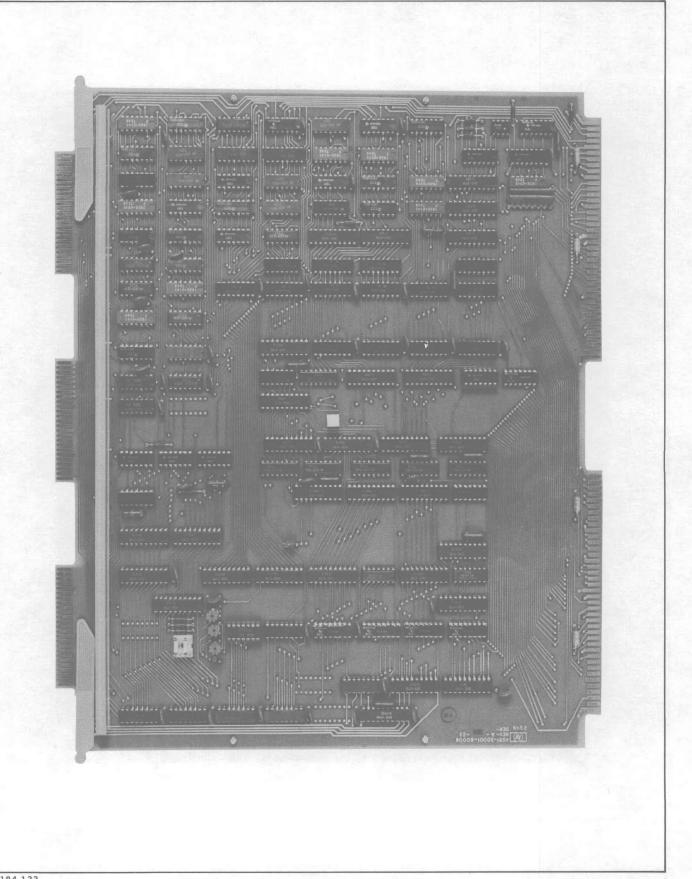
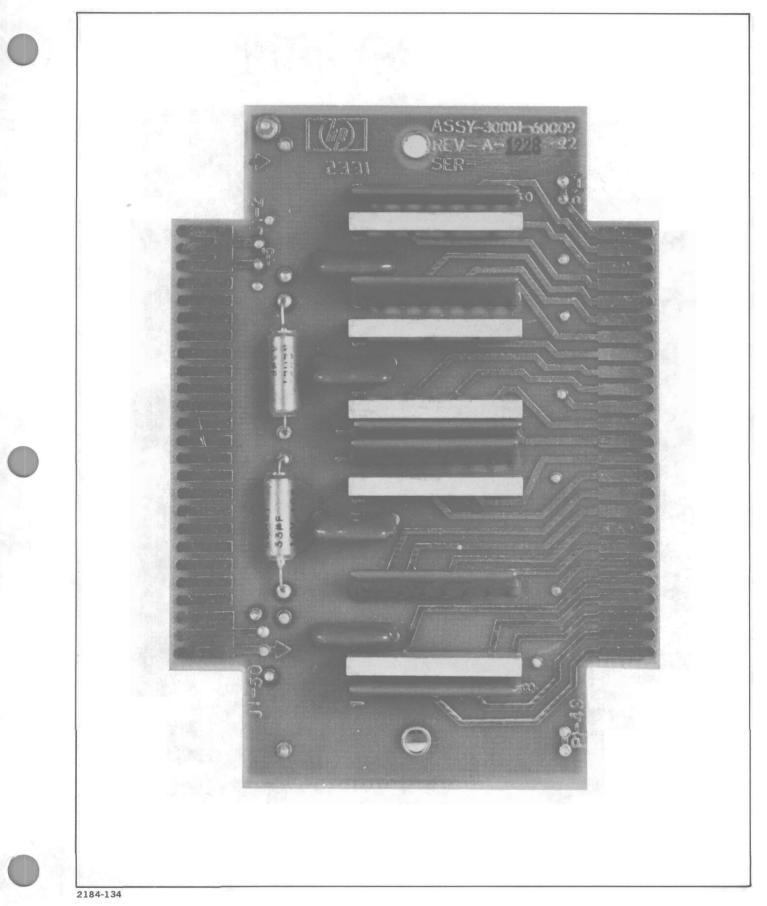
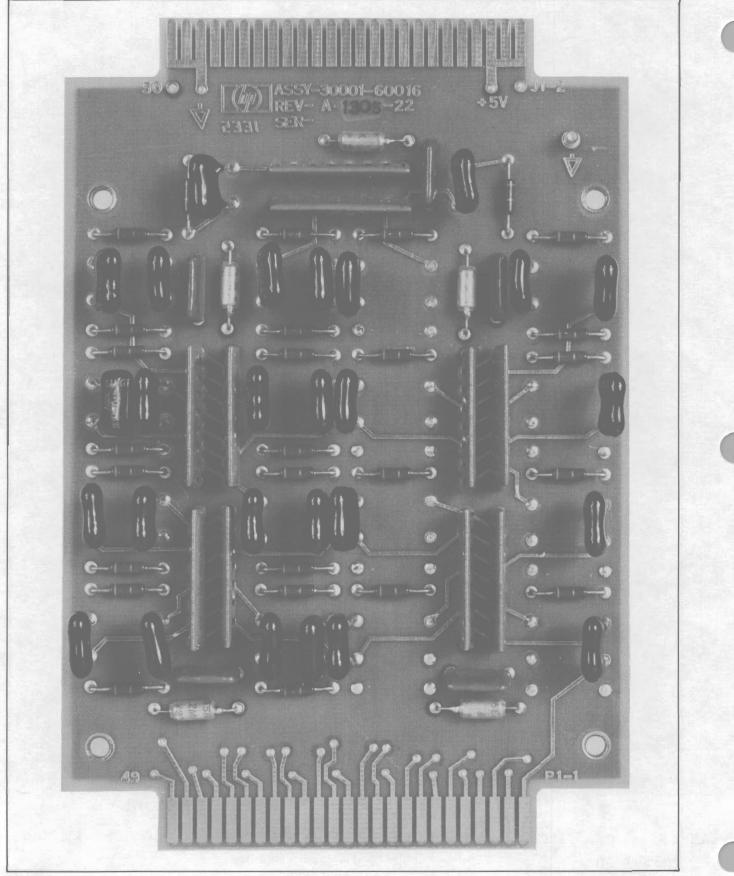
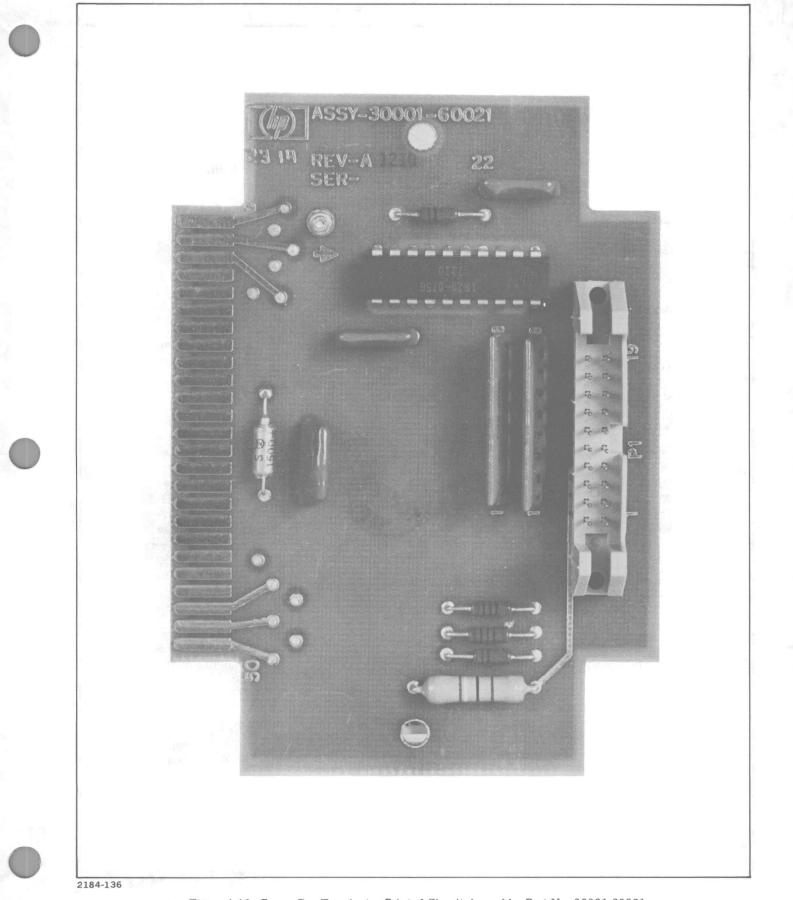





Figure 1-9. Input Output Processor Printed-Circuit Assembly A10, Part No. 30001-60008












**General Information** 



## Table 1-1. CPU/IOP Specifications

| CHARACTERISTICS                                                | SPECIFICATIONS                                                                                |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| CURRENT REQUIRED FROM COMPUTER POWER SUPPLY                    |                                                                                               |
| +5-volt supply                                                 | 37.4 Amperes                                                                                  |
| LOGIC LEVELS                                                   |                                                                                               |
| Logic 1 level (high):<br>Logic 0 level (low):                  | +2.4 Vdc minimum<br>+0.4 Vdc maximum                                                          |
| PHYSICAL CHARACTERISTICS                                       |                                                                                               |
| Read-Only Memory (ROM) PCA, part no. 30001-60001               |                                                                                               |
| Skip and Special Field (SSF) PCA, part no. 30001-60002         |                                                                                               |
| Arithmetic and Logic Unit (ALU) PCA, part no. 30001-60003      |                                                                                               |
| R-Bus PCA, part no. 30001-60004                                |                                                                                               |
| S-Bus PCA, part no. 30001-60005                                |                                                                                               |
| Current Instruction Register (CIR) PCA, part no. 30001-60006   |                                                                                               |
| Module Control Unit (MCU) PCA, part no. 30001-60007            |                                                                                               |
| Input Output Processor (IOP) PCA, part no. 30001-60008         |                                                                                               |
| Depth:<br>Width:<br>Thickness (with components):<br>Weight:    | 11-1/2 in. (292.1 mm)<br>13-11/16 in. (347.67 mm)<br>5/8 in. (15.875 mm)<br>1 pound, 3 ounces |
| NOTE                                                           |                                                                                               |
| Physical dimensions are the same for all the previously listed | printed-circuit assemblies.                                                                   |
| Central Data Bus Terminator PCA, part no. 30001-60009          |                                                                                               |
| Depth:<br>Width:<br>Thickness (with components):<br>Weight:    | 2-3/4 in. (70 mm)<br>3-7/8 in. (98.7 mm)<br>3/8 in. (9.5 mm)<br>7 ounces                      |
| IOP Bus Terminator PCA, part no. 30001-60016                   |                                                                                               |
| Depth:<br>Width:<br>Thickness (with components):<br>Weight:    | 5-3/4 in. (14.6 mm)<br>4 in. (10.15 mm)<br>1/2 in. (12.7 mm)<br>7 ounces                      |
| Power Bus Terminator PCA, part no. 30001-60021                 |                                                                                               |
| Depth:<br>Width:                                               | 2-3/4 in. (70 mm)<br>3-7/8 in. (98.7 mm)                                                      |

## 2-1. INTRODUCTION.

2-2. This section contains the following information:

- a. HP 3000 Computer System instructions.
- b. Instruction word formats.
- c. Consolidated microinstruction coding diagram.
- d. Microinstruction word formats.

## 2-3. HP 3000 COMPUTER SYSTEM INSTRUCTIONS.

2-4. The HP 3000 instruction set consists of 170 unique instructions which are listed in alphabetical order in table 2-1. As the CPU executes a user program, it sequentially fetches these instructions from memory. The bit pattern of each instruction allows a ROM look-up table and decoding logic to decode a ROM address for a microprogram stored in the microprogram ROM. There is a microprogram in ROM for each of the 170 machine instructions. The ROM address, decoded by the decoding logic, is stored in a ROM address register (RAR). The RAR is used first to access the starting microprogram address and is then incremented to point to the next microinstruction. Thus, the entire microprogram for a particular machine instruction is called and executed by the CPU.

2-5.The instruction words from memory are divided into thirteen format groups. The formats are as shown in figure 2-1. Only the first field is rigidly adhered to. This field, bits 0 through 3, either defines a specific instruction code in the memory address group (or the "loop control" group), or defines one of the sub-opcode groups. There are four sub-opcode groups: 1, 2, 3 and stack ops. The fields for the sub-opcodes vary: for sub-opcodes 2 and 3, bits 4:7are used. For sub-opcode group 1 codes, bits 5:9 are used, and for stack ops the remainder of the word is used. In some cases, the sub-opcode will enable a third field, called a mini-opcode or a special opcode, in bits 8:11. The remainder of the word has several uses and is usually part of an argument field. The following paragraphs provide a brief description of the format groups. For a more detailed description, refer to the HP 3000 Computer System Reference Manual, Part No. 03000-90019.

### 2-6. STACK OP INSTRUCTIONS.

2-7. Stack op instructions are shown in table 2-2. The stack op format is defined by four "0's" in the first four bits. The remaining 12 bits are divided into two fields: stack op A and stack op B. Either or both of these fields may contain any of the 63 stack op instruction codes. Execution sequence is from left to right (A first, then B). Interrupts may occur between the execution of A and B.

### 2-8. SHIFT INSTRUCTIONS.

2-9. Shift instructions are shown in table 2-3. The shift instruction group uses about half of the sub-opcode 1 group of codes. Sub-opcode group 1 is defined by 0001 in the first four bits (0:3). If bit 4, the index bit is a "1," the content of the index register is added to the shift count in bits 10 through 15 to specify the number of places each data bit is shifted. Bits 5 through 9 encode the specific shift instructions.

### 2-10. BRANCH INSTRUCTIONS.

2-11. Branch instructions are shown in table 2-4. The branch instructions account for 11 of the sub-opcode group of codes. In the branch instruction format, bit 4 is used as an indirect bit (indirect if bit 4 = 1). Bits 5 through 9 encode the specific branch instructions. Bits 11 through 15 give a P-relative displacement (0 through 31), and bit 10 specifies whether the displacement is + or - relative to P (0 = +, 1 = -).

### 2-12. BIT TEST INSTRUCTIONS.

2-13. Bit test instructions are shown in table 2-5. The bit test instructions, also in sub-opcode group 1, use bits 5 through 9 to specify the instruction. Bits 10 through 15 specify a bit position in the TOS word for testing. The bit position specified is modified by the addition of the index register contents if the index bit is set (bit 4 = 1).

### 2-14. MOVE INSTRUCTIONS.

2-15. Move instructions are shown in table 2-6. The move group of instructions accounts for eight of the codes specified by the sub-opcode 2 code 0000. Sub-opcode group 2 is defined by 0010 in the first four bits. Bits 8, 9, and 10 of the move instruction format encode the specific instruction. Bit 11 is used for some instructions to specify whether the source of the moved data is PB relative (bit 11 = 0) or DB relative (bit 11 = 1). Bit 11 also is used in some cases as an additional code bit for specifying the instruction. Bits 12 and 13 are not used. Bits 14 and 15 are used to specify an S-decrement value to delete, if desired, the move parameters from the top of the stack.

## 2-16. SPECIAL INSTRUCTIONS.

2-17. Special instructions are shown in table 2-7. The special group uses four mini-opcodes. The mini-opcode group also is, like the moves, specified by the sub-opcode 2 code 0000. Bits 8 through 11, and bit 15, encode the instruction. Bits 12, 13, and 14 are not used.

### 2-18. IMMEDIATE INSTRUCTIONS.

2-19. Immediate instructions are shown in table 2-8. The immediate instruction group uses codes in both sub-opcode group 2 (coded 0010) and sub-opcode group 3 (coded 0011). Bits 4 through 7 encode the instruction and bits 8 through 15 are used for the immediate operand.

| MNEMONIC     | DESCRIPTION                                                   |
|--------------|---------------------------------------------------------------|
| ADAX         | <add a="" to="" x=""></add>                                   |
| ADBX         | <add b="" to="" x=""></add>                                   |
| ADD          | <add></add>                                                   |
| ADDI         | =N <add immediate=""></add>                                   |
| ADDM         | E (*,D,X,PDQS) <add memory=""></add>                          |
| ADDS         | N <add s="" to=""></add>                                      |
| ADXA         | <add a="" to="" x=""></add>                                   |
| ADXB         | <add b="" to="" x=""></add>                                   |
| ADXI         | =N <add immediate="" to="" x=""></add>                        |
| AND          | <and, logical=""></and,>                                      |
| ANDI         | =N <logical and="" immediate=""></logical>                    |
| ASL          | CNT <arithmetic left="" shift=""></arithmetic>                |
| ASR          | CNT <arithmetic right="" shift=""></arithmetic>               |
| BCC          | L (*,L,P) < Branch on Condition Code>                         |
| BCY          | L (*,L,P) <branch carry="" on=""></branch>                    |
| BNCY         | L (*,L,P) < Branch on no carry>                               |
| BNOV         | L (*,L,P) <branch no="" on="" overflow=""></branch>           |
| BOV          | L (*,L,P) < Branch on overflow>                               |
| BR           | E (*,D,X,P or indirect DQS) <branch></branch>                 |
| BRE          | L (*,L,P) <branch even="" on="" tos=""></branch>              |
| BRO          | L (*,L,P) <branch odd="" on="" tos=""></branch>               |
| BTST         | <test byte="" on="" tos=""></test>                            |
| CAB          | <rotate abc=""></rotate>                                      |
| CIO          | K <control i="" o=""></control>                               |
| CMD          | K_ <command/>                                                 |
| CMP          | <compare></compare>                                           |
| СМРВ         | <compare bytes=""></compare>                                  |
| CMPI         | =N <compare immediate=""></compare>                           |
| CMPM         | E (*,D,X,PDQS) <compare memory=""></compare>                  |
| CMPN         | =N <compare immediate="" negative=""></compare>               |
| CPRB         | L (*,L,P) < Compare range and branch>                         |
| CSL          | CNT <circular left="" shift=""></circular>                    |
| CSR          | CNT <circular right="" shift=""></circular>                   |
| DABZ         | L (*,L,P) < Decrement A, branch if zero>                      |
| DADD         | <double add=""></double>                                      |
| DASL         | CNT < Double arithmetic shift left>                           |
| DASR         | CNT < Double arithmetic shift right>                          |
| DCMP         | <double compare=""></double>                                  |
| DCSL         | CNT < Double circular shift left>                             |
| DCSR<br>DDEL | CNT < Double circular shift right>                            |
| DDUP         | <double delete=""></double>                                   |
| DECA         | <double duplicate=""></double>                                |
| DECB         | <decrement a=""><br/><decrement b=""></decrement></decrement> |
| DECM         |                                                               |
| DECX         | E (*,D,X,DQS) <decrement memory=""></decrement>               |
| DEL          | <decrement x=""></decrement>                                  |
| DELB         | <delete a=""></delete>                                        |
| DELB         | <delete b=""></delete>                                        |
| DIV          | <double float=""><br/><divide></divide></double>              |
| DIVI         | <divide><br/>=N <divide immediate=""></divide></divide>       |
| DIVL         |                                                               |
|              | <divide long=""></divide>                                     |
| DLSL         | CNT <double left="" logical="" shift=""></double>             |
| DLSR         | CNT <double logical="" right="" shift=""></double>            |
| DNEG         | <double negate=""></double>                                   |
| DPF          | J,K <deposit field=""></deposit>                              |
| DSUB         | <double subtract=""></double>                                 |
| DTST         | <test double="" on="" tos="" word=""></test>                  |
|              |                                                               |
|              |                                                               |
|              |                                                               |
|              |                                                               |

| Table 2-1. HP 3000 Computer System Instructions (Continued) | Table 2-1. | . HP 3000 Computer System Instructions (Continued) |
|-------------------------------------------------------------|------------|----------------------------------------------------|
|-------------------------------------------------------------|------------|----------------------------------------------------|

|      | DESCRIPTION                                                 |
|------|-------------------------------------------------------------|
| DUP  | <duplicate a=""></duplicate>                                |
| DXBZ | L (*,L,P) < Decrement X,Branch if zero>                     |
| DXCH | <double exchange=""></double>                               |
| DZRO | <double push="" zero=""></double>                           |
| EXF  | J,K < Extract field>                                        |
| EXIT | N < Procedure and interrupt exit>                           |
| FADD | <ploating add=""></ploating>                                |
| FCMP |                                                             |
|      | <floating compare=""></floating>                            |
| FDIV | <floating divide=""></floating>                             |
| FIXR | <fix and="" round=""></fix>                                 |
| FIXT | <fix and="" truncate=""></fix>                              |
| FLT  | <float></float>                                             |
| FMPY | <floating multiply=""></floating>                           |
| FNEG | <floating negate=""></floating>                             |
| FSUB | < Floating subtract>                                        |
| HALT | K <halt></halt>                                             |
| IABZ | L (*,L,P) <increment a,branch="" if="" zero=""></increment> |
| INCA | <increment a=""></increment>                                |
| INCB | <increment b=""></increment>                                |
| INCM | E (*,D,X,DQS) <increment memory=""></increment>             |
| INCX | <pre><increment index=""></increment></pre>                 |
| IXBZ | L (*,L,P) < Increment X,Branch if zero>                     |
|      |                                                             |
| LADD | <logical add=""></logical>                                  |
| LCMP | <logical compare=""></logical>                              |
| LDB  | E (*,D,X,DQS) <load by="" te=""></load>                     |
| LDD  | E (*,D,X,DQS) <load double=""></load>                       |
| LDI  | =N <load immediate=""></load>                               |
| LDIV | <logical divide=""></logical>                               |
| LDNI | =N <load immediate="" negative=""></load>                   |
| LDPN | N <load double="" from="" negative="" program,=""></load>   |
| LDPP | N <load double="" from="" positive="" program,=""></load>   |
| LDX  | E (*,D,X,PDQS) <load index=""></load>                       |
| LDXA | <load onto="" stack="" x=""></load>                         |
| LDXB | <load b="" into="" x=""></load>                             |
| LDXI | =N <load immediate="" x=""></load>                          |
| LDXN | =N <load immediate="" negative="" x=""></load>              |
| LLBL | N <load label=""></load>                                    |
|      |                                                             |
|      | <linked list="" search=""></linked>                         |
| LMPY | <logical multiply=""></logical>                             |
| LOAD | E (*,D,X,PDQS) <load></load>                                |
| LRA  | E (*,D,X,PDQS) <load address="" relative=""></load>         |
| LSL  | CNT <logical left="" shift=""></logical>                    |
| LSR  | CNT <logical right="" shift=""></logical>                   |
| LSUB | < Logical subtract>                                         |
| MOVE | <move words=""></move>                                      |
| MPY  | / <multiply></multiply>                                     |
| MPYI | =N <multiply immediate=""></multiply>                       |
| MPYL | <multiply innediate=""></multiply>                          |
| MPYM | E (*,D,X,PDQS) <multiply memory=""></multiply>              |
| MTBA | E (D,P) < Modify, Test, Branch, A >                         |
| MTBA |                                                             |
|      | E (D,P) <modify, test,branch,x=""></modify,>                |
| MVB  | <move bytes=""></move>                                      |
| MVBL | <move db+="" dl+="" from="" to=""></move>                   |
| M∨BW | <move bytes="" while=""></move>                             |
| MVLB | <move db+="" dl+="" from="" to=""></move>                   |

.

| MNEMONIC                              | DESCRIPTION                                                                                       |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------|--|
| NEG                                   | <negate></negate>                                                                                 |  |
| NOP                                   | <no operation=""></no>                                                                            |  |
| NOT                                   | <one's complement=""></one's>                                                                     |  |
| OR                                    | <or, logical=""></or,>                                                                            |  |
| ORI                                   | =N <logical immediate="" or=""></logical>                                                         |  |
| PAUS                                  | K <pause></pause>                                                                                 |  |
| PCAL                                  | N <procedure call=""></procedure>                                                                 |  |
| PLDA                                  | <privileged absolute="" address="" from="" load=""></privileged>                                  |  |
| PSHR                                  | N <push registers=""></push>                                                                      |  |
| PSTA                                  | <privileged absolute="" address="" into="" store=""></privileged>                                 |  |
| RIO                                   | K <read i="" o=""></read>                                                                         |  |
| RMSK                                  | K <read mask=""></read>                                                                           |  |
| RSW                                   | < Read Switch register>                                                                           |  |
| SBXI                                  | =N <subtract from="" immediate="" x=""></subtract>                                                |  |
| SCAL                                  | N <subroutine call=""></subroutine>                                                               |  |
| SCAN                                  | <scan bits=""></scan>                                                                             |  |
| SCU                                   | <scan until=""></scan>                                                                            |  |
| SCW                                   | <scan while=""></scan>                                                                            |  |
| SED                                   | K <set disable="" enable="" external="" interrupts=""></set>                                      |  |
| SETR                                  | N <set registers=""></set>                                                                        |  |
| SIN                                   | K <set interrupt=""></set>                                                                        |  |
| SIO                                   | K <start i="" o=""></start>                                                                       |  |
| SIRF                                  | K <set external="" flag="" interrupt="" reference=""></set>                                       |  |
| SMSK                                  | <set mask=""></set>                                                                               |  |
| STAX                                  | <store a="" into="" x=""></store>                                                                 |  |
| STB                                   | E (*,D,X,DQS) <store byte=""></store>                                                             |  |
| STBX                                  | <store b="" into="" x=""></store>                                                                 |  |
| STD                                   | E( (*,D,X,DQS) <store double=""></store>                                                          |  |
| STOR                                  | E (*,D,X,DQS) <store></store>                                                                     |  |
| SUB                                   | <subtract></subtract>                                                                             |  |
| SUBI                                  | =N <subtract immediate=""></subtract>                                                             |  |
| SUBM                                  | E (*,D,X,PDQS) <subtract memory=""></subtract>                                                    |  |
| SUBS                                  | N <subtract from="" s=""></subtract>                                                              |  |
| SXIT                                  | N <subroutine exit=""></subroutine>                                                               |  |
| TASL                                  | CNT <triple arithmetic="" left="" shift=""></triple>                                              |  |
| TASE                                  |                                                                                                   |  |
| · · · · · · · · · · · · · · · · · · · | CNT <triple arithmetic="" right="" shift=""><br/>E (D,P) <test,branch,a></test,branch,a></triple> |  |
| TBA                                   |                                                                                                   |  |
| TBC                                   | CNT <test and="" bit="" code="" condition="" set=""></test>                                       |  |
| ТВХ                                   | E (D,P) <test,branch,x></test,branch,x>                                                           |  |
| TCBC                                  | CNT < Test and complement bit and set CC>                                                         |  |
| TEST                                  | <test tos=""></test>                                                                              |  |
| TIO                                   | K <test i="" o=""></test>                                                                         |  |
| TNSL                                  | <triple left="" normalizing="" shift=""></triple>                                                 |  |
| TRBC                                  | CNT < Test and reset bit, set condition code>                                                     |  |
| TSBC                                  | CNT <test, bit,="" code="" condition="" set=""></test,>                                           |  |
| TSBM                                  | N < Test and set bit in memory>                                                                   |  |
| WIO                                   | K <write i="" o=""></write>                                                                       |  |
| XAX                                   | <exchange a="" and="" x=""></exchange>                                                            |  |
| ХВХ                                   | <exchange and="" b="" x=""></exchange>                                                            |  |
| ХСН                                   | <exchange a="" and="" b=""></exchange>                                                            |  |
| ХСНД                                  | K <exchange db=""></exchange>                                                                     |  |
| XEQ                                   | K <execute></execute>                                                                             |  |
| XOR                                   | <exclusive logical="" or,=""></exclusive>                                                         |  |
| XORI                                  | =N < Logical Exclusive OR immediate>                                                              |  |
| ZERO                                  | <push zero=""></push>                                                                             |  |
| ZROB                                  | <zero b=""></zero>                                                                                |  |
| 70.01                                 | <zero x=""></zero>                                                                                |  |
| ZROX                                  |                                                                                                   |  |

| GENERAL<br>FORMAT           | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>Memory Sub-opcode Mini-opcode<br>Opcode or<br>or Special                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IMMEDIATE                                            | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 0<br>Sub-opcode 2 Immediate<br>Operand                              |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                             | Sub-opcode Opcode<br>Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIELD                                                | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                              |
| STACK                       | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | Sub-opcode 2 J-Field K-Field                                                                                       |
| OP<br>Shift                 | 0         1         2         3         4         5         6         7         8         9         10         11         12         13         14         15           0         0         0         1         X         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </th <th>REGISTER<br/>CONTROL<br/>Excapt<br/>XCHD, ADDS,<br/>SUBS</th> <th>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br/>0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> | REGISTER<br>CONTROL<br>Excapt<br>XCHD, ADDS,<br>SUBS | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                   |
|                             | Sub-opcode 1 Shift<br>Index<br>Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ХСНО                                                 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 0 0 0 0 0 0 1 1 1<br>Bits 12-15                                   |
| BRANCH<br>Except<br>BR, BCC | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 0 1 1<br>Sub-opcode 1<br>Indirect<br>Bit<br>Relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADDS                                                 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 1 0 1 0<br>Immediate Operand                                      |
| BR                          | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>1 1 0 0 X 1 1 1<br>0 B+ 0<br>Displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SUBS                                                 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 1 0 1 1<br>Immediate Operand                                      |
|                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROGRAM<br>CONTROL<br>Excapt<br>PAUS, HALT,<br>XEQ   | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1<br>Sub-opcode 3 N-Field                                           |
| BCC                         | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>1 1 0 0 1 0 1 G E L ±<br>CCF Displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PAUS                                                 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 12 13 14 15<br>Bits 12-15<br>Not Used     |
| BIT TEST<br>Except<br>TSBM  | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 0 1 1 x<br>Sub-opcode 1 Bit Position<br>Index<br>Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HALT                                                 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 0 0 0 0 1 1 1 1 1 1<br>Bits 12 15<br>Not Used                     |
| тѕвм                        | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 1 1 0 0<br>Displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XEQ                                                  | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 0 0 0 0 0 0 1 1 0<br>K                                            |
| MOVE<br>Except<br>MVBW      | DB + Relative<br>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I/O AND<br>INTERRUPT                                 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 1 0 0 0 0<br>Sub-opcode 3 Special K-Field<br>Opcode (or not used) |
|                             | PB/DB<br>Relative or<br>Additional<br>Code Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOOP<br>CONTROL                                      | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 1 0 1 0 1 0 ± P Relative<br>Opcode // PRelative                         |
| MVB <del>W</del><br>SPECIAL | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 0 0 0 0 0 1 0 0<br>CCF SDEC<br>Alphabetic: 0 1 Upshift<br>Numeric: 1 0<br>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MEMORY<br>ADDRESS<br>Except<br>LOPP,<br>LDPN         | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>Memory<br>Opcode<br>Index Indirect<br>Bit Bit                             |
|                             | 0     0     1     0     0     0     0     0     0       Sub-opcode 2     Mini-<br>Opcode     Mini-<br>Code Bit     Additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LDPP                                                 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 1 1 0 0 0<br>P+ Displacement                                      |
| LLBL                        | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 0 1 1 1 1 D Displacement PL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LDPN                                                 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 1 1 0 0 1<br>P- Displacement                                      |

Figure 2-1. Instruction Formats

| MNEMONIC | NAME                    | MNEMONIC | NAME                                  |
|----------|-------------------------|----------|---------------------------------------|
| NOP      | No Operation            | хсн      | Exchange A and B                      |
| DELB     | Delete B                | XAX      | Exchange A and X                      |
| DDEL     | Double Delete           | САВ      | Rotate A, B, C                        |
| DEL      | Delete A                | XBX      | Interchange Second Word of Stack With |
| DUP      | Duplicate A             |          | the Content of the Index Register     |
| DDUP     | Double Duplicate        | STBX     | Store B into X                        |
| ZROX     | Zero X                  | ADAX     | Add A to X                            |
| ZERO     | Push Zero               | ADXA     | Add X to A                            |
| DZRO     | Push Double Zero        | LDXB     | Load X into B                         |
| ZROB     | Zero B                  | STAX     | Store A into X                        |
| INCX     | Increment X             | LDXA     | Load X onto Stack                     |
| DECX     | Decrement X             | ADBX     | Add B to X                            |
| INCA     | Increment A             | ADXB     | Add X to B                            |
| DECA     | Decrement A             | DFLT     | Double Float                          |
| INCB     | Increment B             | FLT      | Float                                 |
| DECB     | Decrement B             | FCMP     | Floating Compare                      |
| DCMP     | Double Compare          | FADD     | Floating Add                          |
| DADD     | Double Add              | FSUB     | Floating Subtract                     |
| DSUB     | Double Subtract         | FMPY     | Floating Multiply                     |
| MPYL     | Multiply Long           | FDIV     | Floating Divide                       |
| DIVL     | Divide Long             | FNEG     | Floating Negate                       |
| DNEG     | Double Negate           | FIXR     | Fix and Round                         |
| CMP      | Compare                 | FIXT     | Fix and Truncate                      |
| ADD      | Add                     | LCMP     | Logical Compare                       |
| SUB      | Subtract                | LADD     | Logical Add                           |
| MPY      | Multiply                | LSUB     | Logical Subtract                      |
| DIV      | Divide                  | LMPY     | Logical Multiply                      |
| NEG      | Negate                  | LDIV     | Logical Divide                        |
| TEST     | Test TOS                | NOT      | One's Complement                      |
| DTST     | Test Double Word on TOS | OR       | Logical OR                            |
| BTST     | Test Byte on TOS        | XOR      | Logical Exclusive OR                  |
| DXCH     | Double Exchange         | AND      | Logical AND                           |

| Table | 2-2. | Stack | Op | Instructions |
|-------|------|-------|----|--------------|
|-------|------|-------|----|--------------|

Table 2-3. Shift Instructions

| MNEMONIC | NAME                          |
|----------|-------------------------------|
| ASL      | Arithmetic Shift Left         |
| ASR      | Arithmetic Shift Right        |
| LSL      | Logical Shift Left            |
| LSR      | Logical Shift Right           |
| CSL      | Circular Shift Left           |
| CSR      | Circular Shift Right          |
| DASL     | Double Arithmetic Shift Left  |
| DASR     | Double Arithmetic Shift Right |
| DLSL     | Double Logical Shift Left     |
| DLSR     | Double Logical Shift Right    |
| DCSL     | Double Circular Shift Left    |
| DCSR     | Double Circular Shift Right   |
| TASL     | Triple Arithmetic Shift Left  |
| TASR     | Triple Arithmetic Shift Right |
| TNSL     | Triple Normalizing Shift Left |

Table 2-4. Branch Instructions

| MNEMONIC                                                                                                  | NAME                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| IABZ<br>IXBZ<br>DXBZ<br>BCY<br>BNCY<br>CPRB<br>DABZ<br>BOV<br>BNOV<br>BRO<br>BRC<br>BR<br>BR<br>BR<br>BCC | Increment A, Branch if Zero<br>Increment X, Branch if Zero<br>Decrement X, Branch if Zero<br>Branch On Carry<br>Branch on No Carry<br>Compare Range and Branch<br>Decrement A, Branch if Zero<br>Branch On Overflow<br>Branch On No Overflow<br>Branch on TOS Odd<br>Branch on TOS Even<br>Branch Unconditionally<br>Branch on Condition Code |  |  |  |

## Table 2-5. Bit Test Instructions

| MNEMONIC | NAME                                            |  |  |  |
|----------|-------------------------------------------------|--|--|--|
| SCAN     | Scan Bits                                       |  |  |  |
| ТВС      | Test Bit and Set Condition Code                 |  |  |  |
| TRBC     | Test and Reset Bit, Set Condition Code          |  |  |  |
| TSBC     | Test and Set Bit, Set Condition Code            |  |  |  |
| тсвс     | Test and Complement Bit, Set Condition Code     |  |  |  |
| ТЅВМ     | Test and Set Bits in Memory, Set Condition Code |  |  |  |
|          | Test and Set Bits in Memory, Set Condition Code |  |  |  |

Table 2-6. Move Instructions

| MNEMONIC | NAME                                                     |  |  |
|----------|----------------------------------------------------------|--|--|
| MOVE     | Move Words                                               |  |  |
| M∨B      | Move Bytes                                               |  |  |
| M∨BL     | Move Words from DB+ to DL+                               |  |  |
| SCW      | Scan While Memory Bytes Equal Test Byte                  |  |  |
| M∨LB     | Move Words from DL+ to DB+                               |  |  |
| SCU      | Scan Until Memory Byte Equals Test Byte or Terminal Byte |  |  |
| M∨BW     | Move Bytes While of Specified Type                       |  |  |
| СМРВ     | Compare Bytes                                            |  |  |

Table 2-7. Special Instructions

| MNEMONIC | NAME                                   |  |  |  |  |
|----------|----------------------------------------|--|--|--|--|
| RSW      | Read Switch Register                   |  |  |  |  |
| LLSH     | Linked List Search                     |  |  |  |  |
| PLDA     | Privileged Load from Absolute Address  |  |  |  |  |
| PSTA     | Privileged Store into Absolute Address |  |  |  |  |
| LLBL     | Load Label                             |  |  |  |  |

Table 2-8. Immediate Instructions

| MNEMONIC                        | NAME                           |  |  |  |
|---------------------------------|--------------------------------|--|--|--|
| LDI                             | Load Immediate                 |  |  |  |
| LDXI                            | Load X Immediate               |  |  |  |
| CMPI                            | Compare Immediate              |  |  |  |
| ADDI                            | Add Immediate                  |  |  |  |
| SUBI                            | Subtract Immediate             |  |  |  |
| MPYI                            | Multiply Immediate             |  |  |  |
| DIVI                            | Divide Immediate               |  |  |  |
| LDNI                            | Load Negative Immediate        |  |  |  |
| LDXN Load X Negative Immediate  |                                |  |  |  |
| CMPN Compare Negative Immediate |                                |  |  |  |
| ADXI Add Immediate to X         |                                |  |  |  |
| SBXI                            | Subtract Immediate from X      |  |  |  |
| ORI                             | Logical OR Immediate           |  |  |  |
| XORI                            | Logical Exclusive OR Immediate |  |  |  |
| ANDI                            | Logical AND Immediate          |  |  |  |
|                                 |                                |  |  |  |

## 2-20. FIELD INSTRUCTIONS.

2-21. Field instructions are shown in table 2-9. The format for deposit field and extract field instructions is specified by two of the sub-opcode 2 group of codes. Bits 4 through 7 specify the instruction and the remaining eight bits are divided into a J-field and a K-field. The J-field specifies the starting bit number and the K-field specifies the number of bits.

## 2-22. REGISTER CONTROL INSTRUCTIONS.

2-23. Register control instructions are shown in table 2-10. The format for the register control instructions uses bits 9 through 15 to name a register and bits 4 through 7 in sub-opcode group 2 to specify the operation.

## 2-24. **PROGRAM CONTROL INSTRUCTIONS.**

2-25. Program control instructions are shown in table 2-11. The program control instructions account for four of the sub-opcode 3 codes. Sub-opcode 3 is specified by 0011 in the first four bits. The instruction is encoded by bits 4 through 7, and the N-field in bits 8 through 15 is used either for a PL displacement (PCAL and SCAL) or to specify a number of parameters to be deleted on return from a procedure or subroutine (EXIT and SXIT).

## 2-26. I/O AND INTERRUPT INSTRUCTIONS.

2-27. I/O and interrupt instructions are shown in table 2-12. The I/O and interrupt instructions use 11 of the special opcodes (bits 8 through 11) defined by the sub-opcode 3 code of 0000. The K-field, bits 12 through 15, is used by some of the instructions for an S-displacement to locate a device number given in the stack.

## 2-28. LOOP CONTROL INSTRUCTIONS.

2-29. Loop control instructions are shown in table 2-13. The loop control instructions are defined by a special coding of bits 4, 5, and 6 for memory opcode 05 (which is otherwise defined as the STOR instruction). Bits 8 through 15 give a P-relative displacement for +(0) or -(1) relative to P.

## 2-30. MEMORY ADDRESS INSTRUCTIONS.

2-31. Memory address instructions are shown in table 2-14. The memory address instruction format uses, bits 0, 1, 2, and 3 to encode a specific instruction. Bits 6 through 15 give both an addressing mode and a displacement. Bit 5 is used to specify indirect addressing (1), if desired. If both indirect addressing and indexing are specified, post indexing will occur.

## Table 2-9. Field Instructions

| MNEMONIC | NAME          |
|----------|---------------|
| EXF      | Extract Field |
| DPF      | Deposit Field |

## 2-32. MICROINSTRUCTION CODING.

2-33. A consolidated microinstruction coding diagram listing the field codes and the octal coding required to produce the codes is shown in figure 2-2. The physical location of the fields in the 32-bit microinstruction word is shown also.

| Table 2-10. | Register | Control | Instructions |
|-------------|----------|---------|--------------|
|-------------|----------|---------|--------------|

| MNEMONIC | NAME                |
|----------|---------------------|
| PSHR     | Push Registers      |
| SETR     | Set Registers       |
| XCHD     | Exchange DB and TOS |
| ADDS     | Add to S            |
| SUBS     | Subtract from S     |

## Table 2-11. Program Control Instructions

| MNEMONIC | NAME                    |  |  |  |  |
|----------|-------------------------|--|--|--|--|
| PAUS     | Pause                   |  |  |  |  |
| XEQ      | Execute Stack Word      |  |  |  |  |
| HALT     | Computer Hardware Halts |  |  |  |  |
| SCAL     | Subroutine Call         |  |  |  |  |
| PCAL     | Procedure Call          |  |  |  |  |
| EXIT     | Exit from Procedure     |  |  |  |  |
| SXIT     | Exit from Subroutine    |  |  |  |  |

## Table 2-12. I/O and Interrupt Instructions

| MNEMONIC | NAME                                     |  |  |
|----------|------------------------------------------|--|--|
| SED      | Set "Enable/Disable External Interrupts" |  |  |
| SMSK     | Set Mask                                 |  |  |
| RMSK     | Read Mask                                |  |  |
| SIO      | Start I/O                                |  |  |
| RIO      | Read I/O                                 |  |  |
| W10      | Write I/O                                |  |  |
| тю       | Test I/O                                 |  |  |
| CIO      | Control I/O                              |  |  |
| CMD      | Command (Central Data Bus)               |  |  |
| SIRF     | Set External Interrupt Reference Flag    |  |  |
| SIN      | Set Interrupt                            |  |  |

## Table 2-13. Loop Control Instructions

| MNEMONIC | NAME                                         |
|----------|----------------------------------------------|
| TBA      | Test and Branch, Limit in A                  |
| MTBA     | Modify Variable, Test and Branch, Limit in A |
| TBX      | Test and Branch, Variable in X               |
| MTBX     | Modify Variable in x, Test and Branch        |

| 0C <sup>.</sup> |   | S-BUS<br>5 BITS | STORE<br>5 BITS | FUNCTION<br>5 BITS | SKIP<br>5 BITS | SHIFT<br>3 BITS | SPECIAL<br>5 BITS | MCU<br>5 BITS    | R-BUS<br>4 BITS |
|-----------------|---|-----------------|-----------------|--------------------|----------------|-----------------|-------------------|------------------|-----------------|
| 0               | 0 | CIR             | MASK            | TASL               | ZERO 🛔         | LRZ             | ССВ               | $\lambda$ /      | PL              |
| 0               | 1 | SP1             | IOA             | TASR               | NZRO           | LLZ             | CCPX              | $ \rangle$ /     | SR              |
| 0               | 2 | PADD            | IOD             | ROMX               | EVEN           | SL1             | SRO               | $ \rangle$ /     | z               |
| 0               | 3 |                 | MREG            | ROMN               | ODD            | SR1             | HALT              |                  | MREG            |
| 0               | 4 | CPX1            | BUSL*           | JSB                | NSME S         | RRZ             | SIFG              | $  \rangle /$    | PADD            |
| 0               | 5 | MOD             | BSP0*           | CAND               | віт6 🛓         | RLZ             | SDFG              | $  \rangle /$    | R BUS           |
| 0               | 6 | CPX2            | BUSH*           | XOR                | в⊦т8 ≝         | ROT             | CTF               | $  \rangle /$    | x               |
| 0               | 7 | SWCH            | DATA            | AND                | BIT 8 H        | NOP             | CF3               | V                | хс              |
| 1               | 0 | ODWN            | PUSH            | DVSB               | CRRY N         |                 | INSR              |                  | RD              |
| 1               | 1 | IOA             | PL              | UBNT**             | NCRY           | N /             | DCSR              | /\               | RC              |
| 1               | 2 | IOD             | z               | CADO               | POS            | \ /             | INCN              |                  | RB              |
| 1               | 3 | MASK            | QUP             | SUBO               | NEG 🕈          |                 | INCT              |                  | RA              |
| 1               | 4 | CTRL            | SP1             | JMP                | , F1           |                 | HBF               |                  | SP1             |
| 1               | 5 | CTRH            | SPO             | BNDT **            | NF1            |                 | FHB               |                  | SPO             |
| 1               | 6 | UBUS            | CTRL            | CAD                | F2             |                 | CLIB              | / \              | UBUS            |
| 1               | 7 | SBUS            | CTRH            | SUB                | NF2            |                 | LB₽               | $V \qquad \land$ | NOP             |
| 2               | 0 | P               | Ρ               | PNLR <sup>†</sup>  | SRZ            |                 | SF2               | RWAN             | 1               |
| 2               | 1 | Q               | ٥               | PNLS <sup>†</sup>  | SRNZ           |                 | CF2               | RWAN             | \ /             |
| 2               | 2 | DB              | SM              | ROMI               | SR4            |                 | CF 1              | RWAN             |                 |
| 2               | 3 | SM              | DB              | ROM <sup>†</sup>   | SRN4           | l V             | SF1               | RWAN             |                 |
| 2               | 4 | STA             | STA             | REPC <sup>†</sup>  | INDR           | Δ               | SCRY              | RWAN             |                 |
| 2               | 5 | SP3             | SP3             | REPN <sup>†</sup>  | SRL2           |                 | CCRY              | RWAN             | $  \rangle /$   |
| 2               | 6 | OPND            | ×               | IOR                | NPRY           |                 | ΡΟΡΑ              | RWAN             | $  \rangle /$   |
| 2               | 7 | ° 20            | RAR             | CTSD <sup>†</sup>  | SRL3           |                 | POP               | RWAN             | I V             |
| 3               | 0 | RD              | RD              | MPAD <sup>†</sup>  | RSB            |                 | SOV               | CMD              | ۸ I             |
| 3               | 1 | RC              | RC              | INCO <sup>†</sup>  | JLUI           |                 | CLO               | CRL              |                 |
| 3               | 2 | RB              | RB              | CRS <sup>†</sup>   | TEST           |                 | ccz               | NIR              | $  / \rangle$   |
| 3               | 3 | RA              | RA              | ADDO <sup>†</sup>  | CTRM           |                 | CCL               | RWN              | / \             |
| 3               | 4 | DL              | DL              | CTSS <sup>†</sup>  | F3             |                 | CCG               | OPND             |                 |
| 3               | 5 | SP2             | SP2             | INC <sup>†</sup>   | NEXT           | / \             | CCE               | RNWA             | / \             |
| 3               | 6 | PB              | РВ              | RPTY <sup>†</sup>  | UNC            | / \             | CCA               | CWA              | / \             |
| 3               | 7 | NOP             | NOP             | ADD <sup>†</sup>   | NOP            |                 | NOP               | RWA              | V V             |

\*THESE STORE OPTIONS "NOP" THE SPECIAL FIELD FUNCTIONS AND ALLOW THE SPECIAL FIELD TO BE USED FOR MCU OPTIONS. <sup>†</sup>THESE FUNCTIONS CAUSE AN "ADD." <sup>•</sup>TWO-CYCLE INSTRUCTION.

| _ |       |  |   |   |   | _ |                      |   | _ |   |   |          |          |    |    |    |    |              | UCA | 110 | 113 |   |       |             |    |         |               |       |    |    |    |       |      |    |
|---|-------|--|---|---|---|---|----------------------|---|---|---|---|----------|----------|----|----|----|----|--------------|-----|-----|-----|---|-------|-------------|----|---------|---------------|-------|----|----|----|-------|------|----|
|   | 01    |  | 2 | 3 | 4 | 5 | 6                    | 7 |   | 8 | 9 | 10       | 11       | 12 | 13 | 14 | 15 | 5 16         | 17  | 18  | 1   | э | 20    | 21          | 22 | 23      | 2             | 24 25 | 26 | 27 | 28 | 2     | 9 30 | 31 |
|   | S∙BUS |  |   |   |   |   | STORE                |   |   |   |   |          | FUNCTION |    |    |    |    | SKIP         |     |     |     |   | SHIFT |             |    | SPECIAL |               |       |    |    |    | R-BUS |      |    |
|   |       |  |   |   |   |   |                      |   |   |   |   | JMP, JSB |          |    |    |    |    |              |     |     |     |   |       | JUMP TARGET |    |         |               |       |    |    |    |       |      |    |
|   |       |  |   |   |   |   |                      |   |   |   |   | ANY ROM  |          |    |    |    |    | ROM CONSTANT |     |     |     |   |       |             |    |         |               |       |    |    |    |       |      |    |
|   |       |  |   |   |   |   |                      |   |   |   |   |          | REPN     |    |    |    |    | COUNT        |     |     |     |   | SHIFT |             |    |         | SPECI         | R-BUS |    |    |    |       |      |    |
|   |       |  |   |   |   |   | BUSL<br>BSPO<br>BUSH |   |   |   |   |          |          |    |    |    |    | SKIP         |     |     |     |   |       |             |    |         | MCU<br>OPTION |       |    |    |    |       |      |    |

FIELD LOCATIONS

2184-91

Figure 2-2. Consolidated Microinstruction Coding Diagram

Table 2-14. Memory Address Instructions

| MNEMONIC | NAME                               |
|----------|------------------------------------|
| LDPP     | Load Double from Program, Positive |
| LDPN     | Load Double from Program, Negative |
| LOAD     | Load Word onto TOS                 |
| STOR     | Store TOS into Memory              |
| CMPM     | Compare TOS with Memory            |
| ADDM     | Add Memory to TOS                  |
| SUBM     | Subtract Memory from TOS           |
| MPYM     | Multiply TOS by Memory             |
| INCM     | Increment Memory                   |
| DECM     | Decrement Memory                   |
| LDX      | Load Index                         |
| LDB      | Load Byte                          |
| LDD      | Load Double                        |
| STB      | Store Byte                         |
| STD      | Store Double                       |
| LRA      | Load Relative Address              |

2-34. A microinstruction word from the ROM will be in one of five formats, depending upon the code specified in the function or store fields. The formats are shown in figure 2-3.

| FORMAT | · 1                                                                                   |                       |                         |        |               |       |  |
|--------|---------------------------------------------------------------------------------------|-----------------------|-------------------------|--------|---------------|-------|--|
| 01234  | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |                       |                         |        |               |       |  |
| s      | STORE                                                                                 | FUNCTION              | SKIP<br>CONDITION       | SHIFT  | SPECIAL       | R     |  |
| FORMAT | -                                                                                     | 10 14                 | 15 10                   | 20     |               | 31    |  |
| s      | STORE                                                                                 | JMP<br>JSB            | JMP OR JSB<br>CONDITION | 20     | TARGET        |       |  |
| FORMAT | '3<br>5 9                                                                             | 10 14                 | 16                      |        |               | 31    |  |
| s      | STORE                                                                                 | ROM ROMN<br>ROM1 ROMX | X                       | ROM CO | ONSTANT       |       |  |
| FORMAT |                                                                                       | 10 14                 | 15 10                   | 20 22  | 23 27         | 28 31 |  |
| s      | STORE                                                                                 | REPN                  | COUNT                   | SHIFT  | SPECIAL       | R     |  |
|        | FORMAT 5<br>0 45 910 1415 1920 2223 2728 31                                           |                       |                         |        |               |       |  |
| s      | BUSL<br>BSPØ<br>BUSH                                                                  | FUNCTION              | SKIP                    | SHIFT  | MCU<br>OPTION | R     |  |
|        |                                                                                       |                       |                         |        |               | -     |  |

2184-85

Figure 2-3. Microinstruction Word Formats

#### 2-35. FORMAT 1.

2-36. An operational flow diagram for a format 1 type of microinstruction is shown in figure 2-4 and a timing diagram is shown in figure 2-5. At the start, a format 1 microinstruction (I) is contained in ROM output register rank 1 (ROR1). The ROM address register (RAR) contains the address of the next succeeding microinstruction (I+1) and ROM output register rank 2 (ROR2) contains the

preceding microinstruction, or I-1. The R-bus and S-bus fields, which bypass ROR2, are executed first, allowing the R- and S-bus registers to be loaded before executing the remainder of the microinstruction. The function field is then executed and, after execution, the T-bus contains the contents of the R- and S-bus, depending upon the function code. The shift field, when decoded, determines whether the data on the T-bus will be shifted, and transfers the T-bus data to the U-bus. The skip field is examined for a skip condition and, if the condition is met, ROR1 is NOPed for one clock cycle before the store and special fields are executed. When the store and special fields are executed, the condition of RAR, ROR1, and ROR2 is as follows:

- a. RAR = I + 3
- b. ROR1 = I + 2
- c. ROR2 = I + 1
- 2-37. FORMAT 2.

2-38. An operational flow diagram for microinstruction word format 2 is shown in figure 2-6 and timing diagrams are shown in figures 2-7 and 2-8. When a Jump (JMP or JSB) is specified in the function field, bits 20 through 31 of the microinstruction word are used to specify the jump address instead of being used for shift, special, or R-bus field operations. A JMP function code directs a micro-jump to the target address in the ROM if the skip field condition is met. A JSB function code directs a micro-subroutine jump to the target address in ROM if the skip field condition is met. In both cases (JMP and JSB), if the skip field code is ZERO, NZRO, EVEN, ODD, NSME BIT 6, BIT8, NOFL, CRRY, NCRY, POS, or NEG (eg, any skip condition that is data (U-bus) dependent) a one-cycle freeze is generated to allow the U-bus data to be established and checked for the jump condition.

### 2-39. FORMAT 3.

2-40. An operational flow diagram for a format 3 microinstruction word is shown in figure 2-9. When a ROM, ROMI, ROMN, or ROMX function code is specified in a microinstruction, the ROR1 function decoder (see simplified diagram, figure 3-22, sheet 13) disables the skip, shift, special, and R-bus fields and these bits (16:31) are loaded directly from ROR1 into the R-bus register. When the microinstruction is loaded into ROR2, the ALU function decoder (which decodes the output of the ROR2 function field) generates the following ALUS (0:3) codes, depending upon the type of ROM function:

| ROM:  | ALUS (0:3) | = 1001 (ADD) |
|-------|------------|--------------|
| ROMI: | ALUS (0:3) | ≈ 1000 (IOR) |
| ROMN: | ALUS (0:3) | = 1101 (AND) |
| ROMX: | ALUS (0:3) | = 0110 (XOR) |



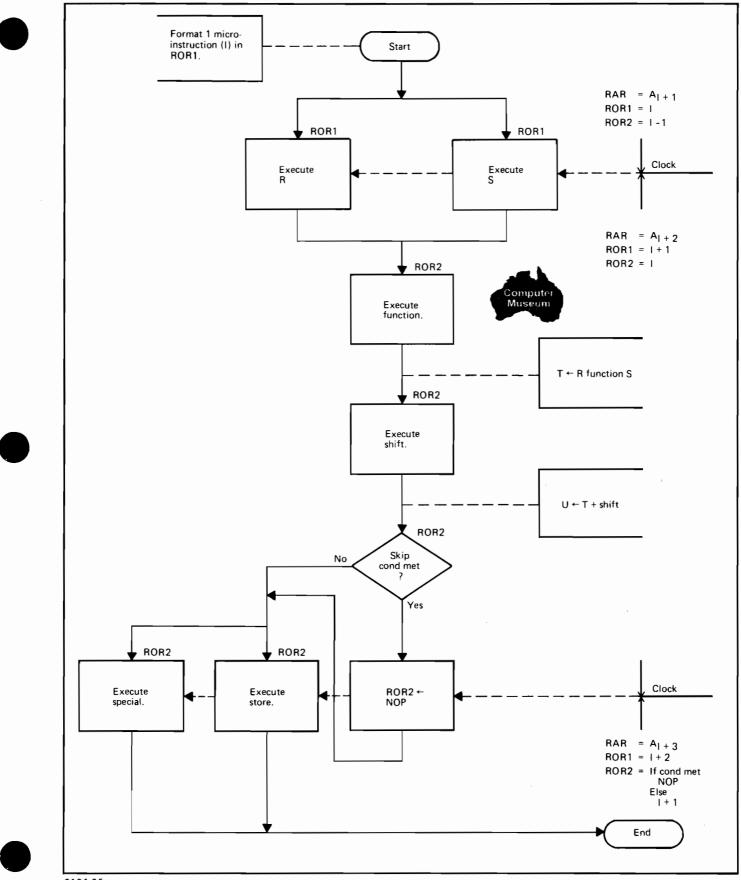
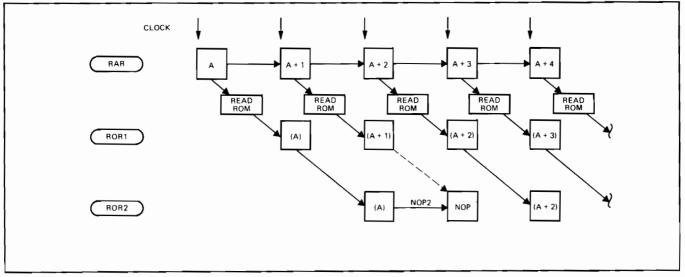




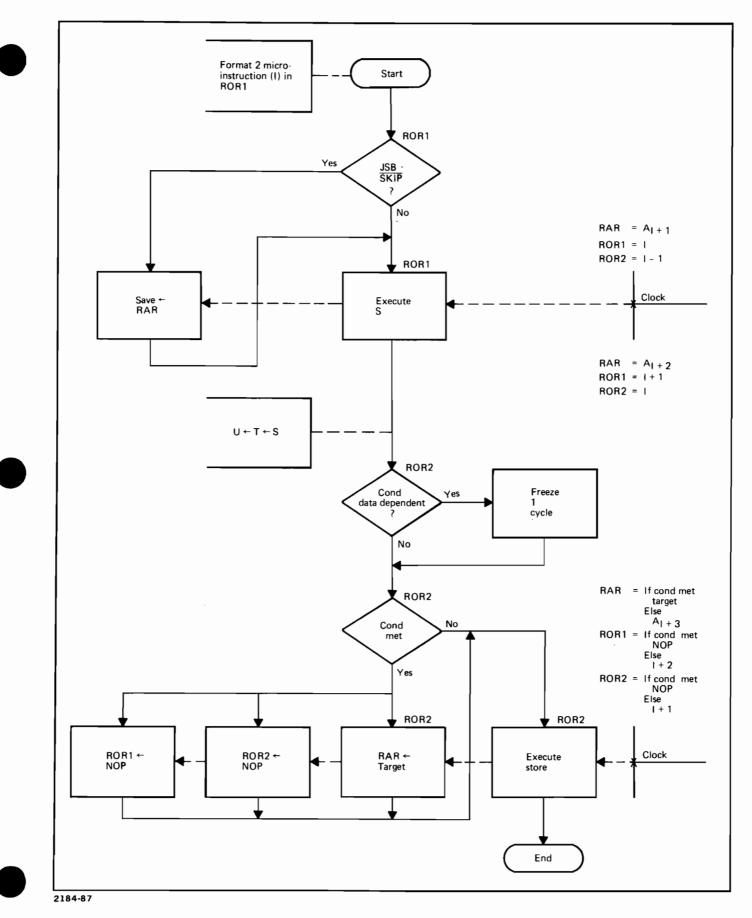

Figure 2-4. Microinstruction Word Format 1 Flow Diagram

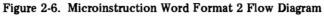
2-41. The above functions, ADD, IOR, AND, X and XOR, are then executed and the U-bus contains the T-bus content, which is the content of the R-bus register added, "anded," or "ored", to the content of the S-bus register. See table 3-3 for a description of operation for the ROM, ROMI, ROMN, and ROMX codes. When the store field code is executed, the content of the U-bus is stored in one of the CPU registers.


## 2-42. FORMAT 4.

2-43. A format 4 operational flow diagram is shown in figure 2-10. In microinstruction word format 4, the REPN function field code causes the next microinstruction to be executed repeatedly. The count for the number of repeats to be performed is contained in the skip field (bits 15:19). These bits are loaded into a repeat counter register. To

utilize the counter, the microinstruction word contains an INCTR (Increment Counter) code in the special field and a CTRM (Counter Maximum) code in the skip field.


## 2-44. FORMAT 5.


2-45. A format 5 microinstruction word is used to specify an MCU option operation. An operational flow diagram for format 5 is shown in figure 2-11. When a BUSL, BSPO, or BUSH store field code is decoded, the special field decoder is disabled and the special field bits (bits 23:27) are used by the MCU operation decoder to specify an MCU option. The BUSL and BSPO store field codes are used to initiate MCU memory operations. The store field code BUSH allows use of the central data bus to transfer data from the CPU output register (COR) to the operand, next instruction, or command registers.



2184-94

Figure 2-5. Execution of Microinstruction Containing Skip Condition (Condition Met)





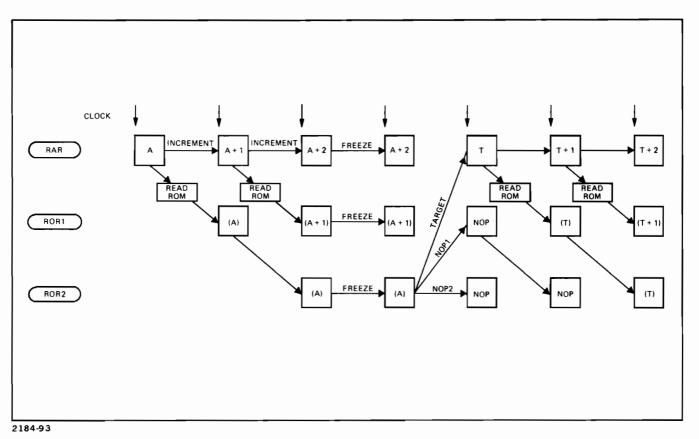



Figure 2-7. Execution of Microinstruction Containing Data Dependent JMP or JSB (Condition Met) to Target Address T

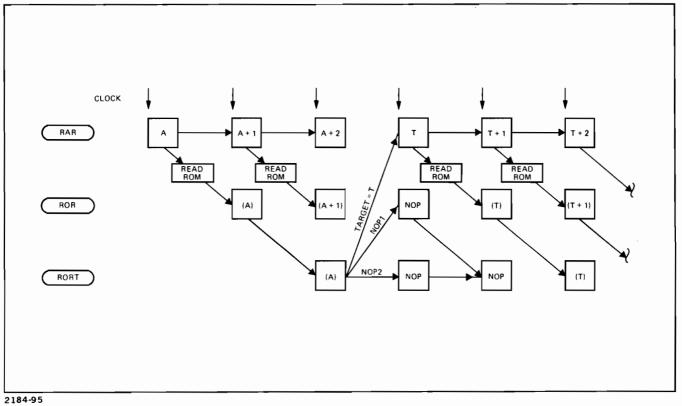
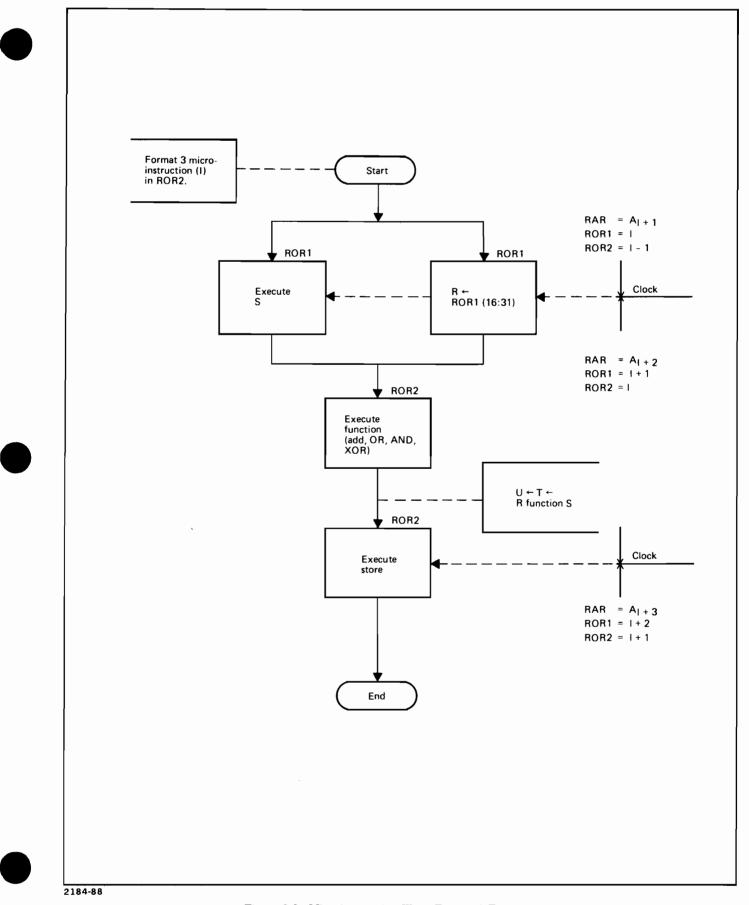






Figure 2-8. Execution of Microinstruction Containing JMP or JSB (Condition Met)



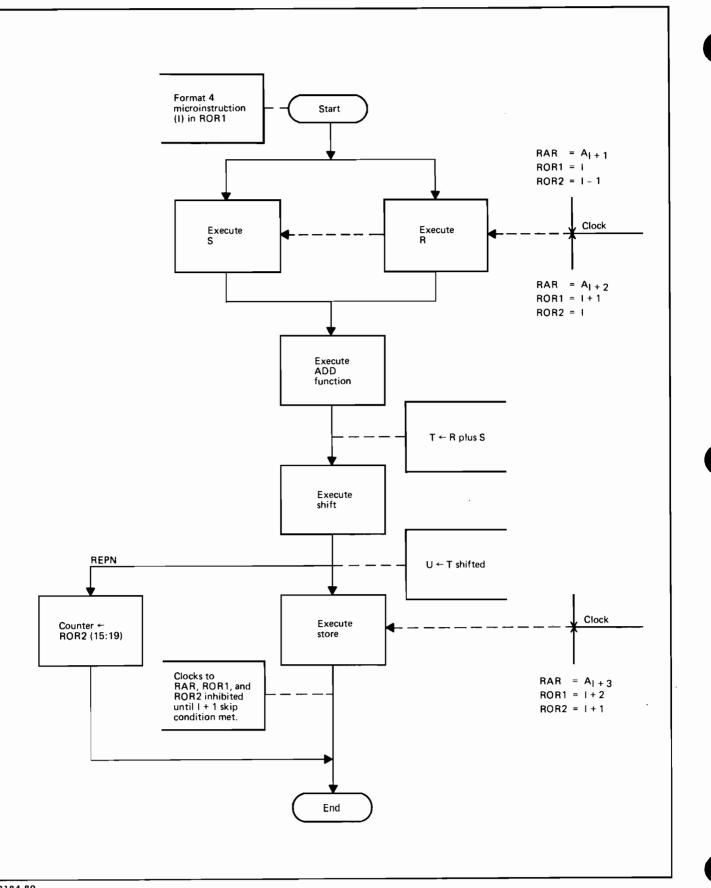





Figure 2-10. Microinstruction Word Format 4 Flow Diagram

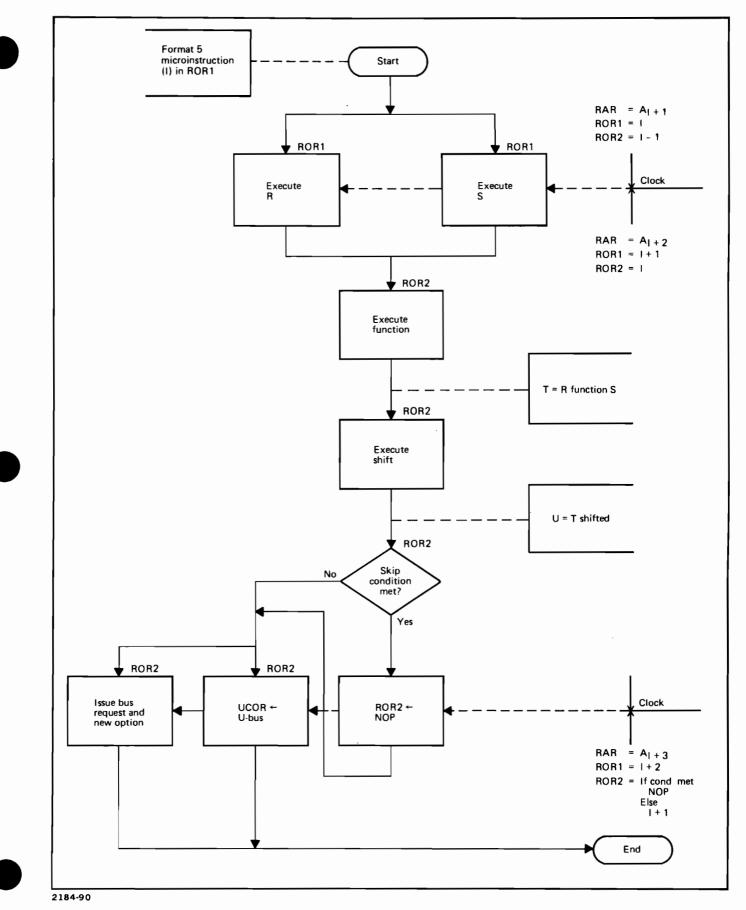



Figure 2-11. Microinstruction Word Format 5 Flow Diagram

## 3-1. INTRODUCTION.

3-2. This section contains a system-level description of operation for the HP 3000 Computer System and a blocklevel and functional-level description of operation for the CPU/IOP. The system-level description provides a brief description of the CPU/IOP operation in relation to other components of the HP 3000 Computer System. The blocklevel theory of operation divides the CPU/IOP into circuit groups and the operation of each circuit group is described, referencing a block diagram of the CPU/IOP and simplified and detailed logic diagrams of the circuit groups. The functional-level theory of operation describes the operation of the CPU/IOP during its normal operation (address/data transfers, etc). Operation of both direct and programmed (multiplexed) modes is described, using operational flow diagrams to supplement the text. All signals are referred to by their mnemonic. Refer to table 4-1 for a listing of all signal names and mnemonics.

#### 3-3. SYSTEM-LEVEL DESCRIPTION.

3-4. A block diagram of the HP 3000 Computer System is shown in figure 3-1. The diagram does not show a complete system but is a typical system containing a multiplexer channel and I/O interface and device (I/O subsystem). Direct I/O devices are not shown on the diagram, nor are additional multiplexer channels and their associated I/O subsystems. The following components, therefore, comprise the typical system depicted:

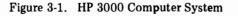
- a. Memory subsystem.
- b. Central processor unit (CPU).
- c. Input/output processor (IOP).
- d. Multiplexer channel.
- e. I/O subsystem (interface PCA and I/O device), such as line printer or tape reader.

3-5. The memory subsystem contains the I/O drivers that are executed by the CPU, I/O programs that are transferred by the IOP to the multiplexer channel, and the device reference tables (DRT). The I/O drivers contain I/O instructions such as Read I/O (RIO), Write I/O (WIO), Start I/O (SIO), Test I/O (TIO), and Control I/O (CIO). The DRT begins in memory location octal 14 and contains a maximum of 253 four-word entries. Each table entry corresponds to a unique I/O device number. The first word of each entry contains the address of the next I/O program instruction for the device.

3-6. The central processor unit is divided into three major sections: central processor unit (CPU), I/O processor (IOP), and module control unit (MCU). The MCU is shared by the CPU and IOP. When the CPU executes an I/O instruction (TIO, CIO, RIO, WIO, or SIO), direct commands are sent through the IOP and IOP bus to the addressed I/O subsystem. When the I/O subsystem accepts a direct command, it returns an acknowledge signal and executes the command.


3-7. If the CPU executes an SIO instruction, the IOP, in conjunction with the multiplexer channel, assumes control of the I/O subsystem and the CPU is free to continue processing other functions. The IOP transfers an I/O program, one instruction double word at a time, from the memory to the multiplexer channel. The multiplexer channel then controls the operation of the I/O subsystem.

## 3-8. BLOCK-LEVEL DESCRIPTION.


3-9. The block-level description divides the CPU/IOP (and MCU) into circuit groups and provides a description of operation for each circuit. Each description references a simplified logic diagram and a detailed logic diagram of the circuit. In addition, a drawing grid number is listed, showing the location of the circuit on the detailed diagrams (set nos. DD200 through DD209).

Note: Simplified diagrams are contained at the back of this section (figure 3-22). Figure 3-22 consists of 35 sheets and the references throughout the text are by sheet number.

3-10. Operation of the CPU/IOP is controlled by the software set of 170 instructions (see table 2-1) and the microprogram. The CPU requests an instruction from memory via the MCU. When the instruction is received over the central data bus it is loaded into the next instruction register (NIR), and from there to the current instruction register (CIR). The look-up table (LUT) address decoder and the LUT ROM produce a microprogram starting address from the instruction received from memory. The microinstruction is read out of the microprogram ROM address specified by the instruction, and decoded into a set of control codes which cause the CPU/IOP to perform certain functions. The following paragraphs describe the operation of the CPU/IOP circuits, starting with the next instruction register. A block diagram is shown in figure 3-2.



#### 2189-11



#### 3-11. NEXT INSTRUCTION REGISTER.

3-12. The next instruction register (NIR) is a 16-bit register, located on CIR PCA A8 and shown on simplified diagram sheet 9 and detailed diagram DD205, location B3. The NIR provides storage for the instruction to be executed immediately following the current instruction. This allows an instruction to be fetched concurrently with the execution of the preceding instruction. The NIR is loaded by an NIP signal from the MCU operation decoder. The NIP signal is generated as a result of a skip field code NEXT as described in the skip field code definitions (see table 3-5) or MCU options NIR, RWAN, and RWN as described in the MCU option field code definitions (see table 3-8).

#### 3-13. CURRENT INSTRUCTION REGISTER.

3-14. The current instruction register (CIR) is a 16-bit register, located on CIR PCA A8 and shown on simplified diagram sheet 9 and detailed diagram DD203, location B4. The CIR contains the instruction currently being executed by the CPU. The CIR is loaded from the NIR by an NIRTOCIR signal from the next logic. The NIRTOCIR signal is generated as a result of a skip field code NEXT as described in the skip field code definitions (see table 3-5) or the cycle after a special field code CCPX (see table 3-7) with U-bus bit 0 a logic 1.

3-15. ROM MAPPER.

3-16. The CPU logic consisting of the LUT address decoder, LUT ROM, ROM address register (RAR), RAR increment logic, save register, and microprogram ROM comprise an instruction decoder, or ROM mapper. The procedure for entry into the microprogram ROM is as follows:

- a. The current instruction register provides the 16-bit instruction fetched from memory to the LUT address decoder.
- b. The LUT address decoder uses the instruction to produce an eight-bit LUT address.
- c. The LUT address provides an entry into the LUT ROM. The LUT ROM reads out 12 bits, consisting of the W-bit and an 11-bit address which specifies the location in the microprogram ROM for the first microinstruction to be executed as called for by the current instruction. The W-bit is loaded from LUT ROM(0).
- d. The 12-bit microprogram ROM address is loaded into the ROM address register (RAR) and from RAR to the microprogram ROM and to the increment RAR logic.
- e. The RAR is incremented every 175 nanoseconds, producing a new address for the next microinstruction, until the current instruction is executed completely.

3-17. LUT ADDRESS DECODER. The LUT address decoder is loaded on CIR PCA A8 and shown on simplified diagram sheet 18 and detailed diagram DD205, location A15. The LUT address decoder consists of gating logic which decodes the 16-bit instruction word from the current instruction register into an entry address for the LUT ROM.

3-18. LUT ROM. The LUT ROM, located on CIR PCA A8, is shown on simplified diagram sheet 18 and detailed diagram DD205, location B16. The LUT ROM contains 256 (400 octal) 12-bit locations, which provide starting addresses for the microprogram ROM and "jump to" addresses during microprogram ROM jump conditions.

3-19. Data bit 0 in the look-up table ROM is the W-bit (bits 1 through 11 of the LUT contain the starting address of the microprogram for the instruction to be executed). When a new instruction is to be executed, the W-bit is read out of the LUT and stored in the W-bit register on PCA A8. The W-bit has different meanings for different instructions (the bit has a fixed, known value for every instruction).

- a. For STACKOPS (CIR  $(0:3) = 00_8$ ), the W-bit has no meaning, it is set equal to logic 1 merely for convenience.
- b. For SUBOP 1 (CIR  $(0:3) = 01_8$ ) instructions:
  - The W-bit is set to a logic 1 for instructions regarding P-relative addresses (branches). In this case, CIR (10) is treated as a sign bit for the P-relative displacement in CIR (11:15). This bit controls the function of the pre-added (add or subtract) such that a positive number (p+) (= CIR (11:15)) or a negative number (p-) (= 2<sup>16</sup> CIR (11:15)) may be obtained from it. This number may be used in the microprogram by using PADD in the ROR S-bus field.
  - (2) The W-bit is set equal to logic 0 for shift-type instructions. In this case, the pre-adder output is CIR (10:15) (a 6-bit shift count), with zeros in all other bit positions.
- c. For SUBOP 2 (CIR  $(0:3) = 02_8$ ) instructions, the W-bit controls the function of the pre-adder. In all cases, the input to the pre-adder is CIR (8:15).
  - (1) When the W-bit is logic 0 the pre-adder is set to the ADD function. Since the second input to the preadder is logic 0 (no indexing), the output is -CIR  $(8:15) (= 2^{16} \cdot CIR (8:15))$ , a negative number.
- d. For SUBOP 3 (CIR (0:3) = 03<sub>8</sub>) instructions there are two cases:
  - (1) For SPECOP 00 (CIR  $(0:3) = 03_8$ ), the W-bit is set to logic 0. This forces the pre-adder to the ADD function. In addition, CIR (12:15) only is applied to the pre-adder input. The output, therefore, is the K-field, CIR (12:15).

- (2) For SPECOP 01 through 17 (CIR (4:7) =  $01_8 17_8$ ), the W-bit causes the same action as in SUBOP 2, explained in paragraph 3-19.c.
- e. SUBOP  $04_8$  through  $17_8$  (CIR (0:3) =  $04_8 17_8$ ) instructions, in general, reference an operand in memory. The operations necessary to obtain the effective address of this operand are common to most of the instructions, and therefore one microprogram is used for this calculation. When one of these instructions is to be executed, it maps (through the LUT) to this microprogram to obtain the operand address. When this is done, the instruction then jumps to the microprogram that executes the specific instruction called for and the W-bit now becomes effective. The W-bit is set to logic 1. When the foregoing address calculation routine has been completed, a micro-operation (JLUI) in the ROM skip field is executed. If the instruction does not specify indirect addressing (or if one level of indirect addressing has been completed), the execution of JLUI forces a microprogram jump to an address contained in the LUT. Since the contents of CIR have not changed, the LUT would normally still be pointing to the address of the foregoing address calculation routine, and an infinite loop would result. The W-bit, however, now modifies the LUT entry address to a different (but related) address. This LUT address contains the microprogram address of the desired instruction to be executed.

3-20. ROM ADDRESS REGISTER AND INCREMENT LOGIC. The ROM address register (RAR) is a 12-bit register located on ROM PCA A3. The RAR is shown on simplified diagram sheet 18 and detailed diagram DD200, location B6. The RAR is loaded with the 12-bit output of the LUT ROM and, after loading, is automatically incremented every 175 nanoseconds by the increment RAR logic (see DD200, location B4) until the end of the microprogram for the instruction is reached. The RAR is normally loaded from the V-bus unless a repeat is specified, at which time the content of RAR does not change until the repeat is terminated.

3-21. When a Jump to Subroutine (JSB) is decoded by the function field decoder (see table 3-3), a JSB1 signal is generated and the contents of the RAR are loaded into the save register until a Return from Subroutine (RSB) is decoded by the skip field decoder. The RSB signal loads the contents of the save register back into the RAR.

3-22. In addition to the 12-bit output from the LUT ROM, the RAR can be loaded from the ROM output register rank 2 (ROR2) by a JMPGATE signal generated in response to a function field code Jump (JMP) or Jump to Subroutine (JSB), by the interrupt logic due to an interrupt or power failure, or from the U-bus in response to a SWLDRAR signal from the maintenance panel. When RAR is loaded from the U-bus, the condition of the maintenance panel RAR load register switches is stored in RAR. 3-23. SAVE REGISTER. The save register is a 12-bit register located on ROM PCA A3 and shown on simplified diagram sheet 18 and detailed diagram DD200, location B2. When a function field code JSB (Jump to Subroutine) is detected, the JSB1 signal is generated and the content of the RAR is loaded into the save register, and remains there until a skip field code RSB (Return from Subroutine) is detected, at which time the save register content is transferred back to the RAR. The CPU then continues executing the microprogram with the microinstruction following the JSB. The save register is inhibited from loading its content back into the RAR when RAR is being loaded from the U-bus by the SWLDRAR signal.

MICROPROGRAM ROM. The microprogram 3-24. ROM is located on ROM PCA A3 and shown on detailed diagram DD200, sheet 2. The ROM accepts the 12-bit address from the RAR and outputs a 32-bit microinstruction word from that address to the ROM output registers. The ROM contains 2048 (4000 octal), 32-bit microinstruction words. Each instruction generally calls several microinstructions from the ROM. For example, instructions which affect the top-of-stack (TOS) will first call a microprogram routine to check that there are enough filled or vacant top-of-stack registers to carry out the operation; then, after one or more memory transfers to adjust the stack, remaining microinstructions called by the instruction will begin. Updated addresses for succeeding microinstructions called by the instruction are furnished to the ROM every 175 nanoseconds by the RAR.

3-25. ROM OUTPUT REGISTER RANK 1.

3-26. The ROM output register rank 1 (ROR1) is a 32-bit register located on ROM PCA A3 (bits 0:9 and 15:31) and ALU PCA A5 (bits 10:14). ROR1 is shown on simplified diagram sheets 13 and 17 and detailed diagrams DD200 (location F2) and DD202 (location C23). ROR1 receives the 32-bit microinstruction word from the microprogram ROM. The R-bus and S-bus fields are connected directly from ROR1 to the R-bus and S-bus decoders with the remainder of the fields (with a few exceptions) connected to ROR2 and then to the decoders. This method allows the R- and S-bus registers to be loaded before executing the rest of the microinstruction.

When a function field code Repeat (REPC or 3-27. REPN) is detected, the ROR1 input function and the RAR increment function are disabled. The RAR then contains the address of the microinstruction following the one to be repeated and ROR1 contains the microinstruction to be repeated. The next cycle loads ROR2 and executes the microinstruction to be repeated. The REPEAT signal, inhibiting ROR1 input, is generated by the logical "or" of the decoded REPC/REPN function field codes, and the Repeat flip-flop (located on SSF PCA A4). The Repeat flip-flop is set by a RPTFCN signal generated by the function field decoder. As long as the Repeat flip-flop is set, the microinstruction contained in ROR1 is repeated; when the flip-flop is cleared by a SKIP signal from the skip field decoder, the ROR1 input function is enabled and the next microinstruction is loaded.

#### 3-28. ROM OUTPUT REGISTER RANK 2.

3-29. The ROM output register rank 2 (ROR2) is a 23-bit register. The bits are numbered 5 through 27. Bits 10 through 14 contain the function field code and are located on ALU PCA A5 and shown on simplified diagram sheet 13 and detailed diagram DD202, location C24. The remaining bits contain the store, skip, shift, and special field codes and are located on ROM PCA A3 and shown on simplified diagram sheet 17 and detailed diagram DD200, location G5. The output of ROR2 is connected to the field decoders.

#### 3-30. MICROINSTRUCTION FIELD DECODERS.

3-31. The 32-bit microinstruction word from the ROM output registers is divided into seven fields, each field containing from three to five bits. Each field, when decoded, produces a set of microcode signals which control the operation of the CPU.

3-32. S-BUS FIELD DECODER. The S-bus field decoder is located on S-bus PCA A7 and is shown on simplified diagram sheets 2 and 3 and detailed diagram DD204. The S-bus field decoder (bits 0:4) selects one of 31 registers (or sets of lines) to be loaded into the S-bus register. S-bus field code definitions are shown in table 3-1.

3-33. STORE FIELD DECODER. The R-bus registers store decoder is located on R-bus PCA A6 and shown on simplified diagram sheet 4 and detailed diagram DD203. The S-bus registers store decoder is located on S-bus PCA A7 and shown on simplified diagram sheet 5 and detailed diagram DD204. The store field (bits 5:9) selects one of 22 registers in which to store the U-bus data. In addition, the store field code PUSH moves all stack elements down one location and loads the U-bus word onto the top of stack. Store field code definitions are shown in table 3-2.

3-34. FUNCTION FIELD DECODER. The function field decoder is located on ALU PCA A5 and shown on simplified diagram sheet 13 and detailed diagram DD202. The function field (bits 10:14), when decoded, specifies the function to be performed by the arithmetic logic unit (ALU) on the two operands in the R- and S-bus registers. Function field code definitions are shown in table 3-3, and signals generated as a result of function field codes are shown in table 3-4.

3-35. SKIP FIELD DECODER. The skip field decoder is located on SSF PCA A4 and shown on simplified diagram sheet 23 and detailed diagram DD201. The skip field (bits 15:19) determines what condition will be tested for a possible skip. If the condition is met (e.g., U-bus positive/ negative, odd/even, zero/non-zero, overflow set, etc), ROM output register 2 (ROR2) will execute a no-operation (NOP), effectively skipping one microinstruction word. The skip field also specifies the condition under which a JUMP or JUMP to Subroutine (JMP or JSB) will be executed if coded in the microinstruction. Other signals, such as NEXT, which calls the next instruction from memory, are also decoded from the skip field. Skip field code definitions are shown in table 3-5. 3-36. SHIFT FIELD DECODER. The shift field decoder is located on ALU PCA A5 and shown on simplified diagram sheet 15 and detailed diagram DD202. The shift field (bits 20:22) specifies how the T-bus data will be shifted (right one, left one, straight through, etc). In addition, the shift field generates the scratch pad 1 register and scratch pad 3 register shift signals (SP1SHIFT and SP3SHIFT). In the case of certain shifts, the shift field determines what data is shifted into SP1 or SP3 by generating the SP1IN and SP3IN signals. The shift field code definitions are shown in table 3-6.

3-37. SPECIAL FIELD DECODER. The special field decoder is located on SSF PCA A4 and shown on simplified diagram sheet 22 and detailed diagram DD201. The special field (bits 23:27) has varied uses such as generating the memory operation code signals and the POP signal, which moves the stack elements up one location such that the second element (S minus 1) becomes the top of stack. The special field code definitions are shown in table 3-7.

3-38. MCU OPTION FIELD DECODER. The MCU option field decoder is located on MCU PCA A9 and shown on simplified diagram sheet 32 and detailed diagram DD206, location B25. The MCU option field uses the same bits (bits 23:27) as the special field. (The special field is disabled and the MCU option field is enabled when executing a store field code BSP0, BUSH, or BUSL.) MCU option field codes initiate transfers to or from memory and transfers from the CPU output register (UCOR) to the operand, next instruction, or command registers via the central data bus. MCU option field code definitions are shown in table 3-8.

3-39. R-BUS FIELD DECODER. The R-bus field decoder is located on R-bus PCA A6 and shown on simplified diagram sheet 1 and detailed diagram DD203. The R-bus field (bits 28:31) selects one of 15 registers (or the U-bus) for loading into the R-bus register. R-bus field code definitions are shown in table 3-9.

#### 3-40. NAME REGISTER.

3-41. The name register is a two-bit register located on R-bus PCA A6 and shown on simplified diagram sheet 11 and detailed diagram DD203, location C18. The name register functions as a map for access to the TOS registers. When the name register is used to address TOS registers directly onto the TNAME lines, the relationship is as follows:

| TNAM | 1E = | 00  | 01  | 10  | 11  |
|------|------|-----|-----|-----|-----|
| RA   | =    | TR0 | TR1 | TR2 | TR3 |
| RB   | =    | TR1 | TR2 | TR3 | TR0 |
| RC   |      | TR2 | TR3 | TR0 | TR1 |
| RD   | =    | TR3 | TR0 | TR1 | TR2 |

| Table 3-1. | S-Bus | Field | Code | Definitions |
|------------|-------|-------|------|-------------|
|------------|-------|-------|------|-------------|

| LABEL<br>AND<br>NAME                  | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (blank)                               | 11111         | The S-bus register is loaded with all zeros.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CC<br>(Condition Code)                | 10111         | The CC S-bus field code is used to retrieve the condition code (CC) portion<br>of the status word for use with certain conditional branch instructions.<br>When executed, bits 6 and 7 of the status word are loaded into bits 8 and 9<br>of the S-bus register and if both of these bits are zeros, S-bus register bit 7<br>becomes a one. All other S-bus register bits become zeros.                                                                                                                                               |
| CIR<br>(Current Instruction Register) | 00000         | The 16-bit output of the current instruction register (CIR) is loaded into the S-bus register.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CPX 1                                 | 00100         | The interrupt status register (CPX1), active only when the CPU is in the RUN mode, is loaded into the S-bus register.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CPX2                                  | 00110         | The interrupt status register (CPX2), active only when the CPU is in the HALT mode, is loaded into the S-bus register.                                                                                                                                                                                                                                                                                                                                                                                                                |
| CTRH<br>(Counter High)                | 01101         | The 6-bit content of the counter (CNTR) register is loaded into bits 4 thru<br>9 of the S-bus register. All other S-bus register bits become zeros.                                                                                                                                                                                                                                                                                                                                                                                   |
| CTRL<br>(Counter Low)                 | 01100         | The 6-bit content of the counter (CNTR) register is loaded into bits 10 thru 15 of the S-bus register. All other S-bus register bits become zeros.                                                                                                                                                                                                                                                                                                                                                                                    |
| DB<br>(Data Base)                     | 10101         | The 16-bit content of the data base (DB) register is loaded into the S-bus register.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DL<br>(Data Limit)                    | 11100         | The 16-bit content of the data limit (DL) register is loaded into the S-bus register.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IOA<br>(I/O Address)                  | 01001         | The 8-bit content of the interrupt device number (IDN) register is loaded into bits 8 thru 15 of the S-bus register. Bits 0 thru 7 of the S-bus register become zeros.                                                                                                                                                                                                                                                                                                                                                                |
| IOD<br>(I/O Data)                     | 01010         | The 16-bit content of the direct input data (DID/MUXMA) register in the IOP is loaded into the S-bus register.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MASK                                  | 01011         | The 16-bit content of the mask register in the IOP is loaded into the S-bus register.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MOD<br>(Module Number)                | 00101         | The MOD S-bus field code provides the CPU with two pieces of infor-<br>mation required during interrupt processing. When executed, the 4-bit<br>content of the interrupt module number (IMN) register is loaded into bits 4<br>thru 7 of the S-bus register. Also, if the CPU is CPU1, bit 13 of the S-bus<br>register becomes a 1. If CPU2, bit 12 of the S-bus register becomes a 1.<br>These bits are used to fetch the correct Q1 and ZI entries in the code<br>segment table. All other bits of the S-bus register become zeros. |
| OPND<br>(Operand)                     | 10110         | The 16-bit content of the operand (OPND) register is loaded into the S-bus register. An attempt to execute an OPND while an MCU operand directed operation is in progress results in a CPU freeze until the MCU operation is complete.                                                                                                                                                                                                                                                                                                |
| P<br>(Program Counter)                | 10000         | The 16-bit content of the program counter (P) register is loaded into the S-bus register.                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| LABEL<br>AND<br>NAME                | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                            |
|-------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PADD<br>(Pre-Adder)                 | 00010         | The 16-bit output of the pre-adder (PADD) is loaded into the S-<br>register.                                                                                                                                                           |
| PB<br>(Program Base)                | 11110         | The 16-bit content of the program base (PB) register is loaded into S-bus register.                                                                                                                                                    |
| Q<br>(Stack Marker Pointer)         | 10001         | The 16-bit content of the stack marker pointer (Q) register is loaded in the S-bus register.                                                                                                                                           |
| QDWN<br>(Stack Marker Pointer Down) | 01000         | The QDWN S-bus field code is used to put the content of the lowest T register in the S-bus register. During execution, TNAME becomes the s of NAME and SR(1:2) (SR must not be equal to zero) and the S-register is loaded as follows: |
|                                     |               | If TNAME = 00 then S-BUS := TR3S                                                                                                                                                                                                       |
|                                     | }             | If TNAME = 01 then S-BUS := TR0S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 10 then S-BUS := TR1S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 11 then S-BUS := TR2S                                                                                                                                                                                                       |
|                                     |               | To preserve stack integrity, a DCSR (Decrement SR) code must be in special field. Due to the pipeline effect, a TOS reference in the store find the preceding microinstruction also uses the above described TNAME.                    |
| RA                                  | 11011         | The RA S-bus field code is used to read the content of the first T<br>register (location S). SR must be greater than zero.* During executi<br>TNAME becomes NAME and the S-bus register is loaded as follows:                          |
|                                     |               | If TNAME = 00 then S-BUS := TR0S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 01 then S-BUS := TR1S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 10 then S-BUS := TR2S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 11 then S-BUS := TR3S                                                                                                                                                                                                       |
| RB                                  | 11010         | The RB S-bus field code is used to read the content of the second T register (location S-1). SR must be greater than 1.* During executi TNAME becomes NAME and the S-bus register is loaded as follows:                                |
|                                     |               | If TNAME = 00 then S-BUS := TR1S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 01 then S-BUS := TR2S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 10 then S-BUS := TR3S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 11 then S-BUS := TR0S                                                                                                                                                                                                       |
| RC                                  | 11001         | The RC S-bus field code is used to read the content of the third T<br>register (location S-2). SR must be greater than 2.* During execution<br>TNAME becomes NAME and the S-bus register is loaded as follows:                         |
|                                     |               | If TNAME = 00 then S-BUS := TR2S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 01 then S-BUS := TR3S                                                                                                                                                                                                       |
|                                     |               | If TNAME = 10 then S-BUS := TROS                                                                                                                                                                                                       |
|                                     |               | If TNAME = 11 then S-BUS := TR1S                                                                                                                                                                                                       |

\*True only if RA:RD are being used as part of the stack. RA:RD often are used by the microprogram as scratch pad registers when not used otherwise.

| LABEL<br>AND<br>NAME   | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                              |
|------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RD                     | 11000         | The RD S-bus field code is used to read the content of the fourth TOS register (location S-3). SR must be equal to 4.* During execution, TNAME becomes NAME and the S-bus register is loaded as follows: |
|                        |               | If TNAME = 00 then S-BUS := TR3S                                                                                                                                                                         |
|                        |               | If TNAME = 01 then S-BUS := TR0S                                                                                                                                                                         |
|                        |               | If TNAME = 10 then S-BUS := TR1S                                                                                                                                                                         |
|                        |               | If TNAME = 11 then S-BUS := TR2S                                                                                                                                                                         |
| SBUS                   | 01111         | The SBUS code causes the S-bus register content to remain unchanged.                                                                                                                                     |
| SM<br>(Stack Memory)   | 10011         | The 16-bit content of the stack memory (SM) register is loaded into the S-bus register.                                                                                                                  |
| SP1<br>(Scratch Pad 1) | 00001         | The 16-bit content of the scratch pad 1 (SP1) register is loaded into the S-bus register.                                                                                                                |
| SP2<br>(Scratch Pad 2) | 11101         | The 16-bit content of the scratch pad 2 (SP2) register is loaded into the S-bus register.                                                                                                                |
| SP3<br>(Scratch Pad 3) | 10101         | The 16-bit content of the scratch pad 3 (SP3) register is loaded into the S-bus register.                                                                                                                |
| STA<br>(Status)        | 10100         | The 16-bit status word is loaded into the S-bus register.                                                                                                                                                |
| SWCH                   | 00111         | The 16-bit content of the switch register is loaded into the S-bus register.                                                                                                                             |
| UBUS                   | 01110         | The 16-bit U-bus data word is loaded into the S-bus register. The U-bu data is established by the preceding microinstruction.                                                                            |
|                        |               |                                                                                                                                                                                                          |
|                        |               |                                                                                                                                                                                                          |
|                        |               |                                                                                                                                                                                                          |
|                        |               |                                                                                                                                                                                                          |
|                        |               |                                                                                                                                                                                                          |
|                        |               |                                                                                                                                                                                                          |
|                        |               |                                                                                                                                                                                                          |
|                        |               |                                                                                                                                                                                                          |

\*True only if RA:RD are being used as part of the stack. RA:RD often are used by the microprogram as scratch pad registers when not used otherwise.

| Table | 3-2. | Store | Field | Code | Definitions |
|-------|------|-------|-------|------|-------------|
|       |      |       |       |      |             |

|                             | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (blank)                     | 11111         | The U-bus word is not stored.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BSP0 (Bus to Scratch Pad 0) | 00101         | The store field code BSP0 is used to initiate an MCU memory operation<br>The U-bus data is stored in the CPU output register (COR) and in scratch<br>pad 0 (SP0). A bus low request is issued along with a module TO coor<br>decoded from U-bus bits 0, 1, and 2. The special field decoder is disable<br>and ROR2 bits 23 thru 27 provide an MCU option which specifies the type<br>of operation to be performed (RWA, RWAN, RWN, RNWA, CWA, or<br>CRL).                         |
| BUSH<br>(Bus High)          | 00110         | The store field code BUSH allows use of the central data bus to transfi<br>data from the CPU output register (COR) to the operand, next instructio<br>or command (CMDMOP) register. The U-bus data is stored in the CP<br>output register and a bus high request is issued. The special field decoder<br>disabled and MCU option decoder enabled. MCU options allowed a<br>OPND, NIR, and CRL.                                                                                    |
| BUSL<br>(Bus Low)           | 00100         | The store field code BUSL is used to initiate an MCU memory operatio<br>The U-bus data is stored in the CPU output register (COR) and a bus lo<br>request is issued along with a module TO code derived from U-bus bits 0,<br>and 2. The special field decoder is disabled and ROR2 bits 23 thru 2<br>provide an MCU option which specifies the type of operation to I<br>performed. MCU options allowed are RWA, RWAN, RWN, RNWA, CWA<br>and CRL.                                |
| CTRH<br>(Counter High)      | 01111         | The store field code CTRH stores U-bus bits 4 thru 9 in the count (CNTR) register bits 0 thru 5.                                                                                                                                                                                                                                                                                                                                                                                  |
| CTRL<br>(Counter Low)       | 01110         | The store field code CTRL stores U-bus bits 10 thru 15 in the count (CNTR) register bits 0 thru 5.                                                                                                                                                                                                                                                                                                                                                                                |
| DATA                        | 00111         | The store field code DATA is used to transfer data via the central data b<br>after a clear-write memory operation has been initialized. Only the memo<br>module initialized by a low bus request (BSP0 or BUSL) and a CWA MC<br>option will accept this data transfer. A bus high request is issued by t<br>DATA code. The MCU option decoder is not enabled by DATA and t<br>special field is decoded and executed in the usual manner.                                          |
| DB<br>(Data Base)           | 10011         | The store field code DB stores the 16-bit U-bus word in the data base (D register.                                                                                                                                                                                                                                                                                                                                                                                                |
| DL<br>(Data Limit)          | 11100         | The store field code DL stores the 16-bit U-bus word in the data limit (D register.                                                                                                                                                                                                                                                                                                                                                                                               |
| IOA<br>(I/O Address)        | 00001         | The store field code IOA stores bits 0 and 5 through 15 of the wo<br>currently on the S-bus in the I/O processor control (IOPC) register. Due<br>the pipeline affect, this word is established by the S-bus field of t<br>microinstruction following the one containing the IOA code. The sto<br>field code IOA also disables CPU flag 1 and substitutes I/O flag 1 in<br>place. This condition remains until the special field code CF1 restores to<br>use of flag 1 to the CPU. |
| (.,                         |               | the pipeline affect, this word is established by the S-bus<br>microinstruction following the one containing the IOA cod<br>field code IOA also disables CPU flag 1 and substitutes I/O<br>place. This condition remains until the special field code CF1                                                                                                                                                                                                                          |

| LABEL<br>AND<br>NAME      | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IOD<br>(I/O Data)         | 00010         | The store field code IOD stores the 16-bit word currently on the S-bus in<br>the direct output data (DOD) register. Due to the pipeline effect, this word<br>is established by the S-bus field of the microinstruction following the one<br>containing the IOD code. The store field code IOD also disables CPU flag 1<br>and substitutes 1/O flag 1 in its place. This condition remains until the<br>special field code CF1 restores the use of flag 1 to the CPU.                                                                                                        |
| MASK                      | 00000         | The store field code MASK stores the 16-bit word currently on the S-bus in<br>the mask register. Due to the pipeline effect, this word is established by the<br>S-bus field of the microinstruction following the one containing the MASK<br>code. The store field code MASK also disables CPU flag 1 and substitutes<br>I/O flag 1 in its place. This condition remains until the special field code<br>CF3 clears the Direct Data and Direct Active flip-flops (setting DDG and<br>DAG to zero), and the special field code CF1 restores the use of flag 1 to<br>the CPU. |
| MREG<br>(Memory Register) | 00011         | The store field code MREG is used to store data in an address that lies in a TOS register (ie, $S \ge E > SM$ where $S = SR + SM$ ). Prior to executing MREG, the value E minus S is placed in the SP1 register. During execution, TNAME becomes the sum of NAME and SP1(14:15) and the TOS registers are loaded as follows:                                                                                                                                                                                                                                                |
|                           |               | If TNAME = 00 then TR0 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               | If TNAME = 01 then TR1 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               | If TNAME = 10 then TR2 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               | If TNAME = 11 then TR3 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               | Due to the pipeline effect, a TOS register referenced in the R- or S-bus field of the following microinstruction assumes the above described TNAME.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P<br>(Program Count)      | 10000         | The store field code P stores the 16-bit U-bus word in the program counter (P) register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PB<br>(Program Base)      | 11110         | The store field code PB stores the 16-bit U-bus word in the program base (PB) register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PL<br>(Program Limit)     | 01001         | The store field code PL stores the 16-bit U-bus word in the program limit (PL) register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PUSH                      | 01000         | The store field code PUSH effectively moves all stack elements down one location and loads the U-bus word on the top of stack. To maintain stack integrity, SR must be less than four. When PUSH is executed, TNAME becomes NAME and the TOS registers are loaded as follows:                                                                                                                                                                                                                                                                                               |
|                           |               | If TNAME = 00 then TR3 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               | If TNAME = 01 then TR0 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               | If TNAME = 10 then TR1 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               | If TNAME = 11 then TR2 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |               | To complete the operation, NAME is decremented and SR is incremented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Table 3-2. | Store Field | <b>Code Definitions</b> | (Continued) |
|------------|-------------|-------------------------|-------------|
|------------|-------------|-------------------------|-------------|

| LABEL<br>AND<br>NAME             | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q<br>(Stack Marker Pointer)      | 10001         | The store field code Q stores the 16-bit U-bus word in the stack mappointer (Q) register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| QUP<br>(Stack Marker Pointer Up) | 10110         | The store field code QUP effectively inserts the U-bus word into the st<br>at location SM plus one. For example, if stack locations S and S minus<br>are in the TOS registers and location S minus two is the first stack elem<br>in memory (location SM), execution of QUP places the U-bus word<br>TOS register at stack location S minus two. The first stack element<br>memory (location SM) becomes S minus three. To maintain stack integr<br>the SR register must be incremented (special field code INSR) indicat<br>the addition of a TOS register element. SR must be less than four<br>properly execute QUP. |
|                                  |               | When the store field code QUP is executed, TNAME becomes the sum NAME and SR and the TOS registers are loaded as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  |               | If TNAME = 00 then TR0 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 01 then TR1 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 10 then TR2 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 11 then TR3 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | Due to the pipeline effect, a TOS register referenced in the R- or S-<br>fields of the following microinstruction assumes the above descri<br>TNAME.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RA                               | 11011         | The store field code RA stores the U-bus word in the first TOS regi<br>(location S). SR must be greater than zero.* During execution of<br>TNAME becomes NAME and the TOS registers are loaded as follows:                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                  |               | If TNAME = 00 then TR0 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 01 then TR1 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 10 then TR2 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 11 then TR3 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RAR<br>(ROM Address Register)    | 10111         | The store field code RAR stores bits 4 thru 15 of the U-bus in R<br>address register bits 0 thru 11. The intent of this code is to force<br>processor to a new microprogram address specified by the U-bus we<br>Execution of the RAR code requires three microcycles. The first loads<br>ROM address register and the next two are NOPs allowing the ROM out<br>registers (ROR1 and ROR2) to be loaded with the new microinstruction                                                                                                                                                                                   |
| RB                               | 11010         | The store field code RB stores the U-bus word in the second TOS regi<br>(location S minus one). SR must be greater than one.* During execution<br>RB, TNAME becomes NAME and the TOS registers are loaded as follo                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  |               | If TNAME = 00 then TR1 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 01 then TR2 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 10 then TR3 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |               | If TNAME = 11 then TR0 := U-BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

\*True only if RA:RD are being used as part of the stack, RA:RD often are used by the microprogram as scratch pad registers when not used otherwise.

| LABEL<br>AND<br>NAME         | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                    |
|------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RC                           | 11001         | The store field code RC stores the U-bus word in the third TOS register (location S minus two). SR must be greater than two.* During execution of RC, TNAME becomes NAME and the TOS registers are loaded as follows:                                          |
|                              |               | If TNAME = 00 then TR2 := U-BUS<br>If TNAME = 01 then TR3 := U-BUS                                                                                                                                                                                             |
|                              |               | If TNAME = 10 then TR0 := U-BUS                                                                                                                                                                                                                                |
|                              |               | If TNAME = 11 then TR1 := U-BUS                                                                                                                                                                                                                                |
| RD                           | 11000         | The store field code RD stores the U-bus word in the fourth TOS register (location S minus three). SR must be equal to four.* During execution of RD, TNAME becomes NAME and the TOS registers are loaded as follows:                                          |
|                              |               | If TNAME = 00 then TR3 := U-BUS                                                                                                                                                                                                                                |
|                              |               | If TNAME = 01 then TR0 := U-BUS                                                                                                                                                                                                                                |
|                              |               | If TNAME = 10 then TR1 := U-BUS                                                                                                                                                                                                                                |
|                              |               | If TNAME = 11 then TR2 := U-BUS                                                                                                                                                                                                                                |
| SM<br>(Stack Memory Pointer) | 10010         | The store field code SM stores the U-bus word in the stack memory (SM) register.                                                                                                                                                                               |
| SP0<br>(Scratch Pad 0)       | 10101         | The store field code SPO stores the U-bus word in the scratch pad 0 (SPO) register.                                                                                                                                                                            |
| SP1<br>(Scratch Pad 1)       | 01 100        | The store field code SP1 stores the U-bus word in the scratch pad 1 (SP1) register. A special two-bit register (SP1X) that duplicates SP1 bits 14 and 15 for use with the namer circuits is also loaded with U-bus bits 14 and 15 by the store field code SP1. |
| SP2<br>(Scratch Pad 2)       | 11101         | The store field code SP2 stores the U-bus word in the scratch pad 2 (SP2) register.                                                                                                                                                                            |
| SP3<br>(Scratch Pad 3)       | 10101         | The store field code SP3 stores the U-bus word in the scratch pad 3 (SP3) register.                                                                                                                                                                            |
| STA<br>(Status)              | 10100         | The store field code STA stores the U-bus word in the status register.                                                                                                                                                                                         |
| X<br>(Index)                 | 10110         | The store field code X stores the U-bus word in the index (X) register.                                                                                                                                                                                        |
| Z<br>(Stack Limit Pointer)   | 01010         | The store field code Z stores the U-bus word in the stack limit pointer (Z) register.                                                                                                                                                                          |
|                              |               |                                                                                                                                                                                                                                                                |
| ***                          |               | art of the stack RA'RD often are used by the microprogram as scratch pad                                                                                                                                                                                       |

\*True only if RA:RD are being used as part of the stack, RA:RD often are used by the microprogram as scratch pad registers when not used otherwise.

| Table 3-3. Function Fie | ld Code Definitions |
|-------------------------|---------------------|
|-------------------------|---------------------|

| LABEL<br>AND<br>NAME                             | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADD                                              | 11111         | The content of the R-bus register is added to the content of the S-bus register and the result is placed on the T-bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ADDO<br>(Add-Enable Overflow)                    | 11011         | The content of the R-bus register is added to the content of the S-bus register and the result is placed on the T-bus. Carry and overflow are enabled and the condition code is set to CCA on the U-bus. This instruction takes two cycles if executed on same line as NEXT.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AND                                              | 00111         | The content of the R-bus register is logically "anded" with the content of the S-bus register and the result is placed on the T-bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BNDT<br>(Bounds Test)                            | 01101         | The function field code BNDT is used to perform a bounds test of an address. Execution of this code results in the content of the R-bus register minus the content of the S-bus register being placed on the T-bus. The R-and S-bus fields are coded so that this result is a negative number (CARRY = 0) if a bounds violation occurs. If the CPU is not operating in the priviledged mode (STATUS(0) = 0), and a bounds violation occurs, a microjump to ROM address 0002 is executed. If no violation has occurred (CARRY = 1) or the CPU is operating in the priviledged mode (STATUS(0) = 1), the next microinstruction will be executed in the usual manner. This is a two-cycle operation (causes a one-cycle JMPFRZ). |
| CAD<br>(Complement and Add)                      | 01110         | The content of the R-bus register is added to the one's complement of the content of the S-bus register and the result is placed on the T-bus. If the S-bus register contains all zeros, CAD results in the R-bus register content minus 1 on the T-bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CADO<br>(Complement and Add-<br>Enable Overflow) | 0101 <b>0</b> | The content of the R-bus register is added to the one's complement of the content of the S-bus register and the result is placed on the T-bus. Carry and overflow are enabled and the condition code is set to CCA. This instruction takes two cycles if executed on same line as NEXT.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CAND<br>(Complement-And)                         | 00101         | The R-bus register content is logically "anded" with the complement of the S-bus register content and the result is placed on the T-bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CRS<br>(Circular Shift)                          | 11010         | The R-bus register content is added to the S-bus register content and the result is placed on the T-bus. The T-bus is then circular shifted one place right or left as specified in the shift field (SR1 or SL1) and placed on the U-bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CTSD<br>(Controlled Shift<br>Double)             | 10111         | The function field code CTSD adds the contents of the R-bus register and<br>the S-bus register, puts the result on the T-bus, and performs a double word<br>shift of the T-bus and a scratch pad left or right as specified by the shift<br>field code (SR1 or SL1). The type of shift is determined by the content of<br>the current instruction register (CIR) as follows:                                                                                                                                                                                                                                                                                                                                                  |
|                                                  |               | If CIR(7) = 1 then circular shift<br>If CIR(7) = 0.1 then logical shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  |               | If CIR(7:8) = 01 then logical shift<br>If CIR(7:8) = 00 then arithmetic shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ·                                                |               | The most significant word is on the T-bus. If a left shift is specified, scratch pad 1 (SP1) contains the least significant word. If a right shift is specified, scratch pad 3 (SP3) contains the least significant word. Regardless of the direction of the shift, both SP1 and SP3 are shifted left and right respectively.                                                                                                                                                                                                                                                                                                                                                                                                 |

| Table 3-3. Function Field Code Definitions (Continued | Table 3-3. | Function | Field Code | Definitions | (Continued |
|-------------------------------------------------------|------------|----------|------------|-------------|------------|
|-------------------------------------------------------|------------|----------|------------|-------------|------------|

| LABEL<br>AND<br>NAME                       | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTSS<br>(Controlled T-bus<br>Shift Single) | 11100         | The R-bus register content is added to the S-bus register content and the result is placed on the T-bus. The T-bus is then shifted left or right as specified by the shift field code (SR1 or SL1). The type of shift is determined by the content of the current instruction register as follows:                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            |               | If CIR(7) = 1 then circular shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            |               | If CIR(7:8) = 01 then logical shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |               | If CIR(7:8) = 00 then arithmetic shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DVSB<br>(Divide-Subtract)                  | 01000         | The function field code DVSB performs the subtract, shift, and test necessary to execute a divide algorithm. The R- and S-bus fields of the microinstruction are coded so that initially the 16-bit divisor is in the S-bus register and the most significant 16-bits of the dividend are in the R-bus register. The least significant 16-bits of the dividend are in the SP1 register. Both divisor and dividend must be positive numbers upon execution of the DVSB code and Flag 2 (F2) must be 0 (cleared). An SL1 code in the shift field of the microinstruction directs the left shift of the T-bus. The following algorithm is then executed 17 times to perform the complete divide. |
|                                            |               | TBUS := RBUS - SBUS;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            |               | UBUS(0:14) := TBUS(1:15);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            |               | If ALU carry or F2=1 then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            |               | BEGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            |               | RREG(0:14) := UBUS(0:14);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            |               | RREG(15) := SP1(0);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |               | SP1(0:14) := SP1(1:15);<br>SP1(15) := 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            |               | SP1(15) := 1<br>F2 := TBUS(0);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |               | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |               | else                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            |               | BEGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            |               | RREG(0:14) := RREG(1:15);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            |               | RREG(15) := SP1(0);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |               | SP1(0:14) := SP1(1:15);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            |               | SP1(15) := 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                            |               | F2 := RREG(0);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |               | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |               | After 17 executions of the above algorithm, the 16-bit quotent is contained<br>in the SP1 register and the remainder times 2 is contained in the R-bus<br>register. When the remainder is unloaded from the R-bus register, it is<br>shifted right one place (divided by 2).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| INC<br>(Incremented<br>Add)                | 11101         | The R-bus register content is added to the S-bus register content plus 1.<br>This results in an increment of either register (R- or S-bus) content placed<br>on the T-bus if the other register contains all zeros.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Table 3-3. | Function | Field ( | Code | Definitions | (Continued) |
|------------|----------|---------|------|-------------|-------------|
|------------|----------|---------|------|-------------|-------------|

| LABEL<br>AND<br>NAME                          | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INCO<br>(Incremented Add-<br>Enable Overflow) | 11001         | The R-bus register content is added to the S-bus register content plus 1, the result placed on the T-bus, and the carry and overflow logic is enabled. The condition code is set to CCA on the U-bus data. This instruction takes two cycles if executed on same line as NEXT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IOR<br>(Inclusive OR)                         | 10110         | The content of the R-bus register is logically inclusively "ored" with the content of the S-bus register and the result is placed on the T-bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| JMP<br>(Jump)                                 | 01100         | The JMP function field code directs a micro-jump to the ROM address (jump target) specified by bits 20 thru 31 of the ROM output register if the skip field condition is met (a condition must be specified). The R-bus, shift, and special field decoders are disabled and the U-bus and T-bus become the S-bus register content. If the skip field code is ZERO, NZRO, EVEN, ODD, NSME, BIT6, BIT8, NOFL, CRRY, NCRY, POS, or NEG, a one-cycle freeze is generated to allow the U-bus data to be established and checked for the condition. If the condition is met, the ROM address register (RAR) is loaded with the jump target and both ranks of the ROM output register (ROR1 and ROR2) are NOPed. Two NOP cycles allow the pipeline to fill and the microinstruction at the jump target address is then executed. If the condition is not met the next microinstruction is executed in the usual manner.                                                                                                                                                                                                                                                                                                                                         |
| JSB<br>(Jump to Subroutine)                   | 00100         | The JSB function field code directs a micro-subroutine jump to the ROM address specified by bits 20 thru 31 of the ROM output register if the skip field code condition is met. A JSB is first detected in rank one of the ROM output register 1 (ROR1) at which time the ROM address register (RAR) content is loaded into the save register if the next cycle is not going to have NOP2 on (i.e. SKIP = 0). If the condition is met and the JSB is executed, the save register content is used as a return address at the subroutine end (see function field code RSB). During execution of the JSB, the R-bus, shift, and special field decoders are disabled and the T-bus and U-bus become the S-bus register content. If the skip field code is ZERO, NZRO, EVEN, ODD, NSME, BIT6, BIT8, NOFL, CRRY, NCRY, POS or NEG, a one-cycle freeze is generated to allow the U-bus data to be established and checked for the condition. If the condition is met, the RAR is loaded with the subroutine address and both ranks of the ROR are NOPed. Two NOP cycles allow the pipeline to fill and the microinstruction at the subroutine address is then executed. If the condition is not met, the next microinstruction is executed in the usual manner. |

| Table 3-3. Fun | ction Field Code | Definitions | (Continued) |
|----------------|------------------|-------------|-------------|
|----------------|------------------|-------------|-------------|

| LABEL<br>AND<br>NAME   | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPAD<br>(Multiply-Add) | 11000         | The function field code MPAD performs the add, shift, and test necessary<br>to execute a multiply algorithm. The R-bus field of the microinstruction is<br>coded so that initially the 16-bit multiplicand is in the R-bus register. The<br>S-bus field code is UBUS which is initially all zeros. Scratch pad 3 contains<br>the 16-bit multiplier. Both multiplier and multiplicand must be positive<br>numbers upon execution of the MPAD code. An SR1 code in the shift field<br>directs the right shift of the T-bus. The following algorithm is executed 16<br>times to perform a complete multiply.                                                                                                                                                              |
|                        |               | T-BUS := R-REG plus S-REG;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |               | U-BUS(1:15) := T-BUS(0:14);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |               | U-BUS(0) := ALUcarry;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |               | If SP3(15) = 1 then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |               | BEGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |               | S-REG := U-BUS;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |               | SP3(1:15) := SP3(0:14);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |               | SP3(0) := T-BUS(15);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |               | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |               | else                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |               | BEGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |               | S-REG(1:15) := S-REG(0:14);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |               | SP3(1:15) := SP3(0:14);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |               | SP3(0) := S-REG(15);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |               | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |               | After 16-executions of the above algorithm, the result is a 32-bit word with the most significant 16-bits in the S-bus register and the least significant 16-bits in scratch pad 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PNLR<br>(Panel Read)   | 10000         | The PNLR function field code allows the auxiliary control panel to select<br>and display a CPU register. This code appears in the microprogram during<br>execution of HALT and PAUSE routines. When PNLR is executed, the<br>ROM output register (ROR1) R-bus and S-bus fields are disabled. The<br>maintenance panel interface supplies these field codes which put the<br>content of the selected register in the associated (R- or S-bus) register. The<br>T-bus and U-bus become the R-bus register content plus the S-bus register<br>content (one of which will be zeros). The auxiliary control panel completes<br>this operation by displaying the U-bus as the selected register.                                                                             |
| PNLS<br>(Panel Store)  | 10001         | The PNLS function field code allows the auxiliary control panel to load a CPU register with the content of one of its switch registers. This code is part of the halt mode interrupt micro-routine for servicing a maintenance panel interrupt. When PNLS is executed, the ROM output register (ROR2) store field is disabled and the maintenance panel interface card supplies the store field code respective of the selected CPU register. A SWCH S-bus field code causes the S-bus register to be loaded with the content of the selected auxiliary control panel switch register. The T-bus and U-bus become the R-bus register content (zeros) plus the S-bus register content and at the end of the cycle, the selected register is loaded with the U-bus data. |

Table 3-3. Function Field Code Definitions (Continued)

| LABEL<br>AND<br>NAME             | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REPC<br>(Repeat Until Condition) | 10100         | The REPC function field code causes the next microinstruction to be<br>executed repeatedly until the skip field condition of that microinstruction<br>is met. The skip field of the microinstruction containing the REPC code is<br>not used. During execution the T-bus becomes the R-bus register content<br>plus the S-bus register content. The REPC code is decoded from ROR2 and<br>at that time disables the RAR increment function and the ROR1 load<br>function and sets the Repeat FF. The RAR then contains the address of the<br>microinstruction following the one to be repeated and ROR1 contains the<br>microinstruction to be repeated. The next cycle loads ROR2 and executes<br>the microinstruction to be repeated. As long as the Repeat FF remains set,<br>the content of ROR1 and ROR2 does not change and is executed each<br>cycle. When the skip field condition is met, the Repeat FF is cleared, the<br>pipeline is filled correctly, and the next microinstruction is fetched in the<br>usual manner. |
| REPN<br>(Repeat N Times)         | 10101         | The REPN function code operates in the same manner as the REPC code described for the preceding label. The difference is that REPN loads a repeat counter register with the content of the microinstruction skip field. Bits 1 thru 5 of the counter become ROR2 bits 5 thru 19; bit 0 of the counter becomes a 1. The counter content is then the two's complement of the number of repeats to be performed. To utilize the counter, the repeated microinstruction contains a special field code INCTR (Increment Counter) and a skip field condition CTRM (Counter Maximum).                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ROM                              | 10010         | The function field code ROM loads the R-bus register with a 16-bit constant obtained from the microinstruction. The ROM code is decoded from ROR1, loading the R-bus register with bits 16 thru 31 of ROR1. The T-bus then becomes the R-bus register content plus the S-bus register content. The R-bus, shift, special, and skip field decoders are disabled by the ROM code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ROMI<br>(ROM Inclusive)          | 10010         | The function field code ROMI loads the R-bus register with a 16-bit constant obtained from the microinstruction. The ROMI code is decoded from ROR1, loading the R-bus register with ROR1 bits 16 thru 31. The T-bus then becomes the R-bus register content inclusive "ored" with the S-bus register content. The R-bus, shift, special, and skip field decoders are disabled by the ROMI code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ROMN<br>(ROM And)                | 00011         | The function field code ROMN loads the R-bus register with a 16-bit constant obtained from the microinstruction. The ROMN code is decoded from ROR1, loading the R-bus register with ROR1 bits 16 thru 31. The T-bus becomes the R-bus register content logically "anded" with the S-bus register content. The R-bus, shift, special, and skip field decoders are disabled by the ROMN code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ROMX<br>(ROM Exclusive)          | 00010         | The function field code ROMX loads the R-bus register with a 16-bit constant obtained from the microinstruction. The ROMX code is decoded from ROR1, loading the R-bus register with ROR1 bits 16 thru 31. The T-bus becomes the R-bus register content exclusive "ored" with the S-bus register content. The R-bus, special, shift, and skip field decoders are disabled by the ROMX code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RPTY<br>(Reverse Parity)         | 11110         | The function field code RPTY reverses the parity generated by the CPU for central data bus bound words. This function is used for diagnostic purposes only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| LABEL<br>AND<br>NAME                       | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUB<br>(Subtract)                          | 01111         | The content of the S-bus register is subtracted from the content of the R-bus register and the result is placed on the T-bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SUBO<br>(Subtract-Enable Overflow)         | 01011         | The content of the S-bus register is subtracted from the content of the R-bus register and the result is placed on the T-bus. Carry and overflow are enabled and condition code CCA is set on the U-bus data word. This instruction takes two cycles if executed on same line as NEXT.                                                                                                                                                                                                                                                                                                      |
| TASL<br>(Triple Arithmetic Shift Left)     | 00000         | The function field code TASL causes a three word arithmetic left shift of the contents of the S-bus, SP1, and the R-bus registers containing the most, middle and least significant words respectively. The sign bit is saved, bit 1 of the most significant word is lost, and bit 15 of the least significant word becomes zero. The S-bus register content is read to the T-bus and shifted onto the U-bus by an SL1 code in the shift field. The other two words are shifted in their respective registers.                                                                              |
| TASR<br>(Triple Arithmetic<br>Shift Right) | 00001         | The function field code TASR causes a three word arithmetic right shift of the contents of the R-bus, SP3, and S-bus registers containing the most, middle, and least significant words respectively. The sign bit remains bit 0 of the most significant word and is copied into bit 1 of the most significant word. Bit 15 of the least significant word is lost. The R-bus register content is read onto the T-bus and shifted onto the U-bus by an SR1 code in the shift field. The other two words are shifted in their respective registers.                                           |
| UBNT<br>(Unconditional Bounds Test)        | 01001         | The function field code UBNT is used to perform an unconditional bounds test of an address. Execution of this code results in the content of the R-bus register minus the content of the S-bus register being placed on the T-bus. The R-bus and S-bus field are coded so that this result is a negative number (CARRY = 0) if a bounds violation occurs. The response to a bounds violation is a micro-jump to ROM address 0002. If no violation occurs (CARRY = 1), the next microinstruction is executed in the usual manner. This is a two-cycle operation (causes a one-cycle JMPFRZ). |
| XOR<br>(Exclusive OR)                      | 00110         | The content of the R-bus register is exclusive "ored" with the content of the S-bus register and the result is placed on the T-bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Table 3-4. | . Function | Field | Code | Signals |
|------------|------------|-------|------|---------|
|------------|------------|-------|------|---------|

| FUNCTION<br>FIELD<br>LABEL | FIELD<br>CODE | SIGNALS GENERATED                                                        | FUNCTION<br>FIELD<br>LABEL | FIELD<br>CODE | SIGNALS GENERATED                                                                       |
|----------------------------|---------------|--------------------------------------------------------------------------|----------------------------|---------------|-----------------------------------------------------------------------------------------|
| ADD                        | 11111         | ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 1                             | INCO                       | 11001         | ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 0<br>OFCENB = 1                              |
| ADDO                       | 11011         | ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 1<br>OFCENB = 1               | IOR                        | 10110         | ALUS(0:3) = 1000<br>ALUMODE = 0<br>ALUFC = 1                                            |
| AND                        | 00111         | ALUS(0:3) = 1101<br>ALUMODE = 1                                          |                            |               | S3:S0 = 0001                                                                            |
| BNDT                       | 01 101        | ALUS(0:3) = 0110<br>ALUMODE = 0<br>ALUFC = 0<br>BNDT = 0                 | JMP                        | 01100         | ALUS(0:3) = 0101<br>ALUMODE = 1<br>ALUFC = 1<br>JMPJSB2 = 1<br>SKIPNOP = 0<br>RFINH = 1 |
| CAD                        | 01110         | ALUS(0:3) = 0110<br>ALUMODE = 0<br>ALUFC = 1                             | JSB                        | 00100         | ALUS(0:3) = 0101<br>ALUMODE = 1                                                         |
| CADO                       | 01010         | ALUS(0:3) = 0110<br>ALUMODE = 0<br>ALUFC = 1<br>OFCENB = 1               |                            |               | ALUFC = 1<br>JMPJSB2 = 1<br>JSB1 = 1<br>SKIPNOP = 0<br>RFINH = 1                        |
| CAND                       | 00101         | ALUS(0:3) = 1110<br>ALUMODE = 1<br>S3:S0 = 0111                          | MPAD                       | 11000         | ALUS(0:3) = 1001<br>ALUMODE = 0                                                         |
| CRS                        | 11010         | ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 1                             | <b>D1</b> 11 D             | 40000         | ALUFC = 1<br>SP3SHIFT = 1                                                               |
| CTSD                       | 10111         | CRS = 1<br>ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 1<br>SP1SHIFT = 1  | PNLR                       | 10000         | ALUS(0:3) = 1001<br>ALUMODE = 0<br><u>ALUFC = 1</u><br>PNLREAD = 1<br>RSSEL = 1         |
| DVSB                       | 01000         | SP3SHIFT = 1<br>ALUS(0:3) = 0110<br>ALUMODE = 0<br>ALUFC = 1             | PNLS                       | 10001         | ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 1<br>PANLSTOR = 1                            |
| INC                        | 11101         | DVSB = 1<br>SP1SHIFT = 1<br>ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 0 | REPC                       | 10100         | ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 1<br>RPTFCN = 1<br>REPEAT = 1                |
|                            |               |                                                                          |                            |               |                                                                                         |

| FUNCTION<br>FIELD<br>LABEL | FIELD<br>CODE | SIGNALS GENERATED                                                                                                    | FUNCTION<br>FIELD<br>LABEL | FIELD<br>CODE  | SIGNALS GENERATED                                                                       |
|----------------------------|---------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|-----------------------------------------------------------------------------------------|
| REPN                       | 10101         | ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 1<br>RPTFCN = 1<br><u>REPEAT</u> = 1<br><u>REPN = 0</u>                   | RPTY<br>SUB                | 11110<br>01111 | PRTYMODE = 1<br>ALUS(0:3) = 0110 Two's<br>ALUMODE = 0 Complement<br>ALUFC = 0 Subtracts |
| ROM                        | 10010         | ALUS(0:3) = 1001<br>ALUMODE = 0<br>ALUFC = 1<br>ROMFCN1 = 1<br><u>RFINH = 1</u><br><u>ROMFCNT = 0</u><br>SKIPNOP = 0 | SUBO                       | 01011          | ALUS(0:3) = 0110<br>ALUMODE = 0<br>ALUFC = 0<br>OFCENB = 1                              |
| ROMI                       | 10010         | ALUS(0:3) = 1000<br>ALUMODE = 0<br>ALUFC = 1<br>ROMFCN1 = 1<br><u>RFINH = 1</u><br><u>ROMFCNT = 0</u>                | TASL                       | 00000          | ALUS(0:3) = 0101<br>ALUMODE = 1<br>SP1SHIFT = 1                                         |
| ROMN                       | 00011         | SKIPNOP = 0<br>ALUS(0:3) = 1101<br>ALUMODE = 1<br>ROMFCN1 = 1                                                        | TASR                       | 00001          | ALUS(0:3) = 1111<br>ALUMODE = 1<br>SP3SHIFT = 1                                         |
| ROMX                       | 00010         | $\frac{\text{RFINH} = 1}{\text{ROMFCNT} = 0}$ $\text{SKIPNOP} = 0$ $\text{ALUS}(0:3) = 0110$ $\text{ALUMODE} = 1$    | UBNT                       | 01001          | ALUS(0:3) = 0110<br>ALUMODE = 0<br>ALUFC = 0<br>UBNT = 0                                |
|                            |               | ROMFCN1 = 1<br>RFINH = 1<br>ROMFCNT = 0<br>SKIPNOP = 0                                                               | XOR                        | 00110          | ALUS(0:3) = 0110<br>ALUMODE = 1                                                         |
|                            | · · · · · ·   |                                                                                                                      |                            |                |                                                                                         |
|                            |               |                                                                                                                      |                            |                |                                                                                         |
|                            |               |                                                                                                                      |                            |                |                                                                                         |

 Table 3-4.
 Function Field Code Signals (Continued)

`

## Table 3-5. Skip Field Code Definitions

| LABEL<br>AND<br>NAME  | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                      |
|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (blank)               | 11111         | No skip field operation.                                                                                                                                                                                                                         |
| BIT6                  | 00101         | The skip field code BIT6 sets the NOP2 FF if bit 6 of the U-bus word is a logic 1. Causes conditional jump and JSB to be two-cycle instructions.                                                                                                 |
| ВІТВ                  | 00110         | The skip field code BIT8 sets the NOP2 FF if bit 8 of the U-bus word is a logic 1. Causes conditional jump and JSB to be two-cycle instructions.                                                                                                 |
| CRRY<br>(Carry)       | 01000         | The skip field code CRRY sets the NOP2 FF if the ALU carry out is a logic 1. Causes conditional jump and JSB to be two-cycle instructions.                                                                                                       |
| CTRM<br>(Counter Max) | 11011         | The skip field code CTRM sets the NOP2 FF if the counter contains all ones.                                                                                                                                                                      |
| EVEN                  | 00010         | The skip field code EVEN sets the NOP2 FF if the U-bus word is an even number (U-bus bit 15 is a logic 0). Causes conditional jump and JSB to be two-cycle instructions.                                                                         |
| F1<br>(Flag 1)        | 01100         | The skip field code F1 sets the NOP2 FF if Flag 1 FF is set.                                                                                                                                                                                     |
| F2<br>(Flag 2)        | 01110         | The skip field code F2 sets the NOP2 FF is Flag 2 FF is set.                                                                                                                                                                                     |
| F3<br>(Flag 3)        | 11100         | The skip field code F3 sets the NOP2 FF if Flag 3 FF is set.                                                                                                                                                                                     |
| INDR<br>(Indirect)    | 10100         | The skip field code INDR sets the NOP2 FF if the Indirect Bit FF is set and the indirect signal is a logic 1.                                                                                                                                    |
| JLUI                  | 11001         | The skip field code JLUI causes a microjump to the ROM address specified<br>by the LUT (look up table) providing the indirect condition (skip field<br>INDR code) is not met. If the indirect condition is met the microjump is<br>not executed. |
| NCRY                  | 01001         | The skip field code NCRY sets the NOP2 FF if the carry out from the ALU is zero. Causes conditional jump and JSB to be two-cycle instructions.                                                                                                   |
| NEG                   | 01011         | The skip field code NEG sets the NOP2 FF if the U-bus word is a negative number (U-bus bit 0 is a logic 1). Causes conditional jump and JSB to be two-cycle instructions.                                                                        |

| Table 3-5. Skip Field Code Definitions (Cor | ntinued) |
|---------------------------------------------|----------|
|---------------------------------------------|----------|

| LABEL<br>AND<br>NAME     | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NEXT                     | 11 10 1       | The skip field code NEXT is a complex operation that causes the hardware<br>to fetch and decode the next user instruction. If stackop A has just been<br>executed and stackop B is not a NOP, and no interrupts are pending, the<br>hardware executes the stackop B portion of the current instruction. For<br>any other condition without interrupts pending, a four cycle operation<br>occurs as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          |               | Cycle 1. The current instruction register (CIR) is loaded with the content<br>of the next instruction register (NIR). The CPU output register<br>(PCOR) is loaded with the P-register content and sent to the<br>MCU along with a command to read-write memory and return<br>the results to the NIR. If Flag 1 or Flag 2 FF's have been set by<br>some previous operation, they are cleared at this time. CLIB FF<br>is cleared and ROR1 is NOPed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          |               | Cycle 2. The new CIR content is decoded via the look up table (LUT) and<br>the LUT output is loaded into the ROM address register (RAR).<br>ROR1 and ROR2 are NOPed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          |               | Cycle 3. At the end of this cycle, ROR1 is loaded with the micro-<br>instruction at the address specified by the RAR content. This is<br>the first microinstruction for execution of the new user instruc-<br>tion. The pre-adder output (relative address portion of the CIR<br>plus index) is loaded into the R-bus register and the content of<br>the base register (P, DB, Q, or S) is loaded into the S-bus register<br>depending on whether the instruction contained in CIR is a MEM<br>REF instruction or not. If the base is the P-register, it is impor-<br>tant to note that the P-register is pointing at the instruction being<br>fetched from memory and not the current instruction. The result-<br>ant effective address will therefore be one greater than the<br>desired address. The CPU must decrement this address in some<br>following microinstruction. At the end of cycle 3, the P-register is<br>incremented by one to point to the next instruction in memory.<br>ROR1 and ROR2 are NOPed. |
|                          |               | Cycle 4. The U-bus becomes the sum of the R-bus register content plus<br>the S-bus register content. This is the effective address of the<br>operand or, in the case of P-relative addressing, the effective<br>address plus 1. Also, at the end of this cycle ROR2 is loaded with<br>the content of ROR1, the R-bus and S-bus fields of ROR1 are<br>executed and ROR2 is NOPed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          |               | The pipeline is now full and execution of the new user instruction is in progress. When the memory operation started by cycle 1 is complete, the NIR contains the next sequential user instruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NF1 (Not Flag 1)         | 01 10 1       | The skip field code NF1 sets the NOP2 FF if Flag 1 FF is cleared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NF2 (Not Flag 2)         | 01111         | The skip field code NF2 sets the NOP2 FF is Flag 2 FF is cleared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NOFL<br>(Not Overflow)   | 00111         | The skip field code NOFL sets the NOP2 FF if the ALU overflow bit is not a logic 1. Causes conditional jump and JSB to be two-cycle instructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NPRV<br>(Not Privileged) | 10110         | The skip field code NPRV sets the NOP2 FF if the privileged mode bit (status word bit 0) is zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Table 3-5. | Skip Field | <b>Code Definitions</b> | (Continued) |
|------------|------------|-------------------------|-------------|
| Table 0-0. | Skip rielu | Code Deminions          | (Containaeu |

| LABEL<br>AND<br>NAME            | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                  |
|---------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NSME<br>(Not Same)              | 00100         | The skip field code NSME sets the NOP2 FF if all bits of the T-bus are no<br>the same. Causes conditional jump and JSB to be two-cycle instructions.                                                         |
| NZRO<br>(Not Zero)              | 00001         | The skip field code NZRO sets the NOP2 FF if the T-bus word is not equato zero. Causes conditional jump and JSB to be two-cycle instructions.                                                                |
| ODD                             | 00110         | The skip field code ODD sets the NOP2 FF if the U-bus word is an or<br>number (U-bus bit 15 is a logic 1). Causes conditional jump and JSB to I<br>two-cycle instructions.                                   |
| POS<br>(Positive)               | 01010         | The skip field code POS sets the NOP2 FF if the U-bus word is a positi number (U-bus bit 0 is a logic 0). Causes conditional jump and JSB to I two-cycle instructions.                                       |
| RSB<br>(Return from Subroutine) | 11000         | The skip field code RSB causes a microjump to the ROM address contained<br>in the save register. ROR1 and ROR2 are NOPed allowing two cycles to f<br>the pipeline with the target address microinstructions. |
| SR4<br>(SR=4)                   | 10010         | The skip field code SR4 sets the NOP2 FF if the SR register content equal to four.                                                                                                                           |
| SRL2<br>(SR<2)                  | 10101         | The skip field code SRL2 sets the NOP2 FF if the SR register content less than two.                                                                                                                          |
| SRL3<br>(SR<3)                  | 10111         | The skip field code SRL3 sets the NOP2 FF if the SR register content less than three.                                                                                                                        |
| SRN4<br>(SR Not 4)              | 10011         | The skip field code SRN4 sets the NOP2 FF if the SR register content not four.                                                                                                                               |
| SRNZ<br>(SR Not Zero)           | 10001         | The skip field code SRNZ sets the NOP2 FF if the SR register content not zero.                                                                                                                               |
| SRZ<br>(SR Zero)                | 1000          | The skip field code SRZ sets the NOP2 FF if the SR register content equal to zero.                                                                                                                           |
| TEST                            | 11010         | The skip field code TEST sets the NOP2 FF if any enabled interrupt pending.                                                                                                                                  |
| UNC<br>(Unconditional)          | 11110         | The skip field code UNC sets the NOP2 FF unconditionally.                                                                                                                                                    |
| ZERO                            | 00000         | The skip field code ZERO sets the NOP2 FF if the T-bus word is equal zero.                                                                                                                                   |
|                                 |               |                                                                                                                                                                                                              |
|                                 |               |                                                                                                                                                                                                              |
|                                 |               |                                                                                                                                                                                                              |

| LABEL<br>AND<br>NAME              | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                 |
|-----------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (blank)                           | 111           | The T-bus word is placed directly on the U-bus.                                                                                                                                                                             |
| LLZ<br>(Left to Left and Zero)    | 001           | The shift field code LLZ places the left byte of the T-bus in the left byte of the U-bus and zeros in the right byte of the U-bus.                                                                                          |
| LRZ<br>(Left to Right and Zero)   | 000           | The shift field code LRZ places the left byte of the T-bus in the right byte of the U-bus and zeros in the left byte of the U-bus.                                                                                          |
| RLZ<br>(Right to Left and Zero)   | 101           | The shift field code RLZ places the right byte of the T-bus in the left byte of the U-bus and zeros in the right byte of the U-bus.                                                                                         |
| ROT<br>(Rotate)                   | 110           | The shift field code ROT places the left byte of the T-bus in the right byte of the U-bus and the right byte of the T-bus in the left byte of the U-bus.                                                                    |
| RRZ<br>(Rotate to Right and Zero) | 100           | The shift field code RRZ places the right byte of the T-bus in the right byte of the U-bus and zeros in the left byte of the U-bus.                                                                                         |
| SL1<br>(Shift Left 1)             | 010           | The shift field code SL1 shifts the T-bus one place left onto the U-bus.<br>Refer to the function field code descriptions for the action taken when<br>used with function field codes CRS, CTSD, CTSS, DVSB, and TASL.      |
| SR1<br>(Shift Right 1)            | 011           | The shift field code SR1 shifts the T-bus logically one place right onto the U-bus. Refer to the function field code descriptions for the action taken when used with function field codes CRS, CTSD, CTSS, MPAD, and TASR. |
|                                   |               |                                                                                                                                                                                                                             |

# Table 3-7. Special Field Code Definitions

| LABEL<br>AND<br>NAME      | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                      |
|---------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (blank)                   | 11111         | No special field operation.                                                                                                                                                                                                                                                      |
| CCA<br>(Condition Code A) | 11110         | The special field code CCA sets the condition code bits to CCL (01) if the T-bus word is less than zero (T(0) = 1), CCE (10) if the T-bus word is equal to zero (Signal T = 0 is true), or CCG (00) if the T-bus word is greater than zero (T(0) = 0 and signal T = 0 is false). |
| CCB<br>(Condition Code B) | 00000         | The special field code CCB sets the condition code to CCL (01) if bits 8 thru 15 of the SP1 register form a special ASCII character, CCE (10) if an alphabetic ASCII character, or CCG (00) if a numeric ASCII character.                                                        |
| CCE<br>(Condition Code E) | 11101         | The special field code CCE sets the condition code bits to CCE (10).                                                                                                                                                                                                             |

| Table 3-7. | Special 1 | Field | Code | Definitions | (Continued) |
|------------|-----------|-------|------|-------------|-------------|
|------------|-----------|-------|------|-------------|-------------|

| LABEL<br>AND<br>NAME         | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                            |  |
|------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CCG<br>(Condition Code G)    | 11100         | The special field code CCG sets the condition code bits to CCG (00).                                                                                                                                                   |  |
| CCL<br>(Condition Code L)    | 11011         | The special field code CCL sets the condition code bits to CCL (01).                                                                                                                                                   |  |
| CCPX<br>(Clear CPX 1)        | 00001         | The special field code CCPX is used to control the interrupt status registers (CPX1 and CPX2) of the CPU. Executing a CCPX code with the respective true U-bus bits results in the following:                          |  |
|                              |               | U-Bus bit 0 Force NIR to CIR (for diagnostics).                                                                                                                                                                        |  |
|                              |               | 1 Clear System Parity Error FF.                                                                                                                                                                                        |  |
|                              |               | 2 Clear Address Parity Error FF.                                                                                                                                                                                       |  |
|                              |               | 3 Clear Data Parity Error FF.                                                                                                                                                                                          |  |
|                              |               | 4 Clear CPU Timer FF.                                                                                                                                                                                                  |  |
|                              |               | 5 Clear Bounds Violation FF.                                                                                                                                                                                           |  |
|                              |               | 6 Clear Illegal Address FF.                                                                                                                                                                                            |  |
|                              |               | 7 Clear Module Interrupt FF.                                                                                                                                                                                           |  |
| ]                            |               | 8 Clear External Interrupt FF.                                                                                                                                                                                         |  |
|                              |               | 9 Clear maintenance panel Interrupt FF's.                                                                                                                                                                              |  |
|                              |               | 10 Turn off all interrupts. (Note: The only way to re-enable<br>the interrupts is to press the CPU RESET switch or if a<br>power failure occurs.)                                                                      |  |
|                              |               | 11 Clear interrupt stack flag.                                                                                                                                                                                         |  |
|                              |               | 12 Clear dispatcher flag.                                                                                                                                                                                              |  |
|                              |               | 13 Set panel error light.                                                                                                                                                                                              |  |
|                              |               | 14 Freeze processor. (For diagnostics).                                                                                                                                                                                |  |
|                              |               | 15 Clear maintenance panel Interrupt FF's.                                                                                                                                                                             |  |
| CCRY<br>(Clear Carry)        | 10101         | The special field code CCRY clears the ALU Carry FF.                                                                                                                                                                   |  |
| CCZ<br>(Condition Code Zero) | 11010         | The special field code CCZ sets the condition code bits to CCE (10) if the T-bus word is equal to zero (signal $T = 0$ true) or CCG (00) if the T-bus word is not equal to zero (signal $T = 0$ false).                |  |
| CF1<br>(Clear Flag 1)        | 10010         | The special field code CF1 clears CPU Flag 1 FF.                                                                                                                                                                       |  |
| CF2<br>(Clear Flag 2)        | 10001         | The special field code CF2 clears CPU Flag 2 FF.                                                                                                                                                                       |  |
| CF3<br>(Clear Flag 3)        | 00111         | The special field code CF3 clears CPU Flag 3 FF.                                                                                                                                                                       |  |
| CLIB<br>(Clear Indirect Bit) | 01110         | The special field code CLIB clears the Indirect Bit FF. The Indirect Bit FF remains cleared until a skip field code NEXT or JLUI is executed or the CIR is loaded with the NIR content by the special field code CCPX. |  |

| Table 3-7. Special Field Code Definitions (Continued | Table <b>3</b> -7. | al Field Code Definitions (Cor | ntinued) |
|------------------------------------------------------|--------------------|--------------------------------|----------|
|------------------------------------------------------|--------------------|--------------------------------|----------|

| LABEL<br>AND<br>NAME         | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                      |
|------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLO<br>(Clear Overflow)      | 11001         | The special field code CLO clears the status word overflow bit.                                                                                                                                                                                                                                                  |
| CTF<br>(Set Carry to Flag 1) | 00110         | The special field code CTF stores the ALU carry bit in the Flag 1 FF.                                                                                                                                                                                                                                            |
| DCSR<br>(Decrement SR)       | 01001         | The special field code DCSR decrements the content of the SR register by a count of one.                                                                                                                                                                                                                         |
| FHB<br>(Flag to High Bit)    | 01101         | The special field code FHB transfers the content of the Flag 1 FF to bit 0 of the U-bus.                                                                                                                                                                                                                         |
| HALT                         | 00011         | The special field code HALT clears CPX2 bit 0 which enables maintenance panel control of the CPU.                                                                                                                                                                                                                |
| HBF<br>(High Bit to Flag 1)  | 01100         | The special field code HBF transfers the content of U-bus bit 0 to the Flag<br>1 FF.                                                                                                                                                                                                                             |
| INCN<br>(Increment Name)     | 01010         | The special field code INCN increments the content of the name register by a count of one.                                                                                                                                                                                                                       |
| INCT<br>(Increment Counter)  | 01011         | The special field code INCT increments the content of the counter register by a count of one.                                                                                                                                                                                                                    |
| INSR<br>(Increment SR)       | 01000         | The special field code INSR increments the content of the SR register by a count of one.                                                                                                                                                                                                                         |
| LBF<br>(Low Bit to Flag 2)   | 01111         | The special field code LBF transfers the content of U-bus bit 15 to the Flag 2 FF.                                                                                                                                                                                                                               |
| PO <b>P</b>                  | 10111         | The special field code POP moves the stack elements up one location such that the second element of the stack (S minus one) becomes the top element (S), etc. The previous top of stack element is lost. When executed, this is accomplished by decrementing the SR register and incrementing the name register. |
| POPA<br>(Pop setting CCA)    | 10110         | The special field code POPA functions the same as special field code POP with the addition that the condition code is set to CCL (01) if the T-bus word is less than zero, CCE (10) if the T-bus word is equal to zero, or CCG (00) if the T-bus word is greater than zero.                                      |
|                              |               |                                                                                                                                                                                                                                                                                                                  |

| LABEL<br>AND<br>NAME               | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                           |
|------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCRY<br>(Set Carry Bit)            | 10100         | The special field code SCRY sets the Carry FF.                                                                                                                                        |
| SDFG<br>(Set Dispatcher Flag)      | 00101         | The special field code SDFG sets the dispatcher flag (bit 12 of interrupt status register CPX2).                                                                                      |
| SF1<br>(Set Flag 1)                | 10011         | The special field code SF1 sets CPU Flag 1 FF.                                                                                                                                        |
| SF2<br>(Set Flag 2)                | 10000         | The special field code SF2 sets CPU Flag 2 FF.                                                                                                                                        |
| SIFG<br>(Set Interrupt Stack Flag) | 00100         | The special field code SIFG sets the interrupt flag (bit 11 of interrupt status register CPX2).                                                                                       |
| SOV<br>(Set Overflow)              | 11000         | The special field code SOV sets the status word overflow bit.                                                                                                                         |
| SR0<br>(Set SR to Zero)            | 00010         | The special field code SR0 clears the SR register. No other operation referencing the SR register is allowed during this microcycle (note that pipeline effects must be allowed for). |

# Table 3-7. Special Field Code Definitions (Continued)

## Table 3-8. MCU Option Field Code Definitions

| LABEL<br>AND<br>NAME               | FIELD<br>CODE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CMD<br>(Command)                   | 110 <b>0</b> 0 | The MCU option CMD gates the TO code and MOP code from the CMDTO and CMDMOP registers onto the central data bus. This option is used with a store field code BSP0 or BUSL.                                                                                                                                                                                                                                      |
| CRL<br>(Control)                   | 11001          | The MCU option CRL stores bits 10, 11 and 13 thru 15 of the CPU output register (COR) in the CMDTO and CMDMOP registers. This option is used with a store field code BUSH.                                                                                                                                                                                                                                      |
| CWA<br>(Clear-Write Address)       | 11110          | The MCU option CWA initiates a bus request for a memory clear-write cycle and tells the memory that the word on the central data bus is a memory address and that a data word will be sent on the next transmission. The selected memory module will be busy for all modules until that data word is received via the store field code DATA. The MCU option CWA is issued with a store field code BSP0 or BUSL. |
| NIR<br>(Next Instruction Register) | 11010          | The MCU option NIR transfers data from the central data bus to the next instruction register. This option is used with a store field code BUSH.                                                                                                                                                                                                                                                                 |

| LABEL<br>AND<br>NAME             | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RNWA<br>(Read-No-Write Address)  | 11101         | The MCU option RNWA initiates a bus request for memory and tells the selected memory module that the word on the central data bus is an address. The content of the address is to be sent back to the operand register and the write portion of the memory cycle is to be omitted leaving all ones in that memory location. This option is used with a store field code BSP0 or BUSL. |
| RWA<br>(Read-Write Address)      | 11111         | The MCU option RWA initiates a bus request for memory and tells the selected memory module that the word on the central data bus is a memory address. The content of the address is to be sent back to the operand register and restored in the memory location. This option is used with a store field code BSP0 or BUSL.                                                            |
| RWAN<br>(Read-Write Address NIR) | 10xxx         | The MCU option RWAN initiates a bus request for memory and tells the selected memory module that the word on the central data bus is a memory address. The content of the address is to be sent back to the operand register and the next instruction register and restored in the memory location. This option is used with a store field code BSP0 or BUSL.                         |
| RWN<br>(Read-Write NIR)          | 11011         | The MCU option RWN initiates a bus request for memory and tells the selected memory module that the word on the bus is a memory address. The content of the address is to be sent back to the next instruction register and restored in the memory location. This option is used with a store field code BSP0 or BUSL.                                                                |

| LABEL<br>AND<br>NAME | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                      |
|----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (blank)              | 1111          | The R-bus register is loaded with all zeros.                                                                                                                                                                                                                                                                                                     |
| MREG                 | 0011          | The MREG R-bus field code is used to fetch a memory element that<br>happens to lie in a TOS register (i.e., E is greater than SM). Prior to<br>executing MREG, the value S minus E must be placed in the SP1 register.<br>During execution of MREG, TNAME becomes the sum of NAME and<br>SP1(14:15) and the R-bus register is loaded as follows: |
|                      |               | If TNAME = 00 then R-BUS := TROR                                                                                                                                                                                                                                                                                                                 |
|                      |               | If TNAME = 01 then R-BUS := TR1R                                                                                                                                                                                                                                                                                                                 |
|                      |               | If TNAME = 10 then R-BUS := TR2R                                                                                                                                                                                                                                                                                                                 |
|                      | l             | If TNAME = 11 then R-BUS := TR3R                                                                                                                                                                                                                                                                                                                 |
|                      |               | Due to the pipeline affect, a TOS register referenced in the store field of the preceding microinstruction assumes the above TNAME.                                                                                                                                                                                                              |

| Table 3-9. R-Bus Field Code Definition | Table 3-9 | . R-Bus | Field Code | <b>Definitions</b> |
|----------------------------------------|-----------|---------|------------|--------------------|
|----------------------------------------|-----------|---------|------------|--------------------|

| LABEL<br>AND<br>NAME   | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                              |
|------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PADD<br>(Pre-Adder)    | 0100          | The 16-bit output of the pre-adder is loaded into the R-bus register.                                                                                                                                    |
| PL<br>(Program Limit)  | 0000          | The 16-bit content of the program limit (PL) register is loaded into the R-bus register.                                                                                                                 |
| RA                     | 1011          | The RA R-bus field code is used to read the content of the first TOS register (location S). SR must be greater than 0. During execution, TNAME becomes NAME and the R-bus register is loaded as follows: |
|                        |               | If TNAME = 00 then R-BUS := TROR                                                                                                                                                                         |
|                        |               | If TNAME = 01 then R-BUS := TR1R                                                                                                                                                                         |
|                        |               | If TNAME = 10 then R-BUS := TR2R                                                                                                                                                                         |
|                        |               | If TNAME = 11 then R-BUS := TR3R                                                                                                                                                                         |
| RB                     | 1010          | The RB R-bus field code is used to read the second TOS register (location S-1). SR must be greater than 1. During execution, TNAME becomes NAME and the R-bus register is loaded as follows:             |
|                        |               | If TNAME = 00 then R-BUS := TR1R                                                                                                                                                                         |
|                        |               | If TNAME = 01 then R-BUS := TR2R                                                                                                                                                                         |
|                        |               | If TNAME = 10 then R-BUS := TR3R                                                                                                                                                                         |
|                        |               | If TNAME = 11 then R-BUS := TR0R                                                                                                                                                                         |
| RBUS                   | 0101          | The RBUS R-bus field code causes the R-bus register to remain unchanged.                                                                                                                                 |
| RC                     | 1001          | The RC R-bus field code is used to read the third TOS register (location S2). SR must be greater than 2. During execution, TNAME becomes NAME and the R-bus register is loaded as follows:               |
|                        |               | If TNAME = 00 then R-BUS := TR2R                                                                                                                                                                         |
|                        |               | If TNAME = 01 then R-BUS := TR3R                                                                                                                                                                         |
|                        |               | If TNAME = 10 then R-BUS := TR0R                                                                                                                                                                         |
|                        |               | If TNAME = 11 then R-BUS := TR1R                                                                                                                                                                         |
| RD                     | 1000          | The RD R-bus field code is used to read the fourth TOS register (location S-3). SR must be equal to 4. During execution, TNAME becomes NAME and the R-bus register is loaded as follows:                 |
|                        |               | If TNAME = 00 then R-BUS := TR3R                                                                                                                                                                         |
|                        |               | If TNAME = 01 then R-BUS := TROR                                                                                                                                                                         |
|                        |               | If TNAME = 10 then R-BUS := TR1R                                                                                                                                                                         |
|                        |               | If TNAME = 11 then R-BUS := TR2R                                                                                                                                                                         |
| SP0<br>(Scratch Pad 0) | 1101          | The 16-bit content of the scratch pad 0 (SP0) register is loaded into the R-bus register.                                                                                                                |
| SP1<br>(Scratch Pad 1) | 1100          | The 16-bit content of the scratch pad 1 (SP1) register is loaded into the R-bus register.                                                                                                                |
|                        |               |                                                                                                                                                                                                          |

| LABEL<br>AND<br>NAME   | FIELD<br>CODE | DESCRIPTION                                                                                                                                                                                                                                                 |
|------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SR<br>(Stack Register) | 0001          | The 3-bit content of the stack (SR) register is loaded into the R-bus register bits 0 thru 2. R-bus register bits 3 thru 15 become zeros.                                                                                                                   |
| UBUS                   | 1110          | The 16-bit U-bus data word is loaded into the R-bus register. The U-bus data is established by the preceding microinstruction.                                                                                                                              |
| X<br>(Index)           | 0110          | The 16-bit content of the index (X) register is loaded into the R-bus register.                                                                                                                                                                             |
| XC<br>(X Conditional)  | 0111          | The XC R-bus field code is used with indexed memory addressing. If the index bit of the current instruction (CIR bit 4) is zero, the R-bus register is loaded with zeros, otherwise the R-bus register is loaded with the 16-bit content of the X-register. |
| Z<br>(Stack Limit)     | 0010          | The 16-bit content of the stack limit (Z) register is loaded into the R-bus register.                                                                                                                                                                       |

Table 3-9. R-Bus Field Code Definitions (Continued)

3-42. The foregoing does not imply that all TOS registers are a legitimate part of the stack. The stack register (SR) counter is also considered in referencing a TOS register. If, for example, SR = 2 (010), then the TOS registers RA and RB are stack locations S and S-1 but RC and RD are invalid. Stack locations S-2 and S-3 are in memory. The content of the name register is affected by the store field code PUSH and special field codes INCN and POP as described in the field code definitions.

3-43. The adder (located on R-bus PCA A6 and shown on simplified diagram sheet 11 and detailed diagram DD203, location D16) and namer (located on R-bus PCA A6 and shown on simplified diagram sheet 11 and detailed diagram DD203, location D17) combine the outputs of the name, stack, and scratch pad 1 registers and generate the TNAME 0:1 signals for the TOS mappers.

### 3-44. TOP-OF-STACK MAPPERS.

3-45. The top-of-stack (TOS) mappers are located on R-bus PCA A6 and S-bus PCA A7 and are shown on simplified diagram sheets 1, 2 and 4 and detailed diagrams DD203, locations D8 and F17, and DD204, location G47. The TOS mappers use the TNAME code to control access to the TOS registers. This code from the namer signifies to the mappers which of the TOS registers (TROR:TR3R and TROS:TR3S) is RA, RB, etc. The outputs from the mappers are combined with the outputs from the R-bus, S-bus and store decoders to load data into and out of the TOS registers.

### 3-46. TOP-OF-STACK REGISTERS.

3-47. The top-of-stack registers consist of eight 16-bit registers designated TROR:TR3R and TROS:TR3S. The R-bus TOS registers are located on R-bus PCA A6 and shown on simplified diagram sheet 6 and detailed diagram DD203, locations B42 (TR0R), B43 (TR1R), B44 (TR2R), and B46 (TR3R). The S-bus TOS registers are located on S-bus PCA A7 and are shown on simplified diagram sheet 7 and detailed diagram DD204, locations B45 (TR0S), B46 (TR1S), B47 (TR2S), and B49 (TR3S). The two groups of registers always contain the same data, ie, TROR = TROS, TR1R = TR1S, etc. The registers contain up to four of the top elements of the current data stack. The TOS registers are read by R-bus field codes RA, RB, RC, RD, and MREG and S-bus field codes RA, RB, RC, RD, and QDWN as described in the field code definitions. The TOS registers are loaded by store field codes RA, RB, RC, RD, PUSH, and QUP as described in the field code definitions.

### 3-48. INDEX REGISTER.

3-49. The index (X) register is a 16-bit register located on R-bus PCA A6 and shown on simplified diagram sheet 6 and detailed diagram DD203, location C39. The index register contains the index word to be used by memory reference instructions if indexing is specified. Certain other instructions (not memory reference) use the X-register for parameters or addresses. The X-register is read by R-bus field codes X and XC and loaded by store field code X as described in the field code definitions.

### 3-50. STACK LIMIT REGISTER.

3-51. The stack limit (Z) register is a 16-bit register located on R-bus PCA A6 and shown on simplified diagram sheet 6 and detailed diagram DD203, location B47. The Z-register contains an absolute address which points to the top memory location available to the current data stack. There are locations (28 words) in the stack above the stack limit; however, these are reserved for stack markers in the event of an interrupt. The Z-register is read by R-bus field code Z and loaded by store field code Z as described in the field code definitions.

### 3-52. PROGRAM LIMIT REGISTER.

3-53. The program limit (PL) register is a 16-bit register located on R-bus PCA A6 and shown on simplified diagram sheet 6 and detailed diagram DD203, location B48. The PL register contains the absolute address of the upper location of the current program segment. The PL register is read by an R-bus field code PL and loaded by a store field code PL as described in the field code definitions.

### 3-54. SCRATCH PAD 0 REGISTER.

3-55. The scratch pad 0 (SP0) register is a 16-bit register located on R-bus PCA A6 and shown on simplified diagram sheet 6 and detailed diagram DD203, location B49. The SP0 register is used by the CPU for storage of partial results during various CPU routines and as an address for memory transfers. SP0 also is used to display the memory address on the auxiliary control panel (ACP). On ACP, SP0 is named MEM ADDR. The SP0 register is read by R-bus field code SP0 and loaded by store field codes SP0 and BSP0 as described in the field code definitions.

### 3-56. SCRATCH PAD 1 REGISTER.

The scratch pad 1 (SP1) register is a 16-bit register 3-57. located on R-bus PCA A6 and shown on simplified diagram sheet 6 and detailed diagram DD203, location B25. The SP1 register is used by the CPU to store partial results during various microprogram routines. SP1 also is used to display memory contents on the auxiliary control panel (ACP). SP1 is named MEM DATA on ACP. The SP1 register can be shifted left and provides serial data input to bit 15 and output from bit 0. A two-bit register which duplicates SP1 bits 14 and 15 (cannot be shifted) is referred to as SP1X and is used by the namer circuits during execution of R-bus or store field MREG codes. The SP1 register is read by R-bus field code SP1, loaded by store field code SP1, and shifted by function field codes CTSD, DVSB, and TASL as described in the field code definitions. In addition, SP1 can be read onto the S-bus by S-bus field code SP1 (code is not the same as R-bus code SP1). SP1 bits 8:15 also are used to set CCB by special field code CCB.

### 3-58. SCRATCH PAD 1X REGISTER.

3-59. The scratch pad 1X (SP1X) register is a two-bit register located on R-bus PCA A6 and shown on simplified diagram sheet 11 and detailed diagram DD203, location F23. SP1X is loaded by store field code SP1 and duplicates bits 14 and 15 of the SP1 register; however, the SP1X register cannot be shifted. The content of the SP1X register is used during execution of the R-bus field code MREG and store field code MREG as described in the field code definitions.

### 3-60. STACK REGISTER.

3-61. The stack register (SR) counter is a three-bit register located on R-bus PCA A6 and shown on simplified diagram sheet 11 and detailed diagram DD203, location C15. The SR counter provides the number of TOS registers that are currently in use. The SR counter works in conjunction with the name register to locate and access any of the top four elements of the data stack. The SR counter is read by R-bus field code SR and modified by store field code PUSH and special field codes INSR, DCSR, POPA, SR0, and POP, as described in the field code definitions.

### 3-62. PROGRAM BASE REGISTER.

3-63. The program base (PB) register is a 16-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 7 and detailed diagram DD204, location B39. The PB register contains the absolute address of the bottom location of the current program segment. The PB register is read by S-bus field code PB and loaded by store field code PB as described in the field code definitions.

### 3-64. DATA LIMIT REGISTER.

3-65. The data limit (DL) register is a 16-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 7 and detailed diagram DD204, location B35. The DL register contains the absolute address of the bottom useable location in the current data stack. The DL register is read by S-bus field code DL and loaded by store field code DL as described in the field code definitions.

### 3-66. STACK MEMORY REGISTER.

3-67. The stack memory (SM) register is a 16-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 7 and detailed diagram DD204, location B34. The SM register contains the absolute address of the top element of the data stack in memory. Depending upon the number of TOS registers in use (reflected by the contents of the SR register), this address can be from zero to four locations below the actual top of stack. The SM register is read by S-bus field code SM and loaded by store field code SM as described in the field code definitions.

### 3-68. DATA BASE REGISTER.

3-69. The data base (DB) register is a 16-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 7 and detailed diagram DD204, location B33. The DB register is one of the stack limit registers. The DB register contains the absolute address of the first location of directly addressable storage in the current data stack. The DB register is read by S-bus field code DB and loaded by store field code DB as described in the field code definitions.

### 3-70. Q-REGISTER.

3-71. The Q-register is a 16-bit stack marker register located on S-bus PCA A7 and shown on simplified diagram sheet 7 and detailed diagram DD204, location B32. The Q-register contains the absolute address of the current stack marker being used within the data stack. The Q-register is read by S-bus field code Q and loaded by store field code Q as described in the field code definitions.

### 3-72. SCRATCH PAD 2 REGISTER.

3-73. The scratch pad 2 (SP2) register is a 16-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 7 and detailed diagram DD204, location B37. The SP2 register is used by the CPU to store partial results during various microprogram routines. The SP2 register is read by S-bus field code SP2 and loaded by store field code SP2 as described in the field code definitions.

### 3-74. SCRATCH PAD 3 REGISTER.

3-75. The scratch pad 3 (SP3) register is a 16-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 7 and detailed diagram DD204, location C9. The SP3 register is used by the CPU to store partial results during various microprogram routines. The SP3 register can be shifted right and provides serial data input to bit 0 and output from bit 15. The SP3 register is read by S-bus field code SP3, loaded by store field code SP3, and shifted by function field codes CTSD, MPAD, and TASR as described in the field code definitions.

### 3-76. PROGRAM COUNTER REGISTER.

3-77. The program counter (P) register is a 16-bit register located on S-bus register PCA A7 and shown on simplified diagram sheet 9 and detailed diagram DD204, location C7. The P-register contains the absolute address of the next program instruction to be fetched from memory. During execution of a skip field code NEXT, bits 0, 1, 2, 14, and 15 are encoded to provide a memory module number and the entire content of the P-register is loaded into the PCOR register to be sent via the central data bus to the selected memory module. The P-register is incremented by an INCP signal which is generated by the next logic. The P-register is read by S-bus field code P and loaded by store field code P as described in the field code definitions.

### 3-78. COUNTER REGISTER.

3-79. The counter (CNTR) register is a six-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 8 and detailed diagram DD204, location E25. The CNTR register is used as a repeat counter by the CPU. The two's complement of the desired count is loaded into the CNTR register; the CNTR register is then incremented for each repeated execution until it contains all ones as indicated by a Counter Maximum (CTRM) code from the skip field. The CNTR register is affected or referenced by S-bus field codes CTRI and CTRH, function field code REPN, store field codes CTRL and CTRH, special field code INCT, and skip field code CTRM as described in the field code definitions.

3-80. In addition to the above function, the CNTR register saves the content of the SR register when the CPU is put in the halt mode. This is necessary because the halt microroutine pushes all data stack elements into memory thus forcing the SR register content to zero. The CNTR register can then be displayed to show what the content of the SR register was just prior to the halt.

### 3-81. STATUS REGISTER.

3-82. The status register is a 16-bit register. The first eight bits (0:7) are located on SSF PCA A4 and are reset by CPU RESET. The second eight bits (8:15), located on S-bus PCA A7, are not affected by CPU RESET. The status register is shown on simplified diagram sheet 8 and detailed diagrams DD201 and DD204. The status register indicates the current status of the CPU hardware. The function and the location of the source for each bit is as follows:

| a. | Bit 0. | Privileged mode bit (DD201F26).                                                                           |
|----|--------|-----------------------------------------------------------------------------------------------------------|
|    |        | 1 = Privileged mode.<br>0 = User mode.                                                                    |
| b. | Bit 1. | External interrupts (DD201F26).<br>Includes module interrupts and<br>console interrupts (if in DISPATCH). |
|    |        | 1 = Enable.<br>0 = Disable.                                                                               |
| c. | Bit 2. | User traps (DD201F26).                                                                                    |
|    |        | 1 = Enable.<br>0 = Disable.                                                                               |
| d. | Bit 3. | Stack op B (DD201G25).                                                                                    |
|    |        | 1 = Pending.<br>0 = Not pending.                                                                          |
| e. | Bit 4. | Overflow bit (DD201D9).                                                                                   |
| f. | Bit 5. | Carry bit (DD201C8)                                                                                       |



## g. Bits 6:7. Condition code. (DD201E8 and F8).

- 00 = CCG
- 01 = CCL 10 = CCE
- 11 = Note that on this implementation of the CPU, a "11" stored in bits 6:7 acts as though the condition code is both CCE and CCL. This should not be used and is presented for information only.
- h. Bits 8:15. Current executing code segment number (DD204D38).

3-83. The status register is read by S-bus field code STA and loaded by store field code STA as described in the field code definitions. Status bits also are affected by function field codes CADO, SUBO, INCO, ADDO; and special field codes CCB, SCRY, CCRY, POPA, SOV, CLO, CCZ, CCL, CCG, CCE, and CCA.

### 3-84. PRE-ADDER.

3-85. The pre-adder, located on R-bus PCA A6 and shown on simplified diagram sheet 12 and detailed diagrams DD203 (sheet 4) and DD205 (location B37), is used to gain a speed increase for instructions which use or perform computations on bits in the CIR. For example, when executing indexed memory reference instructions (and not indirect), the proper displacement field of the CIR is preadded to the contents of the X-register. Thus the final absolute address can be computed in only one cycle by adding the output of the pre-adder to the contents of the base register (PB, DB, Q or Z).

### 3-86. R-BUS REGISTER.

3-87. The R-bus register is a 16-bit register located on ALU PCA A5 and shown on simplified diagram sheet 14 and detailed diagram DD202, location B44. The R-bus register provides buffer storage between the R-bus and the CPU arithmetic and logic function. The R-bus register can be shifted left one bit position (see function field code TASL). The R-bus register is loaded from the R-bus. (Refer to R-bus field code definitions.)

### 3-88. S-BUS REGISTER.

3-89. The S-bus register is a 16-bit register located on ALU PCA A5 and shown on simplified diagram sheet 14 and detailed diagram DD202, location B26. The S-bus register provides buffer storage between the S-bus and the CPU arithmetic and logic function. The S-bus register can be shifted right one bit position (refer to function field code TASR). The S-bus register is loaded from the S-bus. (Refer to S-bus field code definitions.)

### 3-90. ALU FUNCTION GENERATOR.

3-91. The arithmetic and logic unit (ALU) function generator, located on ALU PCA A5 and shown on simplified diagram sheet 14 and detailed diagram DD202, sheet 1, combines the R- and S-bus data in a manner specified by a four-bit function code (ALUS 0:3) from the ALU function decoder. Functions that are generated are divided into two modes, or groups: arithmetic functions and logic functions. An ALU mode signal (ALUMODE) selects the function mode, or group, and the four-bit ALUS code selects the function within the group.

### 3-92. FLAG 1 REGISTER.

3-93. Flag 1 is a one-bit register located on SSF PCA A4 and shown on simplified diagram sheet 19 and detailed diagram DD201, location G8. The flag 1 register is used as a CPU flag and for temporary storage of the ALU carry bit and U-bus sign bit during certain arithmetic routines. During execution of direct I/O operations, the output of the flag 1 register is inhibited and replaced by an I/O flag which indicates that a direct data or command transfer is currently taking place on the IOP bus. The flag 1 register is set by special field code SF1 and cleared by special field code CF1 and skip field code NEXT as described in the field code definitions.

### 3-94. FLAG 2 REGISTER.

3-95. Flag 2 is a one-bit register located on SSF PCA A4 and shown on simplified diagram sheet 19 and detailed diagram DD201, location F18. The flag 2 register is used as a CPU flag, as temporary storage for bit 15 of the U-bus, and as temporary storage for the most significant bit of the dividend during execution of the function field code DVSB. Flag 2 is set by special field code SF2 and cleared by special field code CF2 and skip field code NEXT as described in the field code definitions.

### 3-96. T-BUS SHIFTER.

3-97. The T-bus shifter is located on ALU PCA A5 and shown on simplified diagram sheet 16 and detailed diagram DD202, sheet 2. The 16-bit output of the ALU function generator (the combined R- and S-bus data) is applied to the T-bus shifter. All shifts and rotates of the T-bus (left shift, right shift, right-left swap, etc) are executed as directed by the shift field decoder. The output of the T-bus shifter is placed on the U-bus to be stored in one of the U-bus registers.

### 3-98. MAPPERS.

3-99. The mappers, located on S-bus PCA A7 and shown on detailed diagram DD204, sheet 2, examine the three most significant bits of each address word from the Pregister or the U-bus and convert these bits into the TO code of the memory module. Switches are used to configure the mappers appropriately for the quantity and sizes of memory modules existent in the computer system.

### 3-100. U-CPU OUTPUT REGISTER.

3-101. The U-CPU output register (UCOR) is a 16-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 9 and detailed diagram DD204, location A2. The UCOR register functions as a buffer for memory bound data and operand addresses transferred between the U-bus and the central data bus. The UCOR register is loaded with the U-bus word by store field codes BUSL, BSPO, BUSH, and DATA as described in the field code definitions.

### 3-102. P-CPU OUTPUT REGISTER.

3-103. The P-CPU output register (PCOR) is a 16-bit register located on S-bus PCA A7 and shown on simplified diagram sheet 9 and detailed diagram DD204, location A4. The PCOR register functions as a memory address buffer between the P-register and the central data bus. A skip field code NEXT loads the PCOR register with the contents of the P-register.

### 3-104. P-REGISTER OR U-BUS MEMORY OPERA-TION REGISTER.

3-105. The P-register or U-bus memory operation (PUMOP) register is a two-bit register located on MCU PCA A9 and shown on simplified diagram sheet 34 and detailed diagram DD206, location F28. The PUMOP register is loaded with the memory operation code (Read-Restore, Clear-Write, or Read-No Write) specified by the MCU operation decoder when executing a low bus request (store field codes BUSL or BSPO). In the event of a skip field code NEXT, the PUMOP register is loaded with a Read-Restore memory operation code. The content of the PUMOP register is then put on the central data bus MOP lines to control the operation of the selected memory module.

### 3-106. COMMAND MEMORY OPERATION REGISTER.

3-107. The command memory operation (CMDMOP) register is a two-bit register located on MCU PCA A9 and shown on simplified diagram sheet 34 and detailed diagram DD206, location F29. The CMDMOP register contains a memory operation code to be transferred to a selected memory module via the central data bus during execution of MCU option field code CMD. The CMDMOP register is loaded with bits 10 and 11 of the UCOR register during execution of MCU option field code CRL as described in the field code definitions.

### 3-108. COMMAND-TO REGISTER.

3-109. The command-to (CMDTO) register is a three-bit register located on MCU PCA A9 and shown on simplified diagram sheet 35 and detailed diagram DD206, location F27. The CMDTO register contains the module number of the memory module selected to receive the content of the CMDMOP register during execution of MCU option field code CMD. The CMDTO register is loaded with bits 13, 14, and 15 of the UCOR register during execution of MCU option field code CRL as described in the field code definitions.

### 3-110. P-TO REGISTER.

3-111. The P-to (PTO) register is a three-bit register located on MCU PCA A9 and shown on simplified diagram sheet 35 and detailed diagram DD206, location F26. The PTO register is loaded with the module number of the memory module containing the instruction to be fetched during execution of a special field code NEXT. The content of the PTO register is used to check the module READY lines to ensure that the selected memory module is not busy. The PTO register content is then put on the central data bus TO lines to direct the memory operation to the selected memory module.

### 3-112. U-TO REGISTER.

3-113. The U-to (UTO) register is a three-bit register located on MCU PCA A9 and shown on simplified diagram sheet 35 and detailed diagram DD206, location F24. The UTO register is loaded with the number of the memory module selected during a low bus request (store field codes BUSL and BSPO). The content of the UTO register is compared with the module READY lines to ensure that the selected memory module is not busy. The UTO register content is then put on the central data bus TO lines to direct the operation to the selected memory module.

### 3-114. P-TO-NEXT INSTRUCTION REGISTER.

3-115. The P-to-next instruction PTO(NIR) register is a three-bit register located on MCU PCA A9 and shown on simplified diagram sheet 35 and detailed diagram DD206, location F23. The PTO(NIR) register is loaded with the number of the memory module containing the instruction being fetched during execution of a skip field code NEXT. The content of the PTO(NIR) register is compared with the central data bus FROM lines. When the FROM lines match the PTO(NIR) register content and the TO lines contain the CPU module number, the word on the MCU data lines (part of the central data bus) is assumed to be the fetched instruction register.

### 3-116. U-TO-NEXT INSTRUCTION REGISTER.

3-117. The U-to-next instruction register UTO(NIR) is a three-bit register located on MCU PCA A9 and shown on simplified diagram sheet 35 and detailed diagram DD206, location F22. The UTO(NIR) register is loaded with the module number of the selected memory module during execution of a low bus request (store field codes BUSL and BSPO) in combination with an MCU option field code which specifies that memory data be returned to the next instruction register (MCU options RWAN and RWN). The content of the UTO(NIR) register is compared with the central data bus FROM lines. When the FROM lines match the UTO(NIR) register content and the TO CPU number, the word on the MCU data lines (part of the central data bus) is assumed to be the data requested from memory and is directed to the next instruction register.

### 3-118. U-TO OPERAND REGISTER.

3-119. The U-to operand UTO(OPND) register is a threebit register located on MCU PCA A9 and shown on simplified diagram sheet 35 and detailed diagram DD206, location F25. The UTO(OPND) register is loaded with the module number of the selected memory module during execution of a low bus request (store field codes BUSL and BSPO) in combination with an MCU option field code that specifies that memory data be returned to the operand register (MCU option field codes RNWA, RWA, and RWAN). The content of the UTO(OPND) register is compared with the central data bus FROM lines. When the FROM lines match the UTO(OPND) register content and the TO CPU number, the word on the MCU data lines (part of the central data bus) is assumed to be the data requested from memory and is directed to the operand register.

### 3-120. TO-FROM COMPARATORS.

3-121. The TO-FROM comparators are located on MCU PCA A9 and shown on simplified diagram sheet 35 and detailed diagram DD206, locations G24 and G26. The comparators compare the TO lines from the UTO(OPND), UTO(NIR), or PTO(NIR) (depending upon the type of operation being executed) registers with the central data bus FROM lines. When the TO and FROM lines match, the ROPND and RNIR signals are generated and sent to the MCU operation decoder, causing the operand or next instruction register to be loaded with the contents of the central data bus MCU data lines.

### 3-122. READY DECODER AND COMPARATOR.

3-123. The ready decoder and comparator are located on MCU PCA A9 and shown on simplified diagram sheet 34 and detailed diagram DD206, locations D4 and D5. The ready decoder multiplexes the three-bit output of the UTO, PTO, or CMDTO register, depending upon the type of operation being executed, and generates a module READY number. The comparator compares this READY number with the READY lines from the central data bus to ensure that the selected module is ready to receive.

### 3-124. INTERRUPT MODULE NUMBER REGISTER.

3-125. The interrupt module number (IMN) register is a four bit register located on MCU PCA A9 and shown on detailed diagram DD206, location B16. The central data bus FROM code is stored in the IMN register. When the CPU is ready to send data to a memory module, the FROM code is read out of the IMN register and becomes the TO code of the destination module.

### 3-126. CPU REQUEST/SELECT LOGIC.

3-127. The CPU request/select logic is located on MCU PCA A9 and shown on simplified diagram sheet 34 and detailed diagram DD206, sheet 1. The CPU request/select logic controls the operation of the UCOR and PCOR and CMDMOP and PUMOP registers. A CPU Select (CPUSEL) flip-flop, located on the CPU request/select logic, generates the CPUSEL signal when set, gating the contents of the UCOR or PCOR registers and the CMDMOP or PUMOP registers to the central data bus. The CPU Select flip-flop is set for one cycle by the output of the ready comparator. The setting of this flip-flop is inhibited whenever a MCUERR or an ILLADR signal is asserted.

### 3-128. INTERRUPT DEVICE NUMBER REGISTER.

3-129. The interrupt device number (IDN) register is an eight-bit register located on IOP PCA A10 and shown on simplified diagram sheet 30 and detailed diagram DD207, location E18. When an interrupt is acknowledged, the IOP interrupt control logic generates an IENB signal, loading the device number of the interrupting subsystem from the IOP bus into the IDN register. The CPU reads the content of the IDN register by S-bus field code IOA as described in the field code definitions.

# 3-130. INPUT/OUTPUT PROCESSOR CONTROL REGISTER.

3-131. The I/O processor control (IOPC) register is a 12-bit register located on IOP PCA A10 and shown on simplified diagram sheet 30 and detailed diagram DD207, location B16. The IOPC register is loaded by a STOIOA signal, which is generated by the store decoder as a result of store field code IOA as described in the field code definitions. Bit 0 of the IOPC register, when a logic 1, causes a SO signal to be asserted. Bits 1:3 (I/O command) and bits 4:11 (device address) are then sent via the command and device number lines of the IOP bus out to the selected device controller by a DAG signal from the IOP direct control logic.

### 3-132. DIRECT OUTPUT DATA REGISTER.

3-133. The direct output data (DOD) register is a 16-bit register located on IOP PCA A10 and shown on simplified diagram sheet 30 and detailed diagram DD207, location C2. During execution of direct I/O commands, the DOD register serves as a buffer for data transferred from the CPU to an I/O subsystem. The DOD register is loaded by a STOIOD signal, which is generated by the store field decoder as a result of store field code IOD. The 16-bit content of the DOD register is gated onto the IOP bus by a DDG signal generated by the IOP direct control logic.

### 3-134. IOP DIRECT CONTROL LOGIC.

3-135. The IOP direct control logic is located on IOP PCA A10 and shown on simplified diagram sheet 28 and detailed diagram DD207, sheet 4. When the CPU/IOP is operating in the direct mode, the IOP direct control logic monitors the status of the Data Poll, Service Out, and Service In signals and controls the operation of the IOPC and DOD registers. The Direct Data flip-flop, when set, generates the DDG signal which gates the contents of the DOD register onto the IOP bus. The Direct Address flip-flop, when set, generates the DAG signal which gates the contents of the IOPC register onto the IOP bus. When Data Poll is issued by the IOP, the DDG and DAG signals are inhibited until the requesting subsystem responds by asserting SI.

### 3-136. FLAG 3 REGISTER.

3-137. Flag 3 is a one-bit register located on IOP PCA A10 and shown on simplified diagram sheet 28 and detailed diagram DD207, location B44. Flag 3 is used to indicate the completion of a direct I/O operation. Flag 3 is set by the presence of SI, SO, or MSK RTRN, when IOFLG1 is set (generated when either the DDG or DAG signal goes high). Flag 3 is cleared by a CLFLAG 3 signal, generated by the special field decoder as a result of special field code CF3.

### 3-138. IOP SERVICE OUT LOGIC.

3-139. The IOP service out logic, located on IOP PCA A10 and shown on simplified diagram sheet 27 and detailed diagram DD207, sheet 5, contains the Service Out flip-flop and generates the SO signal for transmittal to the I/O subsystem.

### 3-140. IOP MULTIPLEXER CONTROL LOGIC.

3-141. The IOP multiplexer control logic is located on IOP PCA A10 and shown on simplified diagram sheet 26 and detailed diagram DD207, sheet 5. During multiplexed I/O operation, the IOP multiplexer control logic monitors the status of the input command lines and the HSREQ and SI signals from the multiplexer channels, and controls the input/output gates to the multiplexed input data, multiplexed output data, and direct input data/multiplexed memory address registers. In addition, the IOP multiplexer control logic issues the Data Poll signal to determine multiplexer channel priority.

### 3-142. MULTIPLEXED INPUT DATA REGISTER.

3-143. The multiplexed input data (MUXID) register is a 16-bit register located on IOP PCA A10 and shown on simplified diagram sheet 30 and detailed diagram DD207, location B23. During multiplexed I/O operation, the MUXID register acts as a buffer for data transferred from the IOP bus to the central data bus. The MUXID register has a left shift capability which is used to increment the DRT entry by two before it is returned to memory. The MUXID register is loaded by a LDENB signal from the Low Request Initializing (LOREQ INIT) flip-flop in the IOP multiplexer control logic. The shift is enabled by a CE signal from the Count Enable (CE) flip-flop in the IOP multiplexer control. The 16-bit content of the MUXID register is gated onto the central data bus by an IOHSEL signal from the I/O High Select (IOHSEL) flip-flop in the MCU I/O request/select logic.

### 3-144. MULTIPLEXED OUTPUT DATA REGISTER.

3-145. The multiplexed output data (MUXOD) register is a 16-bit register located on IOP PCA A10 and shown on simplified diagram sheet 30 and detailed diagram DD207, location D4. During multiplexed I/O operation, the MUXOD acts as a buffer for data transferred from the central data bus to the IOP bus. During a DRT fetch, the content of the MUXOD register is transferred to the MUXID register to be incremented by two (left shift) and used to replace the original DRT entry in memory. The MUXOD register input is enabled by an IOINP signal from the I/O In Process (IOINP) flip-flop in the MCU I/O request/select logic. The 16-bit output from the MUXOD register is gated to the IOP bus by a DRTG signal from the DRT Gate flip-flop in the IOP multiplexer control logic, or, during a DRT fetch, the output of the MUXOD register is gated to the MUXID register by a STODRT signal from the DRT 2 flip-flop in the IOP multiplexer control logic.

### 3-146. DIRECT INPUT DATA/MULTIPLEXED MEM-ORY ADDRESS REGISTER.

3-147. The direct input data/multiplexed memory address (DID/MUXMA) register is a 16-bit register located on IOP PCA A10 and shown on simplified diagram sheet 30 and detailed diagram DD207, location B25. During execution of direct I/O commands, the DID/MUXMA register serves as a buffer for data transferred from an I/O subsystem to the CPU. During multiplexed I/O operation, the DID/MUXMA register is the buffer for memory address words from the IOP bus to the central data bus. The store function of the DID/MUXMA register is enabled by an AENB signal from the IOP multiplexer control logic. Data from the IOP bus is gated into the DID/MUXMA register by the IODE signal from the IOP multiplexer control logic. During direct I/O operation, the 16-bit output from the DID/MUXMA register is gated to the S-bus by a RDIOD signal from the S-bus decoder. In the multiplexed I/O mode of operation, the output of the DID/MUXMA register is gated to the central data bus by an IOLOSEL signal from the I/O Low Select (IOLSEL) flip-flop in the MCU I/O request/select logic.

## 3-148. OPERAND REGISTER.

3-149. The operand (OPND) register is a 16-bit register located on CIR PCA A8 and shown on simplified diagram sheet 9 and detailed diagram DD205, location B36. The operand register provides storage for data read from memory by the CPU. The operand register is loaded by an OPINP signal from the Operand In Process (OPINP) flipflop in the MCU operation decoder as a result of MCU options OPND, RNWA, RWA, and RWAN. The operand register is read by an RDOPND signal from the S-bus decoder as a result of an S-bus field code OPND as described in the field code definitions.

### 3-150. MCU I/O REQUEST/SELECT LOGIC.

3-151. The MCU I/O request/select logic, located on MCU PCA A9 and shown on simplified diagram sheet 31 and detailed diagram DD206, sheet 4, controls the operation of the I/O registers during address/data transfers between the CPU/IOP and memory. The MCU I/O request/select logic generates the IOINP signal, which loads the data on the central data bus into the MUXOD register; the IOLSEL signal, which gates the contents of the DID/MUXMA register to the central data bus; and the IOHSEL signal, which gates the contents of the MUXID register to the central data bus.

### 3-152. MCU ERROR LOGIC.

3-153. The MCU error logic, located on MCU PCA A9 and shown on detailed diagram DD206, sheet 2, detects a SYSPE or MCUDPE returned from memory and sends a MODINT and error signals to the CPU. An MCUDPE signal received from memory sets the MCU Address Parity Error (MCUD ADDR PE) flip-flop in the error logic, which sets bit 2 (address parity error) to the system interrupt register (CPX1) to logic 1. The SYSPE signal from memory clears the MCU System Parity Error (MCUSYS PE) flip-flop, setting bit 1 (system parity error) to the CPX1 register to a logic 1. CPX1 bit 3 (data parity error) is set to logic 1 when a DATAPE signal is received from the DATA PE flip-flop on CIR PCA A8. The Module Interrupt flip-flop in the MCU error logic is set when a parity error is generated by the MCU parity generator (DD206A14) and when the TO-FROM module numbers do not match. The MODINT sets bit 7 (module interrupt) of the interrupt register (CPX1) to a logic 1.

# 3-154. IOP INTERRUPT CONTROL AND ERROR LOGIC.

3-155. The IOP interrupt control and error logic is located on IOP PCA A10 and shown on simplified diagram sheet 29 and detailed diagram DD207, sheets 2 and 4. The interrupt control and error logic receives the INTREQ signal from the interrupt requesting I/O subsystem, issues the INTPOLL signal to determine the highest-priority request and, when INTACK is received, generates the IENB signal which loads the interrupting subsystem's address into the IDN register. When the Interrupt Acknowledge flip-flop is set by the INTACK signal, it in turn sets the External Interrupt flip-flop, which sets bit 8 (external interrupt) to the interrupt register (CPX1) to a logic 1.

3-156. The SYSPE and MCUDPE signals also are monitored by the IOP interrupt control and error logic during the I/O to memory transfer operations. Either the SYSPE or MCUDPE signal will set the Address Parity Error (APE) flip-flop which, when set, sends an IOAPE signal to the front panel indicators and a XERR signal to the transferring I/O subsystem, and the service out logic, causing the assertion of the SO signal.

### 3-157. CPX1 REGISTER.

3-158. The CPX1 register, shown on simplified diagram sheet 10, provides 16 bits that are used to monitor the system run mode interrupt status. When a run mode interrupt is experienced, the CPU reads the CPX1 register and checks the content for the cause of the interrupt. The S-bus field code CPX1 reads the CPX1 register and the special field code CCPX affects the CPX1 register as described in the field code definitions. The following is a list of the CPX1 register contents with the significance of each bit and the location of the output gate for each bit.

| Bit    | 0. | Integer overflow     | CIR PCA A8 (DD205E28) |
|--------|----|----------------------|-----------------------|
| Bit    | 1. | System parity error  | MCU PCA A9 (DD206C19) |
| Bit    | 2. | Address parity error | MCU PCA A9 (DD206B19) |
| Bit    | 3. | Data parity error    | MCU PCA A9 (DD206B19) |
| Bit    | 4. | CPU timer            | MCU PCA A9 (DD206E19) |
| Bit    | 5. | Bounds violation     | CIR PCA A8 (DD205E28) |
| Bit    | 6. | Illegal address      | MCU PCA A9 (DD206F19) |
| Bit    | 7. | Module interrupt     | CIR PCA A8 (DD205E28) |
| Bit    | 8. | External interrupt   | CIR PCA A8 (DD205E28) |
| Bit    | 9. | Console interrupt    | CIR PCA A8 (DD205E28) |
| Bit 1  | 0. | Power fail interrupt | CIR PCA A8 (DD205E28) |
| Bit 1  | 1. | 0                    | CIR PCA A8 (DD205E28) |
| Bit 1  | 2. | 0                    | CIR PCA A8 (DD205E28) |
| Bit 1  | 3. | 0                    | MCU PCA A9 (DD206B39) |
| Bit 14 | 4. | 0                    | MCU PCA A9 (DD206B39) |
| Bit 1  | 5. | 0                    | MCU PCA A9 (DD206B39) |
|        |    |                      |                       |

### 3-159. CPX2 REGISTER.

3-160. The CPX2 register, shown on simplified diagram sheet 10, provides 16 bits that are used to monitor the system halt mode interrupt status. When a halt mode interrupt is experienced, the CPU reads the CPX2 register and checks its content for the cause of the interrupt. The S-bus field code CPX2 reads the CPX2 register and the special field code CCPX affects the CPX2 register content as described in the field code definitions. The following is a list of the CPX2 register content with the significance of each bit and the location of the output gate for each bit.

| Bit | 0. | Run FF                      | CIR PCA A8 (DD205F23) |
|-----|----|-----------------------------|-----------------------|
| Bit | 1. | Cold load                   | CIR PCA A8 (DD205F23) |
| Bit | 2. | Single instruction          | CIR PCA A8 (DD205E23) |
| Bit | 3. | Load register               | CIR PCA A8 (DD205F23) |
| Bit | 4. | Display memory              | CIR PCA A8 (DD205F23) |
| Bit | 5. | Load memory                 | CIR PCA A8 (DD205F23) |
| Bit | 6. | Execute switch              | CIR PCA A8 (DD205E23) |
| Bit | 7. | Increment memory<br>address | CIR PCA A8 (DD205F23) |

| Bit 8.  | Decrement memory<br>address | CIR PCA A8 (DD205F23) |
|---------|-----------------------------|-----------------------|
| Bit 9.  | Inhibit auto-restart        | CIR PCA A8 (DD205F23) |
| Bit 10. | I/O timer                   | ALU PCA A5 (DD202H47) |
| Bit 11. | Interrupt stack flag        | ALU PCA A5 (DD202G47) |
| Bit 12. | Dispatcher flag             | ALU PCA A5 (DD202G47) |
| Bit 13. | 0                           | ALU PCA A5 (DD202G47) |
| Bit 14. | 0                           | CIR PCA A8 (DD205F23) |
| Bit 15. | System dump                 | CIR PCA A8 (DD205F23) |

### 3-161. MASK REGISTER.

3-162. The mask register is a 16-bit register located on IOP PCA A10 and shown on simplified diagram sheet 30 and detailed diagram DD207, location B14. The mask register is a copy of all the individual flip-flops on all subsystem controllers. The Mask bit for any subsystem controller, when set to logic 0, holds off any interrupts from the controller. The held off interrupts are not lost and the controller is able to interrupt when the Mask is removed.

3-163. The mask register is loaded by a STMSK signal from the store field decoder and read by a RDMSK signal from the S-bus decoder.

3-164. NOP1, NOP2 LOGIC.

3-165. The NOP1, NOP2 logic is located on SSF PCA A4 and shown on simplified diagram sheet 24 and detailed diagram DD201, sheet 3. The NOP logic monitors the output of the skip field decoder and NO-OPS the ROR1 and ROR2 registers during skip conditions.

3-166. NEXT LOGIC.

3-167. The next logic is located on SSF PCA A4 and shown on simplified diagram sheet 25 and detailed diagram DD201, sheet 3. When a NEXT microinstruction is decoded by the skip field decoder, a NEXT signal is generated by the next logic and sent to the MCU operation decoder to initiate a next instruction fetch from memory.

3-168. MCU OPERATION DECODER.

3-169. The MCU operation decoder, located on MCU PCA A9 and shown on simplified diagram sheet 32 and detailed diagram DD206, sheet 3, decodes the MCU option code from ROR2 bits 23:27 and controls central data bus transmissions. The NIP and OPINP signals, both of which are generated by the MCU operation decoder, load the contents of the central data bus into the NIR and OPND registers, respectively, during next instruction and operand fetches from memory.

### 3-170. FREEZE LOGIC.

3-171. The freeze logic is located on MCU PCA A9 and shown on simplified diagram sheet 33 and detailed diagram DD206, location G13. If a fetch operation is in process or LREQ or HREQ flip-flops are set, the freeze logic inhibits the CPU clock (inhibiting further CPU operations), and prevents the LREQ and HREQ flip-flops in the CPU request/select logic and the Operand In Process (OPINP) and the Next In Process (NIP) flip-flops in the MCU control logic from being set until the fetch is completed. In addition, ROR1 is inhibited from loading the ROM output until the fetch is completed.

### 3-172. OVERFLOW FLIP-FLOP.

3-173. The Overflow flip-flop, located on SSF PCA A4 and shown on simplified diagram sheet 21 and detailed diagram DD201, location D8, controls the overflow bit (bit 4) of the status word. The Overflow flip-flop stores the state of the Overflow signal from the ALU, when OFCENB signal is true. The Overflow flip-flop is set by special field code SOV (Set Overflow) and cleared by the special field code CLO (Clear Overflow).

### 3-174. CARRY FLIP-FLOP.

3-175. The Carry flip-flop, located on SSF PCA A4 and shown on simplified diagram sheet 21 and detailed diagram DD201, location C8, controls the carry bit (bit 5) of the status word. The Carry flip-flop stores the state of the Carry signal from the ALU, when OFCENB signal is true. The Carry flip-flop is set by special field code SCRY (Set Carry) and cleared by the special field code CCRY (Clear Carry).

### 3-176. CONDITION CODE LOGIC.

3-177. The condition code logic, located on SSF PCA A4 and shown on simplified diagram sheet 20 and detailed diagram DD201, location E6, controls the condition code. Bits 6 and 7 of the status word are used for the condition code. Although several instructions make use of the condition code, the condition code typically indicates the state of an operand (or a comparison result with two operands). The operand may be a word, byte, double word, or triple word, and may be located on the top of the stack, in the index register, or in a specified memory location. Three codings are used: 00, 01, and 10. (The 11 combination is not used.) Except for special interpretations there are three basic patterns for interpreting these codes. The three patterns are shown in table 3-10.

Table 3-10. Condition Codes.

| CCA | sets | сс | = | CCG (00) if operand $> 0$               |
|-----|------|----|---|-----------------------------------------|
|     |      |    | = | CCL (01) if operand < 0                 |
|     |      |    | = | CCE (10) if operand = $0$               |
|     |      |    |   |                                         |
| CCB | sets | сс | = | CCG (00) if numerical (octal 060-071)   |
|     |      |    | = | CCL (01) if special char (all others)   |
|     |      |    | = | CCE (10) if alphabetic (upper 101 - 132 |
|     |      |    |   | lower 141 – 172)                        |
|     |      |    |   |                                         |
| CCC | sets | сс | = | CCG (00) if operands $1 > 2$            |
|     |      |    | = | CCL (01) if operands $1 < 2$            |
|     |      |    | = | CCE (10) if operands 1 = 2              |
|     |      |    |   |                                         |
|     |      |    |   |                                         |

3-178. The most common condition code pattern is pattern A, designated as condition code A, or CCA. The special field code CCA sets condition code pattern A. The condition code bits are set to CCG (00) if the T-bus word is greater than zero (T(0)=0 and signal T = 0 is false), CCL (01) if the T-bus word is less than zero (T(0)=1), and CCE (10) if the T-bus word is equal to zero (signal T = 0 is true). Since this usage of the condition code is so common, the three codes 00, 01, and 10 are named to reflect the meanings. Thus 00 is CCG (greater), 01 is CCL (less), and 10 is CCE (equal).

3-179. Condition code pattern B is used with byte oriented instructions and is controlled by special field code CCB. The special field code CCB sets the condition code bits to CCG (00) if bits 8:15 of the SP1 register form a numeric ASCII character, CCL (01) if a special ASCII character, and CCE (10) if an alphabetic ASCII character.

3-180. Condition code pattern C is used with comparison instructions and is controlled by special field codes CCG, CCL, and CCE. Special field code CCG sets the condition code bits to CCG (00) if operand 1 is greater than operand 2, special field code CCL sets the bits to CCL (01) if operand 1 is less than operand 2, and special field code CCE sets the bits to CCE (10) if operand 1 equals operand 2.

### **3-181. FUNCTIONAL-LEVEL DESCRIPTION.**

3-182. The following paragraphs contain a functionallevel description of operation for the CPU/IOP. The text is supported by operational flow diagrams. In addition, the block diagram (figure 3-2), simplified logic diagrams (figure 3-22) and detailed logic diagrams (set nos DD200 through DD207) should be referenced. For ease in using these diagrams, the location of all circuit elements (flipflops, registers, etc) referenced on the flow diagrams is shown. The simplified or detailed diagram is listed above the box which references the circuit element.

3-183. The CPU, with the IOP and MCU, is connected to the memory modules via the central data bus. All transmissions to or from the CPU/IOP and memory are routed through the MCU. Access to the central data bus is granted when two conditions are met. First, the CPU/IOP requests service from the MCU. The destination memory module signifies it is ready by pulling its READY line low. There is one READY line for each memory module. The second condition that must be met is that there must not be any higher priority module seeking access to the bus. Bus priority is a function of data transfer urgency. Memory modules have higher priority than the CPU or IOP. When a module is ready for access to the bus, it pulls its ENABLE line low, blocking lower priority modules. The CPU and IOP share the MCU. Although the CPU and IOP both have access to the central data bus, the IOP has higher priority.

3-184. Data to or from the CPU/IOP and I/O subsystems is carried over the IOP bus. Input/output operations are divided into three categories: direct I/O, programmed I/O and interrupt processing. Programmed I/O operations have priority over other modes of operation.

3-185. Direct I/O operations take place as a result of the execution of an I/O instruction by the CPU. Each direct I/O operation either exchanges a word of information between the TOS register in the CPU and the I/O subsystem, or causes a control function to be executed. During the execution of direct I/O instructions the CPU performs the basic control functions such as assembling the I/O command, checking the status of the I/O subsystem, and exchanging a word of information between the TOS register and the I/O subsystem via the IOP and the IOP bus.

3-186. Programmed I/O operations transfer blocks of data between the I/O subsystem and memory, via the IOP and bypassing the CPU. This type of operation begins when the CPU decodes an SIO instruction and issues an SIO command to a particular I/O subsystem. The I/O subsystem, in conjunction with the multiplexer channel and the IOP, then executes the I/O program without further CPU control.

3-187. The interrupt mode of operation is based on a priority system. An interrupt poll determines priority for each I/O subsystem, and priority is established by the logical proximity of the I/O subsystem to the IOP. The 16-bit mask register stores information that masks off groups of interrupts. Each I/O subsystem is assigned to a particular mask group and is masked off interrupt priority with that group.

3-188. Polling is also used to determine priority for each multiplexer channel during programmed I/O operation. A data poll is sent out to all multiplexer channels and, again, priority is established based on the logical proximity of each multiplexer channel to the IOP. The data poll is separate from the interrupt poll, however, so that data priority for any I/O subsystem can be different from its interrupt priority.

3-189. As the CPU executes a program, it sequentially fetches instructions from memory. Each instruction is loaded into the next instruction register (NIR), from there to the current instruction register (CIR), and then to the look-up table (LUT) address decoder. The LUT address decoder and LUT ROM provide a starting address for the microprogram ROM. Each of the 170 machine instructions references a specific microprogram in the microprogram ROM. The microprogram ROM starting address is stored in the ROM address register (RAR) and is used to read out a microprogram from ROM to the ROM output register rank 1 (ROR1). The RAR is incremented after each ROM address is furnished to the microprogram ROM, thus the address in RAR always points to the next microinstruction in ROM for the program being executed. The software program is always executed in the following sequence: next instruction fetch, operand fetch or store, and execution. Memory address computation for a next instruction fetch or operand fetch or store is performed in the CPU. A normal fetch or store sequence, then, consists of determining the memory address where the information is to be read from or stored into, sending this address to memory with the appropriate memory operation code (Read-Restore or Clear-Write), and, finally, transferring the data between memory and the CPU.

### 3-190. NEXT INSTRUCTION FETCH.

3-191. A timing diagram for a next instruction fetch is shown in figure 3-3 and an operational flow diagram is shown in figure 3-4. Briefly, a NEXT field code is decoded by the skip field decoder, an address is sent to memory, and the next instruction is read out of this memory address and transferred to the CPU.

3-192. The skip field code NEXT sets ROR1 bits 15:19 to 11101 and sets the NXT1 signal to a logic 1. The NXT1 signal sets the Next 2 (NXT2) flip-flop (The RPTN1 and ROMFCN1 signals are both high) and the NXT2 signal goes low, setting the NXTDCD signal to logic 1. The P-register,

which contains the absolute address of the next instruction to be fetched from memory, is loaded into the PCOR register.

3-193. The Flag 1 and Flag 2 flip-flops are cleared. If the Next Delayed (NXTDLD) flip-flop is set, the CPU clock is frozen for one cycle, allowing the previous operation to finish. This flip-flop is set when NEXT and DATA occur in the same line of microcode, and cleared at the same time that NEXT sets the LOREQ flip-flop.

3-194. P-register bits 0, 1, 2, 14, and 15, which had been loaded into the mapper, are used to generate the TO code of the memory module. This code is loaded into the PTO and PTO(NIR) registers by the LOADPTO(NIR) signal.

3-195. If the Next In Process (NIP), Low Request (LREQ) or High Request (HREQ) flip-flops are set, and if the INTRP signal is high, the FREEZE signal is set to "0" and the CPU is forced to wait until the NIP, LREQ, and HREQ flip-flops are cleared before proceeding with the current operation. If no interrupts are pending and if the Next Fetch Inhibit flip-flop is not set, the NIRTOCIR level goes to "1" and the NIR content is loaded into the CIR. ROR1 is NOP'ed and the NIR to CIR Delay flip-flop is set.

3-196. The skip field code NEXT forces the MCU option NIR and the MCU operation decoder generates a Read-Restore (RR) memory opcode (MOP). This code is loaded into the PUMOP register. The NIR flip-flop is set at this point, enabling the NIR register store function. The NXT=1 flip-flop is set, setting NXT=1 to "0" and LUTGATE to "1", and loading the LUT ROM into RAR. On the next clock cycle, the NXT=2 flip-flop is set and the NXT=2 and INCP levels go high, incrementing the P-register by 1, pointing to the next instruction in memory.

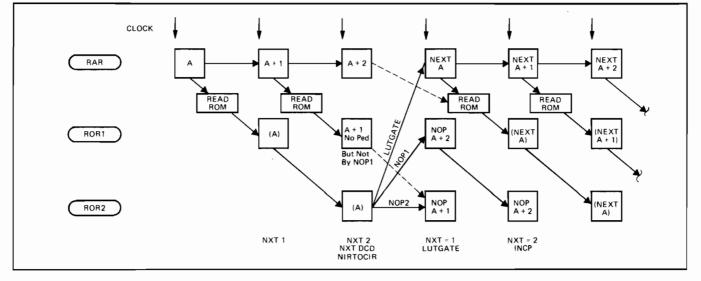



Figure 3-3. Execution of Microinstruction Containing Next Skip Field Code

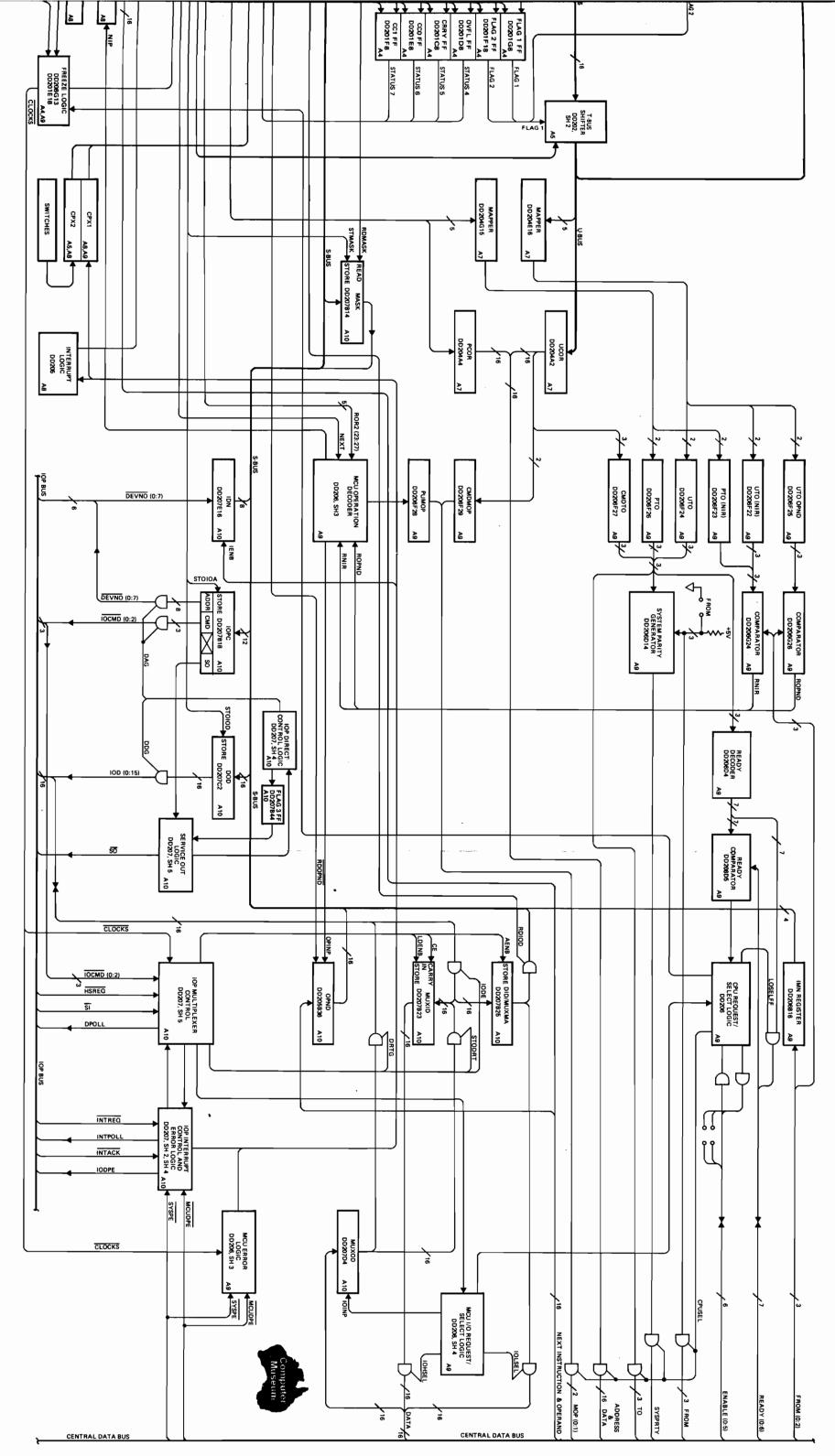
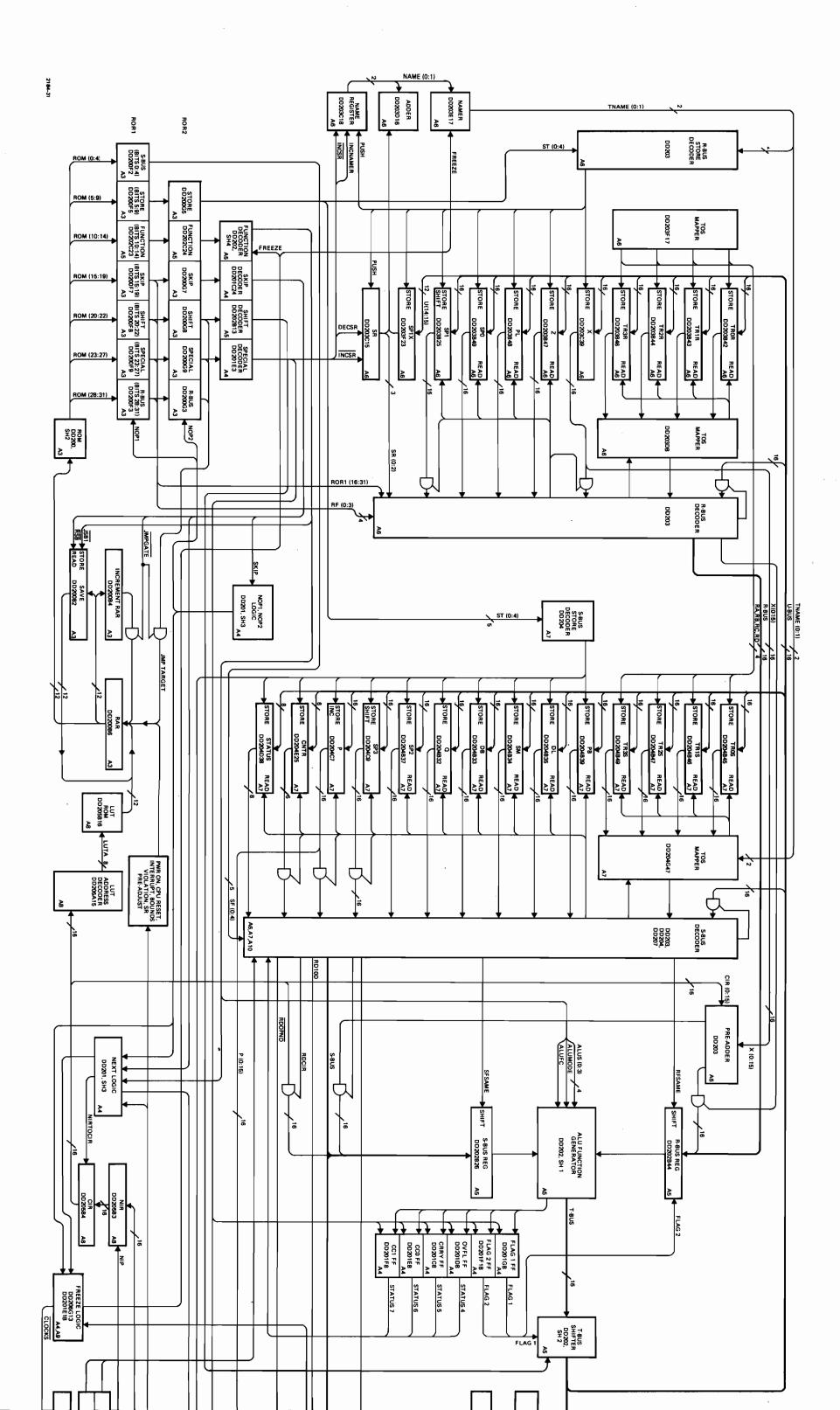




Figure 3-2. CPU/IOP Block Diagram

3-41/3-42



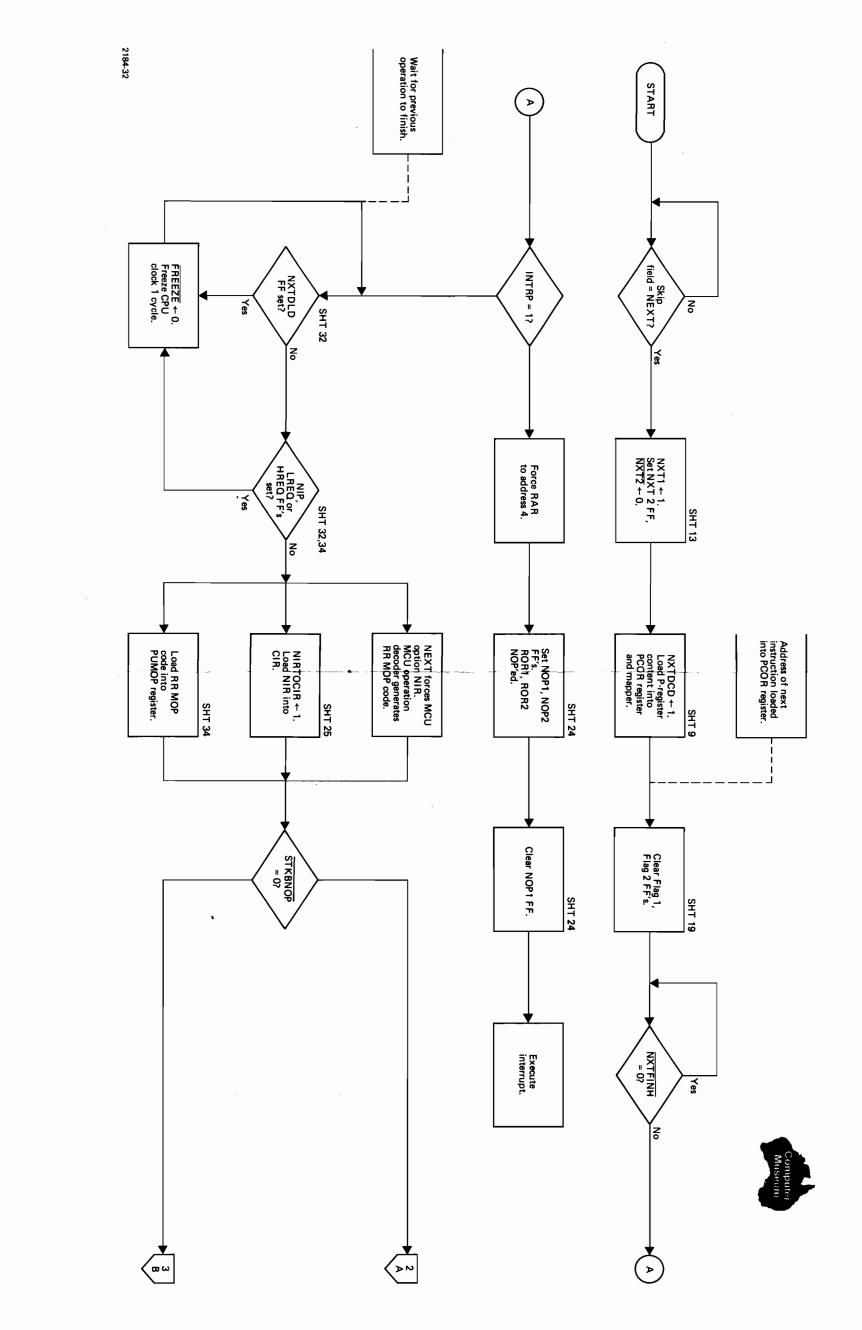
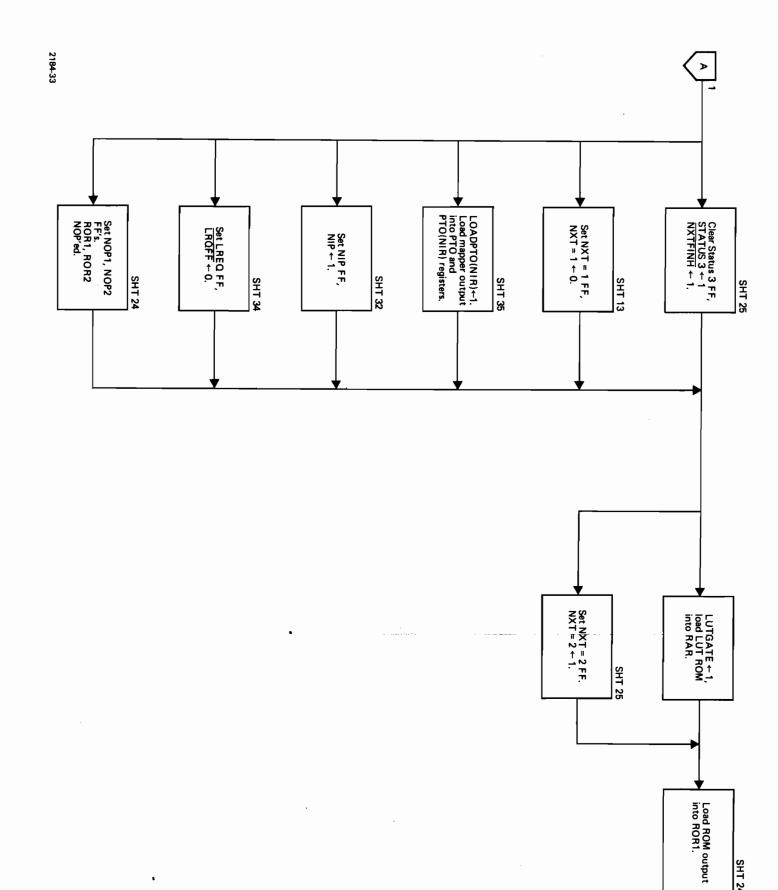



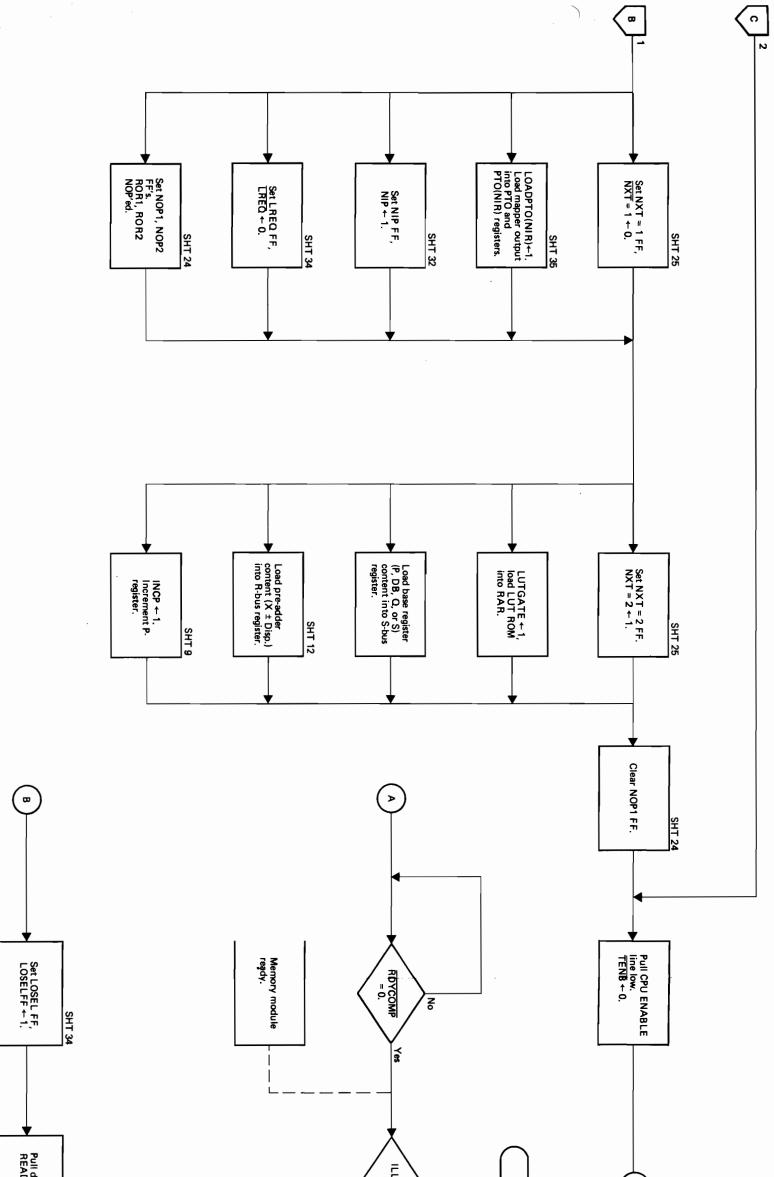



Figure 3-4. Next Instruction Fetch Operational Flow Diagram (Sheet 1 of 4)



•

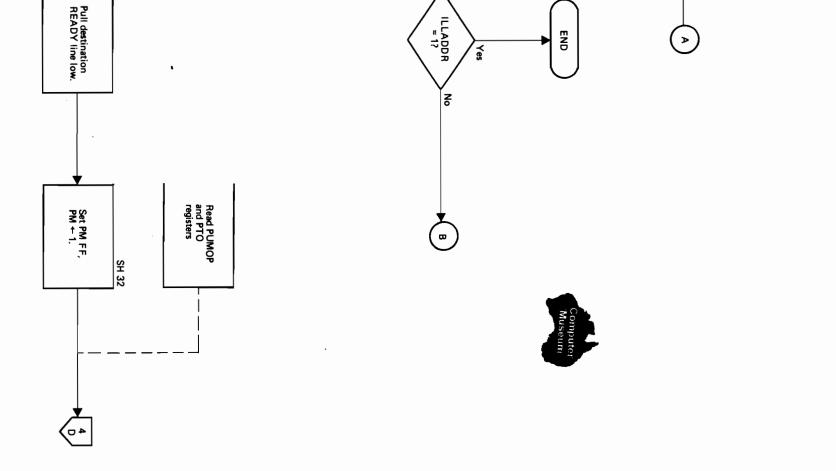
)

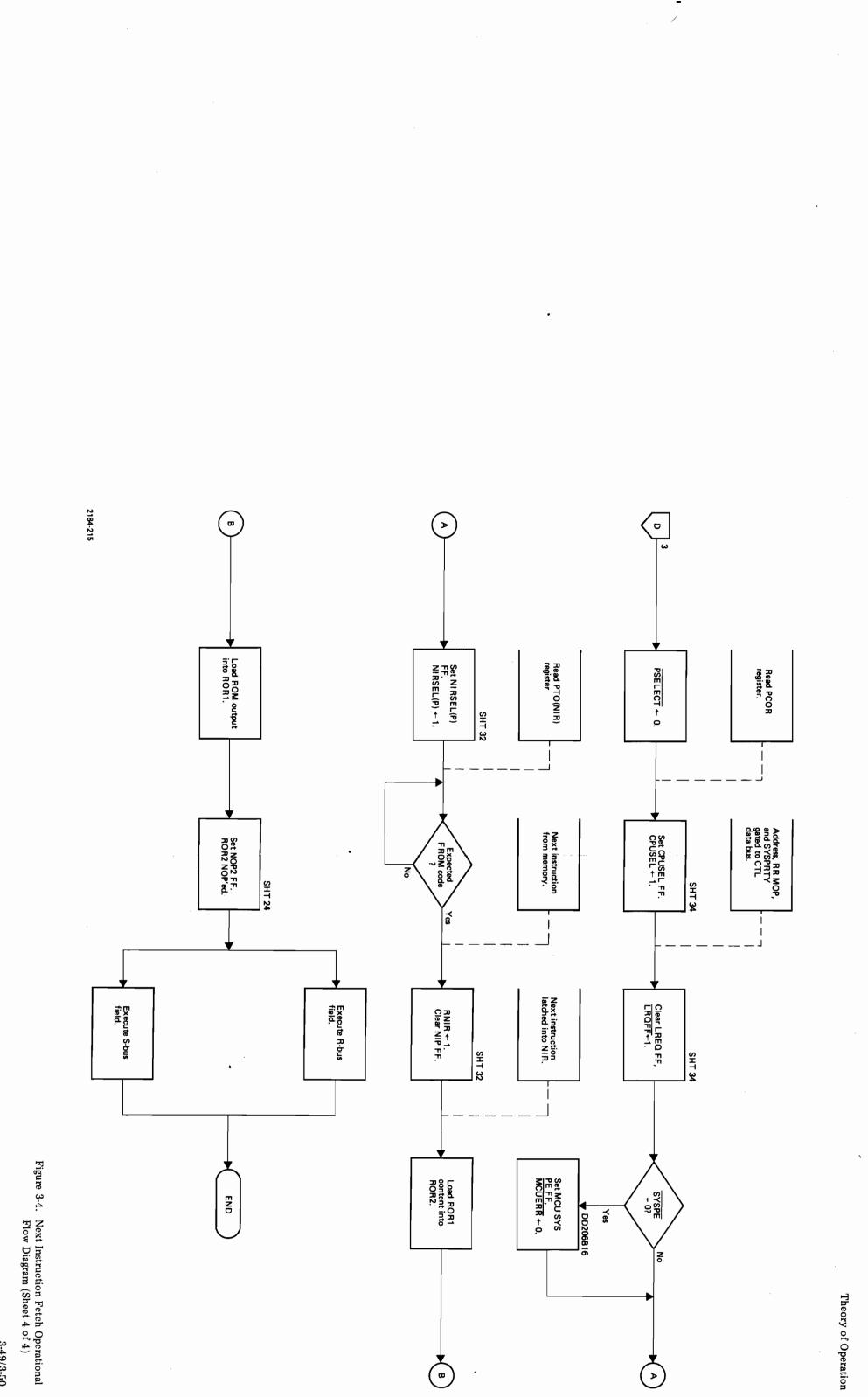

.

Theory of Operation



Figure 3-4. Next Instruction Fetch Operational Flow Diagram (Sheet 2 of 4)


3-45/3-46




2184-34

3-47/3-48

Figure 3-4. Next Instruction Fetch Operational Flow Diagram (Sheet 3 of 4)





3-197. The base register (P, DB, Q, or S) called for by the instruction is loaded into the S-bus register and the preadder, containing the relative address portion of the CIR, is loaded into the R-bus register. The U-bus becomes the sum of the S-bus plus the R-bus register contents and the result is loaded into the S-bus register, if the microcode so specifies. The NOP2 flip-flop remains set for one clock cycle after the NXT=2 flip-flop is cleared.

3-198. When a NEXT code is decoded, the CPU sets the LREQ flip-flop. The ready comparator compares the READY lines against the TO code for the intended memory module and, if the memory is ready to receive, the CPU pulls the TENB signal low. If the maximum memory bounds are exceeded, the ILLADDR signal goes high, terminating the operation. If ILLADDR is not high, the Low Select (LOSEL) flip-flop is set, and the ENABLE line is released. The P-to-Memory (PM) flip-flop is set, the PM level goes high and PSELECT goes low. The PM level reads the PUMOP register, containing the RR MOP code, and the PTO register, containing the TO code of the memory module. The PSELECT level reads the PCOR register, which contains the memory address. The CPU Select (CPUSEL) flip-flop is set and the memory address, RR MOP code, and SYSPRTY are gated to memory via the central data bus. The LREQ flip-flop is cleared. If a SYSPE signal is received, the MCU System Parity Error (MCU SYS PE) flip-flop is set and the MCUERR level is set to "0".

3-199. The NIRSEL(P) level, set to "1" by the NIR Select (P) flip-flop, reads the contents of the PTO(NIR) register to the TO-FROM comparator, which compares the saved TO code with the incoming FROM code from the memory module. If the two match, the RNIR level goes high, clearing the NIP flip-flop and latching the next instruction into NIR.



3-200. OPERAND FETCH.

3-201. An operand fetch operational diagram is shown in figure 3-5. The procedure for fetching an operand is similar to the procedure for fetching the next instruction. The main differences are that an operand fetch is initiated by a store field code BUSL and the operand is stored in the operand register instead of the next instruction register.

3-202. When a store field code BUSL is decoded, the special field is disabled and the MCU option field is enabled. If a previous MCU operation is still in process, the FREEZE signal will be low until the operation is completed. The U-bus, containing the memory address, is loaded into the UCOR register and mapper (bits 0, 1, 2, 14, and 15) and the RR MOP code is loaded into the PUMOP register.

3-203. The TO code, generated by the mapper, is loaded into the UTO and UTO OPND registers. The LREQ and Operand In Process (OPINP) flip-flops are set. The OPINP flip-flop enables the OPND register store function so that this register will load all central data bus transmissions. The READY comparator compares the TO lines with the READY lines to assure that the destination module is ready to accept an address. If the result is true, the CPU ENABLE line is pulled low, setting TENB to "0". The LOSEL flipflop is set, releasing the ENABLE line and clearing the LREQ flip-flop. The P-to-Memory (PM) flip-flop is set, setting the PM level to "1" and PSELECT to "0", and reading the PUMOP and UCOR registers. When the CPUSEL flip-flop is set, the memory address and RR MOP code are gated to memory.

3-204. The saved TO code, which had been stored in the UTO OPND register, is compared with the incoming FROM code by the TO-FROM comparator. If the result is true, the ROPND level is set to "1", clearing the OPND flip-flop and latching the operand into the OPND register.

### 3-205. OPERAND STORE.

3-206. An operand store operation is identical to an operand fetch operation except that there are two transmissions to memory from the CPU, an address and data. In addition, the MOP code is Clear-Write instead of Read-Restore. The address is loaded into the UCOR register and sent to memory and, when the LOSEL flip-flop is reset at the completion of the address transfer cycle, the operand is loaded into UCOR and sent to memory. An operational flow diagram for an operand store function is shown in figure 3-6.

### 3-207. DIRECT I/O.

3-208. The CPU has eight instructions, or commands, for direct I/O control. The commands are three-bit codes carried over the IOCMD00, IOCMD01 and IOCMD02 lines. The commands and the three-bit IOCMD codes are shown in table 3-11.

| Table 3-11. | Direct I/O | Commands |
|-------------|------------|----------|
|-------------|------------|----------|

|                       | CODE    |         |         |
|-----------------------|---------|---------|---------|
| I/O COMMAND           | IOCMD02 | IOCMD01 | IOCMD00 |
| Set Interrupt (SIN)   | 0       | 0       | 0       |
| Reset Interrupt (RIN) | 0       | 0       | 1       |
| Start I/O (SIO)       | 0       | 1       | 0       |
| Set Mask (SMSK)       | 0       | 1       | 1       |
| Control I/O (CIO)     | 1       | 0       | 0       |
| Test I/O (TIO)        | 1       | 0       | 1       |
| Write I/O (WIO)       | 1       | 1       | 0       |
| Read I/O (RIO)        | 1       | 1       | 1       |

3-209. The following paragraphs describe the direct I/O commands and those subroutines which are called during execution of the commands. The descriptions are supported by operational flow diagrams. The text presents an overall description of operation for the various I/O commands; the detailed, step-by-step sequence of events is contained in the flow diagrams and it is these diagrams which should be consulted if a detailed description is required. The microprogram listing should be used in conjunction with the flow diagrams to follow the sequence of operation for the CPU/IOP. Simplified diagrams are referenced on the flow diagrams for key circuit elements.

3-210. READ I/O. A Read I/O (RIO) instruction transfers data from the I/O subsystem to the TOS in the CPU. The I/O subsystem device number is fetched from the stack at location S-K and a Test I/O (TIO) command is sent to this I/O subsystem. The I/O subsystem returns its status to the CPU, where it is checked to determine if the I/O subsystem is ready for RIO. If it is ready (status word bit 0=1), an RIO command is sent to the I/O subsystem, the incoming data word is loaded onto the stack, and the condition code is set to CCE. If the I/O subsystem is not ready (status word bit 0=0), the status word from the I/O subsystem is pushed onto the stack and the condition code is set to CCG. If the I/O subsystem does not respond to the TIO (I/O timeout), the condition code is set to CCL and the instruction is terminated.

3-211. An operational flow diagram for a RIO command is shown in figure 3-7. If the instruction in CIR contains an RIO, the LUT decoder generates a microprogram ROM address of  $2252_8$ . The microinstruction at this ROM address is loaded into ROR1 and a function field JSB and skip field code UNC cause a jump to the device address fetch subroutine (FS-K). The device address fetch subroutine (see figure 3-8) fetches the device address (DEVNO) from the stack at location S-K. The address value S is obtained by adding the contents of the SR register to the SM register, the constant K (contained in bits 12:15 of the instruction) is subtracted from this value to point to the stack address where DEVNO is located.

3-212. The device address (DEVNO), when fetched, is loaded, with a Test I/O (TIO) command, into the SP3 register and is transferred to the IOP when the CIOP subroutine (see figure 3-9) is executed. The TIO IOCMD and DEVNO are loaded into the IOPC register in the IOP and are transferred, with SO, to the I/O subsystem. The I/O subsystem decodes the TIO IOCMD and returns its status and SI to the IOP. The IOP terminates SO and loads the status word into the DID/MUXMA register, and sets the Flag 3 flip-flop, notifying the CPU that the status word is present. An RDIOD signal from the CPU gates the DID/MUXMA register contents to the S-bus register and from there to the U-bus. A store field code, SP2, loads the U-bus (containing the status word) into the SP2 register. 3-213. If the I/O subsystem has not responded by the time the I/O timeout occurs, CPX2 bit 10 will be set. The microcode checks the status of CPX2 bit 10 and sets Flag 2 flip-flop if the bit is logic 1. If Flag 2 flip-flop is set (signifying I/O timeout), a jump to ROM address  $2251_8$  (I/O Kill) is executed, the condition code is set to CCL, and the operation is terminated. If the Flag 2 flip-flop is not set, the status word is gated from the SP2 register to the S-bus register and bit 0 is checked. If bit 0 is logic 1 (I/O subsystem not ready for WIO), a jump to ROM address  $2247_8$  (I/O Abort) is executed, the status word is gated from the status word is pushed onto the stack, the condition code is set to CCG, and the operation is terminated.

3-214. If the status word bit 0 is "0", a RIO IOCMD is formed and loaded into the SP3 register for transfer to the IOP. The CIOP subroutine is executed once more, transferring the RIO IOCMD, DEVNO and SO to the I/O subsystem via the IOP bus. The I/O subsystem responds with a data word and SI. The IOP loads the data word into the DID/MUXMA register, terminates SO and sets Flag 3 flip-flop, notifying the CPU that the data word is present. The CPU generates the RDIOD signal and the data word is gated to the S-bus register and from there to the U-bus. A store field code SP2 loads the data word on the U-bus into the SP2 register.

3-215. Flag 2 flip-flop is checked again and if it is set (signifying I/O timeout), a jump to ROM address  $2251_8$  (I/O Kill) is executed, the condition code is set to CCL and the operation is terminated. If Flag 2 flip-flop is not set, the SR register content is checked to determine if the TOS registers are full. If the SR register content equals four, denoting that the TOS registers are full, a jump to the PSHM subroutine (ROM address  $3425_8$ ) is executed. The PSHM subroutine (see figure 3-10) pushes one word from the TOS registers down to memory to make room for the incoming data word from the I/O subsystem.

3-216. The data word from the I/O subsystem is gated from the SP2 register into the S-bus register, and from the S-bus register to the U-bus. When a store field code PUSH is decoded, the data word is loaded into the TOS register. The condition code is then set to CCE, a next instruction fetch is initiated, and the RIO instruction is complete.

3-217. FS-K SUBROUTINE. An operational flow diagram for the FS-K subroutine is shown in figure 3-8. FS-K is a subroutine to fetch the contents at address S-K (the I/O subsystem device number). The S quantity is obtained by adding the contents of the SR register to the SM register; K is a constant contained in bits 12 through 15 of the instruction.



3-218. If the content of the SR register is less than or equal to the constant K, the device address is in memory and an operand fetch is initiated. The address in memory is contained in the SM register and is gated from this register to the S-bus register. An operand fetch is then initiated to fetch the contents of memory location S-K (see paragraph 3-201).

3-219. The device address is received from memory and loaded into the OPND register. The S-bus field code OPND reads the OPND register out to the S-bus and into the S-bus register. A shift field code RRZ places the right byte of the T-bus (containing the device address) in the right byte of the U-bus (the left byte is set to all zeros) and, finally, the store field code SP1 loads the U-bus into the SP1 register.

3-220. If the content of the SR register is not less than or equal to the constant K, the device address is in a TOS register and an R-bus field code MREG loads this TOS register into the S-bus register. The shift field code RRZ loads the right byte of the word into the T-bus (the left byte is not used for device address and is set to all zeros), and a store field code SP1 loads these eight bits of the right byte (device address) into the SP1 register.

3-221. CIOP SUBROUTINE. An operational flow diagram for the CIOP subroutine is shown in figure 3-9. CIOP is a subroutine that performs the CPU-IOP communication. The CPU checks the Flag 2 flip-flop to determine if an outbound transfer is in progress, and, if Flag 2 is set (signifying an outbound transfer), the data word which had been stored in the SP2 register is loaded onto the S-bus. If the SIO Active (SIO ACT), Data Poll (DPOLL), or Interrupt Acknowledge (INTACK) flip-flops are set, signifying SIO or interrupt in process, the CIOP subroutine waits for the completion of these operations by repeatedly checking for Flag 1. When these flip-flops are all cleared, the CIOP subroutine can proceed and a store field code IOD (if an outbound transfer is in process) sets the STOIOD level to "1" and loads the data word on the S-bus into the DOD register. The store field code IOA sets the STOIOA level to "1" and the IOCMD and DEVNO are loaded into the IOPC register. The Direct Active (DRCT ACT) flip-flop is set, gating the IOPC register content (IOCMD and DEVNO) to the IOP bus. If an outbound transfer is in process, the Direct Data (DRCT DATA) flipflop also is set and the DOD register content is gated to the IOP bus.

3-222. When the I/O subsystem receives the IOCMD, DEVNO and SO (which has been asserted by the IOP), it loads the data on the IOP bus into its data-in register and returns SI if an outbound transfer is in process, or gates a status word or data word onto the IOP bus with SI if an inbound transfer is in process. In the latter case (inbound transfer), the IOP loads the incoming data into the DID/MUXMA register, terminates SO, and sets the Flag 3 flip-flop, notifying the CPU that the data word has been received. The S-bus field code IOD sets the RDIOD logic level to "1" and the DID/MUXMA register content is gated to the S-bus register.

3-223. PSHM SUBROUTINE. An operational flow diagram for the PSHM subroutine is shown in figure 3-10. PSHM is a subroutine which pushes one word from the TOS registers down to memory. The SM register, which contains the address of the top element of the data stack in memory, is incremented and loaded into the S-bus register. An operand store operation (see paragraph 3-206) is initiated that stores the content of the lowest TOS register into the memory location contained in the SM register.

3-224. The top memory location available to the data stack is checked by loading the Z-register content into the R-bus register, the SM register content into the S-bus register, and subtracting the S-bus register content from the content of the R-bus register. If the SM register content exceeds the Z-register content (ALU carry out bit equals "0") a jump to ROM address  $3432_8$  (stack overflow subroutine) is executed.

3-225. PUL1 SUBROUTINE. An operational flow diagram of the PUL1 subroutine is shown in figure 3-11. The PUL1 subroutine pulls one word from the data stack in memory to a TOS register. The address of the data stack top element is contained in the SM register. An S-bus field code SM loads the SM register content (memory address) into the S-bus register and an operand fetch operation is initiated, using BUSL in the store field (see paragraph 3-201). The SM register is decremented to contain the address of the new data stack top element, and loaded into the R-bus register and the data base (DB) register is loaded into the S-bus register. An R-bus minus S-bus subtract function is executed and if the SM register content is less than the address contained in the DB register, the ALU carry out bit will equal "1", signifying a stack underflow and a jump to ROM address 27728 (stack underflow subroutine) is executed.

3-226. When the data word is received from memory an S-bus field code OPND loads the OPND register into the S-bus register and onto the U-bus. The U-bus data (the word just received from memory) is loaded onto the TOS at the location SM plus one, and the SR register is incremented to point to this TOS location.

3-227. WRITE I/O. A Write I/O (WIO) instruction transfers data from a TOS register to an I/O subsystem. An I/O subsystem device number is fetched from the stack at location S-K and a TIO command is sent to this I/O subsystem. The I/O subsystem returns its status to the CPU where it is checked to determine if the I/O subsystem is ready for WIO. If the I/O subsystem is ready for WIO (status word bit 0=1), a data word is transmitted from the TOS to the I/O subsystem with a WIO command and the condition code is set to CCE. If the I/O subsystem is not ready for WIO (status word bit 0=0), the status word from the I/O subsystem is pushed onto the stack and the condition code is set to CCG. If the I/O subsystem has not responded to the TIO command or to the WIO command (I/O timeout), the condition code is set to CCL and the instruction is terminated.

3-228. An operational flow diagram for a WIO instruction is shown in figure 3-12. When the machine instruction in CIR is a WIO, the LUT decoder generates a microprogram ROM address of  $2265_8$  and the microinstruction at this ROM address is loaded into ROR1. The function field code JSB and skip field code UNC cause a jump to the device address fetch (FS-K) subroutine (see figure 3-8). The FS-K subroutine fetches the device number from the stack at location S-K.

3-229. The device address (DEVNO), when fetched, is loaded, with a TIO command, into the SP3 register and is transferred to the IOP when the CIOP subroutine (see figure 3-9) is executed. The TIO IOCMD and DEVNO are loaded into the IOPC register, and are transferred, with SO, to the I/O subsystem. The I/O subsystem decodes the TIO IOCMD and returns its status and SI to the IOP. The IOP terminates SO and loads the status word into the DID/MUXMA register and sets the Flag 3 flip-flop, notifying the CPU that the status word is present. An RDIOD level from the CPU gates the DID/MUXMA register contents to the S-bus register and from there to the U-bus. A store field code SP2 loads the U-bus (containing the status word) into the SP2 register.

3-230. If the I/O subsystem has not responded to the TIO command, Flag 2 flip-flop will be set. If Flag 2 flip-flop is set (signifying I/O timeout), a jump to ROM address  $2251_8$  (I/O Kill) is executed, the condition code is set to CCL, and the instruction is terminated. If the Flag 2 flip-flop is not set, the status word is gated from the SP2 register to the S-bus register and bit 1 is checked. (Bit 2 is shifted left and becomes bit 0.) If bit 0 is logic 1 (I/O subsystem not ready for WIO), a jump to ROM address  $2247_8$  (I/O Abort) is executed, the status word is pushed onto the stack, the condition code is set to CCG, and the instruction is terminated.

3-231. If the I/O subsystem is ready for WIO (bit 1=0), the condition of the stack is checked before the WIO IOCMD is formed and the data word is transferred. If the SR register equals zero, a jump to ROM address  $3420_8$  (PUL1 subroutine, see figure 3-11) is executed and a data word is pulled from memory to a TOS register.

3-232. The WIO IOCMD is formed and loaded into the SP3 register and an S-bus field code RA loads the TOS register (containing the data word for transfer to the I/O subsystem) into the S-bus register and from there to the SP2 register. The CIOP subroutine is executed again and the WIO IOCMD and data word are transferred to the IOP. The IOP loads the WIO command into the IOPC register and the data word into the DOD register. The WIO IOCMD, DEVNO and data word are then gated to the IOP bus with SO. The addressed I/O subsystem decodes the WIO command and loads the data word into its input register, then returns SI to the IOP.

3-233. After the return from the CIOP subroutine, the CPU checks the Flag 2 flip-flop. If this flip-flop is set, denoting I/O timeout, the condition code is set to CCL and the instruction is terminated. If Flag 2 flip-flop is not set, the condition code is set to CCE. The stack is POP'ed, the SR register is decremented and the name register is incremented to point to the new TOS register. A next instruction fetch is initiated and the WIO instruction is complete.

3-234. TEST I/O. A Test I/O (TIO) instruction fetches an I/O subsystem device number from the stack at location S-K and sends a TIO command to this I/O subsystem. The I/O subsystem responds by gating its status to the CPU. The status word is pushed onto the stack and the condition code is set to CCE. If the I/O subsystem does not respond to the TIO command (I/O timeout), the condition code is set to CCL and the instruction is terminated.

3-235. An operational diagram for a TIO instruction is shown in figure 3-13. A TIO instruction causes the LUT decoder to generate a microprogram ROM address of  $2300_8$ and the microinstruction at this ROM address is loaded into ROR1. The device address is fetched by executing an FS-K subroutine (see figure 3-8) and is loaded into the SP1 register, and from there to the SP3 register with the TIO IOCMD. A CIOP subroutine (see figure 3-9) transfers the TIO command and DEVNO to the IOP. The TIO command, DEVNO, and SO are then transferred to the I/O subsystem by the IOP. The I/O subsystem decodes the TIO command and its DEVNO and returns a status word to the IOP.

3-236. The IOP loads the status word into the DID/MUXMA register, terminates SO, and sets the Flag 3 flip-flop, notifying the CPU that the status word has been received. The CPU issues the RDIOD logic level, which gates the contents of the DID/MUXMA register to the S-bus register and from there a store field code SP2 loads the status word into the SP2 register.

3-237. If the I/O subsystem has not responded to the TIO command, an I/O timeout will have occurred and the Flag 2 flip-flop will be set. If this flip-flop is set, a jump to ROM address  $2251_8$  is initiated and an I/O Kill subroutine is executed. The condition code is set to CCL and the instruction is terminated. If the Flag 2 flip-flop is not set, the CPU checks the content of the SR register to determine if the TOS registers are full. If the SR register content equals four, a jump to ROM address  $3425_8$  is executed (PSHM subroutine, see figure 3-10) and one word from the TOS registers is pushed down to memory.

3-238. An S-bus field code SP2 loads the Status word from the SP2 register into the S-bus register and the store field code PUSH loads the status word into the TOS register. The condition code is set to CCE and the TIO instruction is complete. 3-239. CONTROL I/O. A Control I/O (CIO) instruction obtains an I/O subsystem device number from the stack at location S-K and sends a control word from the TOS, and a CIO command, to the I/O subsystem. If the I/O subsystem responds to the CIO command and control word, the TOS is POP'ed and the condition code is set to CCE. If the I/O subsystem does not respond (I/O timeout), the condition code is set to CCL and the instruction is terminated.

3-240. An operational flow diagram for a CIO instruction is shown in figure 3-14. A CIO instruction causes the LUT decoder to generate a microprogram ROM starting address of  $2306_8$  and the microinstruction at this address is loaded into ROR1. A function field code JSB and a skip field code UNC cause a jump to ROM address  $3533_8$  (FS-K subroutine, see figure 3-8), and the device address is fetched from the stack and stored in the SP1 register. An S-bus field code SP1 gates the SP1 register to the S-bus register, and, after the CIO command is formed, the device address and CIO command are loaded into the SP3 register for transfer to the IOP.

3-241. The CPU determines if the control word is in a TOS register or in memory by checking the SR register. If SR equals zero, the control word is in memory and a PUL1 subroutine (see figure 3-11) is executed which pulls one word from memory and loads it in the TOS register. An S-bus field code RA loads the control word from the TOS register into the S-bus register and a store field code SP2 gates it from the S-bus register to the SP2 register for transfer to the IOP. When the CIOP subroutine (see figure 3-9) is executed, the CIO command, DEVNO and control data word are sent to the IOP which transfers this information, with SO, to the I/O subsystem. The addressed I/O subsystem loads the control word into its control register and returns SI to the IOP. The IOP terminates SO and sets the Flag 3 flip-flop, notifying the CPU that the transfer is complete.

3-242. When the CPU returns from the CIOP subroutine, the Flag 2 flip-flop is checked to determine if I/O timeout has occurred. If the flip-flop is set, a jump to ROM address  $2251_8$  is executed (I/O Kill subroutine), the condition code is set to CCL and the instruction is terminated. If Flag 2 flip-flop is not set, the condition code is set to CCE. The stack is POP'ed, and the SR register is decremented and the name register is incremented to point to the new TOS register.

3-243. SET INTERRUPT. The Set Interrupt (SIN) instruction sends a Set Interrupt command to an addressed I/O subsystem. The SIN command sets an Interrupt Request flip-flop in the I/O subsystem's device controller, causing the I/O subsystem to send an INTREQ to the IOP (unless masked).

3-244. An operational flow diagram for a SIN instruction is shown in figure 3-15. The SIN instruction causes the microinstruction at ROM address  $2323_8$  to be loaded into ROR1. The address of the I/O subsystem which is to receive the SIN command is obtained by executing an FS-K subroutine (see figure 3-8). An S-bus field code SP1 loads the SP1 register (which now contains the I/O subsystem address) into the S-bus register and, after the SIN IOCMD is formed, the I/O subsystem address and SIN command are loaded into the SP3 register. The CIOP subroutine (see figure 3-9) transfers DEVNO and the SIN command to the IOP where they are stored in the IOPC register. The IOP transfers DEVNO and the SIN IOCMD to the IOP bus and the addressed I/O subsystem.

3-245. If the I/O subsystem has not responded to the SIN command, the Flag 2 flip-flop will be set and the CPU checks this flip-flop after returning from the CIOP subroutine. If Flag 2 flip-flop is set, a jump to ROM address  $2251_8$  (I/O Kill) is initiated; the condition code is set to CCL and the instruction is terminated. If Flag 2 flip-flop is not set, the condition code is set to CCE.

3-246. SET ENABLE/DISABLE EXTERNAL INTER-RUPTS. The interrupt system is set, to enable or disable external interrupts, by the Set Enable/Disable External Interrupts (SED) command. The interrupt system is enabled or disabled according to the least significant bit (bit 15) of the instruction. If bit 15 is a logic 1, bit 1 of the status register is set to logic 1, enabling the external interrupts. If bit 15 is "0", bit 1 of the status register is set to logic 0, disabling the external interrupts.

3-247. An operational flow diagram for a SED instruction is shown in figure 3-16. A SED instruction causes the LUT decoder to generate a microprogram ROM address of 23158 and the microinstruction at this address is loaded into ROR1. SED is a privileged instruction and if the CPU is operating in the non-privileged mode, the non-privilege skip condition is met, a jump to ROM address 2763<sub>8</sub> (Trap 6) is executed, and the instruction is terminated. If the nonprivilege condition is not met, an S-bus field code STA loads the contents of the status register into the S-bus register. ROR1 bits 16:31 (=  $137777_8$ ) are loaded into the R-bus register and the T-bus becomes the R-bus register content "and'ed" with the S-bus register content, resetting the external interrupt bit (bit 15) of the status word. The status word is then loaded back into the status register by a store field code STA.

3-248. The current instruction is loaded from the CIR into the S-bus register, an add is executed, and the U-bus becomes the sum of the S-bus register plus the R-bus register. (Since the R-bus = 0, the U-bus actually becomes the content of CIR.) If U-bus bit 15 is a logic 0, ROR2 is NOP'ed, and status bit 1 is left at "0". If U-bus bit 15 is a "1", the status bit 1 is set to "1" (by  $STA \leftarrow STA + 040000_8$ ) and the external interrupts are enabled.

3-249. SET MASK. The Set Mask (SMSK) instruction causes a SMSK command to be sent, with the mask word, to all I/O subsystem device controllers. Each "1" bit in the mask word sets the Mask flip-flop in the group of device controllers which are wired to be controlled by that specific bit. Each "0" bit in the mask word clears the Mask flip-flop in the device controller group.

3-250. An operational flow diagram for a SMSK command is shown in figure 3-17. The SMSK instruction causes the LUT decoder to generate a microprogram ROM starting address of  $2332_8$  and the microinstruction at this address is loaded into ROR1. SMSK is a privileged instruction and if the CPU is operating in the non-privileged mode the nonprivilege skip condition is met, a skip to ROM address  $2763_8$  (Trap 6) is initiated, and the instruction is terminated. If the non-privilege skip condition is not met, the SR register content is checked to determine if the mask word is in a TOS register. If the SR register content equals zero, a jump to ROM address 34208 is initiated and a PUL1 subroutine is executed (see figure 3-11), pulling the mask word from memory to the TOS register. An S-bus field code RA loads the TOS register, containing the mask word, into the S-bus register and from there it is stored in the SP2 register by a store field code SP2. The SMSK command is formed and loaded into the SP3 register and, with the mask word, is transferred to the IOP by a CIOP subroutine (see figure 3-9). The IOP transfers the SMSK IOCMD and the mask word to the IOP bus and the I/O subsystems and informs the CPU of the transfer by setting the Flag 1 flip-flop.

3-251. The CPU checks the Flag 2 flip-flop to determine if I/O timeout has occurred. If the Flag 2 flip-flop is set (I/O timeout), a jump to ROM address  $2251_8$  (I/O Kill) is executed, the condition code is set to CCL, and the instruction is terminated. If I/O timeout has not occurred (Flag 2 flip-flop is not set), the mask word in the TOS register is loaded into the CPU mask register and the stack is POP'ed. The SR register is decremented and the name register is incremented to point to the new TOS register. The special field code CF1 clears the Flag 1 flip-flop, the condition code is set to CCE and the instruction is complete.

3-252. START I/O. The Start I/O (SIO) instruction starts the programmed I/O mode of operation for an addressed I/O subsystem. Once the I/O subsystem receives the SIO command, the I/O control program (in memory) is executed by the I/O subsystem in conjunction with the IOP, multiplexer channel, and memory, or in conjunction with a selector channel and memory. The CPU is not involved after SIO is received and accepted by the I/O subsystem. The starting address of the I/O program is on the top of the stack, either in a TOS register or in memory. If the starting address is not in a TOS register (SR = 0), a PUL1 subroutine (see figure 3-11) is executed and the address is fetched from memory and loaded in the TOS register. The address of the I/O subsystem is in the stack at location S-K, where S is the sum of the SR register and SM register contents and K is a constant contained in bits 12 through 15 of the SIO instruction. The I/O subsystem address (DEVNO) and a TIO command are sent to the I/O subsystem. The I/O subsystem decodes its address and the TIO IOCMD and gates its status to the IOP. The IOP transfers the status word to the CPU where it is checked to determine if the I/O subsystem is ready for SIO. If the I/O subsystem is ready, the address in the TOS register is sent to memory (in particular, the first word of the subsystem's DRT) to point to the first instruction word for the I/O program and an SIO command is sent to the I/O subsystem, telling it to begin executing its I/O program. The TOS is deleted and the condition code is set to CCE. If the I/O subsystem is not ready for SIO, its status word is pushed onto the stack and the condition code is set to CCG.

3-253. An operational flow diagram for a Start I/O instruction is shown in figure 3-18. An SIO instruction causes the LUT decoder to generate a microprogram starting address of  $2233_8$  and the microinstruction at this address is loaded into ROR1. A function field code JSB and a skip field code UNC cause a jump to ROM address 35338 and a FS-K subroutine is executed (see figure 3-8). The I/O subsystem address (DEVNO) at stack location S-K is fetched and loaded into the SP1 register and from there to the S-bus register. A TIO command is formed and loaded, with DEVNO, into the SP3 register for transfer to the IOP. When the CIOP subroutine is executed (see figure 3-9), DEVNO and the TIO IOCMD are transferred to the IOP and loaded into the IOPC register. The IOP transfers the DEVNO, TIO IOCMD, and SO to the IOP bus. The addressed I/O subsystem decodes DEVNO and TIO and gates its status word, with SI, to the IOP. The IOP loads the status word into the DID/MUXMA register and ends SO. A RDIOD level from the CPU reads the DID/MUXMA to the S-bus and from there to the SP2 register.

3-254. If the addressed I/O subsystem has not responded to the TIO IOCMD (I/O timeout), Flag 2 flip-flop will be set. The CPU checks Flag 2 flip-flop and, if it is set, a jump to ROM address  $2251_8$  (I/O Kill) is executed, the condition code is set to CCL and the instruction is terminated. If Flag 2 flip-flop is not set, an S-bus field code SP2 loads the SP2 register content (I/O subsystem status word) into the S-bus register where its bit 0 is checked. If bit 0 is a logic 0, signifying that the I/O subsystem is not ready for SIO, a jump to ROM address  $2247_8$  (I/O Abort) is executed, and the instruction is terminated. I/O Abort pushes the subsystem's status word onto the stack and sets the condition code to CCG.

3-255. If the I/O subsystem is ready for SIO (bit 0 = 1), the CPU checks the content of the SR register to determine if the address of the first I/O program instruction word is in a TOS register or in memory. When SR equals zero, the address of the first I/O program word is in memory and a jump to ROM address  $3420_8$  (PUL1 subroutine, see figure 3-11) is executed. The PUL1 subroutine pulls one word (containing the address of the first instruction word) from memory and loads it into the TOS register. The CPU computes the DRT address (DEVNO times 4) by adding the R-bus and S-bus register contents (which have been loaded from the SP1 register), in effect multiplying the SP1 register contents by two, and then

shifting the T-bus left 1, which multiplies the amount by two again. The result is the DEVNO multiplied by four, which is the DRT location. This address is loaded into the UCOR register by the store field code BUSL. The MCU option field CWA causes the MCU operation decoder to generate a Clear-Write (CW) MOP code and this code is loaded into the PUMOP register. The TO code, generated by the mapper from U-bus bits 0, 1, 2, 14, and 15, is loaded into the UTO register. The store field code BUSL also sets the LOREQ flip-flop. When the module READY line designated by the TO code in the UTO register is high (destination READY) and when no module of higher priority than the CPU has its ENABLE line pulled low, the LOSEL and CPUSEL flip-flops are set. The LOSEL signal pulls the destination module's READY line low. The CPUSEL signal gates the TO, FROM, MOP and UCOR to the central data bus, thus transferring the address and CW MOP code to the memory module.

3-256. The address of the first word of the I/O program is then transferred to this DRT address. The S-bus field code RA loads the TOS register (containing the SIO program address) into the S-bus register and the store field code DATA loads it into the UCOR register. The condition code is set to CCE. The HREQ flip-flop is set and the PSELECT level, when low, reads the UCOR register. When the CPUSEL flip-flop is set, the CPUSEL logic level reads the UCOR register contents to memory via the central data bus. Once the starting address of the SIO program has been transferred to the DRT, the CPU forms the SIO command and loads this command into the SP3 register. The CIOP subroutine (see figure 3-9) is executed again, transferring the SIO command to the IOPC register in the IOP. When the STOIOA signal is issued, the IOPC register is loaded. If an SIO or interrupt is not current, the Direct Address and Flag 1 flip-flops are set, and the DAG and F1 logic levels become "1", gating the IOCMD to the IOP bus and causing SO. The microcode must wait for F1 before terminating STOIOA. If the I/O subsystem does not respond to SIO (I/O timeout), CPX2 bit 10 is set to "1". The microcode checks this bit and, if it is logic 1, a jump to ROM address  $2251_8$  (I/O Kill) is executed by the CPU. The condition code is set to CCL and the instruction is terminated. If Flag 2 flip-flop is not set, the stack is POP'ed, the SR register is decremented and the name register is incremented to point to the new TOS register, and the instruction is completed.

3-257. PROGRAMMED I/O.

3-258. Programmed I/O operation begins for any particular I/O subsystem when the CPU issues an SIO command for that I/O subsystem. The I/O subsystem, IOP and multiplexer channel (or subsystem and selector channel) then execute the I/O program without further assistance from the CPU. The IOP transfers an I/O program, one instruction double word at a time, from the memory to the multiplexer channel. The multiplexer channel then controls operation of the I/O subsystem.

3-259. Once an I/O subsystem decodes and accepts an SIO command, it sends a Service Request signal to its multiplexer channel. The multiplexer channel sends a High Service Request (HSREQ) to the IOP. If the DRCT ACT flip-flop is set, the HSREQ from the subsystem will have no effect on the IOP because issuance of Data Poll is inhibited. When an SI is received by the IOP, however, the DRCT ACT flip-flop is cleared, terminating the direct active state, and the IOP issues a Data Poll. The multiplexer channel having highest priority stops the Data Poll and returns a DRT Fetch command and SI to the IOP. The IOP requests the DRT entry from memory and begins transferring the I/O program, one instruction at a time, to the I/O subsystem. The order contained in the instruction double word determines whether data is transferred to the I/O subsystem or from the I/O subsystem to memory.

3-260. DRTE FETCH/STORE. An operational flow diagram for a DRTE fetch/store operation is shown in figure 3-19. A HSREQ signal from the multiplexer sets the I/O High Service Request (IOHSREQ) flip-flop, which in turn sets the DPOLL and SIO ACT flip-flops. If HSREQ, STOIOA and STOIOD are active at the same time, the Data Poll, DRCT ADDR and DRCT DATA flip-flops are all set. The Data Poll flip-flop, however, nullifies all effects that the DRCT ADDR and DRCT DATA flip-flops would have, and clears them on the next clock. The SI(D) latch guarantees that SI arrives during the first half of the clock cycle. If SI does not arrive during the first half of the clock, SI(D) waits for one clock cycle before latching SI into the IOP.

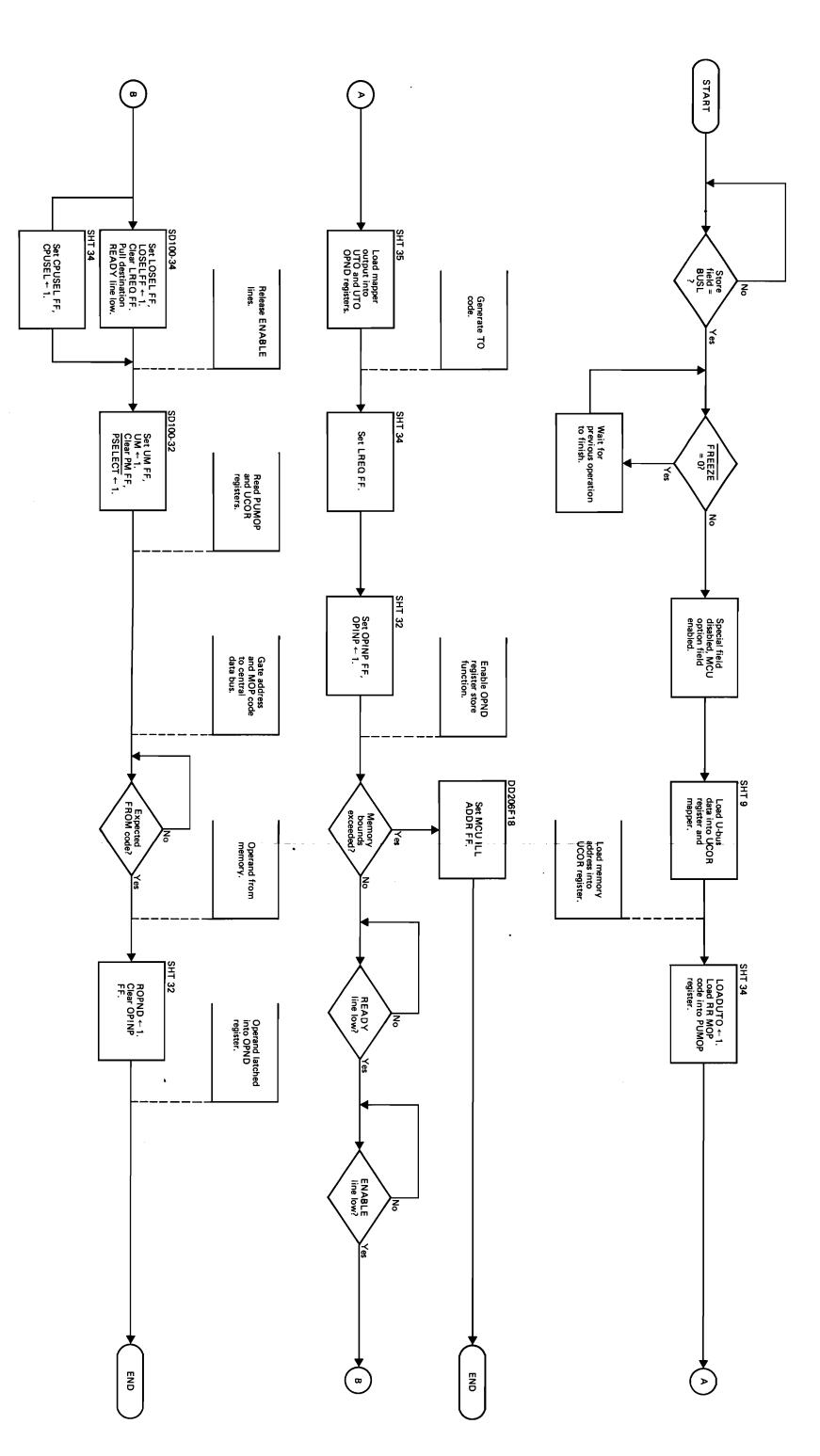
3-261. The SI(D) level clears the DPOLL flip-flop, Data Poll is terminated and the IOCMP and Data Cycle flip-flops are set. The DRT2 flip-flop is set, setting the IODE level to "1" and gating the data (DRT address) on the IOP bus into the DID/MUXMA register. The DRT Fetch command from the multiplexer channel causes a Read-Restore (RR) MOP code to be generated and sets the DRT1 flip-flop. The LDENB logic level, set to "1" when the Low Request Initializing (LOREQ INIT) flip-flop was set, enables the MUXID register store function. The three most significant bits (bits 0, 1, 2) of the memory address (contained in the DID/MUXMA register) are checked to determine if the memory bounds are exceeded. The three bits comprise a 3-bit binary number. Three jumpers are set to correspond to the three high order bits of the last legal address. (For example, a 32K machine's highest legal address is  $77777_8$ , therefore the jumpers would be set to 011.) The memory address in question and the jumpered number are connected into an arithmetic comparator, which determines if the three most significant bits of the memory address are greater than the jumpered value. An address such as  $5_8$  is legal because 000 < 011. Address  $100005_8$ , however, is illegal because 100 > 011. If an illegal address is determined, the operation is terminated. Transfer error is sent out by the IOP, causing an external interrupt.

The IOINP, IOLHSEL, and IOLSEL flip-flops are 3-262. set and, when the memory module is ready, the memory address and RR MOP code are transferred to memory. A SYSPE or MCUDPE signal, if received from memory, will set the Address Parity Error (APE) flip-flop, the IOERROR level goes high, clearing the IOINP flip-flop (disabling the MUXOD register store function) and terminating the operation. If SYSPE or MCUDPE are not received, the MCU Complete (MCU CMP) flip-flop is set. When the DRT entry is received from memory, the FROM code is compared with the saved TO code and, when they are true, IOSTROBE goes high, clearing the IOINP flip-flop and latching the DRT entry into the MUXOD register. The DRT GATE and SO1 flip-flops are set and the DRT entry and SO are gated onto the IOP bus for transfer to the I/O subsystem.

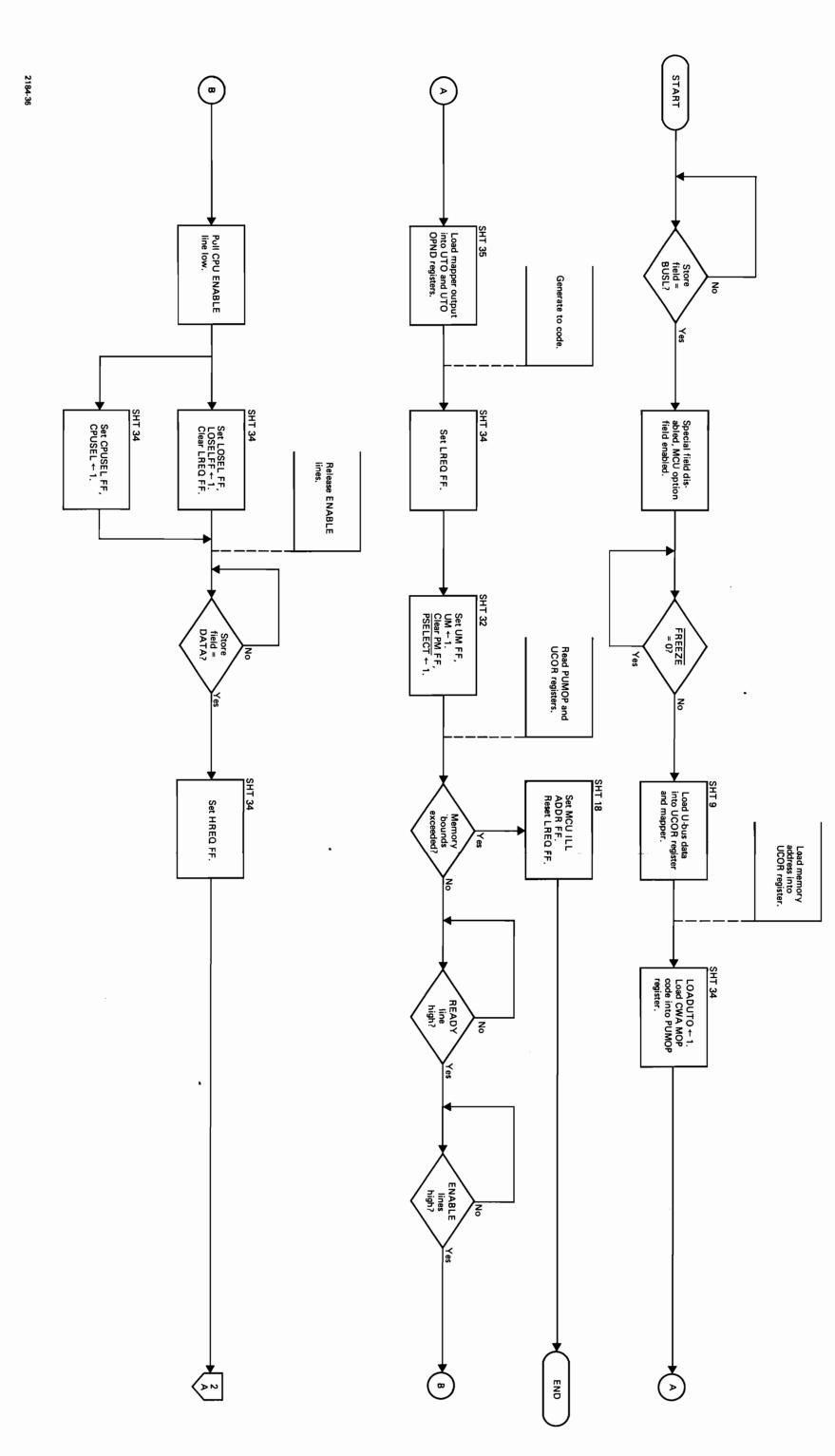
3-263. The address of the next I/O program double word is computed by setting the DRT2 flip-flop, which causes the current DRT entry to be stored in the MUXID register. The CE flip-flop is set and the contents of the MUXID register are incremented by two. The IOHREQ level, set to "1" when the CE flip-flop was set, sets the IOHREQ flip-flop which, in turn, sets the IOHSEL flip-flop. The DRT entry, now incremented by two, is then transferred back to the DRT.

3-264. MEMORY BOUND TRANSFER. Data transfers between memory and an I/O subsystem consist of two steps: the transfer of an address from the multiplexer channel to memory and the transfer of data from the I/O subsystem to the memory address. An operational flow diagram for a memory bound transfer is shown in figure 3-20.

3-265. The HSREQ signal from the multiplexer channel sets the IOHSREQ and DPOLL flip-flops, causing the IOP to issue a Data Poll and to start the IOTIMER. In addition, the SIO ACT flip-flop is set. If a multiplexer channel does not respond to the Data Poll before the IOTIMER flip-flop sets (signifying I/O timeout) the CPX2 register bit 10 is set to "1" and the transfer is terminated. If an SI is received before I/O timeout, the SI(D) and IOLREQ flip-flops are set, the AENB level goes low and the DID/MUXMA register store function is enabled so that it will load the IOP bus transmissions. If the IOCMD code from the multiplexer channel is MEM BND, the Memory Bound (MEM BND) flip-flop is set. The Data Cycle (DATA CYC) flip-flop is set and the DPOLL flip-flop is cleared, terminating the Data Poll. The AENB level goes high, latching the memory address on the IOP bus into the DID/MUXMA register. The IOP generates a Clear-Write (CW) MOP code for transfer to memory and checks the three most significant bits (0, 1, 2)of the memory address in the DID/MUXMA register to determine if the memory bounds are being exceeded. If an illegal address is detected the IOLSEL and IOLHSEL flipflops are inhibited, and the IODPE signal is sent to the multiplexer channel. When the memory module is ready to receive the address, the IOLSEL and IOLHSEL flip-flops are set and the address and CW MOP code are gated to the central data bus and the IOP sets the SO1 flip-flop and sends SO to the multiplexer channel. If a SYSPE or MCUDPE signal is received from the memory module, the XFER ERROR level goes high and the IODPE signal is sent to the multiplexer channel.


3-266. When an SI signal is received by the IOP (signifying that the inbound data is on the IOP bus), the SI(D) flip-flop is set and the LDENB level goes to "1", enabling the MUXID register store function. The IOHREQ level goes high and the IOHREQ flip-flop is set. The IODE level gates the data on the IOP bus into the MUXID register and the IOP terminates SO by clearing the SO1 flip-flop. When the SO1 flip-flop is cleared, LDENB goes low and the inbound data is latched into the MUXID register. If there is no IOERROR, the IOHSEL flip-flop is set and the data in the MUXID register is gated to the central data bus and, when the MEM BND, DATA CYC and SIO ACT flip-flops are cleared, the data transfer is complete.

3-267. DEVICE BOUND TRANSFER. As with the memory bound transfer, a device bound transfer also consists of two separate steps: a transfer of a memory address from the multiplexer channel to memory and a data transfer from the I/O subsystem (device) to memory.


3-268. An operational flow diagram for a device bound transfer is shown in figure 3-21. During the address transfer phase, operation is the same as that described for a memory bound transfer (see paragraph 3-262) except that a Read-Restore (RR) MOP code is generated and sent to memory instead of a CW MOP code. When the RR MOP code is transferred to the central data bus, the IOINP flip-flop is set, IOINP goes to "1" and the MUXOD store function is enabled.

3-269. When the memory transfers the data to the IOP, it is loaded into the MUXOD register. The TO/FROM comparator compares the TO-FROM lines and when the result is true, sets IOSTROBE to "1". The IOSTROBE level sets the DRT Gate flip-flop and the data is gated out to the IOP bus for transfer to the I/O subsystem. The SO1 flip-flop is set, asserting SO, and starting the IOTIMER. When SI is received (signifying that the I/O subsystem has received the data), the SI(D) and IOCMP flip-flops are set and the DATA CYC flip-flop is cleared, terminating SO and, when the SIO ACT, DRT Gate, and IOCMP flip-flops are cleared, the device bound transfer is complete.





4-35



 $\overline{\ }$ 

.



Figure 3-6. Operand Store Operational Flow Diagram (Sheet 1 of 2)

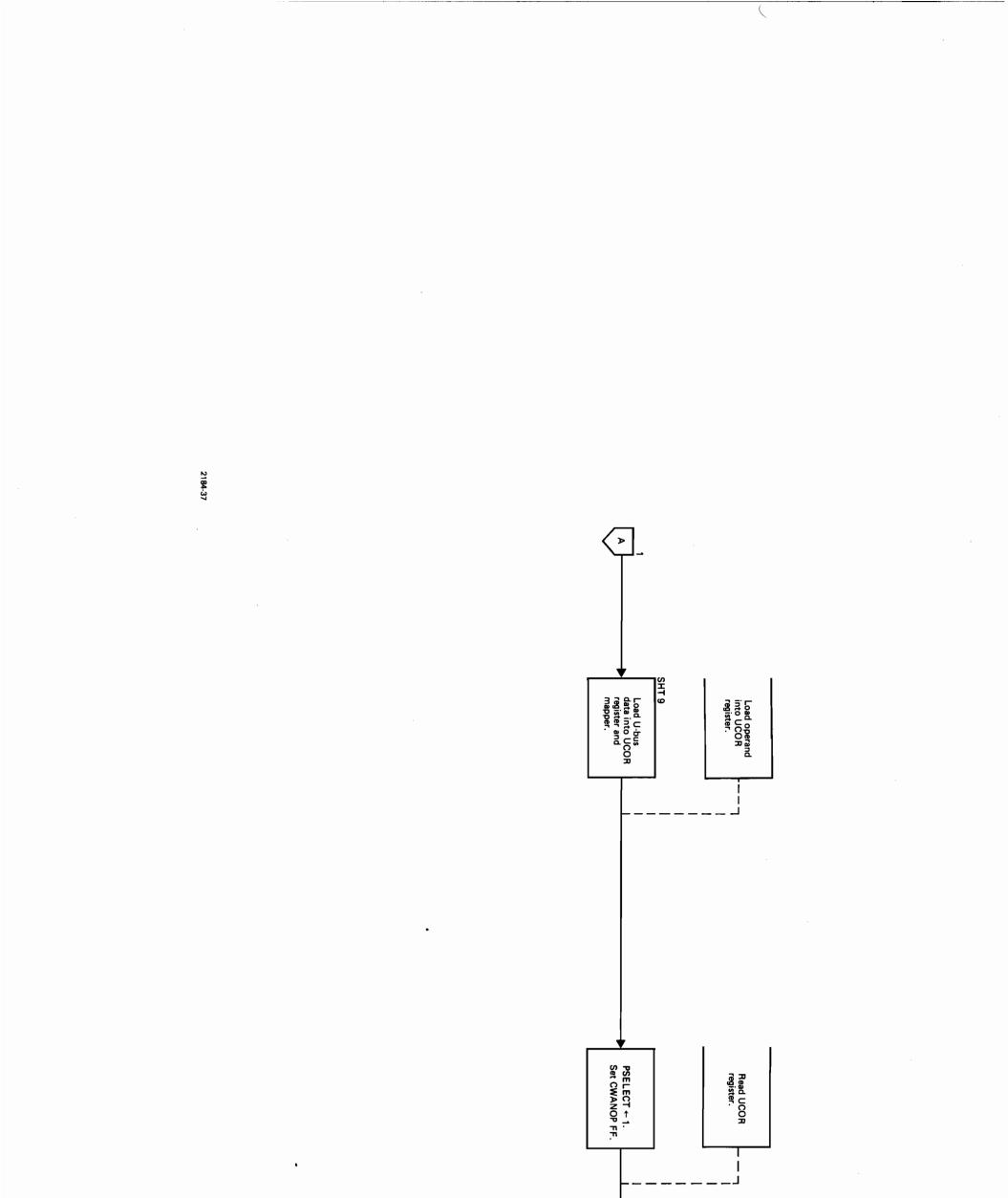
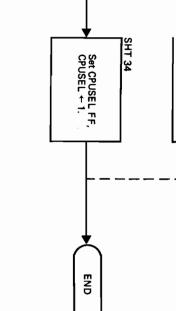
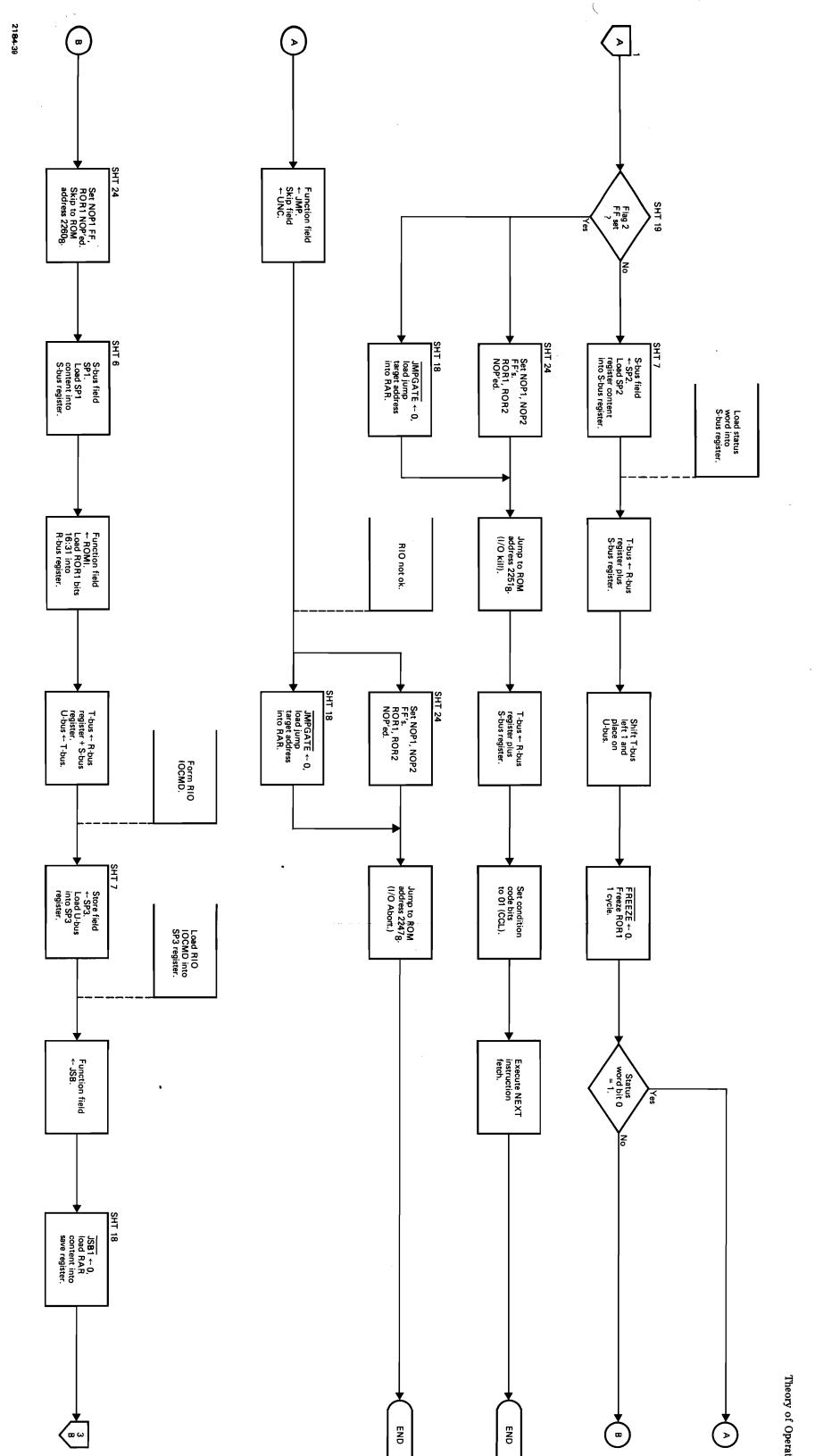
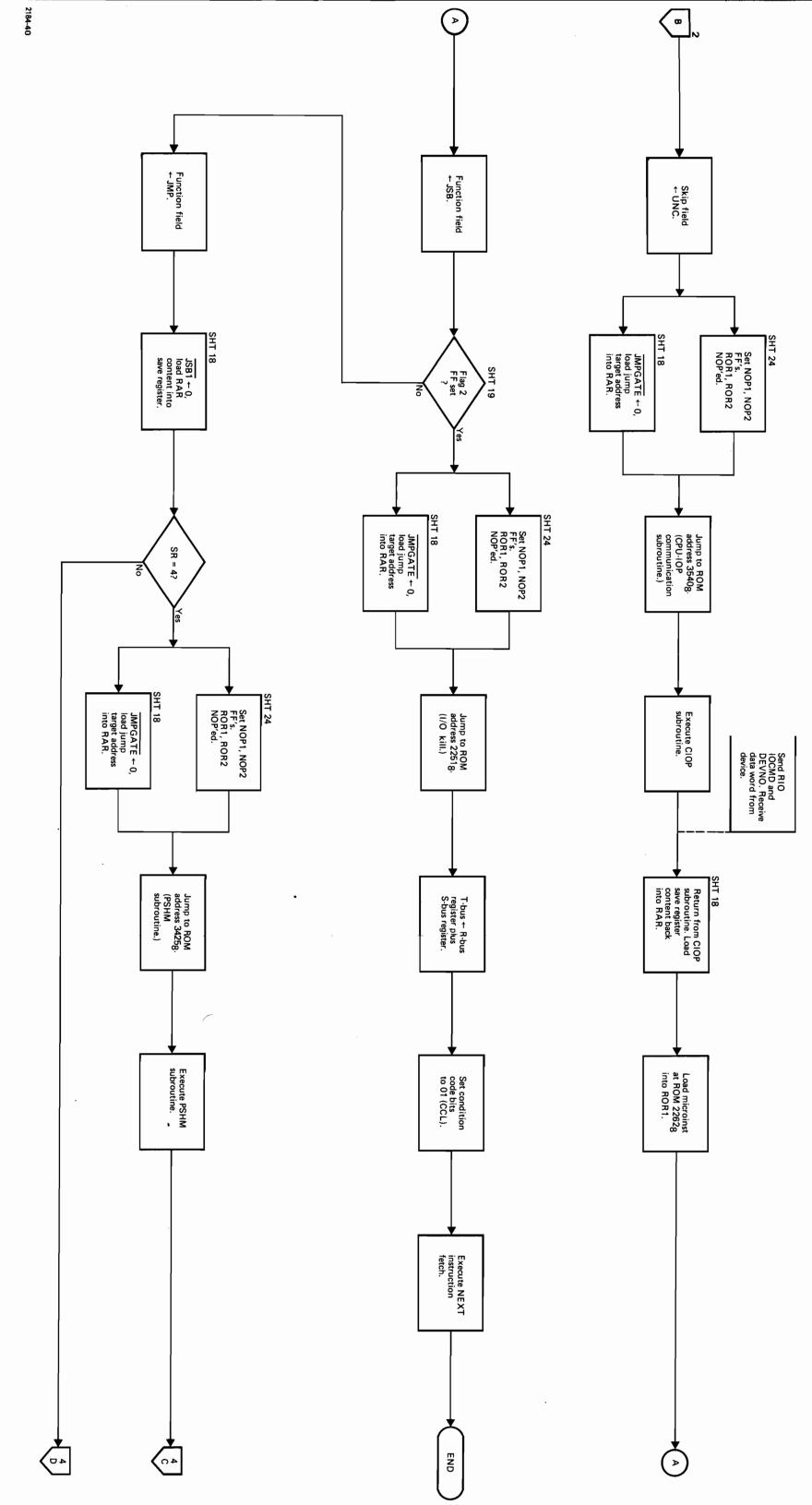




Figure 3-6. Operand Store Operational Flow Diagram (Sheet 2 of 2)

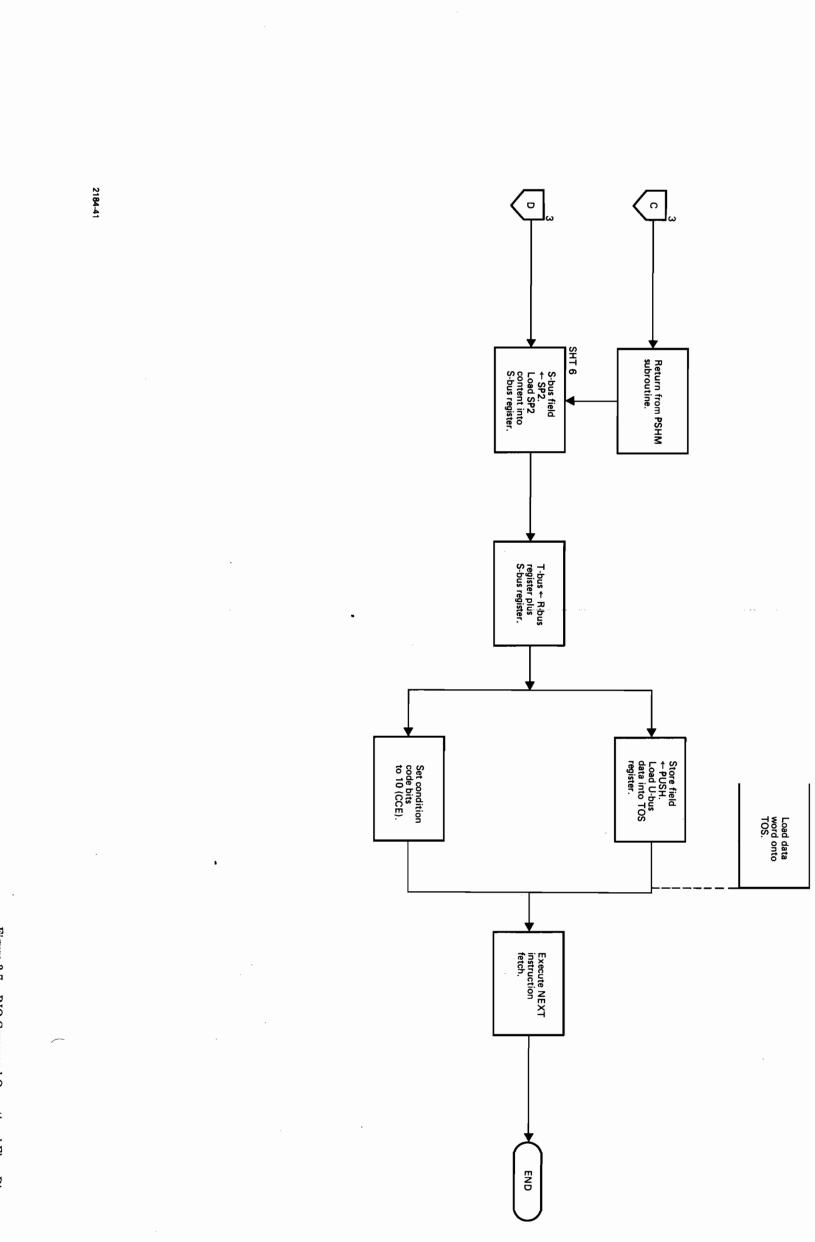



Gate operand to central data bus.

T




2184-38


# Figure 3-7. RIO Command Operational Flow Diagram (Sheet 1 of 4)







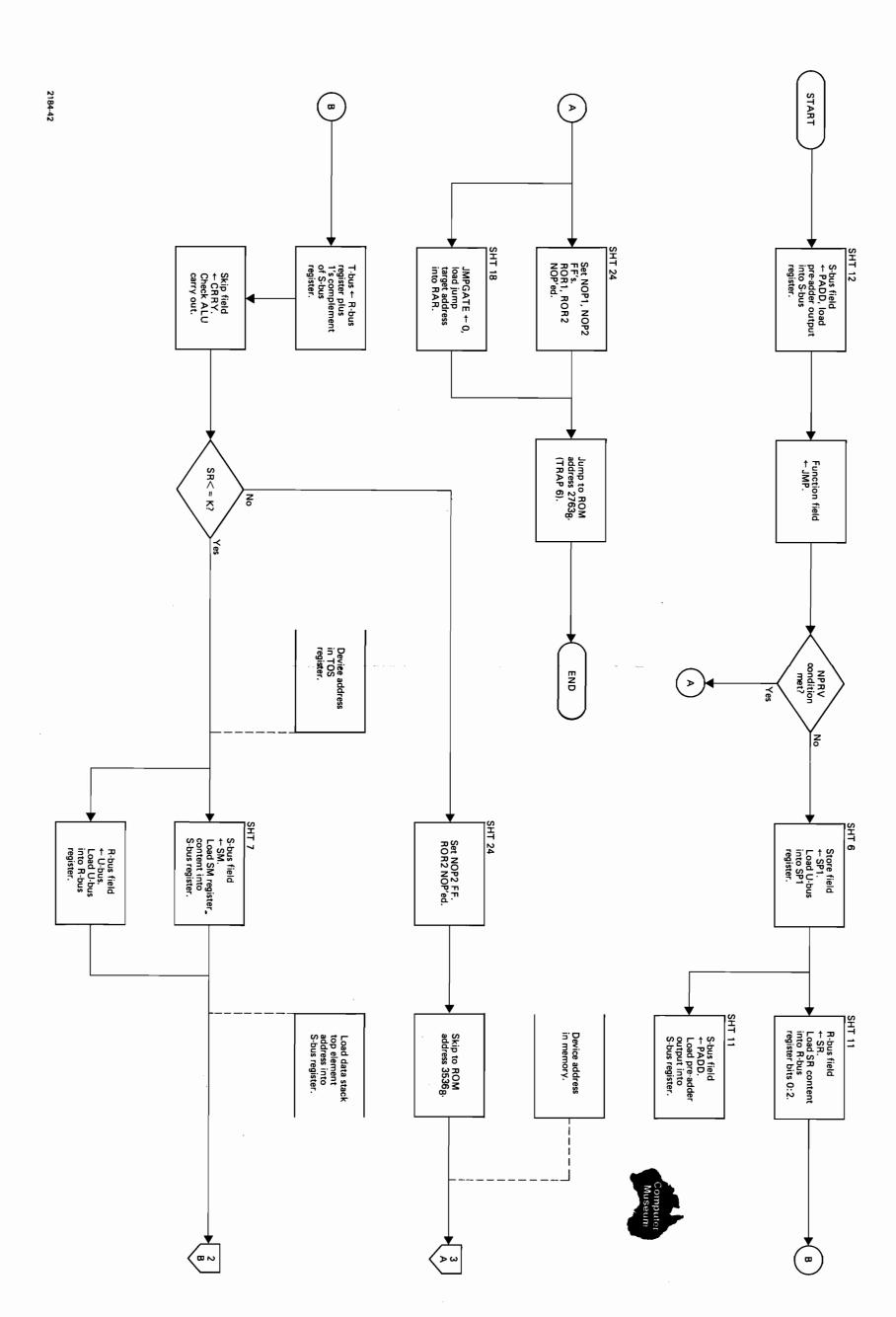
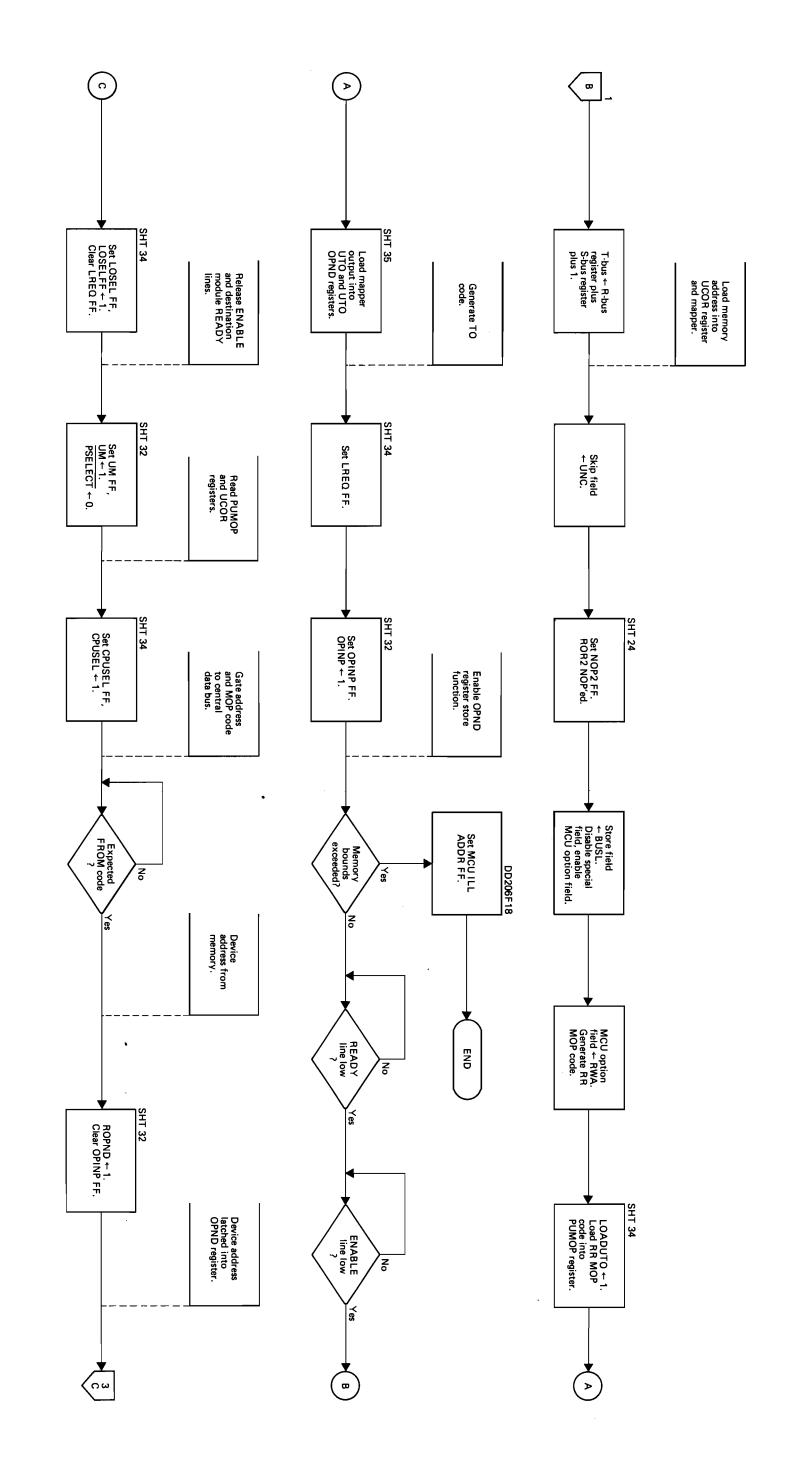
# Figure 3-7. RIO Command Operational Flow Diagram (Sheet 3 of 4)

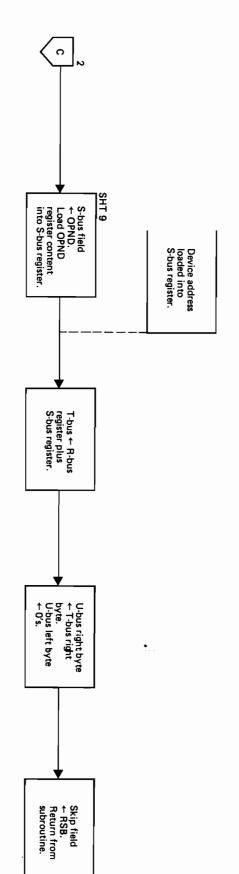


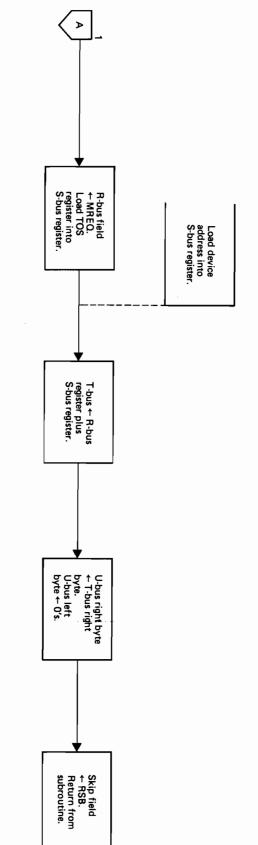
,



Figure 3-7. RIO Command Operational Flow Diagram (Sheet 4 of 4)

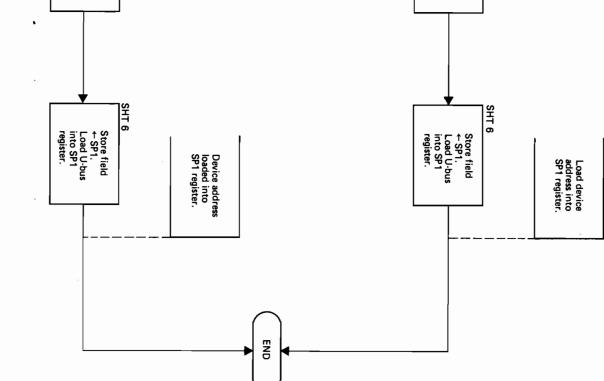


Figure 3-8. FS-K Subroutine (Device Address Fetch) Operational Flow Diagram (Sheet 1 of 3)

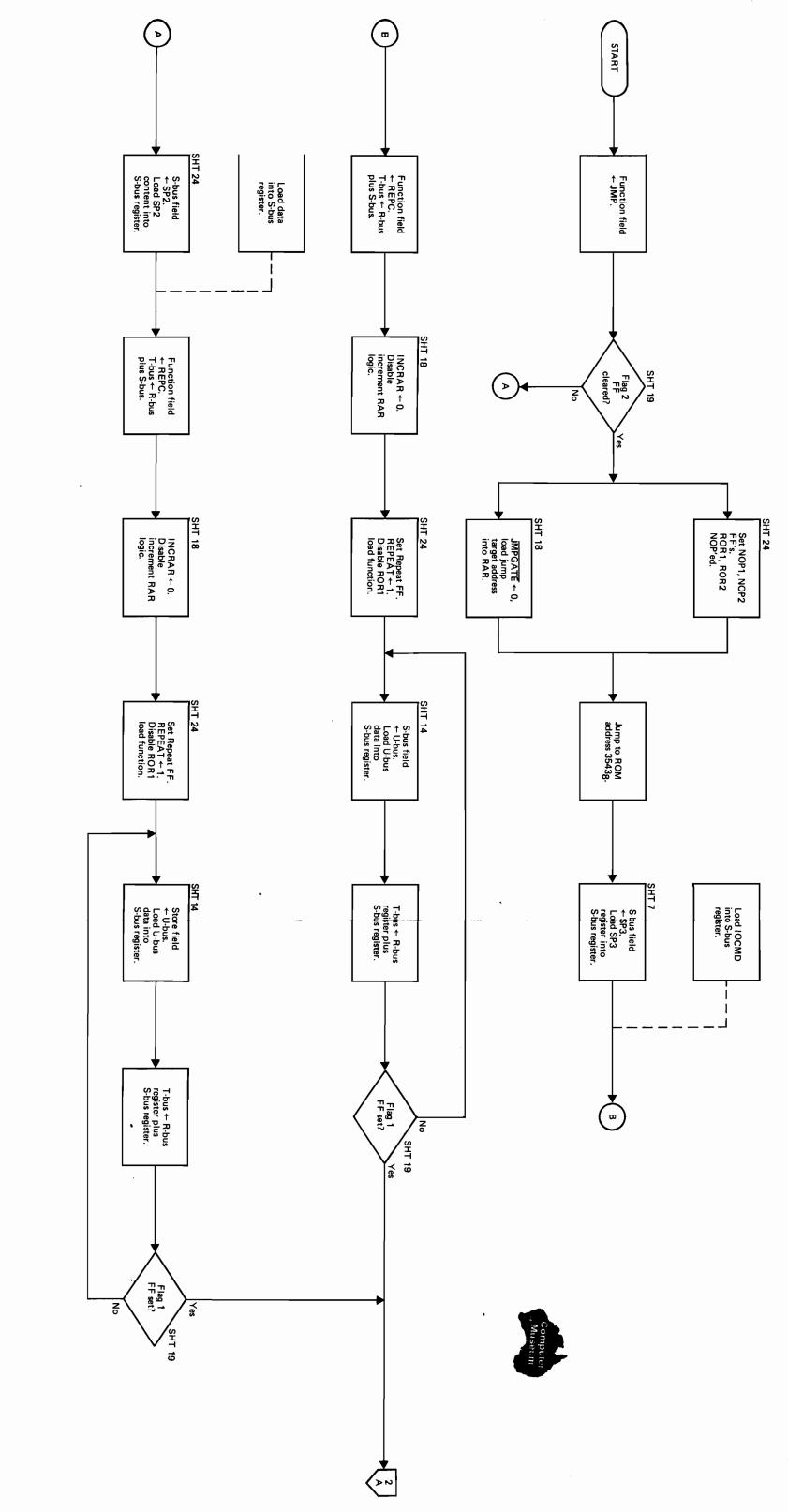



2184-43

3-75/3-76

Figure 3-8. FS-K Subroutine (Device Address Fetch) Operational Flow Diagram (Sheet 2 of 3)




4

3-77/3-78

Figure 3-8. FS-K Subroutine (Device Address Fetch) Operational Flow Diagram (Sheet 3 of 3)





#### 3-79/3-80

Figure 3-9. CIOP Subroutine (CPU-IOP Communication) Operational Flow Diagram (Sheet 1 of 4)



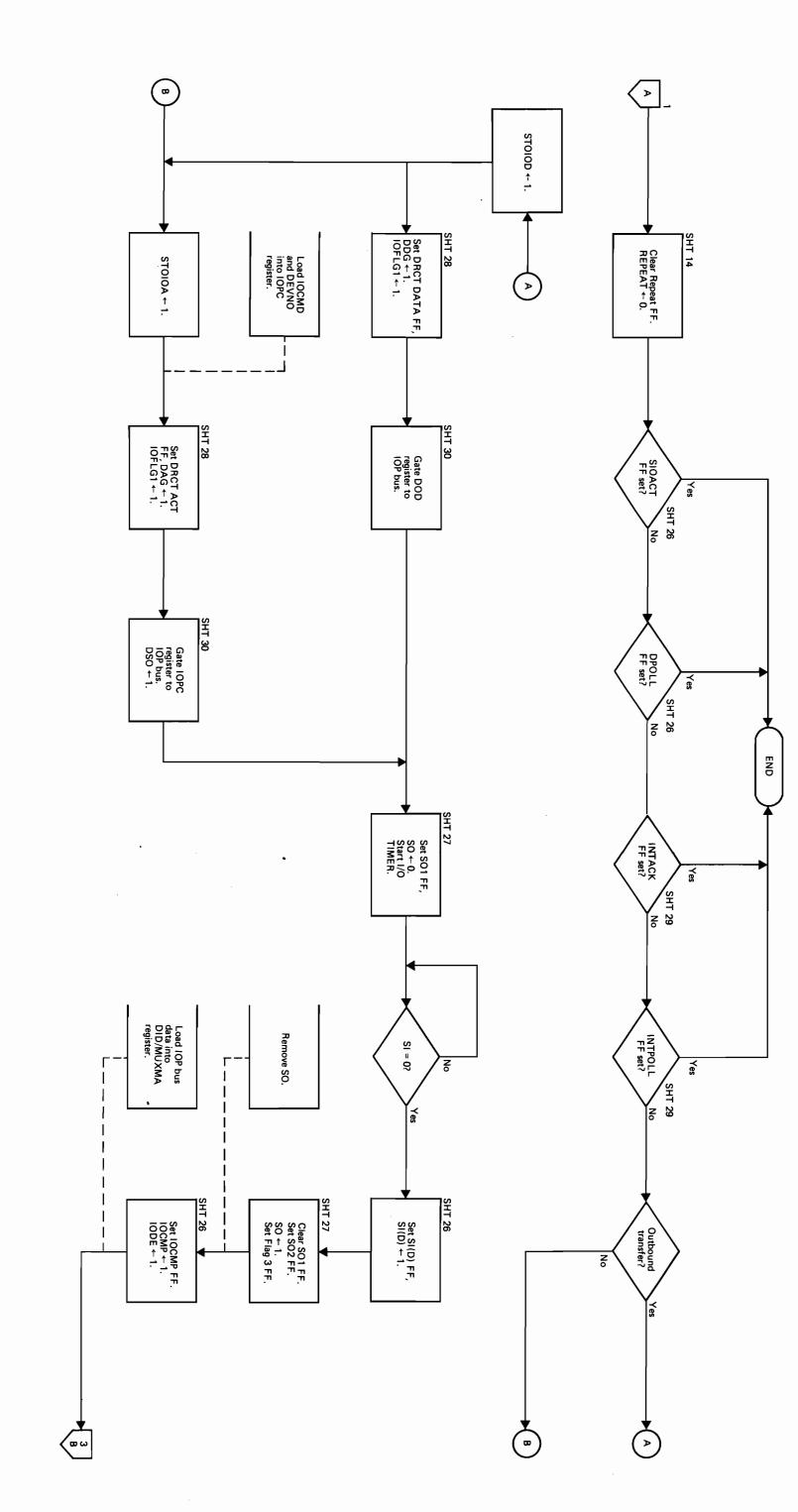



Figure 3-9. CIOP Subroutine (CPU-IOP Communication) Operational Flow Diagram (Sheet 2 of 4)

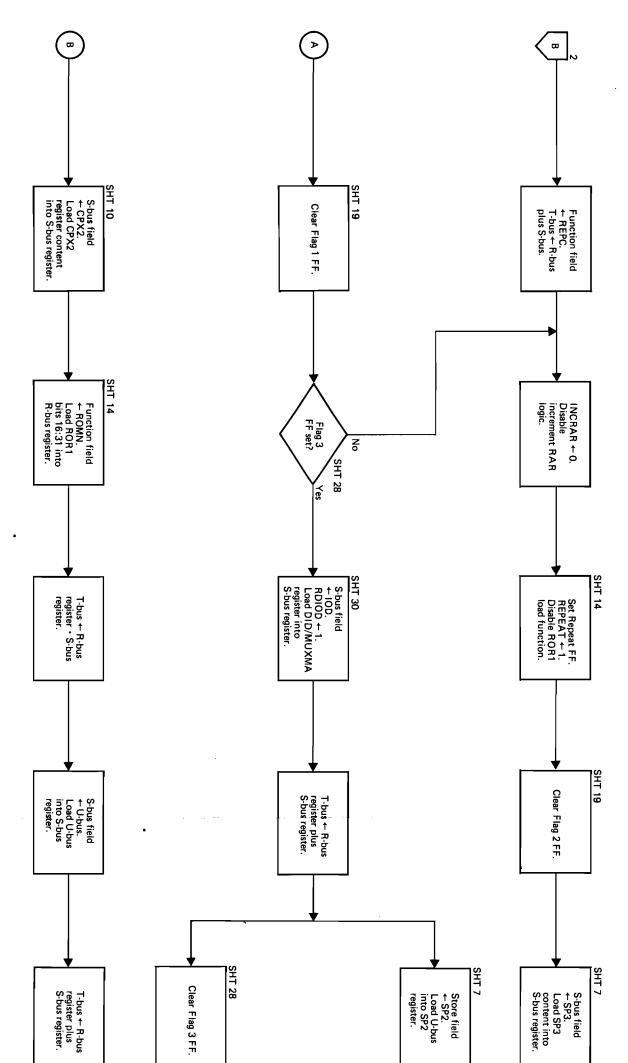
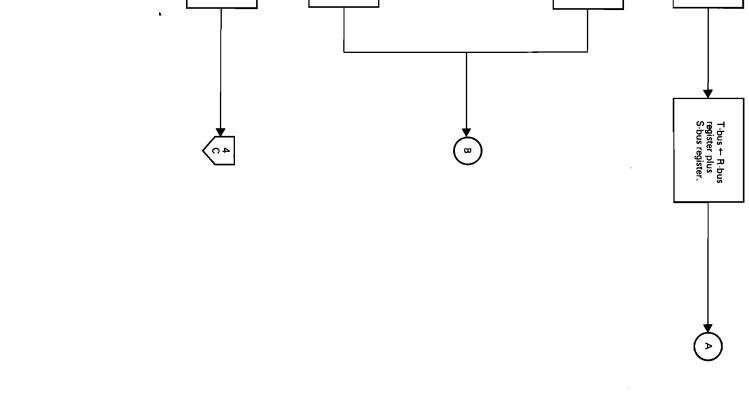
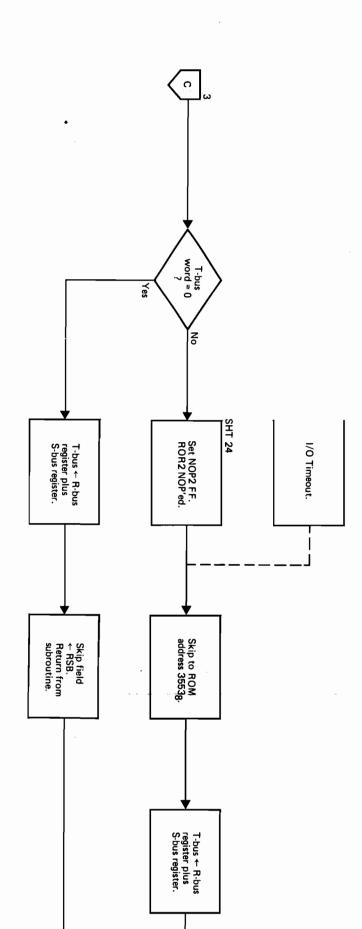
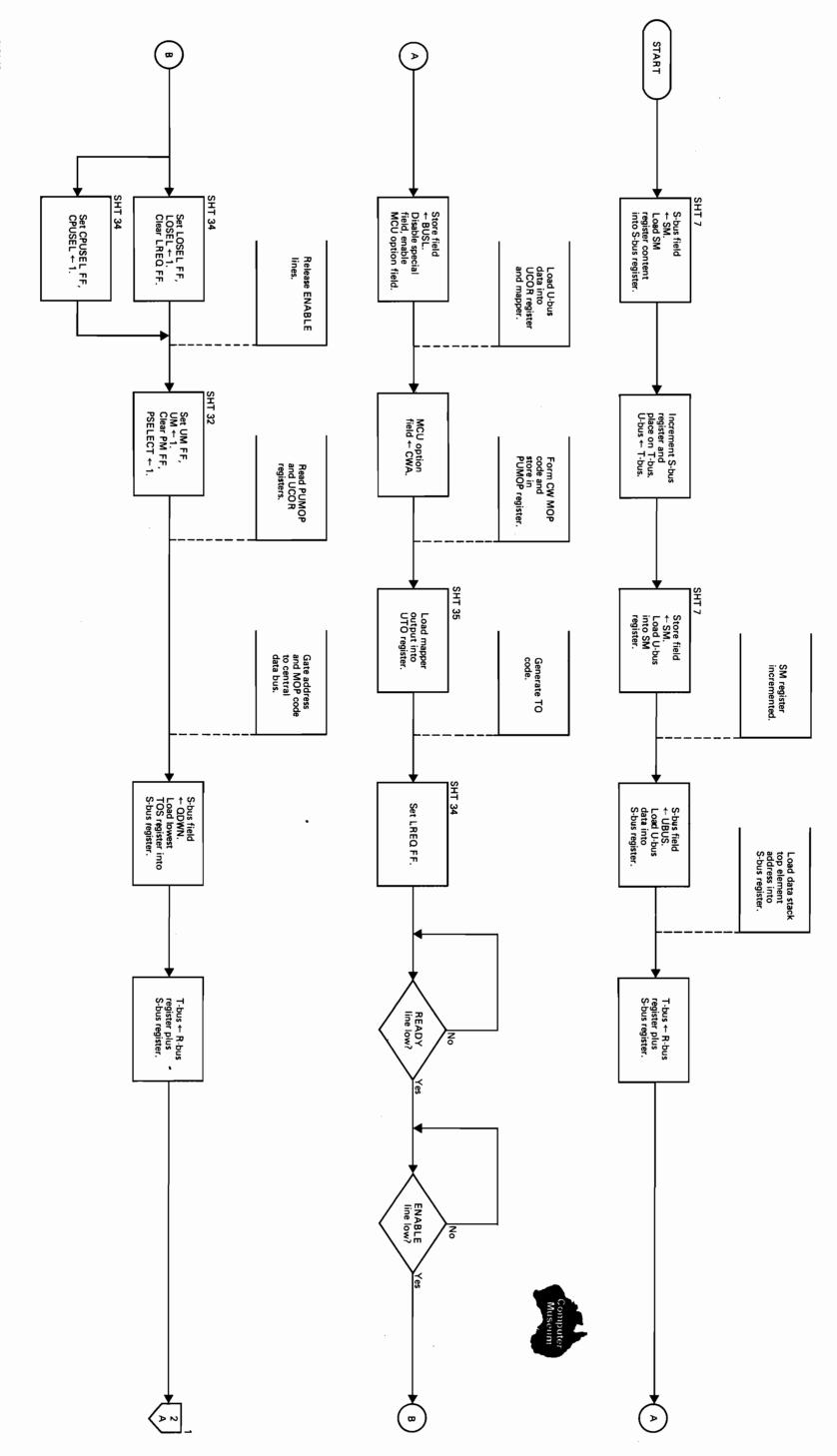






Figure 3-9. CIOP Subroutine (CPU-IOP Communication) Operational Flow Diagram (Sheet 3 of 4)

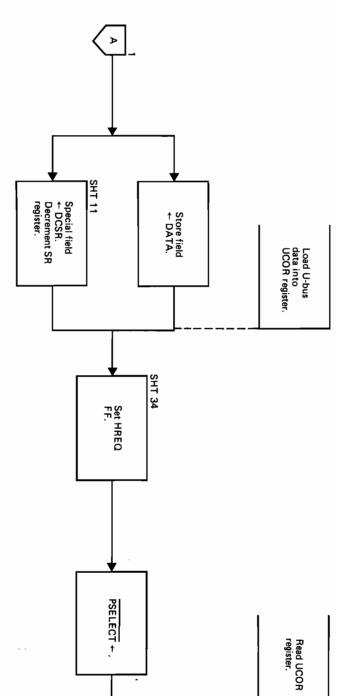


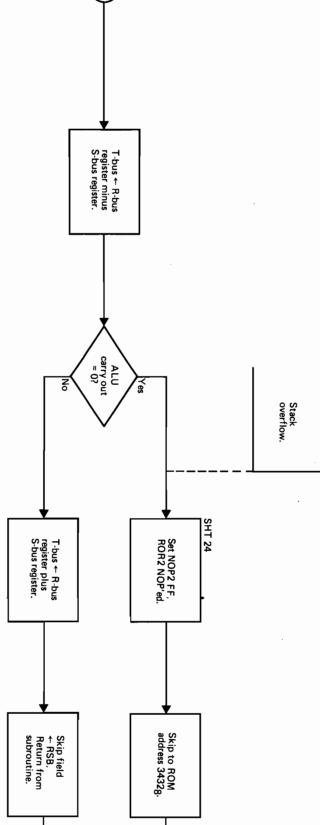


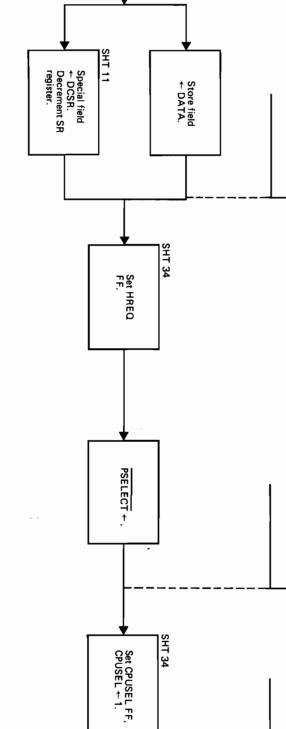

3-85/3-86

Figure 3-9. CIOP Subroutine (CPU-IOP Communication) Operational Flow Diagram (Sheet 4 of 4)





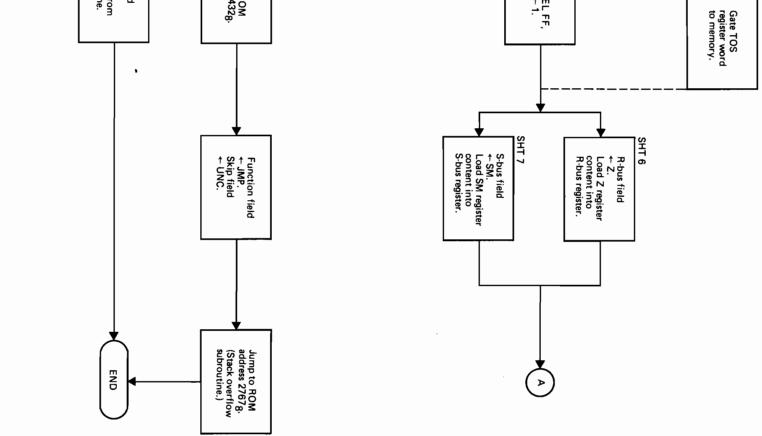


# Figure 3-10. PSHM Subroutine Operational Flow Diagram (Sheet 1 of 2)

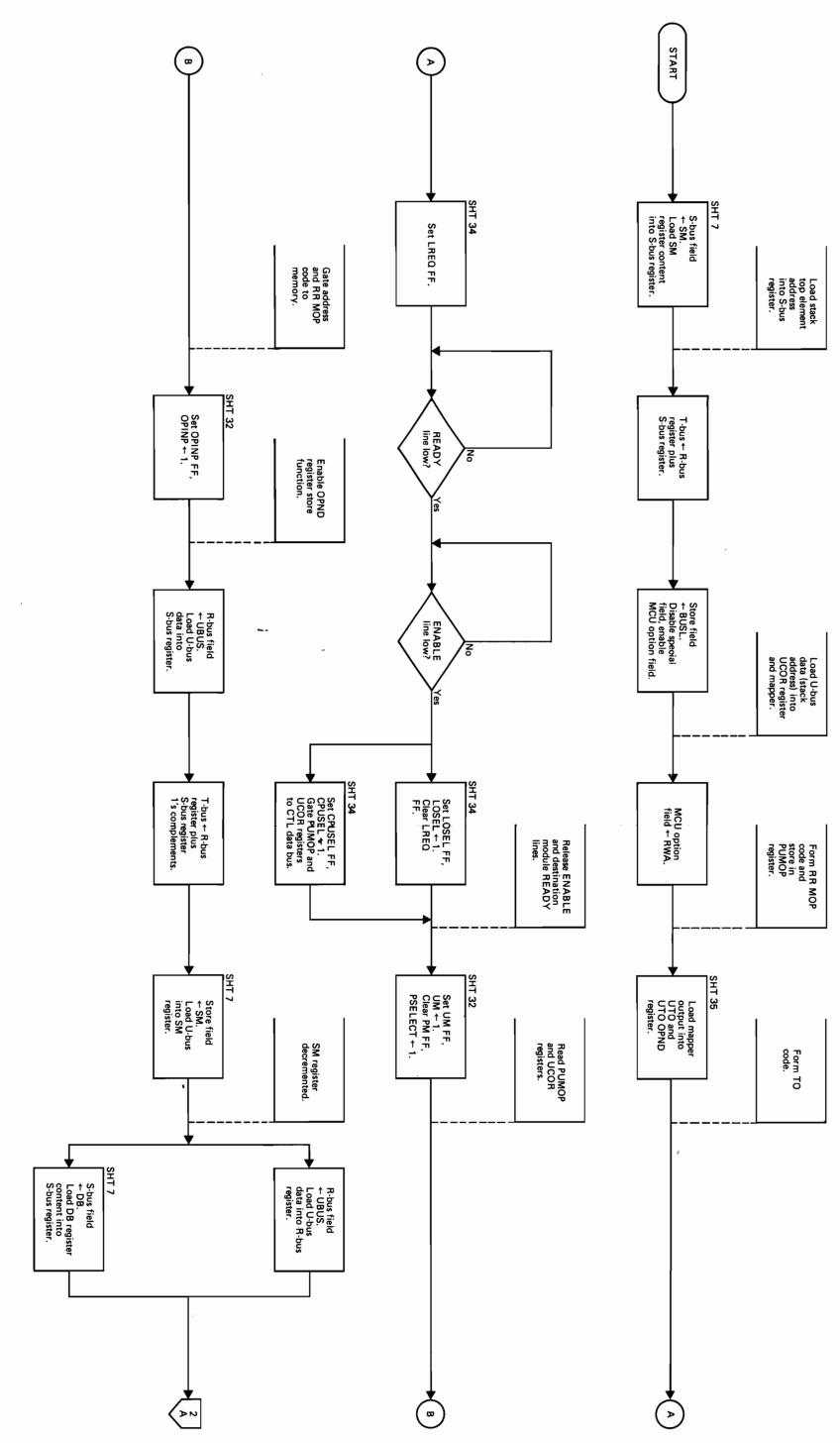



 $(\mathbf{P})$ 







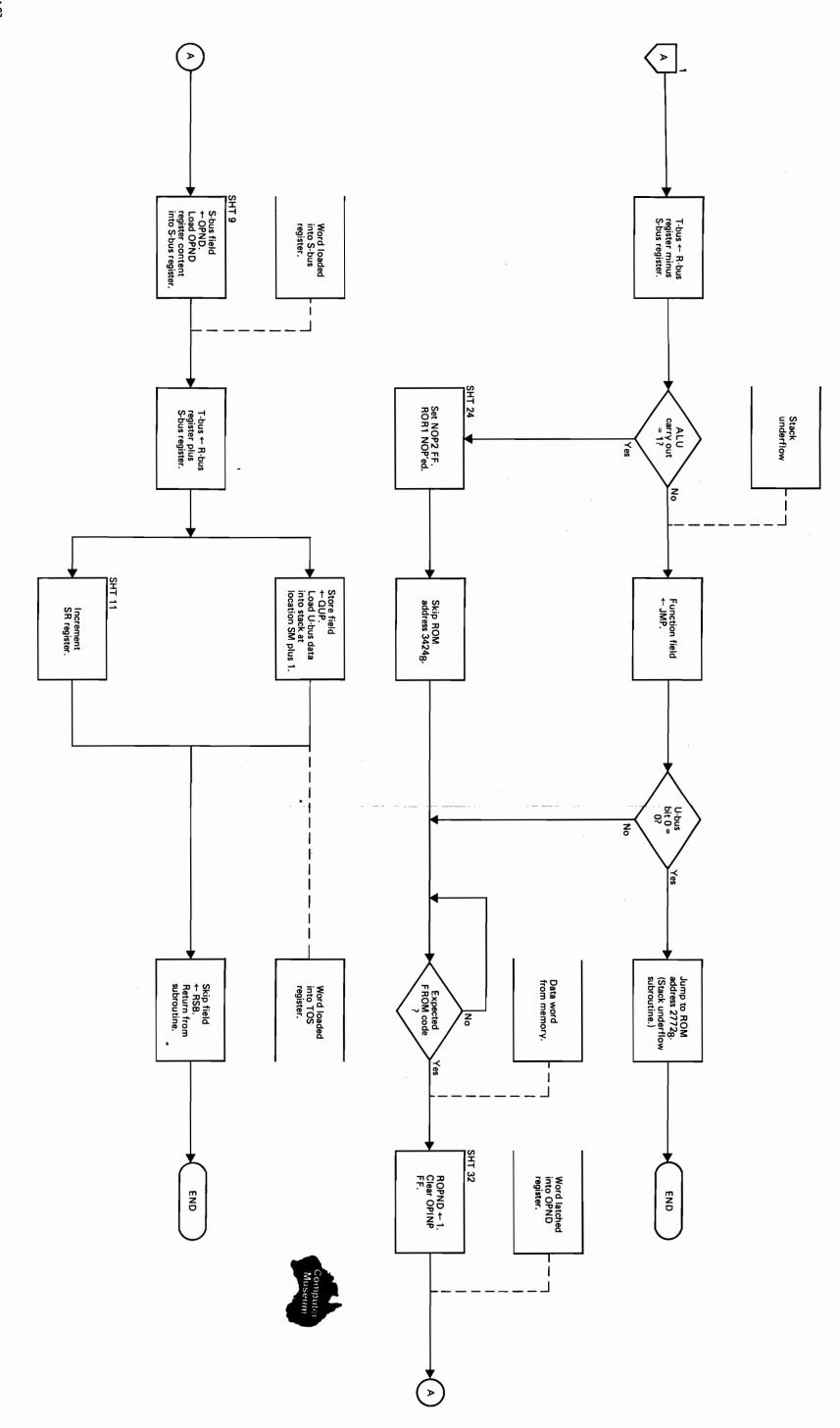

2184-50

# Figure 3-10. PSHM Subroutine Operational Flow Diagram (Sheet 2 of 2)

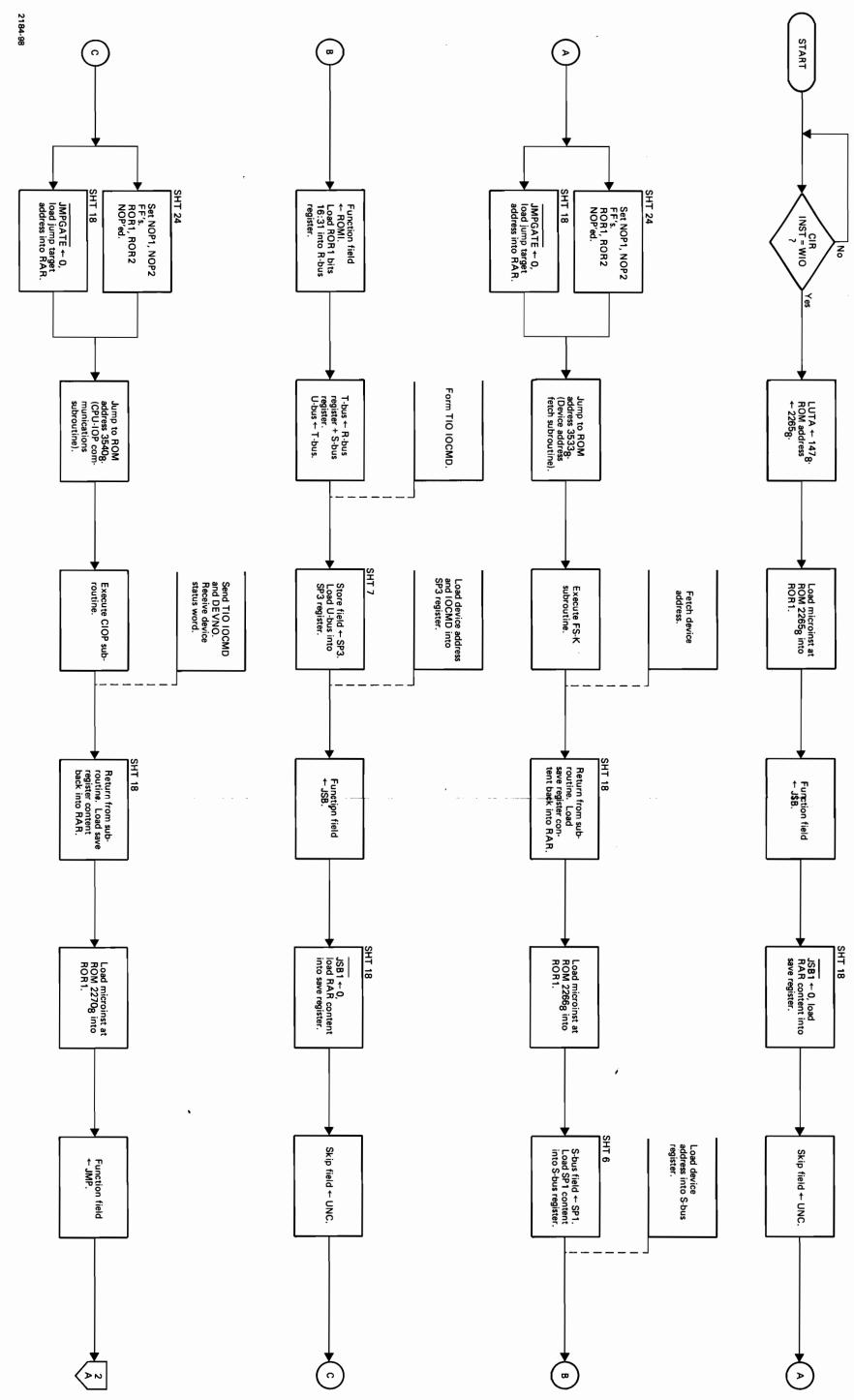
.



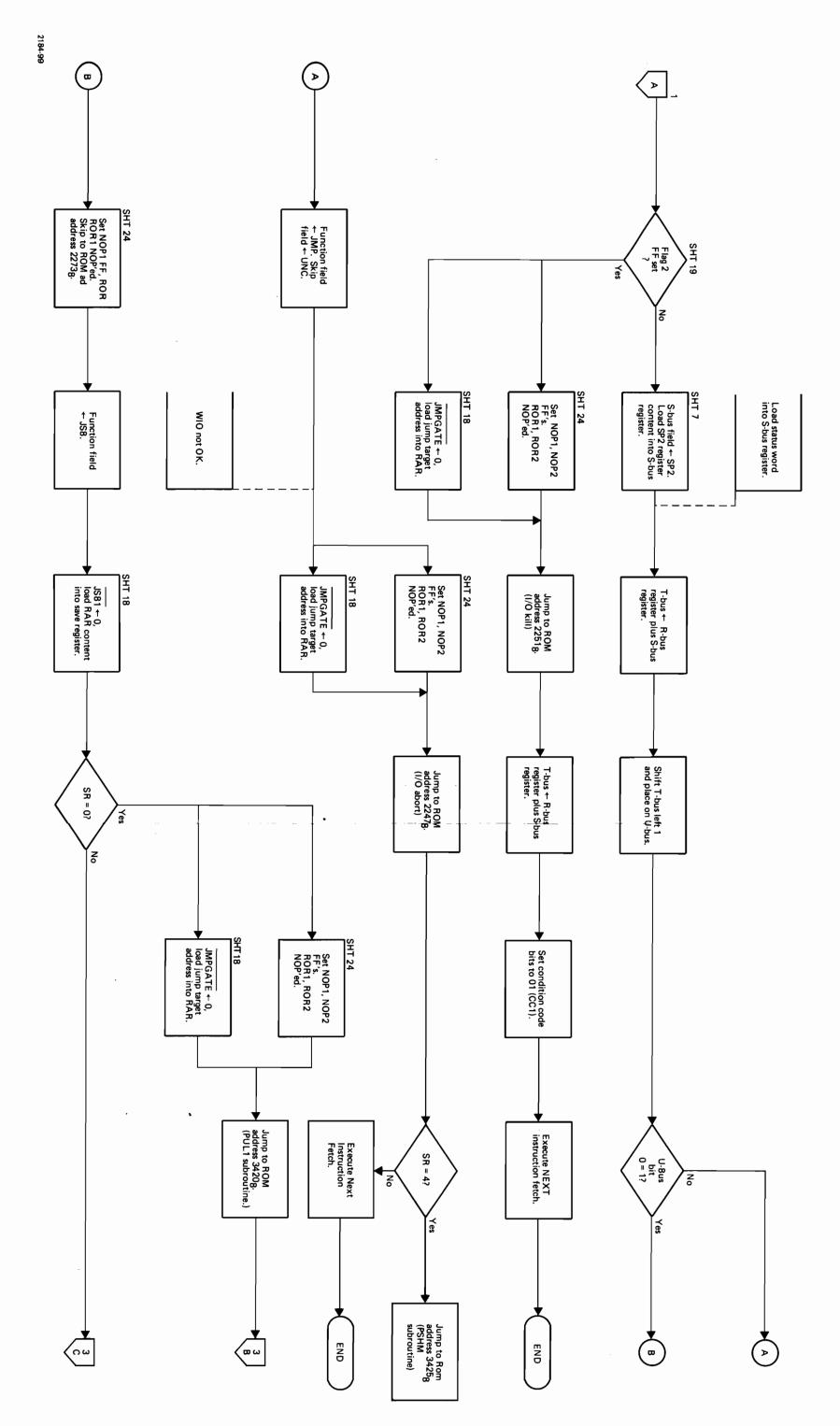



Theory of Operation

`


~

۹


## Figure 3-11. PUL1 Subroutine Operational Flow Diagram (Sheet 1 of 2)



## Figure 3-11. PUL1 Subroutine Operational Flow Diagram (Sheet 2 of 2)



#### Figure 3-12. WIO Command Operational Flow Diagram (Sheet 1 of 4)



#### Figure 3-12. WIO Command Operational Flow Diagram (Sheet 2 of 4)

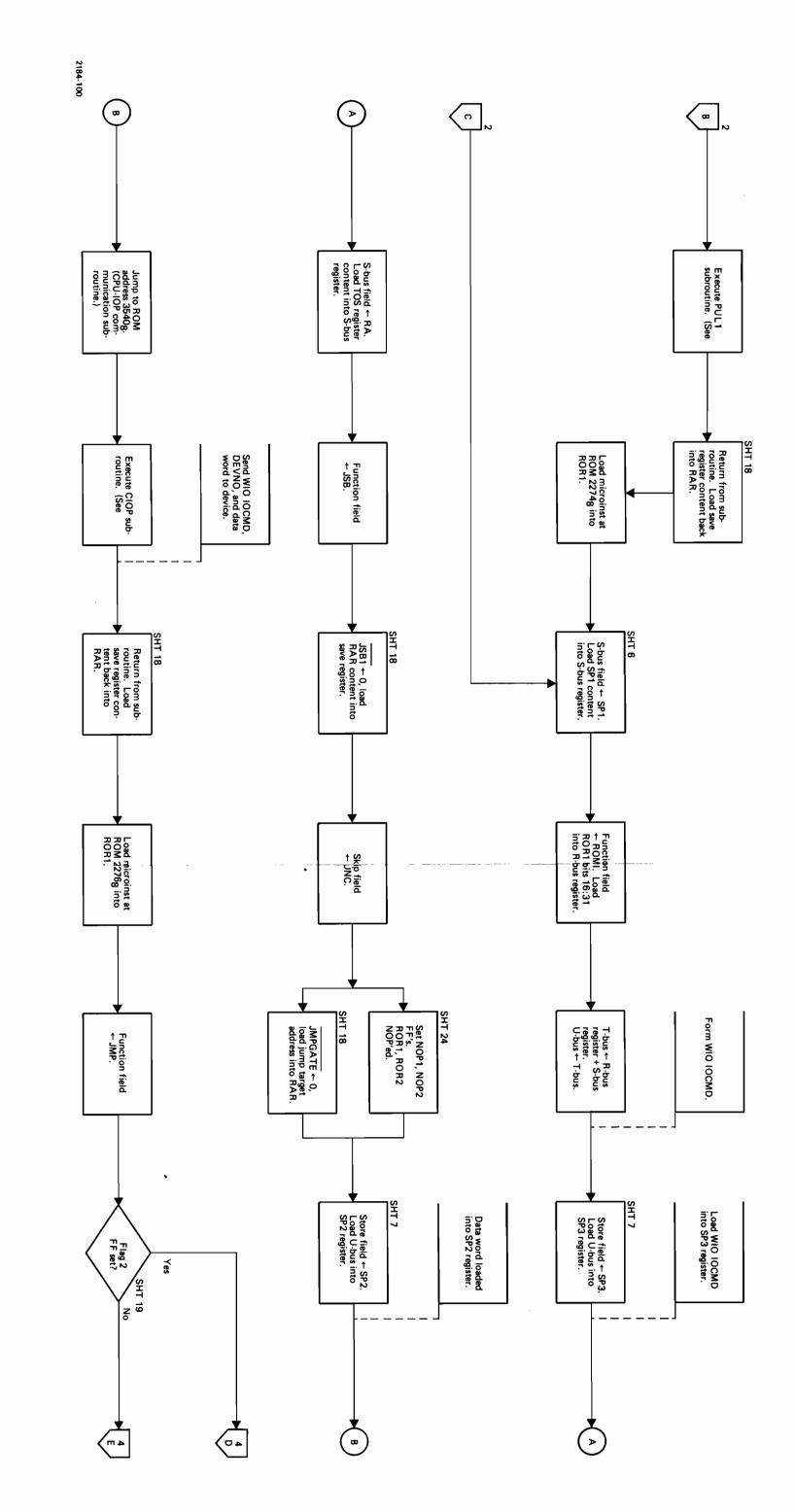
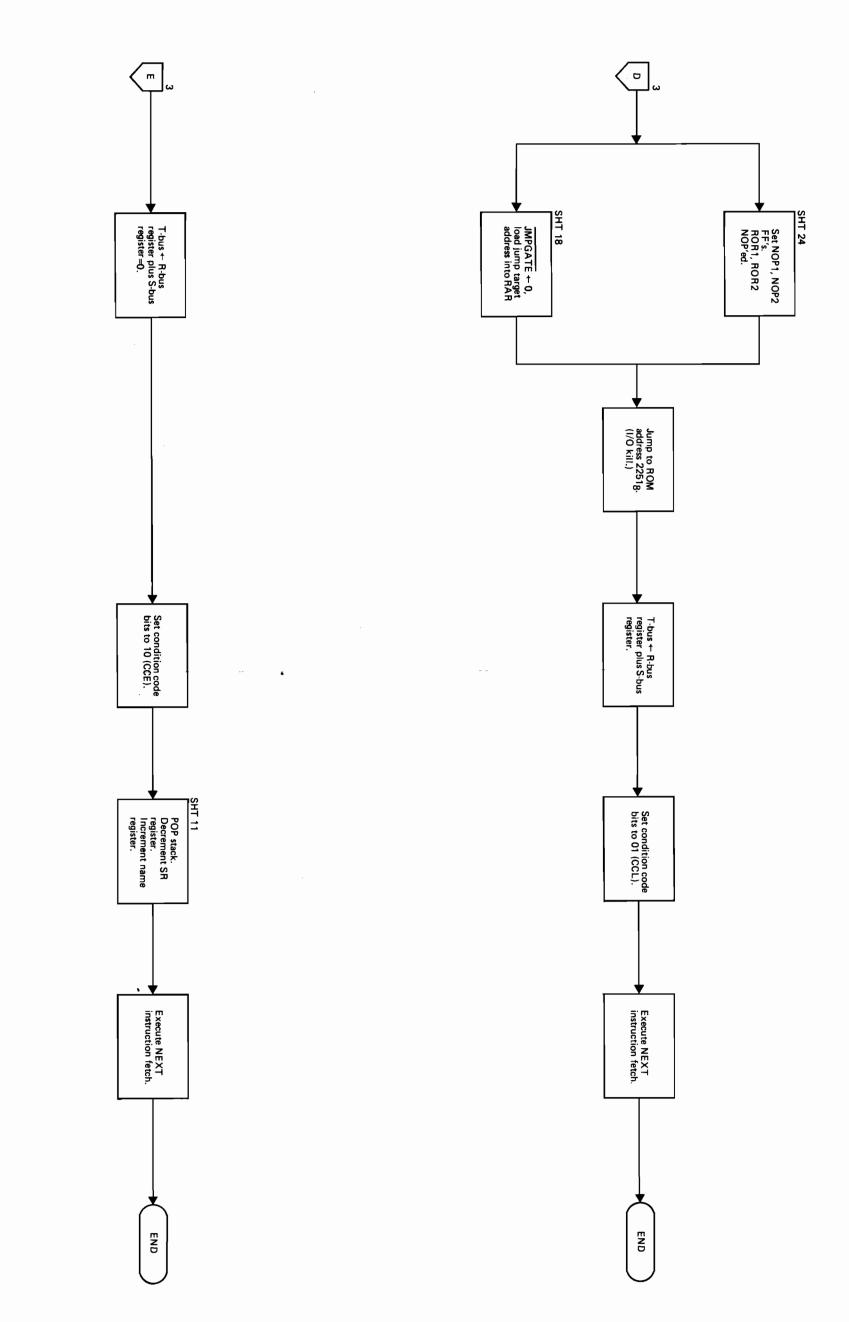
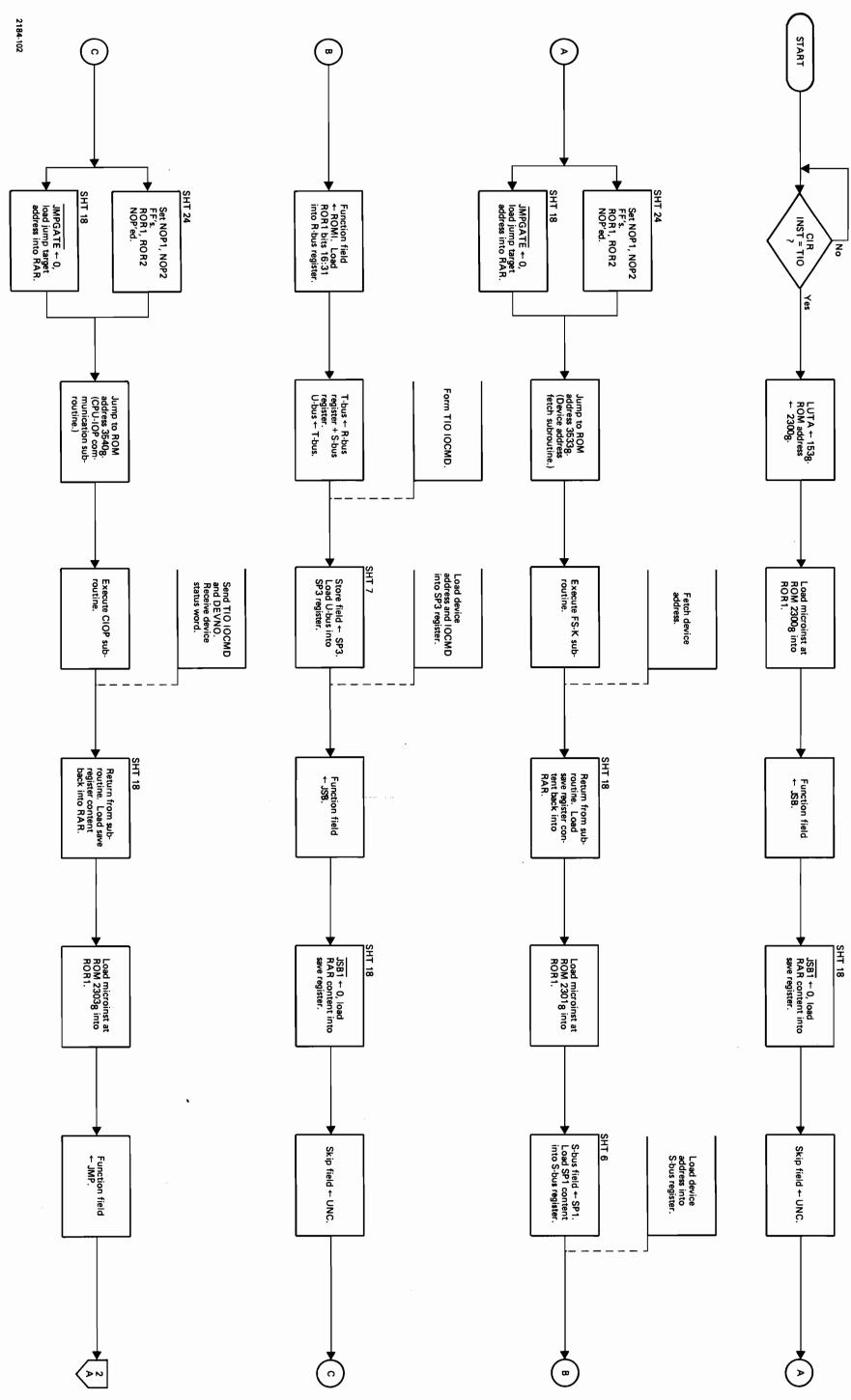





Figure 3-12. WIO Command Operational Flow Diagram (Sheet 3 of 4)



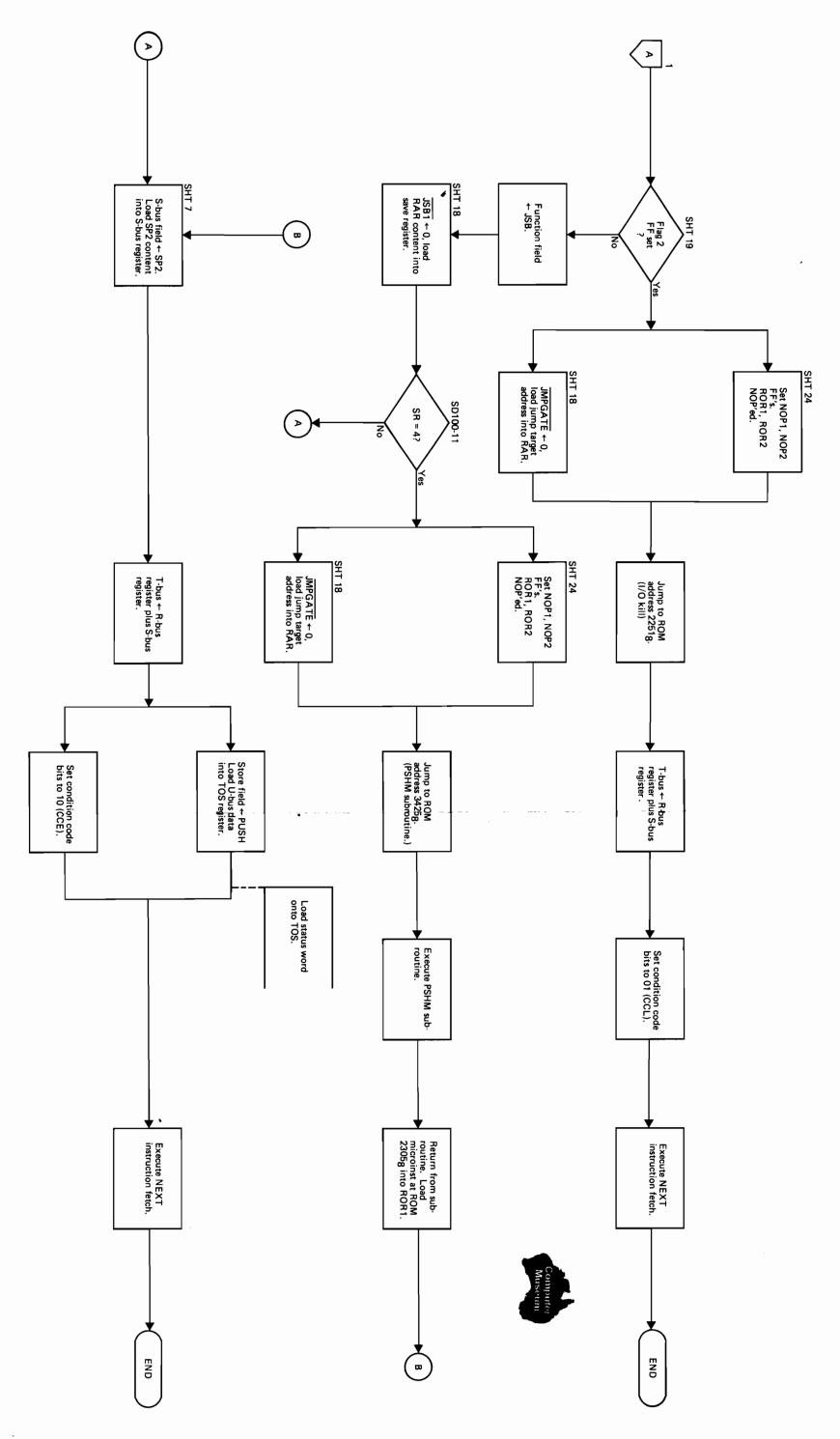
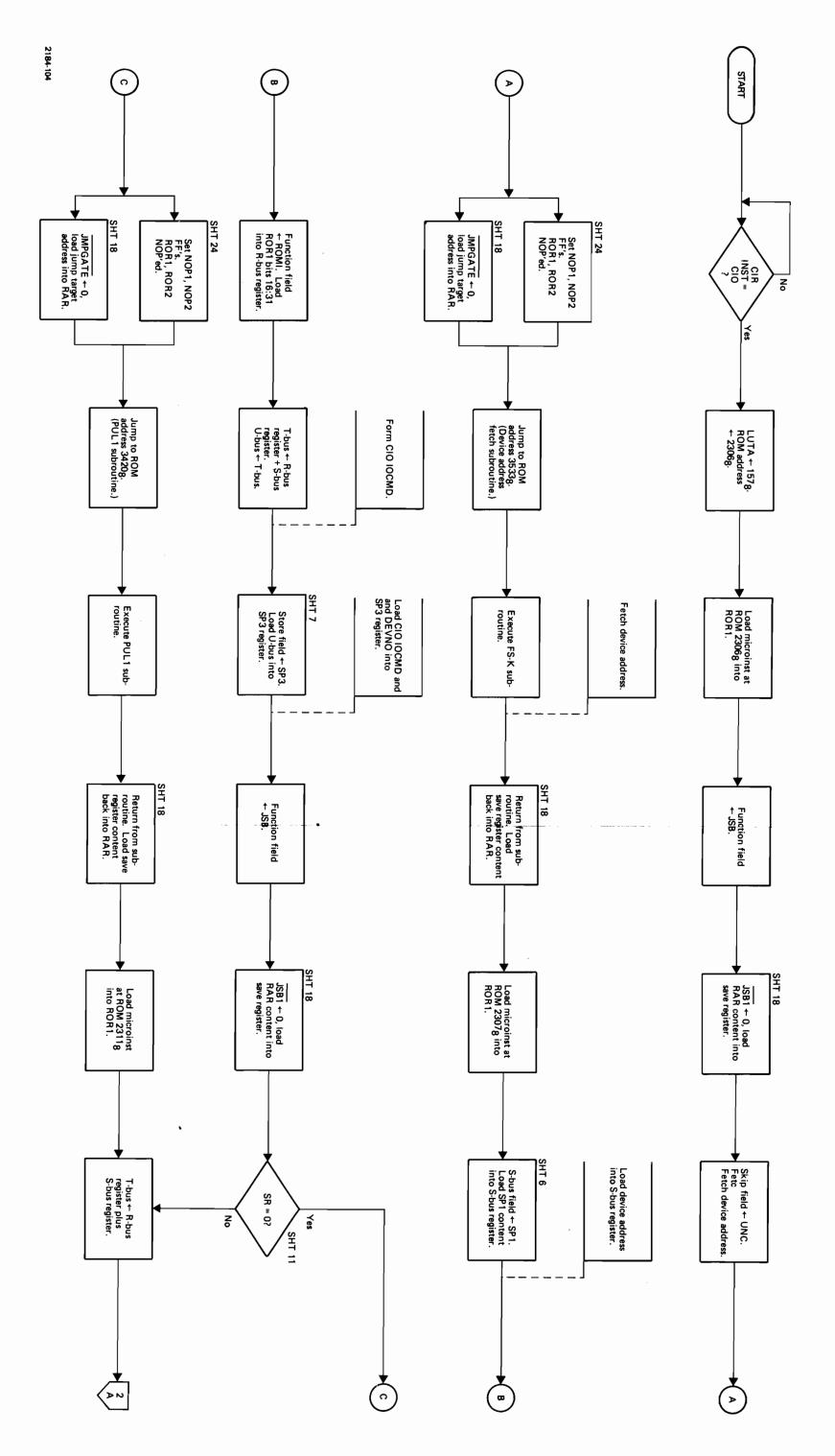
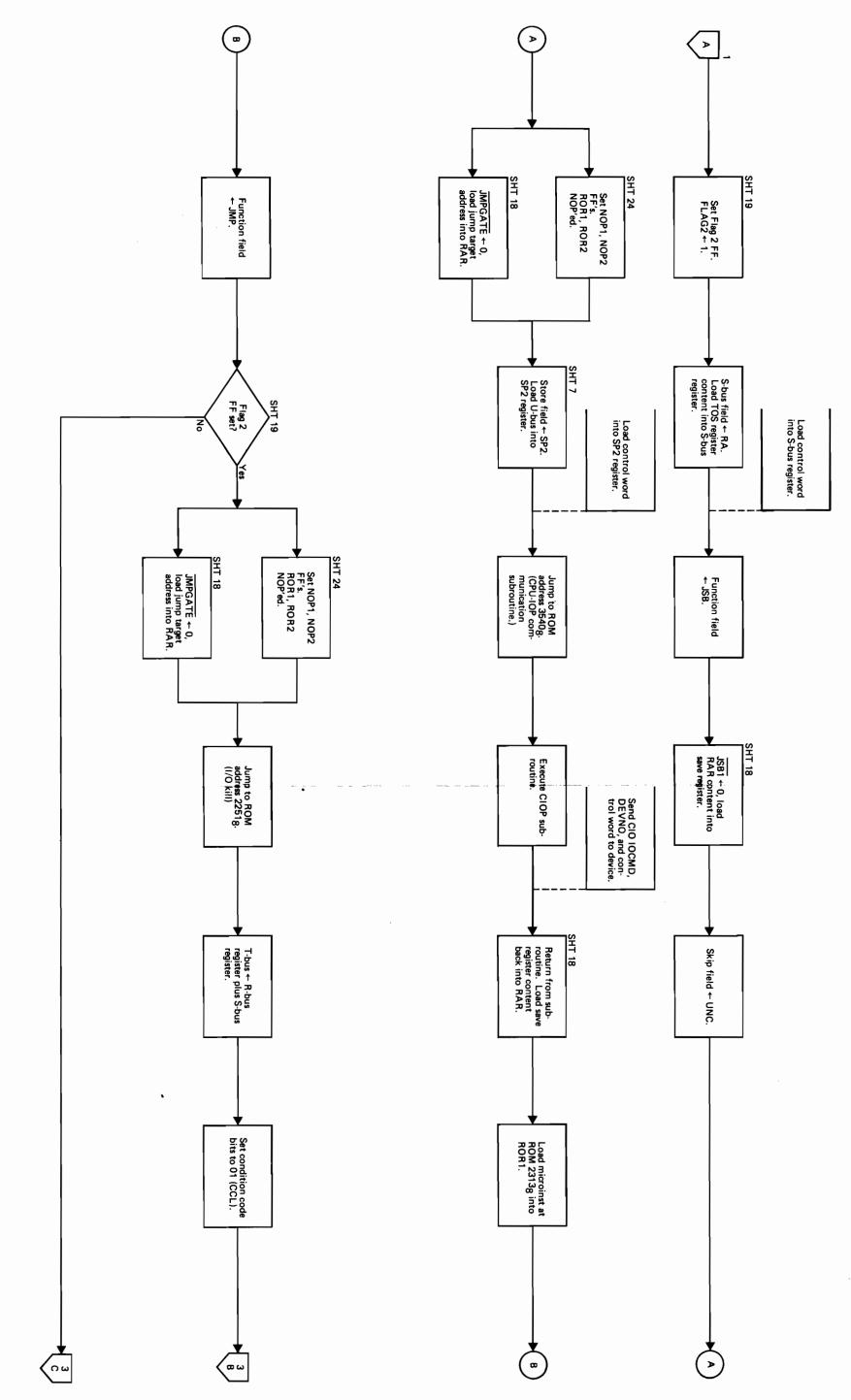


.

Figure 3-12. WIO Command Operational Flow Diagram (Sheet 4 of 4)

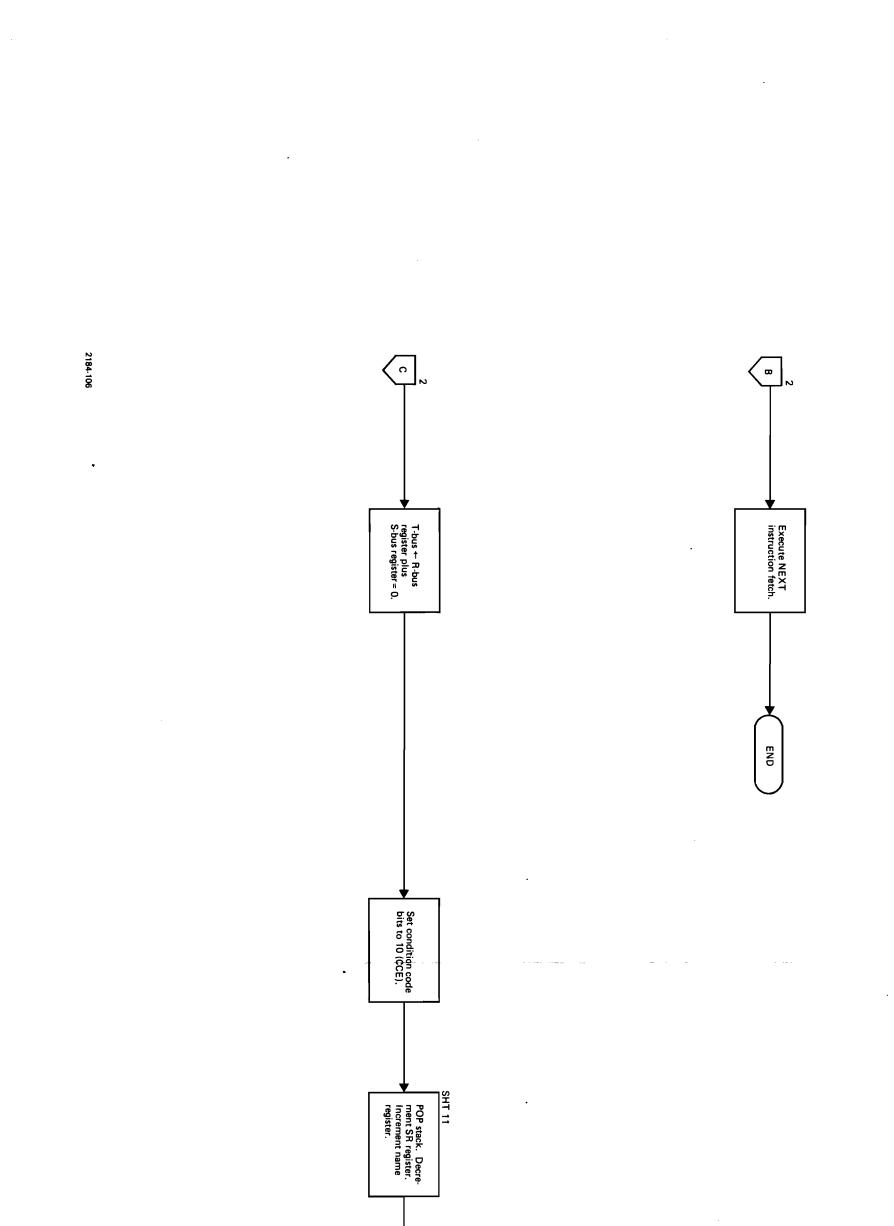



:



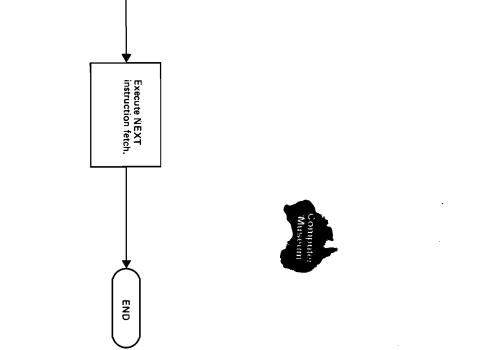


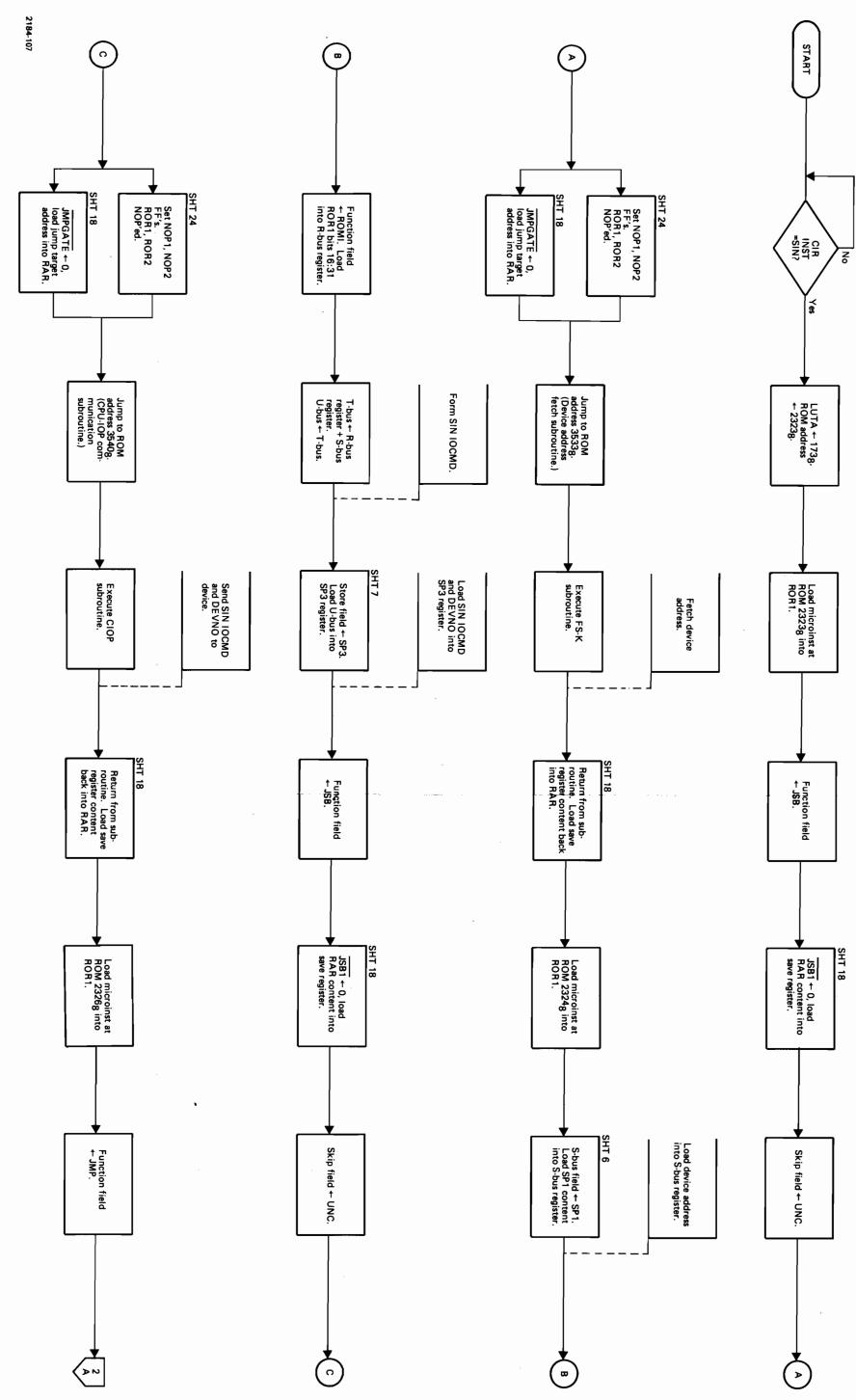

.


#### Figure 3-13. TIO Command Operational Flow Diagram (Sheet 2 of 2)



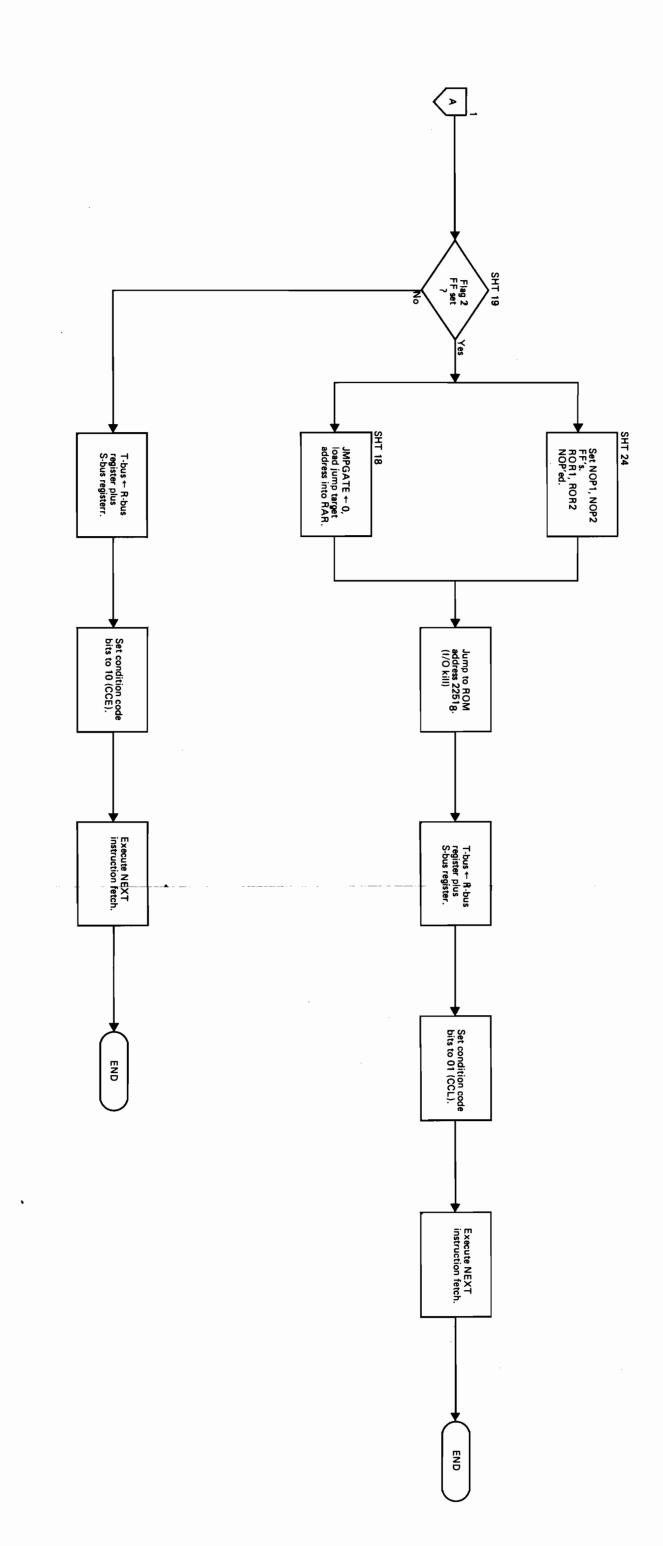
#### Figure 3-14. CIO Command Operational Flow Diagram (Sheet 1 of 3)





#### Figure 3-14. CIO Command Operational Flow Diagram (Sheet 2 of 3)



3-111/3-112


Figure 3-14. CIO Command Operational Flow Diagram (Sheet 3 of 3)





Theory of Operation

Figure 3-15. SIN Command Operational Flow Diagram (Sheet 1 of 2)



3-115/3-116

Figure 3-15. SIN Command Operational Flow Diagram (Sheet 2 of 2)

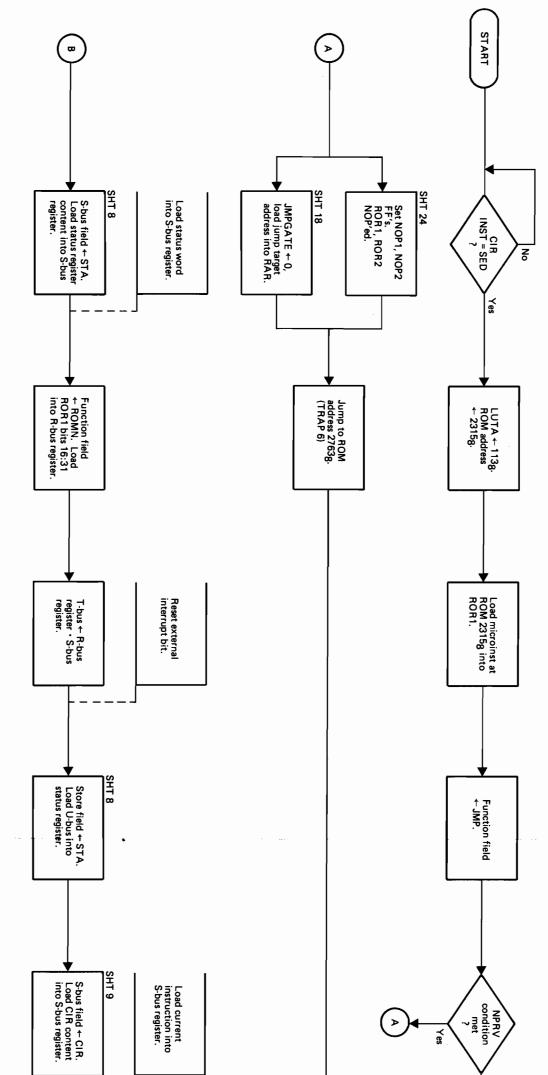
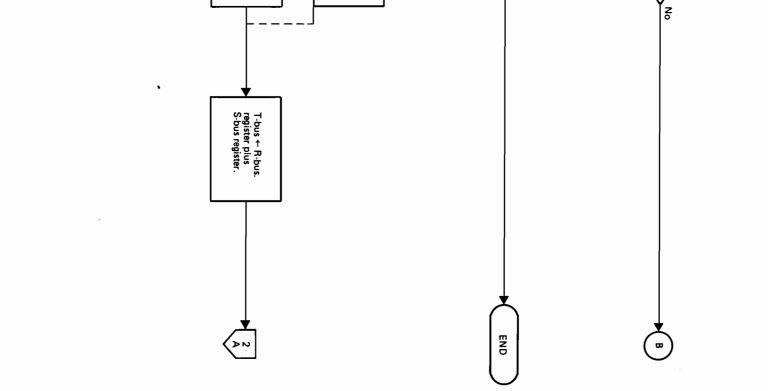
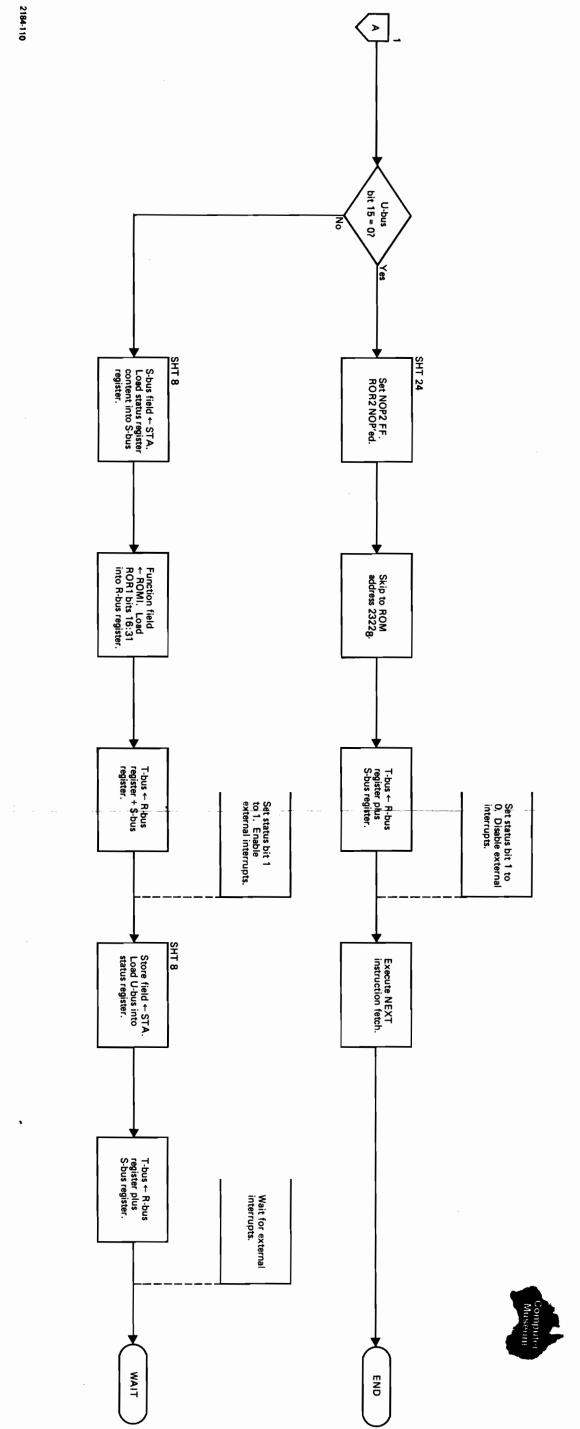







Figure 3-16. SED Command Operational Flow Diagram (Sheet 1 of 2)





3-119/3-120

Figure 3-16. SED Command Operational Flow Diagram (Sheet 2 of 2)

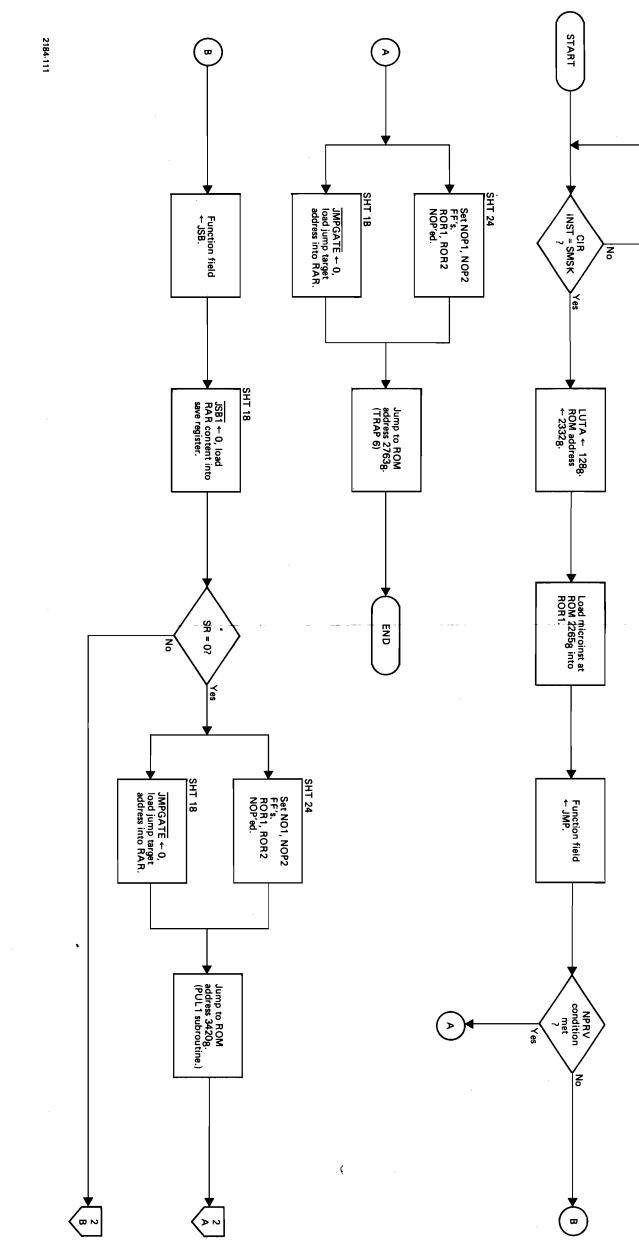
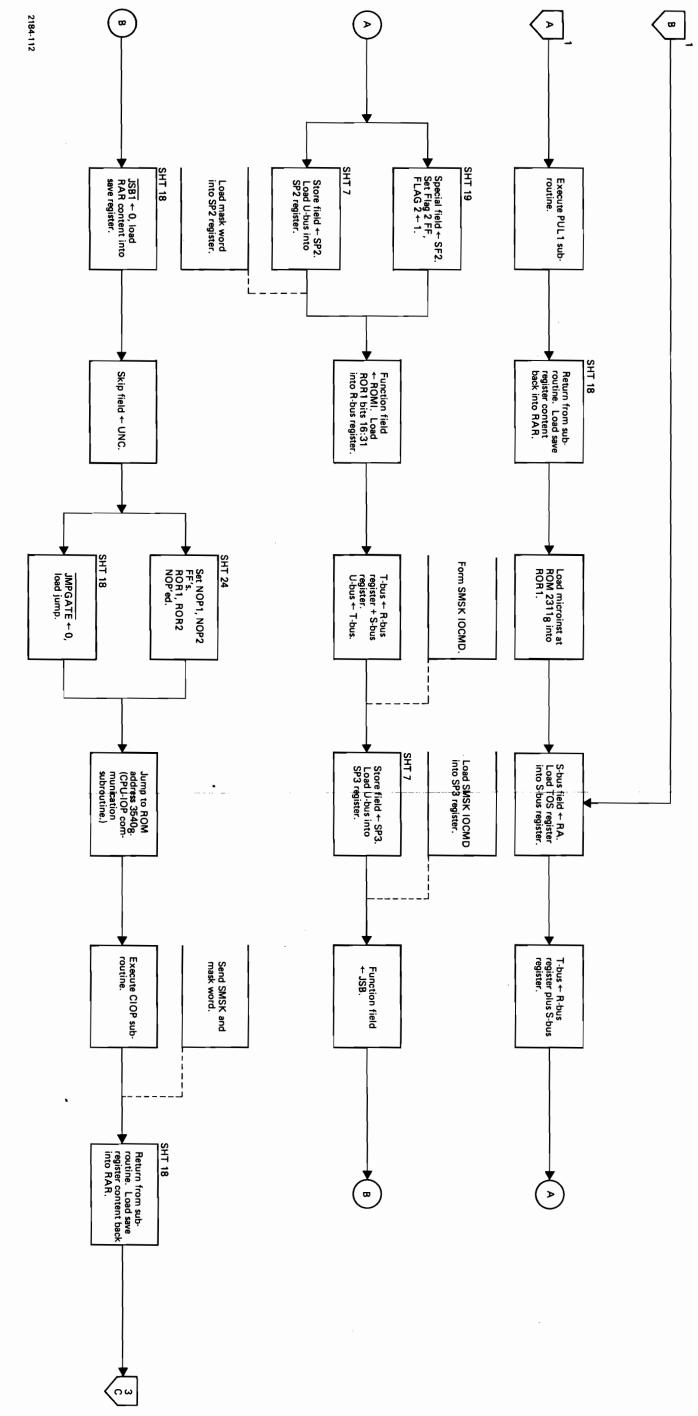




Figure 3-17. SMSK Command Operational Flow Diagram (Sheet 1 of 3)



3-123/3-124

Figure 3-17. SMSK Command Operational Flow Diagram (Sheet 2 of 3)

Theory of Operation

.

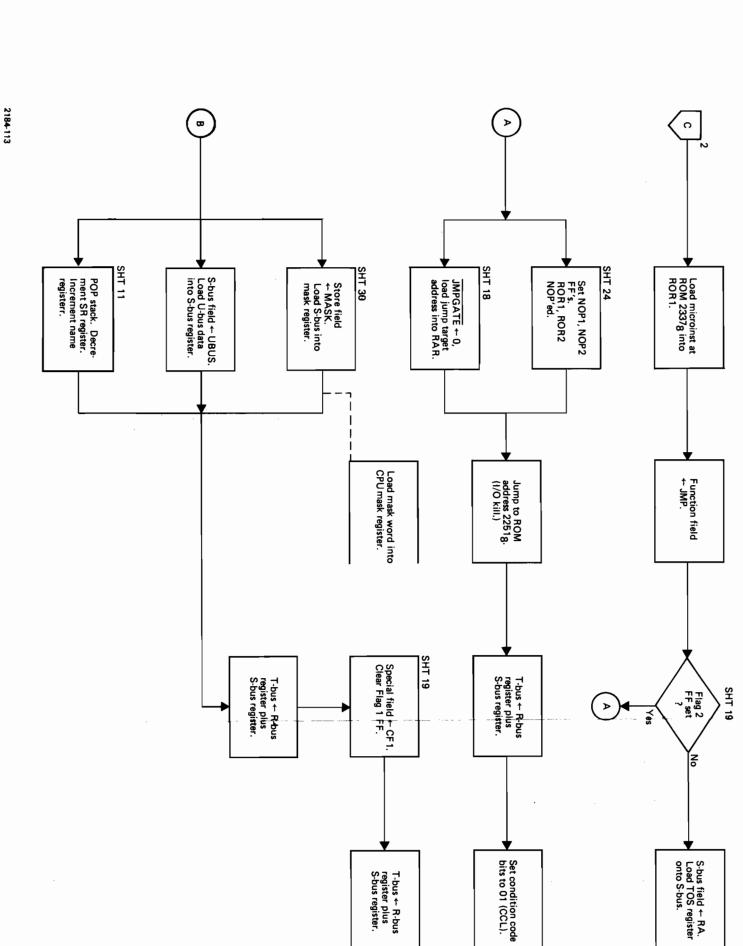
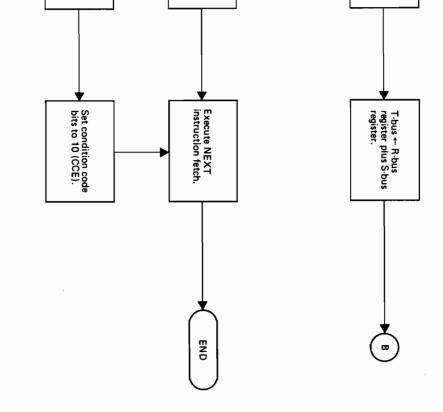
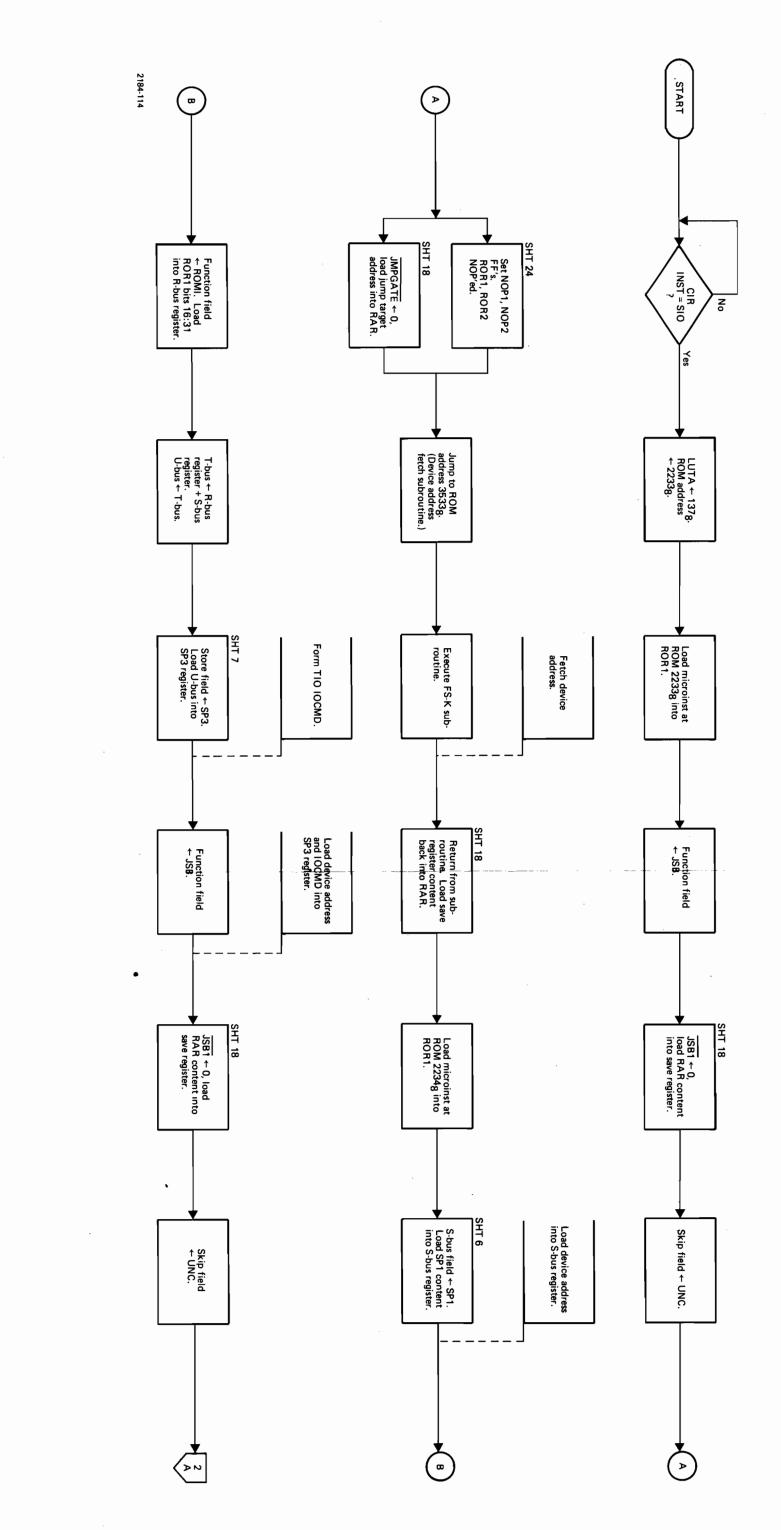
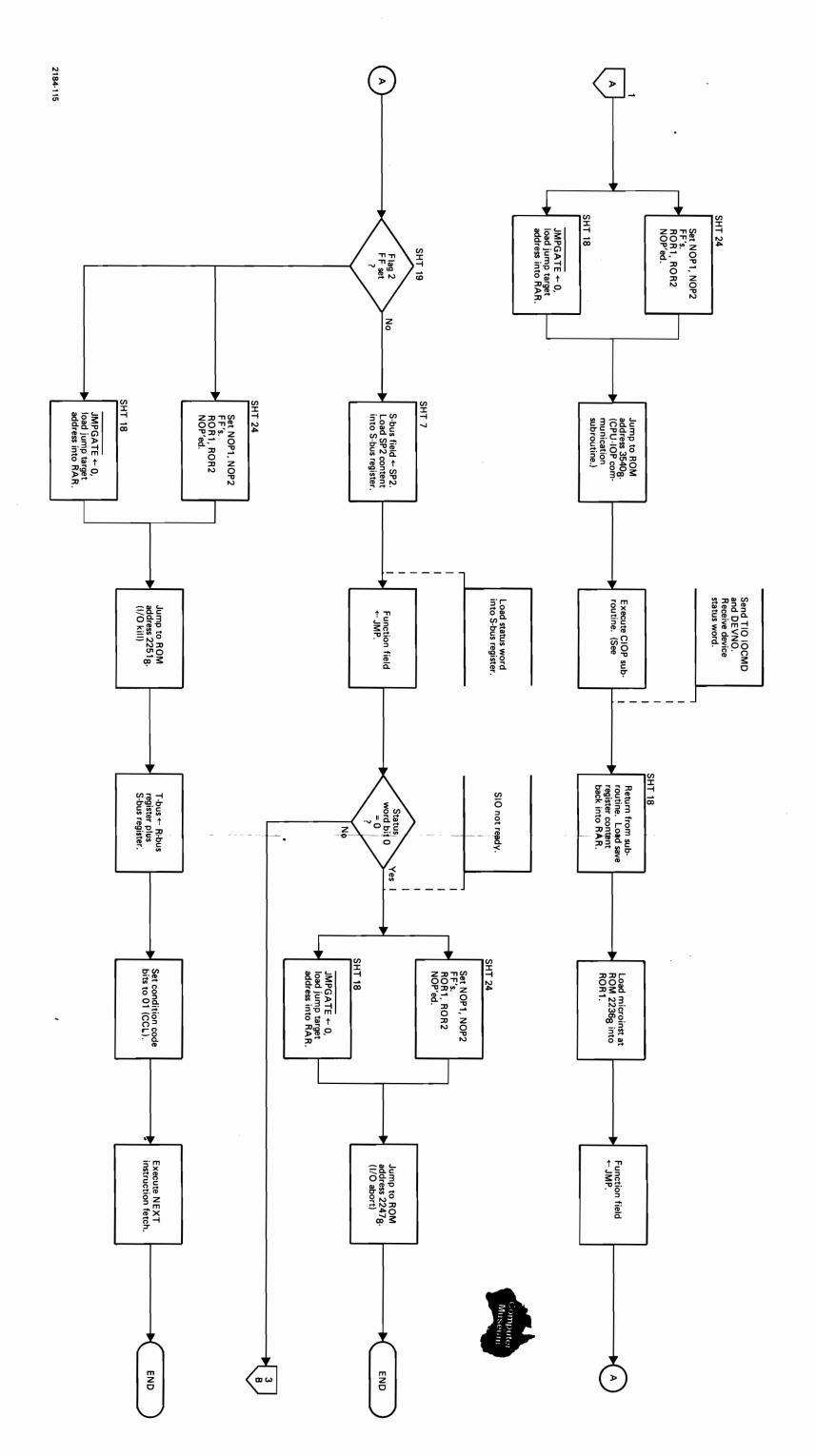





Figure 3-17. SMSK Command Operational Flow Diagram (Sheet 3 of 3)

•






•

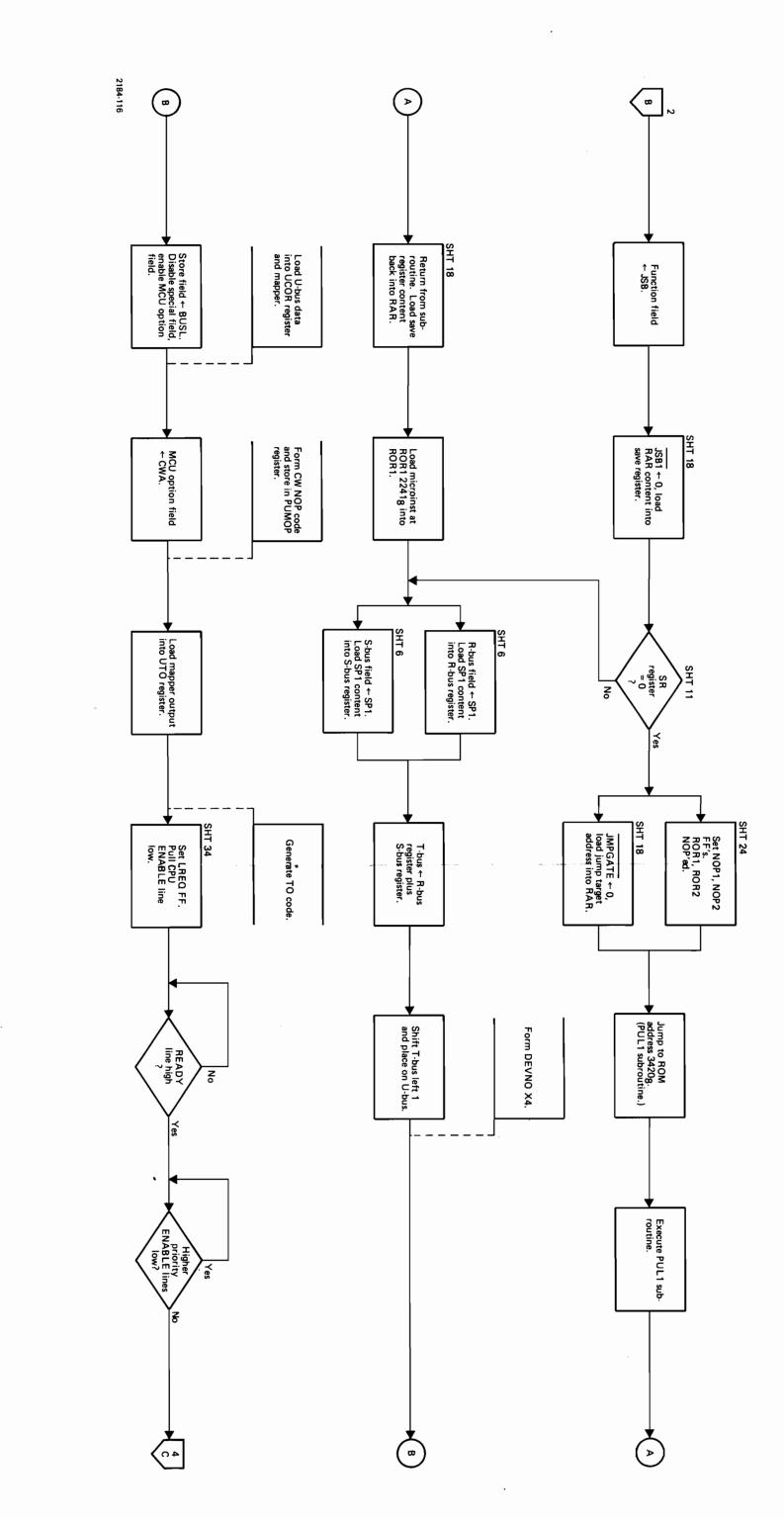
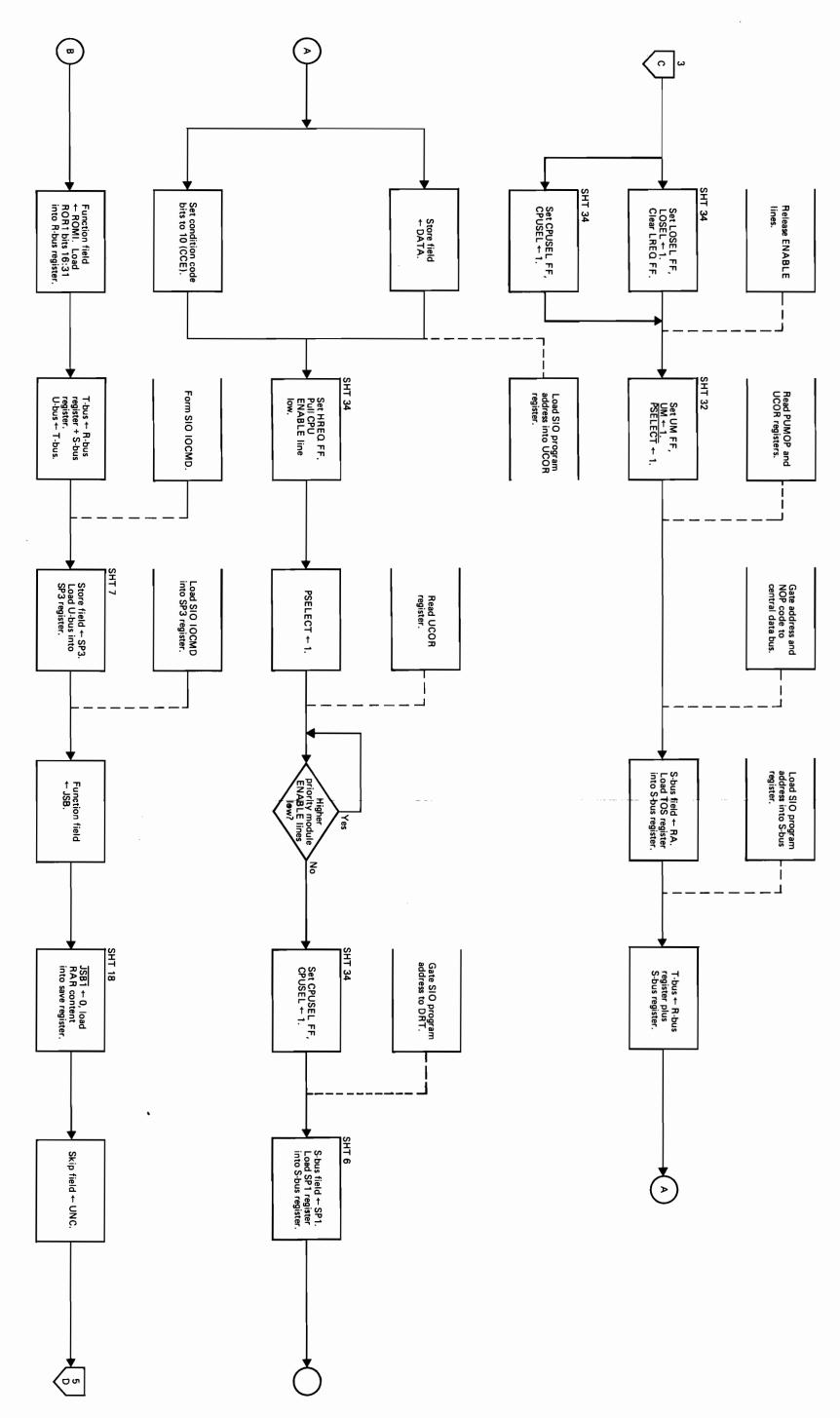
#### Figure 3-18. SIO Command Operational Flow Diagram (Sheet 1 of 5)

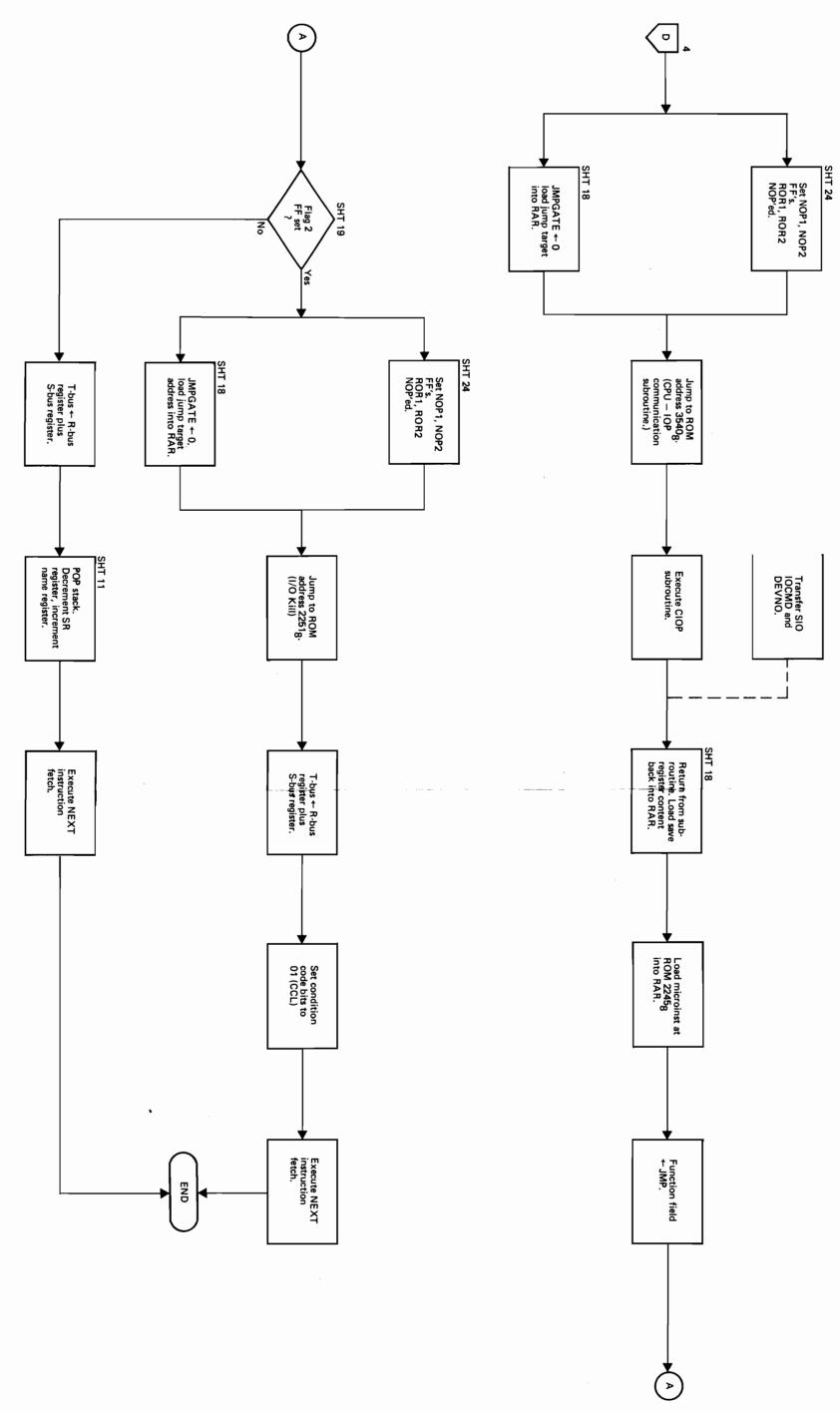
Theory of Operation

.

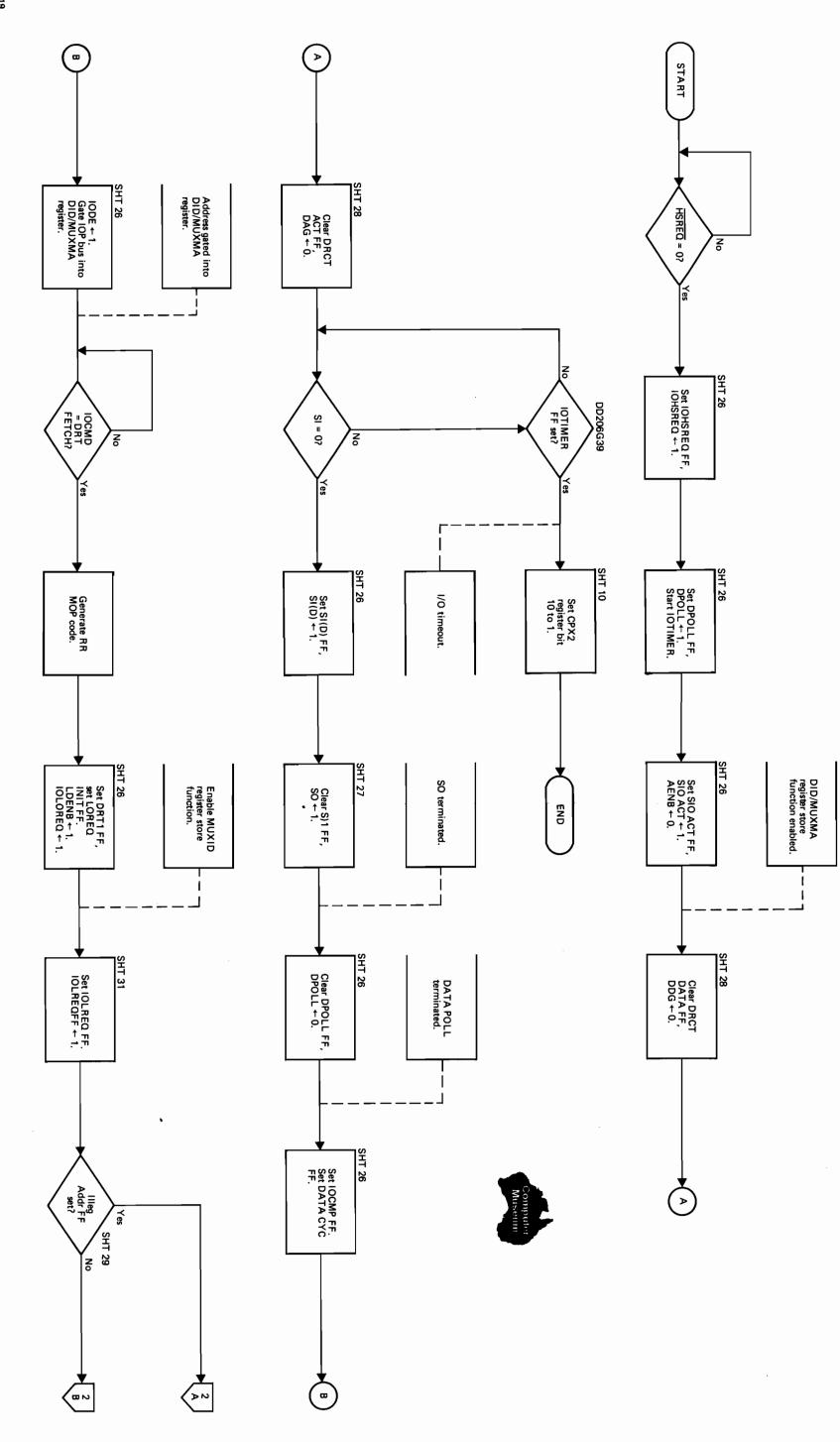


#### Figure 3-18. SIO Command Operational Flow Diagram (Sheet 2 of 5)



Figure 3-18. SIO Command Operational Flow Diagram (Sheet 3 of 5)

•






#### Figure 3-18. SIO Command Operational Flow Diagram (Sheet 4 of 5)



#### Figure 3-18. SIO Command Operational Flow Diagram (Sheet 5 of 5)



# Figure 3-19. DRTE Fetch/Store Operational Flow Diagram (Sheet 1 of 2)



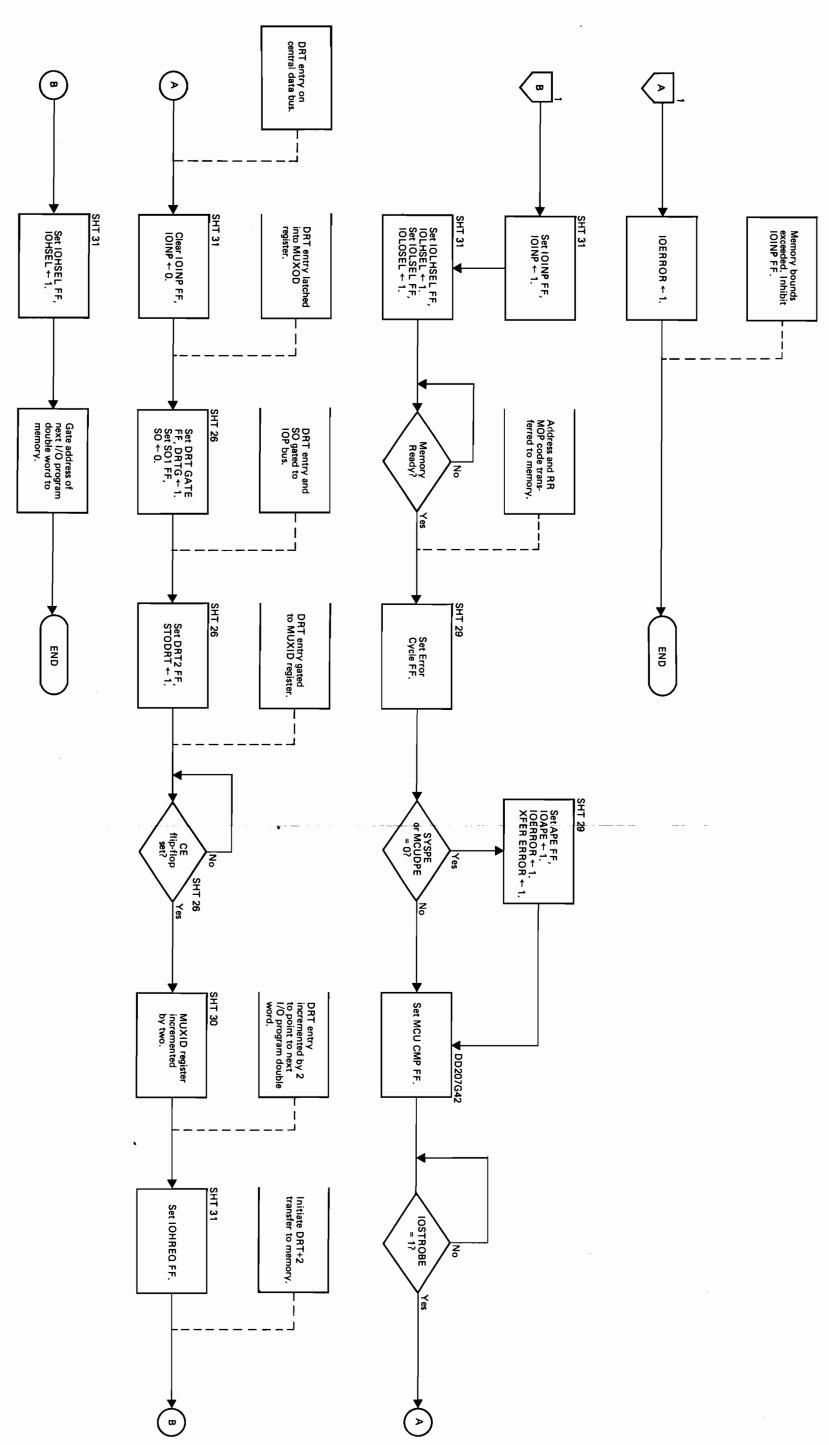
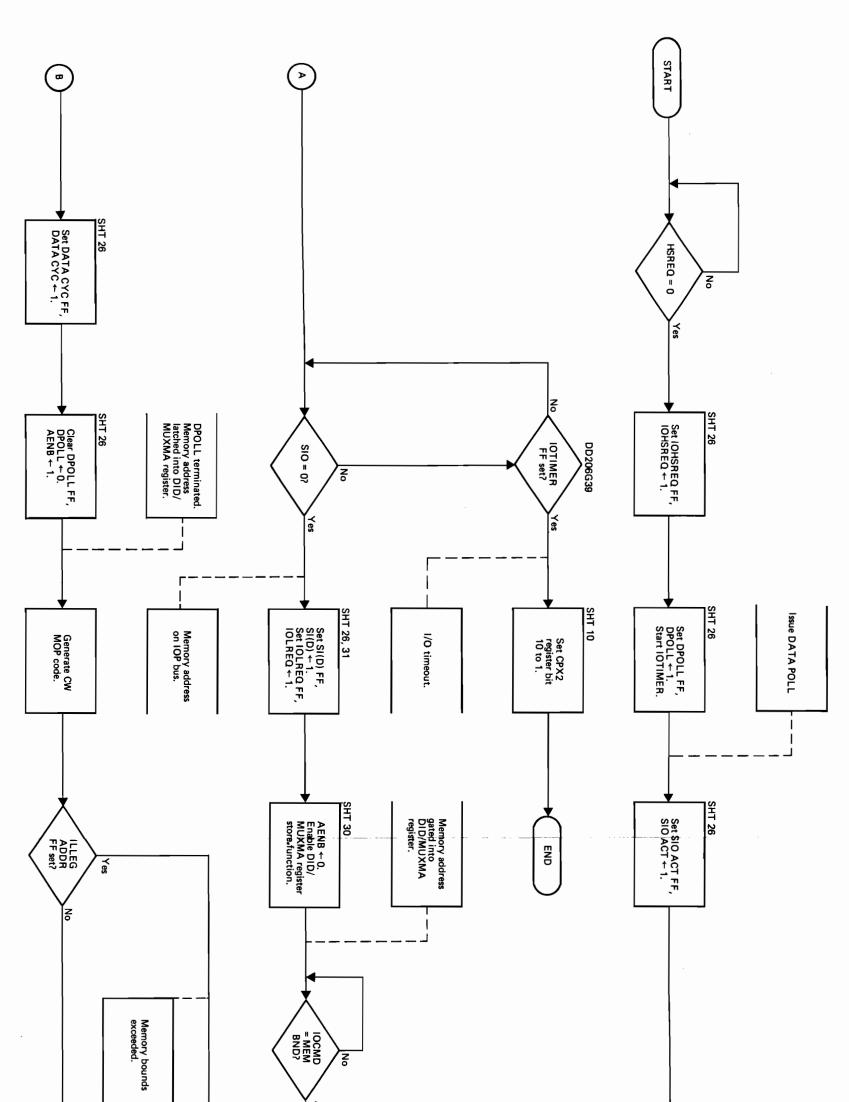
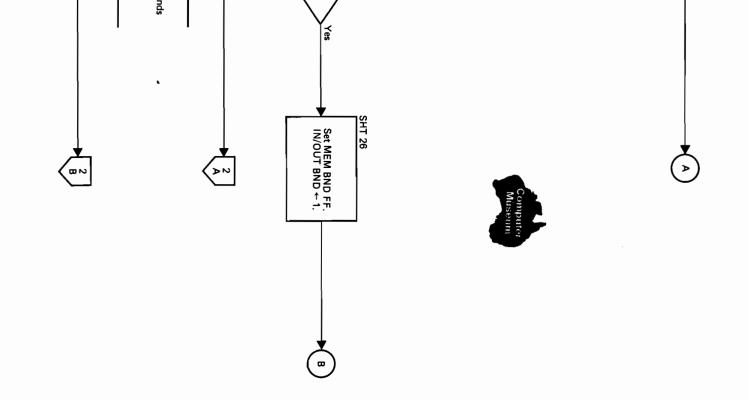
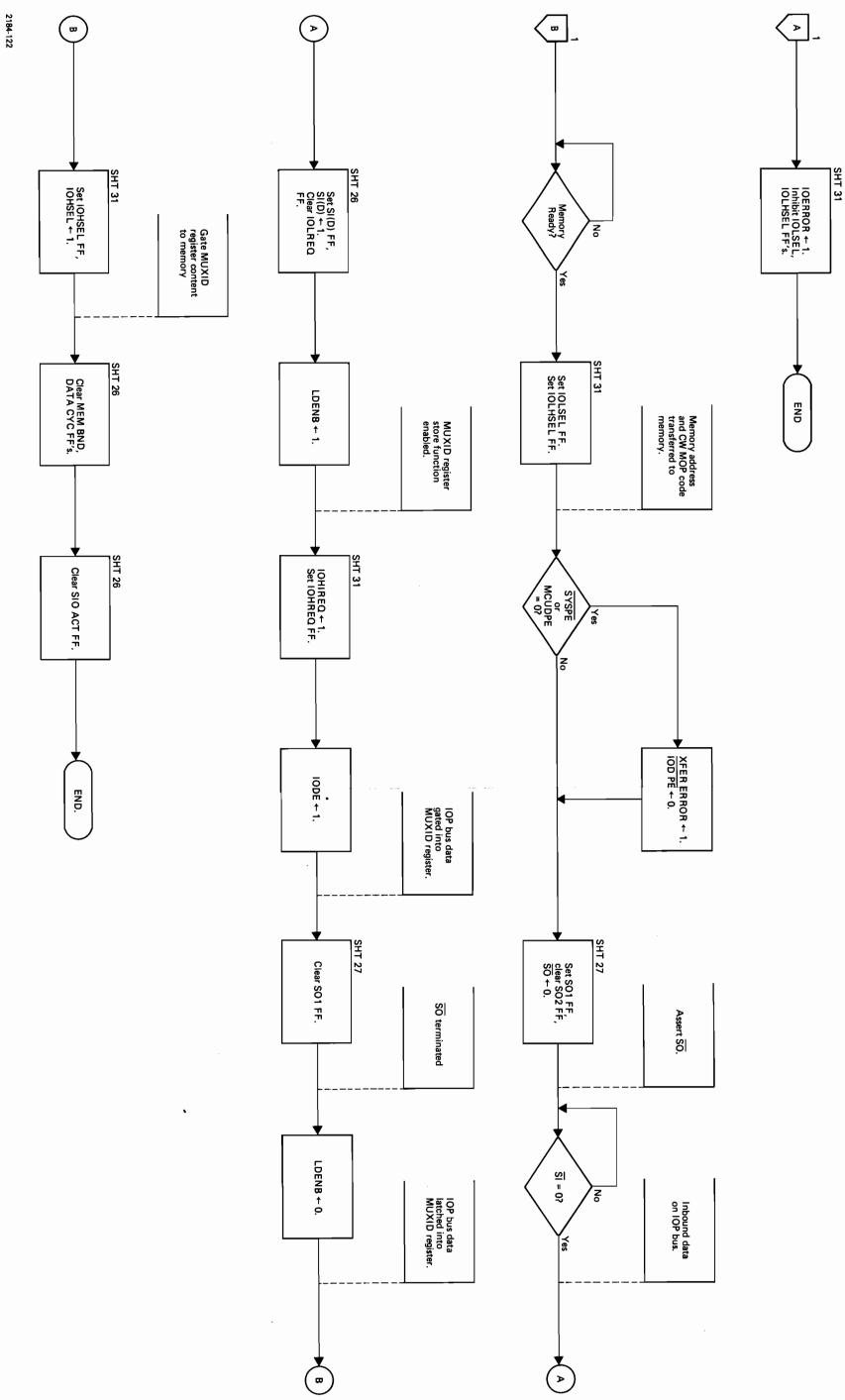




Figure 3-19. DRTE Fetch/Store Operational Flow Diagram (Sheet 2 of 2)




,

3-141/3-142

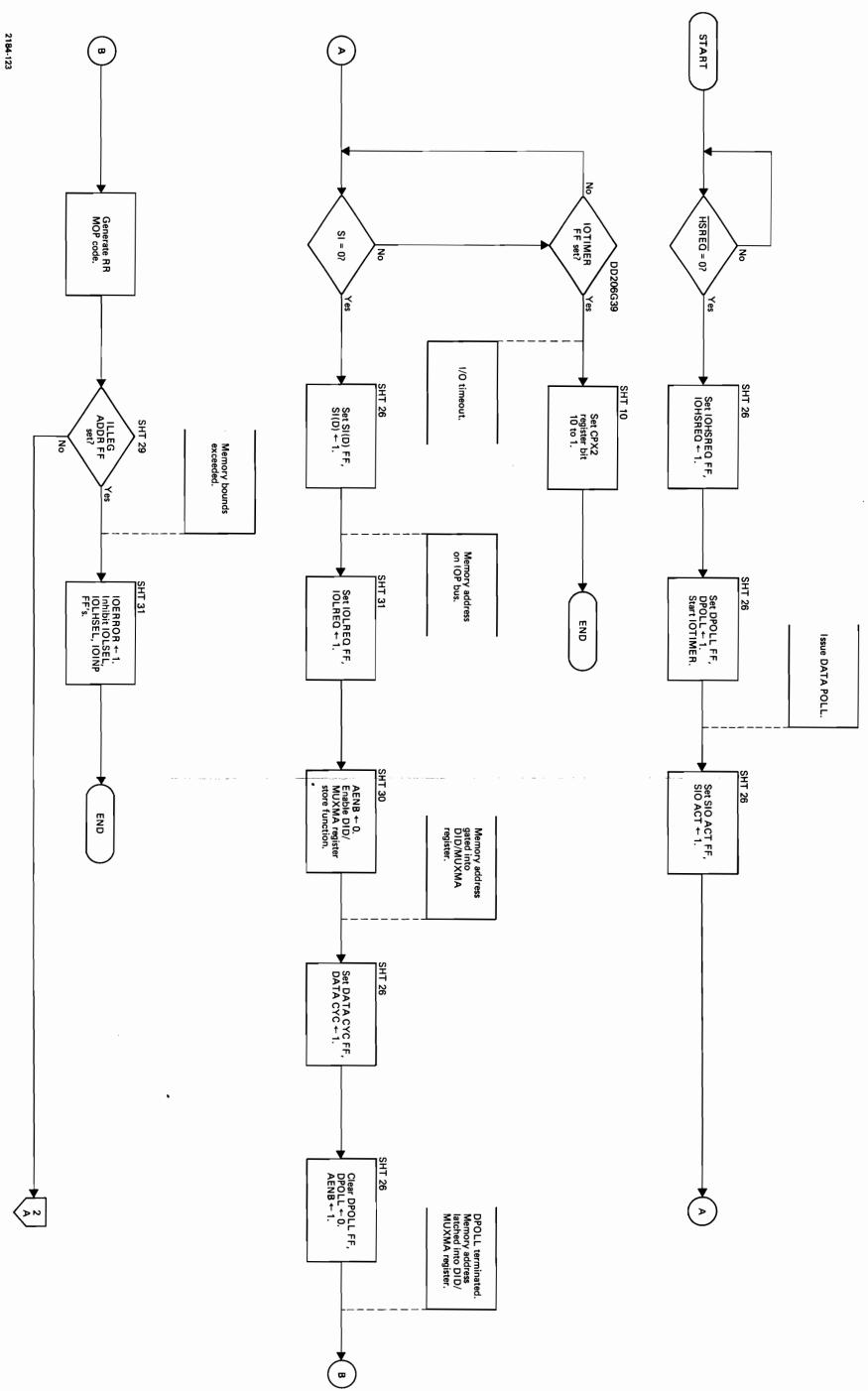
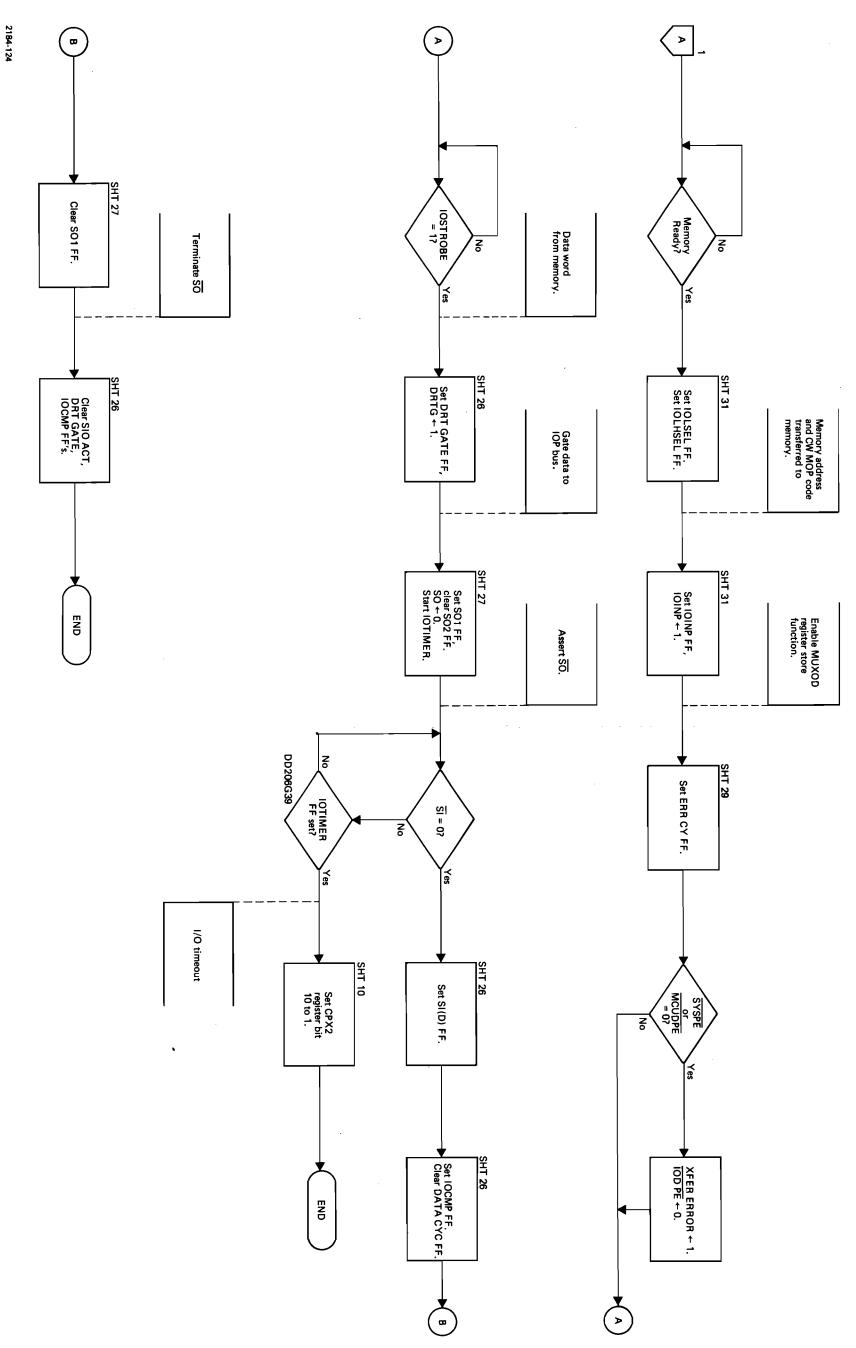
Figure 3-20. Memory Bound Transfer Operational Flow Diagram (Sheet 1 of 2)



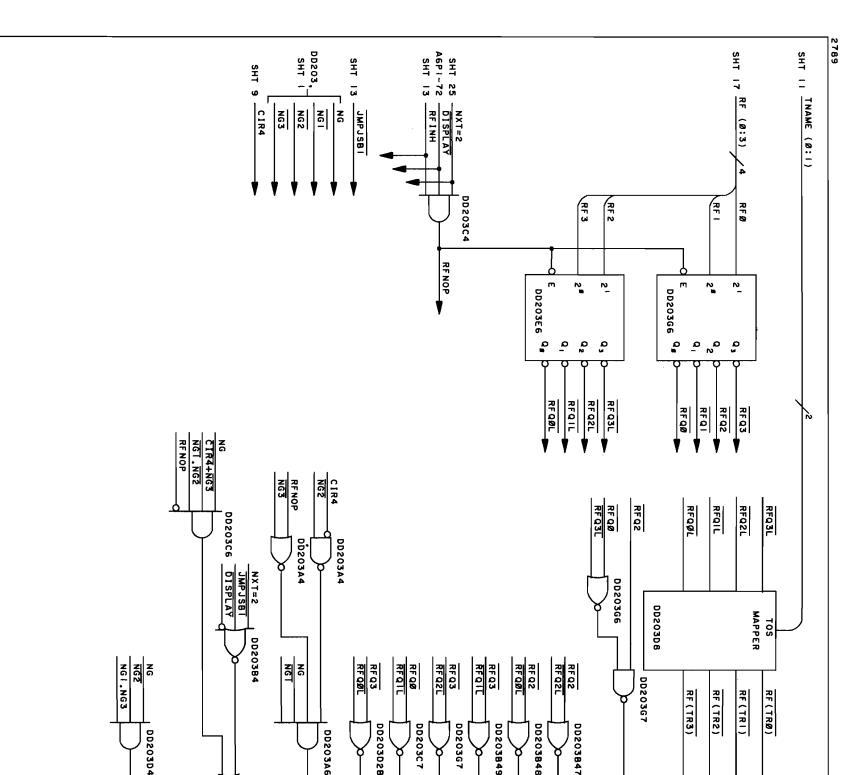


3-143/3-144

Figure 3-20. Memory Bound Transfer Operational Flow Diagram (Sheet 2 of 2)

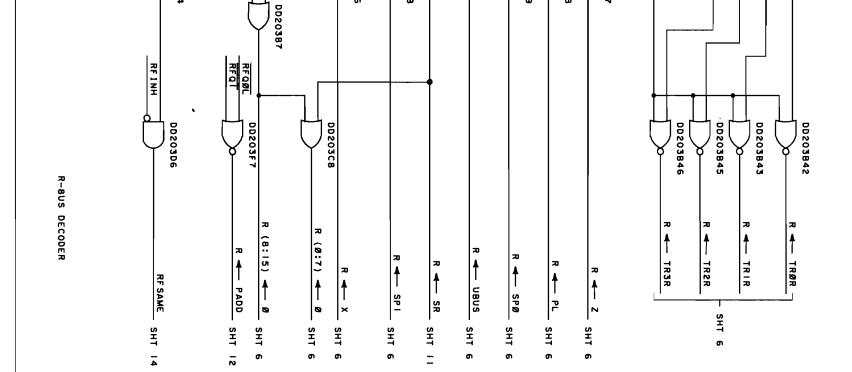



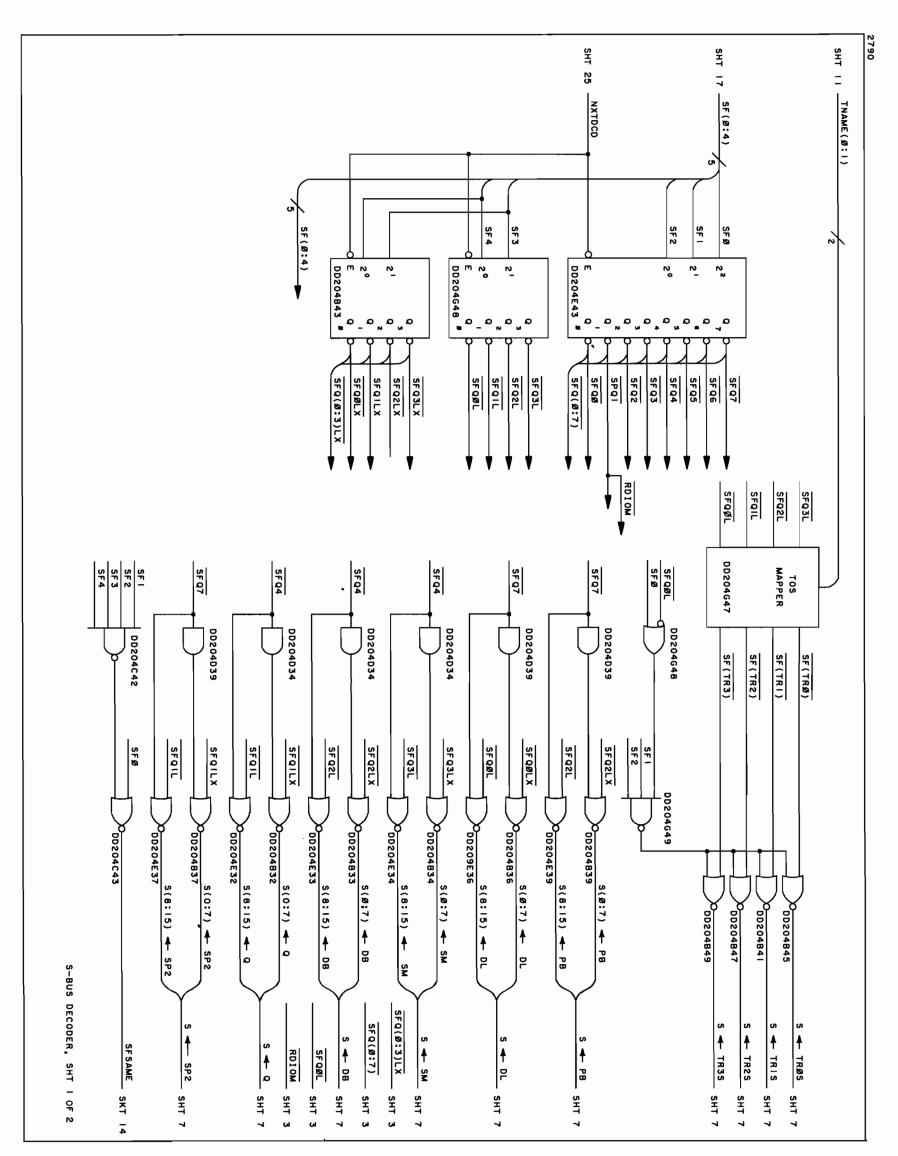




Figure 3-21. Device Bound Transfer Operational Flow Diagram (Sheet 1 of 2)



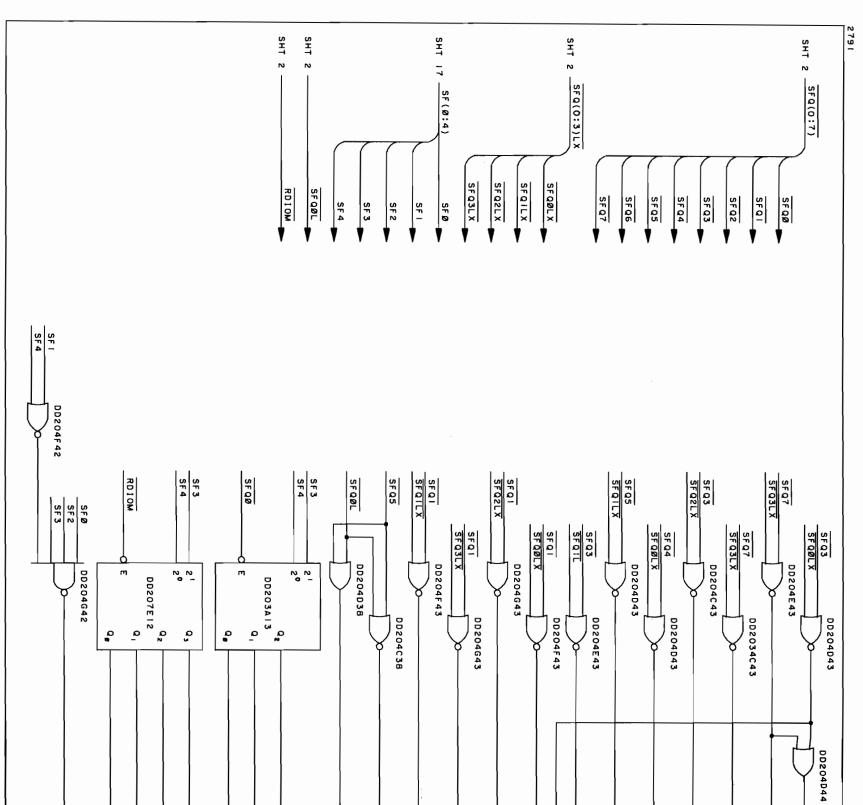



3-147/3-148


Figure 3-21. Device Bound Transfer Operational Flow Diagram (Sheet 2 of 2)



Theory of Operation


### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 1 of 35)



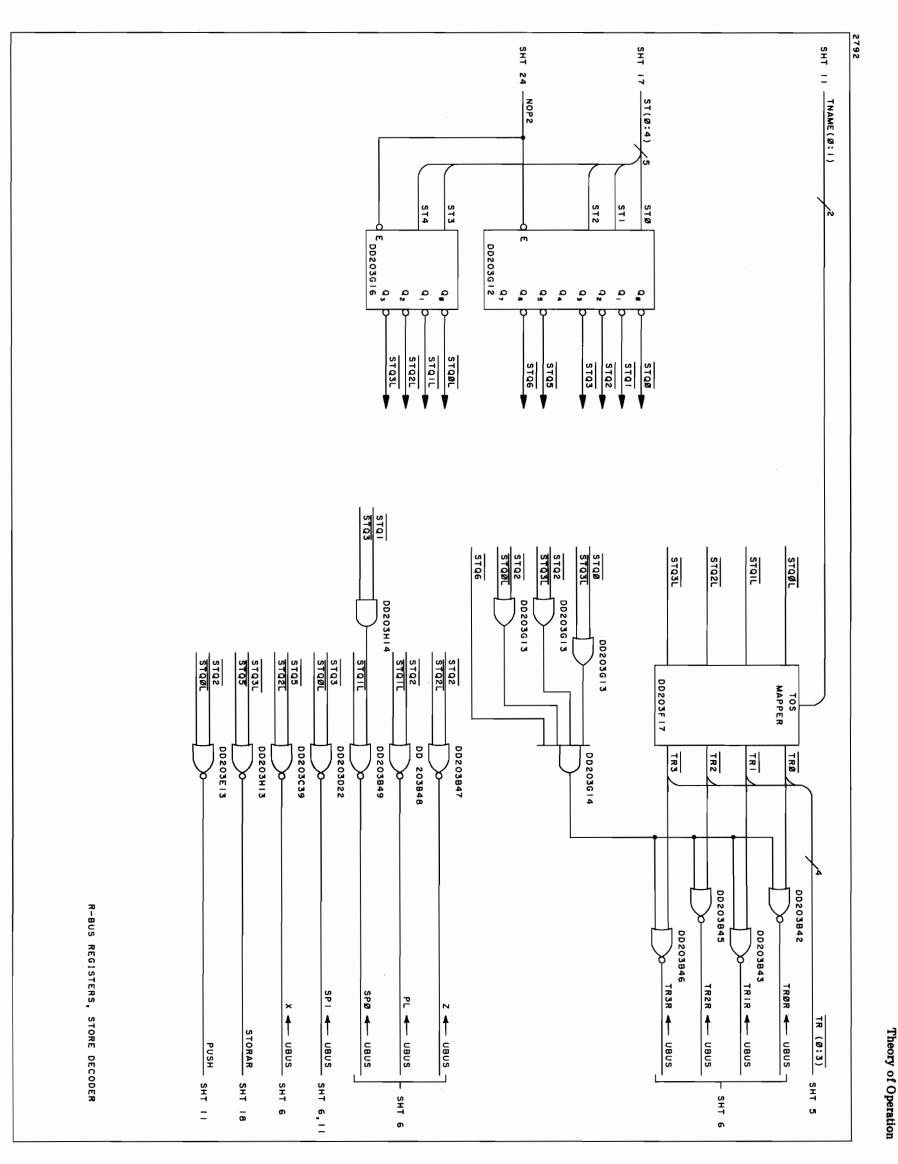


3-151/3-152

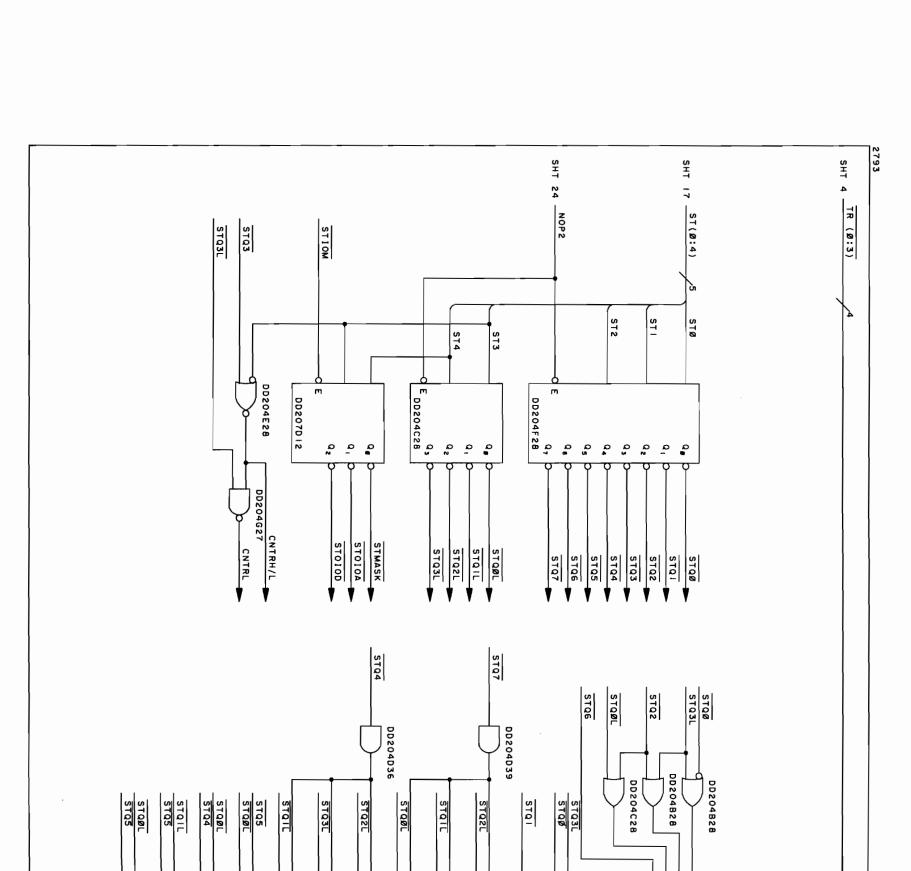
Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 2 of 35)



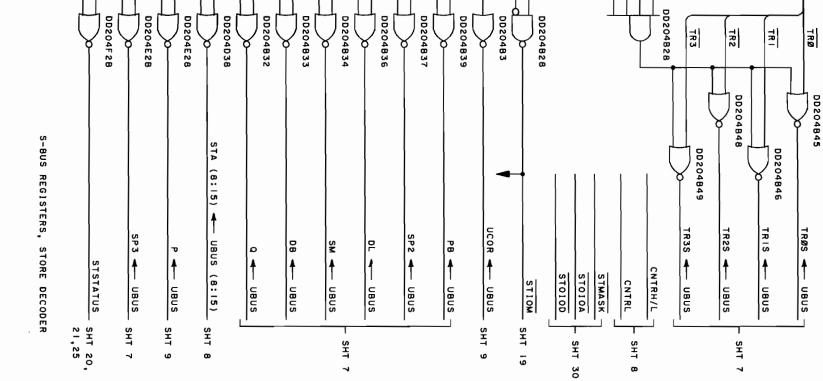
| Figure 3-22.                                         |                           |                 |                    |  |  |                  | ß                         |                         |   | Computer<br>Museum |   |          |               |             |
|------------------------------------------------------|---------------------------|-----------------|--------------------|--|--|------------------|---------------------------|-------------------------|---|--------------------|---|----------|---------------|-------------|
| CPU/IOP Simplified Logic Diagram:<br>(Sheet 3 of 35) | S-BUS DECODER, SHT 2 OF 2 | RDOPND SHT 9 33 | RDDIAG DD207 SHT 2 |  |  | S A- PADD Sut is | S(8:15) - STA(8:15) SHT 8 | S(0:7) - STA(0:7) SHT 8 | 1 |                    | R | CNTR SHI | S A SP3 SHT 7 | S ▲ P SHT 9 |


Theory of Operation

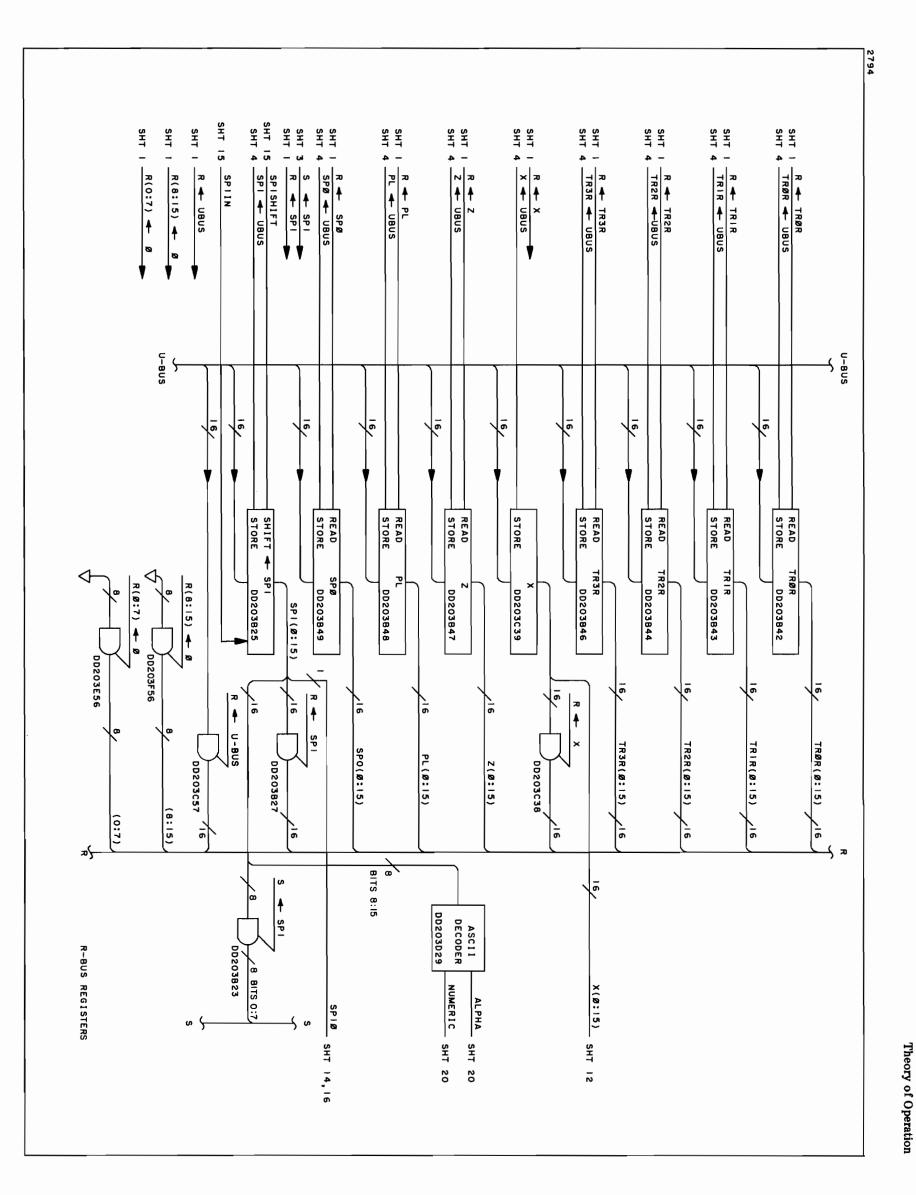
S(8:15) - Ø SHT 8


U 📥 SBUS SHT 9

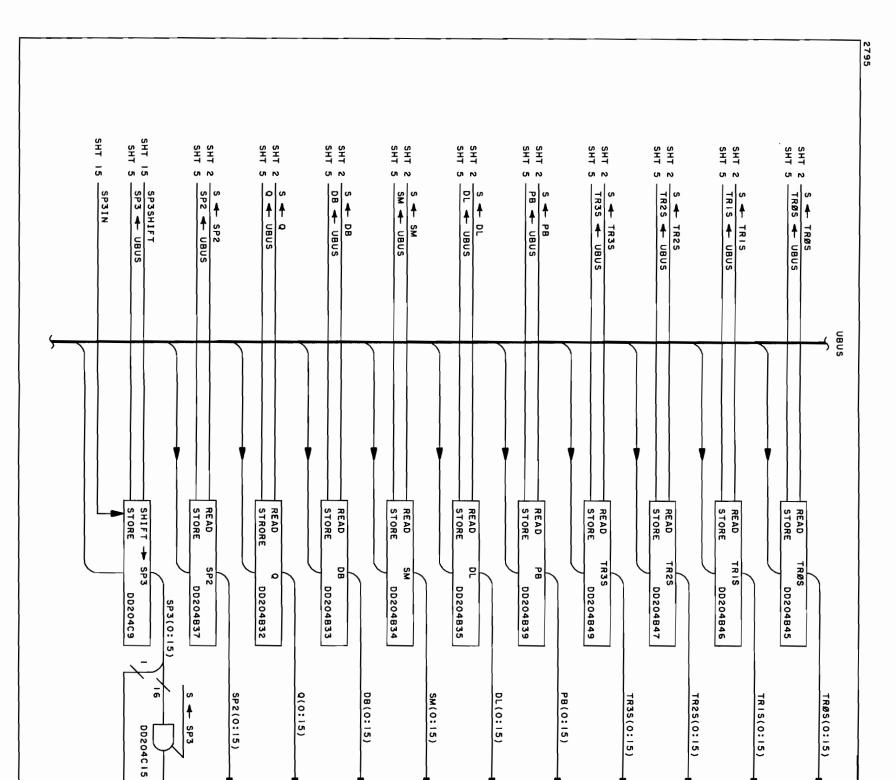
CC SHT 8


S(Ø:7) - Ø SHT 8



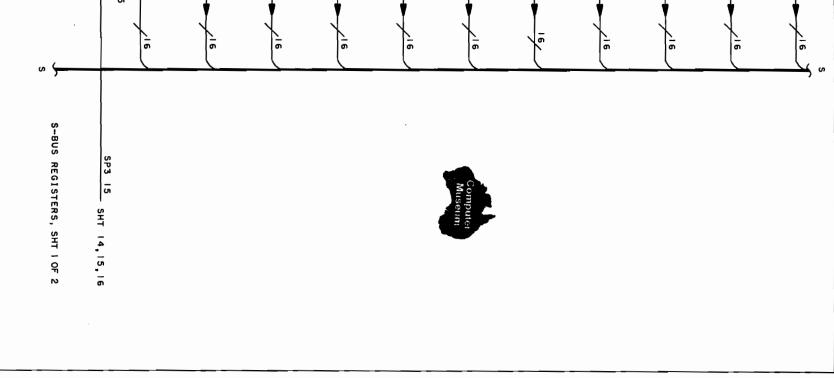

# Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 4 of 35)

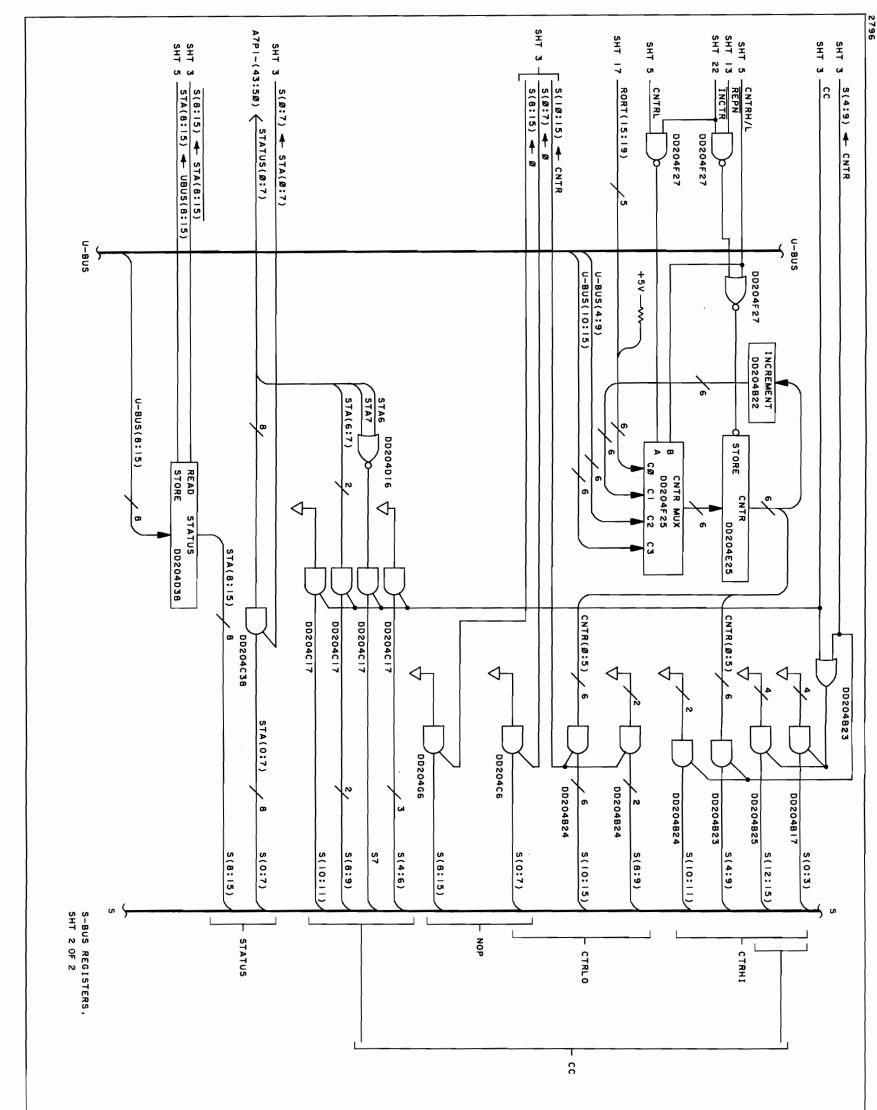



### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 5 of 35)



Theory of Operation





### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 6 of 35)

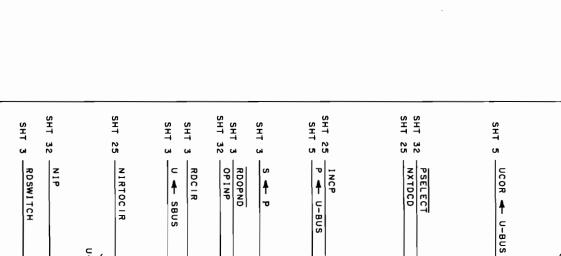


Theory of Operation

#### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 7 of 35)






#### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 8 of 35)

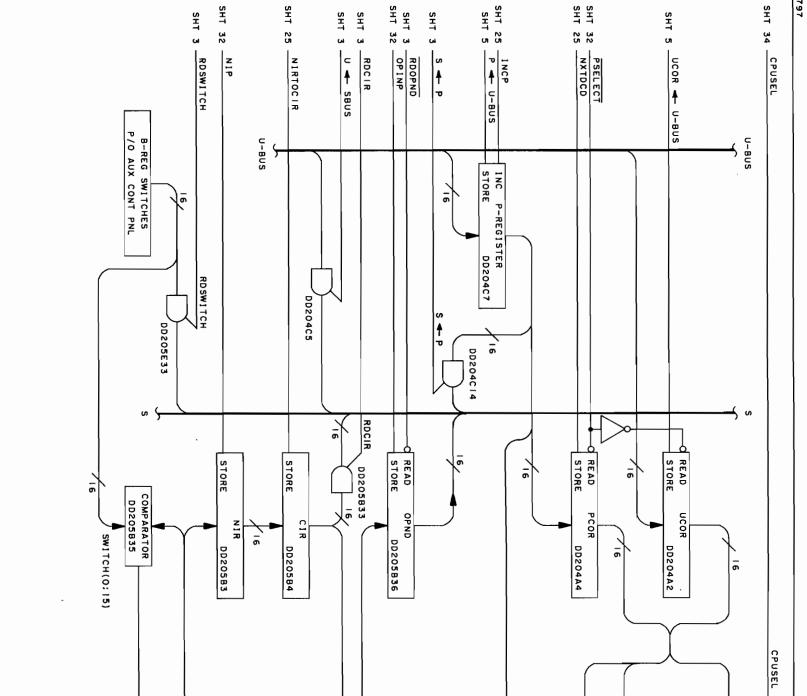
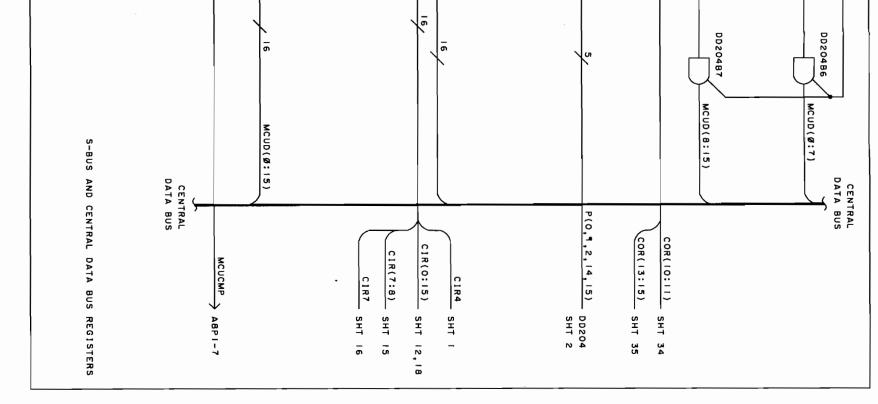
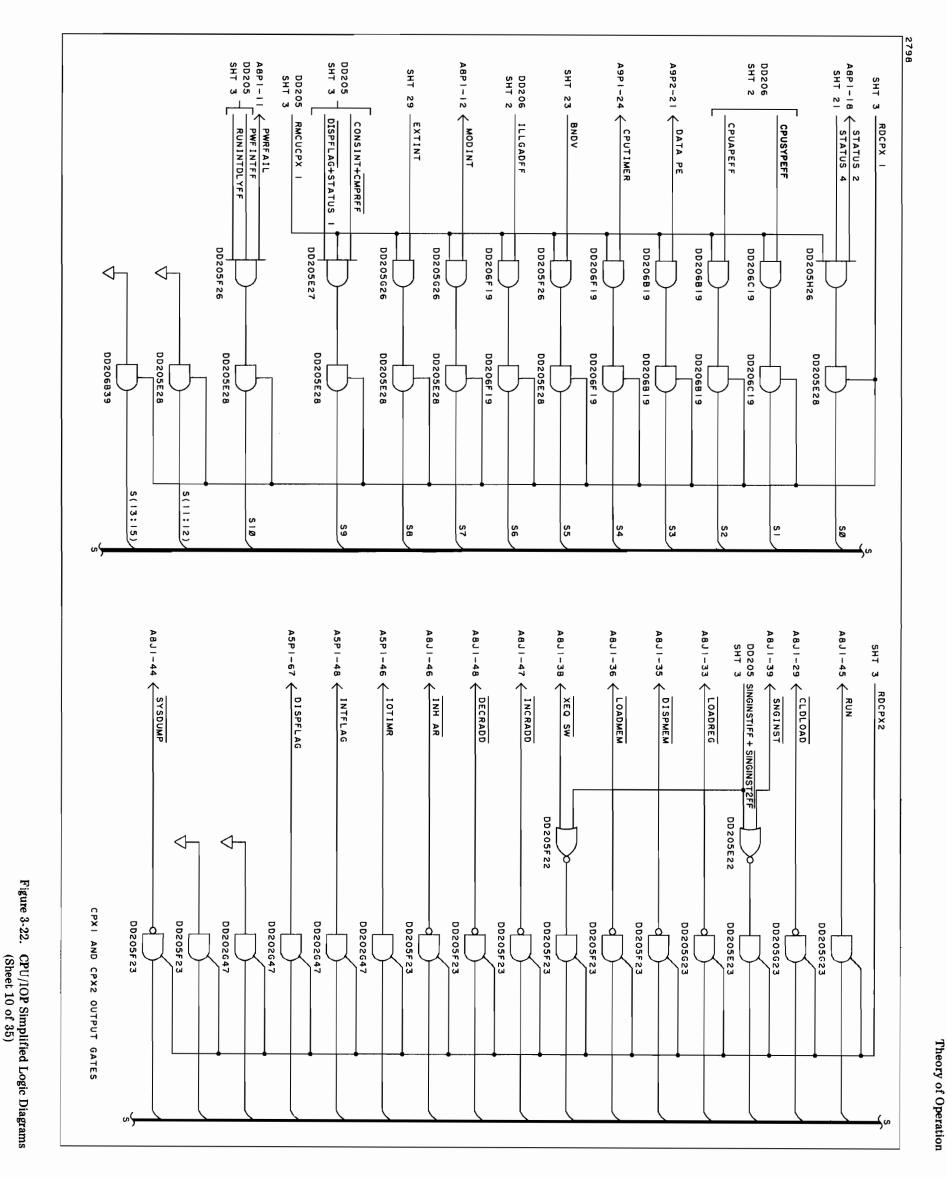
2797

Theory of Operation







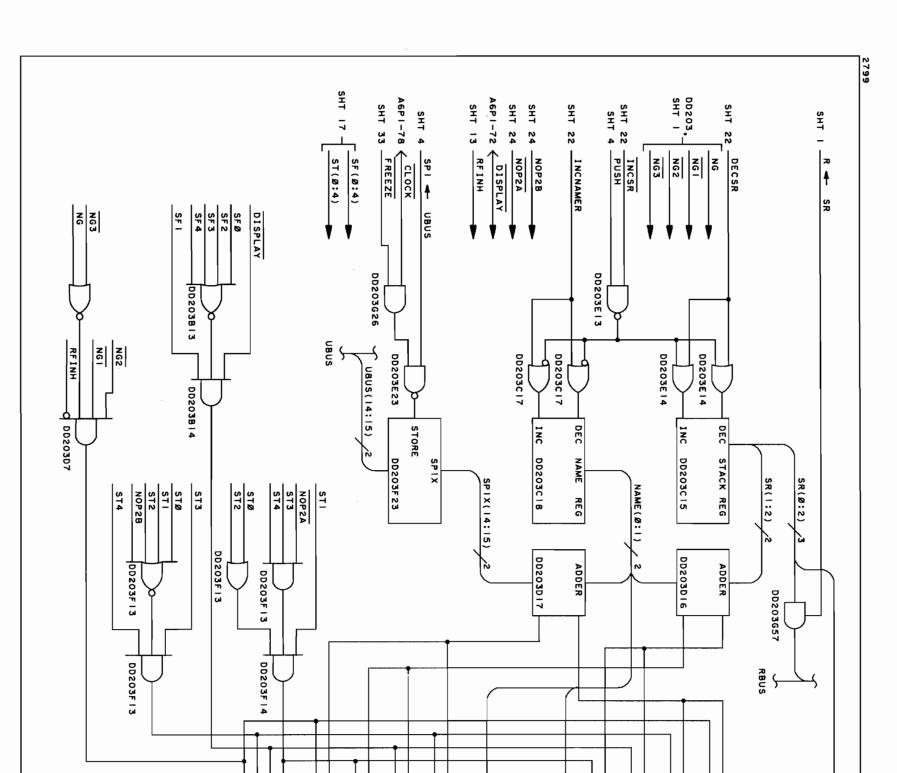
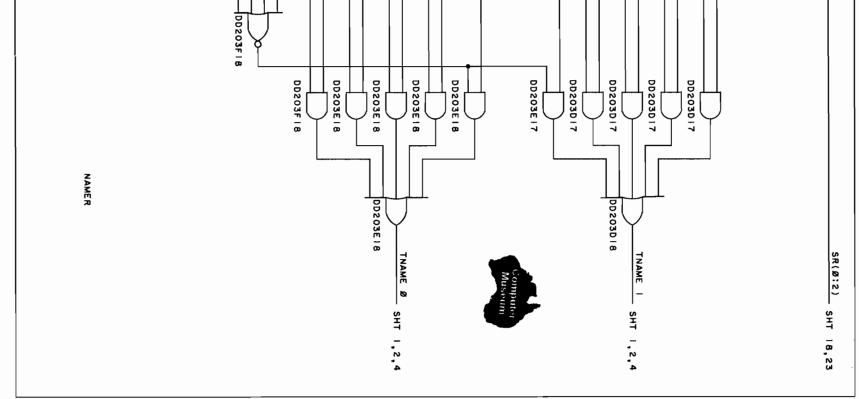
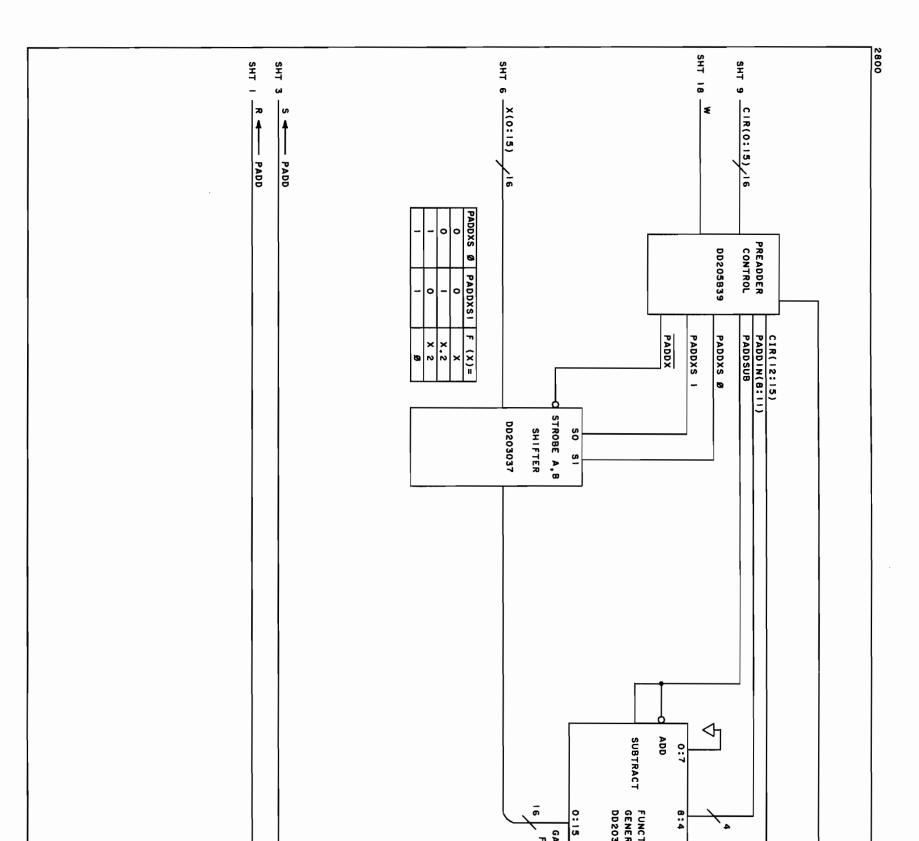




Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 9 of 35)



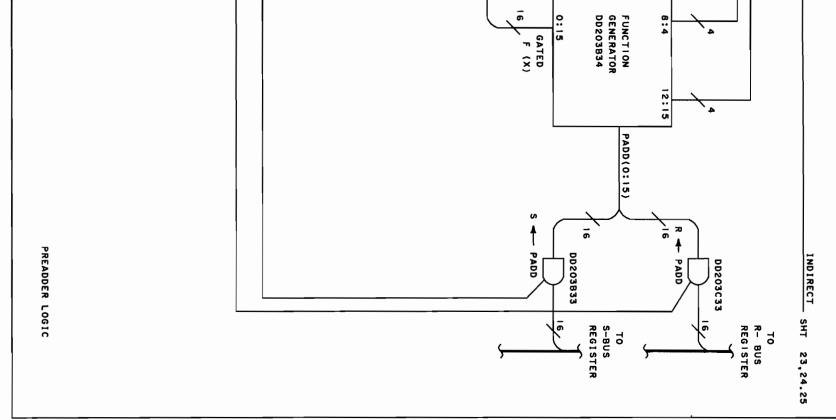


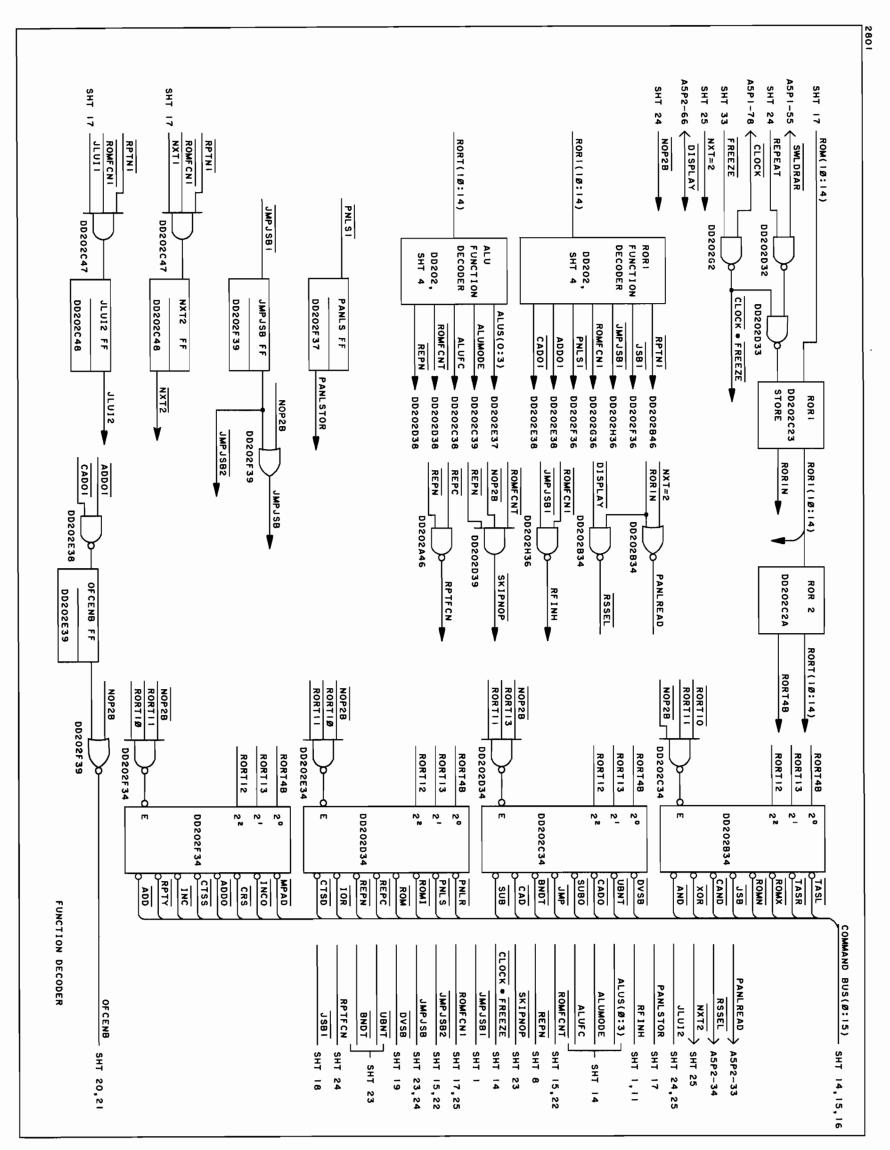

3-167/3-168




Theory of Operation

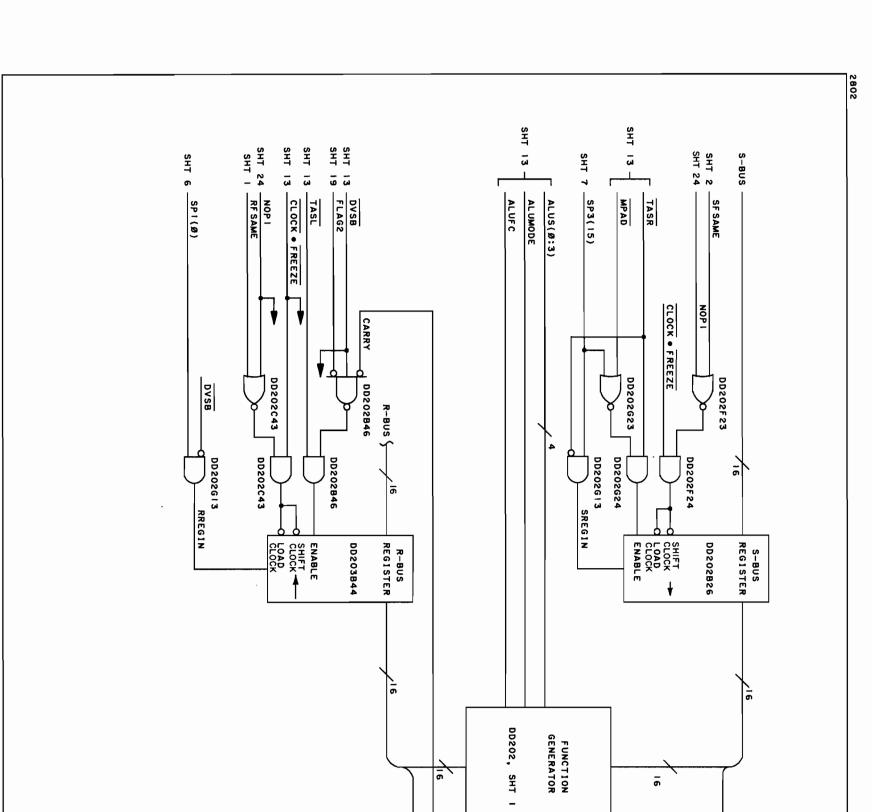
3-169/3-170


### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 11 of 35)





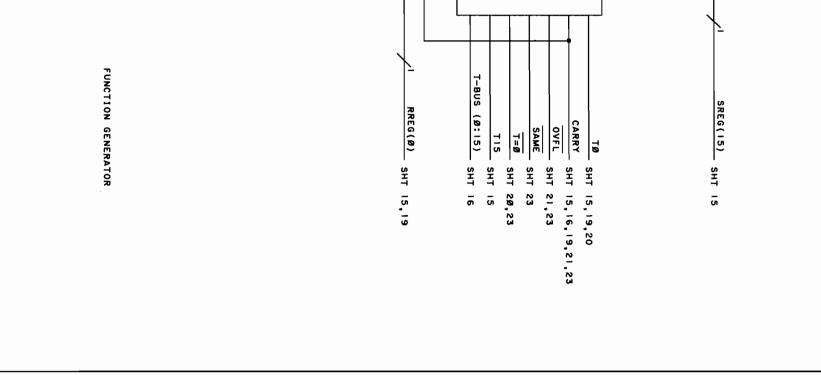

Theory of Operation

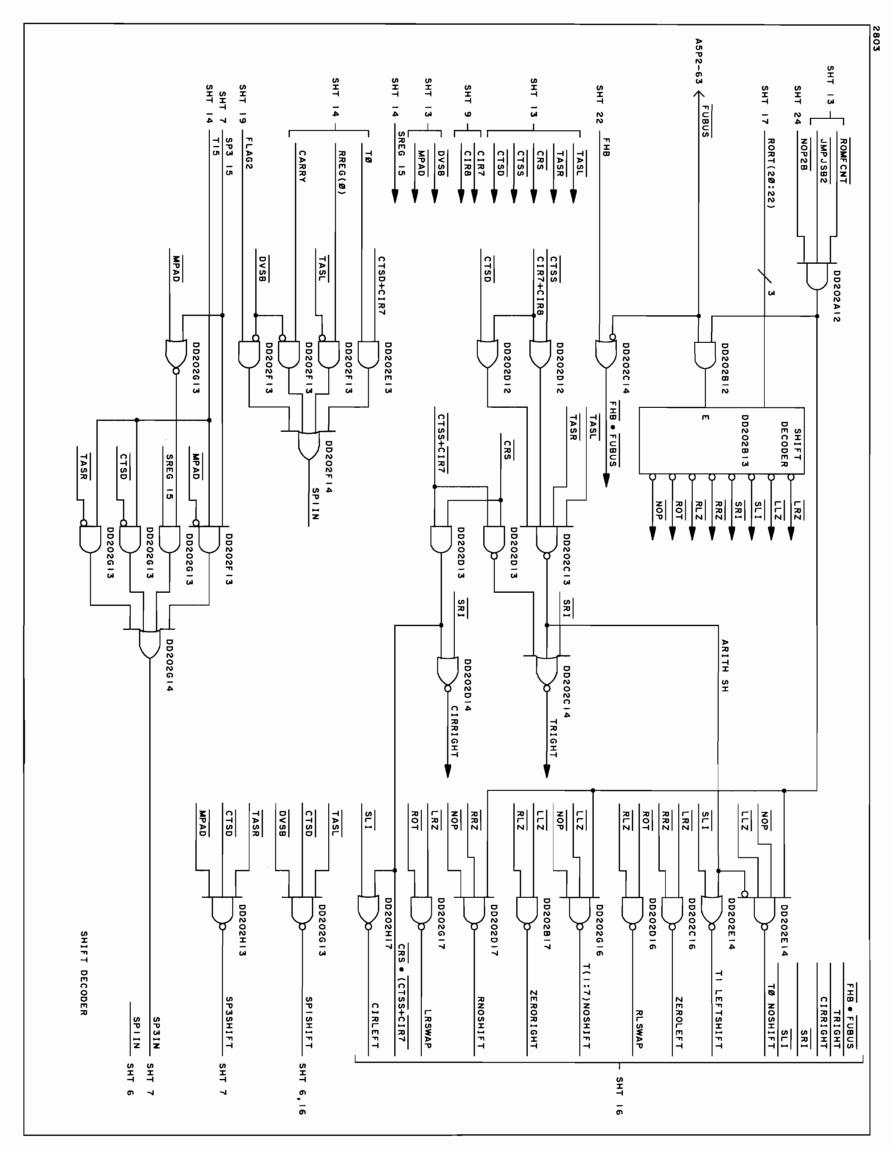

## Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 12 of 35)





#### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 13 of 35)


Theory of Operation



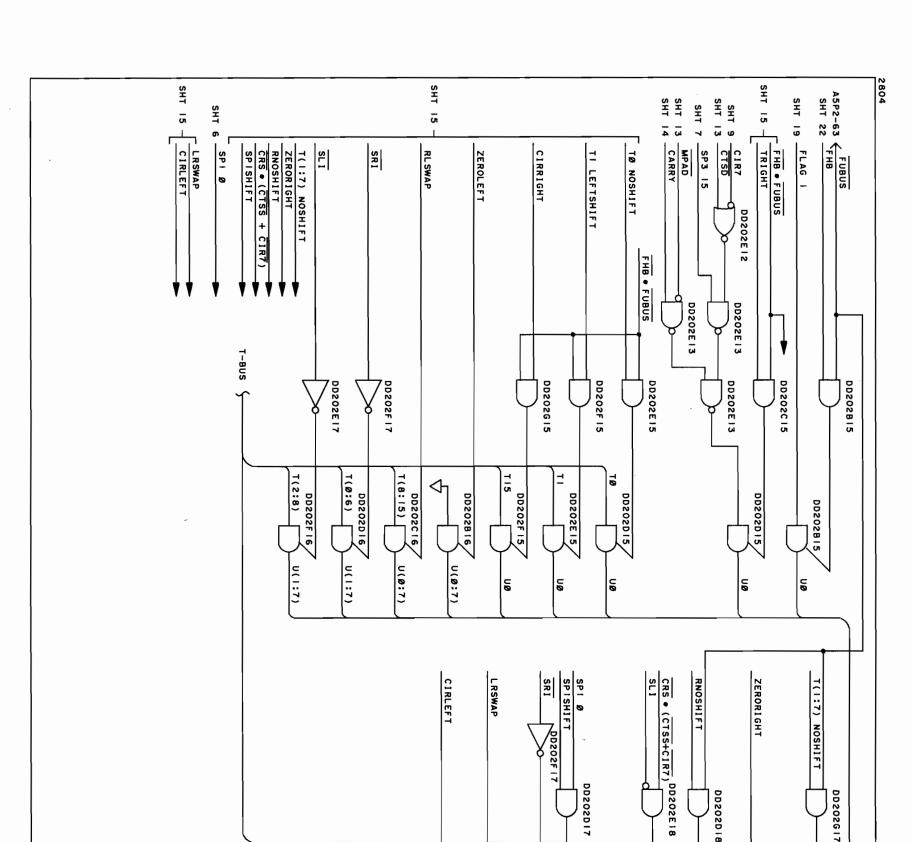

Theory of Operation

### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 14 of 35)

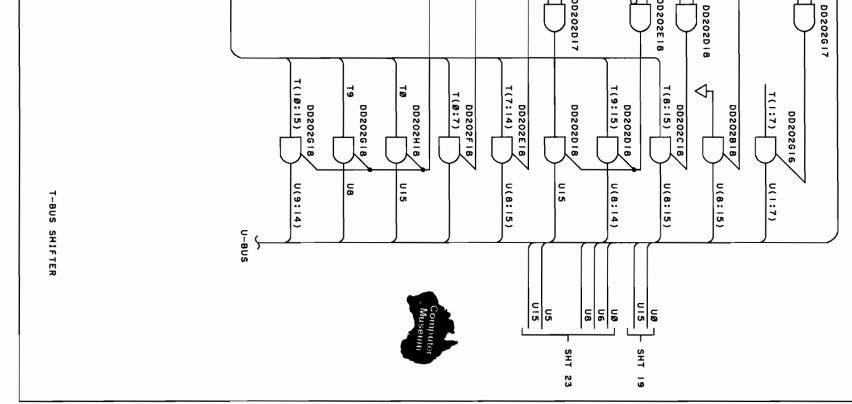
·

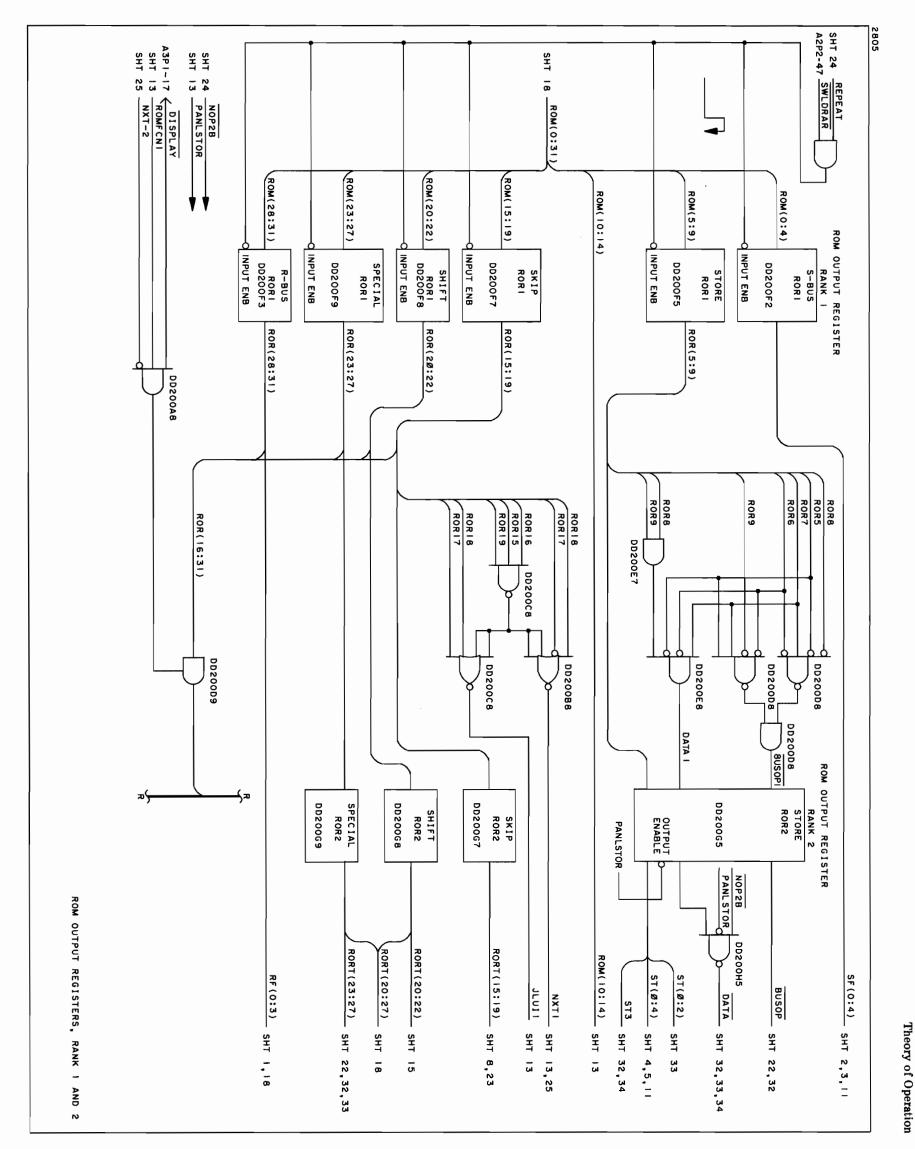




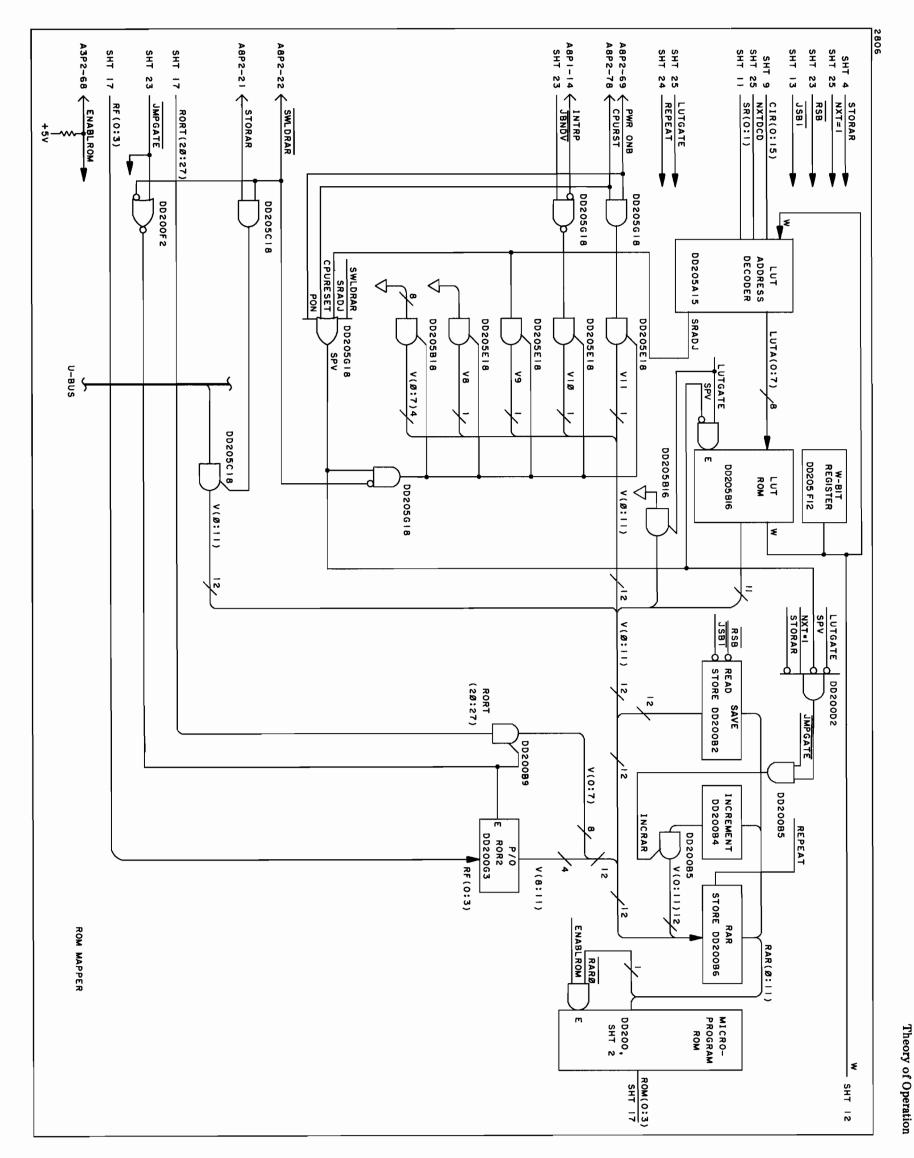

•

30001A

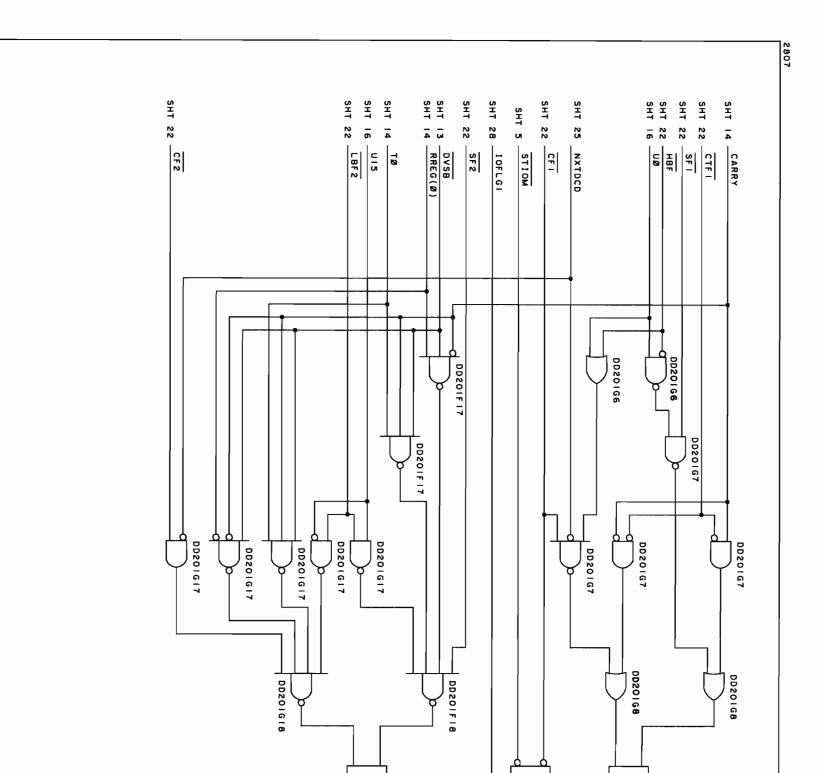




Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 15 of 35)

Theory of Operation



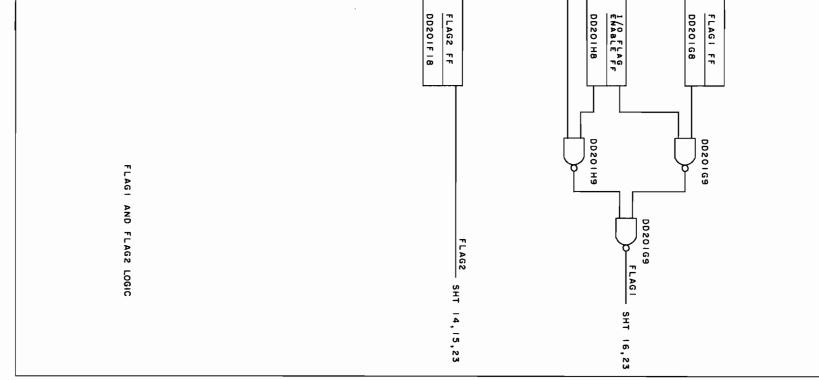

## Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 16 of 35)

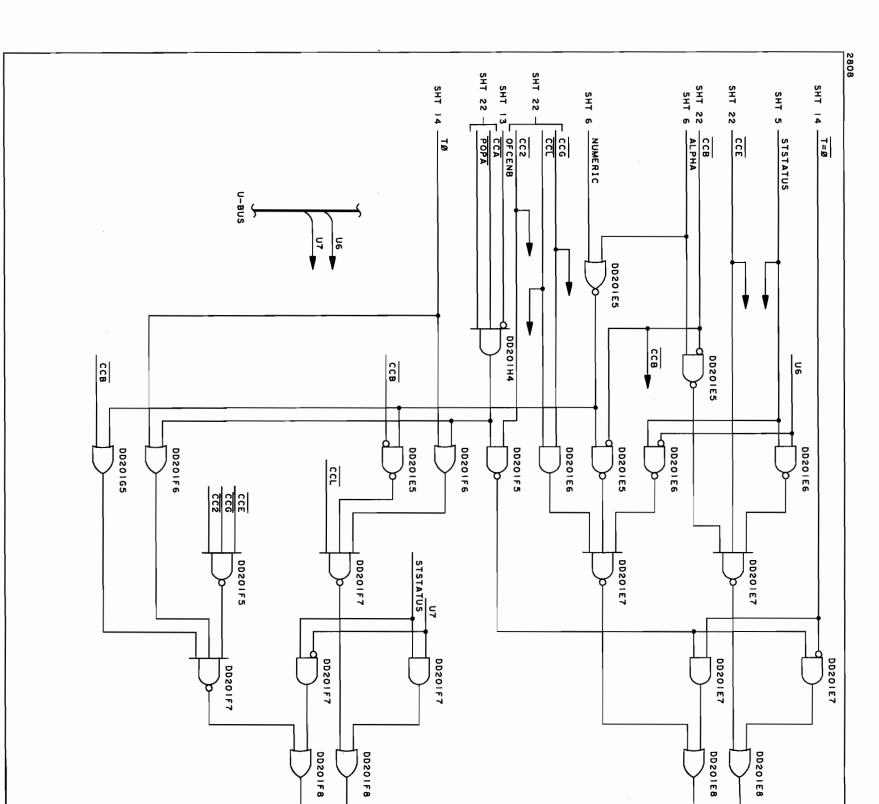





### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 17 of 35)

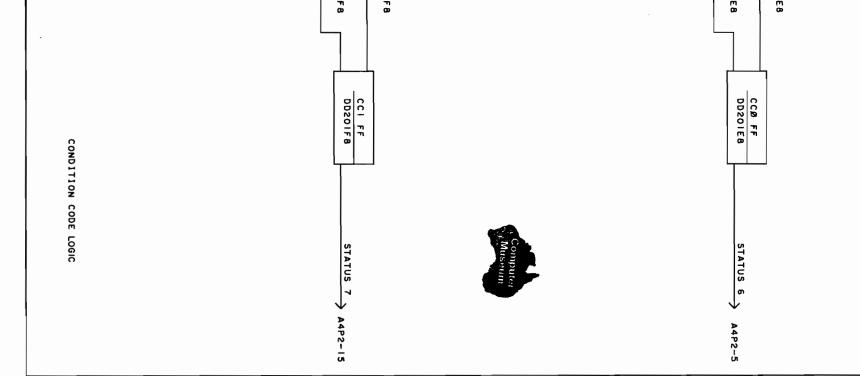


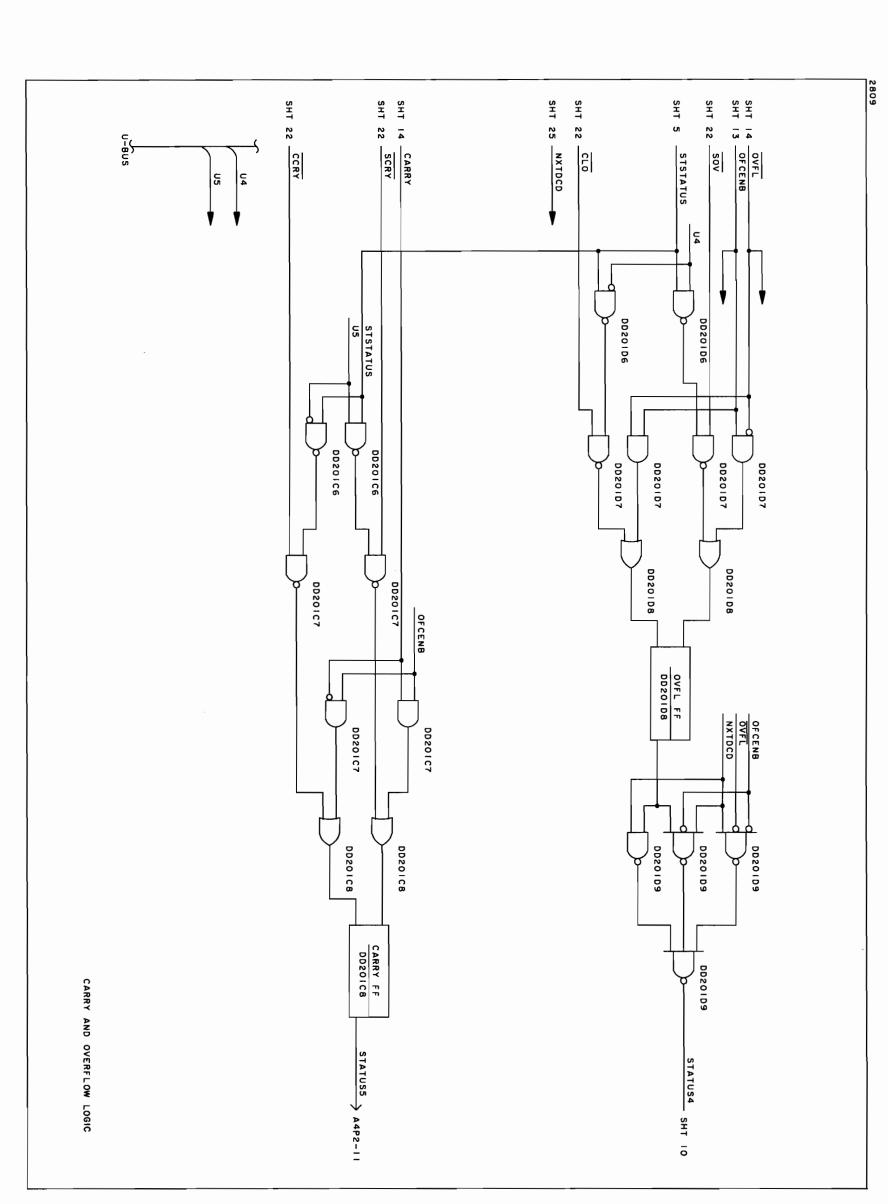

### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 18 of 35)




Theory of Operation

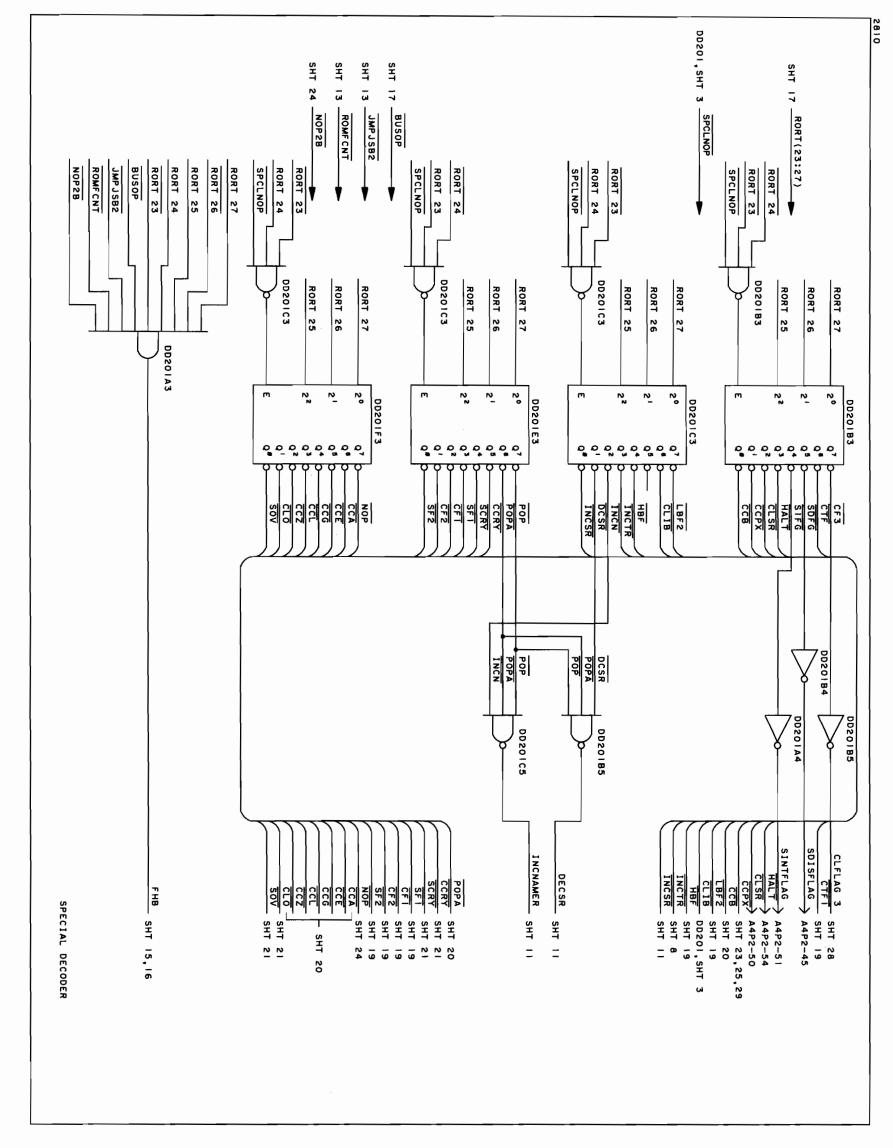
3-185/3-186


### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 19 of 35)





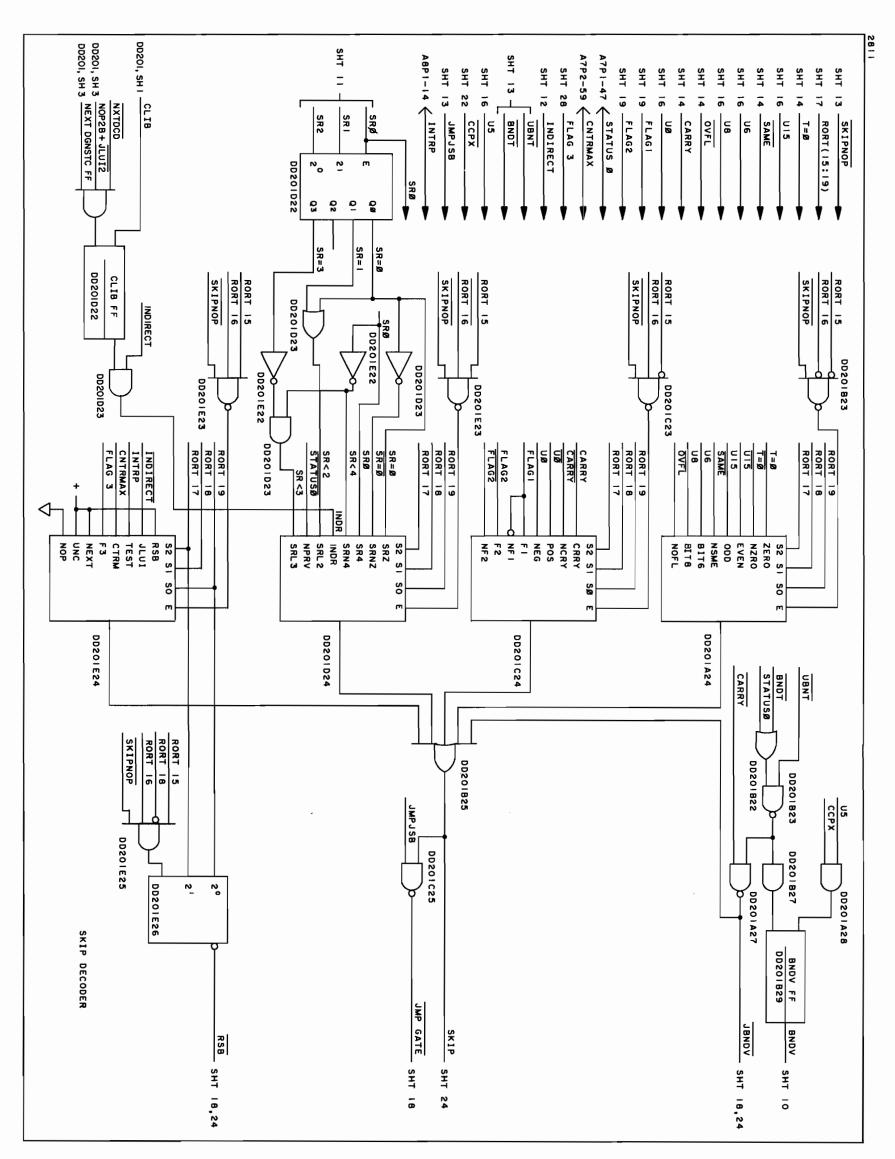

Theory of Operation


## Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 20 of 35)





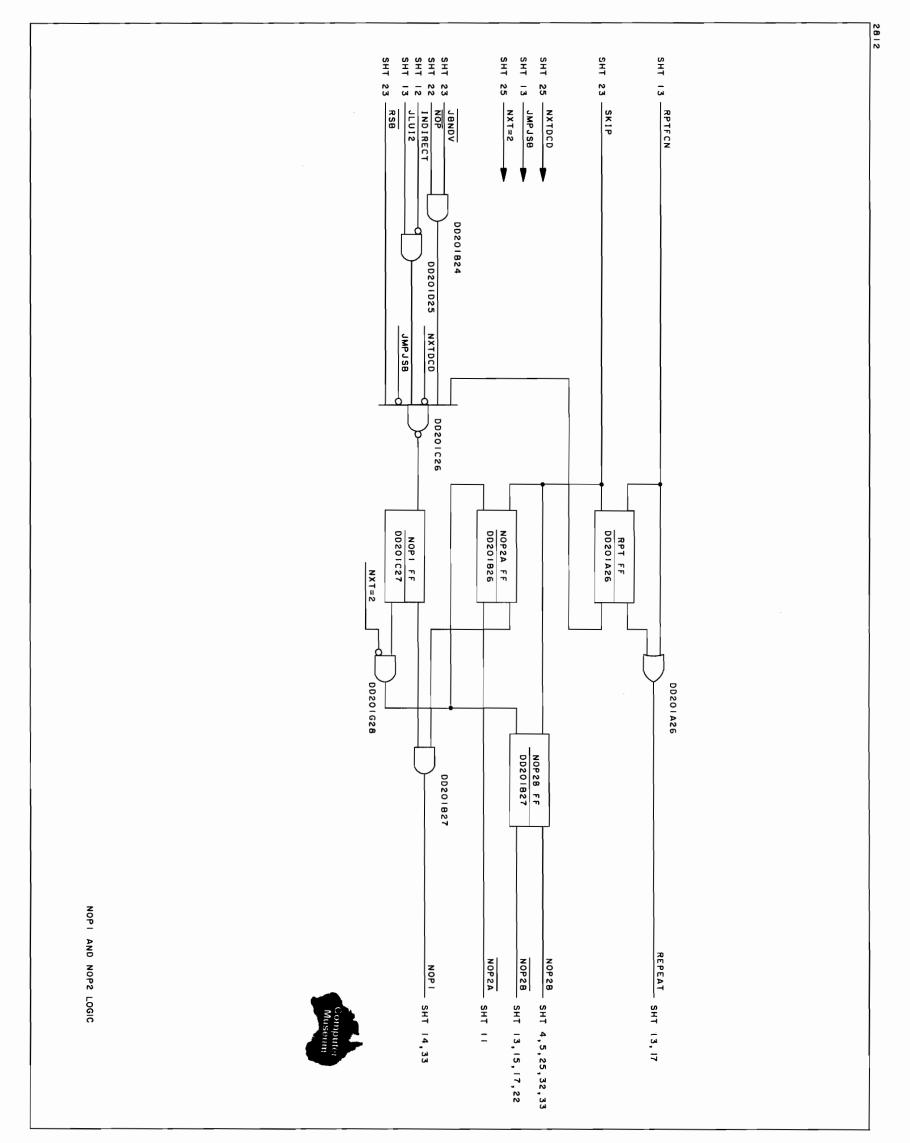
Theory of Operation


### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 21 of 35)



Theory of Operation

3-191/3-192


Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 22 of 35)



#### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 23 of 35)

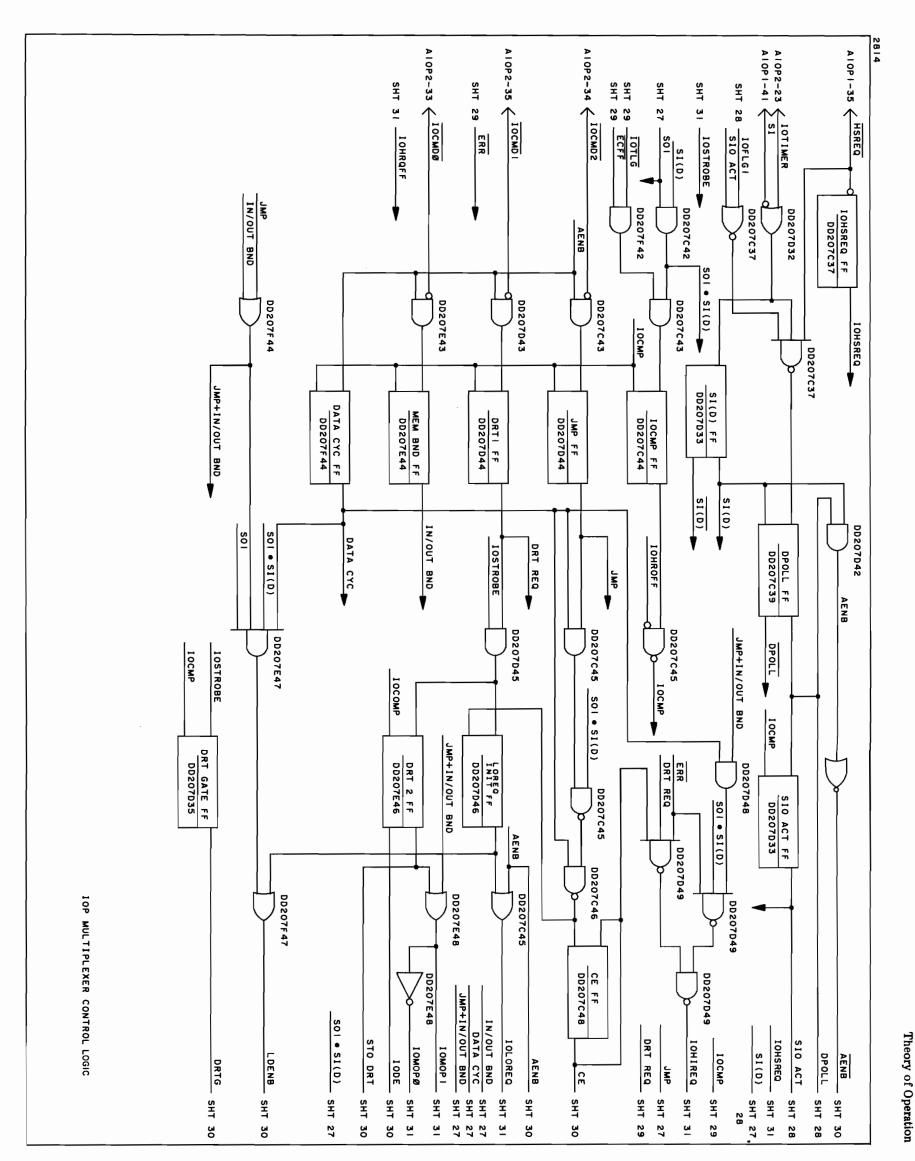
Theory of Operation





3-195/3-196

# Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 24 of 35)




.

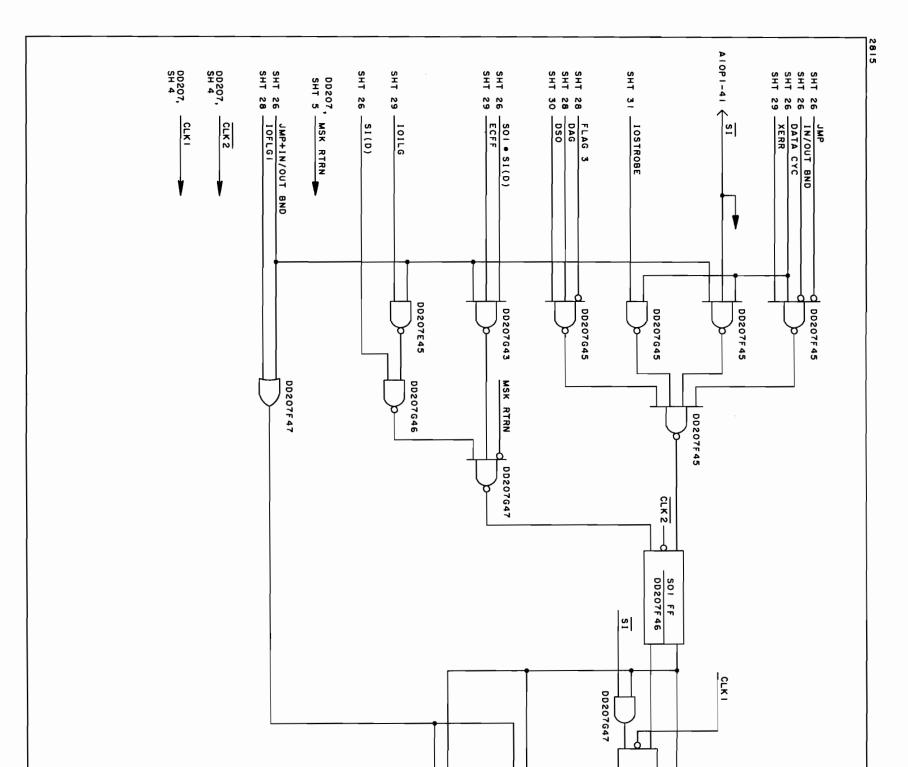
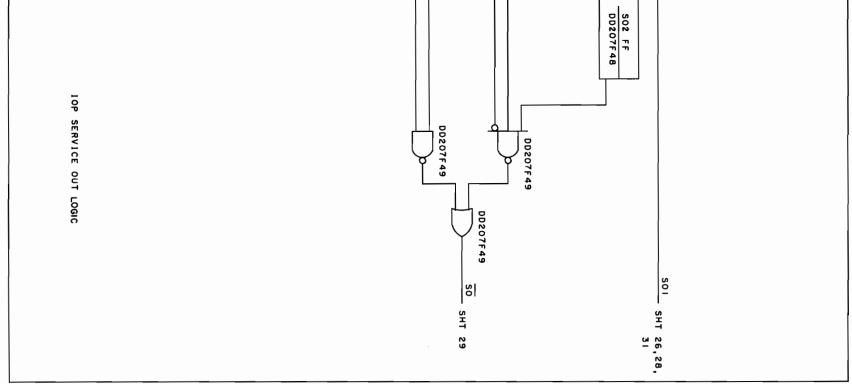

3-197/3-198

Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 25 of 35)

Theory of Operation




### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 26 of 35)

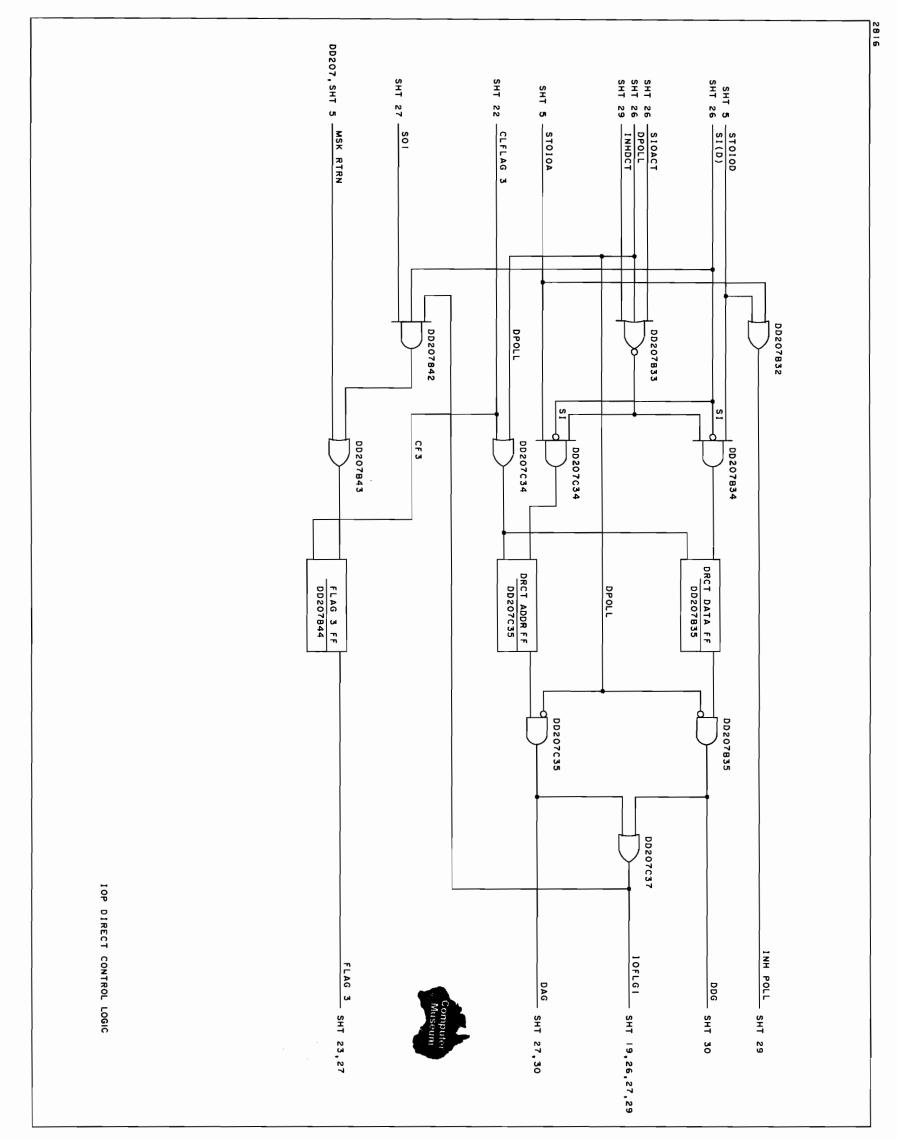
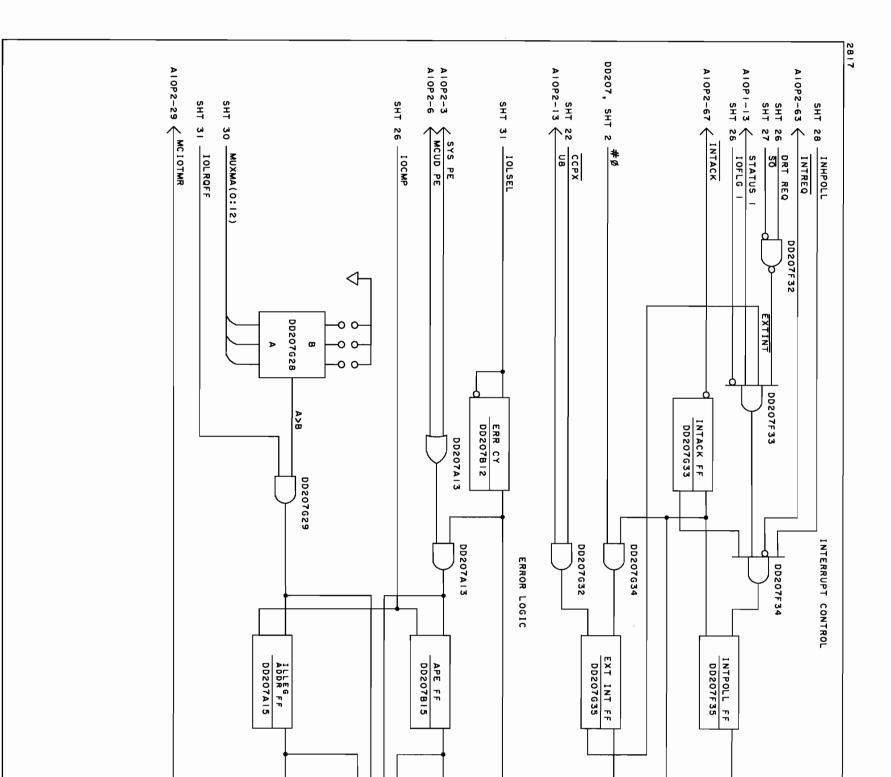
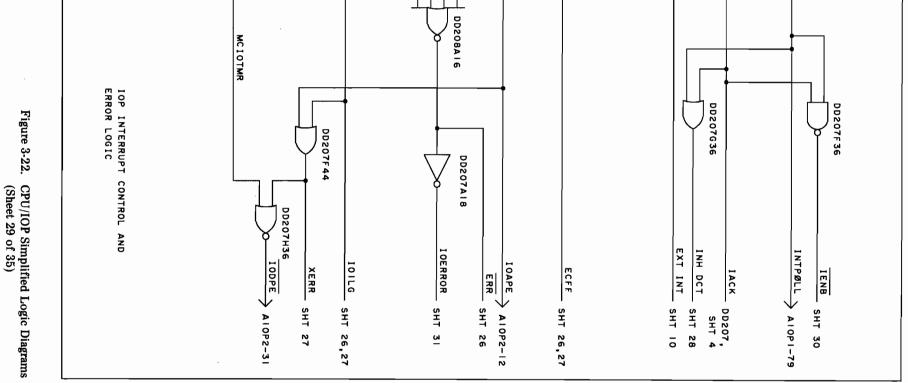


Theory of Operation

### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 27 of 35)





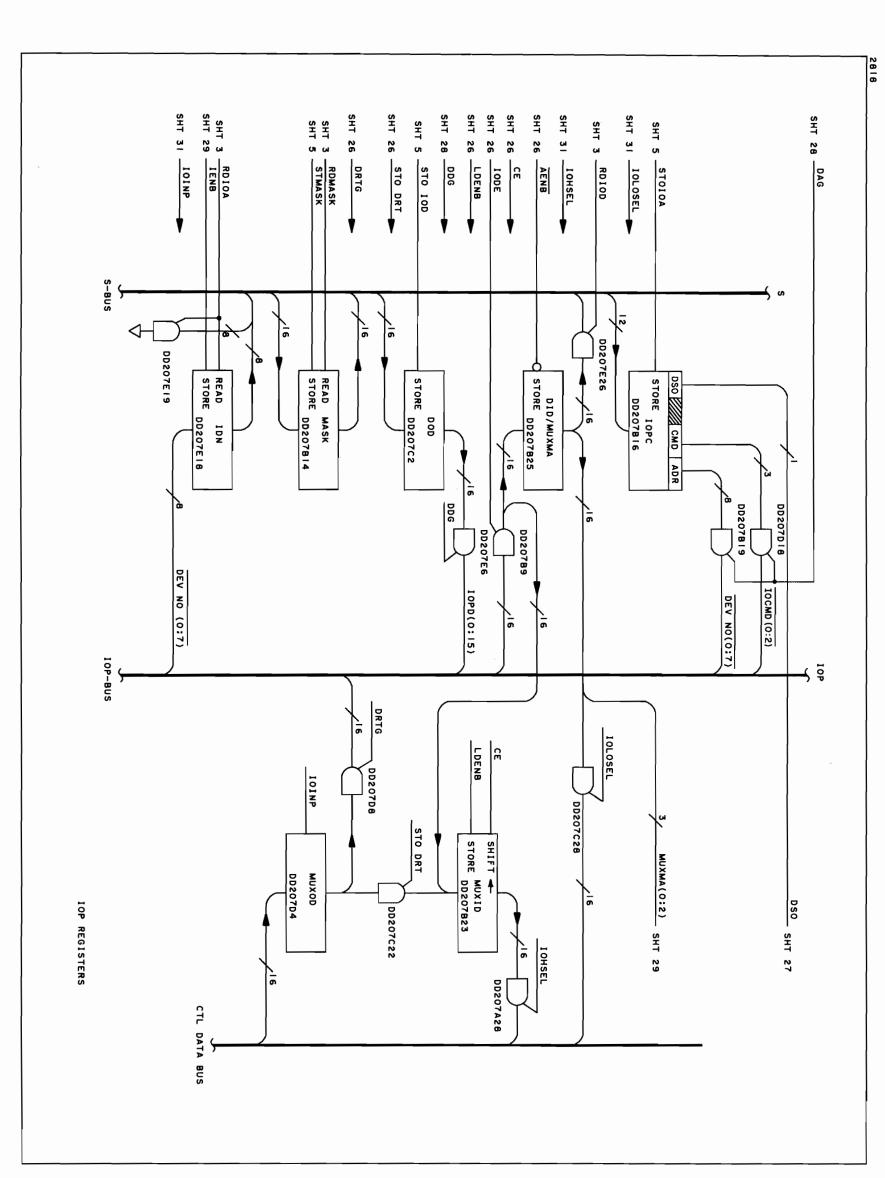
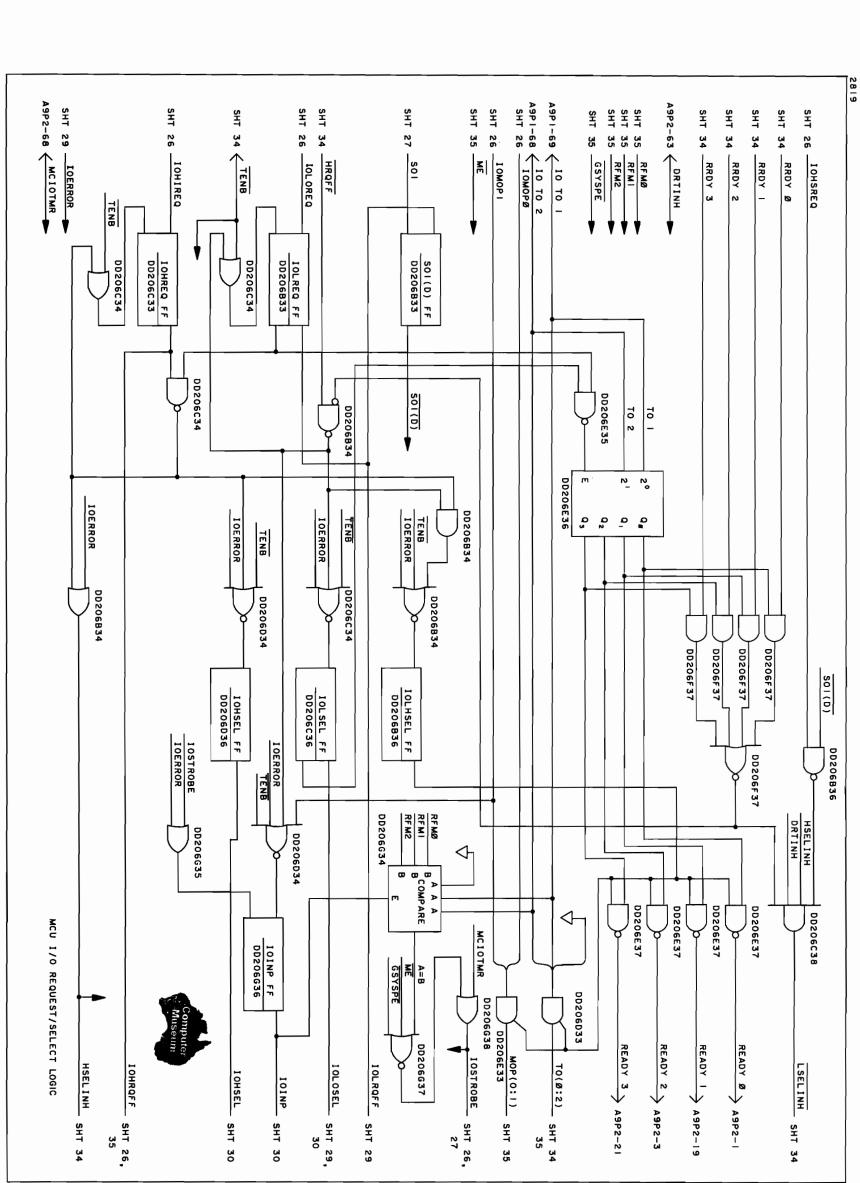




Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 28 of 35)





3-205/3-206

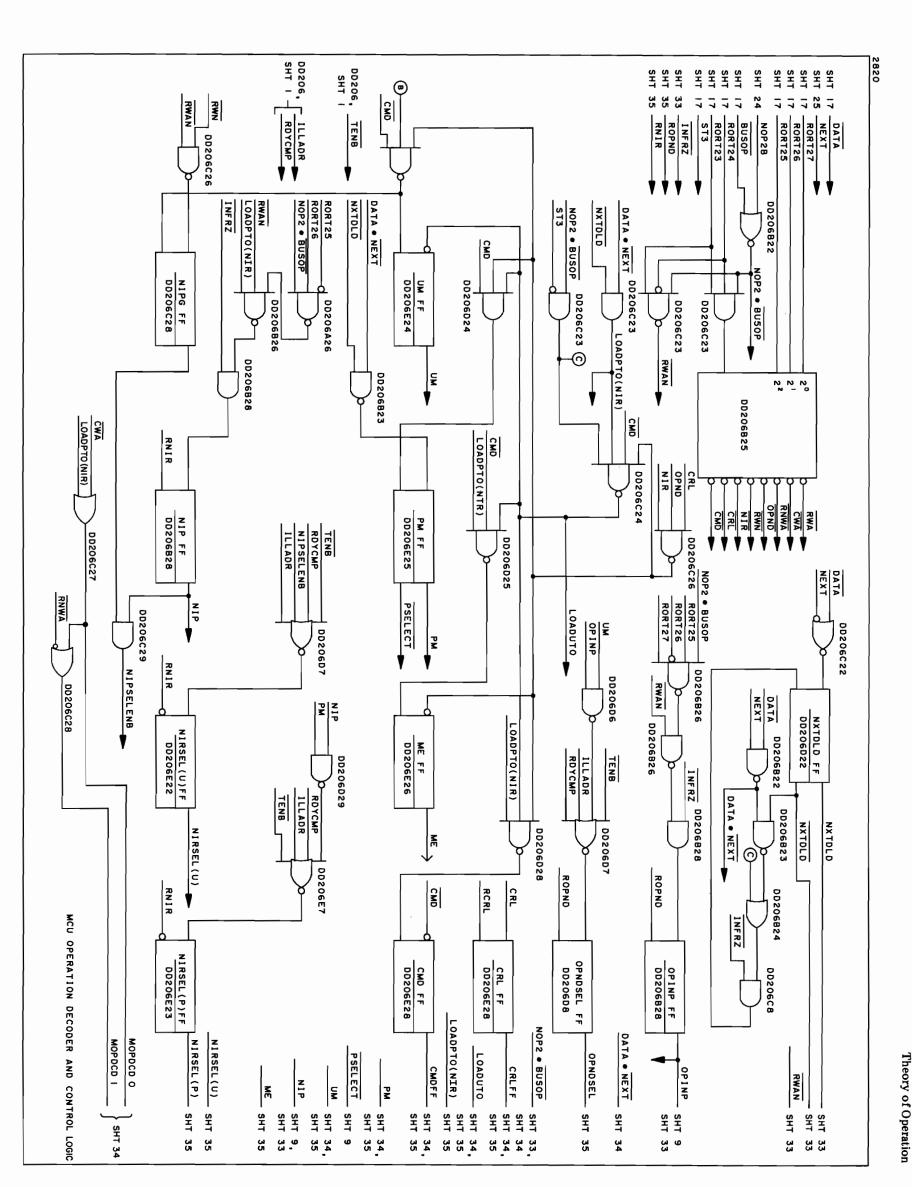



•

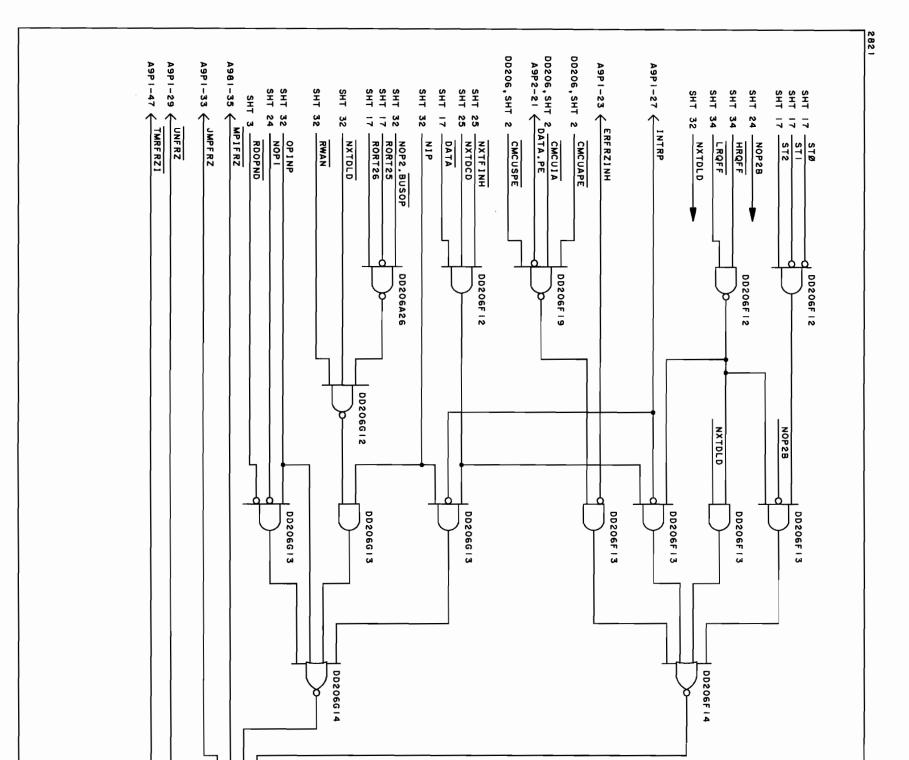
30001A



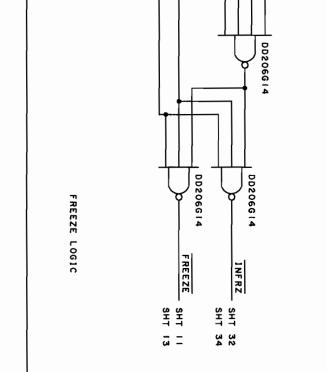
Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 30 of 35)




Theory of Operation


30001A

## Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 31 of 35)






## Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 32 of 35)



### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 33 of 35)



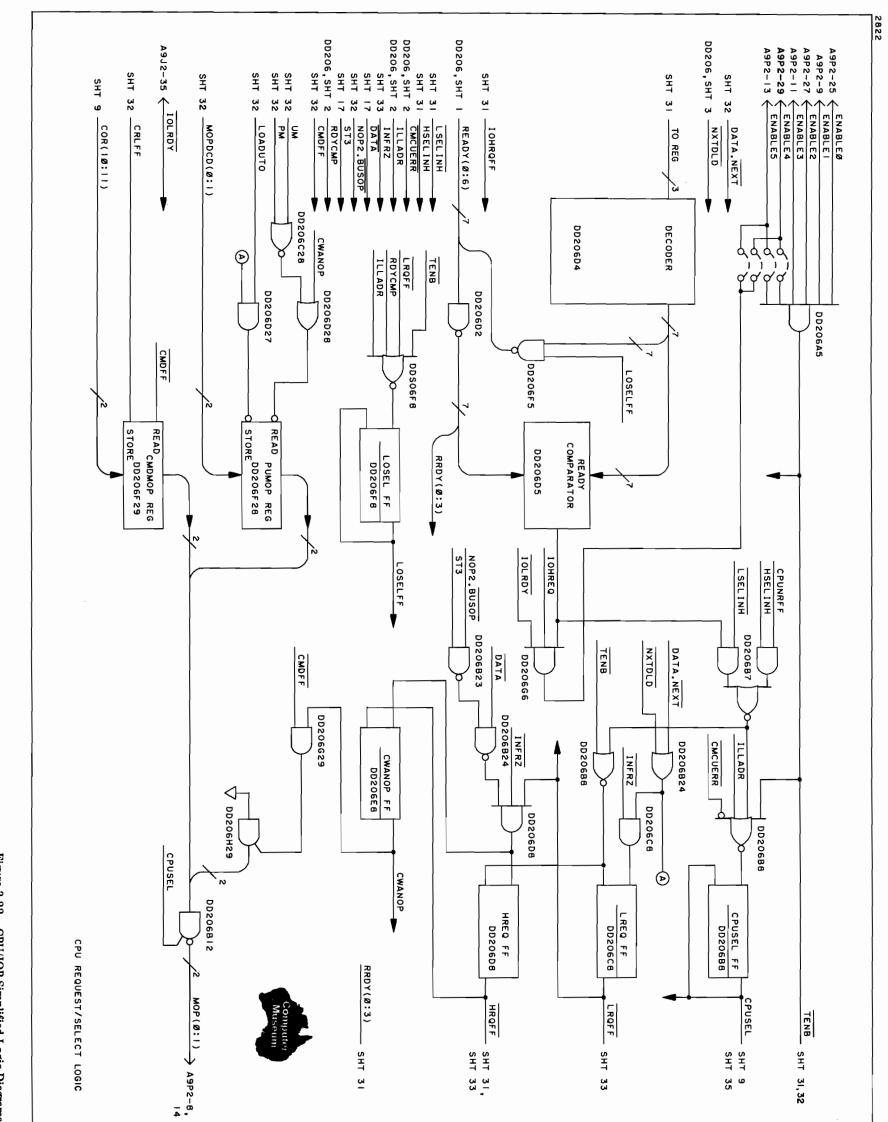
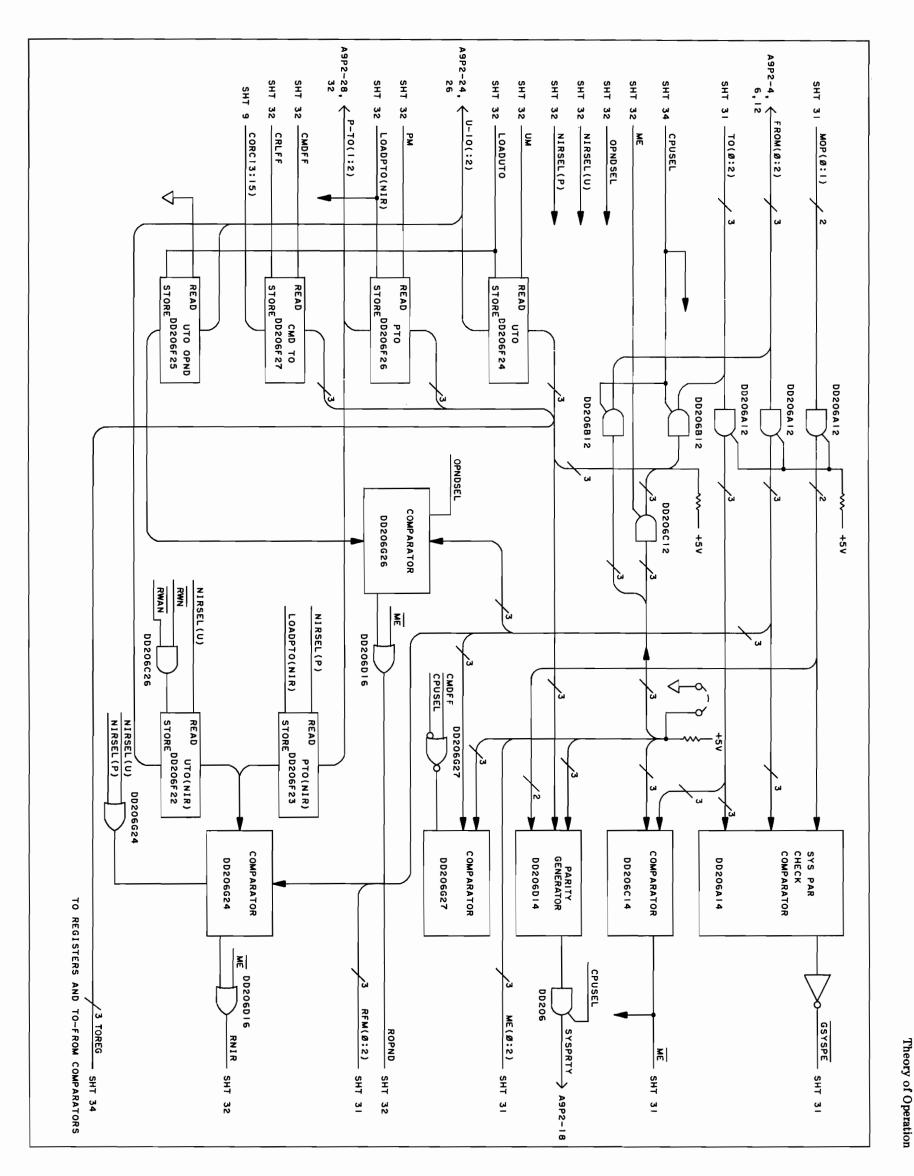






Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 34 of 35)



#### Figure 3-22. CPU/IOP Simplified Logic Diagrams (Sheet 35 of 35)

#### 4-1. INTRODUCTION.

4-2. This section contains general servicing information, preventive maintenance information, and troubleshooting information applicable to the CPU/IOP. Detailed diagrams for the CPU/IOP are set numbers DD200 through DD211, part nos. 30001-90005 through 30001-90019, and are contained in the HP 3000 Computer System Detailed Diagrams Manual, part no. 03000-90023. Parts information for servicing and replacement of components is contained in the HP 3000 Computer System Illustrated Parts Breakdown Manual, part no. 03000-90021. The CPU stand-alone diagnostic is described in the HP 3000 Manual of Stand-Alone Diagnostics, part no. 03000-90027. The microdiagnostics for the CPU/IOP are as follows:

- a. CPU/1 Microdiagnostic, part no. 32300-60001.
- b. CPU/2 Microdiagnostic, part no. 32300-60002.
- c. CTL/1 Microdiagnostic, part no. 32300-60003.
- d. CTL/2 Microdiagnostic, part no. 32300-60004.
- e. IOP/MUX Microdiagnostic, part no. 32300-60005.

4-3. In addition to the above data, the microprogram listing for the CPU should be referenced when trouble-shooting the CPU/IOP.

#### 4-4. GENERAL SERVICING INFORMATION.

4-5. The following paragraphs contain safety precautions to observe when servicing the CPU/IOP, wiring information, signal information, and a list of servicing equipment required for testing the CPU/IOP.

4-6. SAFETY PRECAUTIONS.

#### CAUTION

Failure to observe the following precautions could result in damage to components of the CPU/IOP PCA's or other components in the computer system.

4-7. When any CPU/IOP PCA is being installed, removed, or placed on an extender PCA for maintenance and troubleshooting procedures, the computer SYSTEM DC POWER switch must be set to the STANDBY position to remove power from the CPU/IOP connectors. Failure to observe this precaution could result in damage to the CPU/ IOP or computer system connectors.

#### 4-8. WIRING INFORMATION.

4-9. Wiring information for the CPU/IOP is contained in the HP 3000 Computer System Detailed Diagrams Manual, part no. 03000-90023.

4-10. CPU/IOP SIGNALS AND MNEMONICS.

4-11. A list of CPU/IOP signals and mnemonics is presented in table 4-1. In addition to the signal name and mnemonic, table 4-1 lists the location of the source of each signal (the detailed diagram number and the coordinates where the signal originates). For those signals which do not originate in the CPU/IOP, the source column of table 4-1 lists the diagram number and coordinates where the signal enters the CPU/IOP.

4-12. TEST EQUIPMENT AND DATA REQUIRED.

4-13. Test equipment and data (in addition to this manual) required to service and troubleshoot the CPU/IOP consists of the following items:

- a. HP 30350A Auxiliary Control Panel.
- b. HP 30352A Hardware Maintenance Panel.
- c. HP 30353A ROM Simulator (Electronic Tool ET-6710).
- d. Dummy Controller (Electronic Tool ET-6722).
- e. TTL Logic Tool.
- f. CPU Stand-Alone Diagnostic Magnetic Tape, HP 32320.
- g. CPU/1 Microdiagnostic Paper Tape, part no. 32300-60001.
- h. CPU/2 Microdiagnostic Paper Tape, part no. 32300-60002.
- i. CTL/1 Microdiagnostic Paper Tape, part no. 32300-60003.
- j. CTL/2 Microdiagnostic Paper Tape, part no. 32300-60004.
- k. IOP/MUX Microdiagnostic Paper Tape, part no. 32300-60005.
- HP 30001A CPU/IOP Microprogram Listing Manual, part no. 03000-90022.
- m. CPU Microdiagnostic Listings, part no. 32300-90001A, 32300-90002A, 32300-90003A, 32300-90004A, 32300-90005A.
- n. HP 3000 Manual of Stand-Alone Diagnostics, Stand-Alone HP 30001A CPU Diagnostic, part no. 03000-90027.
- o. HP 3000 Computer System Detailed Diagrams Manual, part no. 03000-90023.

### Table 4-1. CPU/IOP/MCU Signals

| MNEMONIC                   | SIGNAL NAME                                    | SOURCE                |
|----------------------------|------------------------------------------------|-----------------------|
| AENB                       | Address Enable                                 | <sup>•</sup> DD207B45 |
| ALPHA                      | Alphabetic Character                           | DD203D29              |
| ALUFC                      | ALU Force Carry                                | DD202D38              |
| ALUMODE                    | ALU Mode                                       | DD202C39              |
| ALUS (0:3)                 | ALU Input S0:S3                                | DD202D37              |
| APEFF                      | Address Parity Error FF                        | DD207B15              |
| BMCUPRTY                   | Buffered MCU Parity                            | DD206G17              |
| BNDT                       | Bounds Test                                    | DD202C34              |
| BNDV                       | Bounds Violation                               | DD201B29              |
| BUSOP                      | Bus Operation                                  | DD200G6               |
| CARRY                      | Carry                                          | DD202C6               |
| ССРХ                       | Clear CPX                                      | DD201B5               |
| CE                         | Count Enable                                   | DD207C48              |
| СНАСТ                      | Channel Active                                 | DD207D33              |
| CHECK CYCLE                | Check Cycle                                    | DD206G9               |
| CIR (0:15)                 | Current Instruction Register, Bits 0:15        | DD 205B 10            |
| CLFLAG3                    | Clear Flag 3 FF                                | DD201B5               |
| CLIB                       | Clear Indirect Bit                             | DD201C3               |
| CLK MODE 0                 | Clock Mode 0                                   | DD201A14              |
| CLK MODE 1                 | Clock Mode 1                                   | DD201A15              |
| CLOCK                      | Clock                                          | DD201C18              |
| CLOCK DIVIDER 0            | Clock Divider 0                                | DD201C16              |
| CLOCK DIVIDER 1            | Clock Divider 1                                | DD201C17              |
| CLOCKENB                   | Clock Enable                                   | A4P1-27 DD201C11      |
| CLOCKS                     | Clocks                                         | DD201C18              |
|                            |                                                | DD201B3               |
| CLSR                       | Clear SR Register                              | DD201B3<br>DD206H14   |
| CMCU ILLADD                | Clear MCU Illegal Address FF                   |                       |
| CMD                        | Command                                        | DD206C25              |
| CMPRFF                     | Compare FF                                     | DD205B27              |
|                            | Counter Maximum                                | DD204G23              |
| COR (0,1,2,10,11,13,14,15) | CPU Output Register, Bits 0,1,2,10,11,13,14,15 | DD204B5               |
| CPUHRFF                    | CPU High Request FF                            | DD206D9               |
| CPUIN                      | CPU In                                         | DD206E18              |
| CPULRFF                    | CPU Low Request FF                             | DD206C9               |
| CPU RESET DLY              | CPU Reset Delay                                | DD205G16              |
| CPURST                     | CPU Reset                                      | DD201E19              |
| CPUSEL                     | CPU Select                                     | DD206B8               |
| CPU TIMER                  | CPU Timer                                      | DD201D17              |
| CRL                        | Control                                        | DD206C25              |
| CWANOP                     | Clear-Write Address No Operation               | DD206E9               |
| DAG                        | Direct Address Gate                            | DD207C35              |
| DATA                       | Data                                           | DD200H6               |
| DATA CYC                   | Data Cycle                                     | DD207F44              |
| DATAPE                     | Data Parity Error                              | DD205B7               |
| DATAPOLL                   | Data Poll                                      | DD207E42              |

| MNEMONIC     | SIGNAL NAME                    | SOURCE                                               |
|--------------|--------------------------------|------------------------------------------------------|
| DDG          | Direct Data Gate               | DD207B35                                             |
| DECSR        | Decrement SR Register          | DD201C5                                              |
| DEVNO (0:7)  | Device Number (0:7)            | DD207B19, DD207F11                                   |
| DISPFLAG     | Dispatcher Flag                | DD202G46                                             |
| DISPIOP      | Display IOP                    | DD204G50                                             |
| DISPLAY      | Display                        | DD200A1, DD201F29,<br>DD202B32, DD203C2,<br>DD207G21 |
| DPOLL        | Data Poll                      | DD207C39                                             |
| DRTG         | Device Reference Table Gate    | DD207D35                                             |
| DRTINH       | Device Reference Table Inhibit | DD207D46                                             |
| DRT1         | Device Reference Table 1       | DD207D44                                             |
| DS           | DB or S-Relative Addressing    | DD205G13                                             |
| ENABLE (0:5) | Enable (0:5)                   | DD206A2                                              |
| ENABLROM     | Enable ROM                     | DD200C12                                             |
| ENTIMER      | Enable Timer                   | DD201E11, DD206G31                                   |
| ERFRZINH     | Error Freeze Inhibit           | DD206F11                                             |
| ERR CYC      | Error Cycle                    | DD207B12                                             |
| EXTCLK       | External Clock                 | DD201B12                                             |
| EXTINT       | External Interrupt             | DD207G35                                             |
| FHB          | Flag to High Bit               | DD201A4                                              |
| FLAG1        | Flag 1                         | DD201G9                                              |
| FLAG2        | Flag 2                         | DD201F18                                             |
| FLAG3        | Flag 3                         | DD207B44                                             |
| FPNLOS       | Front Panel One-Shot           | DD205B24                                             |
| FREEZE       | Freeze                         | DD206H15                                             |
| FROM (0:2)   | From Lines 0, 1, 2             | DD206A11                                             |
| FRUNCLK      | Free Running Clock             | DD201D18                                             |
| FUBUS        | Force U-bus                    | DD202B11                                             |
| HALT         | Halt                           | DD201B3                                              |
| HSREQ        | High Service Request           | DD207E41                                             |
| IENB         | Interrupt Enable               | DD207F36                                             |
| INCNAMER     | Increment Namer                | DD201C5                                              |
| INCP         | Increment P-Register           | DD201F29                                             |
| INCSR        | Increment SR Register          | DD201C3                                              |
| INCTR        | Increment Counter              | DD201C3                                              |
| INDIRECT     | Indirect                       | DD205F15                                             |
| INHROMJ1     | Inhibit ROM                    | DD200F11                                             |
| INSTSEL      | Instruction Select             | DD207G24                                             |
| INTACK       | Interrupt Acknowledge          | DD207G32                                             |
| INTFLAG      | Interrupt Flag                 | DD202G46                                             |
| INTPOLL      | Interrupt Poll                 | DD207F37                                             |
| INTREQ       | Interrupt Request              | DD207G32                                             |
| INTRP        | Interrupt                      | DD205G28                                             |
| IOAPE        | I/O Address Parity Error       | DD203028                                             |

| MNEMONIC     | SIGNAL NAME                         | SOURCE             |
|--------------|-------------------------------------|--------------------|
| IOCMD (0:2)  | I/O Command (0:2)                   | DD207E41, DD207D18 |
| IOCMP        | I/O Compare                         | DD207C45           |
| IOD (0:15)   | I/O Data (0:15)                     | DD207C6            |
| IODPE        | I/O Data Parity Error               | DD207F37           |
| IODPRTY      | I/O Data Parity                     | DD207B6            |
| IOERROR      | I/O Error                           | DD207A18           |
| IOFLG1       | I/O Flag 1                          | DD207C36           |
| IOFRZ        | I/O Freeze                          | DD206F2, DD207E31  |
| IOHIREQ      | I/O High Request                    | DD207D49           |
| IOHROFF      | I/O High Request FF                 | DD206C33           |
| IOHSEL       | I/O High Select                     | DD206D36           |
| IORSREQ      | I/O High Service Request            | DD207B37           |
| IOILG        | I/O Illegal Address Error           | DD207A15           |
| IOINP        | I/O In Process                      | DD206G36           |
| IOLHSEL      | I/O Low High Select                 | DD206B36           |
| IOLOREQ      | I/O Low Request                     | DD207C45           |
| IOLOSEL      | I/O Low Select                      | DD207C36           |
| IOLRQFF      | I/O Low Request FF                  | DD206B33           |
| IOLRDY       | I/O Low Ready                       | DD206C38           |
| IOMOP (0:2)  | I/O Memory Operation Code (0:2)     | DD207E48           |
| IORESET      | I/O Reset                           | DD201E19           |
| IORSTSW      | I/O Reset Switch                    | DD201E11           |
| IOSTROBE     | I/O Strobe                          | DD206G38           |
| IOTIMER      | I/O Timer                           | DD206G39           |
| IOTO ( (1:2) | I/O To Line Bits 1 and 2            | DD207G16           |
| JBNDV        | Jump Bounds Violation               | DD201A27           |
| JLUI1        | Jump Look-Up Table Indirect, Rank 1 | DD200C9            |
| JLUI2        | Jump Look-Up Table Indirect, Rank 2 | DD202C48           |
| JMP          | Jump                                | DD 202D 35         |
| JMPFRZ       | Jump Freeze                         | DD201E29           |
| JMPGATE      | Jump Gate                           | DD201C25           |
| JMPJSB       | Jump or Jump to Subroutine          | DD202F39           |
| JMPJSB1      | Jump or Jump to Subroutine, Rank 1  | DD202G36           |
| JUMPER (0:2) | Jumpers (0:2)                       | DD204H3            |
| JSB          | Jump to Subroutine                  | DD202C35           |
| JSB1         | Jump to Subroutine, Rank 1          | DD202F36           |
| LDENB        | Load Enable                         | DD207E47           |
| LOREQINIT    | Low Request Initializer             | DD207D46           |
| LOSEL        | Low Select                          | DD206F8            |
| LREQ         | Low Request                         | DD206C8            |
| LUTGATE      | Look-Up Table Gate                  | DD201D27           |
| MCIOTMR      | MC I/O Timer                        | DD206G38           |
| MCUADDRPE    | MCU Address Parity Error            | DD206B19           |
| MCUCLKS      | MCU Clocks                          | DD201C19           |
| MCUCLK 1:5   | MCU Clock 1:5                       | DD201B19           |

| MNEMONIC     | SIGNAL NAME                          | SOURCE                        |
|--------------|--------------------------------------|-------------------------------|
| MCUCMP       | MCU Compare                          | DD205B36                      |
| МСИСМРН      | MCU Compare Halt                     | DD205C21                      |
| MCUCMPL      | MCU Compare Light                    | DD205D21                      |
| MCUDZ (0:15) | MCU Data Bits 0:15                   | DD20486, DD205D2,<br>DD207B30 |
| MCUDPE       | MCU Data Parity Error                | DD206A11, DD207B11            |
| MCUDPRTY     | MCU Data Parity                      | DD206H17                      |
| MCUERR       | MCU Error                            | DD206A19                      |
| MCUHINT      | MCU Halt Interrupt                   | DD205G21                      |
| MCUINT       | MCU Interrupt                        | DD 206E 19                    |
| MCURST       | MCU Reset                            | DD206G3                       |
| MCUSYSPE     | MCU System Parity Error              | DD206B16                      |
| MDPARITY     | Memory Data Parity                   | DD204H4                       |
| ME           | Me                                   | DD206E27                      |
| MEMBND       | Memory Bound                         | DD207E42                      |
| MODINT       | Module Interrupt                     | DD206D19                      |
| MOP (0:1)    | Memory Operation Code Bits 0, 1      | DD206A11                      |
| MPIFRZ       | Maintenance Panel Interface Freeze   | DD206G11                      |
| MSKRTRN      | Mask Return                          | DD207C19                      |
| NAMER (0:1)  | Namer Bits 0:1                       | DD203C18                      |
| NEXT         | Next                                 | DD201G22                      |
| NIP          | Next In Process Computer             |                               |
| NIPG         | Next In Process Gate                 | DD206C29                      |
| NIPSELENB    | Next In Process Select Enable        | DD206C29                      |
| NIRSEL (P)   | Next Instruciton Register Select (P) | DD206E23                      |
| NIRSEL (U)   | Next Instruction Register Select (U) | DD206E22                      |
| NIRTOCIR     | NIR to CIR                           | DD201C26                      |
| NIRTOCIRDLY  | NIR to CIR                           | DD201C26                      |
| NOP          | No Operation                         | DD205H18                      |
| NOP1         | No Operation, Rank 1                 | DD201C27                      |
| NOP2         | No Operation, Rank 2                 | DD201B27                      |
| NUMERIC      | Numeric Character                    | DD 203D 29                    |
| NXT1         | Next, Rank 1                         | DD200B9                       |
| NXT2         | Next, Rank 2                         | DD202C48                      |
| NXT=1        | Next Counter=1                       | DD201G27                      |
| NXT=2        | Next Counter=2                       | DD201G28                      |
| NXTDCD       | Next Decoded                         | DD201G22                      |
| NXTDLD       | Next Delayed                         | DD206D23                      |
| NXTFINH      | Next Fetch Inhibit                   | DD201F28                      |
| NXTGATE      | • Next Gate                          | DD201F28                      |
| OFCENB       | Overflow Carry Eanble                | DD201F29<br>DD202E39          |
|              | Operand In Process                   |                               |
| OPINP        | Operand Select                       | DD206B29                      |
| OPNDSEL      | Operand Select<br>Out Bound          | DD206D8                       |
| OUTBND       |                                      | DD207F38                      |
| OVFL         | Overflow                             | DD202D8                       |

| MNEMONIC           | SIGNAL NAME                                              | SOURCE                  |
|--------------------|----------------------------------------------------------|-------------------------|
| PADDIN (8:11)      | Pre-Adder Input, Bits 8:11                               | DD205C40                |
| PADDSUB            | Pre-adder Add/Subtract Control                           | DD205E40                |
| PADDX              | Pre-adder X Shift Control                                | DD205F39                |
| PADDXS (0:1)       | Pre-adder X Shift Control, Bits 0:1                      | DD205G39                |
| PANLREAD           | Panel Read                                               | DD202B34                |
| PANLSTOR           | Panel Store                                              | DD202F38                |
| PAUSE              | Pause                                                    | DD205H8                 |
| PFWARN             | Power Fail Warning                                       | DD207H31                |
| PFWARNB            | Power Fail Warning, Buffered                             | DD207H38                |
| PM                 | P-to-Memory                                              | DD206E25                |
| POLLORSO           | Poll or Service Out                                      | DD207G47                |
| PRTYMODE           | Parity Mode                                              | DD202G38                |
| PSELECT            | P Select                                                 | DD206E25                |
| PTO 1              | PCOR Register to Line, Bit 1                             | DD204G13                |
| PTO2               | PCOR Register to Line, Bit 2                             | DD204E13                |
| PWRFAIL            | Power Fail                                               | DD204E13                |
| PWRFAILRST         | Power Fail Reset                                         | DD201D14                |
| PWRON              | Power On                                                 | DD201E12                |
| QS                 | Q or S Relative Addressing                               | DD205G13                |
| QUP                | Queue Up                                                 | DD203G13                |
| RAR 0:11           | ROM Address Register Bits 0:11                           | DD204228<br>DD200A10    |
| RARDIS             | ROM Address Register Display                             | DD200A10                |
| RDIOA              | Read I/O Address                                         | DD 200B 1<br>DD 207E 12 |
| RDIOD.             | Read I/O Data                                            | DD207E12                |
| RDCIR              | Read Current Instruction Register                        | DD207E12<br>DD203A15    |
| RDCPX1             | Read CPX1 Register                                       | DD203A13<br>DD204F44    |
| RDCPX2             | Read CPX2 Register                                       |                         |
| RDIOM              | -                                                        | DD204G43                |
| RDJMPR             | Read I/O Memory Data                                     | DD204E42                |
| RDMSK              | Read Jumpers                                             | DD 203B 15              |
|                    | Read Mask Register                                       | DD207E12                |
| RDMOD              | Read Module Number<br>(Interrupt Module Number Register) | DD204F43                |
| RDOPND             | Read Operand Register                                    | DD204G43                |
| RDSWITCH           | Read Switch Register                                     | DD204G43                |
| READY ( (0:6)      | Ready Lines 0:6                                          | DD206D2                 |
| REPEAT             | Repeat                                                   | DD201A26                |
| REPC               | Repeat Until Condition                                   | DD202D34                |
| REPN               | Repeat N Times                                           | DD202D38                |
| RF (0:3)           | R-bus Field Bits 0:3                                     | DD200H4                 |
| RFINH              | R-bus Field Inhibit                                      | DD202G36                |
| RFSAME             | R-bus Field Same-Preserve R-bus Register                 | DD203D6                 |
| RMCUCPX1           | Read MCU CPX1                                            | DD205D27                |
| ROM(0:31)          | ROM Bits 0:31                                            | DD200A14                |
| ROMFCNT<br>ROMFCN1 | ROM Function<br>ROM Function, Rank 1                     | DD202D38                |
| RORT               | ROM Punction, Rank 1<br>ROM Output Register, Rank 2      | DD202H36                |
| Non                |                                                          | DD202B40                |

| MNEMONIC  | SIGNAL NAME                              | SOURCE   |
|-----------|------------------------------------------|----------|
| RPTFCN    | Repeat Function                          | DD202B46 |
| RREG0     | R-bus Register, Bit 0                    | DD202B46 |
| RSB       | Return From Subroutine                   | DD201E26 |
| RSSEL     | R-bus or S-bus Field Select              | DD202B34 |
| RUN       | Run                                      |          |
| RUNFF     | Run FF                                   | DD205C29 |
| R(0:15)   | R-bus Bits 0:15                          | DD200D10 |
| SAME      | Same                                     | DD202F9  |
| SCIR      | Serialized Current Instruction Register  | DD205D9  |
| SDISFLAG  | Set Dispatcher Flag                      | DD201B4  |
| SFSAME    | S-bus Field Same-Preserve S-bus Register | DD204C43 |
| SFQO      | S-bus Field High Decode=0                | DD204E42 |
| SF 0:4    | S-bus Bits 0:4                           | DD200H2  |
| SI        | Service In                               | DD207E42 |
| SI (D)    | Service In Delayed                       | DD207C33 |
| SINGINST1 | Single Instruction Bit 1                 | DD205E24 |
| SINGINST2 | Single Instruction Bit 2                 | DD205E26 |
| SINTFLAG  | Set Interrupt Flag                       | DD201A4  |
| SIOACT    | SIO Active                               | DD207D33 |
| SIOP      | Serialized IOP Signals                   | DD207B4  |
| SKIP      | Skip                                     | DD201B25 |
| SKIPNOP   | Skip Field No Operation                  | DD202D39 |
| SMCUDATA  | Serialized MCU Data                      | DD205E7  |
| SO        | Service Out                              | DD207F49 |
| SO1       | Service Out 1                            | DD207F46 |
| SO1 (D)   | Service Out FF1 Delayed                  | DD206B33 |
| SO2       | Service Out FF2                          | DD207F48 |
| SP1X14    | Scratch Pad 1X Register, Bit 14          | DD203F23 |
| SP1X15    | Scratch Pad 1X Register, Bit 15          | DD203F22 |
| SPV       | Special V-bus                            | DD205G18 |
| SP1IN     | Scratch Pad 1 Register Shift Input       | DD202F14 |
| SP1SHIFT  | Scratch Pad 1 Register Shift Control     | DD202G13 |
| SP3IN     | Scratch Pad 3 Register Shift Input       | DD202F14 |
| SP3SHIFT  | Scratch Pad 3 Register Shift Control     | DD202H13 |
| SP3(15)   | Scratch Pad 3 Register Bit 15            | DD204G9  |
| SRBUS     | Serialized R-bus                         | DD203D55 |
| SRREG     | Serialized R-bus Register                | DD202E47 |
| SR(0:2)   | Stack Register, Bits 0:2                 | DD203D15 |
| SSBUS     | Serialized S-bus                         | DD203D53 |
| SSREG     | Serialized S-bus Register                | DD202E28 |
| STATUS 0  | Status Bit 0                             | DD201F26 |
| STATUS 1  | Status Bit 1                             | DD201F26 |
| STATUS 2  | Status Bit 2                             | DD201F26 |
| STATUS 3  | Status Bit 3                             | DD201G25 |
| STATUS 4  | Status Bit 4                             | DD201D9  |

| MNEMONIC      | SIGNAL NAME                      | SOURCE               |
|---------------|----------------------------------|----------------------|
| STATUS 5      | Status Bit 5                     | DD201C8              |
| STATUS 6      | Status Bit 6                     | DD201E8              |
| STATUS 7      | Status Bit 7                     | DD201F8              |
| STATUS (8:15) | Status Bits 8:15                 | DD204D38             |
| STIOA         | Store I/O Address                | DD207D12             |
| STIOD         | Store I/O Data                   | DD207D12             |
| STIOM         | Store I/O Memory Data            | DD204B28             |
| STKBNOP       | Stack Op B, No Operation         | DD205G9              |
| STMSK         | Store Mask                       | DD207D12             |
| STOFROM       | Store From                       | DD206D39             |
| STORAR        | Store ROM Address Register       | DD203H13             |
| STSTATUS      | Store Status                     | DD204F30             |
| ST(0:4)       | Store Bits 0:4                   | DD200H5              |
| SWLDRAR       | Switch Load ROM Address Register | DD200F1              |
| SYSDUMP       | System Dump                      | DD205C21             |
| SYSHALT       | System Halt                      | DD205C21             |
| SYSPE         | System Parity Error              | DD207A11, DD206E11   |
| SYSPRTY       | System Parity                    | DD 206H 17           |
| S(0:15)       | S-bus, Bits 0:15                 | DD204A50             |
| TEST1         | Test Point 1, Clock Circuits     | DD201B12             |
| TEST2         | Test Point 2, Clock Circuits     | DD201B12             |
| TINT          | Test Interrupt                   | DD201F21             |
| TMRFRZI       | Timer Freeze Inhibit             | DD201E19             |
| TNAME(0:1)    | Tname, Bits 0:1                  | DD203D18             |
| TO(0:2)       | To Lines, 0:2                    | DD206A11             |
| T=0           | T-bus=0                          | DD202F8              |
| T(0)          | T-bus, Bit O                     | DD202C7              |
| T(15)         | T-bus, Bit 15                    | DD202C7              |
| UBNT          | Unconditional Bounds Test        | DD202D34             |
| UM            | U to Memory                      | DD206E24             |
| UNFRZ         | Unfreeze                         | DD206H11             |
| U-T01         | UCOR to Line, Bit 1              | DD204C13             |
| U-TO2         | UCOR to Line, Bit 2              | DD204813             |
| U(0:15)       | U-bus, Bits (0:15)               | DD202A20             |
| V(0:7)        | V-bus, Bits (0:7)                | DD200C10             |
| W             | W-Bit                            | DD200C10             |
| XERR          | Transfer Error                   | DD205F12<br>DD207F44 |
| AEAA          |                                  | 00207F44             |

- p. HP 3000 Computer System Diagnostic Monitor, part no. 03000-90016.
- q. HP 3000 Computer System Illustrated Parts Breakdown Manual, part no. 03000-90021.

#### 4-14. PREVENTIVE MAINTENANCE.

4-15. Preventive maintenance for the CPU/IOP should be performed each time the preventive maintenance procedures are performed for the HP 3000 Computer System. Preventive maintenance consists of inspecting the CPU/IOP PCA's and the interconnecting cable assemblies for burned or broken components, loose connections, and deteriorated insulating materials.

#### 4-16. TROUBLESHOOTING.

4-17. Once a malfunction is detected, troubleshooting the CPU/IOP can be accomplished most efficiently by performing the following steps in the order given:

- a. Run the on-line diagnostics from the system disc.
- b. Load and run the stand-alone diagnostics. The standalone diagnostics require that the system be capable of cold loading.
- c. If the system cannot be cold loaded, the microdiagnostics should be run.
- d. The CPU microdiagnostics are written in microcode, allowing each field and function to be exercised. The microdiagnostic references the signal indicators on the hardware maintenance panel and auxiliary control panel. When a specific signal indicator does not light, refer to table 4-3, LUT-to-Microprogram ROM Index; figure 4-1, Instruction-to-Microprogram Index; and the servicing diagrams, figures 4-2 through 4-74 to isolate the cause of the malfunction. The servicing diagrams show the source of each signal or register capable of being displayed on the hardware maintenance panel or the auxiliary control panel.

#### 4-18. ON-LINE DIAGNOSTICS.

4-19. The on-line diagnostics are resident on the system disc and can be called by entering the following command from the terminal: :RUN SDM

4-20. A detailed description of the on-line diagnostics is contained in the HP 3000 Computer System Diagnostic Monitor, part no. 03000-90016.

4-21. STAND-ALONE DIAGNOSTIC.

4-22. The CPU stand-alone diagnostic is described in the HP 3000 Manual of Stand-Alone Diagnostics, part no. 03000-90027. The CPU stand-alone diagnostic is divided

into five sections. The five sections are on magnetic tape in cold load format. To cold load the magnetic tape, proceed as follows:

- a. Press the RUN-HALT switch (on the auxiliary control panel) if the computer is running.
- b. Install the reel of tape on the tape unit to be used.
- c. Set the tape at load point by means of the LOAD POINT pushbutton on the tape unit.
- d. If there is more than one tape unit in the system, press the UNIT SELECT 0 pushbutton on the tape unit to be used. Ensure that no other tape unit has this pushbutton lighted.
- e. Press the ON LINE pushbutton on the tape unit.
- f. Set into bit positions 0 thru 7 of the B-register switches (on the auxiliary control panel) the cold load control byte for magnetic tape. This number is 006 octal (logic 1 in bit positions five and six).
- g. Set into bit positions 8 thru 15 of the B-register switches (on the auxiliary control panel) the device number associated with the magnetic tape unit. (Normally, one controller is used for each four tape units. The tape units are numbered zero through three: unit zero is used for cold loading.)
- h. Press, in turn, the I/O RESET and CPU RESET switch on the auxiliary control panel. This resets the I/O system and selects tape unit zero.
- i. Press the COLD LOAD switch on the auxiliary control panel.
- j. Press the RUN-HALT switch on the auxiliary control panel.

#### 4-23. MICRODIAGNOSTICS.

4-24. The microdiagnostics for the CPU/IOP consist of five parts: CPU microdiagnostic parts one and two, central data bus microdiagnostic parts one and two, and IOP/ multiplexer microdiagnostic. All five microdiagnostics use Electronic Tool ET-6710 (ROM Simulator). In addition, the IOP/MUX microdiagnostic uses Electronic Tool ET-6722 (Dummy Controller). The microdiagnostics perform the following tests:

- a. CPU Microdiagnostic, Part one Tests single cycle operations and a kernel group of microcode.
- b. CPU Microdiagnostic, Part two Tests the CPU microcode further using the verified single cycle operations and verified microcode.
- c. Central Data Bus Microdiagnostic, Part one Tests that portion of the microcode that performs bus operations.

- d. Central Data Bus Microdiagnostic, Part two Performs an address and checkerboard test on memory.
- e. IOP/MUX Microdiagnostic Tests the data in/out, device number in/out, and command out lines of the IOP bus. Interrupts from any device number can be simulated. The I/O data, device number, command lines, and key control signals are displayed.

4-25. ROM SIMULATOR. Before running the CPU microdiagnostics, connect the ROM simulator as follows:

- a. Remove the back panel of the ROM simulator and remove the RAM PCA (part no. 03000-92031) from the card storage slot.
- b. Turn computer system power off by setting the SYS-TEM DC POWER switch (located in right-hand bay, upper right-hand corner) to STANDBY. Open upper front panel for access to this switch.
- c. Plug the RAM PCA into the 1A2 slot of the CPU (see figure 1-1).
- d. Connect the auxiliary control panel and hardware maintenance panel to the system.
- e. Connect the cable (supplied with the ROM simulator) between J4 on the ROM simulator and J3 on the PCA's located in slots 1A1 (Auxiliary Control Panel Interface PCA) and 1A2 (RAM PCA).
- f. Plug the ROM simulator into a 115 Vac, 60 Hz source.
- g. Turn computer system power on by setting the SYS-TEM DC POWER switch to ON.
- h. Press POWER switch on ROM simulator.
  - 1. REMOTE POWER indicator should light.
  - 2. READY indicator should light.
- i. Set the FUNCTION switch on ROM simulator to CPU SELF TEST.
- j. Press the RESET switch on ROM simulator.
- k. Press the LOAD switch on ROM simulator. PASS indicator should light indicating that the ROM simulator self-test is finished and the ROM simulator is operational.

4-26. Load the microdiagnostic paper tape into the ROM simulator paper tape reader as follows:

- a. Set the FUNCTION switch on the ROM simulator to the CPU MDIAG position.
- b. Press the RESET switch on the ROM simulator.
- c. Load paper tape into paper tape reader.

- d. Set the PAGE NUMBER switches on the ROM simulator to value of test pages to be loaded.
- e. Set the CLOCK SINGLE CYCLE/FREE RUN switch on hardware maintenance panel to the SINGLE CYCLE position.
- f. Press, in turn, the CPU RESET and I/O RESET switches on auxiliary control panel.
- g. Press the EXECUTE SINGLE CYCLE switch (on hardware maintenance panel) twice.
- h. Press the LOAD switch on the ROM simulator.
- i. Clear the RAR LOAD register on the hardware maintenance panel by setting all RAR LOAD REGISTER switches to the down position.
- j. Press the LOAD RAR switch on hardware maintenance panel. Press the EXECUTE SINGLE CYCLE switch. RAR should equal zero.

4-27. DUMMY CONTROLLER. The dummy controller (Electronic Tool ET-6722) is used when the IOP/MUX microdiagnostic is run. Connect the dummy controller as follows:

- a. Connect interrupt poll wires to the INT POLL terminals on the dummy controller.
- b. Set the device number of the multiplexer channel in the left byte of the B-register switches (bit positions 0 through 7) on the auxiliary control panel.
- c. Set the device number of the dummy controller in the right byte of the B-register switches (bit positions 8 through 15) on the auxiliary control panel.
- Note: The device numbers set into the B-register switches must total less than 150 octal for both the multiplexer channel and the dummy controller.

To aid in troubleshooting the CPU/IOP, a LUT-to-4-28. microprogram ROM index (table 4-3), instruction-tomicroprogram index (figure 4-1) and servicing diagrams (figures 4-2 through 4-74) are included at the end of this section. The microdiagnostics specify which indicators should be lighted on the hardware maintenance panel and what the contents of the registers displayed on the auxiliary control panel should contain. If any of these indications are not as specified in the microdiagnostic, refer to the appropriate servicing diagram to further isolate the cause of the malfunction. The servicing diagrams show the logic source for each of the displayed signals. Table 4-2 contains a cross-reference index listing the circuit name and the figure number which contains the logic for the signal generated by the circuit. Where possible, the circuit name in table 4-2matches the label of the signal indicator on the auxiliary control panel and hardware maintenance panel.

| CIRCUIT NAME                             | SERVICING DIAGRAM FIGURE NO. |
|------------------------------------------|------------------------------|
| ALU CARRY                                | 4-54                         |
| ALU OVFLO                                | 4-54                         |
| BNDV                                     | 4-54                         |
| CHECK CYCLE                              | 4-69                         |
| CNTR                                     | 4-24                         |
| CPU HIRQ                                 | 4-48                         |
| CPU LORQ                                 | 4-48                         |
| CPU SELECT                               | 4-48                         |
| CPU TIMER                                | 4-56                         |
| CPX 1                                    | 4-25                         |
| CPX2                                     | 4-26                         |
| CURRENT INSTRUCTION REGISTER             | 4-2                          |
| DATA CYCLE                               | 4-69                         |
| DATA POLL                                | 4-68                         |
| DB                                       | 4-37                         |
| DIRECT ACTIVE                            | 4-68                         |
| DIR I/O DATA IN                          | 4-23                         |
| DISP FLAG                                | 4-58                         |
| DL                                       | 4-36                         |
| DRTE+2                                   | 4-70                         |
| DRT REQ                                  | 4-66                         |
| DRT STORE                                | 4-69                         |
| DS                                       | 4-62                         |
| ENB 0, ENB 1, ENB 2, ENB 3, ENB 4, ENB 5 | 4-50                         |
| EXT INT                                  | 4-55                         |
| FLAG 1, FLAG 2, FLAG 3                   | 4-51                         |
| FREEZE                                   | 4-57                         |
| FROM 0, FROM 1, FROM 2                   | 4-44                         |
| ICS FLAG                                 | 4-58                         |
| IN BOUND                                 | 4-66                         |
| INSTR SELECT                             | 4-65                         |
| INSTR WAIT                               | 4-60                         |
| INTRP                                    | 4-55                         |
| INTRPT ACK                               | 4-71                         |
| INTRPTTG DVC NO.                         | 4-22                         |
| INTRPT POLL                              | 4-71                         |
| IOB ENABLE                               | 4-70                         |
| IOHREQ                                   | 4-50                         |
| IOLOREQ                                  | 4-50                         |
| I/O SELECT                               | 4-49                         |
| IOTIMER                                  | 4-56                         |
| I/O WAIT                                 | 4-60                         |
| JUMP                                     | 4-66                         |
| LUTGATE                                  | 4-64                         |
| MASK                                     | 4-40                         |

Table 4-2. Circuit-to-Servicing Diagram Cross Reference Index

| CIRCUIT NAME                                       | SERVICING DIAGRAM FIGURE NO. |
|----------------------------------------------------|------------------------------|
| MCUD PARITY                                        | 4-42                         |
| MCUD PE                                            | 4-47                         |
| MOD NO.                                            | 4-28                         |
| MOP 0, MOP 1                                       | 4-45                         |
| MPIFRZ                                             | 4-50                         |
| MUX I/O DATA                                       | 4-27                         |
| NOP 1, NOP 2                                       | 4-53                         |
| NXT-1, NXT-2                                       | 4-59                         |
| OPND                                               | 4-21                         |
| OPND SELECT                                        | 4-65                         |
| OPND WAIT                                          | 4-60                         |
| Ρ                                                  | 4-34                         |
| PADD                                               | 4-29                         |
| РВ                                                 | 4-33                         |
| PL                                                 | 4-35                         |
| ٥                                                  | 4-38                         |
| QS                                                 | 4-62                         |
| RA                                                 | 4-3, 4-4, 4-5, 4-6           |
| RB                                                 | 4-7, 4-8, 4-9, 4-10          |
| RC                                                 | 4-11, 4-12, 4-13, 4-14       |
| RD                                                 | 4-15, 4-16, 4-17, 4-18       |
| RDY 0, RDY 1, RDY 2, RDY 3,<br>RDY 4, RDY 5, RDY 6 | 4-50                         |
| REPEAT                                             | 4-53                         |
| RUN-HALT                                           | 4-41                         |
| Serializer A                                       | 4-72                         |
| Serializer B                                       | 4-50                         |
| Serializer C                                       | 4-73                         |
| SERVICE IN                                         | 4-66                         |
| SERVICE OUT                                        | 4-67                         |
| SIO ACTIVE                                         | 4-68                         |
| SKIP                                               | 4-63                         |
| SPI 1                                              | 4-74                         |
| SP2                                                | 4-19                         |
| SP3                                                | 4-20                         |
| SR                                                 | 4-30                         |
| STATUS                                             | 4-31                         |
| SYSTEM PARITY                                      | 4.46                         |
| SYSTEM PE                                          | 4-47                         |
| TNAME 0, TNAME 1                                   | 4-52                         |
| ΤΟ 0, ΤΟ 1, ΤΟ 2                                   | 4-43                         |
| W                                                  | 4-61                         |
| x                                                  | 4-32                         |
| XFR ERROR                                          | 4-69                         |
| Z                                                  | 4-39                         |

Table 4-2. Circuit-to-Servicing Diagram Cross Reference Index (Continued)

| Table 4-3. | LUT-to-Microprogram ROM Index |  |
|------------|-------------------------------|--|
|------------|-------------------------------|--|

| LUT<br>ENTRY<br>ADDR | OPCODE   | INST                   | ACTION<br>LABEL | REMARKS                      | ROM<br>ADDR |
|----------------------|----------|------------------------|-----------------|------------------------------|-------------|
| 000                  | OP 00-03 |                        | TRP7            | NOT USED                     |             |
| 017                  |          |                        |                 | NOT USED                     |             |
| 020                  | OP04     | LOAD                   | AC1D            | ADDR COMP – DB, Q RELATIVE   | 13          |
| 021                  | OP04     |                        | AC1S            | ADDR COMP - S RELATIVE       | 12          |
| 022                  | OP04     |                        | LOAD            | JUMP IF NOT INDIRECT         | 122         |
| 023                  | OP04     |                        | AC1P            | ADDR COMP – P RELATIVE       | 27          |
| 024                  | OP05     | STOR                   | AC1D            | ADDR COMP – DB, Q RELATIVE   | 13          |
| 025                  | OP05     |                        | AC1S            | ADDR COMP - S RELATIVE       | 12          |
| 026                  | OP05     |                        | STOR            | JUMP IF NOT INDIRECT         | 220         |
| 027                  | OP05     | ТВА, МТВА<br>ТВХ, МТВХ | LCBI            |                              | 416         |
| 030                  | OP06     | СМРМ                   | AC1D            | ADDR COMP – DB, Q RELATIVE   | 13          |
| 031                  | OP06     |                        | AC1S            | ADDR COMP - S RELATIVE       | 12          |
| 032                  | OP06     |                        | СМРМ            | JUMP IF NOT INDIRECT         | 400         |
| 033                  | OP06     |                        | AC1P            | ADDR COMP – P RELATIVE       | 27          |
| 034                  | OP07     | ADDM                   | AC1D            | ADDR COMP – DB, Q RELATIVE   | 13          |
| 035                  | OP07     |                        | AC1S            | ADDR COMP - S RELATIVE       | 12          |
| 036                  | OP07     |                        | ADDM            | JUMP IF NOT INDIRECT         | 254         |
| 037                  | OP07     |                        | AC1P            | ADDR COMP - P RELATIVE       | 27          |
| 040                  | OP10     | SUBM                   | AC1D            | ADDR COMP – DB, Q RELATIVE   | 13          |
| 041                  | OP10     |                        | AC1S            | ADDR COMP S RELATIVE         | 12          |
| 042                  | OP10     |                        | SUBM            | JUMP IF NOT INDIRECT         | 257         |
| 043                  | OP10     |                        | AC1P            | ADDR COMP – P RELATIVE       | 27          |
| 044                  | OP11     | MPYM                   | AC1D            | ADDR COMP – DB, Q RELATIVE   | 13          |
| 045                  | OP11     |                        | AC1S            | ADDR COMP - S RELATIVE       | 12          |
| 046                  | OP11     |                        | MPYM            | JUMP IF NOT INDIRECT         | 1700        |
| 047                  | OP11     |                        | AC1P            | ADDR COMP – P RELATIVE       | 27          |
| 050                  | OP12     | DECM                   | AC1D            | ADDR COMP – DB, Q RELATIVE   | 13          |
| 051                  | OP12     |                        | AC1S            | ADDR COMP - S RELATIVE       | 12          |
| 052                  | OP12     |                        | IDMY            |                              | 262         |
| 053                  | OP12     | INCM                   | INCM            | INCM MEM – DB, Q, S RELATIVE | 35          |
| 054                  | OP13     | LDX                    | AC1D            | ADDR COMP – DB, Q RELATIVE   | 13          |
| 055                  | OP13     |                        | AC1S            | ADDR COMP – S RELATIVE       | 12          |
| 056                  | OP13     |                        | LDX             | JUMP IF NOT INDIRECT         | 121         |
| 057                  | OP13     |                        | AC1P            | ADDR COMP - P RELATIVE       | 27          |
| 060                  | OP14     | BR or BCC              | BRD             |                              | 272         |
| 061                  | OP14     | BR or BCC              | BRS             |                              | 271         |

| Table 4-3. | LUT-to-Microprogram | <b>ROM Index</b> | (Continued) |
|------------|---------------------|------------------|-------------|
|------------|---------------------|------------------|-------------|

| LUT<br>ENTRY<br>ADDR | OPCODE        | INST    | ACTION<br>LABEL | REMARKS                       | ROM<br>ADDR |
|----------------------|---------------|---------|-----------------|-------------------------------|-------------|
| 062                  | O <b>P</b> 14 | unused  | TRP7            | NOT USED                      |             |
| 063                  | OP14          | BR      | BRP             |                               | 302         |
| 064                  | OP15          | LDD     | AC3D            | ADDR COMP DB, Q RELATIVE      | 62          |
| 065                  | OP15          |         | AC3S            | ADDR COMP - S RELATIVE        | 61          |
| 066                  | OP15          |         | LDD             | JUMP IF NOT INDIRECT          | 130         |
| 067                  | OP15          | LDB     | LDB             | LOAD BYTE – DB, Q, S RELATIVE | 143         |
| 070                  | OP16          | STD     | AC4D            | ADDR COMP – DB, Q RELATIVE    | 102         |
| 071                  | OP16          |         | AC4S            | ADDR COMP - S RELATIVE        | 101         |
| 072                  | OP16          |         | STD             | JUMP IF NOT INDIRECT          | 225         |
| 073                  | OP16          | STB     | LDB             | LOAD BYTE – DB, Q, S RELATIVE | 143         |
| 074                  | OP17          | LRA     | AC2D            | ADDR COMP – DB, Q RELATIVE    | 44          |
| 075                  | OP17          |         | AC2S            | ADDR COMP – S RELATIVE        | 43          |
| 076                  | OP17          |         | LRA             | JUMP IF NOT INDIRECT          | 124         |
| 077                  | OP17          |         | AC2P            | ADDR COMP – P RELATIVE        | 55          |
| 100                  | Sub 2 = 00    | -       | TRP7            | NOT USED                      |             |
| 101                  | Spec 2 = 00   | MOVE PB | PROG            |                               | 2027        |
| 102                  | Sub 3 = 00    | ~       | TRP7            | NOT USED                      | 2027        |
| 103                  | Spec 3 = 00   | _       | %3373           | SPARE. MODULE 6 ENTRY         |             |
| 104                  | Sub 2 = 01    | _       | %3372           | SPARE. MODULE 6 ENTRY         |             |
| 105                  | Spec 2 = 01   | MOVE DB | DATA            | MOVE ENTRY DB RELATIVE        | 2030        |
| 106                  | Sub 3 = 01    | SCAL    | SCAL            |                               | 2545        |
| 107                  | Spec 3 = 01   | PAUS    | PAUS            |                               | 1541        |
| 110                  | Sub 2 = 02    | LDI     | LPNI            |                               | 1521        |
| 111                  | Spec 2 = 02   | М∨в рв  | PROG            |                               | 2027        |
| 112                  | Sub 3 = 02    | PCAL    | PCAL            |                               | 2546        |
| 113                  | Spec 3 = 02   | SED     | SED             |                               | 2315        |
| 114                  | Sub 2 = 03    | LDXI    | XPNI            |                               | 1527        |
| 115                  | Spec 2 = 03   | MVB DB  | DATA            |                               | 2030        |
| 116                  | Sub 3 = 03    | EXIT    | EXIT            |                               | 2621        |
| 117                  | Spec 3 = 03   | хсно    | хсно            | INSURE A TOS REG              | 1674        |
| 120                  | Sub 2 = 04    | СМРІ    | CPNI            |                               | 460         |
| 121                  | Spec 2 = 04   | MVBL    | MVBL            | MOVE FROM DB+ TO DL+          | 2000        |
| 122                  | Sub 3 = 04    | SXIT    | SXIT            |                               | 1531        |
| 123                  | Spec 3 = 04   | SMSK    | SMSK            |                               | 2332        |
| 124                  | Sub 2 = 05    | ADDI    | ASI             |                               | 1523        |
| 125                  | Spec 2 = 05   | scw     | SCAM            |                               | 2126        |
|                      |               |         |                 |                               |             |

| Table 4-3. LUT-to-Microprogram ROM Index (Continued | Table 4-3. | ROM Index (Continued) | LUT-to-Microprogram |
|-----------------------------------------------------|------------|-----------------------|---------------------|
|-----------------------------------------------------|------------|-----------------------|---------------------|

| LUT<br>ENTRY<br>ADDR | OPCODE      | INST      | ACTION<br>LABEL | REMARKS               | ROM<br>ADDR |
|----------------------|-------------|-----------|-----------------|-----------------------|-------------|
| 126                  | Sub 3 = 05  | ADXI      | ASXI            |                       | 1530        |
| 127                  | Spec 3 = 05 | RMSK      | RMSK            |                       | 2330        |
| 130                  | Sub 2 = 06  | SUBI      | ASI             |                       | 1523        |
| 131                  | Spec 2 = 06 | MVLB      | MVLB            | MOVE FROM DL+ TO DB+  | 2003        |
| 132                  | Sub 3 = 06  | SBXI      | ASXI            |                       |             |
| 133                  | Spec 3 = 06 | XEQ       | XEO             |                       | 1545        |
| 134                  | Sub 2 = 07  | MPYI      | MPYI            |                       | 1703        |
| 135                  | Spec 2 = 07 | scu       | SCAM            |                       | 2126        |
| 136                  | Sub 3 = 07  | LLBL      | LLBL            |                       | 3407        |
| 137                  | Spec 3 = 07 | SIO       | SIO             |                       | 2233        |
| 140                  | Sub 2 = 10  | DIVI      | DIVI            |                       | 566         |
| 141                  | Spec 2 = 10 | м∨вw      | SCAM            |                       | 2126        |
| 142                  | Sub 3 = 10  | LDPP      | LODP            |                       | 206         |
| 143                  | Spec 3 = 10 | RIO       | RIO             |                       | 2252        |
| 144                  | Sub 2 = 11  | PSHR      | PSHR            |                       | 1557        |
| 145                  | Spec 2 = 11 | м∨вw      | SCAM            |                       | 2126        |
| 146                  | Sub 3 = 11  | LDPN      | LODP            |                       | 206         |
| 147                  | Spec 3 = 11 | wio       | wio             |                       | 2265        |
| 150                  | Sub 2 = 12  | LDNI      | LPN             |                       | 1521        |
| 151                  | Spec 2 = 12 | СМРВ РВ   | СРВР            |                       | 2023        |
| 152                  | Sub 3 = 12  | ADDS      | ADDS            |                       | 1661        |
| 153                  | Spec 3 = 12 | тю        | TIO             |                       | 2300        |
| 154                  | Sub 2 = 13  | LDXN      | XPNI            |                       | 1524        |
| 155                  | Spec 2 = 13 | CMPB DB   | CPBD            |                       | 2024        |
| 156                  | Sub 3 = 13  | SUBS      | SUBS            |                       | 1660        |
| 157                  | Spec 3 = 13 | сю        | CIO             |                       | 2306        |
| 160                  | Sub 2 = 14  | CMPN      | CPNI            |                       | 460         |
| 161                  | Spec 2 = 14 | RSW/LLSH  | RSW             |                       | 351         |
| 162                  | Sub 3 = 14  | тѕвм      | тѕвм            |                       | 1443        |
| 163                  | Spec 3 = 14 | CMD       | CMD             |                       | 2356        |
| 164                  | Sub 2 = 15  | EXF       | EXF             |                       | 1475        |
| 165                  | Spec 2 = 15 | PLDA/PSTA | PLDA            |                       | 753         |
| 166                  | Sub 3 = 15  | ORI       | ORI             |                       | 1524        |
| 167                  | Spec 3 = 15 | SIRF      | SIRF            |                       | 2343        |
| 170                  | Sub 2 = 16  | DPF       | DPF             |                       | 1501        |
| 171                  | Spec 2 = 16 | -         | %3377           | SPARE. MODULE 6 ENTRY |             |
| 172                  | Sub 3 = 16  | XORI      | XORI            |                       | 1525        |
| 173                  | Spec 3 = 16 | SIN       | SIN             |                       | 2323        |

Table 4-3. LUT-to-Microprogram ROM Index (Continued)

ŧ.

| LUT<br>ENTRY<br>ADDR | OPCODE       | INST | ACTION<br>LABEL | REMARKS                  | ROM<br>ADDR |
|----------------------|--------------|------|-----------------|--------------------------|-------------|
| 174                  | Sub 2 = 17   | SETR | SETR            |                          | 1605        |
| 175                  | Spec 2 = 17  | -    | %3374           | SPARE. MODULE 6 ENTRY    |             |
| 176                  | Sub 3 = 17   | ANDI | ANDI            |                          | 1526        |
| 177                  | Spec 3 = 17  | HALT | HALT            |                          | 2733        |
| 200                  | Subop 1 = 00 | ASL  | SHFL            | SHIFT LEFT IF SR > = 2   | 732         |
| 201                  | Subop 1 = 01 | ASR  | SHFR            | SHIFT RIGHT IF SR > = 2  | 724         |
| 202                  | Subop 1 = 02 | LSL  | SHFL            | SHIFT LEFT IF SR $>$ = 2 | 732         |
| 203                  | Subop 1 = 03 | LSR  | SHFR            | SHIFT RIGHT IF SR > = 2  | 724         |
| 204                  | Subop 1 = 04 | CSL  | SHFL            | SHIFT LEFT IF SR $>$ = 2 | 732         |
| 205                  | Subop 1 = 05 | CSR  | SHFR            | SHIFT RIGHT IF SR > = 2  | 724         |
| 206                  | Subop 1 = 06 | SCAN | SCAN            |                          | 740         |
| 207                  | Subop 1 = 07 | IABZ | IABZ            |                          | 2363        |
| 210                  | Subop 1 = 10 | TASL | TASL            |                          | 1417        |
| 211                  | Subop 1 = 11 | TASR | TASR            |                          | 1432        |
| 212                  | Subop 1 = 12 | IXBZ | IXBZ            |                          | 3401        |
| 213                  | Subop 1 = 13 | DXBZ | DXBZ            |                          | 3404        |
| 214                  | Subop 1 = 14 | BCY  | BCY             |                          | 336         |
| 215                  | Subop 1 = 15 | BNCY | BNCY            |                          | 342         |
| 216                  | Subop 1 = 16 | TNSL | TNSL            |                          | 1342        |
| 217                  | Subop 1 = 17 | _    | %3375           | SPARE                    |             |
| 220                  | Subop 1 = 20 | DASL | SHDL            |                          | 1400        |
| 221                  | Subop 1 = 21 | DASR | SHDR            |                          | 1410        |
| 222                  | Subop 1 = 22 | DLSL | SHDL            |                          | 1400        |
| 223                  | Subop 1 = 23 | DLSR | SHDR            |                          | 1410        |
| 224                  | Subop 1 = 24 | DCSL | SHDL            |                          | 1400        |
| 225                  | Subop 1 = 25 | DCSR | SHDR            |                          | 1410        |
| 226                  | Subop 1 = 26 | CPRB | CPRB            |                          | 405         |
| 227                  | Subop 1 = 27 | DABZ | DABZ            |                          | 2366        |
| 230                  | Subop 1 = 30 | BOV  | BOV             |                          | 345         |
| 231                  | Subop 1 = 31 | BNOV | BNOV            |                          | 1770        |
| 232                  | Subop 1 = 32 | твс  | твс             |                          | 1465        |
| 233                  | Subop 1 = 33 | TRBC | TRBC            |                          | 1467        |
| 234                  | Subop 1 ≃ 34 | TSBC | TSBC            |                          | 1471        |
| 235                  | Subop 1 = 35 | тсвс | тсвс            |                          | 1473        |
| 236                  | Subop 1 = 36 | BRO  | BRO             |                          | 2371        |
| 237                  | Subop 1 = 37 | BRE  | BRE             |                          | 1773        |
| 240                  | Subop 0 = 20 | ADD  | ADD             |                          | 463         |

| Table 4-3. LUT | T-to-Microprogram | ROM Index | (Continued) | į |
|----------------|-------------------|-----------|-------------|---|
|----------------|-------------------|-----------|-------------|---|

| LUT<br>ENTRY<br>ADDR | OPCODE       | INST | ACTION<br>LABEL | REMARKS                                                                          | ROM<br>ADDR |
|----------------------|--------------|------|-----------------|----------------------------------------------------------------------------------|-------------|
| 241                  | Subop 0 = 21 | SUB  | SUB             |                                                                                  | 464         |
| 242                  | Subop 0 = 22 | MPY  | MPY             |                                                                                  | 1705        |
| 243                  | Subop 0 = 23 | DIV  | DIV             |                                                                                  | 577         |
| 244                  | Subop 0 = 24 | NEG  | NEG             |                                                                                  | 465         |
| 245                  | Subop 0 = 25 | TEST | TEST            |                                                                                  | 632         |
| 246                  | Subop 0 = 26 | STBX | STBX            |                                                                                  | 717         |
| 247                  | Subop 0 = 27 | DTST | DTST            |                                                                                  | 636         |
| 250                  | Subop 0 = 30 | DFLT | DFLT            |                                                                                  | 1234        |
| 251                  | Subop 0 = 31 | BTST | BTST            |                                                                                  | 644         |
| 252                  | Subop 0 = 32 | хсн  | хсн             |                                                                                  | 702         |
| 253                  | Subop 0 = 33 | INCA | INCA            |                                                                                  | 652         |
| 254                  | Subop 0 = 34 | DECA | DECA            |                                                                                  | 651         |
| 255                  | Subop 0 = 35 | XAX  | ХАХ             |                                                                                  | 704         |
| 256                  | Subop 0 = 36 | ADAX | ADAX            |                                                                                  | 720         |
| 257                  | Subop 0 = 37 | ADXA | ADXA            |                                                                                  | 722         |
| 260                  | Subop 0 = 60 | LADD | LADD            |                                                                                  | 504         |
| 261                  | Subop 0 = 61 | LSUB | LSUB            |                                                                                  | 1           |
| 262                  | Subop 0 = 62 | LMPY | LMPY            |                                                                                  | 511         |
| 263                  | Subop 0 = 63 | LDIV | LDIV            |                                                                                  | 517         |
| 264                  | Subop 0 = 64 | NOT  | NOT             |                                                                                  | 537         |
| 265                  | Subop 0 = 65 | OR   | OR              |                                                                                  | 646         |
| 266                  | Subop 0 = 66 | XOR  | XOR             |                                                                                  | 647         |
| 267                  | Subop 0 = 67 | AND  | AND             |                                                                                  | 650         |
| 270                  | Subop 0 = 70 | FIXR | FIXR            |                                                                                  | 1277        |
| 271                  | Subop 0 = 71 | FIXT | FIXT            |                                                                                  | 1276        |
| 272                  | Subop 0 = 72 | -    | %3376           | SPARE. MODULE 6 ENTRY                                                            |             |
| 273                  | Subop 0 = 73 | INCB | INCB            |                                                                                  | 654         |
| 274                  | Subop 0 = 74 | DECB | DECB            |                                                                                  | 653         |
| 275                  | Subop 0 = 75 | хвх  | ХВХ             |                                                                                  | 706         |
| 276                  | Subop 0 = 76 | ADBX | ADBX            |                                                                                  | 721         |
| 277                  | Subop 0 = 77 | ADXB | ADXB            |                                                                                  | 723         |
| 300                  | Subop 0 = 00 | NOP  | NOP             | Unused. See entry 2                                                              | 1466        |
| 301                  | Subop 0 = 01 | DELB | DELB            | Entry if SR ≥ 2                                                                  | 667         |
| 302                  | Subop 0 = 02 | DDEL | DDEL            | Entry if SR $\geq 2$                                                             | 770         |
| 303                  | Subop 0 = 03 | ZROX | ZROX            | Entry if SR ≥ 2<br>Entry if SR ≥ 2<br>Unused. See entry 2<br>Unused. See entry 2 | 665         |
| 304                  | Subop 0 = 04 | INCX | INCX            | Unused, See entry 2                                                              | 656         |
| 305                  | Subop 0 = 05 | DECX | DECX            | Unused. See entry 2                                                              | 655         |

| Table 4-3. | LUT-to-Microprogram | <b>ROM Index</b> | (Continued) |
|------------|---------------------|------------------|-------------|
|------------|---------------------|------------------|-------------|

| LUT<br>ENTRY<br>ADDR | OPCODE       | INST | ACTION<br>LABEL | REMAR              | ĸs          | ROM<br>ADDR |
|----------------------|--------------|------|-----------------|--------------------|-------------|-------------|
| 306                  | Subop 0 = 06 | ZERO | ZRO1            | Entry if SR = 4    | +           | 663         |
| 307                  | Subop 0 = 07 | DZRO | ZRO2            | Entry if SR > 2    |             | 657         |
| 310                  | Subop 0 = 10 | DCMP | SRP             | Entry until SR = 4 |             | 4           |
| 311                  | Supop 0 = 11 | DADD | SRP             | Entry until SR = 4 |             | 4           |
| 312                  | Subop 0 = 12 | DSUB | SRP             | Entry until SR = 4 |             | 4           |
| 313                  | Subop 0 = 13 | MPYL | SRP             | Entry until SR = 4 |             | 4           |
| 314                  | Subop 0 = 14 | DIVL | SRP             | Entry until SR = 4 |             | 4           |
| 315                  | Subop 0 = 15 | DNEG | SRP             | Entry until SR = 4 |             | 4           |
| 316                  | Subop 0 = 16 | DXCH | SRP             | Entry until SR = 4 |             | 4           |
| 317                  | Subop 0 = 17 | СМР  | SRP             | Entry until SR = 4 |             | 4           |
| 320                  | Subop 0 = 40 | DEL  | DEL             | Entry if SR ≥ 2    | <u> </u>    | 471         |
| 321                  | Subop 0 = 41 | ZROB | ZROB            | Entry if SR ≥ 2    | <u>o</u>    | 666         |
| 322                  | Subop 0 = 42 | LDXB | LDXB            | Entry if SR ≥ 2    | ENTRY NO.   | 715         |
| 323                  | Subop 0 = 43 | STAX | STAX            | Entry if SR ≥ 2    | 4TR         | 716         |
| 324                  | Subop 0 = 44 | LDXA | LDX1            | Entry if SR ≥ 2    | 1<br>1      | 713         |
| 325                  | Subop 0 = 45 | DUP  | DUP1            | Entry if SR ≥ 2    |             | 670         |
| 326                  | Subop 0 ≃ 46 | DDUP | DDP1            | Entry if SR ≥ 2    |             | 673         |
| 327                  | Subop 0 = 47 | FLT  | FLT1            | Entry if SR ≥ 2    |             | 1226        |
| 330                  | Subop 0 = 50 | FCMP | SRP             | Entry until SR = 4 |             | 4           |
| 331                  | Subop 0 = 51 | FADD | SRP             | Entry until SR = 4 |             | 4           |
| 332                  | Subop 0 = 52 | FSUB | SRP             | Entry until SR = 4 |             | 4           |
| 333                  | Subop 0 = 53 | FMPY | SRP             | Entry until SR = 4 |             | 4           |
| 334                  | Subop 0 = 54 | FDIV | SRP             | Entry until SR = 4 |             | 4           |
| 335                  | Subop 0 = 55 | FNEG | SRP             | Entry until SR = 4 |             | 4           |
| 336                  | Subop 0 = 56 | САВ  | SRP             | Entry until SR = 4 |             | 4           |
| 337                  | Subop 0 = 57 | LCMP | SRP             | Entry until SR = 4 | Ļ           | 4           |
| 340                  | Subop 0 = 00 | NOP  | NOP             | Normal entry       | +           | 1466        |
| 341                  | Subop 0 = 01 | DELB | SRP             | Entry if SR < 2    |             | 4           |
| 342                  | Subop 0 = 02 | DDEL | DDL1            | Entry if SR < 2    |             | 472         |
| 343                  | Subop 0 = 03 | ZROX | ZROX            | Normal entry       |             | 665         |
| 344                  | Subop 0 = 04 | INCX | INCX            | Normal entry       | 0.2         | 656         |
| 345                  | Subop 0 = 05 | DECX | DECX            | Normal entry       | ž           | 655         |
| 346                  | Subop 0 = 06 | ZERO | ZERO            | Entry if SR < 4    | ENTRY NO. 2 | 644         |
| 347                  | Subop 0 = 07 | DZRO | DZRO            | Entry if SR ≤ 2    | EN          | 662         |
| 350                  | Subop 0 = 10 | DCMP | DCMP            | Entry if SR = 4    |             | 554         |
| 351                  | Subop 0 = 11 | DADD | DADD            | Entry if SR = 4    |             | 550         |
| 352                  | Subop 0 = 12 | DSUB | DSUB            | Entry if SR = 4    |             | 540         |
| 353                  | Subop 0 = 13 | MPYL | MPYL            | Entry if SR = 4    | ł           | 1706        |

| LUT<br>ENTRY<br>ADDR | OPCODE       | INST | ACTION<br>LABEL | REMARKS                                                                                                                                   | ROM<br>ADDR |
|----------------------|--------------|------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 354                  | Subop 0 = 14 | DIVL | DIVL            | Entry if SR = 4                                                                                                                           | 604         |
| 355                  | Subop 0 = 15 | DNEG | DNEG            | Entry if SR = 4                                                                                                                           | 544         |
| 356                  | Subop 0 = 16 | DXCH | DXCH            | Entry if SR = 4                                                                                                                           | 633         |
| 357                  | Subop 0 = 17 | СМР  | СМР             | Entry if SR = 4                                                                                                                           | 453         |
| 360                  | Subop 0 = 40 | DEL  | DEL1            | Entry if SR < 2                                                                                                                           | 476         |
| 361                  | Subop 0 = 41 | ZROB | SRP             | Entry if SR < 2                                                                                                                           | 4           |
| 362                  | Subop 0 = 42 | LDXB | SRP             | Entry if SR < 2                                                                                                                           | 4           |
| 363                  | Subop 0 = 43 | STAX | SRP             | Entry if SR < 2                                                                                                                           | 4           |
| 364                  | Subop 0 = 44 | LDXA | LDXA            |                                                                                                                                           | 714         |
| 365                  | Subop 0 = 45 | DUP  | DUP             | Entry if SR < 2 $\overset{\circ}{\text{SR}}$<br>Entry if SR < 2 $\overset{\circ}{\text{Entry}}$ if SR < 2 $\overset{\circ}{\text{Entry}}$ | 671         |
| 366                  | Subop 0 = 46 | DDUP | DDUP            | Entry if SR < 2                                                                                                                           | 676         |
| 367                  | Subop 0 = 47 | FLT  | FLT             | Entry if SR < 2                                                                                                                           | 1231        |
| 370                  | Subop 0 = 50 | FCMP | FCMP            | Entry if SR = 4                                                                                                                           | 1255        |
| 371                  | Subop 0 = 51 | FADD | FADD            | Entry if SR = 4                                                                                                                           | 1001        |
| 372                  | Subop 0 = 52 | FSUB | FSUB            | Entry if SR = 4                                                                                                                           | 1000        |
| 373                  | Subop 0 = 53 | FMPY | FMPY            | Entry if SR = 4                                                                                                                           | 1110        |
| 374                  | Subop 0 = 54 | FDIV | FDIV            | Entry if SR = 4                                                                                                                           | 1141        |
| 375                  | Subop 0 = 55 | FNEG | FNEG            | Entry if SR = 4                                                                                                                           | 1104        |
| 376                  | Subop 0 = 56 | САВ  | САВ             | Entry if SR = 4                                                                                                                           | 710         |
| 377                  | Subop 0 = 57 | LCMP | LCMP            | Entry if SR = 4                                                                                                                           | 466         |

Table 4-3. LUT-to-Microprogram ROM Index (Continued)

-

## ADAX

|                                                       |                             | LABEL | OND LUTA | 0 11 12 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------------------------------------------------|-----------------------------|-------|----------|---------|---|---|---|---|---|---|---|---|---|---|
|                                                       | _                           |       |          |         | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| Stack Op B   SR<2 SRP<br>  Stack Op B   SR>=2 256 ADA | 0004 <del>-</del><br>0720 1 | ADAX  |          | Stack   |   |   |   |   |   |   |   |   |   |   |

## ADBX

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12    | 13  | 14 15 |       | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|-------|-------|-----|-------|-------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |       |       |     |       |       |      |       |      |   |
|   |   |   |   |   |   |   |   |   |   | .     | Stack | Opl |       | SR<2  |      | SRP   | 0004 | - |
|   |   |   |   |   |   |   |   |   |   |       |       | Opi |       | SR>=2 | 276  | ADBX  | 0721 | 1 |

### ADD

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 1 1  | 2 13 | 14 | 15 |       | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|------|------|------|----|----|-------|------|-------|------|---|
| 0 | 0 | Q | 0 | 0 | 1 | 0 | 0 | 0 | 0 |      |      |      |    |    |       |      |       |      |   |
|   |   |   |   |   |   |   |   |   |   |      | Star | k Op | R  |    | SR<2  |      | SRP   | 0004 | - |
|   |   |   |   |   |   |   |   |   |   |      | 0.00 |      | 5  |    | SR>=2 | 240  | ADD   | Ø463 | 1 |

## ADDI

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 89   | 10 11 12    | 13 14 15 |       | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|------|-------------|----------|-------|------|-------|------|---|
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |      |             |          |       |      |       |      |   |
| _ |   |   |   |   |   |   |   | I .  |             |          | SR<2  |      | SRP   | 0004 | - |
|   |   |   |   |   |   |   |   | l ir | nmediate Op | berand   | SR>=2 | 124  | ASI   | 1523 | Ø |

## ADDM

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND              | LUTA       | LABEL        | RAR          | W |
|---------------------------------------|-------------------|------------|--------------|--------------|---|
| 0 1 1 1 X I<br>Mode and Displacement  | P REL.<br>DB REL. | 037<br>034 | AC1P<br>AC1D | 0027<br>0013 | 1 |
|                                       | Q REL.            | 034<br>035 | AC1D<br>AC1S | 0013<br>0012 | 1 |
| 2184-51                               | JLUI              | Ø36        | ADDM         | 0254         | 1 |

Figure 4-1. Instruction to Microprogram Index (Sheet 1 of 34)

## ADDS

| 0       1       2       3       4       5       6       7       8       9       10       11       12       13       14       15         0       0       1       1       0       1       0       1       12       13       14       15         0       0       1       1       0       1       0       1       14       15         Immediate Operand | COND<br>UNC.          | LUTA<br>152 | LABEL<br>ADDS        | RAR<br>1661         | W<br>Ø      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|----------------------|---------------------|-------------|
| ADXA                                                                                                                                                                                                                                                                                                                                                |                       |             |                      |                     |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 0 0 0 1 1 1 1 1 1 1<br>Stack Op B                                                                                                                                                                                                                                                                      | COND<br>SR<2<br>SR>=2 | LUTA<br>257 | LABEL<br>SRP<br>ADXA | RAR<br>0004<br>0722 | W<br>       |
| ADXB                                                                                                                                                                                                                                                                                                                                                |                       |             |                      |                     |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 0 0 1 1 1 1 1 1 1 5<br>Stack Op B                                                                                                                                                                                                                                                                      | COND<br>SR<2<br>SR>=2 | LUTA<br>277 | LABEL<br>SRP<br>ADXB | RAR<br>0004<br>0723 | W<br>-<br>1 |
| ADXI                                                                                                                                                                                                                                                                                                                                                | COND                  | LUTA        | LABEL                | RAR                 | W           |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 0 1 0 1<br>Immediate Operand                                                                                                                                                                                                                                                                       | SR<2<br>SR>=2         | 126         | SRP                  | 0004<br>1530        | <br>0       |
| AND                                                                                                                                                                                                                                                                                                                                                 |                       |             |                      |                     |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                                                                                                                                                                               | COND                  | LUTA        | LABEL                | RAR                 | W           |
| 0 0 0 0 1 1 0 1 1 1 Stack Op B                                                                                                                                                                                                                                                                                                                      | SR<2<br>SR>=2         | <br>267     | SRP<br>AND           | 0004<br>0650        | -<br>1      |

Figure 4-1. Instruction to Microprogram Index (Sheet 2 of 34)

# ANDI

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15   |       | LUTA | LABEL | RAR  | W |
|-----------------------------------------|-------|------|-------|------|---|
| 0 0 1 1 1 1 1 1 1 I I I I I I I I I I I | SR<2  |      | SRP   | 0004 | - |
|                                         | SR>=2 | 176  | AND I | 1526 | Ø |

# ASL

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11          | 12 | 13 | 14 | 15 | COND  | LUTA | LABEL       | RAR          | W |
|---|---|---|---|---|---|---|---|---|---|----|-------------|----|----|----|----|-------|------|-------------|--------------|---|
| 0 | 0 | 0 | 1 | Х | 0 | 0 | 0 | 0 | 0 |    |             |    |    |    |    | SR<2  |      |             |              |   |
|   |   |   |   |   |   |   |   |   |   |    | Shift Count |    |    |    |    | SR>=2 | 200  | SRP<br>SHFL | 0004<br>0732 | ø |

# ASR

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL       | RAR          | W      |
|---------------------------------------|---------------|------|-------------|--------------|--------|
| 0 0 0 1 X 0 0 0 0 1                   |               |      |             |              |        |
| Shift Count                           | SR<2<br>SR>=2 | 201  | SRP<br>SHFR | 0004<br>0724 | -<br>Ø |

### BCC

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA    | LABEL | RAR  | W |
|---------------------------------------|------|---------|-------|------|---|
| 1 1 0 0 I 0 1 G E L ±                 | UNC. | <br>Ø60 | חממ   | a272 |   |
| CCF Displacement                      | UNC  | 000     | DRU   | 0212 | Ø |

### BCY

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA    | LABEL      | RAR          | W          |
|---------------------------------------|---------------|---------|------------|--------------|------------|
| 0 0 0 1 1 0 1 1 0 0 ±<br>Displacement | SR<2<br>SR>=2 | <br>214 | SRP<br>BCY | 0004<br>0336 | <br>-<br>1 |
| 2184-53                               |               |         |            |              |            |

Figure 4-1. Instruction to Microprogram Index (Sheet 3 of 34)

# BNCY

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                | COND                        | LUTA              | LABEL             | RAR                  | W           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|-------------------|----------------------|-------------|
| 0 0 0 1 1 0 1 1 0 1 ±<br>Displacement                                                                                                                                                | SR<2<br>SR>=2               | 215               | SRP<br>BNCY       | 0004<br>0342         | 1           |
|                                                                                                                                                                                      |                             |                   |                   |                      |             |
| BNOV                                                                                                                                                                                 |                             |                   |                   |                      |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                | COND                        | LUTA              | LABEL             | RAR                  | W           |
| 0 0 0 1 1 1 0 0 1 ±<br>Displacement                                                                                                                                                  | SR<2<br>SR>=2               | 231               | SRP<br>BNOV       | 0004<br>1770         | <br>1       |
|                                                                                                                                                                                      |                             |                   |                   |                      |             |
| BOV                                                                                                                                                                                  |                             |                   |                   |                      |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                | COND                        | LUTA              | LABEL             | RAR                  | W           |
| 0 0 0 1 1 1 1 0 0 0 ±<br>Displacement                                                                                                                                                | SR<2<br>SR>=2               | 230               | SRP<br>BOV        | 0004<br>0345         | <br>1       |
|                                                                                                                                                                                      | 0.00                        |                   | 201               | 0010                 | •           |
| BR                                                                                                                                                                                   |                             |                   |                   |                      |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                | COND                        | LUTA              | LABEL             | RAR                  | W           |
| 1     1     0     X     I     0     ±       P Relative Displacement                                                                                                                  | P REL.                      | Ø63               | BRP               | 0302                 | 0           |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>1 1 0 0 X 1 1                                                                                                                               | DB REL.<br>Q REL.<br>S REL. | 060<br>060<br>061 | BRD<br>BRD<br>BRS | 0272<br>0272<br>0271 | 0<br>0<br>0 |
| DB+ 0 ← Displacement<br>Q+ 1 0 ←                                                                                                                                                     |                             |                   |                   |                      | -           |
| <b>BRE</b> $\begin{array}{c c} Q_{-} & 1 & 1 & 0 \\ S_{-} & 1 & 1 & 1 \end{array} \xrightarrow{0} \begin{array}{c} 0 & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$ |                             |                   |                   |                      |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                | COND                        | LUTA              | LABEL             | RAR                  | W           |
| 0 0 0 1 1 1 1 1 1 ±<br>Displacement                                                                                                                                                  | SR<2                        |                   | SRP               | 0004                 | <br>-<br>`` |
| 2184-54                                                                                                                                                                              | SR>=2                       | 237               | BRE               | 1773                 | 1           |

2184-54

Figure 4-1. Instruction to Microprogram Index (Sheet 4 of 34)

# BRO

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL | RAR          | W |
|---------------------------------------|---------------|------|-------|--------------|---|
| 0 0 0 1   1 1 1 1 0 ±                 | _             |      | SRP   |              |   |
| Displacement                          | SR<2<br>SR>=2 | 236  | BRO   | 0004<br>2371 | 1 |

# BTST

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12   | 13 14 | 15 | COND          | LUTA | LABEL       | RAR          | W |
|---|---|---|---|---|---|---|---|---|---|----|----|------|-------|----|---------------|------|-------------|--------------|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |    |    |      |       |    | · · · ·       |      |             |              |   |
|   | - |   |   |   |   |   | _ |   |   |    | S  | tack | Ор В  | l  | SR<2<br>SR>=2 | 251  | SRP<br>BTST | 0004<br>0644 | 1 |

# CAB

| 0 | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 15 | COND | LUTA | LABEL | RAR              | W |
|---|---|----|---|---|---|---|---|---|---|----------|----------|------|------|-------|------------------|---|
| 0 | 0 | 0. | 0 | 1 | 0 | 1 | 1 | 1 | 0 |          |          | SR<4 | 336  | SRP   | <b>-</b><br>0004 |   |
|   |   |    |   |   |   |   |   |   |   | Stack    | ОрВ      | SR=4 | 376  | CAB   | Ø710             | i |

## CIO

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 0 0 0 0 1 0 1 1<br>K | COND<br>UNC. | LUTA<br>157 | CIO   | RAR<br>2306 | W<br><br>Ø |
|-----------------------------------------------------------------------|--------------|-------------|-------|-------------|------------|
| CMD                                                                   |              |             |       |             |            |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                 | COND         | LUTA        | LABEL | RAR         | W          |
| 001100001100<br>2184-55 К                                             | UNC.         | 163         | CMD   | 2356        | Ø          |

Figure 4-1. Instruction to Microprogram Index (Sheet 5 of 34)

### CMP

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 0 0 0 0 1 1 1 1 1         | COND              | LUTA       | LABEL        | RAR          | W      |
|------------------------------------------------------------------------|-------------------|------------|--------------|--------------|--------|
| Stack Op B                                                             | SR<4<br>SR=4      | 317<br>357 | SRP<br>CMP   | 0004<br>0453 | 1<br>1 |
|                                                                        |                   |            |              |              |        |
| СМРВ                                                                   |                   |            |              |              |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 | COND              | LUTA       | LABEL        | RAR          | W      |
| PB  SDEC                                                               | P REL.<br>DB REL. | 151<br>155 | CPBP<br>CPBD | 2023<br>2024 | 0<br>0 |
|                                                                        |                   |            | Computer     |              |        |
| CMPI                                                                   |                   |            | Museum       |              |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                  | COND              | LUTA       | LABEL        | RAR          | W      |
| 0 0 1 0 0 1 0 0<br>Immediate Operand                                   | SR<2<br>SR>=2     | 120        | SRP<br>CPNI  | 0004<br>0460 | -      |
|                                                                        |                   |            |              |              |        |
| СМРМ                                                                   |                   |            |              |              |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                  | COND              | LUTA       | LABEL        | RAR          | W      |
| 0 1 1 0 X I<br>Mode and Displacement                                   | P REL.<br>DB REL. | 033<br>030 | AC1P<br>AC1D | 0027<br>0013 | 1<br>1 |
|                                                                        | Q REL.<br>S REL.  | Ø3Ø<br>Ø31 | AC1D<br>AC1S | 0013<br>0012 | 1<br>1 |
|                                                                        | JLUI              | 032        | Смрм         | 0400         | 1      |
| CMPN                                                                   |                   |            |              |              |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                  |                   | LUTA       | LABEL        | RAR          | W      |
|                                                                        | SR<2              |            | SRP          | 0004         |        |

Figure 4-1. Instruction to Microprogram Index (Sheet 6 of 34)

SR>=2

160

CPNI

0460

2184-56

Immediate Operand

Ø

## CPRB

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL       | RAR          | W |
|---------------------------------------|---------------|------|-------------|--------------|---|
| 0 0 0 1 I 1 0 1 1 0 ±                 |               |      |             |              |   |
| Displacement                          | SR<2<br>SR>=2 | 226  | SRP<br>CPRB | 0004<br>0405 | 1 |

## CSL

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR      | W |
|---------------------------------------|-------|------|-------|----------|---|
| 0 0 0 1 X 0 0 1 0 0                   | SR<2  |      | SRP   | <b>-</b> |   |
| Shift Count                           | SR>=2 | 204  | SHFL  | 0732     | Ø |

## CSR

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---------------------------------------|-------|------|-------|------|---|
| 0 0 0 1 X 0 0 1 0 1                   | SR<2  |      | SRP   | 0004 |   |
| Shift Count                           | SR>=2 | 205  | SHFR  | Ø724 | Ø |

# DABZ

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----------|----------|-------|------|-------|------|---|
| 0 | 0 | 0 | 1 | I | 1 | 0 | 1 | 1 | 1 | ±        |          | SR<2  |      | SRP   | 0004 |   |
| - |   |   |   |   |   |   |   |   |   | Disp     | acement  | SR>=2 | 227  | DARZ  | 2366 | 1 |

### DADD

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND         | LUTA       | LABEL       | RAR          | W      |
|---------------------------------------|--------------|------------|-------------|--------------|--------|
| 0 0 0 0 0 1 0 0 1 Stack Op B          | SR<4<br>SR=4 | 311<br>351 | SRP<br>DADD | 0004<br>0550 | 1<br>1 |
| 2184-57                               | ••••         |            |             |              |        |

## DASL

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL       | RAR          | W |
|---------------------------------------|---------------|------|-------------|--------------|---|
| 0 0 0 1 X 1 0 0 0 0                   |               |      |             |              | _ |
| Shift Count                           | SR<2<br>SR>=2 | 220  | SRP<br>SHDL | 0004<br>1400 | 0 |

## DASR

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11          | 12 | 13 | 14 15 | 5 | COND  | LUTA | LABEL | RAR      | W |
|---|---|---|---|---|---|---|---|---|---|----|-------------|----|----|-------|---|-------|------|-------|----------|---|
| 0 | 0 | 0 | 1 | Х | 1 | 0 | 0 | 0 | 1 |    |             |    |    |       |   | SR<2  |      | SRP   | <b>-</b> |   |
|   |   |   |   |   |   |   |   |   |   |    | Shift Count |    |    |       |   | SR>=2 | 221  | SHDR  | 1410     | ø |

### DCMP

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 1 | 2 13  | 14 | 15 | CO |   | <br>LUTA | LABEL   | AR   | <br>W |
|---|---|---|---|---|---|---|---|---|---|---------|-------|----|----|----|---|----------|---------|------|-------|
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |         |       |    |    | SR |   | 310      | <br>SRP | 0004 | <br>1 |
|   |   |   |   |   |   |   |   |   |   | Sta     | ck Op | В  |    | SR | • | 350      | DCMP    | 9554 | i     |

### DCSL

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12    | 13  | 14 | 15 | COND  | LUTA | LABEL | RAR      | W |
|---|---|---|---|---|---|---|---|---|---|-------|-------|-----|----|----|-------|------|-------|----------|---|
| 0 | 0 | Ō | 1 | X | 1 | 0 | 1 | 0 | 0 |       |       |     |    |    | SR<2  |      | SRP   | <br>0004 |   |
|   |   |   |   |   |   |   |   |   |   | :     | Shift | Cou | nt |    | SR>=2 | 224  | SHOL  | 1400     | 0 |

### DCSR

| 0        | 1         | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12     | 13 14 15 |               | LUTA    | LABEL       | RAR          | W      |
|----------|-----------|--------|---|---|---|---|---|---|---|-------|--------|----------|---------------|---------|-------------|--------------|--------|
| 0<br>218 | 0<br>4-58 | 0<br>5 | 1 | X | 1 | 0 | 1 | 0 | 1 | sł    | nift ( | Count    | SR<2<br>SR>=2 | <br>225 | SRP<br>SHDR | 0004<br>1410 | -<br>0 |

## DUEL

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                             | COND                        | LUTA                     | LABEL                        | RAR                          | W           |
|-------------------------------------------------------------------|-----------------------------|--------------------------|------------------------------|------------------------------|-------------|
| 0 0 0 0 0 0 0 0 1 0<br>Stack Op B                                 | SR<2<br>SR>=2               | 342<br>302               | DDL 1<br>DDEL                | 0472<br>0770                 | 1<br>1      |
| DDUP                                                              |                             |                          |                              |                              |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                             | COND                        | LUTA                     | LABEL                        | RAR                          | W           |
| 0 0 0 0 1 0 0 1 1 0 Stack Op B                                    | SR<2<br>SR>=2               | 366<br>326               | DDUP<br>DDP1                 | 0676<br>0673                 | 1<br>1      |
|                                                                   |                             |                          |                              |                              |             |
| DECA                                                              |                             |                          |                              |                              |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                             | COND                        | LUTA                     | LABEL                        | RAR                          | W           |
| 0 0 0 0 0 1 1 1 0 0<br>Stack Op B                                 | SR<2<br>SR>=2               | 254                      | SRP<br>DECA                  | 0004<br>0651                 | 1           |
| DECB                                                              |                             |                          |                              |                              |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                             | COND                        | LUTA                     | LABEL                        | RAR                          | W           |
| 0 0 0 0 1 1 1 1 0 0<br>Stack Op B                                 | SR<2<br>SR>=2               | 274                      | SRP<br>DECB                  | и004<br>0653                 |             |
| DECM                                                              |                             |                          |                              |                              |             |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                             | COND                        | LUTA                     | LABEL                        | RAR                          | W           |
| 1     0     1     0     X     1     1       Mode and Displacement | DB REL.<br>Q REL.<br>S REL. | 050<br>050<br>051<br>052 | AC1D<br>AC1D<br>AC1S<br>IDMY | 0013<br>0013<br>0012<br>0262 | 1<br>1<br>1 |

2184-59

Figure 4-1. Instruction to Microprogram Index (Sheet 9 of 34)

JLUI

IDMY

Ø52

ø262

1

# DECX

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 13 | 14 | 15 | ] | COND  | LUTA | LABEL | RAR          | W |
|---|---|---|---|---|---|---|---|---|---|----|----|-----|----|----|----|---|-------|------|-------|--------------|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |    |    |     |    |    |    |   | SR<2  | 345  | DECX  |              |   |
|   |   | _ |   |   |   |   |   |   |   | ļ  | St | ack | Op | в  |    |   | SR>=2 | 305  | DECX  | 0655<br>0655 | 1 |

## DEL

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR  | W   |
|---------------------------------------|-------|------|-------|------|-----|
| 0 0 0 0 1 0 0 0 0 0 0                 | SR<2  | 360  | DEL1  | Ø476 | 1   |
| Stack Op B                            | SR>=2 | 320  | DEL   | Ø471 | L I |

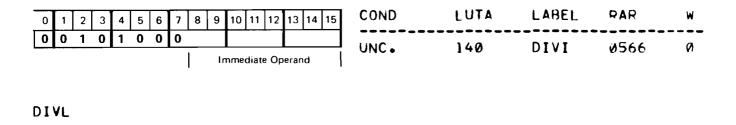
### DELB

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 12 | 2 1: | 3 14 | 15 |   | COND  | <br>LUTA | <br>LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|-------|------|------|----|---|-------|----------|-----------|------|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Ļ  | _     |      |      |    | ļ | SR<2  | <br>341  | <br>SRP   | 0004 | 1 |
|   |   |   |   |   |   |   |   |   |   |    | Stac  | k O  | рΒ   |    |   | SR>=2 | 301      | DELB      | Ø667 | 1 |

## DFLT

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----------|----------|-------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |          |          | SR<2  |      | SRP   | 0004 |   |
|   |   |   |   |   |   |   |   |   |   | Stack    | ОрВ      | SR>=2 | 250  | DFLT  | 1234 | 1 |

### DIV


| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 1 | 15 | COND  | LUTA | LABEL | RAR      | W |
|---|---|---|---|---|---|---|---|---|---|----------|---------|----|-------|------|-------|----------|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |          |         |    | SR<2  |      | SRP   | <b>-</b> |   |
|   |   |   |   |   |   |   |   |   |   | Stack    | Ор В    |    | SR>=2 | 243  | DIV   | Ø577     | 1 |

2184-60

)

Figure 4-1. Instruction to Microprogram Index (Sheet 10 of 34)

# DIVI



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 <sup>-</sup> | 14 15 |      | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|----|----|-----------------|-------|------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |    |    |    |                 |       | SR<4 | 314  | SRP   | 0004 |   |
|   |   |   |   |   |   |   |   |   |   |    |    |    |                 |       |      |      |       |      |   |

### DLSL

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL       | RAR          | W |
|---------------------------------------|---------------|------|-------------|--------------|---|
| 0 0 0 1 X 1 0 0 1 0                   |               |      |             |              |   |
| Shift Count                           | SR<2<br>SR>=2 | 222  | SRP<br>SHDL | 0004<br>1400 | 0 |

### DLSR

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 1    | 2 1   | 3 1  | 14 15 |     |    | <br>LUTA | _ | LABEL |   | AR  | W |
|---|---|---|---|---|---|---|---|---|---|------|------|-------|------|-------|-----|----|----------|---|-------|---|-----|---|
| 0 | 0 | 0 | 1 | х | 1 | 0 | 0 | 1 | 1 |      |      |       |      |       | SR< |    |          |   | SRP   | _ | 004 | _ |
|   |   |   |   |   |   |   |   |   |   |      | Shif | ft Co | วนกา | t     |     | =2 | 223      |   | SHDR  | 1 | 410 | ø |

### DNEG

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR      | W     |
|---------------------------------------|------|------|-------|----------|-------|
| 0 0 0 0 0 1 1 0 1                     | SR<4 | 315  | SRP   | <br>0904 | <br>1 |
| Stack Op B                            | SR=4 | 355  | DNEG  | и544     | 1     |

2184-61

Figure 4-1. Instruction to Microprogram Index (Sheet 11 of 34)

### DPF

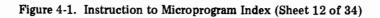
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                     | COND          | LUTA    | LABEL      | RAR          | W     |
|-----------------------------------------------------------|---------------|---------|------------|--------------|-------|
| 0 0 1 0 1 1 1 0<br>  Starting   Number<br>  Bit # of Bits | SR<2<br>SR>=2 | <br>170 | SRP<br>DPF | 0004<br>1501 | <br>0 |

# DSUB

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12    | 13   | 14 1 | 5 | COND | LUTA | LABEL | RAR      | W |
|---|---|---|---|---|---|---|---|---|---|-------|-------|------|------|---|------|------|-------|----------|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |       |       |      |      |   | SR<4 | 212  | SRP   | <br>0004 |   |
|   |   |   |   |   |   |   |   |   |   |       | Stack | Ор В | ;    |   | SR=4 | 352  | DSUB  | 0540     | 1 |

# DIST

| - | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 13 1 | 4 | 15 |   | COND  | LUT | LABEL   | RAR          | W |
|---|---|---|---|---|---|---|---|---|---|---|----|----|-----|------|---|----|---|-------|-----|---------|--------------|---|
|   | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |    |    |     |      |   |    |   | SR<2  |     | <br>SRP | <br>0004     |   |
|   |   |   |   |   | - |   |   |   |   |   |    | St | ack | Op B | - |    | ļ | SR>=2 | 247 | DTST    | Ø004<br>Ø636 | 1 |


### DUP

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 15 |       | LUTA | LABEL | RAP               | W |
|---|---|---|---|---|---|---|---|---|---|----------|----------|-------|------|-------|-------------------|---|
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |          |          | SP/2  | 365  | DUP   | - <b></b><br>0671 |   |
|   |   |   |   |   |   |   |   |   |   | Stack    | Ор В     | SR>=2 | 325  | DUP1  | 0670              | 1 |

## DXBZ

| 0 | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 15  | COND  | LUTA | LABEL | RAR      | W |
|---|---|---|---|----|---|---|---|---|---|----------|-----------|-------|------|-------|----------|---|
| 0 | 0 | 0 | 1 | I. | 0 | 1 | 0 | 1 | 1 | ±        |           | SR<2  |      | SRP   | <br>0004 |   |
|   |   |   |   |    |   |   |   |   |   | Dis      | placement | SR>=2 | 213  | DXBZ  | 3404     | 1 |

2184-62



### DXCH

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 12 | 13 14 1 | 5 | COND         | LUTA       | LABEL       | RAR          | W |
|---|---|---|---|---|---|---|---|---|---|----|-------|---------|---|--------------|------------|-------------|--------------|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |    | Stac  | k Op B  |   | SR<4<br>SR=4 | 316<br>356 | SRP<br>DXCH | 0004<br>0633 | 1 |

### DZR0

| 0         0         0         0         1         1         1         SR<2         347           Stack Op B         SR>=2         307 | DZRO Ø662<br>ZRO2 Ø657 | 1<br>1 |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|

EXF

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                   | COND LUTA LABEL RAR W                                                                                   |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 0 0 1 0 1 1 0 1<br>  Starting   Number<br>Bit # of Bits | SR<2          SRP         ØØØ4         -           SR>=2         164         EXF         1475         Ø |

### EXIT

| 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | COND | <br>LUTA | <br>LABEL | RAR  | W     |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|------|----------|-----------|------|-------|
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |   |   |    |    |    |    |    |    |      | <br>116  | <br>EVIT  | 2421 | <br>1 |
|   |   |   |   |   |   |   |   |   |   |   |    | ٩  | N  |    |    |    | UNC. | [10      | CVII      | 2021 | 1     |

### FADD

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 0 0 1 0 1 0 0 1 Stack Op B        | SR<4 | 331  | SRP   | 0004 | 1 |
|                                       | SR=4 | 371  | FADD  | 1001 | 1 |

2814-63

## FCMP

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND         | LUTA       | LAHEL       | RAR          | W |
|---------------------------------------|--------------|------------|-------------|--------------|---|
| 0 0 0 0 1 0 1 0 0 0 Stack Op B        | SR<4<br>SR=4 | 330<br>370 | SRP<br>FCMP | 0004<br>1255 | 1 |

# FDIV

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 13 14 | 15 | COND | <br>LUTA | <br>LABEL | RAR        |   | W |
|---|---|---|---|---|---|---|---|---|---|----|----|-----|-------|----|------|----------|-----------|------------|---|---|
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |    |    |     |       |    | SR<4 | <br>334  | SRP       |            |   | · |
|   |   |   |   |   |   |   |   |   |   |    | St | ack | Ор В  |    | SR=4 | 374      | FDIV      | 000<br>114 | _ | 1 |

### FIXR

| 0 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12   | 13 14 | 15 | COND  | LUTA | LABEL | RAR          | W |
|-----|---|---|---|---|---|---|---|---|-------|------|-------|----|-------|------|-------|--------------|---|
| 0 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |       |      |       |    | SR<2  |      | SRP   |              |   |
|     |   |   |   |   |   |   |   |   | s     | tack | ОрВ   |    | SR>=2 | 270  | FIXR  | 0004<br>1277 | - |

# FIXT

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 1: | 2 1: | 3 14 | 15 | COND          | LUTA | LABEL       | RAR          | Ŵ |
|---|---|---|---|---|---|---|---|---|---|----|-------|------|------|----|---------------|------|-------------|--------------|---|
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |    |       |      |      |    |               |      |             |              |   |
|   |   |   |   |   |   |   |   |   |   |    | Stac  | k Op | B    |    | SR<2<br>SR>=2 | 271  | SRP<br>FIXT | 0004<br>1276 | - |

## FLT

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---------------------------------------|-------|------|-------|------|---|
|                                       | SR<2  | 367  | FLT   | 1231 | 1 |
| Stack Op B                            | SR>=2 | 327  | FLT1  | 1226 | 1 |

2184-64

Figure 4-1. Instruction to Microprogram Index (Sheet 14 of 34)

### FMPY

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12   | 13 | 14 | 15 |              | <br>LUTA   |    | ABEL      | RAR          | W          |
|---|---|---|---|---|---|---|---|---|---|----|----|------|----|----|----|--------------|------------|----|-----------|--------------|------------|
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |    | St | tack | Ор | в  |    | SR<4<br>SR=4 | 333<br>373 | SI | RP<br>MPY | 0004<br>1110 | <br>1<br>1 |

## FNEG

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA       | LABEL | RAR  | W     |
|---------------------------------------|------|------------|-------|------|-------|
| 0 0 0 0 1 0 1 1 0 1                   | SR<4 |            |       |      | <br>, |
| Stack Op B                            |      | 335<br>375 | SRP   | 0004 | 1     |
|                                       | SR=4 | 315        | FNEG  | 1104 | 1     |

### FSUB

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
|                                       | SR<4 | 332  | SRP   | 0004 | 1 |
| Stack Op B                            | SR=4 | 372  | FSUB  | 1000 | 1 |

# HALT

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 14    | 15 | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----------|----|-------|------|-------|------|---|
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1  | 1  |    |          |    |       | 177  |       |      | 1 |
|   |   |   |   |   |   |   |   |   |   |    |    |    | lot Used | a  | UNC . | 177  | HALT  | 2133 | L |

### IABZ

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL        | RAR          | W |
|---------------------------------------|---------------|------|--------------|--------------|---|
| 0 0 0 1 I 0 0 1 1 1 ±                 |               |      |              |              | _ |
| Displacement                          | SR<2<br>SR>=2 | 207  | SRP<br>I ABZ | 0004<br>2363 | 1 |

2184-65

## INCA

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL       | RAR          | W     |
|---------------------------------------|---------------|------|-------------|--------------|-------|
| 0 0 0 0 0 1 1 0 1 1 Stack Op B        | SR<2<br>SR>=2 | 253  | SRP<br>INCA | 0004<br>0652 | <br>1 |

### INCB

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12   | 13 | 14 | 15 | 5 | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|-------|------|----|----|----|---|-------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |       |      |    |    |    |   | SR<2  |      | SRP   | 0004 |   |
|   |   |   |   |   |   |   |   |   |   | 5     | tack | Ор | B  |    | Ī | SR>=2 | 273  | INCB  | 0654 | 1 |

### INCM

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  | COND              | LUTA       | LABEL          | RAR          | W      |
|----------------------------------------|-------------------|------------|----------------|--------------|--------|
| 1 0 1 0 X I 0<br>Mode and Displacement | DB REL.<br>Q REL. | 053<br>053 | I NCM<br>I NCM | 0035<br>0035 | 1<br>1 |
|                                        | S REL.            | 053        | INCM           | 0035         | 1      |
|                                        | JLUI              | Ø52        | IDMY           | 0262         | 1      |

## INCX

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 11 12 | 13 14 15 | ] | COND  | LUTA | LABEL | RAR             | W |
|---|---|---|---|---|---|---|---|---|----|----------|----------|---|-------|------|-------|-----------------|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0. |          |          |   | SR<2  | 344  | INCX  | <b></b><br>Ø656 | 1 |
|   |   |   |   |   |   |   |   |   |    | Stack    | Ор В     |   | SR>=2 | 304  | INCX  | Ø656            | 1 |

### IXBZ

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR          | W      |
|---------------------------------------|-------|------|-------|--------------|--------|
| 0 0 0 1 I 0 1 0 1 0 ±                 | SR<2  |      | SRP   |              |        |
| 2184-66 Displacement                  | SR>=2 | 212  | IXBŽ  | 0004<br>3401 | -<br>1 |

Figure 4-1. Instruction to Microprogram Index (Sheet 16 of 34)

### LADD

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL       | RAR          | W |
|---------------------------------------|---------------|------|-------------|--------------|---|
| 0 0 0 1 1 0 0 0 0                     | _             |      |             |              |   |
| Stack Op B                            | SR<2<br>SR>=2 | 260  | SRP<br>LADD | 0004<br>0504 | - |

### LCMP

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 1 | 5 | COND | LUTA | LABEL | RAR      | W |
|---|---|---|---|---|---|---|---|---|---|----------|---------|---|------|------|-------|----------|---|
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |          |         |   | SR<4 | 337  | SRP   | <br>0004 | 1 |
|   |   |   |   |   |   | , |   |   |   | Stack    | Ор В    |   | SR=4 | 377  | LCMP  | 0466     | 1 |

### LDB

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15               | COND                        | LUTA                     | LABEL | RAR                  | W           |
|-----------------------------------------------------|-----------------------------|--------------------------|-------|----------------------|-------------|
| 1   1   0   1   X   I   0     Mode and Displacement | DB REL.<br>Q REL.<br>S REL. | 067<br>067<br>067<br>067 |       | Ø143<br>Ø143<br>Ø143 | 0<br>0<br>0 |

#### LUD

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                             | COND    | LUTA | LABEL | RAR  | W |
|-------------------------------------------------------------------|---------|------|-------|------|---|
| 1     1     0     1     X     I     1       Mode and Displacement | DB REL. | 064  | AC3D  | 0062 | 1 |
|                                                                   | Q REL.  | 064  | AC3D  | 0062 | 1 |
|                                                                   | S REL.  | 065  | AC3S  | 0061 | 1 |
|                                                                   | JLUI    | 066  | LDD   | 0130 | 1 |

LDI

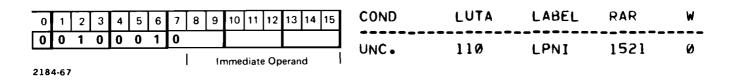
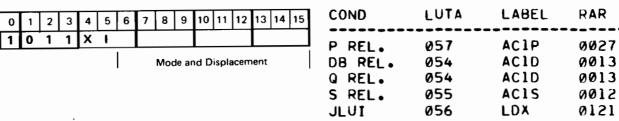



Figure 4-1. Instruction to Microprogram Index (Sheet 17 of 34)

### LDIV

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL       | RAR          | W |
|---------------------------------------|---------------|------|-------------|--------------|---|
| 0 0 0 0 1 1 0 0 1 1 Stack Op B        | SR<2<br>SR>=2 | 263  | SRP<br>LDIV | 0004<br>0517 | 1 |
| LDNI                                  |               |      |             |              |   |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL       | RAR          | W |
| 0 0 1 0 1 0 1 0<br>Immediate Operand  | UNC •         | 150  | LPNI        | 1521         | 1 |
|                                       |               |      |             |              |   |


LDPN

| 0               | 1 | 2 | 3 | 4 | .5 | 6 | 7 | 8 | 9 | 10 11 | 12   | 13   | 14 | 15 | COND | LUTA | LABEL | RAR  | W |
|-----------------|---|---|---|---|----|---|---|---|---|-------|------|------|----|----|------|------|-------|------|---|
| 0               | 0 | 1 | 1 | 1 | 0  | 0 | 1 |   |   |       |      |      |    |    | UNC. | 146  | LODP  | 0206 | 1 |
| P- Displacement |   |   |   |   |    |   | t |   |   | 140   | 2007 | 0200 | •  |    |      |      |       |      |   |

### LDPP

| 0               | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 10 11 12    | 13 14 15 | COND | LUTA | LABEL | RAR  | W     |
|-----------------|---|---|---|---|---|---|---|-----|-------------|----------|------|------|-------|------|-------|
| 0               | 0 | 1 | 1 | 1 | 0 | 0 | 0 |     |             |          | UNC. | 142  | LODP  | Ø2Ø6 | <br>Ø |
| P+ Displacement |   |   |   |   |   |   |   | 1   | P+ Displace | ment     |      |      |       | 02.0 | 2     |

LDX



2184-68

Figure 4-1. Instruction to Microprogram Index (Sheet 18 of 34)

W

--

1

1

1

1

1

#### LDXA

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11  | 12  | 13   | 14 15 |       | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|-----|-----|------|-------|-------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |    |     |     |      |       |       |      |       | a71/ |   |
|   |   |   |   |   |   |   |   |   |   |    | St. | ack | Op E | 2     | SR<2  | 364  | LDXA  | 0/14 | 1 |
|   |   |   |   |   |   |   |   |   |   | I  | 30  | ack | Ope  | •     | SR>=2 | 324  | LDX1  | 0713 | 1 |

## LUXB

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---------------------------------------|-------|------|-------|------|---|
| 0 0 0 0 1 0 0 1 0 Stack Op B          | SR<2  | 362  | SRP   | 0004 | 1 |
|                                       | SR>=2 | 322  | LDXB  | 0715 | 1 |

## LUXI

| 0 | 1 | 2 | 3  | 4 | 5 | 6 | 7 | 89 | 10 11 12    | 13 14 15 | COND | LUTA | LABEL | RAR  | W          |
|---|---|---|----|---|---|---|---|----|-------------|----------|------|------|-------|------|------------|
| 0 | 0 | 1 | ·O | 0 | 0 | 1 | 1 |    |             |          |      | 114  |       | 1507 |            |
|   |   |   |    |   |   |   |   | Ir | nmediate Op | erand    | UNC. | 114  | XPNI  | 1521 | <i>l</i> n |

## LÜXN

| 0 | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 11  | 12    | 13 14 1 | 15 | COND | LUTA | LABEL | PAR  | W |
|---|---|----|---|---|---|---|---|---|----|--------|-------|---------|----|------|------|-------|------|---|
| 0 | 0 | ·1 | 0 | 1 | 0 | 1 | 1 |   |    |        |       |         |    |      |      |       | 1507 | · |
|   |   |    |   |   |   |   |   |   | In | nmedia | te Oo | erand   |    | UNC. | 154  | XPNI  | 1221 | 1 |

## LLBL

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 0 10 11 12  | 13 14 15 |               | LUTA | LABEL       | RAR          | W      |
|---|---|---|---|---|---|---|---|-----|-------------|----------|---------------|------|-------------|--------------|--------|
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |     | PL-DISPLACI | EMENT    | SR<2<br>SR>=2 | 136  | SRP<br>LLBL | 0004<br>3407 | -<br>1 |

## LLSH

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |      | LUTA | LABEL | RAR          | W |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|------|------|-------|--------------|---|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0  | 0  | 0  | 0  | 0  | 1  | UNC. | 161  | RSW   | <b>035</b> 1 | Ø |

#### LMPY

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11  | 12    | 13 | 14 | 15 | ] | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|-----|-------|----|----|----|---|-------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |    |     |       |    |    |    |   | SR<2  |      | SRP   | 0004 | _ |
| - |   |   |   |   |   |   |   |   |   | Ī  | Sta | ack ( | Dρ | в  |    | 1 | SR>=2 | 262  |       | Ø511 | 1 |

## LOAD

| - | 1   | 2 | 3 |   | 4 | 5 | 6 | 7 | 8   | 9    | 10 11 12    | 13 14 15 | CO | ND   | LUTA | <br>LABEL | RAR  | W |  |
|---|-----|---|---|---|---|---|---|---|-----|------|-------------|----------|----|------|------|-----------|------|---|--|
| [ | ) 1 | 0 | Ċ | ) | X | ١ |   |   |     |      |             |          | P  | REL. | Ø23  | <br>ACIP  | 0027 | 1 |  |
|   |     |   |   |   |   |   |   |   | Mod | e an | d Displacem | ent      | DB |      | 020  | AC1D      | 0013 | ĩ |  |
|   |     |   |   |   |   |   |   |   |     |      |             |          | Q  | REL. | 020  | ACID      | 0013 | 1 |  |
|   |     |   |   |   |   |   |   |   |     |      |             |          | S  | REL. | Ø21  | ACIS      | 0012 | 1 |  |
|   |     |   |   |   |   |   |   |   |     |      |             |          | JL | UI   | Ø22  | LOAD      | 0122 | 1 |  |

#### LRA

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                       | COND                                  | LUTA                     | LABEL                        | RAR                          | W                |
|-------------------------------------------------------------|---------------------------------------|--------------------------|------------------------------|------------------------------|------------------|
| 1     1     1     1     X     I       Mode and Displacement | P REL.<br>DB REL.<br>Q REL.<br>S REL. | 077<br>074<br>074<br>075 | AC2P<br>AC2D<br>AC2D<br>AC2S | 0055<br>0044<br>0044<br>0043 | 1<br>1<br>1<br>1 |
|                                                             | JLUI                                  | 076                      | LRA                          | 0124                         | 1                |

LSL

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 15 |       | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----------|----------|-------|------|-------|------|---|
| 0 | 0 | 0 | 1 | × | 0 | 0 | 0 | 1 | 0 |          |          | SR<2  |      | SRP   | 0004 |   |
|   |   |   |   |   |   |   |   |   |   | Shift    | Count    | SR>=2 | 202  | SHFL  | 0732 | Ø |

Figure 4-1. Instruction to Microprogram Index (Sheet 20 of 34)

### LSR

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 1 12  | 13 14 15 |               | LUTA | LABEL       | RAR  | W     |
|---|---|---|---|---|---|---|---|---|---|------|-------|----------|---------------|------|-------------|------|-------|
| 0 | 0 | 0 | 1 | X | 0 | 0 | 0 | 1 | 1 |      | Shift | Count    | SR<2<br>SR>=2 | 203  | SRP<br>SHFR | 0724 | <br>Ø |

### LSUB

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 13 14 | 15 | COND  | LUTA | LABEL | RAR          | <b>h</b> |
|---|---|---|---|---|---|---|---|---|---|----|----|-----|-------|----|-------|------|-------|--------------|----------|
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |    |    |     |       |    | SR<2  |      | SRP   | 0004         |          |
|   |   |   |   |   |   |   |   |   |   | ļ  | St | ack | Ор В  |    | SR>=2 | 261  | LSUB  | 0004<br>0505 | 1        |

#### MOVE

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 14 | 15 |         | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|----|----|-------|----|---------|------|-------|------|---|
| 0 | 0 | 1 | Ö | 0 | 0 | 0 | 0 | 0 | 0 | 0  |    | 0  | 0     |    | P REL.  | 101  | PROG  | 2027 | 0 |
|   |   |   |   |   |   |   |   |   |   |    | РВ |    | SD    | EC | DB REL. | 105  | DATA  | 2030 | Ø |

#### MPY

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 11 | 12    | 3  | 14 | 15 |       | - | UTA | ABEL | RAR          | W |
|---|---|---|---|---|---|---|---|---|---|------|----|-------|----|----|----|-------|---|-----|------|--------------|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |      |    |       |    |    |    | SR<2  |   |     | RP   |              |   |
|   |   |   |   |   |   |   |   |   |   |      | St | ack ( | Эр | в  |    | SR>=2 |   | 242 | PY   | 0004<br>1705 | - |

#### MPYI

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 1  | 1 12   | 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|----|-------|--------|----------|-------|------|-------|------|---|
| 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |   |    |       |        |          | SR<2  |      | SRP   | 0004 | _ |
|   |   |   |   |   |   |   |   | ł | Ir | nmedi | iate O | perand   | SR>=2 | 134  | MPYI  | 1703 | ø |

2184-71

Figure 4-1. Instruction to Microprogram Index (Sheet 21 of 34)

7

#### MPYL

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 0 0 0 1 0 1 1                     | SR<4 | 313  | SRP   | 0004 | 1 |
| Stack Op B                            | SR=4 | 353  | MPYL  | 1706 | 1 |

#### MPYM

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9    | 10   | 11    | 12   | 13   | 14 | 15 | COND       |
|---|---|---|---|---|---|---|---|----|------|------|-------|------|------|----|----|------------|
| 1 | 0 | 0 | 1 | Х | I |   |   |    |      |      |       |      |      |    |    | PRE        |
|   |   |   |   |   |   | I |   | Мо | de a | nd C | Displ | асег | nent |    |    | DBR<br>QRE |

| COND    | LUTA    | LABEL | RAR  | W |
|---------|---------|-------|------|---|
| P REL.  | <br>Ø47 | AC1P  | 0027 | 1 |
| DB REL. | Ø44     | ACID  | 0013 | 1 |
| Q REL.  | 044     | AC1D  | 0013 | 1 |
| S REL.  | Ø45     | ACIS  | 0012 | 1 |
| JLUI    | Ø46     | MPYM  | 1700 | 1 |
|         |         |       |      |   |

#### MTBA

| 0       1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       COND       LUTA       LABEL       RAR         0       1       0       1       0       ±         P       REL       Ø27       LCB1       Ø416                Ø416 | w<br>0 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| MTBX                                                                                                                                                                                                                                                                                                  |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 COND LUTA LABEL RAR                                                                                                                                                                                                                                             | W      |
| 0 1 0 1 1 1 0 ± PREL. 027 LCB1 0416                                                                                                                                                                                                                                                                   | Ø      |
| MVB                                                                                                                                                                                                                                                                                                   |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 COND LUTA LABEL RAR                                                                                                                                                                                                                                             | W      |
| 0 0 1 0 0 0 0 0 0 1 0 0<br>PB  SDEC  DB REL. 111 PROG 2027<br>DB DB REL. 115 DATA 2030                                                                                                                                                                                                                | 0<br>Ø |

2184-72

Figure 4-1. Instruction to Microprogram Index (Sheet 22 of 34)

#### MVBL

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

#### MVBW

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8                | 9    | 10 1   | 1 12              | 13 14 15 | COND              | LUTA       | LABEL        | RAR          | W      |
|---|---|---|---|---|---|---|---|------------------|------|--------|-------------------|----------|-------------------|------------|--------------|--------------|--------|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |   | 1<br>Alpi<br>Nur | habe | tic: ( | CCF<br>) 1<br>  0 | Upshift  | P REL.<br>DB REL. | 141<br>145 | SCAM<br>SCAM | 2126<br>2126 | 0<br>0 |

## MVLB

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 8 14 15 | COND | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|---------|------|------|-------|------|---|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1  | 0  | 0  | 0  |         | UNC. | 131  | MVLB  | 2003 | 0 |
|   |   |   |   |   |   |   |   |   |   |    |    |    |    | SDEC    |      | 101  |       | 2000 | U |

#### NEG

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 | 15 |       | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----------|-------|----|-------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |          |       |    | SR<2  |      | SRP   | 0004 |   |
|   |   |   |   |   |   |   |   |   |   | Stack    | Ор В  |    | SR>=2 | 244  | NEG   | Ø465 | 1 |

#### NOP

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---------------------------------------|-------|------|-------|------|---|
| 0 0 0 0 0 0 0 0 0 0                   | SR<2  | 340  | NOP   | 1466 | 1 |
| Stack Op B                            | SR>=2 | 300  | NOP   | 1466 | 1 |

2184-73

Figure 4-1. Instruction to Microprogram Index (Sheet 23 of 34)

NOT

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12   | 13 | 14 | 15 |               | LUTA           | LABEL      | RAR          | W      |
|---|---|---|---|---|---|---|---|---|---|-------|------|----|----|----|---------------|----------------|------------|--------------|--------|
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | s     | tack | Ор | в  |    | SR<2<br>SR>=2 | <b></b><br>264 | SRP<br>NOT | 0004<br>0537 | -<br>1 |

•

OR

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12    | 13 | 14 | 15 |   | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|-------|-------|----|----|----|---|-------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |       |       |    |    |    |   | SR<2  |      | SRP   | 0004 |   |
|   |   |   |   |   |   |   |   |   |   | :     | Stack | Ор | в  |    | Ī | SR>=2 | 265  | OR    | 0646 | 1 |

ORI

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---------------------------------------|-------|------|-------|------|---|
| 0 0 1 1 1 1 0 1<br>Immediate Operand  | SR<2  |      | SRP   | 0004 | - |
| Immediate Operand                     | SR>=2 | 166  | ORI   | 1524 | Ø |

PAUS

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13  | 14   | 15 |      | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|----|----|-----|------|----|------|------|-------|------|---|
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 1  |    |     |      |    | UNC. | 107  | PAUS  | 1541 |   |
|   |   |   |   |   |   |   |   | _ |   |    |    | ,  | Not | Used |    | UNC  | 107  | PAUS  | 1541 | I |

PCAL

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 | 12 | 13 14 15 |      | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|-------|----|----------|------|------|-------|------|---|
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |   |   | L     |    |          | UNC. | 112  | PCAL  | 2546 | 1 |
|   |   |   |   |   |   |   |   |   |   | 1     | N  |          |      |      |       |      |   |

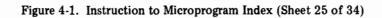
## PLDA

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 1 | 5 | COND | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|-----|---|------|------|-------|------|---|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0  | 1  | 0  | 0  | 0   | 0 | UNC. | 165  | PLDA  | 0753 | 0 |

## PSHR

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W     |
|---------------------------------------|------|------|-------|------|-------|
| 0 0 1 0 1 0 0 1 0                     | UNC. | 144  | PSHP  | 1557 | <br>0 |
| DBDLZ StaXQ S                         |      | 144  | 1 Jun | 1334 | v     |

#### PSTA


| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | COND | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|------|------|-------|------|---|
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0  | 1  | 0  | 0  | 0  | 1  | UNC. | 165  | PLDA  | Ø753 | ø |

## RIO

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W      |
|---------------------------------------|------|------|-------|------|--------|
| 0 0 1 1 0 0 0 0 1 0 0 0               | UNC. | 143  | RIO   | 2252 | 0<br>0 |

#### RMSK

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 1 1 0 0 0 0 0 1 0 1<br>Not Used   | UNC. | 127  | RMSK  | 2330 | 1 |



#### RS₩

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0       | UNC. | 161  | RSW   | ø351 | 0 |

#### SBXI

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10   | 11    | 12   | 13   | 14 | 15 | ] | COND  | _ |    | LABEL | RAR          | <br>W |
|---|---|---|---|---|---|---|---|---|----|------|-------|------|------|----|----|---|-------|---|----|-------|--------------|-------|
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |   |    |      |       |      |      |    |    |   | SR<2  |   |    | SRP   |              | _     |
|   |   |   |   |   |   |   |   |   | In | nmed | liate | o Op | eran | d  |    | I | SR>=2 | _ | 30 | ASI   | 0004<br>1523 | 1     |

## SCAL

| C  | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|    |    |    |    |    |    |    |   |   | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| Ur |    |    |    | 4  | N  |    |   |   |   |   |   |   |   |   |   |   |

| COND  | LUTA | LABEL | RAR  | W |
|-------|------|-------|------|---|
| UNC • | 106  |       | 2545 | 1 |

#### SCAN

| 0        | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10    | 11  | 12   | 13   | 14 | 15 | 5 | COND | LUTA | LABEL | RAR      | W |
|----------|---|---|---|---|---|---|---|---|---|-------|-----|------|------|----|----|---|------|------|-------|----------|---|
| 0        | 0 | 0 | 1 | Х | 0 | 0 | 1 | 1 | 0 | 0     | 0   | 0    | 0    | 0  | Ō  | ) | SR<2 |      | SRP   | <br>0004 |   |
| Reserved |   |   |   |   |   |   |   | ł |   | SR>=2 | 206 | SCAN | 0740 | 1  |    |   |      |      |       |          |   |

## SCU

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 1 0 0 0 0 0 0 1 1 1 0 0<br>SDEC   | UNC. | 135  | SCAM  | 2126 | 0 |

## SCW

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 1 0 0 0 0 0 0 1 0 1 0 0<br>SDEC   | UNC. | 125  | SCAM  | 2126 | ø |

#### SED

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0         | UNC. | 113  | SED   | 2315 | 0 |

#### SETR

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA    | LABEL       | RAR          | W      |
|---------------------------------------|---------------|---------|-------------|--------------|--------|
| 0 0 1 0 1 1 1 1 0                     |               |         |             |              |        |
| DB DL Z Sta X Q S                     | SR<2<br>SR>=2 | <br>174 | SRP<br>SETR | 0004<br>1605 | -<br>ø |

#### SIN

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ] | COND | LUTA | LABEL | RAR  | W     |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|---|------|------|-------|------|-------|
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1  | 0  |    |    |    |    |   | UNC. | 173  | SIN   | 2323 | <br>Ø |
|   |   |   |   |   |   |   |   |   |   |    |    |    | ł  | ĸ  |    |   |      |      |       |      |       |

#### **SI**0

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 1 1 0 0 0 0 1 1 1                 | UNC. | 137  | S10   | 2233 | 0 |
|                                       |      |      |       |      |   |

## SIRF

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W     |
|---------------------------------------|------|------|-------|------|-------|
| 0 0 1 1 0 0 0 0 1 1 0 1               | UNC. | 167  | SIRF  | 2343 | <br>Ø |
| K                                     |      |      |       |      |       |

#### SMSK

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 1 1 0 0 0 0 0 1 0 0<br>Not Used   | UNC. | 123  | SMSK  | 2332 | 1 |

#### STAX

| 0 | ľ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 15 | ] | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|---|----------|----------|---|-------|------|-------|------|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |          |          |   | SR<2  | 363  | SRP   | 0004 | 1 |
|   |   |   |   |   |   |   |   |   |   |   | Stack    | Ор В     |   | SR>=2 | 323  | STAX  | 0716 | 1 |

#### STB

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND    | LUTA | LABEL | RAR  | W |
|---------------------------------------|---------|------|-------|------|---|
|                                       | DB REL. | 073  | LDB   | Ø143 | ø |
| Mode and Displacement                 | Q REL.  | 073  | LDB   | Ø143 | Ø |
|                                       | S REL.  | 073  | LDB   | Ø143 | Ø |

#### STBX

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13 14 15 | COND  | LUTA | LABEL | RAR              | W |
|---|---|---|---|---|---|---|---|---|---|----------|----------|-------|------|-------|------------------|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |          |          | SR<2  |      | SRP   | <b>-</b><br>0004 |   |
|   |   |   |   |   |   |   |   |   |   | Stack    | ОрВ      | SR>=2 | 246  | STBX  | 0717             | 1 |

2184-78

Figure 4-1. Instruction to Microprogram Index (Sheet 28 of 34)

## STD

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9   | 10  | 11  | 12   | 13  | 3   | 14 15 |  | COND    | L | UTA          | LAB        | BEL | RAF        |    | W      |
|---|---|---|---|---|---|---|---|---|-----|-----|-----|------|-----|-----|-------|--|---------|---|--------------|------------|-----|------------|----|--------|
| 1 | 1 | 1 | 0 | Х | 1 | 1 |   |   | ode | and | Dis | olac | eme | ent | t     |  | DB REL. |   | <br>70<br>70 | AC4<br>AC4 | -   | Ø16<br>Ø16 | _  | 1      |
|   |   |   |   |   |   |   | • |   |     |     |     |      |     |     |       |  | S REL.  | Ø | 71<br>72     | AC4<br>STD | S   | Ø10<br>Ø22 | 91 | 1<br>1 |

## STOR

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  | COND                                | LUTA                     | LABEL                        | RAR                          | W                |
|----------------------------------------|-------------------------------------|--------------------------|------------------------------|------------------------------|------------------|
| 0 1 0 1 X I 1<br>Mode and Displacement | DB REL.<br>Q REL.<br>S REL.<br>JLUI | 024<br>024<br>025<br>026 | AC1D<br>AC1D<br>AC1S<br>STOR | 0013<br>0013<br>0012<br>0220 | 1<br>1<br>1<br>1 |

## SUB

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12   | 13 1        | 4 15 |       | LUTA | <br>LABEL | RAR                  | W |
|---|---|---|---|---|---|---|---|---|---|----|----|------|-------------|------|-------|------|-----------|----------------------|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |    |    |      |             |      | 50/2  |      | <br>SRP   |                      |   |
|   |   |   |   |   |   |   |   |   |   |    | S  | tack | Ор <b>В</b> |      | SR>=2 | 241  | SUB       | 00 <b>04</b><br>0464 | 1 |

## SUBI

| 0 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10   | 11  | 12  | 13   | 14 | 15 |       | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|------|-----|-----|------|----|----|-------|------|-------|------|---|
| 0 | 0 | 1 | 0 |   | 0 | 1 | 1 | 0 |   |    |      |     |     |      | _  |    | 50/2  |      |       |      |   |
|   |   |   |   |   |   |   |   |   |   | 1  |      |     |     |      |    | 1  | SKAZ  |      | SRP   | 0004 | - |
|   |   |   |   |   |   |   |   |   |   | 10 | nmed | ate | Ope | eran | a  |    | SR>=2 | 130  | ASI   | 1523 | 1 |

#### SUBM

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                 | COND                                          | LUTA                            | LABEL                                | RAR                                  | W                |
|-------------------------------------------------------|-----------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|------------------|
| 1     0     0     X     I       Mode and Displacement | P REL.<br>DB REL.<br>Q REL.<br>S REL.<br>JLUI | 043<br>040<br>040<br>041<br>042 | AC1P<br>AC1D<br>AC1D<br>AC1S<br>SUBM | 0027<br>0013<br>0013<br>0012<br>0257 | 1<br>1<br>1<br>1 |

Figure 4-1. Instruction to Microprogram Index (Sheet 29 of 34)

#### SUBS

•

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                        | COND          | LUTA | LABEL       | RAR          | W      |
|--------------------------------------------------------------|---------------|------|-------------|--------------|--------|
| 0 0 1 1 1 0 1 1<br>Immediate Operand                         | UNC.          | 156  | SUBS        | 1660         | 1      |
|                                                              |               |      |             |              |        |
| SXIT                                                         |               |      |             |              |        |
|                                                              | COND          | LUTA | LABEL       | RAR          | W      |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 1 1 0 1 0 0     | SR<2          |      | SRP         |              |        |
| N                                                            | SR>=2         | 122  | SXIT        | 0004<br>1531 | 1      |
|                                                              |               |      |             |              |        |
| TASL                                                         |               |      |             |              |        |
|                                                              |               |      |             |              |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 0 1 X 0 1 0 0 0 | COND          | LUTA | LABEL       | RAR          | W<br>  |
| Shift Count                                                  | SR<2<br>SR>=2 | 210  | SRP<br>TASL | 0004<br>1417 | ø      |
|                                                              |               |      | Computer    |              |        |
| TASR                                                         |               | Ţ    | Museum      |              |        |
|                                                              |               |      |             |              |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 0 1 X 0 1 0 0 1 | COND          | LUTA | LABEL       | RAR          | W<br>  |
| Shift Count                                                  | SR<2<br>SR>=2 | 211  | SRP<br>TASR | 0004<br>1432 | -<br>0 |
|                                                              |               |      |             |              |        |
| TBA                                                          |               |      |             |              |        |
|                                                              |               |      |             |              |        |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                        | COND          | LUTA | LABEL       | RAR          | W      |
| 0 1 0 1 0 0 0 ±<br>Displacement                              | P REL.        | ø27  | LCB1        | 0416         | 0      |
| 2184-80                                                      |               |      |             |              |        |

2184-80

Figure 4-1. Instruction to Microprogram Index (Sheet 30 of 34)

## TBC

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                    | COND           | LUTA           | LABEL       | RAR          | W          |
|----------------------------------------------------------|----------------|----------------|-------------|--------------|------------|
| 0 0 0 1 X 1 1 0 1 0<br>Bit Position                      | SR<2<br>SR>=2  | 232            | SRP<br>TBC  | 0004<br>1465 | -<br>Ø     |
| төх                                                      |                |                |             |              |            |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 1 0 1 1 0 0 ± | COND<br>P REL. | LUTA<br>027    | LABEL       | RAR<br>0416  | W<br><br>0 |
| Displacement                                             |                |                |             |              |            |
| TCBC                                                     |                |                |             |              |            |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                    | COND           | LUTA           | LABEL       | RAR          | W<br>      |
| 0 0 0 1 X 1 1 1 0 1<br>Bit Position                      | SR<2<br>SR>=2  | 235            | SRP<br>TCBC | 0004<br>1473 | -<br>Ø     |
| TEST                                                     |                |                |             |              |            |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                    | COND           | LUTA           | LABEL       | RAR          | W          |
| 0 0 0 0 0 1 0 1 0 1 Stack Op B                           | SR<2<br>SR>=2  | <b></b><br>245 | SRP<br>TEST | 0004<br>0632 | 1          |
| TIO                                                      |                |                |             |              |            |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                    | COND           | LUTA           | LABEL       | RAR          | W          |
| 001100001010<br>K                                        | UNC.           | 153            | TIO         | 2300         | 0          |

2184-81

Figure 4-1. Instruction to Microprogram Index (Sheet 31 of 34)

#### TNSL

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12   | 13   | 14 | 15 | 5 |       | LU |    | LABE | RAR      | <br>W |
|---|---|---|---|---|---|---|---|---|---|----|----|------|------|----|----|---|-------|----|----|------|----------|-------|
| 0 | 0 | 0 | 1 | x | 0 | 1 | 1 | 1 | 0 | 0  | 0  | 0    | 0    | 0  | 0  |   | SR<2  |    |    | SRP  | <br>0004 |       |
|   |   |   |   |   |   |   |   |   |   | l  | 1  | Rese | rved | )  |    | I | SR>=2 | 21 | .6 | TNSL | 1342     | 1     |

## TRBC

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11 12 | 13     | 14 15 | ] | COND  | LUTA | LABEL | RAR      | W |
|---|---|---|---|---|---|---|---|---|---|----------|--------|-------|---|-------|------|-------|----------|---|
| 0 | 0 | 0 | 1 | х | 1 | 1 | 0 | 1 | 1 |          |        |       |   | SR<2  |      | SRP   | <br>0004 | _ |
|   |   |   |   |   |   |   |   |   |   | Bit Po   | sition | •     |   | SR>=2 | 233  | TRBC  | 1467     | Ø |

## TSBC

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11  | 2  | 13     | 14 | 15 | ] | COND  | LUTA | LABEL | RAR  | W |
|---|---|---|---|---|---|---|---|---|---|----|-----|----|--------|----|----|---|-------|------|-------|------|---|
| 0 | 0 | 0 | 1 | х | 1 | 1 | 1 | 0 | 0 |    |     |    |        |    |    |   | SR<2  |      | SRP   | 0004 |   |
|   |   |   |   |   |   |   |   |   |   |    | Bit | Po | ositio | on |    |   | SR>=2 | 234  | TSBC  | 1471 | Ø |

## TSBM

| 0 | 1 | 2 | Ι | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 11              | 12            | 13 | 14 | 15 | COND  | LUTA | LABEL | RAR          | W |
|---|---|---|---|---|---|---|---|---|---|---|--------------------|---------------|----|----|----|-------|------|-------|--------------|---|
| 0 | 0 | 1 |   | 1 | 1 | 1 | 0 | 0 |   |   |                    |               |    |    |    | SR<2  |      | SRP   |              |   |
|   |   |   |   | _ |   |   |   |   |   |   | DB+ Re<br>Displace | elati<br>emer |    |    |    | SR>=2 | 162  | TSBM  | 0004<br>1443 | ø |

#### WIO

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND | LUTA | LABEL | RAR  | W |
|---------------------------------------|------|------|-------|------|---|
| 0 0 1 1 0 0 0 1 0 0 1 K               | UNC. | 147  | WIO   | 2265 | Ø |

## XAX

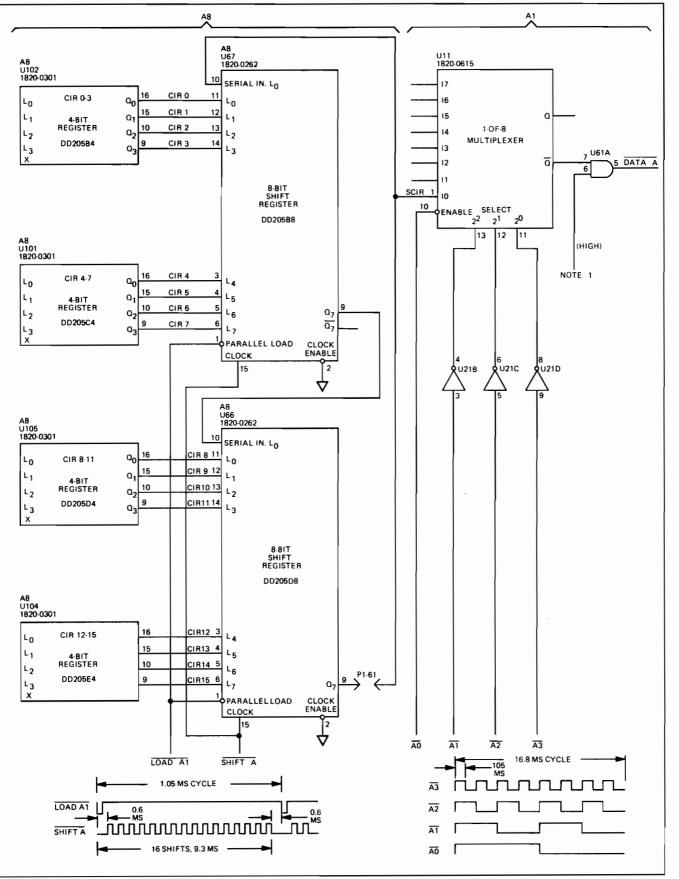
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL        | RAR          | W |
|---------------------------------------|-------|------|--------------|--------------|---|
| 0 0 0 0 1 1 1 0 1                     | SR<2  |      |              |              |   |
| Stack Op B                            | SR>=2 | 255  | SRP<br>X & X | 0004<br>0704 | - |

## XBX

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND  | LUTA | LABEL | RAR  | W |
|---------------------------------------|-------|------|-------|------|---|
| 0 0 0 0 1 1 1 1 0 1                   | SR<2  |      | SRP   | 0004 |   |
| Stack Op B                            | SR>=2 | 275  | XBX   | 0706 | 1 |

## ХСН

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL      | RAR          | W     |
|---------------------------------------|---------------|------|------------|--------------|-------|
| 0 0 0 0 0 1 1 0 1 0 Stack Op B        | SR<2<br>SR>=2 | 252  | SRP<br>XCH | 0004<br>0702 | <br>1 |
| XCHD                                  |               |      |            |              |       |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL      | RAR          | W     |
| 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0         | UNC.          | 117  | XCHD       | 1674         | 1     |
| XEQ                                   |               |      |            |              |       |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | COND          | LUTA | LABEL      | RAR          | W     |
| 0 0 1 1 0 0 0 0 0 1 1 0               | UNC.          | 133  | XEQ        | 1545         | Ø     |
| 2184-83                               |               |      |            |              |       |


Figure 4-1. Instruction to Microprogram Index (Sheet 33 of 34)

# XOR

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br>0 0 0 0 1 1 0 1 1 0<br>Stack Op B                                                                                                                                                                                                                                        | COND<br>SR<2<br>SR>=2 | LUTA<br><br>266 | LABEL<br>SRP<br>XOR | RAR<br>0004<br>0647 | W<br><br>1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|---------------------|---------------------|------------|
| XORI                                                                                                                                                                                                                                                                                                              |                       |                 |                     |                     |            |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                                                                                                                                             | COND                  | LUTA            | LABEL               | RAR                 | W          |
| 0 0 1 1 1 1 1 0 Immediate Operand                                                                                                                                                                                                                                                                                 | SR<2<br>SR>=2         | 172             | SRP<br>XOR I        | 0004<br>1525        | -<br>Ø     |
| ZERO                                                                                                                                                                                                                                                                                                              |                       |                 |                     |                     |            |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                                                                                                                                             | COND                  | LUTA            | LABEL               | RAR                 | W          |
| 0 0 0 0 0 0 0 1 1 0 Stack Op B                                                                                                                                                                                                                                                                                    | SR<2<br>SR>=2         | 346<br>306      | ZERO<br>ZRO1        | 0664<br>0663        | 1<br>1     |
| ZROB                                                                                                                                                                                                                                                                                                              |                       |                 |                     |                     |            |
| 0       1       2       3       4       5       6       7       8       9       10       11       12       13       14       15         0       0       0       0       1       0       0       0       1       14       15         Stack Op B       0       0       0       0       1       10       14       15 | COND                  | LUTA            | LABEL               | RAR                 | W          |
|                                                                                                                                                                                                                                                                                                                   | SR<2<br>SR>=2         | 361<br>321      | SRP<br>ZROB         | 0004<br>0666        | 1<br>1     |
| ZROX                                                                                                                                                                                                                                                                                                              |                       |                 |                     |                     |            |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                                                                                                                                                                                                                                             | COND                  | LUTA            | LABEL               | RAR                 | W          |
| 0 0 0 0 0 0 0 0 1 1 Stack Op B                                                                                                                                                                                                                                                                                    | SR<2<br>SR>=2         | 343<br>303      | ZROX<br>ZROX        | Ø665<br>Ø665        | 1<br>1     |
| 2184-84                                                                                                                                                                                                                                                                                                           |                       |                 |                     |                     |            |

Figure 4-1. Instruction to Microprogram Index (Sheet 34 of 34)

Maintenance



2184-138

Figure 4-2. Current Instruction Register Servicing Diagram (Sheet 1 of 2)

30001 A

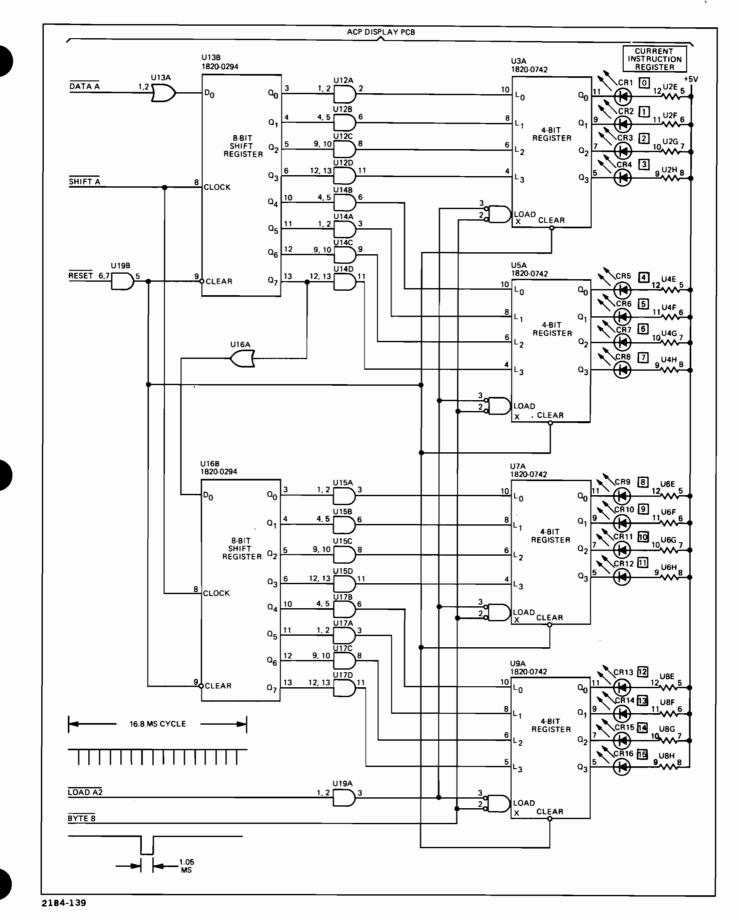
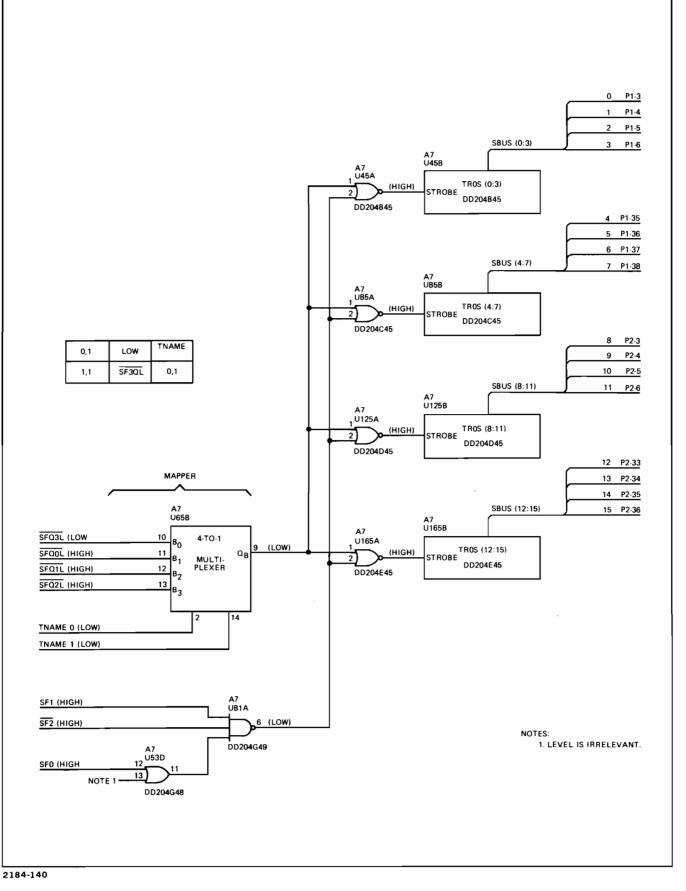




Figure 4-2. Current Instruction Register Servicing Diagram (Sheet 2 of 2)





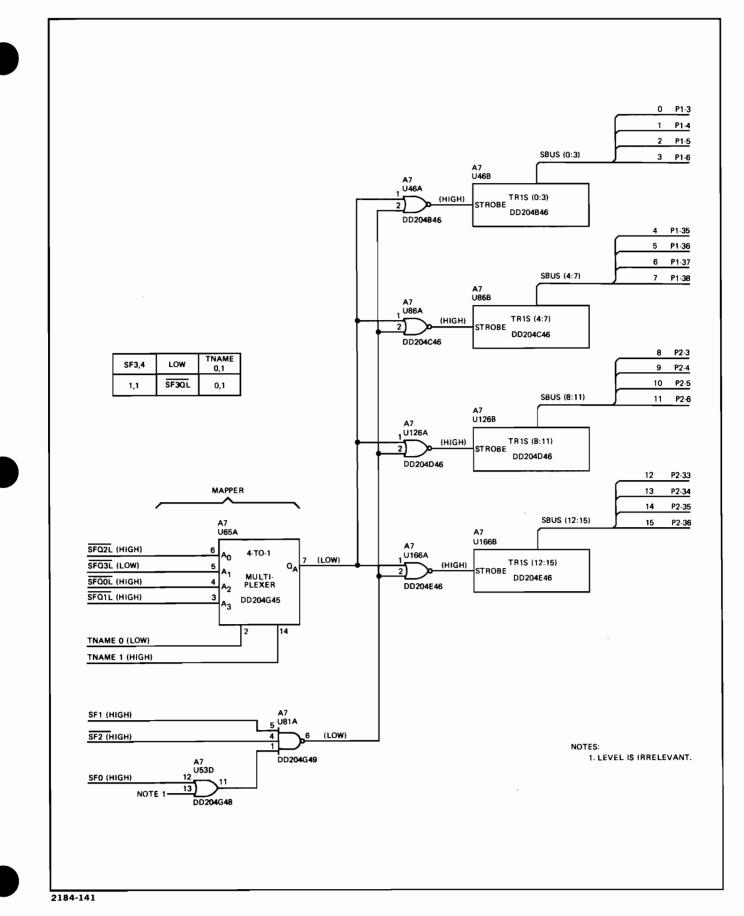
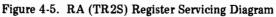




Figure 4-4. RA (TRIS) Register Servicing Diagram





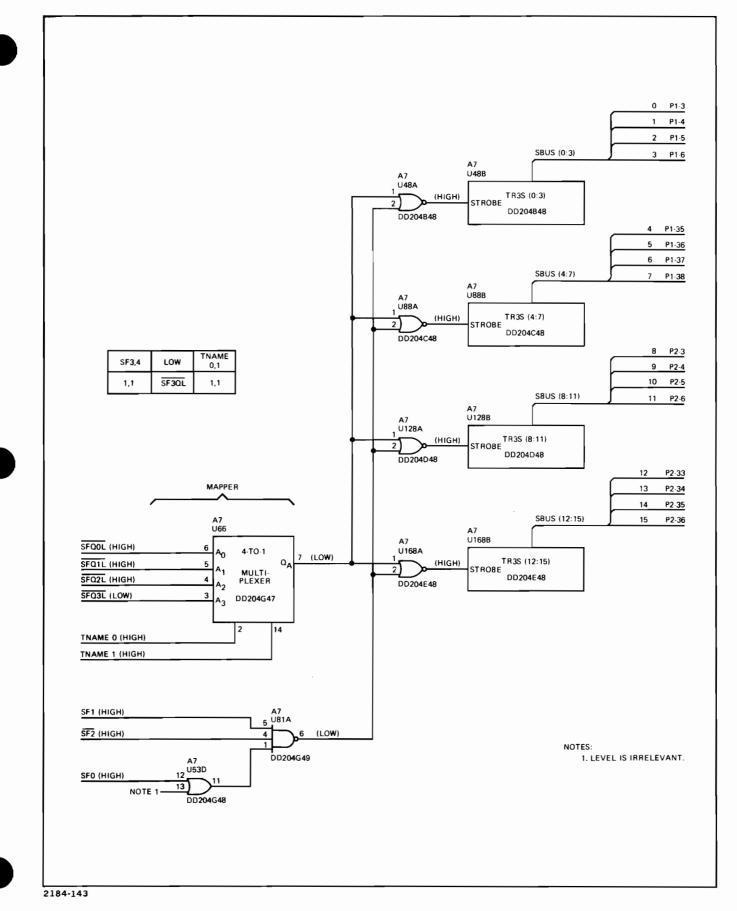
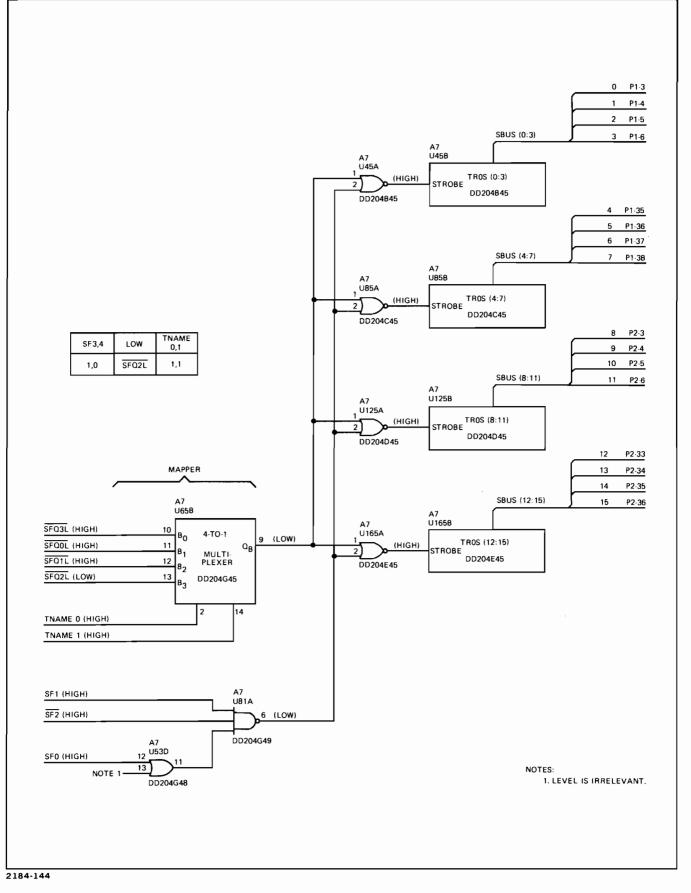




Figure 4-6. RA (TR3S) Register Servicing Diagram



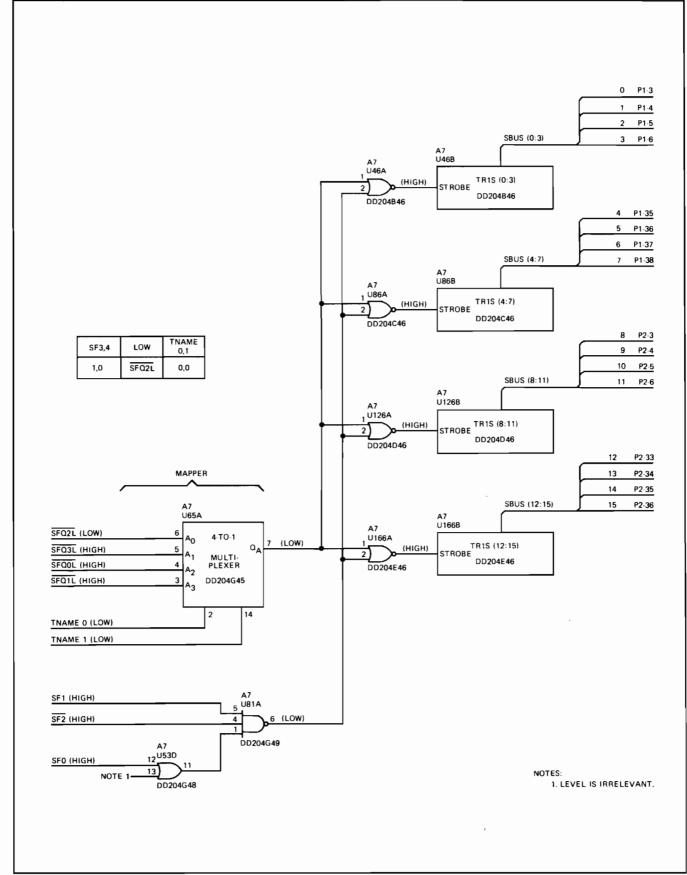
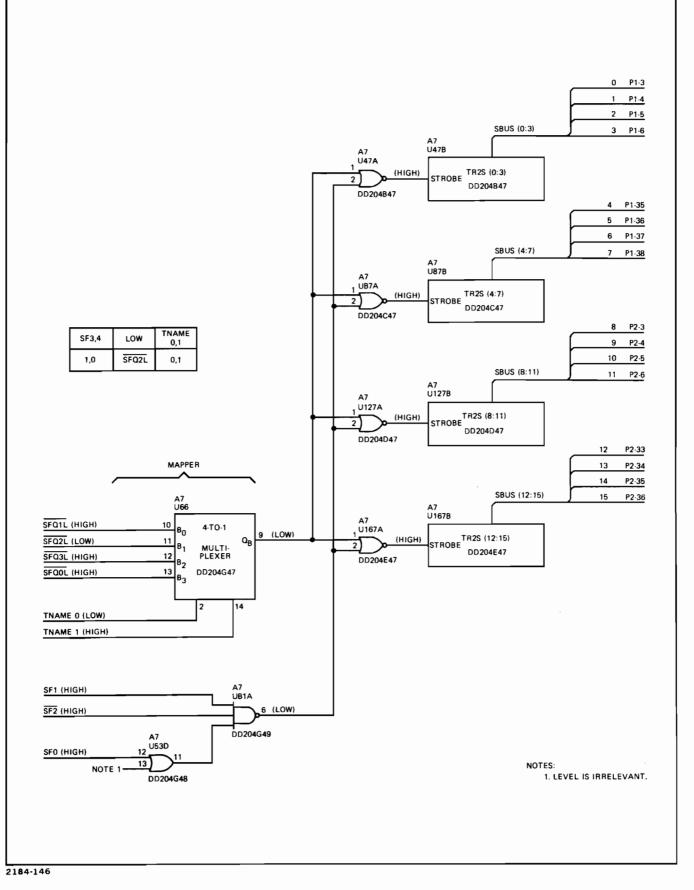
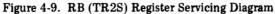





Figure 4-8. RB (TR1S) Register Servicing Diagram





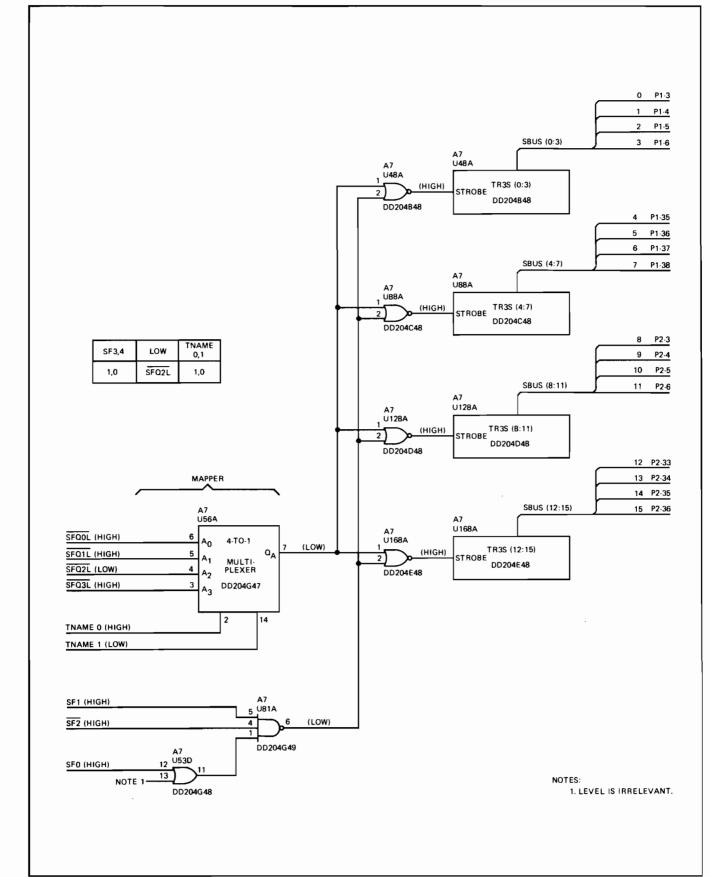
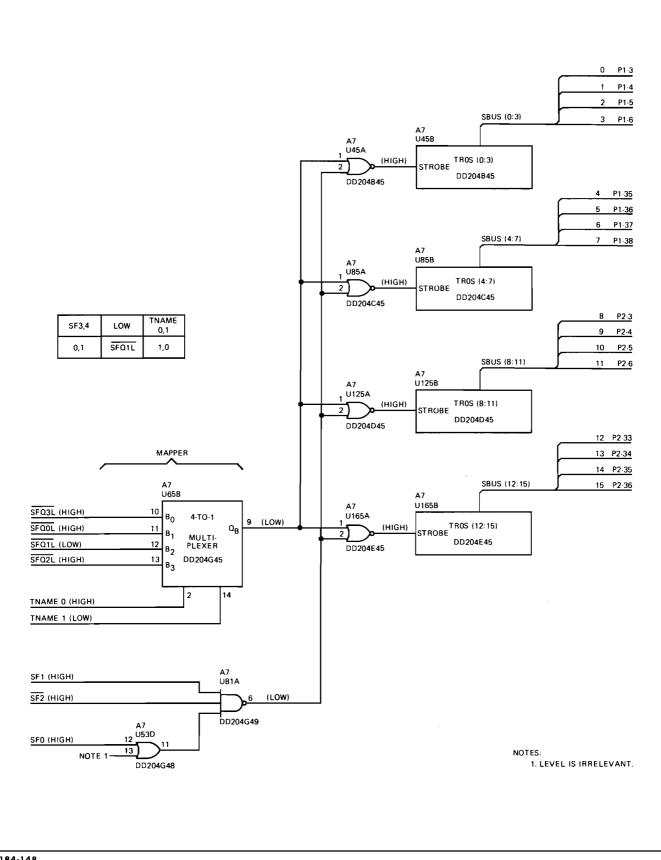
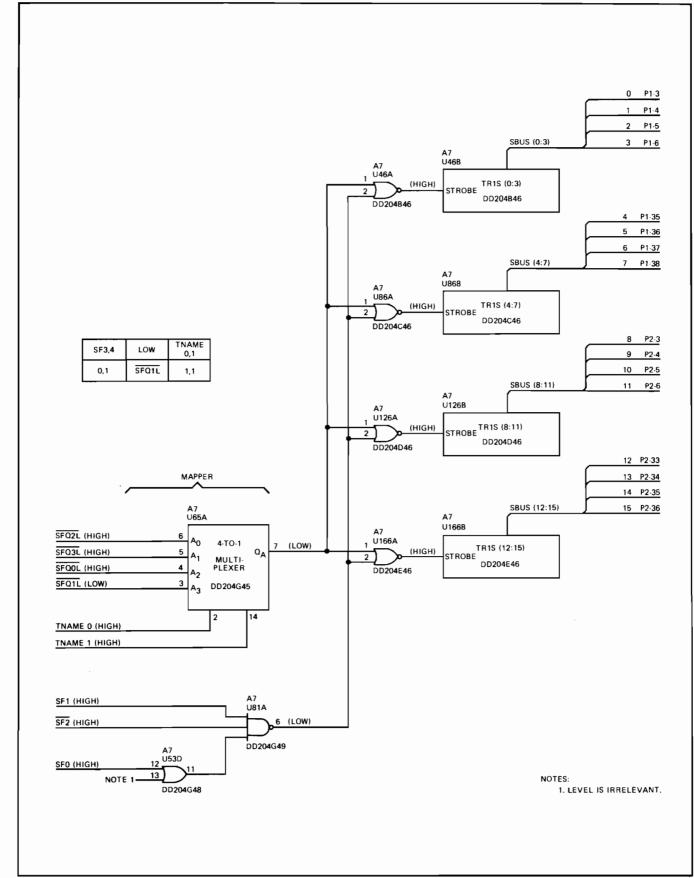
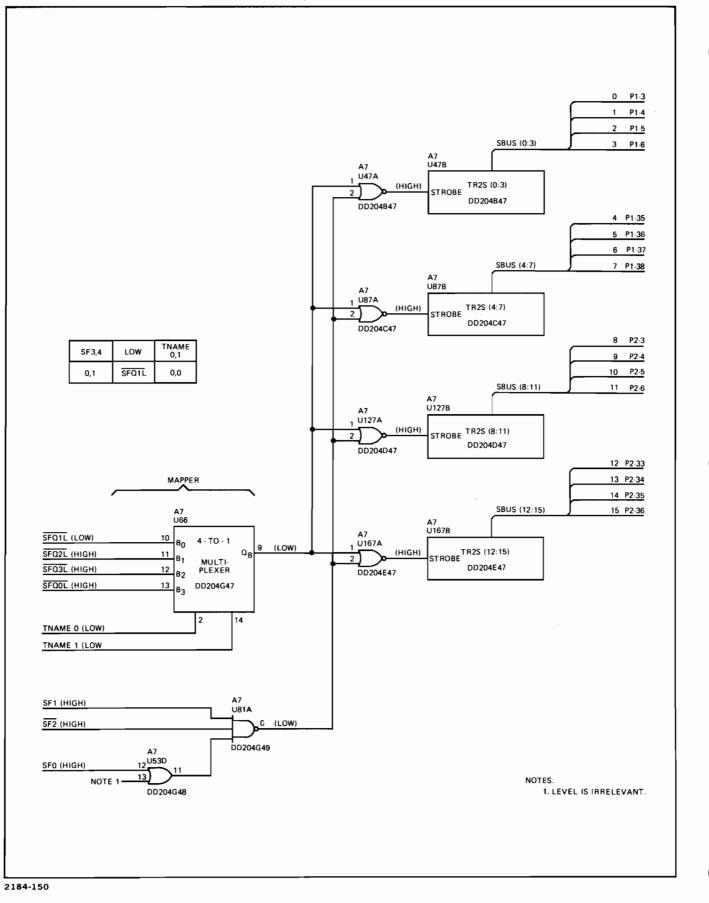
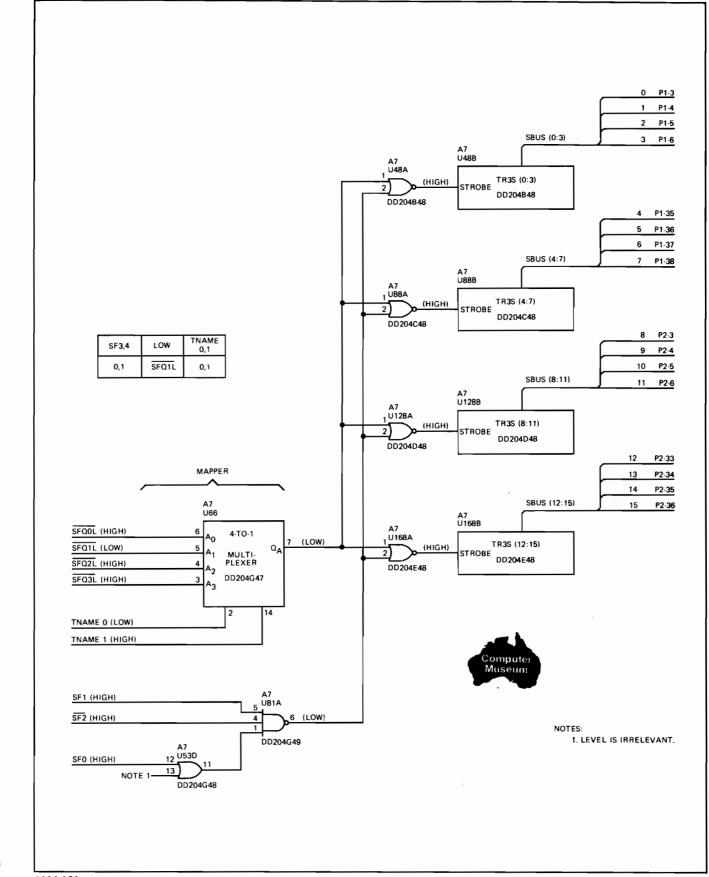
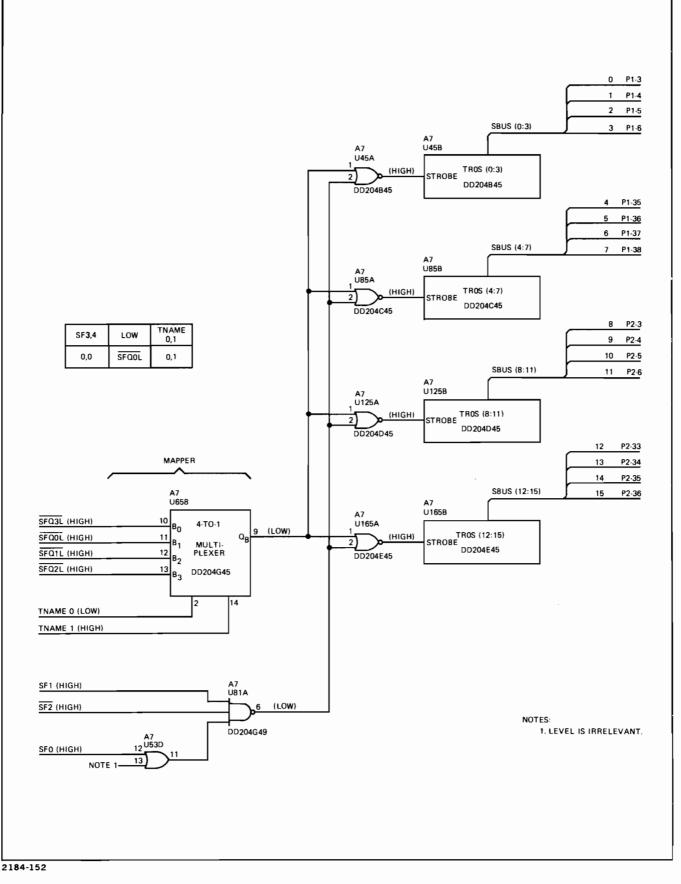





Figure 4-10. RB (TR3S) Register Servicing Diagram

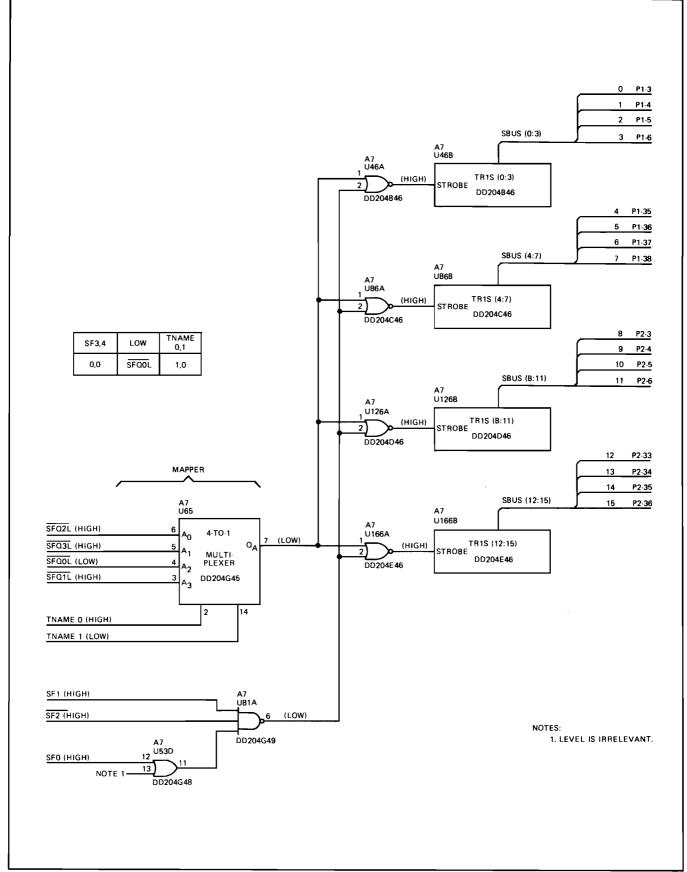




2184-148

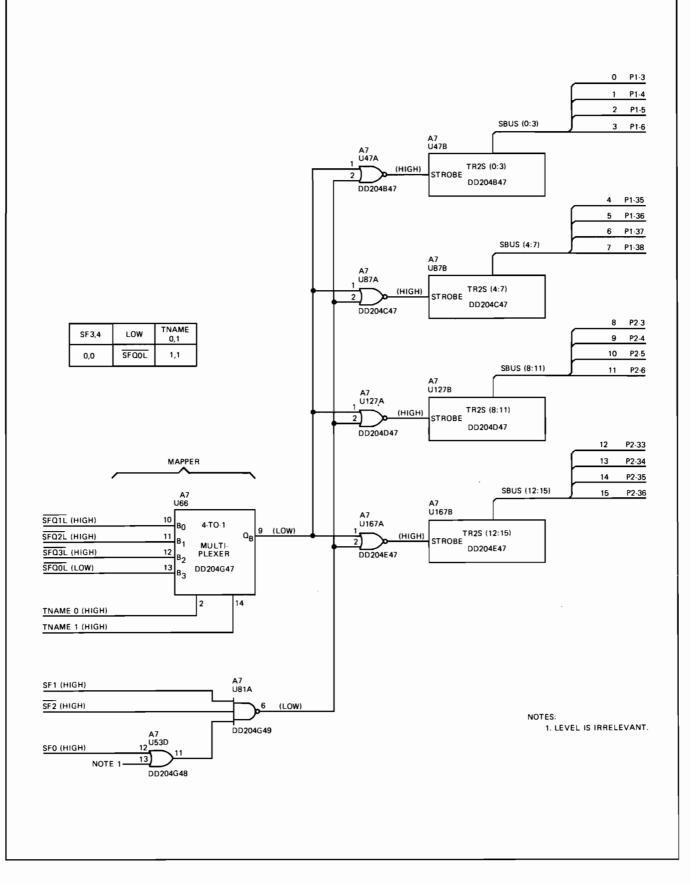




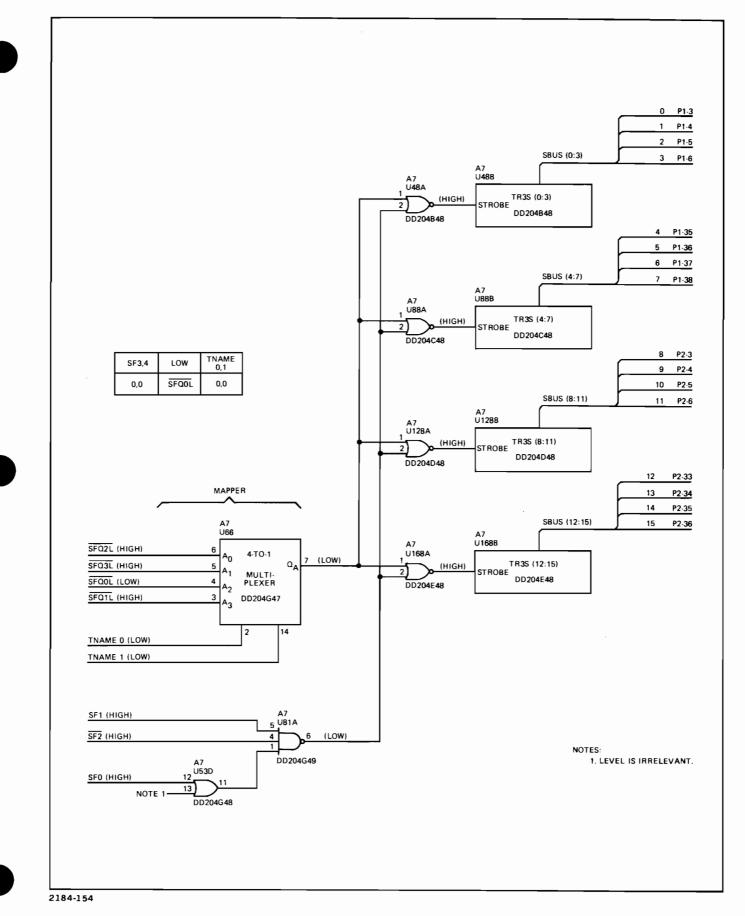

Maintenance

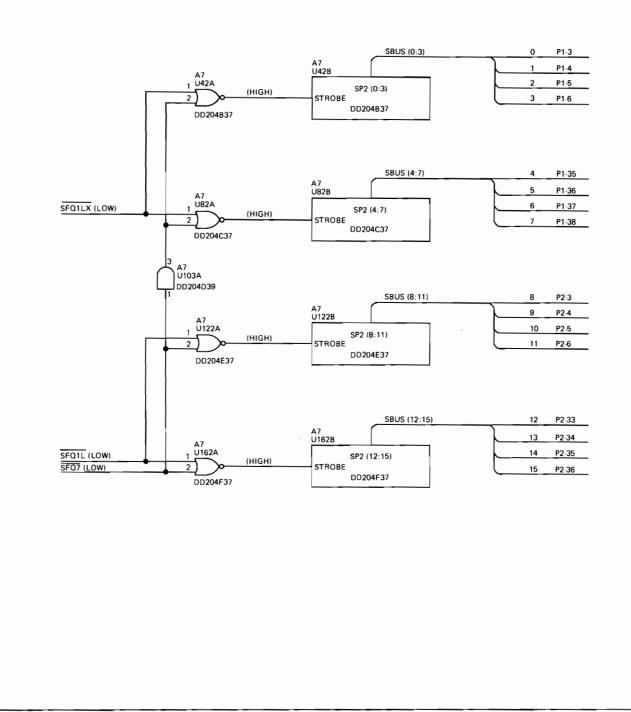




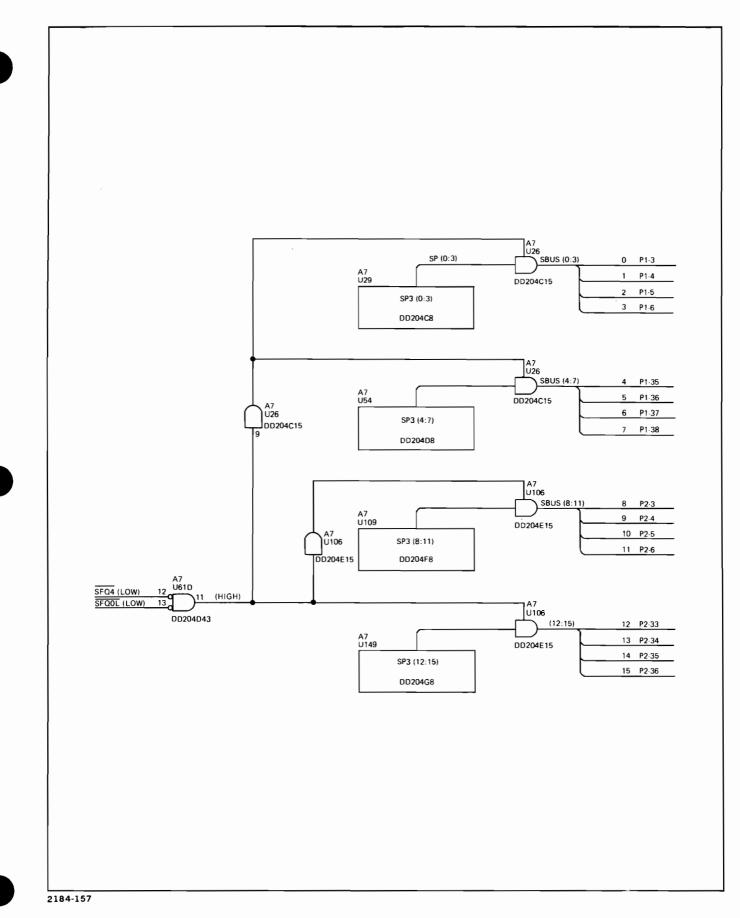


2184-151






2184-153













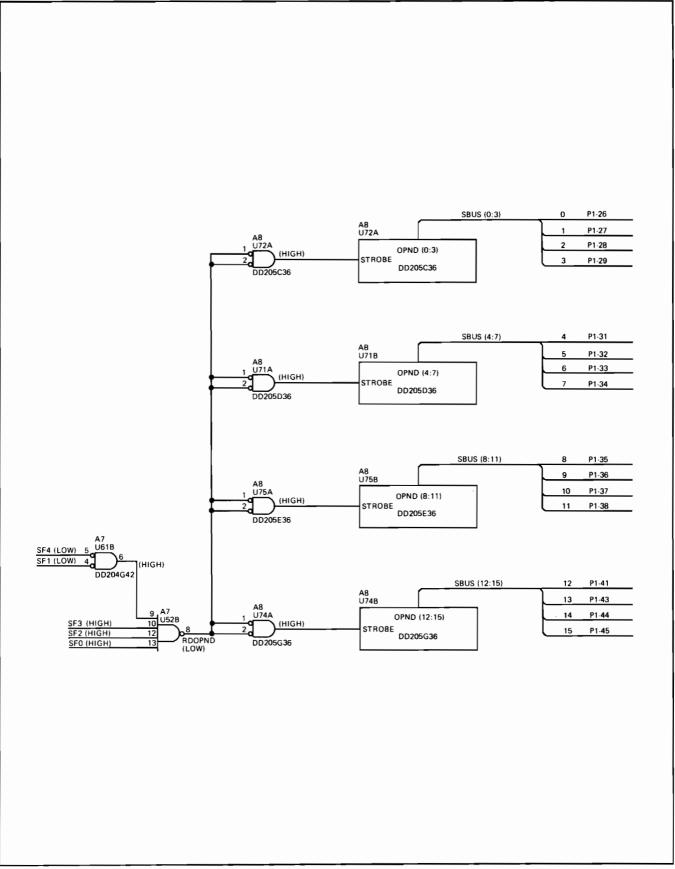
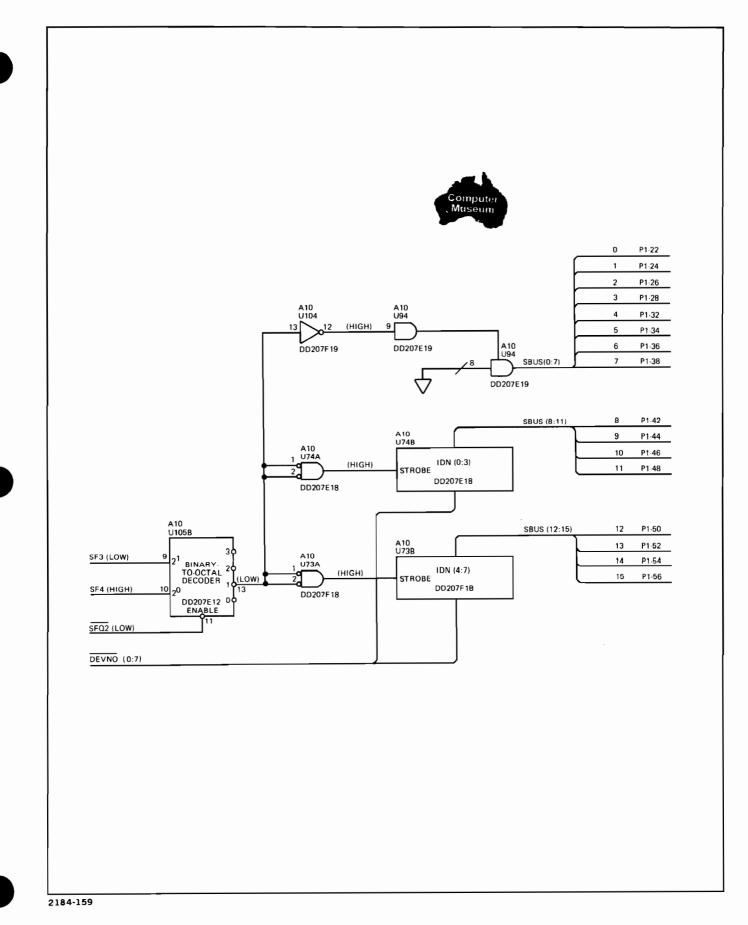
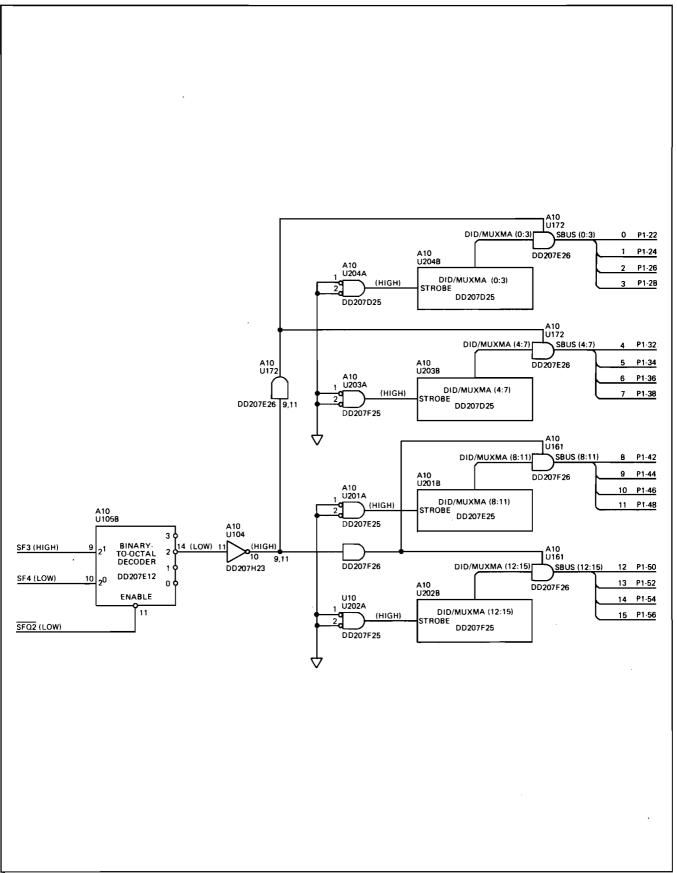
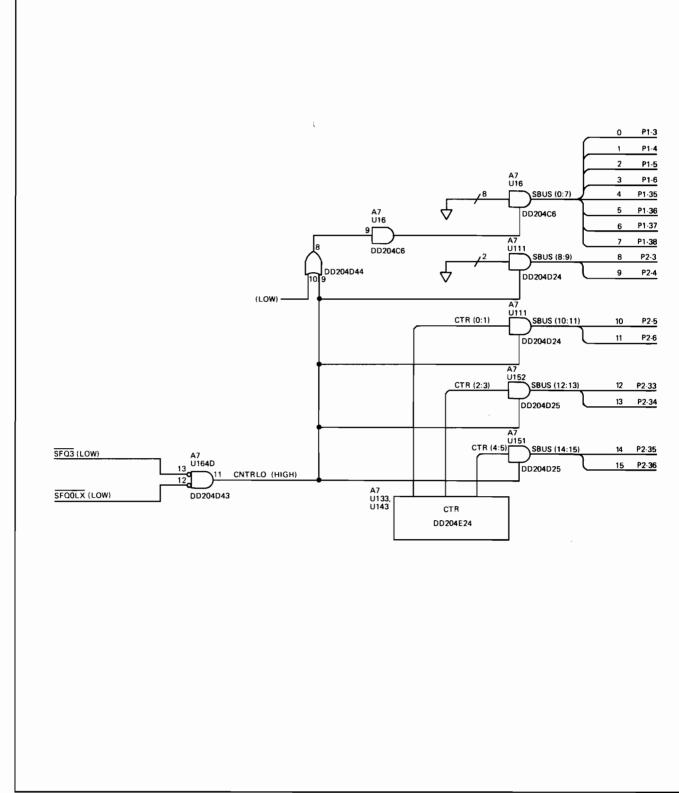
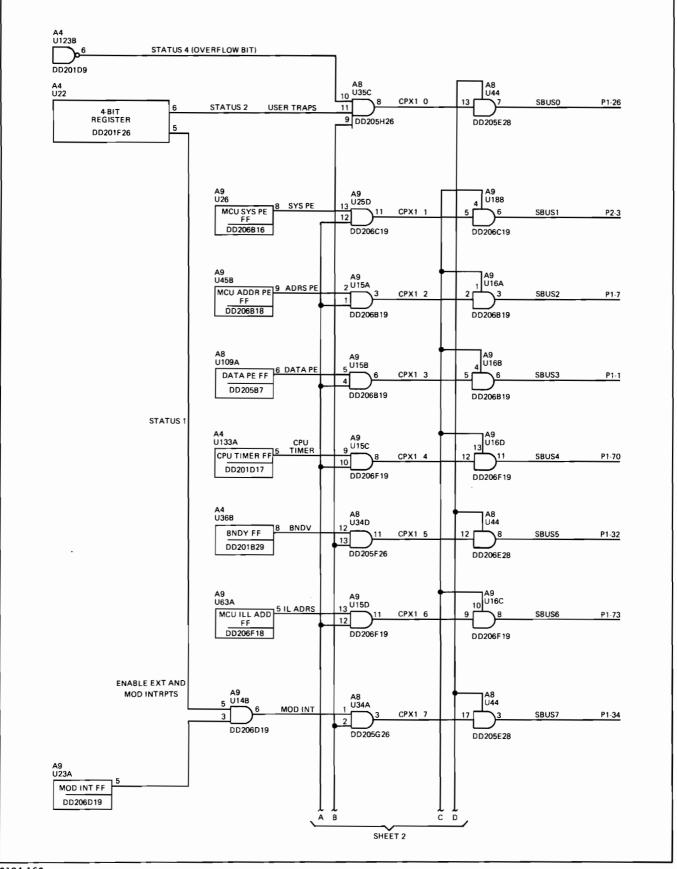








Figure 4-21. OPND Register Servicing Diagram

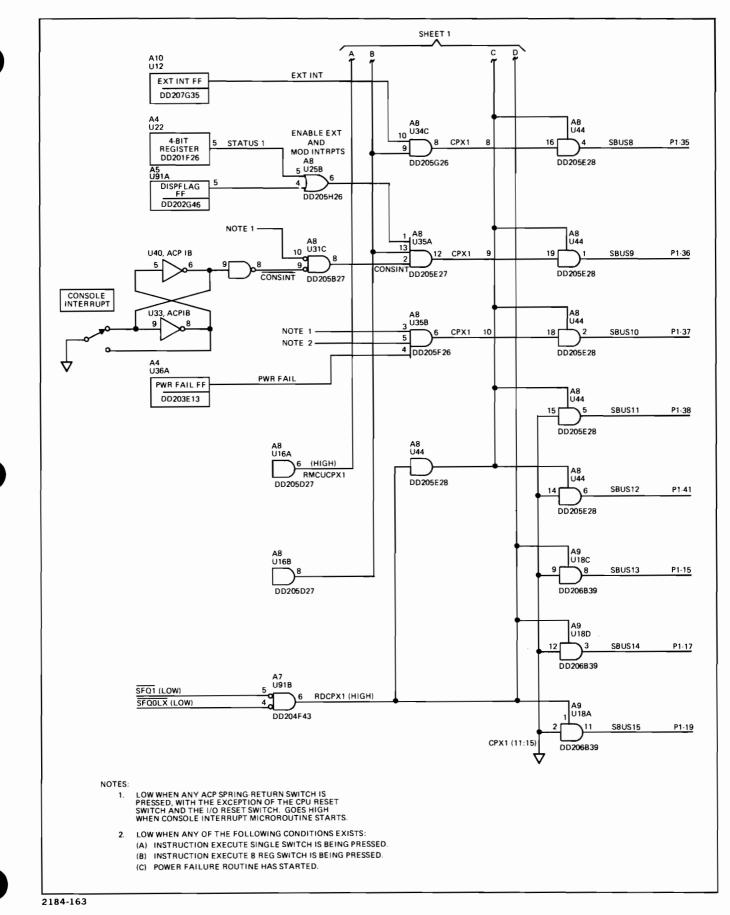






,

2184-160

Figure 4-23. DID/MUXMA Register Servicing Diagram








2184-162

Figure 4-25. CPX1 Register Servicing Diagram (Sheet 1 of 2)



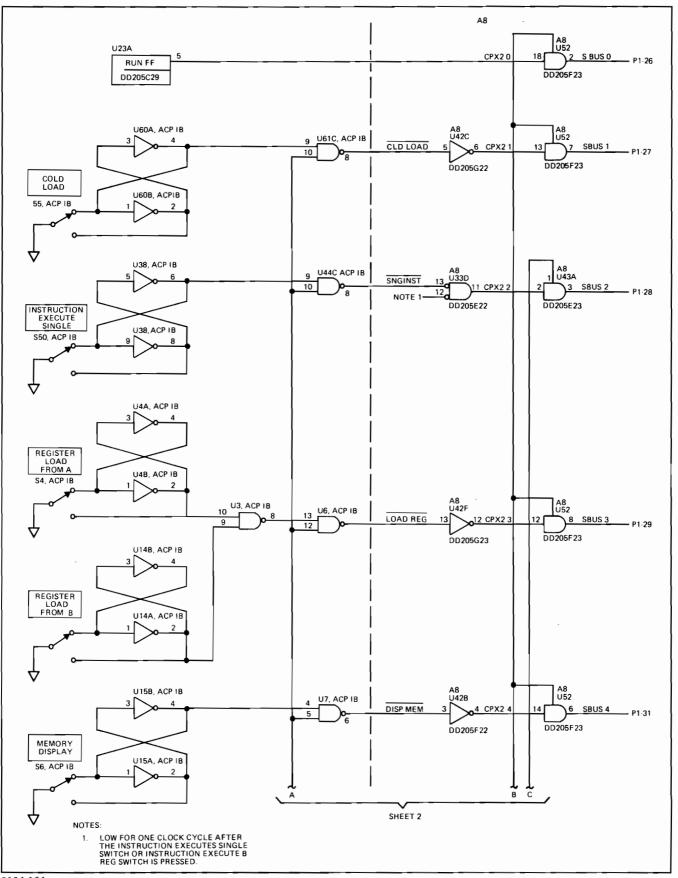





Figure 4-26. CPX2 Register Servicing Diagram (Sheet 1 of 3)

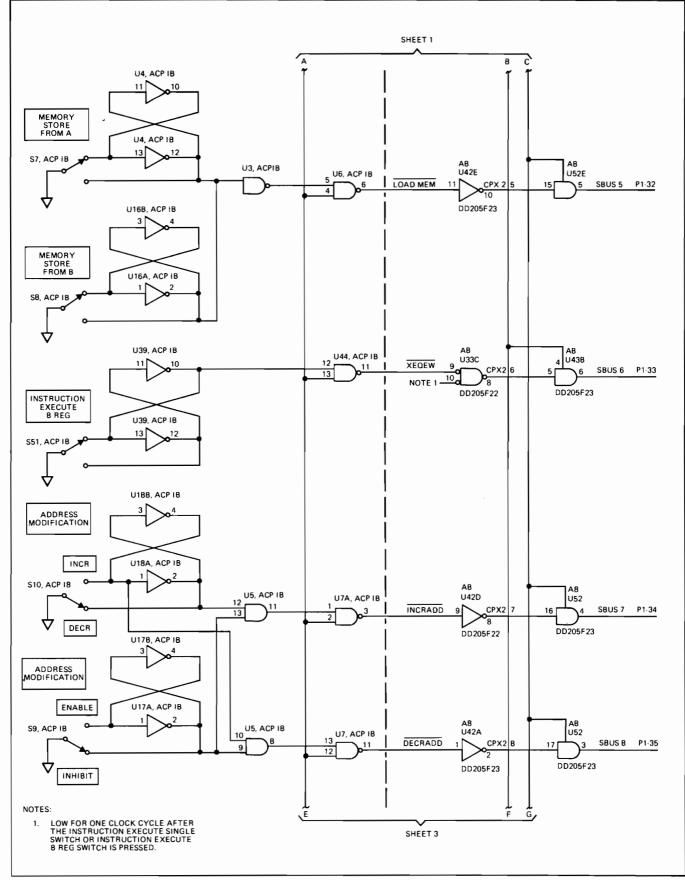





Figure 4-26. CPX2 Register Servicing Diagram (Sheet 2 of 3)

.

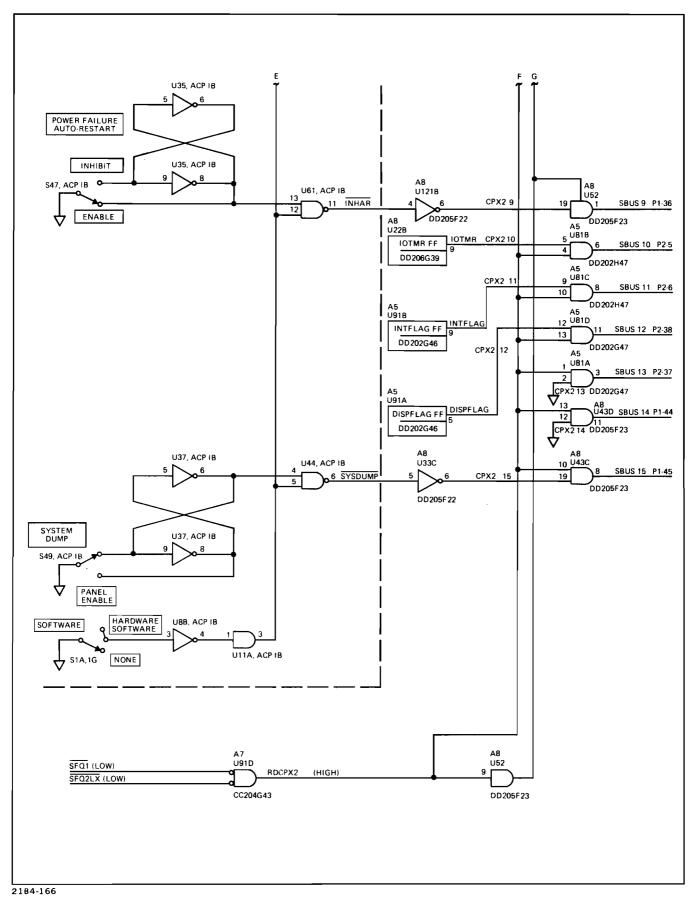



Figure 4-26. CPX2 Register Servicing Diagram (Sheet 3 of 3)

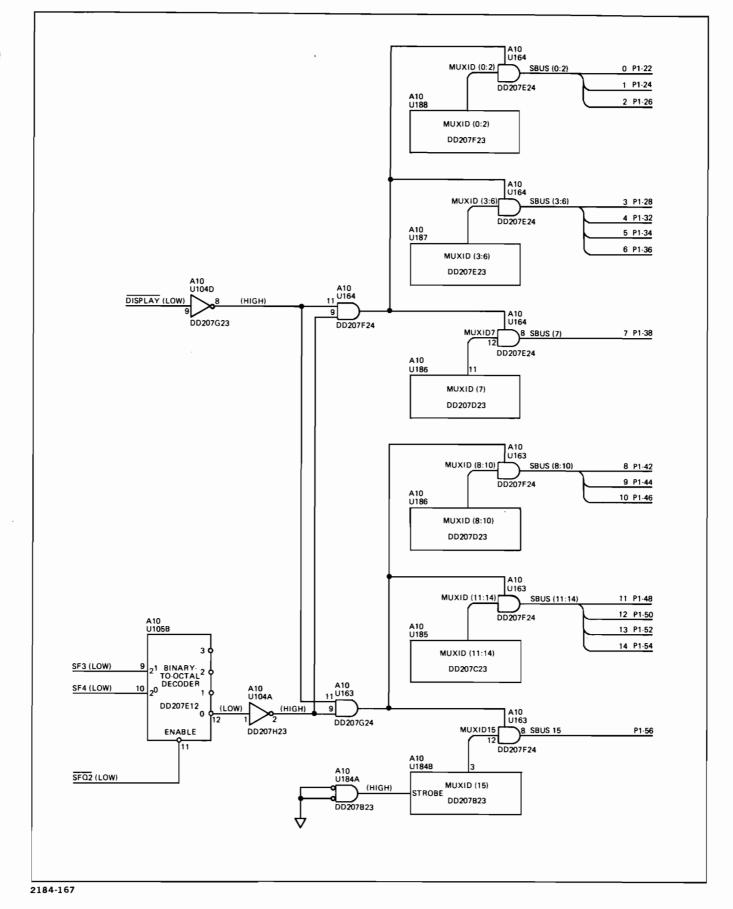
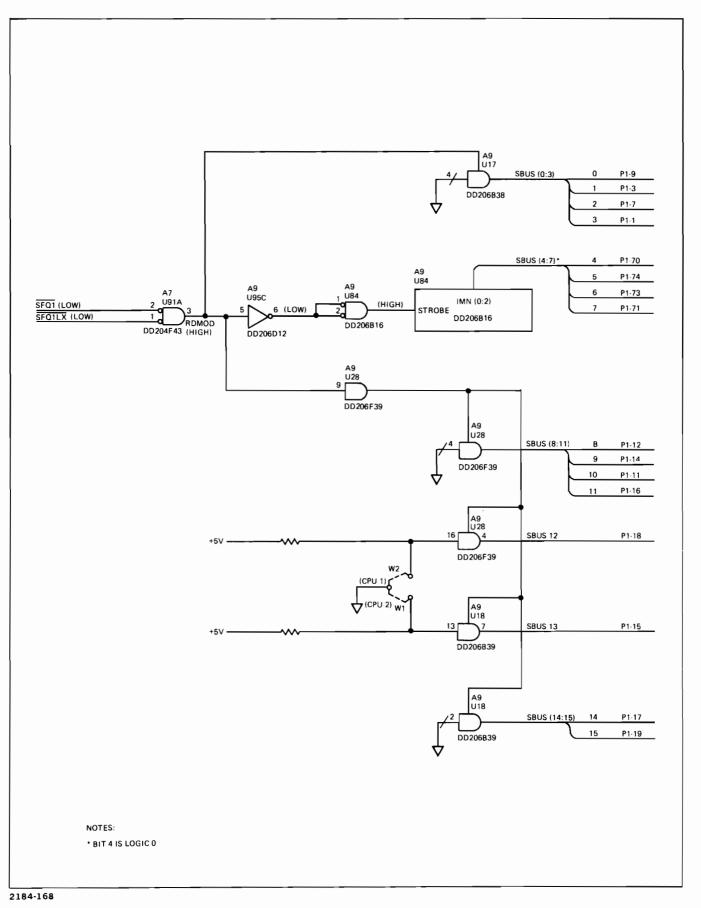
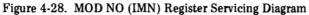





Figure 4-27. MUXID Register Servicing Diagram

Maintenance





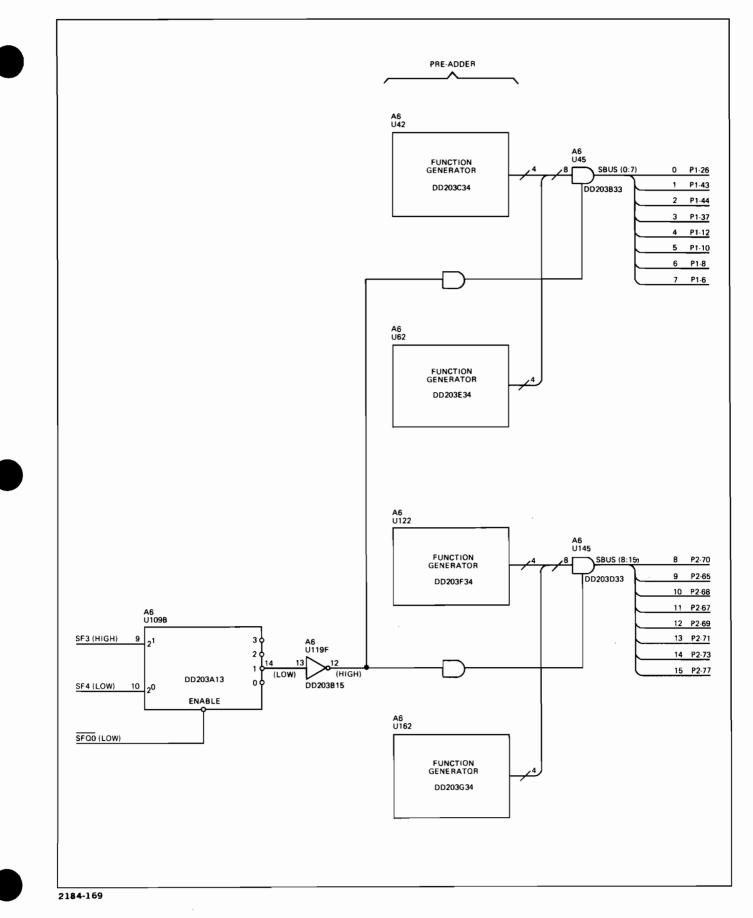
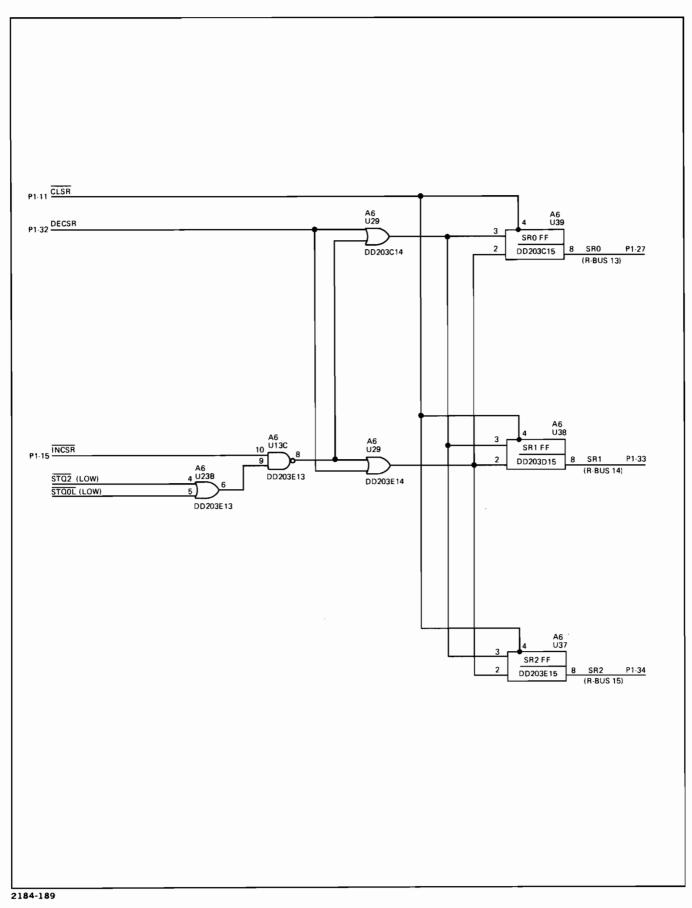
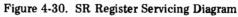
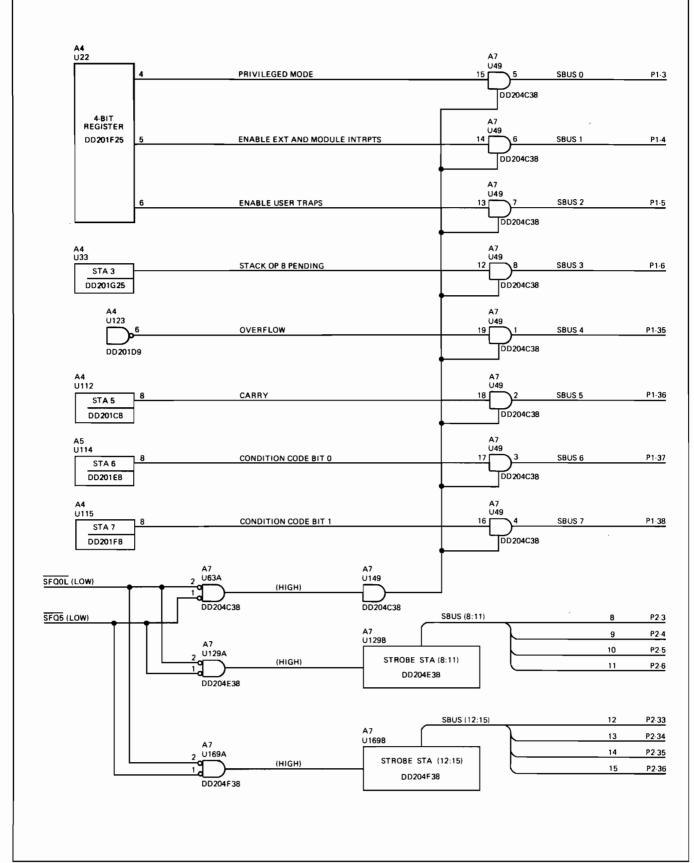
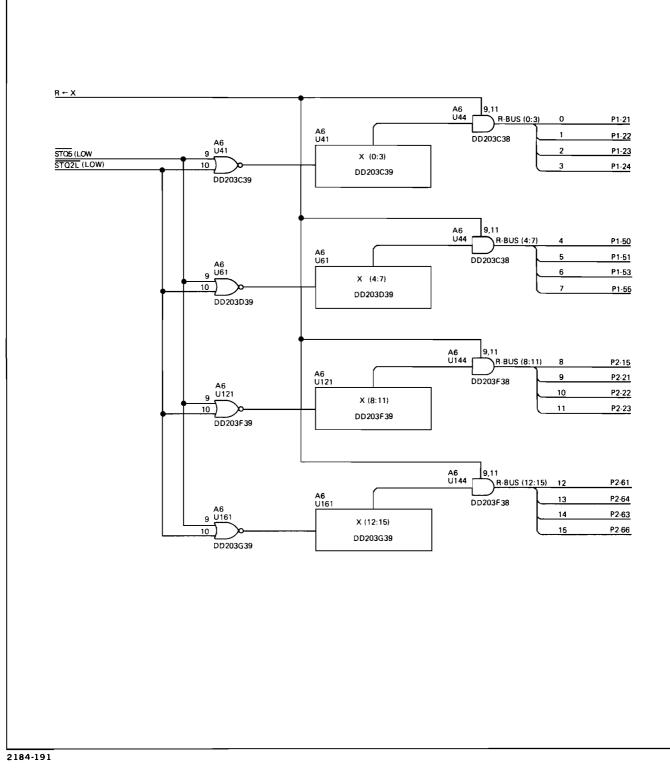
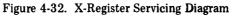
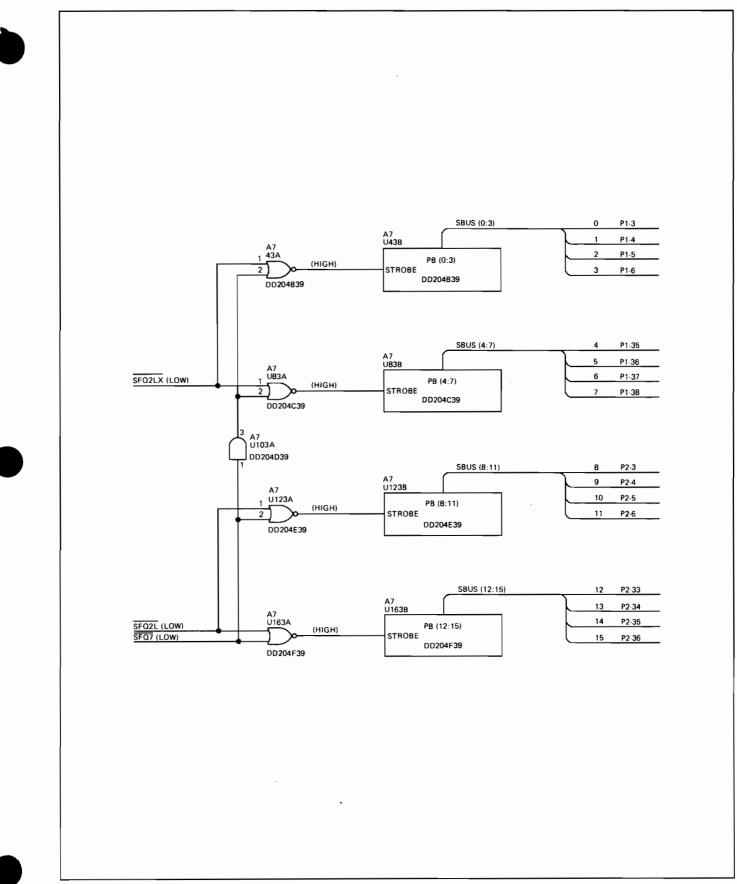






Figure 4-29. PADD Servicing Diagram




2184-170

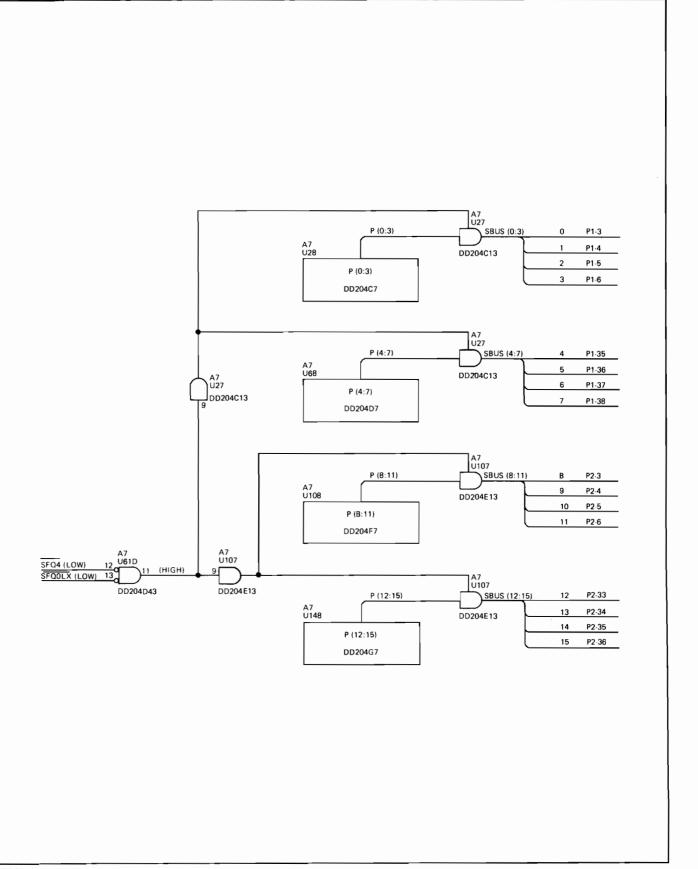
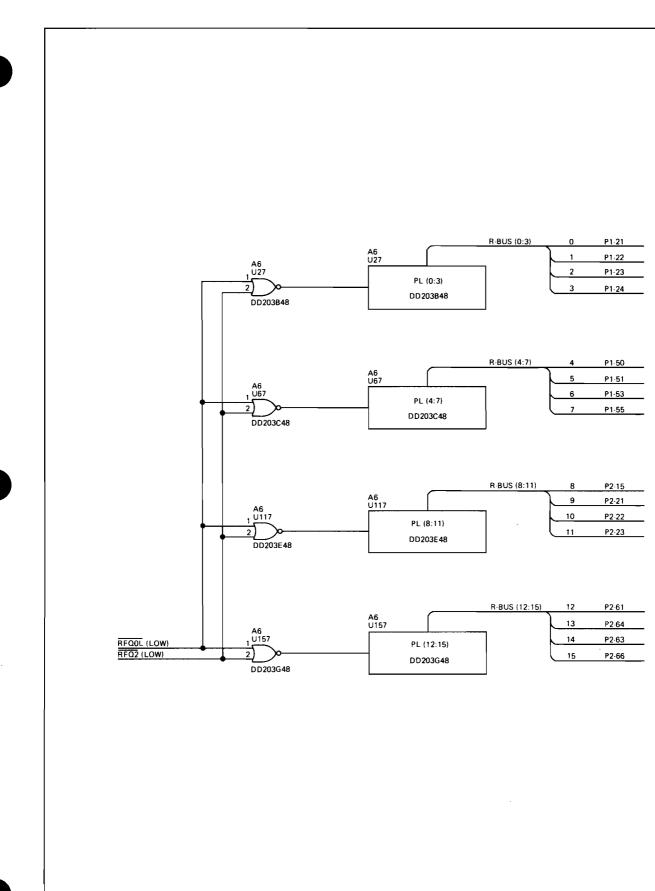
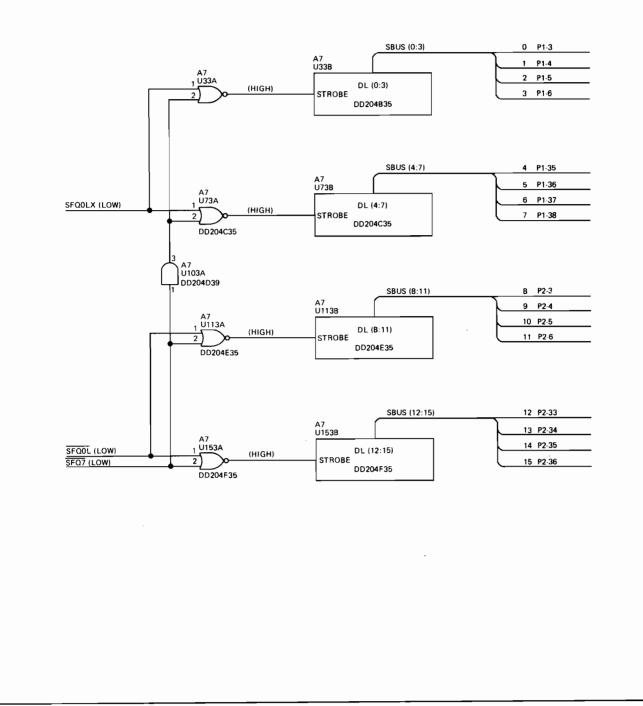
Figure 4-31. Status Register Servicing Diagram



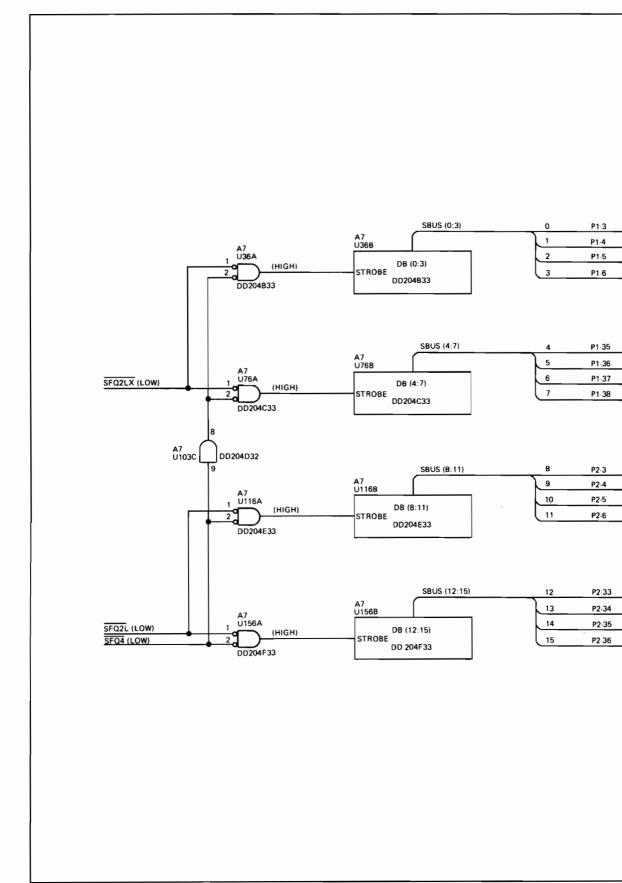


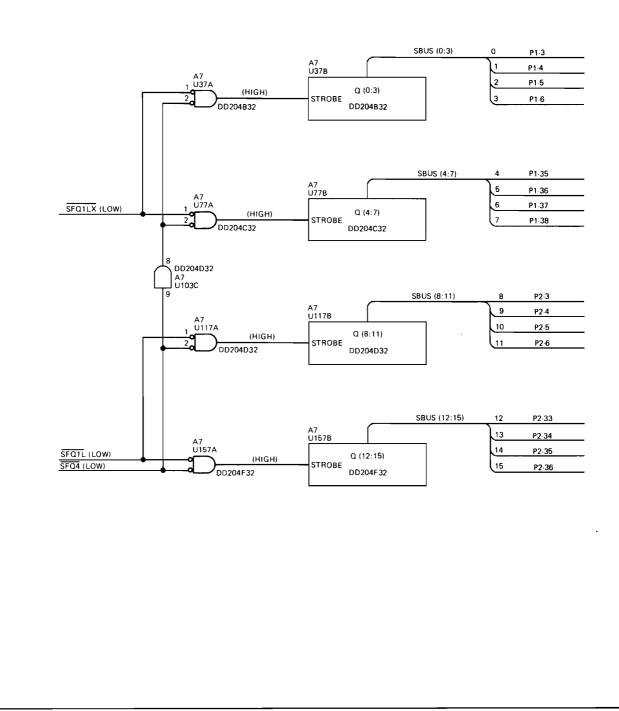


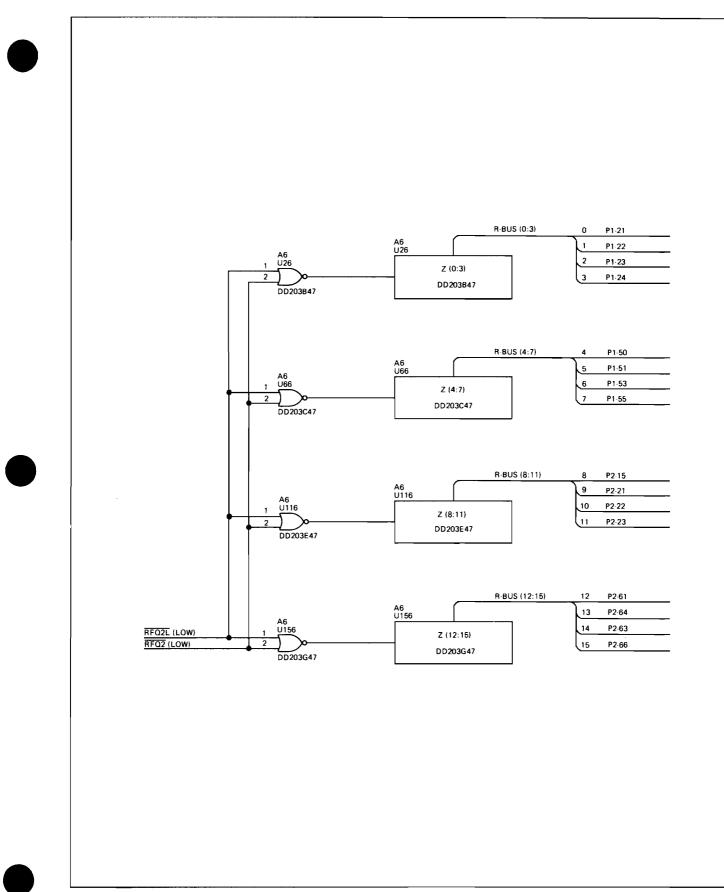
2184-171

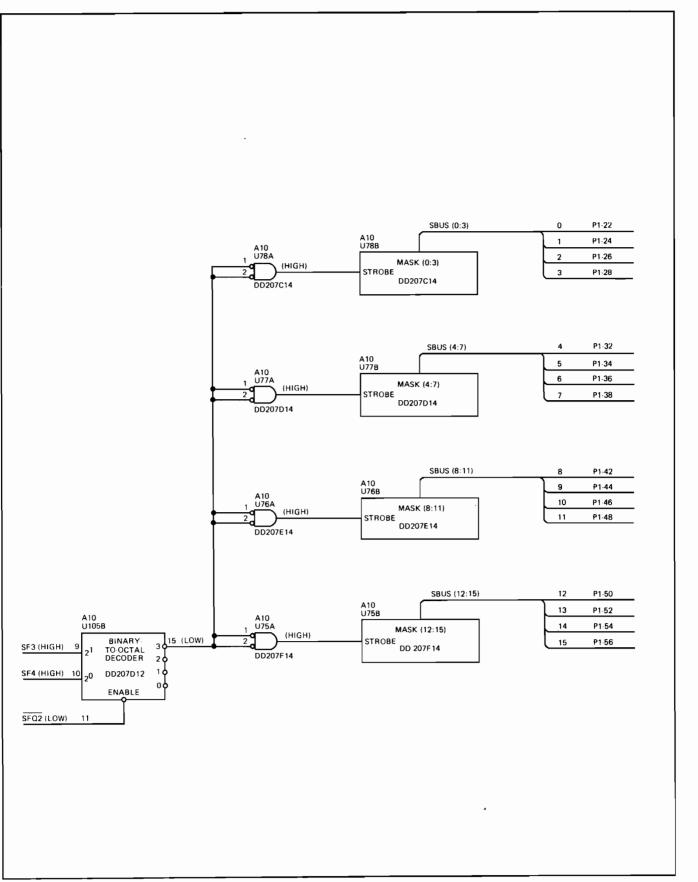




Figure 4-34. P-Register Servicing Diagram




2184-173


Figure 4-36. DL Register Servicing Diagram







2184-18**8** 



2184-176

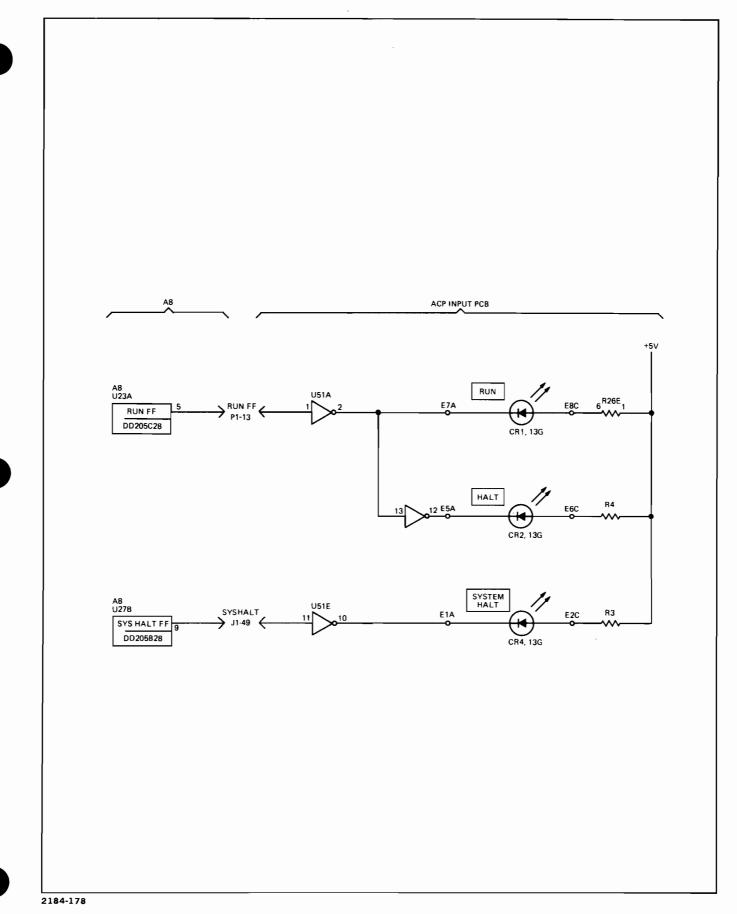
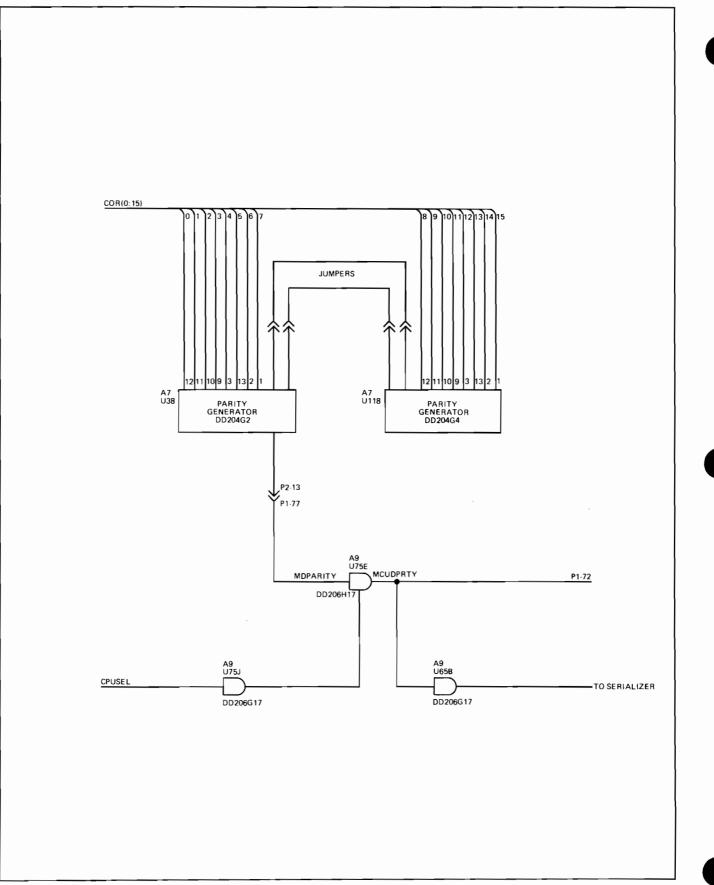




Figure 4-41. RUN, SYSTEM HALT Servicing Diagram



2184-187

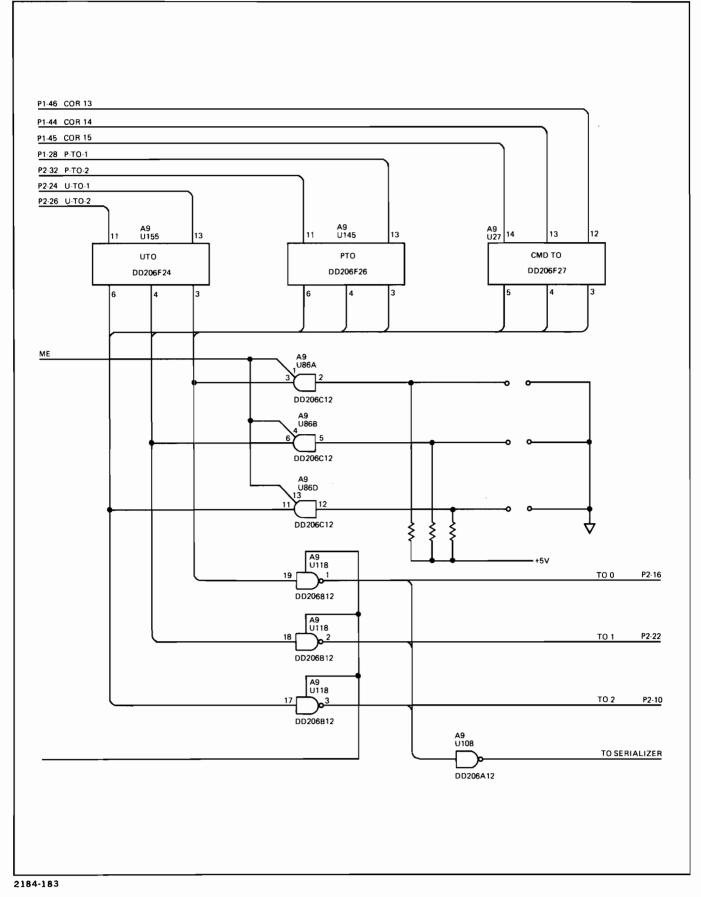
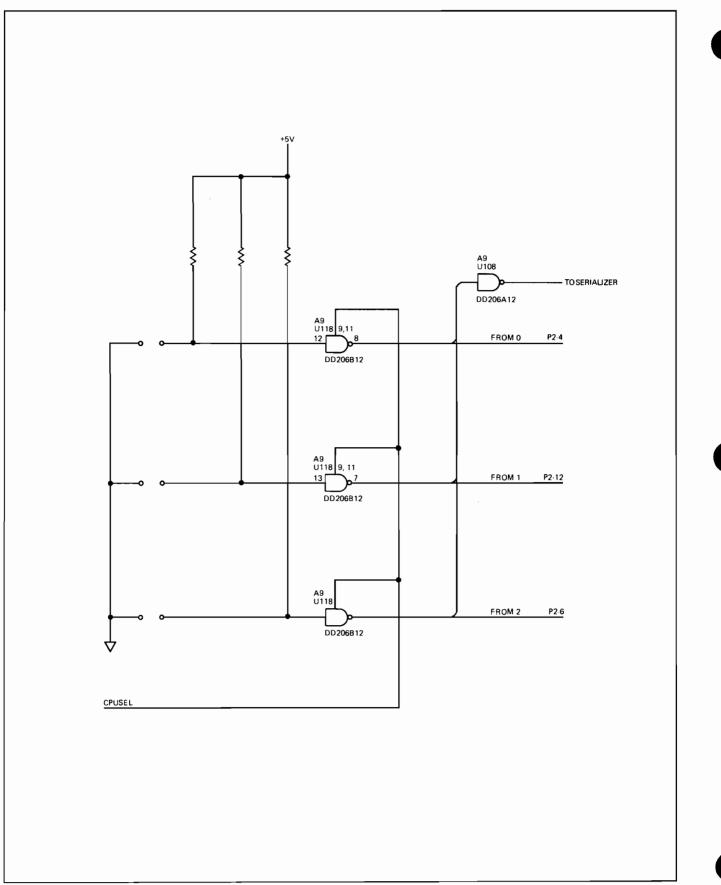
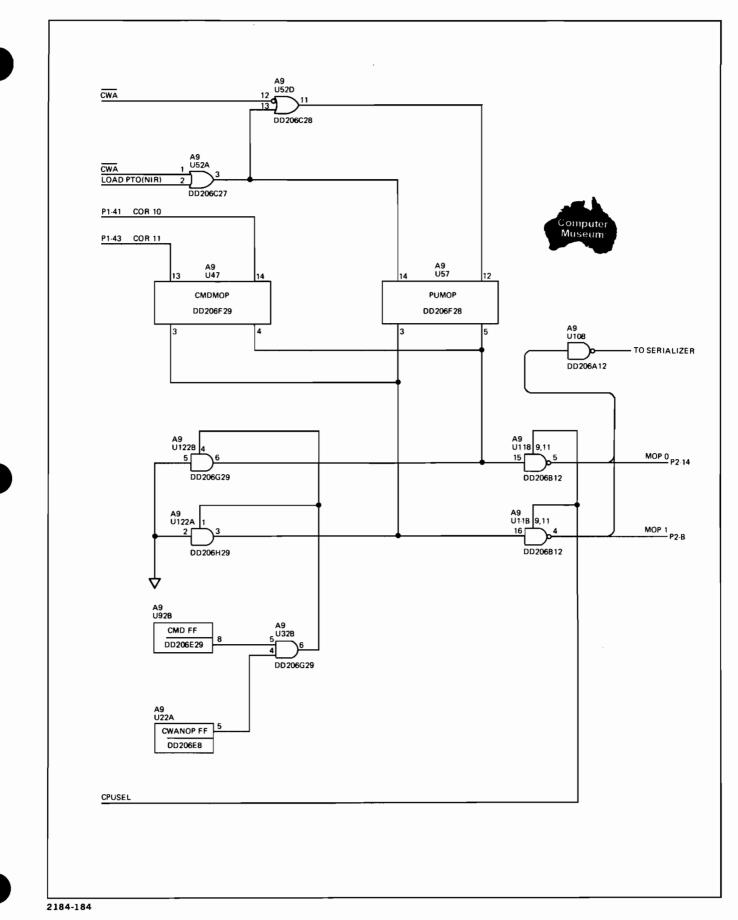
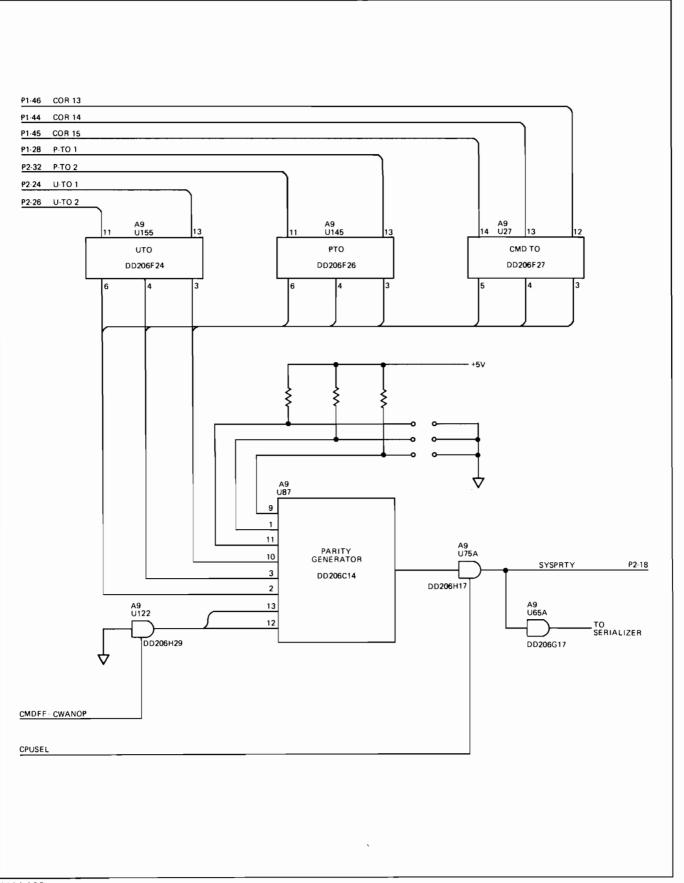
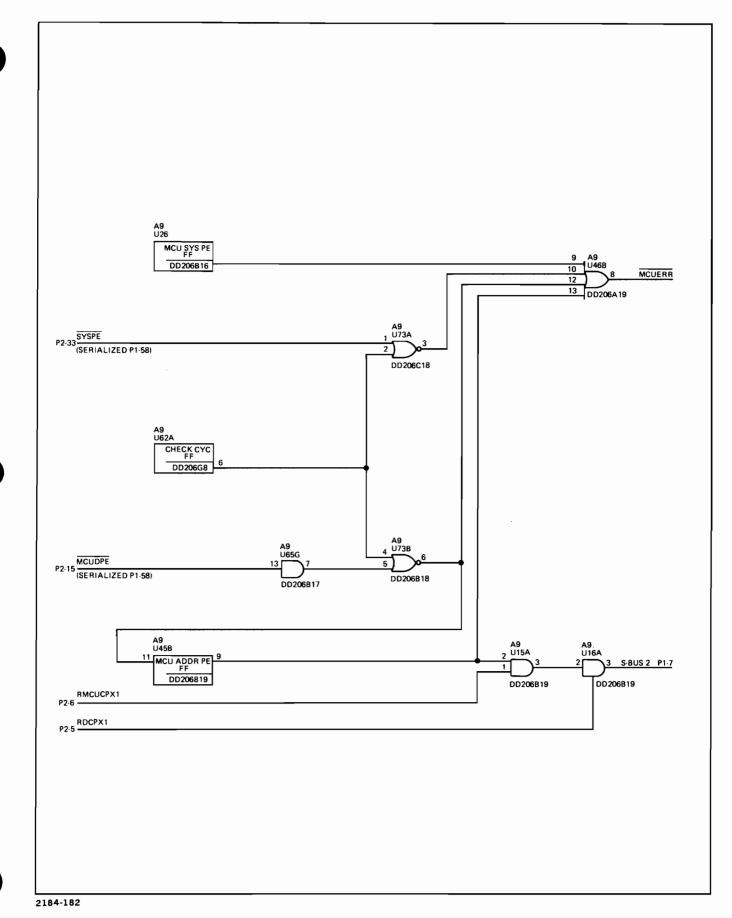
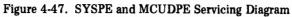
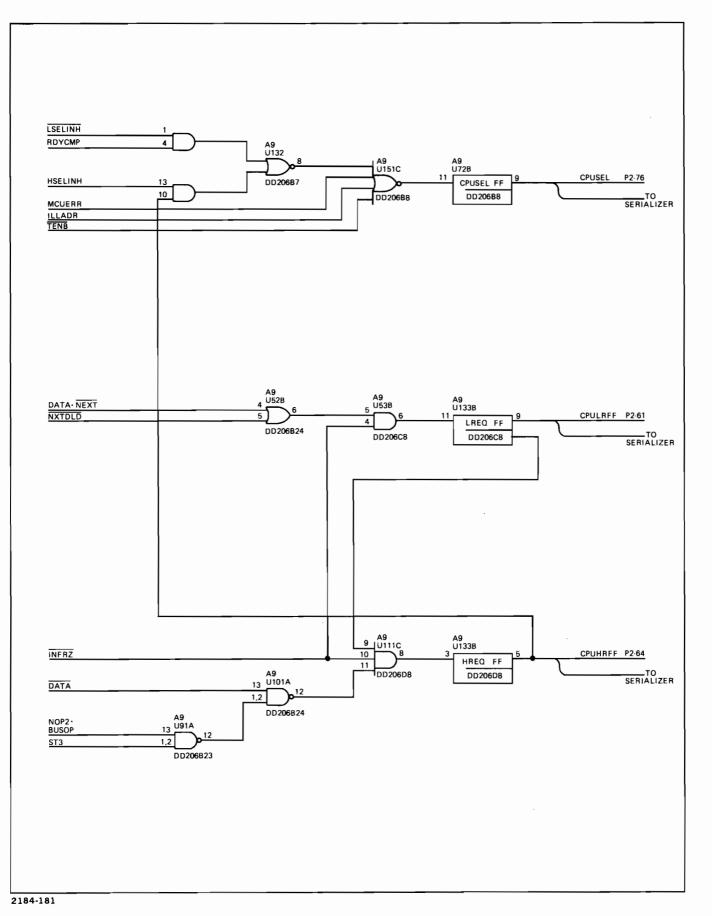




Figure 4-43. TO Lines Servicing Diagram

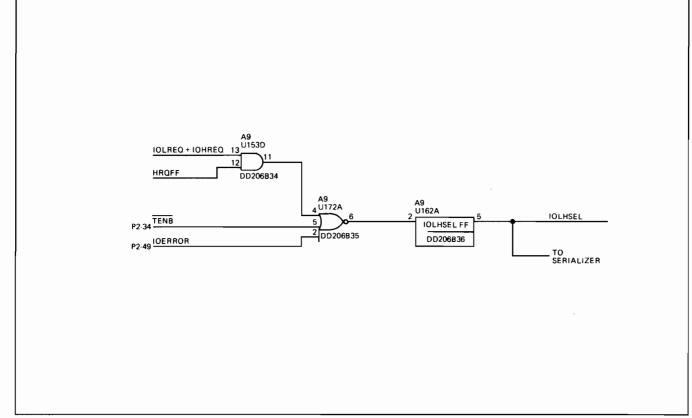


2184-185

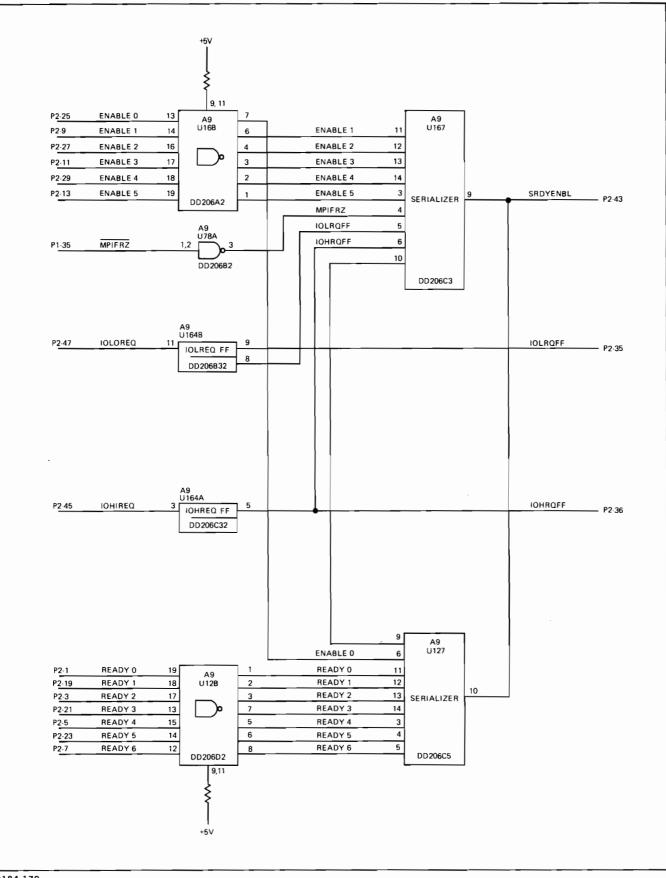


Figure 4-45. MOP Lines Servicing Diagram




.











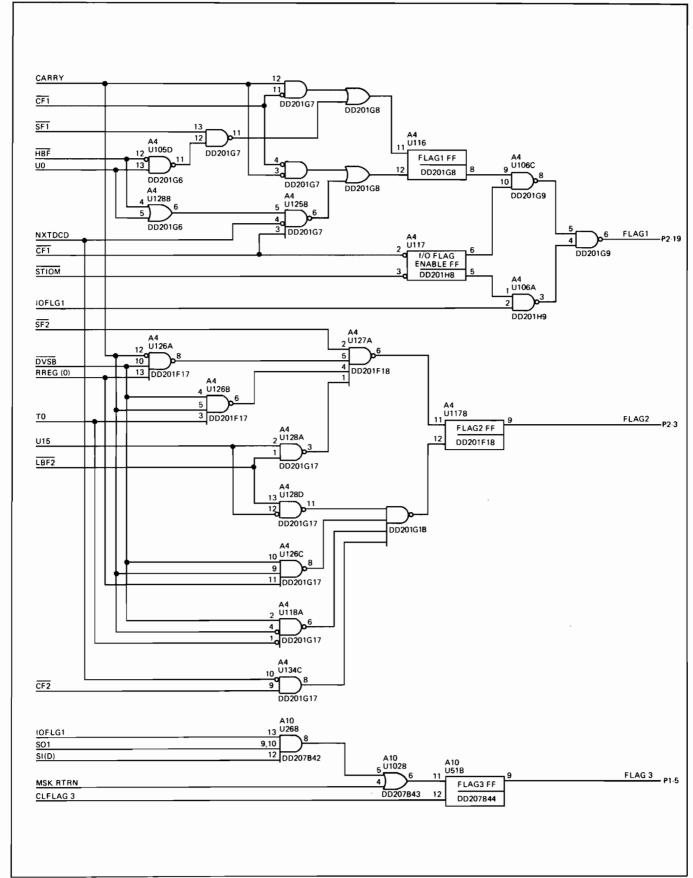


2184-199

Figure 4-49. IOSELECT Servicing Diagram



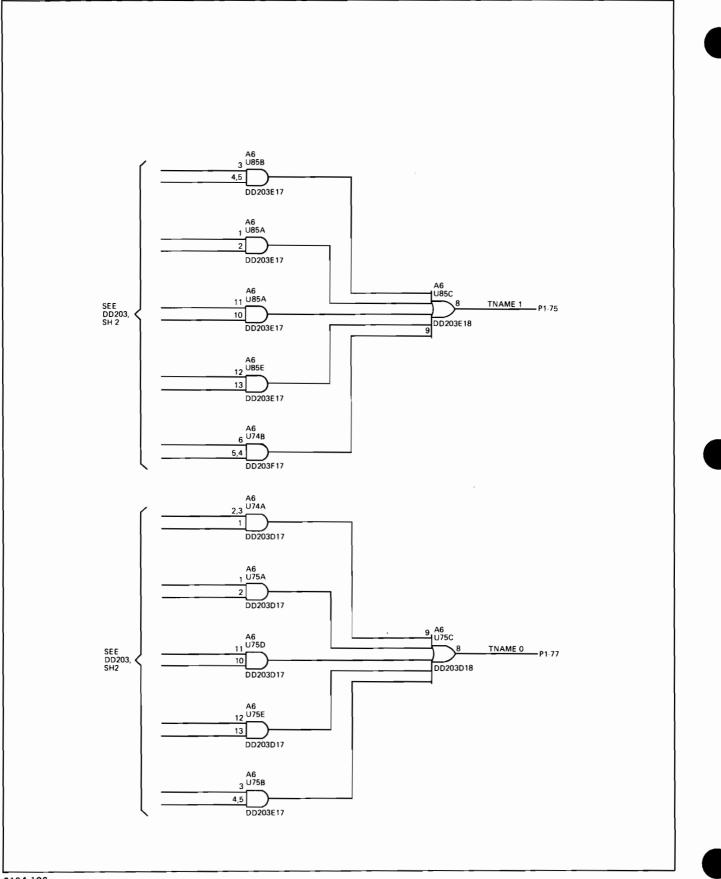
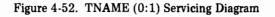
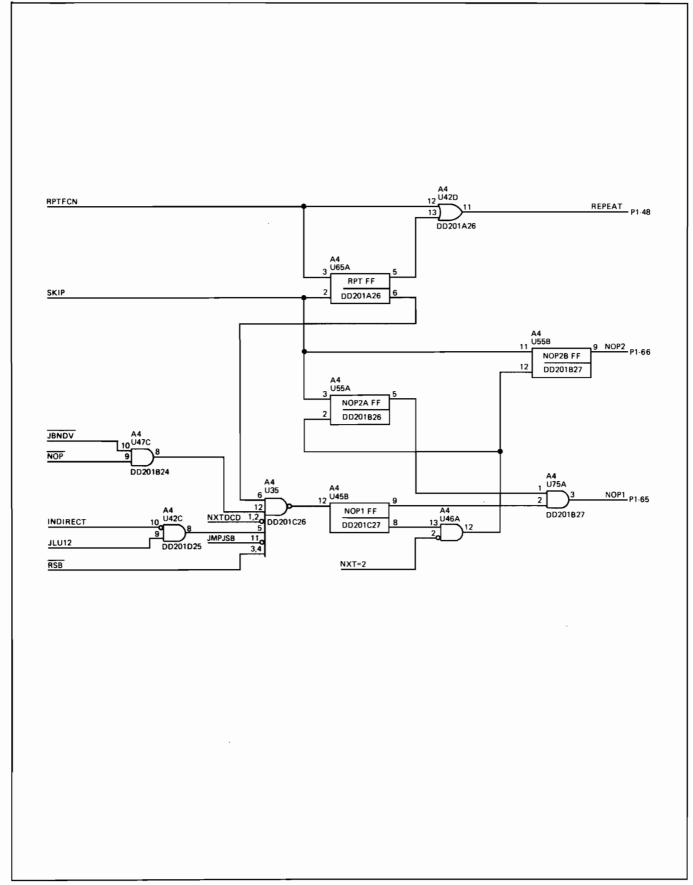
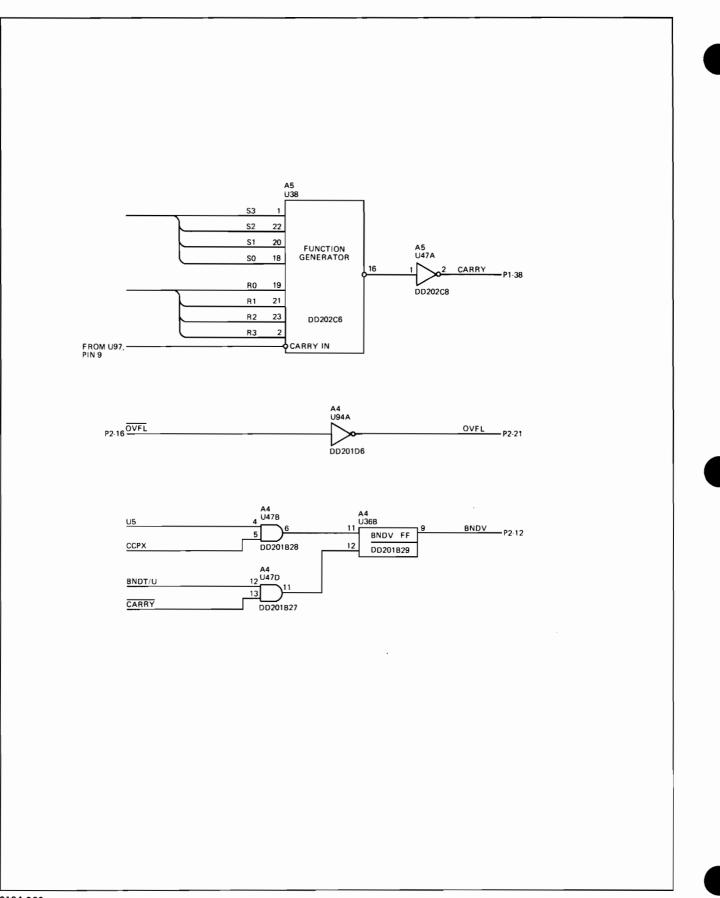
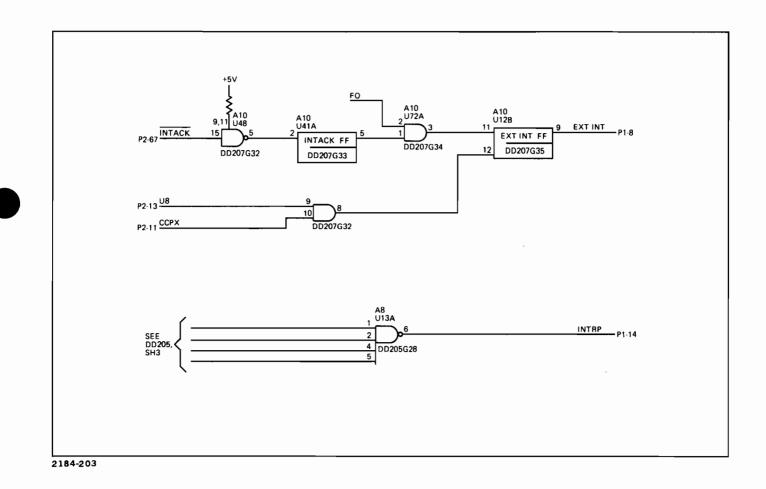

2184-179

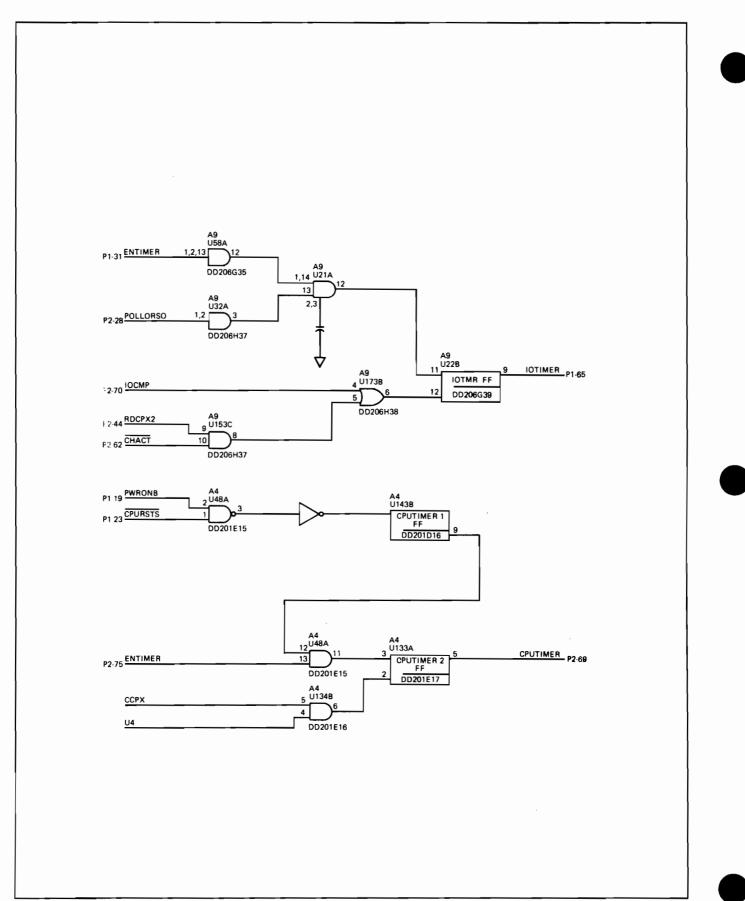
Figure 4-50. ENABLE, READY, MPIFRZ, IOLOREQ, IOHREQ and Serializer B Servicing Diagram

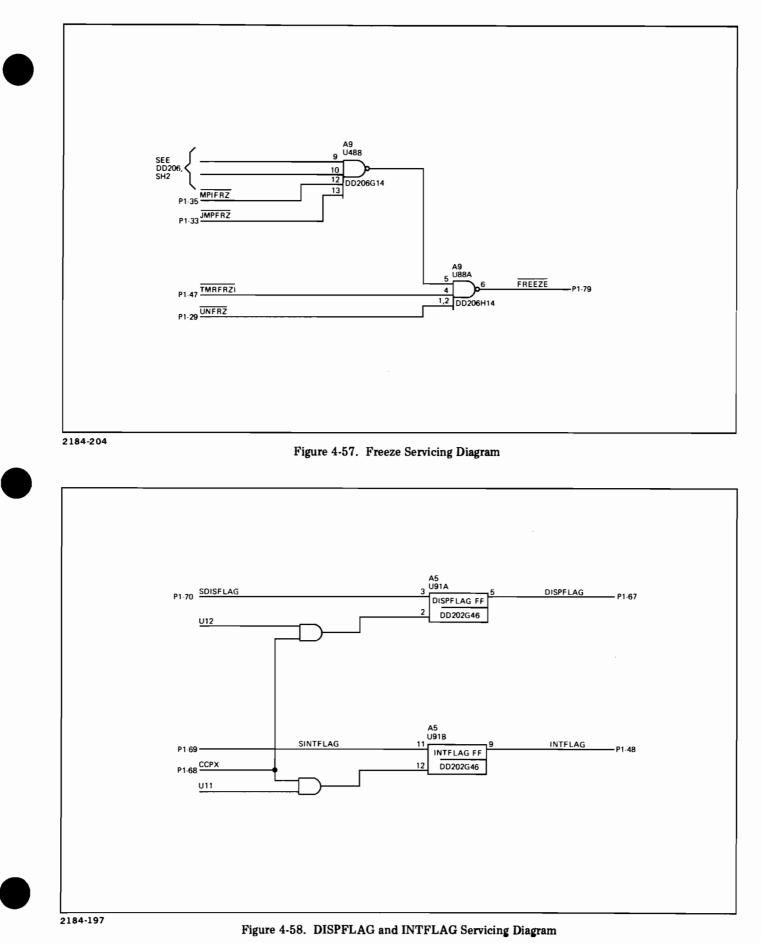




2184-200


Figure 4-51. Flag 1, Flag 2, Flag 3 Servicing Diagram





2184-198



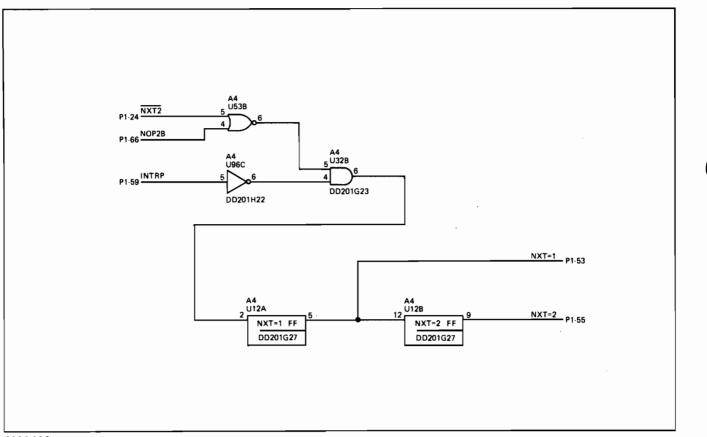
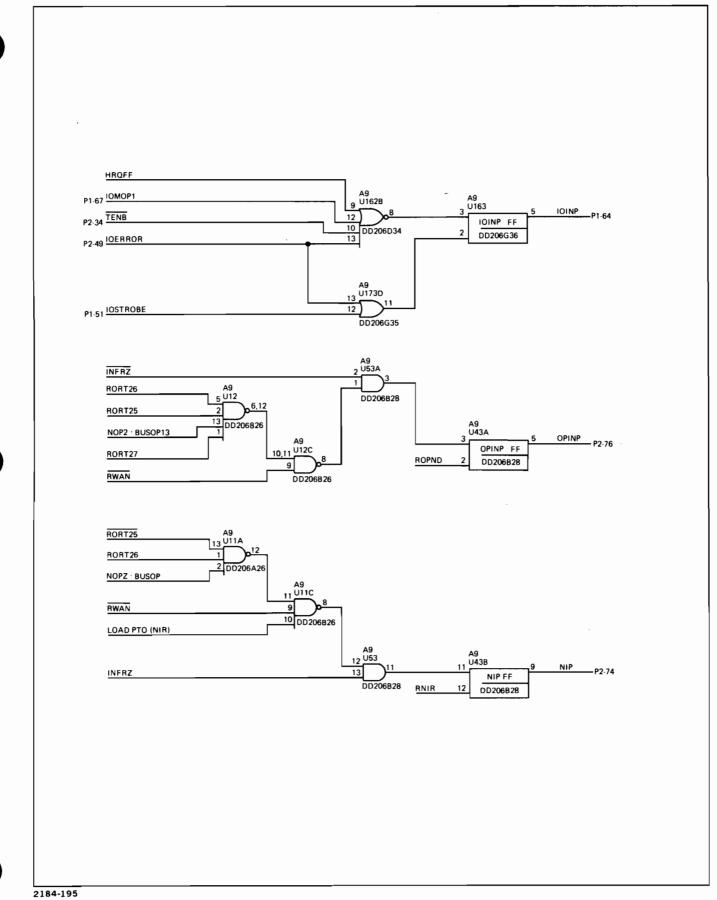
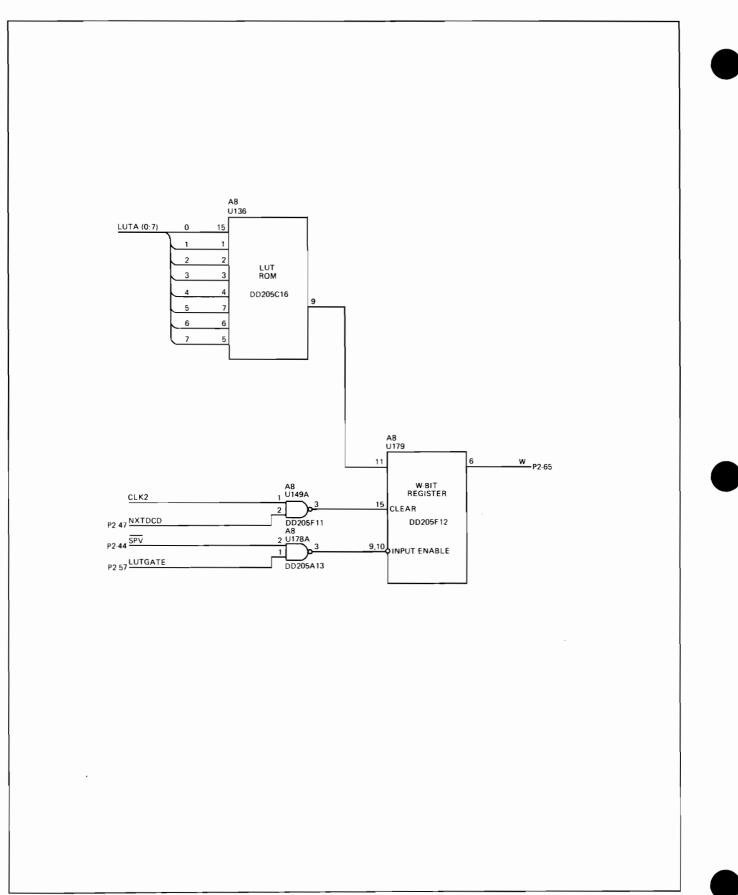
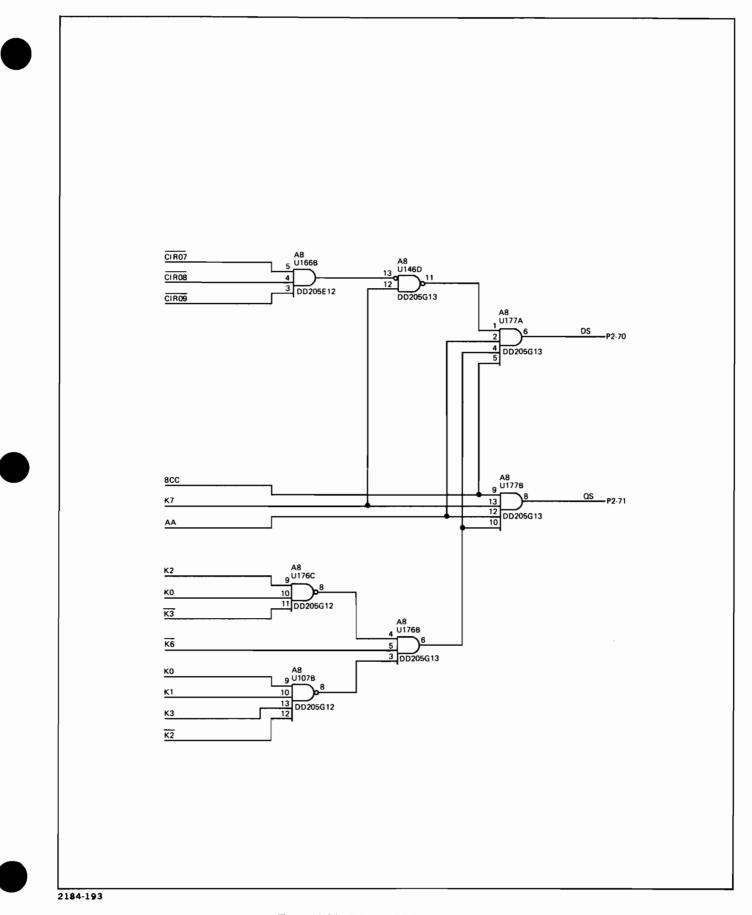


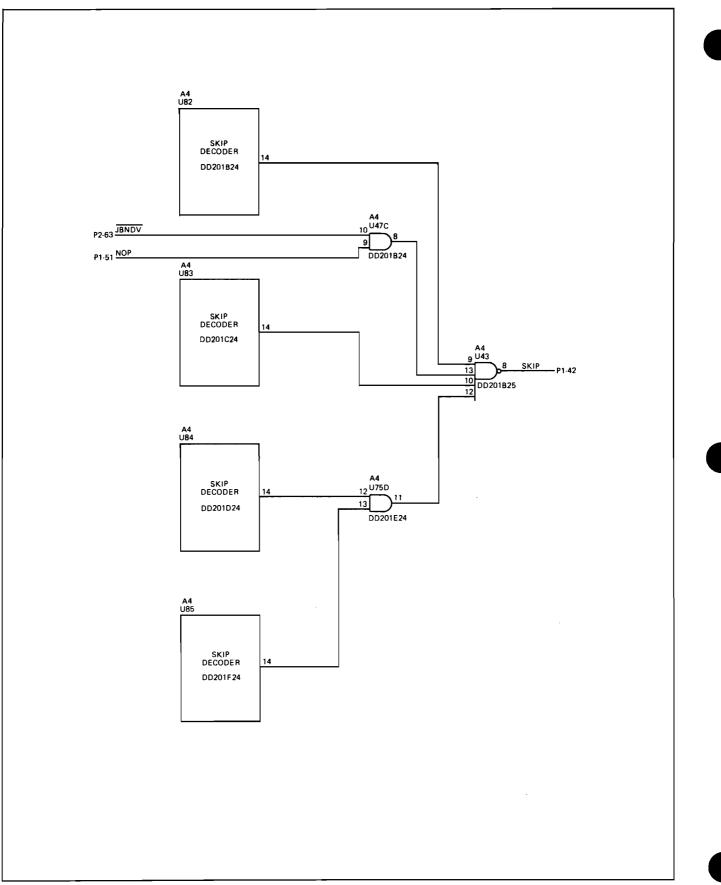










Figure 4-59. NXT = 1 and NXT = 2 Servicing Diagram

•










2184-192



2184-206

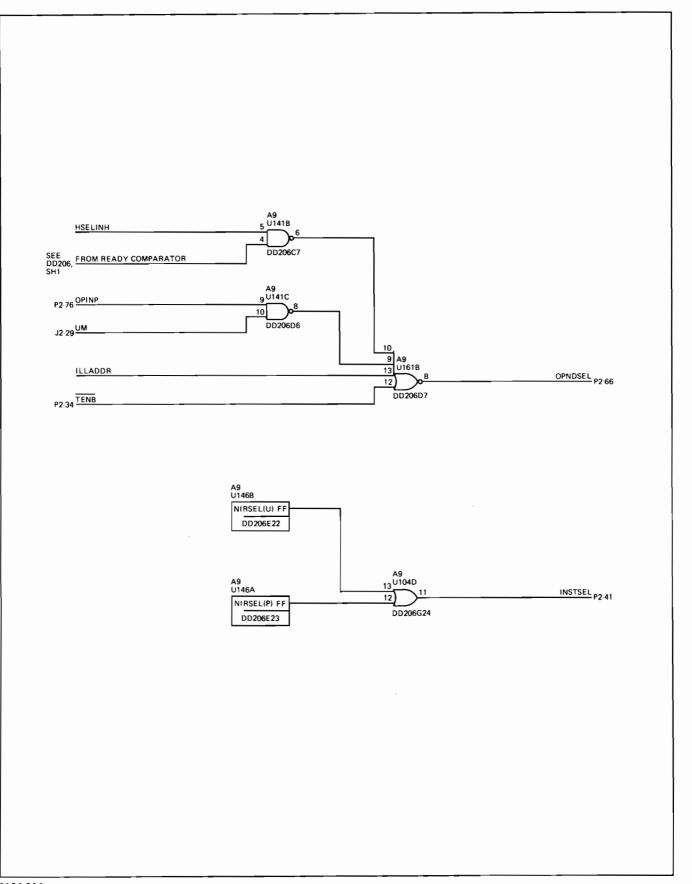



Figure 4-65. OPNDSEL and INSTSEL Servicing Diagram

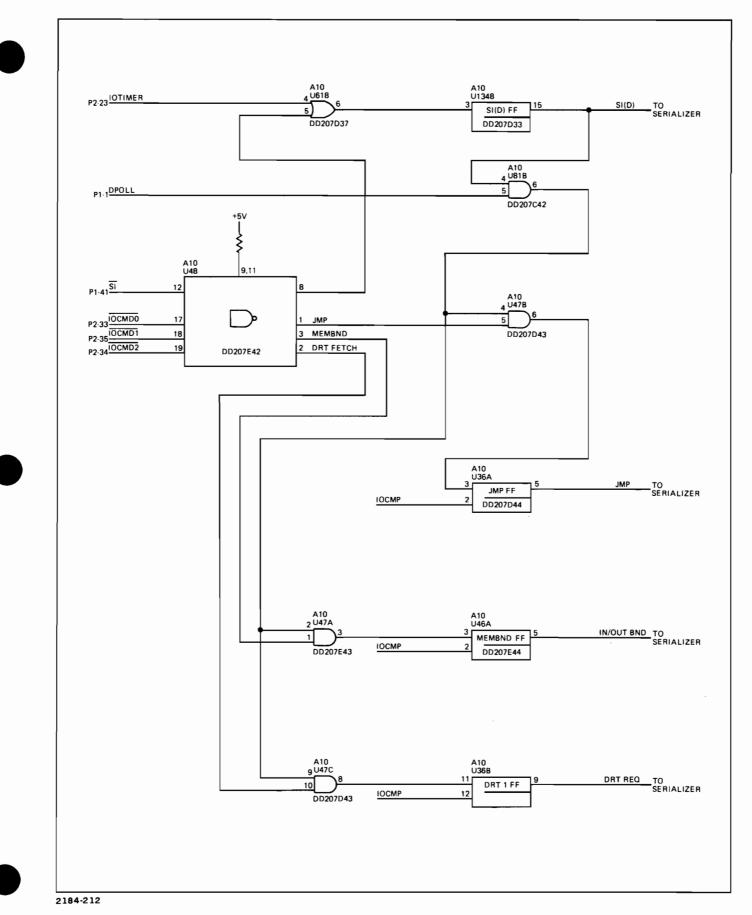
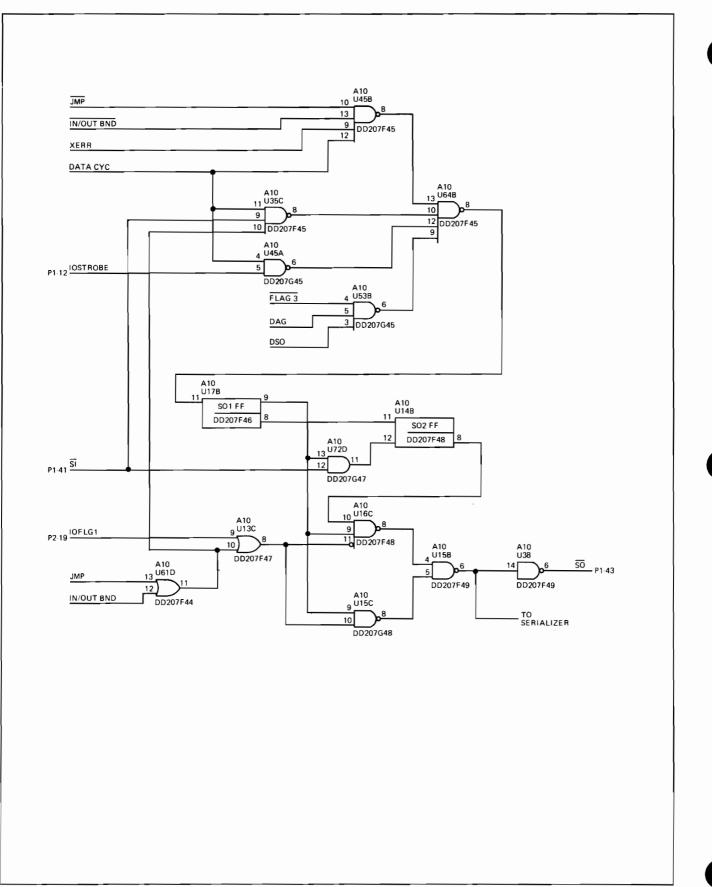
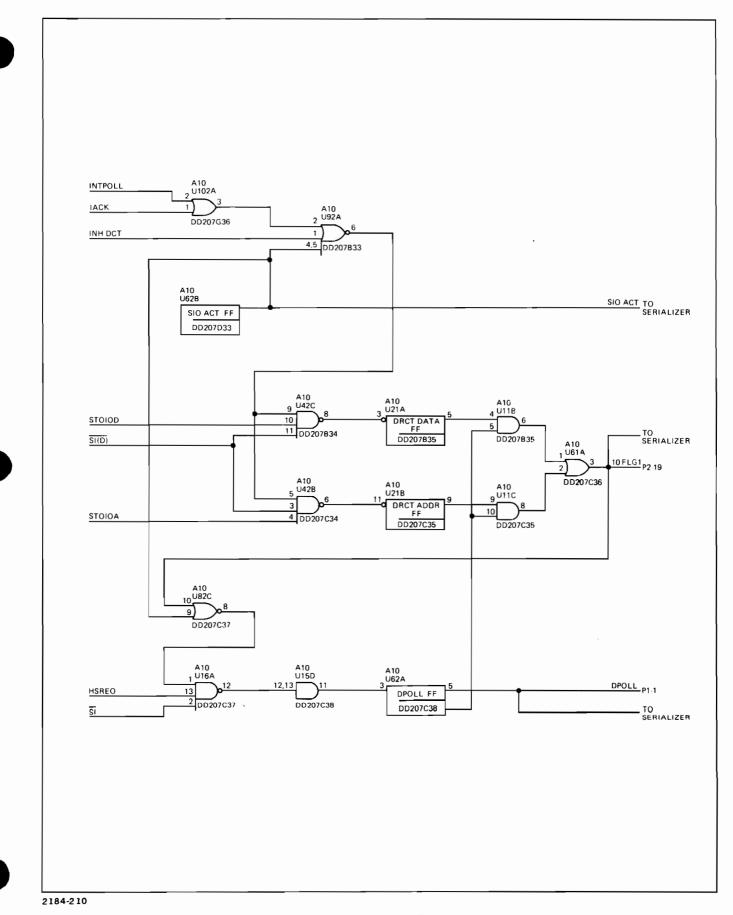
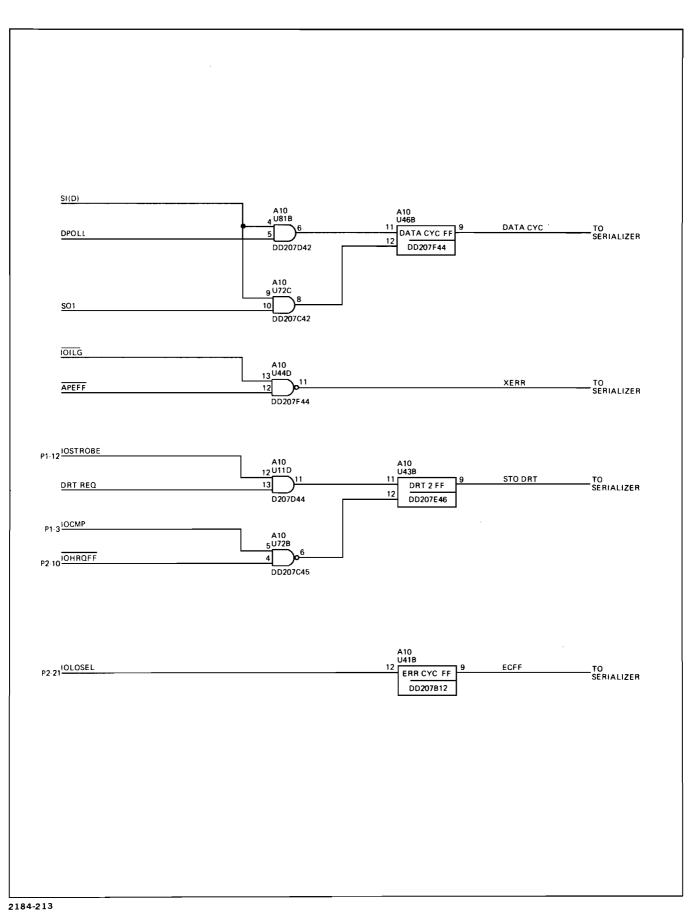
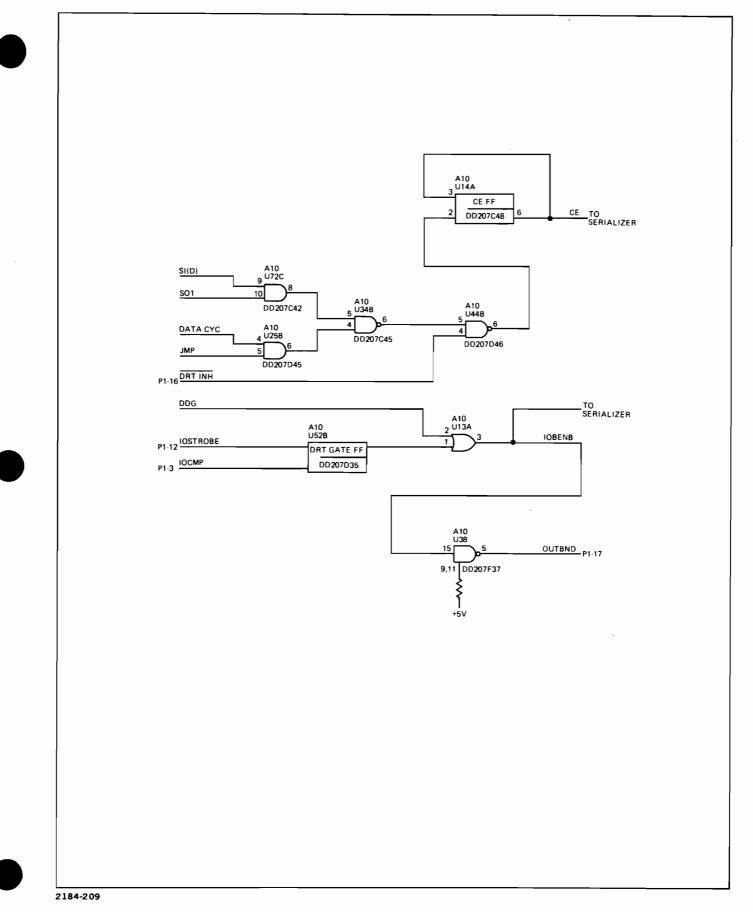
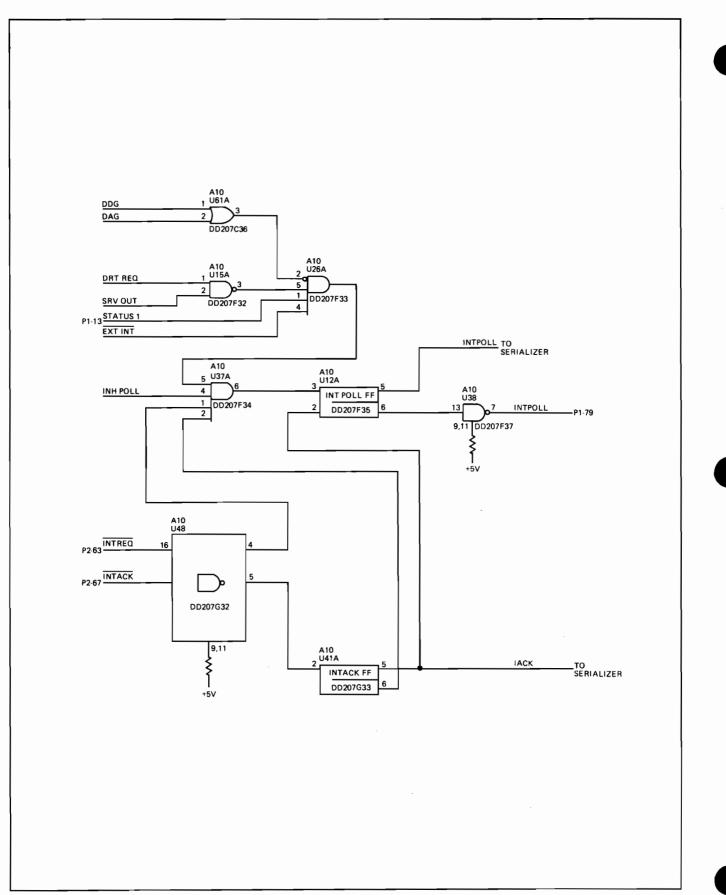






Figure 4-66. SI, JMP, IN BND, and DRT REQ Servicing Diagram


Maintenance








### Figure 4-69. DATA CYC, XERR, STO DRT, and ECFF Servicing Diagram





2184-208

Figure 4-71. INTPOLL and INTACK Servicing Diagram

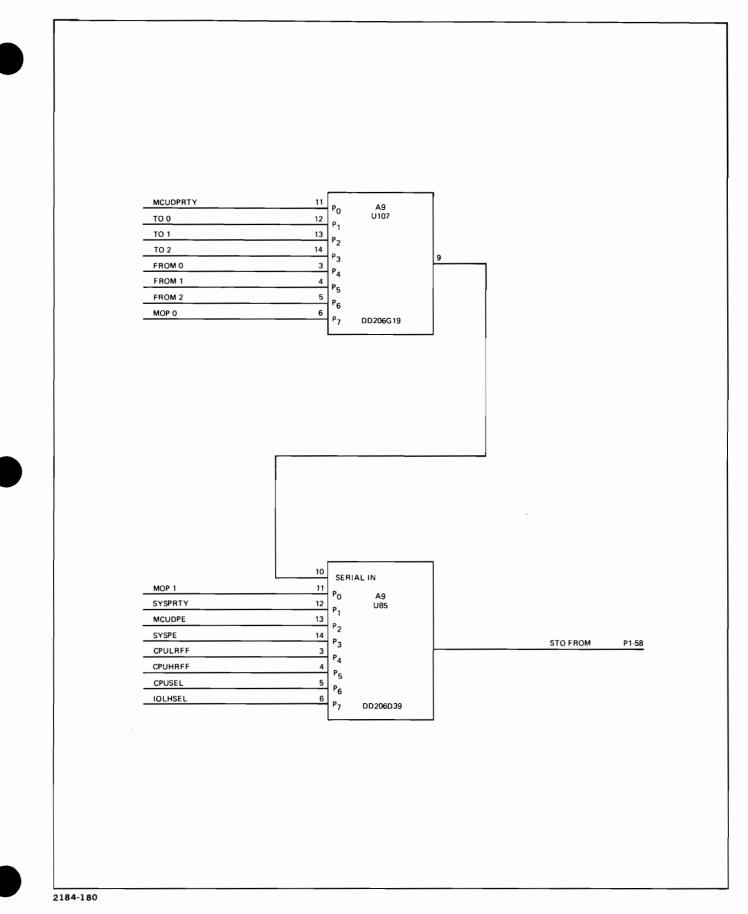
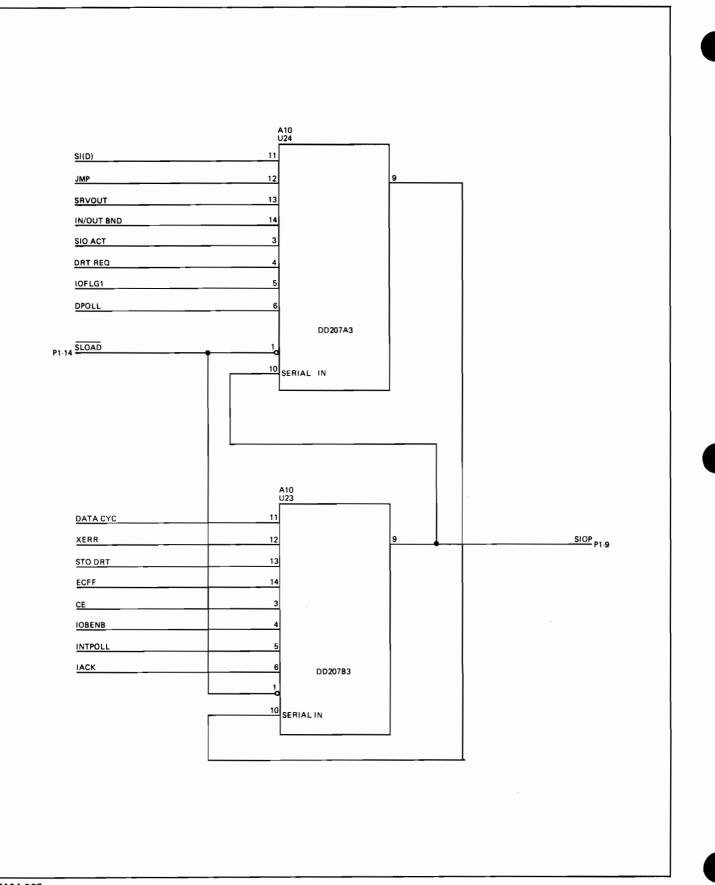
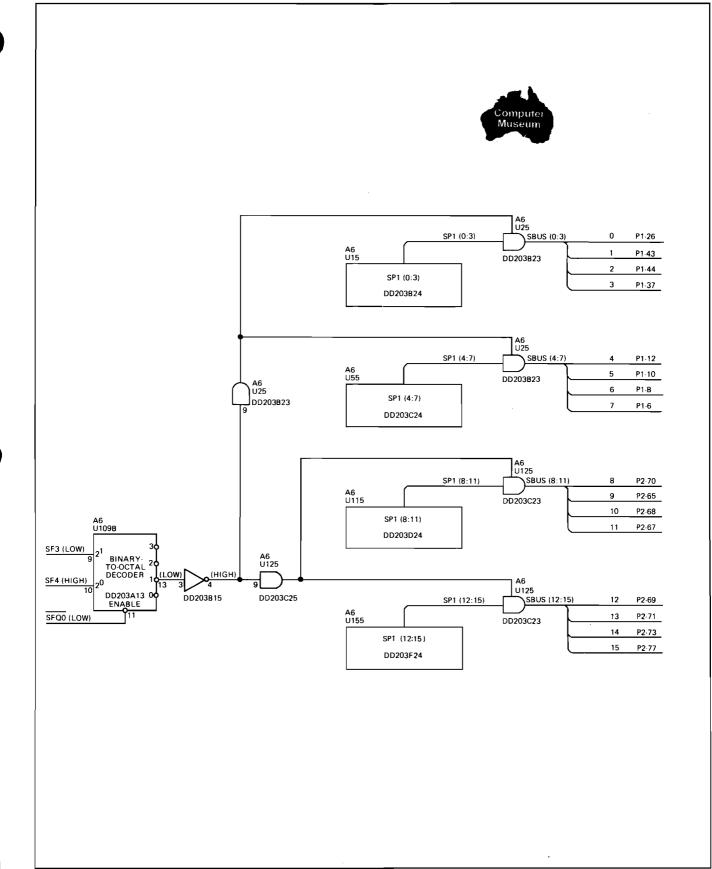





Figure 4-72. Serializer A Servicing Diagram



2184-207



APPENDIX

Α

# A-1 MICRODIAGNOSTICS

Stored in the microcode are diagnostics to test the CPU registers, memory, and the I/O channels. The diagnostics are accessed by a cold load procedure from the System Control Panel.

If an error occurs when running a diagnostic, the maintenance panel can be connected to the system to facilitate stepping through the microcode, or, the stand-alone diagnostic in the Manual of Diagnostics can be run to determine the malfunction.

## A-2. CPU REGISTER TEST

This diagnostic tests the various CPU registers. To run this diagnostic, perform the following steps:

- a. Set the SYSTEM SWITCH REGISTER to %000201.
- b. Press the ENABLE and LOAD switches.
- c. The program runs continuously until the HALT switch is pressed or until an error occurs.

When an error occurs, the CIR displays a coded register number that can be interpreted by referring to table A-1. Normal running time for a complete pass of the diagnostic is approximately one second.

NOTE

When the SYSTEM SWITCH REGISTER bit 8 is set to 0, all memory is initialized with a HALT %10 instruction (%030370) prior to executing the cold load. If bit 8 is set to 1, no initializing occurs prior to the cold load.

| CIR | REGISTER         | CIR | REGISTER       |
|-----|------------------|-----|----------------|
| 00  | SP1 (1) SEE NOTE | 20  | OPND (5)       |
| 01  | PL (1)           | 21  | DL (2)         |
| 02  | Z (1)            | 22  | SP2 (2)        |
| 03  | X (1)            | 23  | PB (2)         |
| 04  | RD (R BUS) (1)   | 24  | PCLK (2)       |
| 05  | RC (R BUS) (1)   | 25  | RD (R BUS) (2) |
| 06  | RB (R BUS) )1)   | 26  | RC (S BUS) (2) |
| 07  | RA (R BUS) (1)   | 27  | RB (S BUS) (2) |
| 10  | SP0 (1)          | 30  | RA (S BUS) (2) |
| 11  | CRTL (2)         | 31  | CTRH (2)       |
| 12  | P (2)            | 32  | ABS (BANK) (3) |
| 13  | Q (2)            | 33  | PB (BANK) (3)  |
| 14  | DB (2)           | 34  | DB (BANK) (3)  |
| 15  | SM (2)           | 35  | S (BANK) (3)   |
| 16  | STA (4)          |     |                |
| 17  | SP3 (2)          |     |                |

Table A-1. CPU Register Codes

(1) Located on R-Bus PCA

(2) Located on S-Bus PCA

(4) Located on Skip and Special Field PCA and S-Bus PCA

(5) Located on Current Instruction Register PCA

(3) Located on Skip and Special Field PCA

#### NOTE

SP1 is the first register tested and the problem may not necessarily be in SP1 but somewhere previous in the data path (Store logic, Shifter, ALU, etc.).

## A-3. MEMORY TEST

A memory configuration test is available from the microprogram for testing memory. Memory configuration test diagnostic time is approximately ten seconds.

To run the memory diagnostics, perform the following steps:

- a. Set the SYSTEM SWITCH REGISTER to %000200.
- b. Press the ENABLE and LOAD switches.
- c. Program runs until an error occurs.

When an error occurs the program pauses and the CIR contains the error data (lamp on = error bit). By pressing the RUN/HALT switch, the CIR then contains the address information shown in table A-2. The test should be continued so all memory is tested before any repairs are made. The test is terminated by pressing the HALT switch.

| CIR BIT | FUNCTION                 |
|---------|--------------------------|
| 0:3     | Address bits 0:3         |
| 6,7     | Bank number              |
| 10:14   | CPX1 register bits 2:6   |
| 10      | (2) Illegal address      |
| 11      | (3) CPU timer            |
| 12      | (4) System Parity Error  |
| 13      | (5) Address Parity Error |
| 14      | (6) Data Parity Error    |
| 15      | Address bit 15           |

Table A-2. CIR Address Information

### A-4. I/O TEST

A Test Input/Output (TIO) instruction is executed on each I/O device number (3 through %177) in sequence. Only those device numbers with a device connected will respond; empty device numbers are skipped. To run the I/O test, perform the following steps:

#### NOTE

If the HP 30354A Maintenance Panel is connected to the system, the TIMERS switch must be set to ENABLE.

- a. Set the SYSTEM SWITCH REGISTER to %000202.
- b. Press the ENABLE and LOAD switches. (When an existing device number is encountered, the program pauses with the device number in CIR. The RUN lamp will be illuminated.)
- c. Press the RUN/HALT switch. CIR then displays the device status, the RUN lamp will be extinguished.
- d. Press the RUN/HALT switch. Steps b and c are repeated until all device numbers have been interrogated. Diagnostic is finished when CIR displays %000200. The RUN indicator will be extinguished.

. .



## CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The Hewlett-Packard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.



MANUAL PART NO. 30001-90003 MICROFICHE PART NO. 30001-90020

PRINTED IN U.S.A.

.....