HP 1000 Computer Systems

A-Series Hardware Technical Data

HP Computer Museum www.hpmuseum.net

For research and education purposes only.

Documentation Summary of HP 1000 Data Books

I/O ARCHITECTURE	Distributed Intelligence	Centralized Intelligence
COMPUTER SERIES	A	E/F
SYSTEMS AND COMPUTERS	HP 1000 A-Series Hardware Technical Data	HP 1000 E/F-Series Hardware Technical Data
INTERFACES	HP 1000 A-Series Interfaces Technical Data	HP 1000 E/F-Series Interfaces Technical Data
SOF TWARE	HP 1000 Software Technical Data, Volumes I and II	
COMMUNICATIONS	HP 1000 Computer Systems Communications Products Technical Data book	
PERIPHERALS	HP 1000 Peripherals Selection Guide	
MEASUREMENT AND CONTROL	Control/1000 Technical Information Package	
	HP 2250 Measurement and Control Systems Technical Data	

NOTE: Data book supplements containing new or revised information may be prited between data book revisions Ask your Hewlett-Packard representative for the current data book or supplement in your area of interest

Product Number Index

Product No. \& Name

12030A 10-Slot Card Cage
12032A 5-Slot Card Cage
5-Slot Card Cage . 33
12153A Writable Control Store for A700.
12155A PROM Control Store for A700
12205A A900 Control Store Board. 39
2106BK A600+ Board Computer 33
2137A A700 Computer 27
A900 Computer
A 600 + Computer
$\begin{array}{lll}\text { 2156B } & \text { A600+ Computer. } & 27 \\ \text { 2196C/D } & \text { Model 26 System Processor Unit } & 13 \\ \text { 21976C } & \text { Model } 27 \text { System Processor Unit } & 13\end{array}$
2139A A900 Computer 27

21976C/D Model 27 System Processor Unit
13
2199C/D Model 29 System Processor Unit 13
2436A/E Micro 26 System Component 19
2437A Micro 27 System Component
19
2439A Micro 29 System Component
19
2486A Micro 26 System Processor Unit
2487A Micro 27 System Processor Unit
2489A Micro 29 System Processor Unit33

Alphabetical Index

Page Page
A 600 + Board Compute
$\mathrm{A} 600+$ Computer 33
A700 Computer27
A700 Control Store Cards 37
A900 Computer 27
A900 Control Store Board 39
AC Power Requirements 41
A-Series Capability and Performance-Packaging Summary ii
A-Series Computer Design and Specifications 1
Computer Power Supply and Card Cage Slot
Availability (+) and Requirements (-) 42
Environmental Specifications 45
Instruction Repertoire and Execution Times 9
Micro 26 Computer Systems 19
19 Micro 27 Computer Systems 19
19 Micro 29 Computer Systems 19
Model 26 Computer Systems 13
Model 27 Computer Systems 13
Model 29 Computer Systems 13
Physical Characteristics 44

Information Locator
HP 1000 A-Series Computer Design and Specifications . 1
Model 26, 27, and 29 Computer Systems . 13
Micro 26, Micro 27, end Micro 29 Computer Systems . 19
A600 + , A700, and $A 900$ Computers . 27
A600 + , Board Computer . 33
A700 Control Store Cards . 37
A900 Control Store Board. 39
Power Requirements . 41
Computer Power Supply and Card Cage Slot Availability (+) and Requirements (-) 42
Physical Characterisiics . 44
Environmental Specifications . 45

Table 1. HP 1000 A-Series Compability-Performance-Packaging Summary

CAPABILITY-PERFORMANCE COMPARISION	AgOO COMPUTER	A700 COMPUTER	A600+ COMPUTER
SPEED OF FASTEST INSTRUCTION	3,000,000 instr/sec	1,000,000 instr/sec	1,000,000 instr/sec
FLOATING POINT OPERATIONS/SEC -- Single-precision F / W-based -- Single-precision H/W-based -- Double-precision H / W-based	Hardware FPP is standard Not applicable 500,000 245,000	Hardware FPP is optional $\begin{array}{r} 54,400 \\ 204,000 \mathrm{w} / 12156 \mathrm{~A} \\ 99,700 \mathrm{w} / 12156 \mathrm{~A} \end{array}$	FP is firmare-based 64, 000 Not applicable Not applicable
SCIENTIFIC INSTRUCTION SET -- Single-precision oper/sec	$\begin{aligned} & \text { Standard } \\ & 50.000 \end{aligned}$	With 12156A FPP $36,000$	Software equiv. routines Not specified
VECTOR INSTRUCTION SET -- Single-precision speed -- Double-precision speed	Standard 688,000 oper/sec after 4.9 microsecond setup 421,000 oper/sec after 6.2 microsecond setup	With 12156A FPP 245,000 oper/sec after 13.5 microsecond setup 144,000 oper/sec after 13.5 microsecond setup	Software equiv. routines Not specified Not specified
MAIN MEMORY CAPACITY/CARD CAGE SLOTS USED BY CPU AND MEMORY -- ECC (256 K RAMs) -- ECC (64 K RAMs) -- Parity (64 K RaMs)	```3 Mb to 21 Mb*/5 to 12* 768 kb to 6 Mb*/5 to 13* Not available```	1 Mb to $8 \mathrm{Mb} / 4$ to 8 512 kb to $2 \mathrm{Mb} / 4 \mathrm{to} 8$ 512 kb to $4 \mathrm{Mb} / 4$ to 8	512 kb to $8 \mathrm{Mb} / 2$ to 6 Not available 512 kb to $4 \mathrm{Mb} / 2$ to 6
MEMORY CYCLE TIME	181 nanosec average effective, assuming 88\% cache hit rate	500 nanosec	454 nanosec
I/O BANDWIDTH -- Output -- Input	2.5M bytes/second 3.7M bytes/second	4. OM bytes/second 4. OM bytes/second	4. 27 M bytes/second 4.27M bytes/second
AVAILABLE I/O SLOTS* -- In 20-slot box computer	15	16 without 12156A FPP. 15 with 12156A FPP	18
USER MICROPROGRAMMABILITY	Yes, with $4 k$ words of WCS and $2 k$ words of PROM control store available to the user.	Yes, with half (8k words) of control store available to the user.	No
PACKAGING			
-- Systems (page 13) -- Micro/1000 Systems (page 19)	Model 29 (2199C/D) Micro 29 (2489A or 2439A)	Model 27 (2197C/D) Micro 27 (2487A or 2437A)	$\begin{aligned} & \text { Model } 26 \text { (2196C/D) } \\ & \text { Micro } 26 \text { (2486A or } \\ & 2436 A / E) \end{aligned}$
-- Computers (page 27)	2139A	2137A	2156B
-- Board Computer [page 31〕	Not available	Not available	2106BK

* A maximum of four memory array cards (half the maximum capacity shown here) is supportable with battery backup.
* All I/O Slots have direct access to memory.

HP 1000 A-Series Computer Systems

The HP 1000 A-Series comprises a compatible family of computers that feature distributed intelligence input/output. This design uses an I/O processor on each interface to maximize I/O efficiency and minimize CPU involvement with I/O operations, thereby optimizing overall processor price/performance for a wide variety of applications.

Features

- Total compatibility of comparable instructions in all ASeries computers
- A wide choice of computer performance levels from 1 to 3 million instructions $/ \mathrm{sec}$ and 64 k to 500 k floating point operations/sec
- Distributed intelligence I/O design for DMA per channel efficiency
- High reliability and maintainability through the use of simple packaging, self test, and board level diagnostics
- Built-in dynamic mapping system, memory protect, and time base generator
- ECC memory capacity up to 21 Mb in A 900 , up to 8 Mb in A600 + and A700
- Support for Virtual Memory for data to 128 M bytes and up to 15 Extended Memory Areas for data up to 2 M bytes, each accessible to as mary as 63 different programs
- Extensive software support including operating system, FORTRAN and Pascal compilers, BASIC interpreter and compiler, Macroassembler, screen editor, data base management system, graphics software, distributed systems networking, and manufacturing applications
- Boot loaders included for boot-ap from:
- Adjacent computer system in a DS /1000-IV Distributed Systems Network
— Disc drive
- Magnetic tape
- PROM Storage Module
- Remote loading and diagnosis for programming and operation of systems from remote sites

Overview (See Table 1, facing.)

The A900 Computer

The A900 is Hewlett-Packard's fastest HP 1000 Computer. Pipeline technology with cache memory, boosted even more by a fast hardware floating point processor with

scientific and vector instruction sets, provides unmatched computation speed. Base set speed of 3 million instructions per second and 500,000 floating point operations per second provide enough computational power to conquer thousands of applications that have previously been far beyond the reach of minicomputers. A sizable 768 k bytes of Error Correcting Code (ECC) memory is standard and battery backup is optional to maximize system integrity. The base 768 k bytes can be replaced with 3 M bytes, which is expandable to a total of 21 M bytes, providing enough capacity for very large applications. User microprogramming is supported, permitting the development of special instructions or the conversion to firmware of frequently-used software routines for significantly-faster execution.

The A700 Computer

The A700 is a microprogrammed and usermicroprogrammable computer that offers the user exceptional flexibility. For applications that require higher speed calculations than are possible with firmware and software in the base A700 computer, an optional hardware floating point processor with scientific and vector instruction sets provides 6 to 12 times faster floating point math, up to 31 times faster trigonometric and transcendental calculations, and 8 to 20 times faster vector and matrix arithmetic.

The A600+ Computer

The A600 + is a full-function microcomputer that offers the HP 1000 user 1 million instructions per second performance at surprisingly low cost. Although the A600+ is a microprogrammed computer, it is not designed to support microprogramming by the user.

Packaging

Systems. The A600+, A700, and A900 Computers are available in free-standing Model 26,27, and 29 Systems configured around a set of basic system elements, called the System Processor Unit (SPU). These systems are managed by the RTE-A Real-Time Executive Operating System, which supports multi-programming, high-level program languages, virtual memory and sharable extended memory areas for data, data base management, distributed systems networking, graphics software, and up to 21 megabytes of main memory in the Model 29, up to 8 megabytes in the Model 26 or 27.
All of these systems support the VC+ enhancement to RTE-A for execution of programs up to 7.75 megabytes. The VC + software is included in the Model 27 and 29 systems.
The SPU hardware consists of the A-Series Computer as described below, HP-IB disc interface and serial (system console) interface, with 13 to 16 card cage slots available for additional memory and I/O cards. This is housed in either a tall cabinet with extra rack space for additional equipment or a short cabinet without extra space.
To the SPU, OEMs and end users add an operator terminal, one or more hard discs, and other peripheral devices as needed for their applications. Multiple fixed discs with 24 to 404 megabyte capacity, some with built-in tape cartridge backup, can be used on the system. Up to 1.6 gigabytes of disc capacity can be connected via a single disc interface.
Micro/ $\mathbf{1 0 0 0}$ systems. For applications that require $\mathrm{A} 600+$, A700, or A900 performance in a small space, the Model 26,27 , and 29 systems are available in a Micro/1000 package as the Micro 26, Micro 27, and Micro 29 systems. These systems, which have a 12 -slot card cage (vs 20 slots in the larger systems) can include integral 14.5 M byte fixed and 270 k byte microfloppy discs or any of the discs available with the Model 26,27 , and 29 systems. The Micro/ 1000 systems support 92078 A VC+ for programs to 7.75 megabytes.
Computers. The A600 + , A700, and A900 computers are available in packaged form as the $2156 \mathrm{~B}, 2137 \mathrm{~A}$, and 2139A (box) Computers for users who desire to package their own hardware and software. These box computers include a 20 -slot card cage, of which 15 to 18 card cage slots are available after provision for computer and memory circuit boards of the base configuration.
Board Computer. The A600+ computer is available as the 2106BK board set for packaging into OEM products.

Memory system

The memory system for A-Series computers is a mapped array differing among the computers with respect to size and type of memory supported, as summarized in Table 1. Memory access is managed by the dynamic mapping system, a powerful combination of hardware and special instructions built into the computer, a capability that gives A-Series users efficient use of large memory systems with minimal programming effort.
The choice of memory array cards available for A-Series computers includes ECC memory cards based on 256 K RAMs for all A-Series computers, ECC memory cards based on 64 K RAMs for A700 and A900 computers, and parity memory cards based on 64 K RAMs for $\mathrm{A} 600+$ and A700 computers. The new, high-density memory cards based on 256 K RAMs can be used to provide up to 8 megabytes of ECC memory in A $600+$ or A700 computers, up to 21 megabytes of ECC memory without battery backup, 12 megabytes of ECC memory with battery backup in A900 computers.
Within the limitation of a maximum of four array cards in A600 + and A700 computers and systems, ECC memory systems can incorporate both the new 1 Mb or 2 Mb ECC memory array cards and existing parity memory cards (or ECC memory cards in A700 computers). Similarly, within the limitation of a maximum of eight array cards (four with battery backup), A 900 computers can use a combination of the new 3 Mb ECC memory array cards and existing 768 kb ECC memory cards.

Interfaces and peripherals

A full line of HP manufactured interfaces and peripheral devices support the highly flexible configuration of onevendor systems to satisfy a wide variety of application requirements.

Central processor descriptions

A900 Processor description

Cache memory for fast processing. Pipeline technology gives the A900 computer a superfast 133 nsec cycle time for each successful cache memory access. The cache incorporates hardware address create logic for fast next-address generation and supports a 32 -bit data bus to the memory controller. With a hit rate typically 88%, memory access time averages about 181 nanoseconds.
A hardware floating point processor speeds floating point calculations. An integrated set of floating point chips accelerates processing for single and double precision floating point operations to real-time speeds - over 575,000 single precision additions or subtractions per second, over 535,000 multiplications per second, and over 250,000 divisions per second.

A Scientific Instruction Set (SIS) of nine single precision and nine double precision trigonometric and transcendental functions and a polynomial evaluation instruction uses the fast floating point computational power of the A900 to solve complex scientific and engineering calculations quickly and accurately. For example, the A900 can make over 65,000 single-precision square root calculations per second and over 38,000 hyperbolic tangent calculations per second.
A polynomial evaluation instruction included in the Scientific Instruction Set can evaluate polynomial expressions of the form:

$$
z=\frac{a+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}}{b+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}}
$$

at hardware speeds. This capability is useful for function approximation, such as curve fitting or or correction for non-linear response of a strain gage, thermocouple, or other transducer.
A Vector Instruction Set (VIS) applies the A900's floating point processing power to highly-efficient repetitive processing of vectors and matrices. Because they take advantage of the inherent efficiency of vector processing, the VIS instructions can achieve rates ranging from over 267,000 operations per second for single-precision vector divide to over 830,000 operations per second for vector add, subtract, and multiply, after initial setup times of 4 to 5 microseconds.
Error Correcting Code (ECC) Memory. A sizable 768k bytes of ECC memory, expandable to 21 M bytes without battery backup, to 12 M bytes with battery backup, is standard. The ECC capability corrects all single-bit errors without interrupting the operating system, which maximizes system integrity and reliability.
User microprogrammability is supported by an optional control store board and an easy-to-use, Pascal-like Paraphraser. This gives the user the ability to convert software routines that are frequently used or especially time consuming to microcoded routines that typically run 2 to 10 times faster.

A700 Processor description

Bit-slice central processor. The A700 computer is a bitslice, microprogrammed machine on two CPU cards. Its memory controller supports one to four parity or Error Correcting Code (ECC) memory cards. Up to 8 megabytes of ECC memory can be provided.
User microprogrammability is supported by optional Writable and PROM Control Store cards and an easy-to-use Pascal-like Paraphraser. This gives user the ability to convert software routines that are frequently used or especially time consuming to microcoded routines that typically run 2 to 10 times faster.

An optional computation acceleration processor may be ordered as the 12156A Hardware Floating Point Processor card. This card provides hardware floating point computation speeds about 40% of A900 speeds plus Scientific and Vector Instruction Sets similar to those of the A900 with speeds about half as fast.

A600+ Processor description

Bit-Slice Central Processor. The A600 + computer is implemented on a single card with bipolar bit-slice microprocessors. The processor is a horizontally microprogrammed CPU with a 56 -bit wide microword format. The wide microword format eliminates the need for time-consuming decode logic so the A600+ computer responds to microinstructions with maximum speed and efficiency, and provides high performance at surprisingly low cost.
1 M bytes of memory and controller on a single card. The A $600+$ Memory Controller includes 128 k bytes or 512 k bytes of parity memory or 512 k bytes or 1 M byte of Error Correcting Code (ECC) memory on one card. Up to 8M bytes of ECC memory can be provided by adding memory cards to an $\mathrm{A} 600+$ computer with a 1 M byte ECC memory controller.
NOTE: Hardware floating point and user microprogramming are not supported in the A 600 + computer.

A-Series high-level program accelerator instructions

The A600, A700, and A900 Computers all include instructions designed to accelerate the execution speed of programs written in FORTRAN or Pascal. These microcoded routines speed up parameter passing and other commonly used high-level program operations 2 to 20 times, compared to the same routines in software.

Virtual Control Panel

A ROM-based Virtual Control Panel (VCP) program enables an operator to perform control panel functions via a local or remote-connected terminal or an adjacent HP 1000 Computer System through a standard serial, multiplexer (channel 1) or DS / 1000-IV I/O interface card. Only one I/O interface card in the system can be given this capability at any one time. That I/O card can connect to a terminal or other computer system accessible only to the system manager or the maintenance department. The operator at the VCP terminal or system can examine and change the contents of registers and memory locations, control program execution, initiate the self test, and select a bootstrap loader and initiate the boot-up of a system.
Because of its remote operating ability, the VCP can be used for remote isolation of system faults, which can help to minimize support costs for OEM products that use the A-Series components. When not being used as the VCP, the VCP-assigned terminal can be used in the same way as any other terminal on the system, except for the break key.

Boot-up Sources and Auto Boot-up

The A-Series computers support boot-up from the following sources, of which sources 1 through 3 can be used for auto boot-up.

1. An adjacent HP 1000 System in a DS/1000-IV network via the 12007A/B or 12044A interface.
2. A disc memory via the 12009 A HP-IB interface or other disc interface.
3. 12008A PROM Storage Module.
4. A 797xA/E Magnetic Tape Unit via the 12009A HP-IB interface.

Self Test and Diagnostics

The A-Series computers include microcoded and macrocoded self tests which check the CPU, memory, and the I/O masters of installed interfaces, either automatically on power-up or when requested by an operator via the Virtual Control Panel. HP 24612A, 24613A, and 24398B diagnostic packages are also available for stand-alone testing of all computer hardware, including I/O interfaces. A BASIC-like interpreter is provided in the 24612A package to help the user prepare diagnostics for user-designed interfaces.

Extensive software support

Operating System Software

92077A RTE-A Real-Time Executive operating system (for 512 kb to 21 Mb memory-included in 219xC/D Systems and $248 \times \mathrm{A}$ Micro/ 1000 Systems)
92078A VC+ Enhancement to RTE-A operating system (included in 2197C/D and 2199C/D Systems)

Program Development Software

92836A FORTRAN 77 Compiler.
92833A Pascal/1000 Compiler.
92857A BASIC/1000C Interpreter-Compiler package.
92076A BASIC/1000L Interpreter.
Macro/ 1000 Assembler (included in RTE-A).
Edit/1000 Interactive Screen Editor (included in RTE-A).
92860A Symbolic Debug/1000.

Microprogram Development Software

92045A RTE Microprogramming Package for A700.
92049A RTE Microprogramming Package for A900.

Data Management Software

Command Interpreter (included in RTE-A).
File Manager (included in RTE-A).
96081A Image/1000-II Data Base Management System. 92069A Image/1000 Data Base Management System.

Graphics Software

92861A Version 2.0 Graphics/1000-II Device-Independent Graphics Library for general graphics support.
92862A Version 2.0 Graphics/1000-II Advanced Graphics Package for interactive and/or 3-D graphics support.

Communications Software

91750A DS / 1000-IV Network software for communication with other HP 1000 systems or HP 3000 systems.
91751A DSN / X. 25 software for communication with other systems via packet-switching networks.
91781A RJE/1000-II software for remote job entry to IBM or IBM plug-compatible systems.
91782A DSN/MRJE software for multileaving remote job entry to IBM or IBM plug-compatible compatible systems.
91784A PMF/1000 Programmable Mainframe facility software for program-to-program communication with IBM or IBM plug-compatible systems.
91732A Data Link Software for communication with multiple terminals and/or multiple systems via multipoint or data link lines.

Manufacturing Applications Software

92121A PMC/ 1000 Process Monitoring and Control Software
92131A QDM/1000 Quality Decision Management Software.
92141A PCIF/1000 Programmable Controller Interface Software.

Communications support

A-Series computers can communicate with terminals and other systems in the following ways:

- With terminals via single-channel interface, eightchannel multiplexer interface, or data link/multipoint interface.
- With other HP 1000 systems via DS/1000-IV HDLC point-to-point interface or multidrop Data Link.
- With HP 3000 systems via DS/1000-IV Bisync point-topoint interface.
- With HP 1000, HP 3000, and other systems via DSN / X. 25 interface to packet-switching networks.
- With IBM or IBM plug-compatible system via Multi-Use Programmable Serial Interface and remote job entry or program-to-program communications software.

Input/output

Distributed Intelligence Architecture Boosts I/O Efficiency and Simplifies Programming

Computation and input/output are often both entirely controlled by the central processor. In A-Series computers, the central processor has been relieved of I/O DMA processing. That function has instead been assigned to an individual processor (IOP) on each interface card. Thus, the CPU is freer to process data. The CPU, the IOPs on each interface, and memory all cornmunicate with each other via a common bus, except in the A900, which has a separate I/O bus.

Low-overhead I/O

I/O Processor-Managed DMA. The built-in intelligence of each IOP supports autonomous control of I/O operations. This includes high-speed direct memory access (DMA) and can even include chained multiple DMA transfers with CPU involvement only at the start and completion of the entire chain.
DMA Per Channel. The standard IOP is provided on every A-Series interface, supporting direct memory access (DMA) on all I/O channels.
I/O Access Priority. Priority of I/O interrupt and access to memory is controlled by interface card position on the card cage bus with respect to the CPU. The interface closest to the CPU has the highest priority, those farther down the bus have successively lower priority.
Simplified I/O Programming. The same level of intelligence that supports DMA-per-channel operation also simplifies I/O programming. The master IOP logic recognizes interface I / O addressing independently of I / O card position on the card cage bus. This supports standardization of I/O addresses and functions in programs without requiring any particular arrangement of I/O cards in the card cage.

Compatibility with other HP 1000 Computers

Compatibility with HP $1000 \mathrm{M} / \mathrm{E} / \mathrm{F}-$ Series. A-Series computers execute the same HP 1000 base set instructions as HP $1000 \mathrm{M}, \mathrm{E}$, and F-Series Except for dynamic mapping instructions, virtual memory instructions, and I/O instructions, other A-Series instructions beyond the base set as defined have the same mnemonics and format as in HP $1000 \mathrm{M}, \mathrm{E}$, and F-Series computers, which facilitates program transportability between HP 1000 A-Series computers and HP $1000 \mathrm{M} / \mathrm{E} / \mathrm{F}$-Series computers.
I/O drivers written for use with the RTE-6/VM or RTEIVB operating system will have to be rewritten for use with RTE-A.

Compatibility with HP 1000 L-Series. A-Series computers execute the entire L-Series instruction set. Programs written for use under RTE-L or RTE-XL will run without change under RTE-A.

Specifications

Central processor

Implementation: Microprogrammed LSI and MSI hardware.
Data path width: 16 bits.
A600+ and A700 Bus structure: Single backplane bus for memory, processor, and I/O.
A900 Bus structure: Single backplane bus for I/O, which accesses processor and memory via the cache memory.

VCP-Accessible Registers:

A-Register	$=16$-bit accumulator
B-Register	$=16$-bit accumulator
X-Register	$=16$-bit index register
Y-Register	$=16$-bit index register
Q-Register	$=15$-bit base register
P-Register	$=15$-bit program counter
T-Register	$=16$-bit memory transfer register
M-Register	$=15$-bit manual data register
E-Register	= 1 -bit extend register
O-Register	= 1-bit overflow register
CIR-Register	$=6$-bit Central Interrupt register
V-Register	$=16$-bit memory Violation register
Z-Register	$=16$-bit bounds register
I-Register	$=1$-bit Interrupt System status register
ES-Register	$=32$-bit memory Error Syndrome register*
PE-Register	$=24$-bit Parity Error address register**
WMAP-Register	$=16$-bit logical map select register

Register access: All registers can be selected for display or modification via the Virtual Control Panel.
Instruction formats: Combined single word, Single word, and Double word

Addressing modes: Direct, multilevel-indirect, single word, double word, and register implicit, indexed, and indirect indexed.

A900 Microcontrol processor

Implementation: Hardwired MSI, with pipelined data paths.
Instruction cycle time: 133 nanoseconds.
Control path: 48 bits
Data path: 16 bits.

[^0]Registers:

Standard registers	$=5(\mathrm{~A}, \mathrm{~B}, \mathrm{X}, \mathrm{Y}$, and $Z) \times 16$ bits
and $2(\mathrm{P}$ and Q$) \times 15$ bits.	
Scratch registers	
	2×16 bits, non-pipelined,
	12×16 bits, pipelined, and
	896×16 bits cache memory
	locations addressable as
$=$	scratch registers.
Instruction register	1×16-bits.
Switch register	$=1 \times 8$-bits.
Status flag registers	$=2 \times 1$-bit.
LED register	$=1 \times 8$-bits.
Processor control	$=4 \times 16$-its.
Processor status	$=4 \times 16$-bits and
Subroutine levels stack	$=168 \times 15$-bits.
	3×16-bits.
Memory address	$=3 \times 8$-bits.
Microaddress vector	$=1 \times 15$-bits and
	1×8-bits.

Microinstruction formats:

Type 1 Conditional special field execution or conditional return, all special fields available.
Type 2 Conditional jump, conditional jump subroutine, 8 -bit target address.
Type 3 Unconditional jump, unconditional jump subroutine, 15 -bit target address.
Type 4 16-bit immediate data operations.
Bus structure: Two-address architecture. Three or four addresses allowed for some operands and registers. Multiple register stores available in the same cycle. Two separable store buses allow splitting of data paths. Separate data path for memory address registers. Main memory and I/O transactions are conducted on separate buses and are arbitrated by the cache.

Control memory structure:

Type $\quad=$ Bipolar LSI Semiconductor read/write or PROM.
Address space $\quad=32,768$ words.
Word size $=48$ bits.
Cycle time $=133$ nanoseconds.

Control processor instructions:

Number
$=265$ total, up to 13 combinable in one instruction word.
Operations $\quad=8$ total.
Special $=45$ total.
ALU
$=18$ total.
Conditional
$=35$ total.
Store $=20$ total.
Memory operations $=8$ total.
L Bus (source/store) $=64$ total.
R Bus (source/store) $=64$ total.

A700 Microcontrol processor

Implementation: Hardwired MSI.
Instruction cycle time: 250 nanoseconds.

Control path: 32 bits.
Data path: 16 bits.
Registers:
Standard registers $\quad=5(\mathrm{~A}, \mathrm{~B}, \mathrm{X}, \mathrm{Y}$, and Z$) \times 16$-bits and 2 (P and Q$) \times 15$-bits.
Scratch registers $\quad=43 \times 16$-bit registers available to the microprogrammer.
Instruction register
$=1 \times 16$-bits.
Switch/Ind. register $=1 \times 16$-bits.
Status flag $\quad=1 \times 1$-bit.
Subroutine levels stack $=4 \times 14$-bits.
Instruction register $=1 \times 16$-bits.
Microinstruction formats:
Type 1 Macroinstruction decode and NOP, unconditional return.
Type 2 Conditional return and conditional operation.
Type 3 Conditional Jump and Jump to Subroutine.
Type 4 Unconditional Jump and Jump to Subroutine.
Type 5 Long Jump and Jump to Subroutine.
Type 6 16-bit Immediate Data Operations.
Bus structure: Three-address architecture; one bus defaults to micro-accumulator with instruction types 3, 4, and 5. Memory and I/O data paths are through common backplane.

Control memory structure:

Type	$=$Bipolar LSI Semiconductor read $/$ write or PROM.
Address space	
Word size	$=32,384$ words.
Cycle time	
	$=250$ nanoseconds.

Control processor instructions:

Number
$=198$ total, up to 7 combinable in one instruction word.
Operations $=14$ total.
Special $=56$ total.
ALU and Conditional $=48$ total.
Store (destination) $=32$ total.
B Bus (source) $=32$ total.
A Bus $=16$ total.

Memory

Memory products and implementation: See Table 2.
ECC Memory in A600+ Computer: The 12110A/B 512
$\mathrm{kb} / 1 \mathrm{Mb}$ ECC Memory Controller is required for support of ECC memory in A600+ computers.
Intermixing of memory cards: ECC memory cards based on 256 K RAMs can be mixed with parity or ECC memory cards based on 64 K RAMs, if the cards based on 256 K RAMs are installed between the memory controller (or CPU card in A600+ computers) and the cards based on 64K RAMs.
A900 Cache size: 4k bytes.
A900 Cache cycle time: 133 nanoseconds.

Table 2. A-Series Memory Products and Implementation

MEMORY PRODUCT	$\begin{aligned} & \text { CYCLE } \\ & \text { THME } I N \\ & \text { A600+ } \end{aligned}$	$\begin{aligned} & \text { CYCLE } \\ & \text { TIME IN } \\ & \text { A700 } \end{aligned}$	$\begin{aligned} & \text { CYCLE } \\ & \text { TIME IN } \\ & \text { A900 } \end{aligned}$

THE FOLLOWING ECC MEMORY PRODUCTS ARE IMPLEMENTED WITH 256 K DYNAMIC NMOS RAMS

12110A 512 kb ECC Memory Controller Card 12110B 1 Mb ECC Memory Controller Card	454 n :	Not Supported	
$\begin{aligned} & 12111 \mathrm{~A} 512 \text { kb ECC Memory } \\ & 12111 \mathrm{Array} \text { 1 Mb ECC Memory } \\ & 1211 \mathrm{~A} \text { Aray Card } \\ & \text { A Mb ECC Memory } \\ & \text { Array Card } \end{aligned}$	454 n:	500 ns	Not Sup- ported
12221A 3 Mb ECC Memory Array Card	Not Supported		181 ns average effec tive*

THE FOLLOWING PARITY AND ECC MEMORY PRODUCTS ARE IMPLEMENTED WITH 64K DYNAMIC NMO: R RAMS

* Assuming typical 88\% cache "hit" rate; hit rate depends upon program locality.

A900 Cache fault processing time: Typically 539 nsec .
Memory structure: 32 pages of 2048 bytes with direct access to current or base page (page 00), indirect or indexed access to all other pages.
A900 Memory expansion: To 10.5 k pages* using 12221A 3 Mb ECC Memory Array Cards.
A 600 + or A700 Memory Expansion: To 4k pages* using ECC memory cards based on 256K RAMs.
Maximum A-Series memory supported by 12157A Battery Backup System: Four memory array cards (12 M bytes in A900).

Memory protection: Write or read or read/write on a page-by-page basis.

Error correction: A modified Hamming code is generated on all memory writes and stored for checking. All reads are monitored to check the accuracy of the stored data. All single-bit errors are corrected and all double-bit errors are detected. The system ignores single-bit (corrected) errors. Other detected errors are signalled as a memory error interrupt.

Floating point data formats

Single-precision: 32 bits (4 bytes), providing at least 6 significant decimal digits in mantissa.
Double-precision: 64 bits (8 bytes), providing at least 16 significant decimal digits in mantissa.
Exponent range: 2^{-128} to 2^{+127} in all floating point numbers.
Decimal equivalent: Approximately 10^{+38}.

Fixed point data formats

Single-precision: 16 bits (2 bytes), twos complement integer.
Double-precision: 32 bits (4 bytes), twos complement integer.

Scientific Instruction Set Data Formats and Accuracy (A700 Opt 001 and A900 only)

Scientific Instruction Set Data Formats: Single- and dou-ble-precision floating point.

Scientific Instruction Set Accuracy: See Table 3.

Table 3. Scientific Instruction Set Accuracy

[^1]
Interrupt system

Vectored priority interrupt structure with the following priority assignments and select codes. Note that select codes do not necessarily match priorities.

Priority	Select Code	Interrupt Function
1	00005	Parity Error
2	00010	Unimplemented Instruction
3	00007	Memory Protect Violation
4	00004	Power Fail Warning
5	00017	VCP Break
6	00006	Time Base Generator "Tick"
7	$00011-00016$	Reserved for special functions
$8+$	$00020-00077$	I/O Device Interrupts

Power fail provisions: When primary line power falls below a predetermined level while the CPU is running, a power fail warning signal from the power supply causes an interrupt to memory location 00004 . Memory location 00004 is intended to contain a Jump-to-subroutine (JSB) instruction to a power fail subroutine, such as that included in RTE-A. A minimum of 5 milliseconds is available to execute the power fail subroutine.
Battery backup and auto restart: Battery backup of memory by the 12154A Battery Backup Card in Micro/ 1000 systems or the 12157A Battery Backup System in A-Series systems or computers makes possible auto restart after power failure. Restoration of power triggers a memory saved signal if the backup battery has not fully discharged. The memory saved signal enables the CPU to automatically jump to and resume execution of the program that was running when the power failed.
Memory protect: Memory protect logic on the CPU:

1. Protects memory on a page-by-page basis against alteration or entry by programmed instructions, except those involving the A and B registers. A memory protect violation instruction will interrupt the CPU and the address of the violating will be saved in a register on the memory controller card, from which it can be made accessible in the A or B register by a single Assembly language instruction.
2. Prohibits execution of privileged instructions (mapping instructions and all I/O instructions except those referencing select code 01 , the CPU status register and the overflow register). This limits control of I/O and mapping operations to the operating system or other privileged programs.
Time base generator interrupt: A time base generator interrupt is provided for maintaining a real-time clock. The interrupt request is made when the CPU signals, at $10-$ millisecond intervals, that its internal clock is ready to roll over. Timing accuracy of the time base generator is ± 2.16 seconds per (24 hour) day.
Unimplemented instruction interrupt: An unimplemented instruction interrupt is requested when the CPU signals that the last instruction fetched was not recognized. This
interrupt provides a straightforward entry to software routines for the execution of instruction codes not recognized by the CPU.

I/O Master Processor

Purpose: To maintain the high performance of the CPU, an I/O Master Processor is used as the standard input/output interface circuit to the A-Series system backplane. The I/O Master includes an I/O processor chip, which executes I/O instructions, and other circuits that make high speed transfer possible. Every A-Series I/O interface card has the I/O Master processor.
Determination of I/O address: I/O address select code is set for each interface by select code address switches on the interface and is therefore independent of interface card position along the backplane bus.
I/O addressing: An I/O interface is pre-addressed by presetting its select code into a Global Register (GR). Thereafter, this leaves the six select code bits of I/O instructions available for addressing registers or for other functions on the interface.
I/O device interrupt priority: Priority depends upon I/O interface card position along the backplane, with respect to the CPU card.

I/O interrupt procedure:

1. One or more I/O interfaces requests an interrupt.
2. The CPU responds to the interrupt request of the highest priority interface (that closest to the CPU) by executing the instruction in a memory location that corresponds to the select code of the interface.
Interrupt masking: The I/O Master logic includes an interrupt mask register which provides for selective inhibition of interrupts from specific interfaces under program control. This capability can be programmed to temporarily cut off undesirable interrupts from any combination of interfaces when they could interfere with crucial transfers.

Interrupt latency when there is no DMA interference:

Computer	Specification*	
A900	3.7 to $13 \mu \mathrm{sec}$,	$4 \mu \mathrm{sec}$, typical
A700	8 to $29.75 \mu \mathrm{sec}$,	$10 \mu \mathrm{sec}$, typical
A600+	4.7 to $40 \mu \mathrm{sec}$,	$5.1 \mu \mathrm{sec}$, typical

*Interrupts cannot be serviced until a DMA cycle or an instruction in progress has completed execution. The worst-case latency is based upon time to complete the longest uninterruptible instruction. Instructions with longer total execution times are interruptible.
Self-configured, chained DMA: The IOP chip also supports a self-configuring mode of operation. In this mode, instead of interrupting after a block transfer, the IOP fetches a new set of control words for the next transfer, reconfigures itself, and initiates a block transfer. This process continues as long as additional sets of control words are available.
Data packing under DMA: When byte mode is specified in control word instructions, the IOP automatically packs or unpacks bytes.

Maximum achievable DMA rate (I/O Bandwidth):

Computer	Input	Output
A 900	$3.7 \mathrm{Mb} / \mathrm{sec}(1.85 \mathrm{Mw} / \mathrm{sec})$	$2.5 \mathrm{Mb} / \mathrm{sec}(1.25 \mathrm{Mw} / \mathrm{sec})$
A 700	$4 \mathrm{Mb} / \mathrm{sec}(2 \mathrm{Mw} / \mathrm{sec})$	$4 \mathrm{Mb} / \mathrm{sec}(2 \mathrm{Mw} / \mathrm{sec})$
$\mathrm{A} 600+$	$4.27 \mathrm{Mb} / \mathrm{sec}$	$4.27 \mathrm{Mb} / \mathrm{sec}(2.13 \mathrm{Mw} / \mathrm{sec})$
	$(2.13 \mathrm{Mw} / \mathrm{sec})$	

Self-configured DMA timing between successive block transfers of a chained series:

Computer	Timing
A900	5.2 to 8.1 microseconds
A700	5.0 to 7.7 microseconds
A600	4.5 to 7.1 microseconds

I/O Master signals and timing: See the HP 1000 L-Series I/O interfacing guide (02103-90005).

Instruction repertoire and execution times: See Table 4.

Safety and EMI qualification

See the Microsystem, System, Computer, and Board Computer data sheets.

Physical characteristics

See the Microsystem, System, Computer, and Board Computer data sheets.

Ordering information

See the Microsystem, System, Computer, and Board Computer data sheets.

Table 4. Instruction Repertoire and Execution Times
NUlE: Actual times may vary from those listed below. Memory refresh during a processor memory access, heavy DMA activity, and "misses" in the Agoc cache willall degrade (lengthen) instruction times.
Instruction \quad Execution Time (microseconds) in

MEMORY REFERENCE INSTRUCTIONS

ADA/B, IOR, XOR, AND - LDA/B STA/B STA/B, I CPA/B without skip - with skip ISZ without skip with skip JSB/JSB, JMP/JMP, Each indirect address level for JSB, I orcept the first	0.267 0.400 0.533 0.533 $0.533 / 0.667$ $0.133 / 0.267$ 0.133	1.00 $1.00-1.50$ $1.50-1.75$ $1.50-1.75$ 1.50 $0.75 / 1.50$ 0.50	1.00 $1.00-1.50$ $1.50-1.75$ $1.50-1.75$ 1.50 $0.75 / 1.50$ 0.50	$\begin{aligned} & 0.908 \\ & 1.362-1.589 \\ & 1.135 \\ & 1.362 \\ & 1.362 / 1.589 \\ & 0.681 / 1.362 \\ & 0.454 \end{aligned}$
ALTER-SKIP INSTRUCTIONS				
All instructions and combinations	0.267-0.533	0.75-2.25	0.75-2.25	1.135-1.362
SHIFT-ROTATE INSTRUCTIONS				
All instructions and combinations	0.267	0.75-3.00	0.75-3.00	1.135-2.270
EXTENDED ARITHMETIC INSTRUCTIONS				
DLD/DST	0.533	2.50/2.25	2.50/2.25	1.816/2.043
MPY	2.267	6.25	6.25	5.498
DIV	6.267	8.50-9.50	8.50-9.50	2.497-10.44
ASL with one shift/per additional ASL shift	$0.800 / 0.000$	$2.25 / 0.50$	2.25/0.50	1.816/0.454
LSL/RRL with one shift	0.400	2.00	2.00	1. 135
ASR/LSR with one shift	0.667	2.00	2.00	1.362/1.135
RRR with one shift/RRR 16 (Swap)	0.667	2.25/1.50	2.25/1.50	$1.589 / 1.816$
Per additional LSL/RRL/ASR/LSR/RRR shift JLA/B	Zero 0.533	0.25 1.50	0.25 1.50	0.227 1.362
INPUT/OUTPUT INSTRUCTIOIVS				
HLT, XX	3.067	30.00	30.00	17.49
Select code 00: $\quad \begin{array}{ll}\text { STF/CLF } \\ & \text { SFC SFS } \\ & \text { LIA/I3- } \\ & \text { CLC }- \text { STC }\end{array}$	$\begin{aligned} & 0.667 / 0.933 \\ & 0.933 \end{aligned}$	$5.75 / 3.50$ 4.25	$5.75 / 3.50$ 4.25	1.362 1.589
	3.067-3.867	6.75-6.50	6.75-6.50	6.356-4.944
	2.000-0.400	$8.50-N / A$	$8.50-N / A$	1. 362

$N / A=$ Not Applicable
$N / S=$ Not Specified

HP 1000 A-Series Computer
Design and Specifications

Table 4. Instruction Repertoire and Execution Times (Continued)

high level program execution accelerator instructions

ENTR/.ENTP (basic, see "Add'l per word")	1. 600	4.75/5.25	4.75/5.25	2.724/2.951
ENTN/.ENTC (basic, see "Add'1 per word")	1.200	$4.00 / 4.25$	$4.00 / 4.25$	2.270
Additional per word, assuming no indirects	0.267	1.00	1.00	0.908
Additional for each indirect address level	0.133	1.00	1.00	0.454
CPM	1. 200	3.50-4.25	3.50-4.25	2.951
SETP + Additional per word	1. $067+0.267$	3.25+0.50	$3.25+0.50$	$2.724+0.454$
FCM	1. 600	1.50-6.50	1.50-6.50	1.135-5.448
TCM	2. 267	N/A	7.00	9.761-10.44
NGL	2.400	N / A	6.75	4.540-8.399
BLE	1.600	N/A	6.25	5.221
DFER/.CFER	1.600/1.867	5.75/7.00	$5.75 / 7.00$	$4.767 / 5.675$
LFER/ XFER	2.933/1.333	$11.00 / 4.50$	1i.00/4.50	$9.761 / 3.859$
FLUN	N/A	N/A	N/A	1.362
PACK	N / A	N / A	N/A	1.816-9.988
PWR2	N/A	N/A	N/A	1.362-3.178
Extended instruction group				
ADX, ADY/LDX, LDY	0.400	1.75		1.589/1.362
CAX, CBX, CAY, CBY, CXA, CXB, CYA, CYB	0. 400	0.75	0.75	0.908
DSX, DSY, ISX, ISY skip/no skip	0.667	1.25	125	1. 135
LAX, LBX, LAY, LBY/STX, STY	0. 533		2.25/1.75	1.589 ${ }^{1} 125$
SAX, SAY, SBX, SBY/XAX, XAY, XBX, XBY	0.533/0.400	2.25/1.25	2.25/1.25	1.816/1.135
ELY/JPY indirect address level	$0.533 / 0.400$ 0.133	1.75 0.50	1.75 0.50	1.135 0.454

BIT MANIPULATION INSTRUCTIONS

CBS, SBS				
TBS skip/no skip	0.800	3.50	3.50	2.724

Table 4. Instruction Repertoire and Execution Times (Continued)

Instruction	Execution Time (microseconds) in			
	A900	A 700	A $700 \mathrm{w} / \mathrm{FPP}$	A600+
BYTE MANIPULATION INSTRUCTIONS				
CBT Additional for 2 bytes in A900	1.467 0.400	4. 25	4. 25	2. 270
	O. 400 N/A	N/A 2.33	N/A 2.33	N/A 3.589
LBT, odd/even byte	$0.667 / 0.800$	1. 75	1.75	$1.816 / 2.270$
MBT	1.333	4.25	4. 25	4.313-6.129
Additional per byte	0.133	2.33	2.33	0.454-1.022
SBT	0.933	2.50	2.50	2.270-2.724
SFB, compare exit/terminal exit	1.733	1.50	1. 50	2.497-2.724
Additional for 2 bytes in A900	0.400	N/A	N/A	N/A
Additional per byte in A700 or A600t	N/A	1.50	1.50	1. 135
WORD MANIPULATION INSTRUCTIONS				
CMW	1.733	3.75	3.75	2.755
Additional for four words in A900	1. 200	N/A	N/A	N/A
Additional per word in A700 or A600*	N/A	1. 25	1. 25	1.135
MVW+Additional per word	$0.933+0.267$	3.75+1.00	$3.75+1.00$	2.270+0.908
DYNAMIC MAPPING INSTRUCTIONS				
XLA1/B1, XSA1/B1, XLA2/B2, XSA2/B2	0.800	2.75	2.75	1.589-1.816
XCA1/B1 skip/no skip \& XCA2/B2 no skip	1. 067	3.25	3.25	1.816
MB00/01/02/10/11/12/20/21/22	$1.600+0.133$	3.50-5.00	3.50-5.00	1.589-3.405
Additional per byte	0.133	1.00-1.25	1.00-1.25	2.270-2.724
MW00/11/22 + Additional per word	$1.067+0.267$	3.50+1.00	$3.50+1.00$	$2.724+0.908$
MWC:/02/10/12/20/21 + Additional per word	$1.067+0.267$	$3.50+1.00$	$3.50+1.00$	$2.724+1.135$
LPMR/SPMR	0.933	1.50/1. 25	1.50/1.25	3.632
LDMP/STMP	9.200/9.333	20.0	20.0	38.14/38.36
LWD 1/LWD2	1.333/1.200	2.5	2.5	1.362
SWMP/SIMP	0.667	5.0/2.0	$5.0 / 2.0$	3.859/2.724
XJMP	1.867	5.75	5.75	4.086
XJCQ	2.000	7.25	7.25	5.448

VIRTUAL MEMORY INSTRUCTIONS
NOTE: The following times do not include access time to bring in data from the disc.

LBP/.LBPR	1.733/2.000	6.25/7.00	6.25/7.00	10.67/11.80
LPX/.LPXR	2.133/2.533	7.75/9.00	7.75/9.00	$12.03 / 13.85$
IMAP (Basic)	3.600	9.75	9.75	23.15 \#
IRES (Basic)	1.733	5.00	5.00	13.39 \#
Additional per. IMAP or. IRES parameter	2.000	9.75-14.75	6.50	10.44
. JMAP (Basic)	3.200	9.75	9.75	36.09%
JRES (Basic)	1.333	5.50	5.50	26.11
Additional per. JMAP or. JRES parameter	2.000	11.00-26.00	7.50	9.307
PMAP	1.600	5.00	5.00	7.264
CODE AND DATA SEPARATION (VC+) INSTRUCTIONS				
CACQ, CBCQ	0.533	1. 50	1.50	1. 362-1.589
CCQA, CCQB	0.533	1. 00	1.00	0.908
CAZ, CBZ, CZA, CZB, ADQA, ADQB	0.533	1.00	1.00	0.908
CIQA, CIQB	0.667	1.50	1.50	1.589
SDSP (Basic + Add'l per element of display)	$0.933+0.400$	$2.75+1.00$	$2.75+1.00$	$2.043+0.908$
PCALI (Basic, see add' 1 per parameter)	1.867	5.50	5.50	4.540
PCALX (Basic, see add' 1 per parameter)	7.84	21.50	21.50	22.70
PCALV (Basic, see add' 1 per parameter)	7.98	23.00	23.00	23.15
PCALR (Basic, see add' 1 per parameter)	2.667	8.75	8.75	7.264
PCALN (Basic, see add'l per parameter)	2.667	8.00	8.00	6.810
Additional per PCAL_ parameter)	0.400	1.50	1.50	0.908
EXIT without/with segment mapping	0.931/6.11	2.50/15.00	2.50/15.00	$2.270 / 19.52$
EXIT1 without/with segment mapping	0.931/6.11	2.75/15.25	2.75/15.25	$2.497 / 19.75$
EXIT2 without/with segment mapping	1.064/6.11	$2.75 / 15.25$	2.75/15.25	$2.730 / 19.98$
DOUBLE INTEGER INSTRUCTJ:ONS				
DAD	0.800	2.50-3.50	2.50-3.50	2.497
DSB, DSBR	0.800	3.25-3.50	3.25-3.50	2.497
DIN, .DDE/.DNG	$0.667 / 0.933$	1.75	1.75	$1.135 / 1.589$
DIS	0.933	2.75-3.25	2.75-3.25	3.859
DDS	0.933	3.00	3.00	3.859
DCO	1.333	3.25-3.50	3.25-3.50	2. 497-2.951
DMP	2.400	16.75-27.00	5.0	3.178-13.85
DDI	5.200	9.25-73.10	9.25-10.25	3.632-16.34
DDIR	5.333	9.50-73.50	9.00-10.00	4.450-17.48

[^2]Table 4. Instruction Repertoire and Execution Times (Continued)

Instruction	Execution Time (microseconds) in			
	A900	A700	A700 w/FPP	A600+

SINGLE-PRECISION FLOATING POINT INSTRUCTIONS
Times listed are for built-in floating point hardware in agoo, for floating point firmware and optional floating point processor in A700, and for floating point firmmare in A600+

FAD	1.733	7.75-26.00	4.75	8.853-17.71
FSB	1.733	7.75-26.00	4.75	9.534-18.84
FMP	1.867	13.75-25.25	4.50	17.03-21.11
FDV	4.000	18.25-29.75	7.00	5.448-27.92
Conv from single integer (FLOAT)	1.867	1.75-6.50	3.50	2.270-5.675
Conv from double integer (FLTD)	2.000	N/S	3.75	1.589-7.037
Conv to single integer (FIX)	1.733	1.50-6.50	1.75-3.50	2.497-6.356
conv to double integer (.FIXD)	2.133	N/S	4.00	1.816-7.945

DOUBLE-PRECISION FLOATING POINT OPERATIONS

Times listed are for built-in floating point hardware in A900, optional floating point processor (FPP) in A700, and floating point firmware in ABOO

TADO	3.467	N/A	9.50	11.35-27.92
TSUB	3. 467	N / A	9.50	12.94-29.51
TMPY	3.467	N/A	9.50	11.35-64.01
TDIV	8.533	N/A	14.75	12.94-65.15
Conversion from single integer (. TFTS)	1. 867	N/A	5.00	4.540-8.853
Conversion from double integer (. TFTD)	2.000	N/A	5.25	5.221-9.988
Conversion to single integer (.TFXS)	2. 267	N / A	5.00	4.086-8.626
Conversion to double integer (. TFXD)	2.400	N/A	5.25	4.313-9.761

SINGLE-PRECISION SCIENTIFIC INSTRUCTION SET INSTRUCTIONS
Times listed are for built-in Scientific Instruction Set in AgOO or Scientific Instruction Set that is included with the optional floating point processor in $A 700$

Sine/Cosine	18-20	N/A	25-29	N/A
Tangent	21-25	N / A	27-32	N/A
Arc Tangent	14-22	N / A	18-28	N/A
Hyperbolic Tangent	10-26	N/A	3-59	N/A
Exponentiation		N/A	29.5	N/A
Natural or Base 10 Logarithm Square Root	19 15	N / A N / A	28	N/A $N / / A$

VECTOR INSTRUCTION SET (VIS) INSTRUCTIONS
Setup times (listed first) and times per Vector/Matrix element (listed second are for built-in Vector Instructionset in A900 and vector Instruction Set that is included with the optional hardware floating point processor in A700.
-- SINGLE-PRECISION VIS INSTRUCTIONS

VADD	VSUB, ISe	p+	time per vector	element
VMPY	(Setup+time	per	vector/matrix	element
VDIV	(Setup+time	per	vector/matrix	element)
VSAD	VSSB (Set	up + t	ime per vector	element)
VSMY	(Setup+time	per	vector/matrix	element)
VSDV	(Setup+time	per	vector/matrix	element)
. VPIV	(Setup+time	per	vector/matrix	element
. VABS	(Setup+time	per	vector/matrix	element
. VSUM	(Setup+time	per	vector/matrix	element
, VNRM	(Setup+time	per	vector/matrix	element)
VDOT	(Setup+time	per	vector/matrix	element)
VMAX,	VMIN (Setu	$p+t i$	ime per vector	element
VMAB,	VMIB (Setu	$p+t i$	ime per vector	element
. VMOV	(Setup+time	per	vector/matrix	element)
. VSWP	(Setup+time	per	vector/matrix	clement ${ }^{\text {d }}$

$4.9+1.2$	N / A
$5.1+1.2$	N / A
$4.3+3.7$	N / A
$4.8+1.1$	N/A
$5.1+1.2$	N / A
$3.7+3.7$	N/A
$6.8+1.6$	N/A
$4.8+1.1$	N / A
$4.0+2.4$	N / A
$4.4+2.4$	N / A
$8.0+3.2$	N/A
4.1+0.7-2.7	N / A
4. $1+2.1-2.5$	N/A
$2.8+0.7$	N / A
$2.8+1.2$	N/A

$\left\{\begin{array}{l}13.5+3.75 \\ 13.5+3.75 \\ 13.5+7.00 \\ 14.0+2.50 \\ 14.0+2.25 \\ 14.0+5.25 \\ 14.5+4.50 \\ 11.5+2.75 \\ 12.8+3.00 \\ 13.3+3.00 \\ 16.3+6.50 \\ 11+2.3-5.3 \\ 11+4.3-5.5 \\ 8.5+2.00 \\ 8.5+4.00 \\ \hline\end{array}\right.$
N $/ A$
N / A

- DOUBLE-PRECISION VIS INSTRUCTIONS

DVADD,	DVSUB [Setu	up+time per vector	element)
DVMPY	(Setup+time	per vector/matrix	element)
DVDIV	(Setup + time	per vector/matrix	element)
DVSAD	DVSSB (Set	upttime per vecto	element)
DVSMY	(Setup+time	per vector/matrix	element
DVSDV	(Setup +time	per vector/matrix	element)
DVPIV	(Setup+time	per vector/matrix	element)
DVABS	(Setup+time	per vector/matrix	element)
DVSUM	Setup+time	per vector/matrix	element)
DVNRM	Setup+time	per vector/matrix	element)
DVDOT	(Setup+time	per vector/matrix	element)
DVMAX,	DVMIN Setup	upttime per vector	element)
DVMAB	DVMIB / Setup	up+time per vector	element)
DVMOV	(Setup+time	per vector/matrix	element)
DVSWP	(Setupttime	per vector/matrix	element)

$5.1+2.0$	N/A	$13.5+6.25$	N/A
$5.1+2.0$	N/A	$13.5+6.50$	N/A
$4.7+7.2$	N/A	$13.5+12.25$	N / A
$5.7+1.6$	N/A	$14.8+4.50$	N/A
$5.9+1.6$	N/A	$14.8+4.75$	N/A
4.0+7.2	N/A	$15.8+10.25$	N/A
$8.4+2.7$	N/A	$17.8+8.00$	N/A
$5.6+1.6$	N/A	$12.5+4.75$	N / A
4. $1+2.1$	N/A	$15.0+3.25$	N / A
$4.5+2.1$	N/A	$15.5+3.25$	N/A
$7.4+2.5$	N/A	18.0 +6.50	N/A
4.3+0.7-3.3	N/A	13+2.3-6. 3	N/A
4.3+2.5-3.2	N/A	13+5.3-6.5	N / A
$3.1+i .2$	N / A	$9.5+4.00$	N/A
$3.1+2.3$	N/A	$9.5+8.00$	N/A

The Model 26, 27, and 29 are identically-packaged Computer Systems that are configured around the A600+, A700, and A900 computers and other basic system elements, which make up System Processor Units (SPU), product numbers 2196C/D, 2197C/D, and 2199C/D. (See the A-Series Computer Design and Specifications data sheet on page 1 for comparison of A600+, A700, and A900 capabilities.) These computer systems are managed by the RTE-A Real-Time Executive operating system, which supports multiprogramming, high-level program languages, the 92078A VC + extension for large-program support, which is included in the 2197C/D and 2199C/D, virtual memory and sharable extended memory areas for data, data base management, distributed systems networking, graphics software, and memory up to 21 megabytes.
The SPU hardware consists of the A600+ CPU, A700 CPU with 12156A Hardware Floating Point Processor, or A900 CPU; 512 kilobytes or 768 kilobytes of memory, HPIB disc interface card, and serial interface card in a 20 -slot card cage. The card cage is housed in a 1.6 m (63 -inch) cabinet ($219 \times$ C SPU) with rack space available for additional equipment or a $72 \mathrm{~cm}(28.3-\mathrm{inch})$ cabinet $(219 \times D$ SPU) without spare rack space.
To the SPU, OEMs and end users add an operator terminal, one or more hard discs, and other peripheral devices as needed for their applications. Multiple fixed discs with 24 to 404 megabyte capacity, some with built-in tape cartridge backup, can be used on the system. Up to 1.6 gigabytes of disc capacity can be connected via a single disc interface, using 404 megabyte discs.

Features

- Integrated system building block for OEMs and end users designing their own A-Series based application products
- 1.6 m cabinet with rack space for additional user equipment (219xC only)
- Disc memory expandable to 1.6 gigabytes on one card cage slot with multiple discs
- Extensive software support, including:
- Real-time multiprogram executive operating system
- FORTRAN 77, Pascal, BASIC, and Macroassembler programming plus interactive screen editor, and Symbolic Debug/ 1000 for program development
- Image/ 1000 Data Base Management software
- Graphics/1000-II software

- DS/1000-IV Distributed Systems Networking software
- Three packages for communication with IBM or IBM plug-compatible systems
- PMC / 1000 for process monitoring and control
- QDM/1000 for quality data management
- PCIF/1000 for interfacing with programmable controllers
- Large program and data capacity support with:
- VC+ capability for programs up to 7.75 megabytes is standard in Model 27 and 29 systems, optional in Model 26 systems
- Virtual memory for data divided between main memory and disc, supports transparent processing of data arrays up to 128 megabytes
- Multiple sharable Extended Memory Areas (EMAs) for data arrays up to 2 megabytes resident in main memory. Up to 15 EMAs are supportable, each sharable by as many as 63 programs
- Instruction and program compatibility with other members of the HP 1000 family protects software of current OEMs and end users and gives users access to a broad base of proven software
- Built-in dynamic mapping system, memory protect, time base generator, and self test
- Power fail detection and auto restart with optional 12157A Battery Backup System
- On-line system generation permits generation of new system configurations concurrently with other system activities
- Boot loaders support boot-up from:
- CS /80 disc drive or its integral cartridge tape
- A magnetic tape unit
- An adjacent HP 1000 computer system in a DS/1000-IV Distributed Systems Network
- PROM Storage Module
- Remote loading and diagnosis for programming and operation of systems at remote sites
- Front-to-rear air flow through cabinet maximizes system cooling efficiency and equipment reliability
- Complies with UL, CSA, and IEC- 380 safety standards and with FCC Class A and VDE Level A EMI regulations

Computer description and specifications

For functional description of the Model 26, 27, and 29 computers, memory systems, input/output system, software and diagnostic support, compatibility, and A600 +, A700, and A900 specifications, see the A-Series Computer Design and Specifications data sheet on page 1.

Memory Size and Available Card Cage Slots

See Tables 1 through 3 .

Table 1. HP 1000 Model 26 System Memory Size and Available Card Cage Slots

Table 2. HP 1000 Model 27 System Memory Size and Available Card Cage Slots

* The 12111 A 512 kb ECC Memory Array Card is preferred, but 12104 A 512 kb ECC Memory Array Card is also usable.
* 512 kb parity memory is standardin $2197 C / D$ systems; for that reason, no entry is required here.
$n / s=$ not supported

Table 3. HP 1000 Model 29 System Memory Size and Available Card Cage Slots

* This is the base ECC memory that is deleted by 2199C/D Option 014 to make way for ordering memory arrays and a connector that firovide more memory.

Available HP-IB Capacity

The 12009A HP-IB interface included in Model 26, 27, and 29 systems can support up to four hard discs. Although the HP-IB interface can address up to a total of 14 devices, it is advisable to use a different HP-IB interface to connect non-disc devices to the system to assure optimum performance.

Compatible System Consoles and Discs

See Tables 4 and 5 .
Table 4. Compatible System Consoles

TERMINAL	USE ONE OF THESE $219 \times C / D$ CONNECT OPT		
	005	006	$\begin{aligned} & 008 \text { PLUS } \\ & 12040 B \\ & \text { AND CABLE } \end{aligned}$
HP 2392A Display Terminal	No	Yes	40242M
HP 2623 A Graphics Terminal	Ye 5	No	$13222 N$
HP 2624 B Display Terminal	Yes	No	13222 N
HP 2625A Dual System	No	Yes	40242 M
HP 2626A Display Station	Yes	No	13222 N
HP 2627 A Color Graphics	Yes	No	13222 N
HP 2628A Word Processing	No	Yes	40242M
HP 45610A HP Multifunction Terminal	No	Yes	40242M

Table 5. Compatible Discs (at least one 79xxR or 793 xH disc is required with $219 \mathrm{xC} / \mathrm{D}$)

PRODUCT NUMBER	TYPE	$\begin{aligned} & \text { DISC } \\ & \text { CAP } \\ & (M b) \end{aligned}$	AVG TRANS RATE (kb/s)	AVG ACC TIME (ms)
7911 R	Hard, fixed with	28.1	983	35
7912 R	CS/80 cartridge	65.6	983	35
7914 R	tape drive for loading \& backup	131.2	983	36
$7914 S T$ 7914 TD	Hard, fixed with 1600 bpi mag tape	131.2	983	36
7933 H 7935 H	Hard, fixed Hard, removable	404.4 404.4	1000 1000	32 32
9121D	Dual microfloppy	0.540	17	415
Average transfer rate is based on the minimum time required to transfer one track without overrun.				
\# This disc requires a separate program/data entry device, such as a $797 \times A / E$ mag tape or $79 \times x$ Tape Cartridge Subsystem.				

Electrical specifications

AC Power Requirements of 219xC/D System Processor Unit

System Processor Unit and rack mounting disc line voltage and frequency:

	Line Voltage	Line Freq.
$219 \times \mathrm{C} / \mathrm{D} \mathrm{Std}$	$115 \mathrm{~V}-25 \% /+20 \%(86-138 \mathrm{~V})^{*}$	$47.5-66 \mathrm{~Hz}$
$219 \times \mathrm{C} / \mathrm{D} 015$	$230 \mathrm{~V}-23 \% /+20 \%(178-276)$	$47.5-66 \mathrm{~Hz}$
$7911 / 2 / 4 \mathrm{R} \mathrm{Std}$	$120 \mathrm{~V}-10 \% /+5 \%(108-126 \mathrm{~V})$	$54-66 \mathrm{~Hz}$
$7911 / 2 / 4 \mathrm{R} \mathrm{Std}+$	$100 \mathrm{~V}-10 \% /+5 \%(90-105 \mathrm{~V})+$	$54-66 \mathrm{~Hz}$
$7911 / 2 / 4 \mathrm{R} 015$	$220 \mathrm{~V}-10 \% /+5 \%(198-231 \mathrm{~V})$	$47.5-55 \mathrm{~Hz}$
$7911 / 2 / 4 \mathrm{R} 015 \#$	$240 \mathrm{~V}-10 \% /+5 \%(216-252 \mathrm{~V})$	$47.5-55 \mathrm{~Hz}$
$794 \times \mathrm{A}$ Std	$115 \mathrm{~V}-22 \% /+10 \%(90-132 \mathrm{~V})$	$47.5-66 \mathrm{~Hz}$
$794 \times \mathrm{A} 015$	$230 \mathrm{~V}-22 \% /+14 \%(180-264 \mathrm{~V})$	$47.5-66 \mathrm{~Hz}$

* $219 x \mathrm{C}$ standard System Processor Unit requires split-phase input with the line voltage listed here applied to both phases.
$+100 \mathrm{~V} / 60 \mathrm{~Hz}$ is provided by restrapping a $7911 / 2 / 4 R$ Standard disc in the \# $240 \mathrm{~V} / 50 \mathrm{~Hz}$ is provided by restrapping a $7911 / 2 / 4 \mathrm{R}$ Option 015 disc in the field
Maximum operating current: 16 A per phase for $219 \times \mathrm{C}$, 16A for $219 x$ D.
Power cable: The standard 219xD System Processor Unit (SPU) includes a 3 metre (10 foot) power cable with NEMA 5-20P power plug. No power cable is provided with the $219 \times \mathrm{C}$ SPU or with the $219 \times \mathrm{D}$ SPU ordered with option 015.

Power Requirements of Terminals and Other Peripherals

See the Power Requirements table on page 41.

DC Current Available and Required for I/O Interfaces and Accessories

The SPU power supply provides enough current for any combination of A-Series interfaces or other A-Series plugins that can be accommodated in the SPU card cage.

Environmental specifications
 219xC/D Temperature
 Operating (SPU and disc): 10° to $40^{\circ} \mathrm{C}\left(50^{\circ}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$.

Rate of change: $<10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ per hour for $7911 \mathrm{R}, 7912 \mathrm{R}$, or 7914R Disc.
Non-operating temperature: -40° to $60^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$.
Relative Humidity (SPU and 79xxR Disc)
20% to 80% non-condensing.

Altitude

Operating: To $4.6 \mathrm{~km}(15,000 \mathrm{ft})$.
Non-operating: To $15.3 \mathrm{~km}(50,000 \mathrm{ft})$.

Vibration and Shock

HP 219xC/D System Processor Units are type tested for normal shipping and handling shock and vibration (contact factory for review of any application that requires operation under continuous vibration).

Safety and EMI compliance
 Safety Qualification

The Model 26, 27, and 29 Systems meet Underwriter's Laboratory (UL), Canadian Standards Association (CSA), and International Electrotechnical Commission (IEC) safety standards.

EMI Compliance

The Model 26, 27, and 29 Systems comply with Federal Communications Commission (FCC) Class A and Verband Deutscher Elektrotechniker (VDE) Level A regulations for Electro Magnetic Interference (EMI).

Physical characteristics

Dimensions in cm (and inches)

	$219 x$ C SPU	$219 \times D$ SPU
Height:	$161.3(63.4)$	$72.0(28.3)$
Width:	$63.5(25)$	$63.5(25)$
Depth:	$81.3(32)$	$81.3(32)$

Weight

219xC SPU only (without disc): 139.7 kg (307.5 lb).
219xD SPU only (without disc): 94.3 kg (207.5 lb).
7911/12R/14R Disc adds: 67.3 kg (148 lb).

794xA Disc plus 19500A Rack Kit adds: 11.3 kg (24.8 lb).
9144A Tape Cartridge Subsystem plus 19500A Rack Kit adds: 9.9 kg (22 lb).

219xC/D SPU Ventilation

For computer and rack-mounted system disc: Perforations in the 219 xC / D cabinet facilitate front-to-rear ventilation provided by the fans in the computer and system disc. This maximizes cooling efficiency and equipment reliability.
For equipment in upper section of 219xC cabinet: Four fans at the top rear of the system cabinet draw in air through an air filter at the bottom rear of the upper section, providing a bottom-to-top airflow of approximately 11.3 cubic metres per minute (400 CFM). The actual value of air flow depends upon the configuration of equipment racked in the upper section of the cabinet.

Systems ordering information

NOTE: $219 \times$ C/D SPUs require a compatible terminal (not included) for operator communication and a $79 \times x$ R, $7914 \mathrm{ST} / \mathrm{TD}, 793 \times H$, or $794 \times \mathrm{A}$ disc for operating system and program development support.

2196C HP 1000 Model 26 System Processor Unit

The 2196C System Processor Unit includes:

1. CPU and memory as follows:
a. 12102B Memory Controller Card with 512 kb parity memory.
b. 12105-60001 A600 + CPU Card, instruction set and VCP ROMs, and 12038A Memory frontplane connector.
2. Disc and terminal interfaces and cables as follows:
a. 12009A-D01 HP-IB Interface to Disc, including cable.
b. 12005B-010 Asynchronous Serial (terminal) Interface card.
3. 29431F 1.6 m ($63-\mathrm{in}$) system cabinet with 20 -slot card cage, power supply, and space for $7911 R / 12 R / 14 R$ or $794 \times A+19500 \mathrm{~A}$ disc in lower compartment, space for other equipment in upper compartment, power distribution module, and anti-tip feet.
4. Software and supporting documentation as follows:
a. RTE-A Master with VC + enhancement for largeprogram support, RTE-A/VC + Primary system, and 24612A and 24398B diagnostics, on userspecified media.
b. License to use RTE-A on one System.
c. RTE-A and diagnostics manuals (see RTE-A and diagnostics data sheets in the HP 1000 Software Data book for manuals furnished).
5. 02156-90002 HP $1000 \mathrm{~A} 600+$ Computer Installation and Service Manual.
6. $02156-90001 \mathrm{HP} 1000 \mathrm{~A} 600$ + Computer Reference Manual.
7. 02196-90002 HP 1000 Model 26/27/29 Computer System Installation Manual.
8. 02103-90005 Computer I/C Interfacing Guide.
9. 12005-90002 HP 12005A/B Asynchronous Interface Reference Manual.
10. 12009-90001 HP 12009A HP-IB Interface Reference Manual.
11. 59310-90064 HP-IB User's Guide.
12. 02172-90009 System Support Log.
13. Site preparation consultation.
14. On-site installation assistance and checkout by a Hewlett-Packard service engineer, including integration and test with primary system.
15. 90-day on-site warranty.
16. Four 93285A Engineering Units incorporated in the SPU in the course of manufacturing by HewlettPackard.

2196D HP 1000 Model 26 System Processor Unit

The 2196D System Processor Unit (SPU) is similar to the 2196C SPU, but is housed in a 29429A 72 cm (28.3-inch) cabinet that does not have an upper compartment for other equipment. Standard 2196 D includes $3 \mathrm{~m}(10 \mathrm{ft})$ power cable with NEMA 5-20P plug.

2196C/D Options

NOTE: Must order one of system console connect options 005,006 , or 008 and media option 022 or 061.
005: Provides $15 \mathrm{~m}(49 \mathrm{ft})$ fiber optic cable connection to system console as specified in Table 4 on page 15 (excludes option 006 or 008).
006: Provides $5 \mathrm{~m}(16.4 \mathrm{ft})$ electrical cable connection to system console as specified in Table 4 on page 15 (excludes option 005 or 008).
008: Deletes 12005B interface and 12005-90002 manual to permit their replacement with a 12040 B multiplexer and a connect cable as specified in Table 4 on page 15 for the various compatible terminals (excludes option 005 or 006).
014: Deletes 12102B 512 kb parity memory controller, permitting its replacement with a 12110 A 512 kb or 12110B 1 Mb ECC memory controller. (Must order $12110 \times$ ECC memory controller, and memory array cards and $12038 \times$ connector as appropriate; see Table 1 on page 14.)
015: Operation from 220 V ac power. Power options for system console, disc, and other peripherals must be ordered separately.
022: Software on CS / 80 cartridge tape for use with $791 \times \mathrm{R}$ disc or 9144A Tape Cartridge Subsystem (excludes option 061).

050: Magnetic tape trim. Provides large cutout in upper door of 2196C cabinet to accommodate a 7970E Mag tape unit.
053: Lower door in 2196 C without cutout for system that does not have $791 \times \mathrm{R}$ disc with tape cartridge drive or 9144A Tape Cartridge Subsystem.
061: Software on 1600 bpi mag tape (excludes option 022).

070: Deletes cabinet from 2196C SPU to permit racking in cabinet of 7914 ST or 7914 TD Disc-Mag Tape Unit package and adds a second 12009A interface for connection to the Mag Tape Unit.

2197C HP 1000 Model 27 System Processor Unit

The 2197C System Processor Unit includes:

1. CPU and memory as follows:
a. 12103 C 512 kb Memory array card.
b. 12038A Memory frontplane connector assembly.
c. A700 CPU, including 12152-60001 and 60051 processor cards, 12152-60052 memory controller, and insruction set and VCP PROMs.
d. 12156A Hardware Floating Point Processor Card with Scientific Instruction Set and Vector Instruction Set firmware and floating point front plane connector.
2 through 4. Same as for 2196C, above.
2. 02137-90002 HP 1000 A700 Computer Installation and Service Manual.
3. 02137-90001 HP 1000 A 700 Computer Reference Manual.
7 through 16. Same as for 2196C, above.

2197D HP 1000 Model 27 System Processor Unit

The 2197D System Processor Unit (SPU) is similar to the 2197 C SPU, but is housed in a 29429A 72 cm (28.3-inch) cabinet that does not have an upper compartment for other equipment. Standard 2197D includes $3 \mathrm{~m}(10 \mathrm{ft})$ power cable with NEMA 5-20P plug.

2197C/D Options

NOTE: Must order one of system console connect options 005,006 , or 008 and media option 022 or 061.
005 through 008: Same as for $2196 \mathrm{C} / \mathrm{D}$, above.
014: Deletes standard 512 kb parity memory array card and front plane connector, permitting their replacement with other memory array cards. (Must order other A700 compatible memory card(s) and appropriate $12038 x$ connector; see Table 2 on page 14).
$015,022,050,053,061$, and 070: Same as for $2196 C / D$, above.

2199C HP 1000 Model 29 System Processor Unit

The 2199C System Processor Unit includes:

1. CPU and memory as follows:
a. 12201A Sequencer card with ROMs.
b. 12202A Data Path card with Floating Point Processors.
c. 12203A Cache Control card with VCP ROMs.
d. 12204A Memory Controller card.
e. 12220 A 768 kb ECC Memory Array card.
f. 12222A Memory Array Connector.

2 through 4. Same as for 2196 C , above.
5. 02139-90002 HP 1000 A900 Computer Installation and Service Manual.
6. 02139-90001 HP 1000 A900 Computer Reference Manual.
7 through 16. Same as for 2196C, above.

2199D HP 1000 Model 29 System Processor Unit

The 2199D System Processor Unit (SPU) is similar to the 2199 C SPU, but is housed in a 29429A 72 cm (28.3-inch) cabinet that does not have an upper compartment for other equipment. Standard 2199D includes 3m (10 ft) power cable with NEMA 5-20P plug.

2199C/D Options

NOTE: Must order one of system console connect options 005,006 , or 008 and media option 022 or 061.

005 through 008: Same as for 2196C/D, above.
014: Deletes standard 768 kb ECC memory array card and front plane connector, permitting their replacement with other memory array cards. (Must order other A900 compatible memory card(s) and appropriate $12222 x$ array connector; see Table 3 on page 15.)

015, 022, 050, 053, 061, and 070: Same as for 2196C/D, above.

Accessories ordering information

Optional software

See Extensive software support on page 4.

Memory Cards and Array Connectors

See Table 1, 2, or 3 for the memory cards and array connector which are required to provide the desired ECC or parity memory in the Model 26,27 , or 29 System.

Plug-in Hardware Accessories

12157A Battery Backup System using sealed lead-acid batteries (provides 15 to 90 minutes of sustaining power for up to four memory array cards), depending upon the system configuration, state of charge, and temperature;
additional hold-up time can be achieved by connecting an external battery. NOTE: This accessory is installed in the computer power supply and does NOT use a card cage slot.

12158A 25 kHz Power Module (provides up to 50 W of 39 V rms ac power (two phases) at 25 kHz , which is filtered from the output of the power supply switcher). NOTE: This accessory is installed in the computer power supply and does NOT use a card cage slot.

User Control Store Cards

12153A A700 Writable Control Store card (provides 4 k words of control store space).

12155A A700 PROM Control Store card (provides mounting for up to 8 k words of PROMs).
12205A A900 Control Store Board (provides 4 k words of writable control store and mounting space for $2 k$ words of 2 k control store PROMs).

Interfaces

The HP $219 \times$ C/D SPU can use all of the interfaces listed in the A-Series Interfaces Technical Data book (5953-8760 or later version) but the following interfaces will require the 12158 A 25 kHz Power Module:

12060B High-Level Analog Input Card
12061A Expansion Multiplexer Card
12062A Analog Output Card
12063A 26-Input/16-Output Digital I/O Card
37203L HP-IB Extender Card using coaxial cable communication. (The 37203L Option 001 HP-
IB Extender Card does not require 25 kHz power for fiber optic cable communication.)

Peripheral Devices

See the HP 1000 Peripherals Selection Guide.

Additional Documentation Available

For A600+: $\quad 02156-90003$ HP 1000 A600 Computer Engineering and Reference Documentation
For A700: $\quad 02137-90005$ HP 1000 A700 Computer Engineering and Reference Documentation

For A900: $\quad 02139-90003$ HP 1000 A900 Computer Engineering and Reference Documentation.
product numbers 2436A, 2437A, 2439A, 2486A, 2487A, and 2489A

HP 1000 A-Series Computer Systems

The Micro / 1000 Computer Systems offer a choice of HP's powerful A600 + , A700, and A900 processors in a rugged, compact, versatile Micro/1000 package. The Micro/1000 package can mounted in a standard 19 -inch EIA rack cabinet or in a convenient vertical desk-side or under-table floor mounting accessory on casters that make it easy to move to wherever it is needed. The Micro/ 1000 package includes cabinet, power supply, 12 or 14 card cage slots* for CPU, memory, control store, and I/O cards, and dedicated slots for 25 kHz sine wave and battery backup cards. The Micro/1000 package can also accommodate integrated 14.5 megabyte fixed and 270 kilobyte microfloppy discs. Micro/1000 packaged products are summarized in Table 1, below.

Features

- Low-cost, rugged, compact EIA 19-inch standard rack mounting or vertical floor mount package with integrated 14.5 Mb fixed and 270 kb microfloppy discs (or with CS / 80 disc) that serves as a building block for OEMs and end users designing their own A-Series based products
*Number of card cage slots available depends upon use of battery backup and power used by installed cards.

Table 1. Micro/1000 Products Summary

	SYSTEM PROCESS ory, disc and RTE-A operatin terminal and i microfloppy di	UNITS (SPUs) stem console in system; require egrated 14.5 Mb (Option 111)	lude CPU, memfaces, and ystem console ixed and 270 kb CS/80 disc).	OEM COMPONENTS (Include only CPU and memory)		
COMPUTER TYPE	A600+	A 700	A900	A600+	A700	A900
PRODUCT NO.	2486 A	2487A	2489A	2436 A	2437 A	2439A
NAME	Micro 26 System	$\begin{aligned} & \text { Micro } 27 \\ & \text { System } \end{aligned}$	$\begin{aligned} & \text { Micro } 29 \\ & \text { System } \end{aligned}$	Micro 26 Component	Micro 27 Component	Micro 29 Component
BASE MEMORY	512 kb parity	512 kb parity	768 kb ECC	128 kb parity	128 kb parity	768 kb ECC
MAX. MEMORY	4 Mb parity or 8 Mb ECC	$\begin{aligned} & 4 \mathrm{Mb} \text { parity or } \\ & 8 \mathrm{Mb} E C{ }^{\star} \end{aligned}$	6 Mb ECC	$\begin{aligned} & 4 \mathrm{Mb} \text { parity or } \\ & 8 \mathrm{Mb} \text { ECC } \end{aligned}$	$\begin{aligned} & 4 \mathrm{Mb} \text { parity or } \\ & 8 \mathrm{Mb} \text { ECC* } \end{aligned}$	6 Mb ECC
SERVICES INCLUDED	Site Preparation Consultation, On-Site Installation Assistance, and 90-day On-Site Warranty.	Consultation, On-Site Installaand 90-day On-Site Warranty.		Services at left are not included and must be ordered separately.		

- 12 or 14 card cage slots depending on whether battery backup is installed plus dedicated slots for:
- Plug-in 25 kHz sine wave card
- Plug-in battery backup card
- Dual-speed fans for low acoustic noise level
- Supports A600+ , A700 and A900 computers and all ASeries interfaces, including those that require 25 kHz power when the optional 12159A 25 kHz Sine Wave card is installed
- Built-in dynamic mapping system, memory protect, time base generator, and self test
- Power fail detection and auto restart with optional 12154A Battery Backup Card
- Boot loaders support boot-up from:
- Integrated or standalone microfloppy disc or standalone CS/80 or 9133 XV disc
- A magnetic tape unit
- An adjacent HP 1000 computer system in a DS/1000-IV Distributed Systems Network
- PROM Storage Module
- Complies with UL, CSA, and IEC- 380 safety standards and with FCC Class A and VDE Level A EMI regulations
- Extensive software support, including:
- Real-time multiprogramming executive operating system
- FORTRAN 77, Pascal, BASIC, and Macroassembler programming plus interactive screen editor, and Symbolic Debug/ 1000 for program development
- Image/1000 Data Base Management software
- Graphics/1000-II software
- DS / 1000-IV Distributed Systems Networking software
- Three packages for communication with IBM or IBM plug-compatible systems
- PMC/1000 for process monitoring and control
- QDM/1000 for quality data management
- PCIF/ 1000 for interfacing with programmable controllers
- Large program and data capacity support with:
- Optional VC + capability for programs to 7.75 megabytes
- Virtual memory for data, divided between main memory and disc, supports transparent processing of data arrays up to 128 megabytes
- Multiple sharable Extended Memory Areas (EMAs) for data arrays up to 2 megabytes resident in main memory. Up to 15 EMAs are supportable, each sharable by as many as 63 programs
- Instruction and program compatibility with other members of the HP 1000 family protects software investment of current OEMs and end users and gives users access to a broad base of proven software
- On-line system generation permits generation of new system configurations concurrently with other system activities
- Remote loading and diagnosis for programming and operation of systems at remote sites
- Mail-in board exchange and various service agreements supported from local HP sales offices provide a wide choice of support alternatives

Computer description and specifications

For functional description of the Micro 26, Micro 27, and Micro 29 computers, memory systems, input/output system, software and diagnostic support, compatibility with other HP 1000 Computers, and A $600+$, A700, and A900 specifications, see page 1 .

System configuration specifications

How Battery Backup Affects Card Cage Capacity

The battery backup card extends up from its dedicated card cage slot 16 into slots 14 and 15 , making them unusable for I/O cards when the battery backup card is installed. If the included voltage jumper is installed in slot 16 instead of the battery backup card, slots 14 and 15 may be usable for I/O cards, provided that total power used by all cards does not exceed power supply capacity.

Micro 26 Configuration Examples

Minimum memory configuration, looking into card cage:

9	Available for I/O Card	1	512 kb Parity Mem Ctrlr
10	Available for I/O Card	2	A600+ CPU Card
11	Available for I/O Card	3	12009A/12022A Disc I/O
12	Available for I/O Card	4	12005 B Async Term. I/O
13	Available for I/O Card	5	Avaldable for I/O Card
14	Batt Backup or I/O Cd	6	Available for I/O Card
15	Batt Backup or I/O Cd	7	Available for I/O Card
16	For Battery Backup Cd	8	For 25 kHz Sine Wave Cd

Maximum memory configuration with $8 \mathbf{~ M b}$ of ECC memory, looking into card cage:

9	12005日 Async Term I/O	1	12111 C 2	Mb ECC	Memory
10	Avallable for I/O Card	2	12111C 2	Mb ECC	Memory
11	Available for I/O Card	3	12111C 2	Mb ECC	Memory
12	Available for I/O Card	4	1211181	Mb ECC	Memory
13	Available for $1 / 0 \mathrm{Card}$	5	1211081	Mb ECC	Mem Ct 1
14	Batt Backup or I/O Cd	6	A $600+\mathrm{CP}$	Card	
15	Batt Backup or I/O Cd	7	12009A/1	2022A D	sc I/O
16	For Battery Backup Cd	8	For 25 k	z Sine	Wave Cd

Micro 27 Configuration Examples
Minimum configuration, looking into card cage:

9	Available for I/O Card
10	Available for I/O Card
11	Avallable for I/O Card
12	Available for I/O Card
13	Avaliable for I/O Card
14	Batt Backup or I/O Cd
15	Batt Backup or I/O Cd
16	For Battery Backup Cd

```
12103C 512 kb Par Mem
Memory Control Card
Upper CPU Card
Lower CPU Card
2009A/12022A Disc I/O
12005B Async Term I/O
Available for I/O Card
```

Configuration with floating point processor, looking into card cage:

Maximum configuration with floating point processor and writable control store (WCS), looking into card cage:

Maximum memory configuration with $8 \mathbf{M b}$ of ECC memory, looking into card cage:

Micro 29 Configuration Examples
Minimum configuration, looking into card cage:

9	Available for I/O Card	1	12009A/12022A Disc I/O
10	Available for I/O Card	2	12201 A Sequencer Card
11	Available for I/O Card	3	12202A Data Path Card
12	Available for $1 / 0$ Card	4	12203A Cache Control
13	Available for $1 / 0$ Card	5	12204 A Memory Control
14	Batt Backup or I/O Cd	6	122204768 kb ECC Mem
15	Batt Backup or I/O Cd	7	12005 B Async Term I/O
16	For Battery Backup Cd	8	For 25 kHz Sine Wave Cd

Maximum configuration with control store and 6 Mb of ECC memory, looking into card cage:

9	12009A/12022A Disc I/O	1	12205 A	Control Store
10	12005B Async Term I/O	2	12201 A	Sequencer Card
11	Available for I/O Card	3	12202 A	Data Path Card
12	Available for I/O Card	4	12203 A	Cache Control
13	Available for I/O Card	5	12204 A	Memory Control
14	Batt Backup or I/O Cd	6	12221 A	3 Mb ECC Memory
15	Batt Backup or I/O Cd	7	12221 A	3 Mb ECC Memory
16	For Battery Backup Cd	8	For 25	kHz Sine Wave Cd

Compatible System Consoles and Discs

See Tables 2 and 3.
Table 2. Compatible System Consoles and 248xA Connect Options

TERMINAL	USE ONE OF THESE $248 \times A$ CONNECT OPTIONS		
	005	006	$\begin{aligned} & 008 \text { PLUS } \\ & 12040 B \\ & \text { AND CABLE } \end{aligned}$
HP 2392A Display Terminal	No	Yes	40242M
HP 2623A Graphics Terminal	Yes	No	13222 N
HP 2624 B Display Terminal	Yes	No	13222 N
HP 2625A Dual System	No	Yes	40242 M
HP 2626A Display Station	Yes	No	13222 N
HP 2627A Color Graphics	Yes	No	$13222 N$
HP 2628A Word Processing	No	Yes	40242M
Terminal	No	Yes	40242M
HP 45610A HP Multifunction Terminal	No	Yes	40242M

Table 3. Compatible Discs ($248 \times$ A Option 111 or one $79 \mathrm{xxP} / \mathrm{R}$ or 793 xH disc is required for 248xA SPU)

PRODUCT NUMBER	TYPE	DISC CAP (Mb)	AVG TRANS RATE ($k b / 5$)	AVG ACC TIME (ms)
$248 \times \mathrm{A}+111$	Hard fixed disc \& microfloppy dise	$\begin{aligned} & 14.5 \\ & 0.27 \end{aligned}$	$\begin{array}{r} 230 \\ 17 \end{array}$	$\begin{array}{r} 85 \\ 430 \end{array}$
$7911 \mathrm{P} / \mathrm{R}$ $7912 \mathrm{P} / \mathrm{R}$	Hard fixed with $\mathrm{CS} / 80 \mathrm{cartridge}$	28.1 65.6	983 983	35 35
$7914 \mathrm{P} / \mathrm{R}$	tape drive for loading \& backup	131.2	983	36
$\begin{aligned} & 7914 S T \text { or } \\ & 7914 T D \end{aligned}$	Hard, fixed with 1600 bpi mag tape	131.2	983	36
7933H\#	Hard, fixed	404.4	1000	32
7935H\#	Hard, removable	404.4	1000	32
91210	Dual microfloppy	0.540	17	415

* Average transfer rate is based on the minimum time required to transfer one track without overrun
\# This disc requires a separate program/data entry device, such as a $797 \times A / E$ mag tape or $79 \times x p / R$ tape cartridge subsystem.

Electrical specifications

AC Power Requirements

Micro/ $\mathbf{1 0 0 0}$ Line voltage and frequency:

$$
\begin{aligned}
& 115 \mathrm{~V}-25 \% /+20 \%(86-138 \mathrm{~V}), 47.5-66 \mathrm{~Hz}(\mathrm{std}) \\
& 230 \mathrm{~V}-23 \% /+20 \%(178-276 \mathrm{~V}), 47.5-66 \mathrm{~Hz}(\mathrm{Opt} 015) .
\end{aligned}
$$

Operating current: 6 A , max. in 115 V configuration, 3 A , max. in 230 V configuration.
Power cable: The standard 243xA or $248 x$ A Micro/ 1000 unit includes a 2 metre (6.5 ft) power cable with NEMA 515 P power plug. Units ordered with Option 015 are provided with a power cable appropriate for the destination country.

Power Requirements of Terminals and Other Peripherals

See the Power Requirements table on page 41.

DC Current Available (+) and Required (-) for I/O Interfaces and Accessories

See Table on page 42.

Environmental specifications

Temperature

Operating for base Micro/1000: 0° to $55^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ to 3048 metres ($10,000 \mathrm{ft}$). Maximum temperature is linearly derated $2^{\circ} \mathrm{C}\left(3.6^{\circ} \mathrm{F}\right)$ for each $304.8 \mathrm{~m}(1,000 \mathrm{ft})$ increase of altitude. Resulting temperature range is 0° to $45^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ at 4572 metres $(15,000 \mathrm{ft})$.

Option 111 integral disc: 5° to $45^{\circ} \mathrm{C}\left(40^{\circ}\right.$ to $\left.115^{\circ} \mathrm{F}\right)$; maximum rate of change $<10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ per hour.
Non-operating: -40° to $60^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ (maximum temperature with Option 111 integral discs is $60^{\circ} \mathrm{C}$ $\left(140^{\circ} \mathrm{F}\right)$).

Relative Humidity

20% to 80% non-condensing (5% to 95% without Option 111 discs).

Altitude

Operating: To $4.6 \mathrm{~km}(15,000 \mathrm{ft})$.
Non-operating: To $15.3 \mathrm{~km}(50,000 \mathrm{ft})$.

Vibration and Shock

HP 243xA and 248xA Micro/ 1000 units are type tested for normal shipping handling shock and vibration (contact factory for review of any application that requires operation under continuous vibration).

Safety and EMI compliance

Safety Qualification
HP 243xA and 248xA Micro/ 1000 units meet all applicable Underwriter's Laboratory (UL), Canadian Standards Association (CSA), and International
Electrotechnical Commission (IEC) safety standards.

EMI Compliance

HP 243xA and 248xA Micro/ 1000 units comply with Federal Communications Commission (FCC) Class A and Verband Deutscher Elektrotechniker (VDE) Level A regulations for Electromagnetic Interference (EMI).

Physical characteristics

Package
Standard 19-inch EIA rack mountable package.

Dimensions in cm (and inches)

Rack mounting Micro/ $\mathbf{1 0 0 0}$ Package: 17.8 cm (7in.) high x 48.3 cm (19 in.) wide $\times 64.8 \mathrm{~cm}$ (25.5 in .) deep.

Micro/1000 Package in 40025A Vertical Floor Mount: 67.3 cm (26.5 in.) high $\times 34.7 \mathrm{~cm}$ (13.6 in.) wide $\times 64.8 \mathrm{~cm}$ (25.5 in.) deep.

Weight

2436A or 2486A without option 111: 16.3 kg (36 lb).
2437A or 2487A without option 111: 16.8 kg (37 lb).
2439A or 2489A without option 111: 18.1 kg (40 lb).
Option 111 Integrated discs add: 2.27 kg (5 lb).
40025A Vertical Floor Mount adds: 5.68 kg (12.5 lb).

Cooling

Four fans provide left-to-right airflow through the $243 \times \mathrm{A} / 248 \times \mathrm{A}$ card cage and for the $243 \times \mathrm{A} / 248 \times \mathrm{A}$ power supply and integrated discs. Dual speed feature allows fans to operate at lower speed and reduced noise level.

Micro/1000 Systems ordering information

NOTE: 248xA SPUs require a compatible terminal (not included) for operator communication and Option 111 integrated discs or $79 \mathrm{xxP} / \mathrm{R}, 7914 \mathrm{ST} / \mathrm{TD}$, $793 \times H$, or $794 \times \mathrm{A}$ disc for operating system and program development support.

2486A Micro 26 System Processor Unit

The 2486A System Processor Unit includes:

1. CPU and memory as follows:
a. 12102 B Memory Controller Card with 512 kb memory.
b. 12105A 60001 A $600+$ CPU Card, instruction set and VCP ROMs, and 12038A Memory frontplane connector.
2. Micro / 1000 Package with power supply and 12 or 14 card cage slots* for CPU, memory, and I/O cards, dedicated slots for 25 kHz sine wave and battery backup cards, voltage jumper card, and power cable.
3. Disc and terminal interfaces and cables as follows:
a. $12009 \mathrm{~A}+\mathrm{D} 01 \mathrm{HP}-\mathrm{IB}$ Interface to disc, including cable.
b. $12005 \mathrm{~B}+010$ Asynchronous Serial (terminal) Interface card.
4. Software and supporting documentation as follows:
a. RTE-A Master, RTE-A Primary system, and 24612A and 24398B diagnostics, on option-specified media.
b. License to use RTE-A ori one system.
c. RTE-A and diagnostics manuals (see RTE-A and Diagnostics data sheets in the HP 1000 Software Data book for manuals furnished.
5. $02430-90001$ Micro/1000 Computer System Installation Manual.
6. $02156-90001$ HP 1000 A600 Computer Reference Manual.
7. 02103-90005 Computer I/C Interfacing Guide.
8. 12005-90002 HP 12005A/Ei Asynchronous Interface Reference Manual.
9. 12009-90001 HP 12009A HP-IB Interface Reference Manual.
10. Site preparation consultation.
11. On-site installation assistance and checkout by a Hewlett-Packard service engineer, including integration and test with primary system.
12. 90-day on-site warranty.
13. Four 93285A Engineering Units incorporated in the SPU in the course of manufacturing by HewlettPackard.

2486A Options

NOTE: Must order one of system console connect options 005,006 , or 008 and one of media options 022 , 044 , or 061.

005: Provides $15 \mathrm{~m}(49 \mathrm{ft})$ fiber optic cable connection to system console as specified in Table 2 on page 21 (excludes option 006 or 008).
006: Provides $5 \mathrm{~m}(16.4 \mathrm{ft})$ electrical cable connection to system console as specified in Table 2 on page 21 (excludes option 005 or 008).
008: Deletes 12005B interface and 12005-90002 manual to permit their replacement with a 12040 B multiplexer and a connect cable as specified in Table 2 on page 21 for the various compatible terminals (excludes option 005 or 006).

014: Deletes 12102B 512 kb parity memory controller, permitting its replacement with a 12110 A 512 kb or 12110B 1 Mb ECC memory controller. (Must order 12110x ECC memory controller, and memory array cards and $12038 x$ connector as appropriate; see Table 4 on page 25 .)
015: Operation from 220 V ac power. Power options for system console, disc, and other peripherals must be ordered separately.
022: Software on CS / 80 cartridge tape for use with $791 \times \mathrm{P} / \mathrm{R}$ disc or 9144A Tape Cartridge Subsystem (excludes option 044 or 061).
044: Software on Microfloppy discs (excludes option 022 or 061).
061: Software on 1600 bpi mag tape (excludes option 022 or 044).
111: Provides integrated 14.5 Mb fixed and 270 kb microfloppy discs, replaces $12009 \mathrm{~A}+$ D01 interface and 12009-90001 manual with 12022A disc interface.

2487A Micro 27 System Processor Unit

The 2487A System Processor Unit includes:

1. CPU and memory as follows:
a. 12103 C 512 kb Memory array card.
b. 12038A Memory frontplane connector assembly.
c. A700 CPU, including 12152-60001 and 60051 processor cards, 12152-60052 memory controller, and instruction set and VCP PROMs.
d. 12160A Frontplane connector assembly.

2 through 5. Same as 2 through 5 for 2486A above.
6. 02137-90001 HP 1000 A 700 Computer Reference Manual.
7 through 13. Same as 7 through 13 for 2486A, above.

2487A Options

NOTE: Must order one of system console connect options 005,006 , or 008 and one of media options 022 , 044 , or 061.

001: Adds 12156A Floating Point Processor Card with Scientific and Vector Instruction Sets (including the 12156-90001 A700 Floating Point Processor Installation Manual) and replaces 12160A two-connector frontplane connector assembly with a 12156-60002 three-connector frontplane assembly (uses one card cage slot).
005, 006, and 008: Same as for 2486A, above.
014: Deletes standard 512 kb parity memory array card and front plane connector, permitting their replacement with other A700 compatible memory card(s) and appropriate $12038 x$ connector; see Table 5 on page 26.

015, 022, 044, 061, and 111: Same as for 2486A, above.

[^3]
2489A Micro 29 System Processor Unit

The 2489A System Processor Unit includes:

1. A900 CPU and memory as follows:
a. 12201A Sequencer card with ROMs.
b. 12202A Data Path card with Floating Point Processors.
c. 12203A Cache Control Card with VCP ROMs.
d. 12204A Memory Controller card.
e. 12220 A 768 kb ECC Memory Array card.
f. 12222 A Memory Array Connector.
2. 2430B Micro/1000 Package with power supply and 12 or 14 card cage slots* for CPU, memory, and I/O cards, dedicated slots for 25 kHz sine wave and battery backup cards, voltage jumper card, and power cable.
3 through 5 . Same as 3 through 5 for 2486A, above.
3. 02139-90001 HP 1000 A900 Computer Reference Manual.
7 through 13. Same as 7 through 13 for 2486A, above.

2489A Options

NOTE: Must order system console connect option 005 or 006 and one of media options 022,044 , or 061.
005 and 006: Same as for 2486 A , above.
014: Deletes standard 768 kb ECC memory array card and front plane connector, permitting their replacement with other memory array cards. (Must order other A900 compatible memory card(s) and appropriate $12222 x$ array connector; see Table 6 on page 26.
015, 022, 044, 061, and 111: Same as for 2486A, above.

Micro/1000 Components ordering information

NOTE: 243xA Micro/ 1000 components require the RTEA operating system and a 12005 B terminal interface or 12040B Multiplexer (except on 2439A), cable, and a compatible terminal or a DS/1000-IV interface linked to another HP 1000 Computer System for operation.

2436A Micro 26 Component

The 2436A Micro 26 Component includes:

1. CPU and memory as follows:
a. 12102 A Memory Controller Card with 128 kb memory.
b. 12105-60001 A600 + CPU Card, instruction set and VCP ROMs, and 12038A Memory front plane connector.
2. 2430A Micro/1000 Package with power supply and 12 or 14 card cage slots* available for CPU, memory, and I/O cards, dedicated slots for 25 kHz sine wave and battery battery backup cards, voltage jumper card, and power cable.
3. $02430-90001$ Micro/ 1000 Computer System Installation Manual.
4. 02103-90005 Computer I/O Interfacing Guide.
5. $02156-90001 \mathrm{HP} 1000 \mathrm{~A} 600+$ Computer Reference Manual.

2436E Micro 26 Execute-Only Component

The 2436E Micro 26 Execute-Only Component includes:

1. 2436 A Micro 26 Component, but with 12102 B 512 kb Memory Controller instead of 12102A 128 kb Memory Controller.
2. $92077 \mathrm{E}+600$ Right-to-Execute RTE-A on one system.

2436A/E Options

014: Deletes standard parity memory controller, permitting its replacement with a different memory controller. (Must order memory controller, memory array cards, and 12038 x connector as appropriate; see Table 4 on page 25.)
015: Operation from 230 V ac power. Power options for peripheral devices must be ordered separately.
111: Adds integrated 14.5 Mb fixed and 270 kb microfloppy discs and 12022A disc interface.

2437A Micro 27 Component

The 2437A Micro 27 Component includes:

1. CPU and memory as follows:
a. 12103 A 128 kb Memory array card.
b. 12038 A Memory frontplane connector assembly.
c. A700 CPU, including 12152-60001 and 60051 processor cards, 12152-60052 memory controller, and instruction set and VCP PROMs.
d. 12160A Frontplane connector assembly.

2 through 4 . Same as 2 through 4 for 2436A, above.
5. 02137-90001 HP 1000 A700 Computer Reference Manual.

2437A Options

001: Adds 12156A Floating Point Processor Card with Scientific and Vector Instruction Sets (including the 12156-90001 A700 Floating Point Processor Installation Manual) and replaces 12160 A two-connector Frontplane connector assembly with a 12156-60002 three-connector frontplane assembly (uses one card cage slot).
014: Deletes standard 128 kb parity memory array card and front plane connector, permitting their replacement with other A700 memory card(s) and appropriate $12038 x$ connector; see Table 5 on page 26.
015 and 111: Same as for $2436 \mathrm{~A} / \mathrm{E}$, above.

[^4]
2439A Micro 29 Component

The 2439A Micro 29 Component includes:

1. A900 CPU and memory as follows:
a. 12201A Sequencer card with ROMs.
b. 12202A Data Path card with Floating Point Processors.
c. 12203A Cache Control card with VCP ROMs.
d. 12204A Memory Controller card.
e. 12220 A 768 kb ECC Memory Aray card.
f. 12222A Memory frontplane connector assembly.
2. Micro/ 1000 Package with power supply and 12 or 14 card cage slots* for CPU, memory, and I/O cards, dedicated slots for 25 kHz sine wave and battery backup cards, voltage jumper card, and power cable.
3 and 4 . Same as 3 and 4 for 2436 A , above.
3. $02139-90001 \mathrm{HP} 1000$ A 900 Computer Reference Manual.

2439A Options

014: Deletes standard 768 kb ECC memory array card and front plane connector, permitting their replacement with other memory array cards. (Must order other A900 memory card(s) and af propriate 12222x array connector; see Table 6 on page 26.)
015 and 111: Same as for $2436 \mathrm{~A} / \mathrm{E}$, above.

Accessories ordering information

40025A Vertical Floor Mount

The 40025A Vertical Floor Mount is a convenient base on casters for compact vertical desk-side or under-table mounting and easy mobility of Micro 26, 27, and 29 Systems or components that are not to be rack mounted.

Optional Software

See page 4 of this Data book.

User Control Store Cards

12153A A700 Writable Control Store card (provides 4 k words of control store capacity).
12155A A700 PROM Control Store card (provides mounting for up to 8 k words of PROMs).
12205A A900 Control Store Board (provides 4 k words of writable control store and mounting space for 2 k words of 2 k control store PROMs).

Plug-in Hardware Accessories

12154A Battery Backup Card (provides 45 to 210 minutes of sustaining power for up to four memory array cards, depending upon the system configuration, state of charge, and temperature; additional hold-up time can be achieved by connecting an external battery.
12159A 25 kHz Sine Wave Card (provides up to 30 W of 39 V rms ac power (two phases) at 25 kHz , which is filtered from the output of the power supply switcher.

Memory Expansion and Array Connectors

See Tables 4 through 6.

[^5]Table 4. HP 1000 Micro 26 Memory Size and Available Card Cage Slots

Table 5. HP 1000 Micro 27 Memory Size and Available Card Cage Slots

NOTE A: The Floating Point Processor card and/or each Writable Control Store Card or PROM Control Store card uses one card cage slot that would otherwise be available for memory array cards, reducing maximum ECC memory size by up to 2 Mb , maximum parity memory size by up to 1 Mb

* 12111 A 512 kb ECC Memory Array Card is preferred, but the 12104 A 512 kb ECC Memory Array Card is also usable
** This applies only to the 2437 A Micro 27 component; the 2487 A Micro 27 SPU cannot be equipped with less than 512 kb and it includes the 12103 C 512 kb Parity Memory Array Card.
* Installation of the 12154 A Battery Backup Module reduces the numbers listed below by two.
$n / s=$ not supported

Table 6. HP 1000 Micro 29 Memory Size and Available Card Cage Slots

* This is the base ECC memory that is deleted by 2439A/2489A Option 014 to make way for ordering memory arrays and a connector that provide more memory.
* Installation of the 12154 A Battery Backup Module reduces the numbers listed below by two.

Interfaces

The HP $248 \times \mathrm{A}$ SPUs and $243 \times$ A components can use all of the interfaces listed in the A-Series Interfaces Technical Data book (5953-8760 or later version), but the following interfaces will require the 12159 A 25 kHz Sine Wave Card:

12060BA High-Level Analog Input card
12061A Expansion Multiplexer card 12062A Analog Output card
12063A 16-Input/16-Output Digital I/O card 37203L HP-IB Extender card using coaxial cable communication. (The 37203L Option 001 HPIB Extender card does not require 25 kHz power for fiber optic cable communication).

Peripheral Devices

See the HP 1000 Peripherals Selection Guide.

Additional Documentation Available

For A600+: $02156-90003$ HP 1000 A600 Computer Engineering and Reference Documentation.
For A700: $\quad 02137-90005$ HP 1000 A 700 Computer Engineering and Reference Documentation.

For A900: $\quad 02139-90003$ HP 1000 A900 Computer Engineering and Reference Documentation.

Computers

HP 1000 A-Series Computer Systems
 HP 1000 A-Series Computer Systems

The HP 2156B, 2137A, and 2139A are identically-packaged A600+, A700, and A900 box computers for OEMs and end users designing their own rack-mounted systems (see the A-Series Computers and Specifications data sheet on page 1 for comparison of $\mathrm{A} 600+, \mathrm{A} 700$, and A 900 capabilities.) In a rack-mountable cabinet: 26.6 cm (10.5 in) high by 61.2 cm (24 in) deep these computers house the CPU and base memory capacity with space to spare for memory expansion and I/O interfaces, ass summarized below. At least one I/O interface and associated terminal or remote computer system is required in addition to the box computer for a usable system.

Computer	$\mathbf{2 1 5 6 B}$	$\mathbf{2 1 3 7 A}$	2139A
Avail. Card Cage Slots	18	16	15

2156B, 2137A, or 2139A Computer operations can be managed by the 92077A RTE-A Real-Tirne Executive operating system. The RTE-A system supports multiprogramming, high-level program languages, the $92078 \mathrm{AVC}+$ enhancement for large programs to 7.75 megabytes, virtual memory and extended memory areas for data, data base management, distributed systems networking, graphics software arid main memory up to 21 megabytes.
Optionally, the standard main memory can be replaced and/or expanded to 8 megabytes; of ECC. memory in the 2156 B or 2137 A Computer, to 21 megabytes of ECC memory in the 2139 A Computer.
Many different peripheral devices are available for userassembled systems, including terminals, discs, printers, graphics devices, and measurement and control subsystems. Peripheral capabilities available with the 2156B, 2137A, and 2139A are well exemplified by the choice of six fixed discs with 24 to 404 megabyte capacity, some with built-in cartridge tape backup. Up to 1.6 gigabytes of disc capacity can be be connected via a single interface, using 404 megabyte discs.
The $2156 \mathrm{~B}, 2137 \mathrm{~A}$, or 2139 A Computer operating in a disc-based RTE-A system supports mul:i-lingual programming in FORTRAN 77, Pascal, BASIC/1000C, and Macro/ 1000 assembly languages. Overall, these computers and their available hardware accessories offer users excellent capacity and power for a wide variety of applications.

Features

- Spacious 20-slot card cage with good capacity for memory expansion and I/O interfaces in addition to the CPU and base memory
- Distributed intelligence I/O with DMA per channel I/O efficiency
- Extensive software support, including:
- Real-time multiprogram executive operating system
- FORTRAN 77, Pascal, BASIC, and Macroassembler programming plus interactive screen editor, and Symbolic Debug/ 1000 for program development
- Image / 1000 Data Base Management software
- Graphics/1000-II software
- DS / 1000-IV Distributed Systems Networking software
- Three packages for communication with IBM or IBM plug-compatible systems
- PMC/ 1000 for process monitoring and control
- QDM/1000 for quality data management
- PCIF / 1000 for interfacing with programmable controllers
- Large program and data capacity support under 92077A RTE-A operating system with:
- VC + capability for programs up to 7.75 megabytes is optional
- Multiple sharable Extended Memory Areas (EMAs) for data arrays up to 2 megabytes resident in main memory. Up to 15 EMAs are supportable, each sharable by as many as 63 programs
- Virtual memory for data divided between main memory and disc, supports transparent processing of data arrays up to 128 megabytes
- Instruction and program compatibility with other members of the HP 1000 family protects software investment of current OEMs and end users and gives users access to a broad base of proven software
- Built-in dynamic mapping system, memory protect, time base generator, and self test
- Power fail detection and auto restart with optional

12157A Battery Backup System

- Boot loaders support boot-up from:
- CS/80 disc drive or its integral cartridge tape
- A magnetic tape unit
- An adjacent HP 1000 computer system in a DS / 1000 -IV Distributed Systems Network
- PROM Storage Module
- Remote loading and diagnosis for programming and operation of systems at remote sites
- Front-to-rear air flow through cabinet maximizes system cooling efficiency and equipment reliability
- High reliability and maintainability through the use of reduced circuit area and simple packaging

Computer description and specifications

For functional description of the Model 2156B, 2137A, and 2139A Computers, memory systems, input/output system, software and diagnostic support, compatibility with other HP 1000 Computers, and A600+ , A700, and A900 specifications, see the A-Series Computer Design and Specifications data sheet on page 1 .

Computer capacity specifications
 Memory Size and Available Card Cage Slots

See Tables 1 through 3.

Table 1. HP 2156B Memory Size and Available Card Cage Slots

$\begin{aligned} & \text { MEM } \\ & \text { SIZE } \\ & \text { (Mb) } \end{aligned}$	FOR ECC MEMORY							FOR PARITY MEMORY				
	ORDER 2156 B OPTION 014 AND:						AVAIL CARD CAGE SLOTS	ORDER 2156 B OPTION 014 AND:				AVAIL CARD CAGE SLOTS
	MEMOR Y CONTROLLER		MEMORY ARRAYS			AND ARRAY CONN		MEMORY CTRLR	MEMORY	AYS	$\begin{aligned} & \text { AND } \\ & \text { ARRAY } \end{aligned}$	
	$12110 A$ 512 Kb	12110 C 1.0 Mb	12111 A 512 kb	12111 B 1.0 Mb	$\begin{aligned} & \frac{12111 \mathrm{C}}{2.0 \mathrm{Mb}} \end{aligned}$			121028 512 kb	$\begin{aligned} & 12103 \mathrm{C} \\ & 512 \mathrm{~kb} \end{aligned}$	$\begin{aligned} & 12103 D \\ & 1.0 \mathrm{Mb} \end{aligned}$		
0.5	1	0	0	0	0	None	18	1	0	0	None	18
1.0	0	1	0	0	0	None	18	1	1	0	12038 A	17
1.5	0	1	1	0	0	12038 A	17	1	2	0	12038 B	16
2.0	0	1	0	1	0	12038 A	17	1	1	1	12038 B	16
2.5	0	1	1	1	0	12038 B	16	1	2	1	12038 C	15
3.0	0	1	0	2	0	12038 B	16	1	1	2	12038 C	15
3.5	0	1	1	2	0	12038 C	15	1	2	2	12038 D	14
4.0	0	1	0	1	1	12038 B	16	1	1	3	12038 D	14
5.0	0	1	0	2	1	12038 C	15	n/s	n/s	$n / 5$	$n / 5$	$n / 5$
6.0	0	1	0	1	2	12038C	15	$n / 5$	n / s	n / s	$n / 5$	n / s
7.0\#	0	1	0	2	2	12038 D	14	n / s	n/s	n / s	n/s	n / s
$8.0 \#$	0	1	0	1	3	12038 D	14	n/s	n/s	n/s	n/s	n / s

Table 2. HP 2137A Memory Size and Available Card Cage Slots

$\begin{aligned} & \text { MEMORY } \\ & \text { SIZE } \end{aligned}$	FOR ECC MEMORY					FOR PARITY MEMORY					
	ORDER 2137A OPTION 014 AND				AVAIL CAGE CAGE SLOTS	ORDER 2137A OPTION 014 AND:					AVA IL CARD CAGE SLOTS
	MEMORY ARRAYS			AND ARRAY CONN.		MEMORY ARRAYS				AND ARRAY CONN	
	$12111 A^{*}$ 512 kb	12111 B 1.0 Mb	$\begin{aligned} & 12111 \mathrm{C} \\ & 2.0 \mathrm{Mb} \end{aligned}$			$12103 A$ 128 kb	12103 B 256 kb	12103 C 512 kb	12103 D 1.0 Mb		
256 kb	n/s	n/s	n/s	n/s	n/s	0	1	0	0	12038 A	16
512 kb	1	0	0	12038A	16	0	0	1	0	12038 A	16
1.0 Mb	0	1	0	12038 A	16	0	0	0	1	12038 A	16
1.5 Mb	1	1	0	12038 B	15	0	0	1	1	12038 B	15
2.0 Mb	0	0	1	12038 A	16	0	0	0	2	12038 B	15
2.5 Mb	1	0	1	12038 B	15	0	0	1	2	12038 C	14
3.0 Mb	0	1	1	12038 B	15	0	0	0	3	12038 C	14
3.5 Mb	1	1	1	12038 C	14	0	0	1	3	12038 D	13
4.0 Mb	0	0	2	12038 B	15	0	0	0	4	12038 D	13
5.0 Mb	0	1	2	12038 C	14	n/s	n/s	n/s	n/s	n/s	n / s
6.0 Mb	0	0	3	12038 C	14	n/s	n/s	n / s	n/s	n / s	n/s
7.0 Mb	0	1	3	120380	13	n / s	n / s	n/s	n/s	n / s	n/s
8.0 Mb	0	0	4	12038 D	13	n/s	n / s	n / s	n/s	n / s	n/5

* The $12111 A 512 \mathrm{~kb}$ ECC Memory Array Card is recommended, but the 12104 A 512 kb ECC Memory Array Card is also usable. $n / s=$ not supported

Table 3. HP 2139A Memory Size and Available Card Cage Slots

MEMORY SIZE	ORDER 2139A OPTION 314 AND:			AVAILABLE CARD CAGE SLOTS
	MEMORY ARRAYS		AND ARRAY CIDNNECTOR	
	12220 A	$\begin{aligned} & 12221 \mathrm{~A} \\ & 3.0 \mathrm{Mb} \end{aligned}$		
$0.75 \mathrm{Mb}{ }^{*}$	1 Std	0	12222 A Std	15
1. 50 Mb	- 2	0	122228	14
2.25 Mb	3	0	12222 C	13
3.00 Mb	0	1	12222 A	15
3.75 Mb	1	1	122228	14
4.50 Mb	2	1	12222 C	13
5.25 Mb	3	1	12222 D	12
6.00 Mb	0	2	122228	14
9.00 Mb	0	3	12222 C	13
12.00 Mb	0	4	122220	12

THE FOLLOWING MEMORY SIZES USE MORE THAN FOUR ARRAY CARDS AND ARE THEREFORE NOT SUPPORTABLE BY THE 12157 A BATTERY BACKUP SYSTEM

15.00 Mb	0	5	12222 E	11
18.00 Mb	0	6	12222 F	10
21.00 Mb	0	7	12222 G	9

* This is the base ECC memory that is deleted by $2139 A$ Option 014 to make way for ordering memory arrays and a connector that provide more memory

Electrical specifications

AC Power Requirements of 2156B, 2137A, and
2139A Computers
Standard line voltage: $115 \mathrm{~V}-25 \% /+20 \%(86-138 \mathrm{~V})$.
Option 015 line voltage: $230 \mathrm{~V}-23 \% /+2.0 \%(178-276 \mathrm{~V})$.
Line frequency: 47.5 to 66 Hz .
Maximum power required: 700 W .
Power cable: The standard $2156 \mathrm{~B}, 2137 \mathrm{~A}$, or 2139 A Computer includes a 3 metre (10 ft) power cable with NEMA 515 P power plug. No power cable is provided with the option 015 version of any of these computers.

DC Current Available and Required for I/O Interfaces and Accessories

The computer power supply provides enough current for any combination of A-Series interfaces or other A-Series plug-ins that can be accommodated in the computer card cage.

Environmental specifications

Temperature and Altitude

	OPERATING		NON OPERATING
MAX. ALTITUDE - metres - feet	$\begin{array}{r} 3048 \\ 10,000 \end{array}$	$\begin{array}{r} 4572 \\ 15,000 \end{array}$	$\begin{array}{r} 16400 \\ 50,000 \end{array}$
TEMPERATURE - degrees C - degrees F	$\begin{array}{rrr}0 & \text { to } & 55 \\ 32 & \text { to } & 131\end{array}$	$\begin{array}{rrr}0 & \text { to } & 45 \\ 32 & \text { to } & 113\end{array}$	$\begin{aligned} & -40 \text { to }+75 \\ & -40 \text { to }+167 \end{aligned}$

Relative Humidity

5% to 95% non-condensing.

Vibration and Shock

HP 2156B, 2137A, and 2139A Computers are type tested for normal shipping and handling shock and vibration (contact factory for review of any application that requires operation under continuous vibration).

Safety and EMI qualification

Safety Qualification

The 2156B, 2137A, and 2139A Computers meet Underwriter's Laboratory (UL), Canadian Standards Association (CSA), and International Electrotechnical Commission (IEC) safety standards.

EMI Qualification

The 2156B, 2137A, and 2139A Computers comply with Federal Communications Commission (FCC) Class A and Verband Deutscher Elektrotechniker (VDE) Level A regulations for Electro Magnetic Interference (EMI) when incorporated in the HP 1000 Model 26 (2196C/D), 27
(2197C/D), and 29 (2199C/D) Computer Systems.

Physical characteristics

Dimensions

26.6 cm (10.5 in) high, 48.3 cm (19 in) wide, 61.2 cm (24 in) deep.

Weight

$29.1 \mathrm{~kg}(64 \mathrm{lb})$.

Ventilation

Four fans provide 10.7 cubic metres per minute (380 CFM) air flow through the computer card cage from front to rear.

Ordering information

NOTE: The 2156B, 2137A, or 2139A Computer requires the RTE-A operating system and a 12005B terminal interface or 12040B Multiplexer, cable, and a compatible terminal or a DS $/ 1000$-IV interface linked to another HP 1000 Computer System for operation.

2156B Computer

The 2156B Computer includes:

1. 12102A Memory Controller Card with 128 k bytes of parity memory (512 kb or 1 Mb ECC memory is optional, expandable to 8 Mb of ECC memory).
2. 12105-60001 A600 + CPU Card, instruction set and VCP ROMs, and 12038A Front plane connector.
$\mathrm{A} 600+$, A700, and A900
Computers
3. 20-Slot box with power supply and ventilation.
4. 02156-90002 HP $1000 \mathrm{~A} 600+$ Computer Installation and Service Manual.
5. 02156-90001 HP 1000 A600+ Computer Reference Manual.
6. 02103-90005 Computer I/O Interfacing Guide.

2156B Options

014: Deletes 12102 A 128 kb parity memory controller, permitting its replacement with another memory controller. (Must order other memory controller, and memory array cards and 12038x connector as appropriate; see Table 1 on page 28.)
015: Operation from 220 V ac power. Power options for terminal(s), disc(s), and other peripherals must be ordered separately.

2137A Computer

The 2137A Computer includes:

1. 12103 A 128 kb Memory array card.
2. 12038A Front plane connector from controller to one memory array card.
3. A700 CPU, including 12152-60001 and 60051 processor cards, 12152-60052 memory controller card, and instruction set and VCP ROMs.
4. 12160A Front Plane Assembly.
5. 20-Slot box with power supply and ventilation.
6. $02137-90002 \mathrm{HP} 1000 \mathrm{~A} 700$ Computer Installation and Service Manual.
7. $02137-90001 \mathrm{HP} 1000 \mathrm{~A} 700$ Computer Reference Manual.
8. 02103-90005 Computer I/O Interfacing Guide.

2137A Options

001: Adds 12156A Hardware Floating Point Processor card and Scientific and Vector Instruction Set firmware (including the 12156-90001 A700 Floating Point Processor Installation Manual) and 2 k words of available PROM control store mounting space. Also replaces 12160A two-connector Front plane assembly with a 12038B three-connector Front plane assembly (uses one card cage slot).
014: Deletes standard 128 k byte memory array card and 12038A front plane connector, permitting its replacement with other memory array cards. (Must order other A700 compatible memory card(s) and appropriate $12038 x$ connector; see Table 2 on page 28.)

015: Operation from 220 V ac power. Power options for terminal(s), disc(s), and other peripherals must be ordered separately.

2139A Computer

The 2139A Computer includes:

1. 12201 A Sequencer card with ROMs.
2. 12202A Data Path card with Floating Point Processors.
3. 12203A Cache Control card with VCP ROMs.
4. 12204A Memory Controller card.
5. 12220A 768 kb ECC Memory Array card.
6. 12222 A Array Connector.
7. 20-slot box with power supply and ventilation.
8. 02139-90002 HP 1000 A900 Computer Installation and Service Manual.
9. 02139-90001 HP 1000 A900 Computer Reference Manual.
10. 02103-90005 Computer I/O Interfacing Guide.

2139A Options

014: Deletes standard 768k byte ECC memory array card and front plane connector, permitting its replacement with other memory array cards. (Must order other A900 compatible memory card(s) and appropriate $12222 x$ array connector; see Table 3 on page 29.)

015: Operation from 220 V ac power. Power options for terminal(s), disc(s), and other peripherals must be ordered separately.

Accessories ordering information

Optional Software

See Extensive software support on page 4.

Memory Cards and Array Connectors

See Table 1, 2, or 3 for the memory cards and array connector which are required to provide the desired ECC or parity memory in the $2156 \mathrm{~B}, 2137 \mathrm{~A}$, or 2139 A Computer.

Plug-in Hardware Accessories

12157A Battery Backup System (provides 15 to 90 minutes of sustaining power for up to four memory array cards), depending upon the system configuration, state of charge, and temperature; additional hold-up time can be achieved by connecting an external battery. NOTE: This accessory is installed in the computer power supply and does NOT use a card cage slot.
12158A 25 kHz Power Module (provides up to 50 W of 39 V rms ac power (two phases) at 25 kHz , which is filtered from the output of the power supply switcher). NOTE: This accessory is installed in the computer power supply and does NOT use a card cage slot.

User Control Store Cards

12153A A700 Writable Control Store card (provides 4 k words of control store space).
12155A A700 PROM Control Store card (provides mounting for up to 8 k words of PROMs).
12205A A900 Control Store Board (provides 4 k words of writable control store and mounting space for $2 k$ words of 2 k control store PROMs).

Interfaces

The HP 2156B, 2137A, and 2139A Computers can use all of the interfaces listed in the A-Series Interfaces Technical Data book (5953-8760 or later version) but the following interfaces will require the 12158A 25 kHz Power Module:

12060A High-Level Analog Input Card
12061A Expansion Multiplexer Card
12062A Analog Output Carcl
12063A 16-Input/16-Output Digital I/O Card
37203L HP-IB Extender Card using coaxial cable communication. (The 37203 L Option 001 HP IB Extender Card does not require 25 kHz power for fiber optic cable communication.)

Peripheral Devices

See the HP 1000 Peripherals Selection Guide.

Additional Documentation Available

For 2156B:	02156-90003 HP 1000 A 600 Computer Engineering and Reference Documentation
For 2137A:	$02137-90005$ HP 1000 A700 Compute Engineering and Reference Documentation
For 2139A:	$02139-90003$ HP 1000 A900 Computer Engineering and Reference Documentation.

The A $600+$ Computer is offered as the 2106 BK Board Computer for users who choose to design their own systems and packaging. (See the A-Series Computer Design and Specifications data sheet on page 1 for A600 + capabilities.) Optional 5 - and 10 -slot card cages, product numbers 12032 A and 12030 A , are offered to facilitate packaging of the 2106 BK with I/O interfaces and other optional plug-ins. When approprately packaged and powered and equipped with suitable peripheral devices, the $\mathrm{A} 600+$ Board Computer can use the same software as the 2156B (Box) Computer (see list on page 4).

Features

- Maximum packaging flexibility for OEMs and end users to design their own A-Series computer systems
- Distributed intelligence I/O with DMA per channel I/O efficiency
- Extensive software support under RTE-A
- High reliability and maintainability through the use of reduced circuit area and simple packaging
- Instruction and program compatibility with other members of the HP 1000 family protects software of current OEMs and end users and gives users access to a broad base of proven software
- Built-in dynamic mapping system, memory protect, time base generator, and self test
- Power fail detection and auto restart with optional 12013A Battery Backup Card arid RTE-A
- Boot loaders support boot-up from:
- CS/80 disc drive or its integral cartridge tape
- A magnetic tape unit
- An adjacent HP 1000 computer system in a DS / 1000-IV Distributed Systems Network
- PROM Storage Module
- Remote loading and diagnosis for programming and operation of systems at remote sites

Computer description and specifications

For functional description of the 2106BK Board computer, memory system, input/output system, software and diagnostic support, compatibility, and A600 + specifications, see the A -Series Computer Design and Specifications data sheet on page 1.

2106BK Board Computer Specifications

Available Card Cage Capacity

In 12030A Card Cage: Eight slots are available for add-on memory array cards, I/O interfaces, and other plug-in accessories, of which a maximum of three are usable for memory expansion. Because of the front plane connections of the memory and CPU cards, they can be installed in only one 5 -slot side of the 12030 A 10-Slot Card Cage.

In 12032A Card Cage: Three slots are available for I/O interfaces and other plug-in accessories.

Memory

Memory included in standard 2106BK: 128 kb of parity memory.
Memory supportable by 12013A Battery Backup Card: 128 kb or 512 kb parity memory controller or 512 kb or 1 Mb ECC memory controller. Additional memory array cards cannot be supported.
With 2 Mb ECC memory array cards: HP 2106BK Board Computer option 014 deletes the standard 128 kb parity memory controller to make way for larger memory. With 2106BK Option 014 and a 12110 B 1 Mb ECC memory controller, addition of a 12111 B 1 Mb ECC memory array card and two 12111 C 2 Mb ECC memory array cards expands total memory to 6 megabytes, the maximum that can be accommodated with the CPU and memory controller cards in one side of the 12030A 10-Slot Card Cage.

Electrical specifications

Direct Current Required (-) for 2106BK Board Computer

See Table on page 42.

Physical characteristics

Card Cage Dimensions, millimeters (and inches) 12030A 10-Slot Card Cage

12032A 5-Slot Card Cage

Weight

2106BK (two circuit boards): 0.682 kg (1.5 lb).
12030A 10-Slot Card Cage: 2.0 kg (4.4 lb)
12032A 5-Slot Card Cage: $1.09 \mathrm{~kg}(2.4 \mathrm{lb})$

Maximum Heat Dissipation of 2106BK

46 kilogram-calories per hour (184 BTU per hour).

Ventilation

Air flow on the order of 1.13 cubic metres per minute (40 CFM) across the CPU and memory cards is required for cooling the 2106BK Board Computer.

Ordering information

2106BK Board Computer
The 2106BK Board Computer includes:

1. 12102 A Memory Controller Card with 128 kb of parity memory.
2. A600+ CPU Card
3. 12038A Front plane connector.

2106BK Option

014: Deletes 12102 A 128 kb parity memory controller to make way for ordering another memory controller, selected from those in Table 1.

Integration Accessories

12030A 10-Slot Card Cage Kit
 12032A 5-Slot Card Cage Kit

NOTE: All card cage kits are shipped disassembled to minimize shipping costs and storage space requirements until they are used.

12013A Battery Backup Card

When fully charged, the 12013A Battery Backup Card, which uses Nickel-Cadmium batteries, provides 60 minutes of sustaining power for a $12102 \mathrm{~A} / \mathrm{B} 128 \mathrm{~kb} / 512$ kb parity memory or a $12110 \mathrm{~A} / \mathrm{B} 512 \mathrm{~kb} / 1 \mathrm{Mb}$ ECC memory controller. Additional memory array cards cannot be supported by the 12013A Battery Backup Card.

Memory

See Table 1.

Interfaces

The 2106BK Board Computer is compatible with all of the interfaces listed in the HP 1000 A-Series Interfaces Data book (5953-8760 or later revision) provided that suitable power is available, including 25 kHz ac for certain interfaces.

Additional Documentation for 2106BK:
02156-90003 HP 1000 A $600+$ Computer Engineering Reference Documentation.

Table 1. HP 2106BK Memory Sizes Supportable in 12030A 10-Slot Card Cage

HP 1000 A700 Computer Systems

Two control store cards offer comprehensive support for user microprograms in HP 1000 A700 computer systems. One of these is the 12153 A 4 k word Writable Control Store (WCS) card, which supports development, testing, dynamic overlaying, and output of user's microprograms to the A700 Control Processor. The other card is the 12155A 8k word PROM Control Store (PCS) card, which provides mounting for PROMs containing user's microcode. In addition to hardware support provided by these control store cards, development of user's microprograms and dynamic loading and overlaying of WCS are software supported in a disc-based RTE-A environment by the 92045A Microprogramming Package (see data sheet in the current HP 1000 Software Technical Data book).

Features

- Software subroutines converted to microcode in control store run 3 to 10 times faster than in macro form
- Software support with 92045A Microprogramming Package in disc-based RTE-A operating system
- High-level Paraphraser for writing microcode (included in 92045A)
- Writable Control Store (WCS) support for microcode development, testing, dynamic overlaying, and output, in 4 k words of WCS
- Fast loading of WCS overlays at 319 k instruction words per second DMA transfer rate using WLOAD utility of 92045A Microprogramming Package
- PROM Control Store (PCS) support for up to 8 k words of stable user microcode
- WCS can override installed PROM-based microcode
- Control processor programs sharable among multiple users

NOTE: The 12156A Floating Point Processor counts as one (PROM) control store card and provides $2 k$ words of control store space.

WCS Description

The 12153A WCS card is a dual-port memory. One port connects to the control processor's control store interface and the other to the A700 computer backplane. Control processor instructions can be loaded into the 12153A using DMA transfers from memory at a 319 k word/second rate, via the computer backplane. Standard I/O instructions are then used to configure control store module addresses and enable the control processor's control store interface, thereby granting access to the loaded subroutines by the control processor.

PCS Description

The 12155 A PCS card provides up to 8 k words of nonvolatile control memory storage capacity for user-written instruction set enhancements. Module addresses are switch selectable, with a given module configurable to any address within control store address space. Users can supply recommended vendors with necessary information for generating PROM chips that are compatible with the 12155 A , or can "burn" their own. The microprograms in PROMS are mounted on the PCS card, which is conveniently installed in the card cage of the A700 computer system.

Functional specifications

Capacity

12153A WCS Card: 4 k words, four modules of 1024 words.
12155A PCS Card: Mounting for 8 k words, eight modules of 1024 words, four PROMs per module.

Word Size

32 bits.

Microinstruction Cycle Time

250 nanoseconds.

Recommended PROMs for 12155A PCS Card

Signetics 82 S181, Harris HM-7681-5, or equivalent $1 \mathrm{k} \times 8$ PROM with address access time $\leqslant 70 \mathrm{nsec}$, chip enable access time $\leqslant 40 \mathrm{nsec}$, and power supply current $\leqslant 175 \mathrm{~mA}$.

Computer control store card capacity

Up to four WCS/PCS cards (three if the 12156A Floating Point Processor is included in the A700 system, since it counts as a PCS card).
NOTE: Although a maximum of 8 k words of control store space is available to the user, two sets each of two 12153A 4 k word WCS cards could be used to advantage in some applications as dynamically overlayable control stores for alternate sets of microcode. With two sets of WCS cards, one set can be receiving overlay code from memory while the other is supplying microcode to the control processor. This minimizes time required to change from one set of microcode to the other. Another alternate arrangement might be the use of three 12153A WCS cards and one 12155A PCS card.

Configuration information

Card cage slots required: One for each control store card; control store cards must occupy the card cage slot(s) immediately to the left of the lower A700 CPU card (see the diagram below)

Software recommended: 92045A A700 Microprogramming Package.

Installation: Set the select code switches on the WCS card to the appropriate select code I/O address, or the microaddress range switches on the PCS card to the appropriate microaddresses and plug the card into the I/O slot immediately to the left of the lower A700 CPU card. Disconnect the front plane from the the memory controller and processor cards and connect the flexible jumper cable to the WCS/PCS card(s). Any unused connectors on the jumper cable should be cut off prior to installation.

DC current required for WCS and PCS cards

See table on page 42.

Weight

12153A WCS Card: 0.469 kg (1.03 lb).
12155A PCS Card: 0.384 kg (0.84 lb).
Flexible Cable: $0.085 \mathrm{~kg}(0.188 \mathrm{lb})$.

Ordering information 12153A WCS Card

The 12153A WCS Card includes:

1. 12153-60001 WCS card.
2. 1AF5-6001 I/O Processor.
3. 5061-3480 Flexible cable.
4. 02137-90003 User control store installation and service manual.

12155A PCS Card

The 12155A PCS Card includes:

1. 12155-60001 PCS card.
2. 5061-3480 Flexible cable.
3. 02137-90003 User control store installation and service manual.

The 12205A Control Store Boarcl offers both writable control store and PROM control store support for user microprograms in HP 1000 A900 computer systems. For development, testing, dynamic cverlaying, and output of user's microprograms to the A900 control processor, the control store board provides 4 k of writable control store. For stable microcode, the control store board also provides space for mounting 2 k words of 2 k PROMs containing user's microcode. In addition to the hardware support provided by the 12205A Control Store Board, development of user's microprograms and dynarnic loading and overlaying of WCS are software supported in a disc-based RTE-A environment by the 92049A Microprogramming Package (see data sheet in the current HP 1000 Software Technical Data book).

Features

- Software support with 92049A. Microprogramming Package in disc-based RTE-A operating system
- Writable Control Store (WCS) support for microcode development, testing, dynamic overlaying, and output, in 4 k words of WCS
- Fast loading of WCS overlays at 166 k instruction words per second DMA transfer rate using WLOAD utility of 92049A Microprogramming Package
- PROM Control Store (PCS) support for up to 2 k words of stable user microcode
- WCS can override installed PROM-based microcode
- Control processor programs sharable among multiple users

WCS Description

The WCS on the 12205A Control Store Board is a dualport memory. One port connects to the control processor's control store interface and the other to the A900 computer backplane. Control processor instructions can be loaded into the 12205A WCS section using DMA transfers from memory via the computer backplane. Standard I/O instructions are then used to configure control store module addresses and enable the control processor's control store interface, thereby granting access to the loaded subroutines by the control processor.

PCS Description

The PCS section on the 12205A Control Store Board provides mounting for 2 k words of non-volatile control memory storage capacity for user-written instruction set enhancements, when 2 k PROMs are used. Control store module addresses are switch selectable, with a given module configurable to any even 2 k address block within control store address space. Users can supply recommended vendors with necessary information for generating PROM chips that are compatible with the 12205A, or can "burn" their own. The microprograms in PROMS are mounted on the PROM section of the 12205A board, which is conveniently installed in the card cage of the A900 computer system.

Functional specifications

Environment

The 12205 A Control Store Board is usable only in 2139 A Computers, 2199C/D Model 29 Computer Systems, and 2439A and 2489A Micro 29 Systems.

Capacity

WCS: 4 k words, one module of 4096 words.
PCS: Mounting for $2 k$ words, one module of 2048 words, six PROMs per module.

Word Size

48 bits.

Microinstruction Cycle Time

133 nanoseconds.

Recommended PROM for 12205A Control Store Board

AMD 27S291.

Configuration Information

Card cage slots required: The 12205A Control Store Board is installed in card cage slot 1 (maximum of one 12205A Control Store Board per A900 system).

Software recommended: 92049A A900 RTE Microprogramming Package.

Installation: Set the select code switches on the card to the appropriate select code I/O address and plug the card into card cage slot 1 . Connect the front plane between the control store and the sequencer card.

DC current requirements
See the table on page 42.

Ordering information

12205A Control Store Board

The 12205A Control Store Board includes:

1. 12205-60001 Control store board.
2. 1AF5-6001 I/O Processor.
3. 12205-60002 Front plane.
4. 12205-90001 A900 Control store installation and service manual.

Weight

$0.45 \mathrm{~kg}(1 \mathrm{lb})$.

Power requirements

	$\begin{aligned} & \text { MAX AC } \\ & \text { POWER } \\ & \text { (NOTE A) } \end{aligned}$	VOLTAGE LIMITS (V)		FREQUENCY LIMITS (Hz)		
PRODUCT NUMBER AND NAME		115 V	(230V)	60 Hz	50	

HP 1000 SYSTEM PROCESSOR UNIT (SPU) POWER REQUIREMENTS (Excludes requirements of system console terminal and (hard) non-integrated system disc. which are ordered separately)

$219 \times$ C MODEL $26 / 27 / 29$ SPU (56-ir Cabinet)	2760wa	86-138	(178-276)	48-66	(48-66)
219xD MODEL 26/27/29 SPU (22.5-in Cabinet)	1380w	86-138	(178-276)	48-66	(48-66)
$248 \times$ A MICRO $26 / 27 / 29$ SPU	500W	86-138	(178-276)	48-66	(48-66)

HP 1000 COMPUTERS POWER REQUIREMENTS

2137A/2139A/2156B COMPUTER $243 \times A$ MICRO $26 / 27 / 29$ SYSTEM CONPONENT	$\begin{aligned} & 700 \mathrm{~W} \\ & 500 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 86-138 \\ & 86-138 \end{aligned}$	$\left(\begin{array}{l}178-276 \\ (178-276)\end{array}\right.$	$\begin{aligned} & 48-66 \\ & 48-66 \end{aligned}$	$\left.\begin{array}{l} (48-66) \\ (48-66 \end{array}\right)$
HP 1000 PERIPHERALS POWER REQUIREMENTS					
132798 19-INCH COLOR MONITOR	170W	90-128	(180-257)	54-66	(45-55)
2392A DISPLAY TERMINAL	50W	86-126	(173-253)	47-66	(47-66)
2563A LINE PRINTER 2565A/2566A LINE PRINTER	470 W 550 W	90-126*******	(198-252)*	$48-66$ $48-66$	$(48-66)$ $(48-66)$
2601 A DAISYWHEEL PRINTER	180 W	85-132*	(187-264)*	49-61	(49-61)
2627A COLOR GRAPHICS TERMINAL OTHER $262 \times$ TERMINAL	250 W 120 W	90-126**	(198-252)*	57-63 57-63	$\binom{47.5-52.5}{(47.5-52.5}$
2671A/G PRINTER/GRAPHICS PRINTER 2673A INTELLIGENT GRAPHICS PRIATER 2674 A INTERNAL PRINTER FOR $45610 B$ TERMINAL	50 W 75 W 20 W	$90-126 *$ $90-126 * *$	$(198-252) \#$ (198-252)" See $456100^{\prime \prime}$	See $\begin{gathered}47-66 \\ 47-66108\end{gathered}$	$\begin{array}{r} (47-66) \\ \text { See } \begin{array}{c} (47-66) \\ 456108 \end{array} \end{array}$
26864 LASERJET PRINTER 2687 A DESKTOP LASER PAGE PRINTER	850 W 840 W	$104-126$ $104-126$	$\begin{gathered} \text { Not Supp } \\ (198-264) \# \end{gathered}$	$\begin{array}{r} 59.4-60.6 \\ 59.4-60.6 \end{array}$	$\begin{aligned} & \text { Not Supp } \\ & (49.5-50.5) \end{aligned}$
$293 \times$ A PRINTERS	210 W	90-126*	(198-252)	48-66	(48-66)
$3074 A / M$ DATA LINK ADAPTER $37214 A$ SYSTEMS MODEM CARD	${ }_{5}^{11 \mathrm{~W}}$	87-126 ${ }^{\text {90-126 }}$	(173-253)	$48-66$ $48-66$	$(48-66)$ $(48-66)$
393014 FIBER OPTIC MULTIPLEXER	14 W	90-126*	(198-252)*	48-66	(48-66)
45610B HP TOUCHSCREEN TERMINAL	110W	86-126	(173-253)	57-63	(47.5-52.5)
7470 A 2 -pen PLOTTER	25 W	90-126*	(198-252)*	48-66	(48-66)
7475A 6-pen PLOTTER	35 W	90-126*	(198-252)	48-66	(48-66)
755048 -Pen PLOTTER WITH AUTOMA TIC SHEET FEED	100 W	90-126**	(198-252)	48-66	(48-66)
75808/7858B/7886B 8-pen DRAFTING PLOTTERS	182W	90-126*	(198-252)*	48-66	(48-66)
	700 W	90-126* ${ }_{\text {90-12 }}$	$(198-252)^{*}$	$54-66$ $54-66$	(48-55)
$7914 \mathrm{P} / \mathrm{R}$ 132.1Mb CS/80 FIXED DISC w/CTU backup	700 W	90-126*	198-252)	54-66	(48-55)
7914 ST 132.1 Mb CS/80 FIXED DISC \& 1600 BPI MTU	1220 W	90-125*	(198-250)	54-66	(48-55)
$7914 \mathrm{TD} \mathrm{132.1Mb} \mathrm{CS/80} \mathrm{FIXED} \mathrm{DISC} \mathrm{\&} 1600 \mathrm{BPI}$ MTU	1100 W	104-126	(207-252)	54-66	(48-55)
7933 H 404 Mb CS/80 Fixed DISC	1400W	90-132*	(198-264)	48-66	(48-66)
	1400 W $65 \mathrm{~W}(\mathrm{~T})$	$90-132 *$ $90-132 *$	(198-264)	$48-66$ $48-66$	(48-66)
7970日/E 800/1600 bpi Magnetic TAPE UNIT	400 W	104-126	(207-252)	48-66	(48-66)
79714 MAGNETIC TAPE SUBSYSTEM (per drive)	400 W	104-126	(207-252)	48-66	(48-66)
7974 A MAGNETIC TAPE UNIT (per drive)	520 W	90-125*	(198-250)	48-66	(48-66)
82905 B IMPACT PRINTER	100 W	90-132*	(198-264)	48-66	(48-66)
82906 A DOT-MATRIX PRINTER	70 W	90-132*	(198-264)"	48-66	(48-66)
$9111 A$ GRAPHICS TABLET 9121D Dual MICROFLOPPY DISC	25W	${ }^{90-132} 8{ }^{\text {86-12 }}$	$\left(\begin{array}{r}198-264 \\ (196-253)\end{array}\right.$	$48-66$ $48-66$	$\left(\begin{array}{l}48-66) \\ (48-66)\end{array}\right.$
9133 XV 14.5Mb MINI WINCHESTER/NICROFLOPPY DISC	140 W	90-126*	(196-252)	48-66	(48-66)
9144 A TAPE CARTRIDGE SUBSYSTEM	125W	90-125	(180-250)	48-66	(48-66)
9895A FLEXIBLE DISC MEMORY	180 W	90-132*	(198-264)*	58.8-61.2	(49-51)

NOTE A: Power factor (PF) is typically about 0.75 , with a range of 0.7 to 0.78 . Use of apfof 0.7 to 0.72 to estimate ac input requirements in voli-Amps (VA) from Watts (W) is recommended to assure sufficient total input power $\{V A=W / P F\}$. For estimation of ventilation or air conditioning requirements in BTU per hour. multiply watts by 3.419 . To determine heat dissipation requirements in kilogram-calories per hour, multiply watts by 0 . 8598.

* Range shown for 115 V here includes user-selectable choice of loov or 120 f input plus the voltage tolerance fther may be a gap between 105 V and 108 V)
* Range shown for $230 V$ here includes user-selectable choice of 220 V or 240 a input plus the volage tolerance
(a) Split-phase power is required for this computer system
+ Option 050 integral printer adds $50 W$ to $262 x$ Terminal power consumption
T Denotes iypical power consumption, not maximum.

Computer power supply and card cage slot availability (+) and requirements (-)

	$\begin{aligned} & \text { Card } \\ & \text { Cage } \end{aligned}$siots	Direct Current at				25 kHz ac Pwr rms	Total Supply Supply
Product Number and Name		+5V	+5V(M)	+12V	-12V		

computers and systems

2106 BK (A600+) Board Computer -- CPU \& 128 kb Mem Cds 2106BK Option 014: Deletes standard 128 kb parity mem	
2	Option 00
$\begin{aligned} & 2139 \mathrm{~A} \\ & 2139 \mathrm{~A} \end{aligned}$	(A900) Computerwith
68	($600+1$ Computer wit
	1 (Model 26 I System Processor Unit w/512kb mem option 014: Deletes sta 512 kb darity memory
	(Model 27) System Processor Unit w/512kb mem Option 014: Deletes std memory array card Option 070: Compatibility w/7914ST/TD disctMTU
	Mtion 014: Deletes std ECC memory array card ion 070 : Compatibility $w / 7914 S T / T D$ disc+MTU
$\begin{aligned} & 24364 \mathrm{~A} \\ & 2436 \mathrm{~A} \\ & 2436 \mathrm{~A} \end{aligned}$	ion 014: Deletes standard 128 kb parity mem ion 111: Adds fixed \& microfloppy discs
$\begin{aligned} & 2436 E \\ & 2436 E \\ & 2436 E \end{aligned}$	Syster standard 512 kb parity mem 1: Adds fixed \& microfloppy discs
$\begin{aligned} & 2437 \mathrm{~A} \\ & 2437 \mathrm{~A} \\ & 2437 \mathrm{~A} \\ & 2437 \mathrm{~A} \end{aligned}$	cro 27 System Component with 128 kb memory tion oit Hardware floating point processor tion oit Deletes std memory array card tion $111:$ Adds fixed \& microfloppy discs
$2439 A$	cro 29 System Component with 768 kb ECC memory tion 014: Deletes std ECC memory array card tion 111: Adds fixed \& microfloppy discs
$\begin{aligned} & 2486 A \\ & 2486 A \end{aligned}$	Micro 26 System Processor Unit $w / 512 \mathrm{~kb}$ memory Option 014: Deletes standard 512 kb parity mem Option 111: Adds fixed \& microfloppy discs
$\begin{aligned} & 2487 A \\ & 2487 A \end{aligned}$	Micro 27 System Processor Unit w/512kb memo Option Oit Hartare FFioating point process Option olit Deletes std memoryarray card Option 111 Adds fixed \& microfloppy discs
$89 \mathrm{~A}$	Micro 29 System Processor Unit $w / 768 \mathrm{~kb}$ ECC mem Option D14: Deletes std ECC memory array card Option 111: Adds fixed \& microfloppy discs

-2 +1
+16
-1 +1
+15 +1
$+18$
+16
\pm
+13
+1 -1
+12
+1
+12
+1 -1
+12
+1 -1
+10
-1
-1
+9
± 1
+10 +1
nnc
+8
-1 +1
nnc
+7
+1 $n+1$

-9 64

Computer power supply and card cage slot availability (+) and requirements (-), continued

	Card Cage slots	Direct Current at				$25 k H z$ ac Pwr at 39 Vrms	Total Power Supply
Product Number and Name		+5V	+5V(M)	+12V	-12V		

A900 MEMORY ARRAY CARDS

INTERFACES

12005A/B Asynchronous Serial Interface	-1	-1.6A	OA	-0.2A	-0.1A	Ow	-11.6W
12006A Parallel Interface	-1	-1.9A	OA	-0.2A	- OA	OW	-11.9W
12007 B HDLC Modem Interface to HP 1000	-1	-2.6A	OA	-0.4A	-0.2A	Ow	-20.2W
12009A HP-IB Interface	-1	-2.1A	OA	-0.1A	OA	OW	-11.7W
12040B/12041A 8-Channel Asynchronous Multiplexer	-1	-2.5A	OA	-0.1A	-0.1A	OW	-14.9W
12042B/12043A Programmable Serial Interface	-1	-2.6A	OA	-0.4A	-0. 2 A	OW	-20.2W
12044A HDLC Direct Connect Interface to HP 1000	-1	-2.4A	OA	-0.3A	-0.1A	OW	-16.8W
12060A/B High-Level Analog Input Card (8 inputs)**	-1	-1.1A	OA	OA	OA	-7.3W*	-12.8W
12061 A Expansion Multiplexer Card ladds 32 inputs to	-1	-0.1A	OA	OA	OA	-2.0W*	2.5 W
12060A/B)**							
12062A Analog Output Card (4 isolated outputs	-1		OA	OA	OA	6W*	-13.6W
12063A 16-In/16-Out Isolated Digital I/O Card**	-1	-1. 0 A	OA	OA	OA	11.4W*	-16.4W
12065A Color Video Monitor Interface	-1	-3.7A	OA	-0.5A	-0.02A	Ow	-24.0W
12072A DS/1000-IV Data Link Slave I/F to HP 1000	-1	-1.5A	OA	-0.2A	-0.1A	OW	-11.1W
12073A Bisync Modem Interface to HP 3000	-1	-2.6A	OA	-0.4A	-0.2A	OW	-20.2W
12075A DSN/X. 25 (LAP-B) Network Interface	-1	-2.6A	OA	-0.4A	-0.2A	OW	-20.2W
12082A Bisync Direct Connect Interface to HP 3000	-1	-2.4A	OA	-0.3A	-0.1A	OW	-16.8W
12092A A-Series Multipoint/Data Link Interface	-1	-2.6A	OA	-0.4A	-0.2A	OW	-20.2W
37203L HP-IB Extender Card (coaxial cable trans)**	-1	-0.8A	OA	OA	OA	-0.8W	- 4.8 W
$37203 L+001$ HP-IB Extender Card using fiber optic cable communication	-1	-0.8A	OA	OA	OA	OW	- 4.0W
37222A Integral Modem Card	-1	-1.2A	OA	-0.1A	-0.1A	OW	$8.4 W$

OTHER PLUG-IN ACCESSORIES

12008A	PROM Storage Module
12010A	Breadboard Interface (NCTE A)
12011 A	Extender Card
12012A	Priority Jumper Card
12013A	Battery Backup Card for 2106BK
12153 A	A700 Writable Control Store Card
12154A	Battery Backup Card for $243 \times \mathrm{A} / 248 \times \mathrm{A}$ Micro 1000
	Systems A700 PROM Control Store Card (fully loaded)
12156 A	A 700 Hardware Floating Point Processor Card
12157A	Battery Backup System for 219xC/D. 2137/9A, or 21568
12158 A	25 kHz Pwr Mod for $219 \times C / D, 2137 / 9 \mathrm{~A}$, or 2156 B
12159 A	25 kHz Sine Wave Card for $243 \times \mathrm{A} / 248 \times \mathrm{A}$

-1
-1
$n \pi$
-1
-1
-1
-2
-1
-1
0
0
0

-2.0A	OA	-0.1A
-0.8A	OA	-0.1A
OA	OA	OA
OA	OA	OA
OA	OA	-0.1A
-4.1A	OA	-0.1A
-6.3A	OA	OA
-4.OA	OA	OA
OA	OA	OA
OA	OA	OA
OA	OA	OA

$O A$	$O W$	$-11.2 W$
$O A$	$O W$	$-5.2 W$
$O A$	$O W$	n / a
$O A$	$O W$	n / a
$O A$	$O W$	n / s
$O A$	$O W$	$-21.7 W$
$n \cap C$	$n \cap C$	$-8 . O W$
$O A$	$O W$	$-31.5 W$
$O A$	$O W$	$-20.0 W$
$O A$	$O W$	n / s
$O A$	$+50 W$	n / s
$O A$	$+3 O W$	$-6 . O W$

CARD CAGES FOR INTEGRATION OF 21068 K BOARD COMPUTER
12030A Ten-Slot Card Cage
12031 A Sixten-sioot CardCage
12032 A Five-Slot Card Cage

FOOTNOTES: $n / s=$ not specified; nnc $=$ no net change; $n / a=$ not applicable

* Total power output from the $243 \times A / 248 \times A$ power supply cannot exceed 300w, maximum; use total power supply wattage figures in the last column of the table to confirm that total power output is not exceeded
** This card requires 25 kHz power, which precludes its use in the $2122 \mathrm{~A} / \mathrm{B}$, $2136 \mathrm{C} / \mathrm{D}$, $2142 \mathrm{~A} / \mathrm{B}$, or $2186 \mathrm{C} / \mathrm{D}$ Microsystem and requires addition of the 12158 A 25 kHz power module in the 2137 A , $2139 \mathrm{~A}, 2156 \mathrm{~B}, 219 \times \mathrm{C} / \mathrm{D}$ or the 12159 A Sine Wave Wave Card in the $243 \times A$ or $248 \times A$
NOTE A: The requirements given here for the 12010A Breadooard Interface do not include power for user-added circuits.

Product number and name	DIMENSIONS (HEIGHT \times WIDTH \times DEPTH) Centimeters and (inches)	APPROXIMATE FLOOR SPACE RECOMMENDED metres and (feet)	NET WEIGHT kg and (lb)

SYSTEM PROCESSOR UNITS PHYSICAL CHARACTERISTICS (Exciudes terminal and (hard) non-integrated system disc)

$219 \times \mathrm{C}$ MODEL $26 / 27 / 29$ SYSTEM PROCESSOR UNIT $219 \times D$ MODEL $26 / 27 / 29$ SYSTEM PROCESSOR UNIT $248 \times$ A MICRO 26/27/29 SYSTEM PROCESSOR UNIT $248 \times A$ MICRO $26 / 27 / 29$ SPU in 40025A VERTICAL FLOOR MOUNT $248 \times A$ OPTION 111 INTEGRAL DISCS					161.3×69.9×81.3	$(63.4 \times 27.5 \times 32)$	$3 \times 3(9 \times 9)$	$\begin{array}{rc}139.5 & (307.5) \\ 94 . & (207.5) \\ 18.1 & (40)\end{array}$	
					$72 \times 69.9 \times 81.3$	$(28.3 \times 27.5 \times 32)$	3×3 ($9 \times 89)$		
					$17.8 \times 48.3 \times 64.8$	$(7 \times 19 \times 25.5)$	Rack or table mtg		
					$67.3 \times 34.7 \times 64.8$	$(26.5 \times 13.6 \times 25.5)$	$0.5 \times 1(1.5 \times 3)$	23.8	(52.5)
					No change		No change	+2.3	(5)

COMPUTERS PHYSICAL CHARACTERISTICS

```
2137A/2139A/2156B COMPUTER
243\timesA MICRO 26/27/29 SYSTEM COMPONENT
243\timesA MICRO 26/27/29 COMMPNNENT IN 40025A
* VERTICAL FLOOR MOUNT
243KA OPTION 111 INTEGRAL DISCS
```

$26.6 \times 48.3 \times 61.2$	$(10.5 \times 19 \times 2$
$17.8 \times 48.3 \times 64.8$	$(7 \times 19 \times 25.5)$
$67.3 \times 34.7 \times 64.8$	$(26.5 \times 13.6 \times 25.5)$
No change	

$\left\{\begin{array}{l}\text { Rack mounting } \\ \text { Rack ortablemt } \\ 0.5 \times 1 \quad(1.5 \times 3) \\ \text { No change } \\ \hline\end{array}\right.$

29.1	(64)
18.1	(40)
23.8	(52.5)
+2.3	(5)

PERIPHERALS PHYSICAL CHARACTERISTICS

13279B COLOR MONITOR				
2392A DISPLAY TERMINAL				
2563A LINE PRINTER 2565A/2566A LINE PRINTER				
2601 D DAISYWHEEL PRINTER $262 x$ TERMINALS				
2671A/G PRINTER/GRAPHICS PRINTER 2673 ANTELLIGENT GRAPHICS PRINTER 2674 A INTEGRAL PRINTER FOR 45610 B				
2686A LASERJET PRINTER 2687 A DESKTOP LASER PRINTER Controller included with 2687A				
293×4 PRINTERS				
3074A/M DATA LINK ADAPTER				
37214A SYSTEMS MODEM CARD CAGE 39301 A FIBER OPTIC MULTIPLEXER				
45610 HP HP TOUCHSCREEN TERMINAL				
7470A (2-pen) PLOTTER 7475A (6-pen) PLOTTER 7550 A (8 -pen) PLOTTER with Auto Sheet Feed				
7580 D DRAFTING PLOTTER 7585B DRAFTING PLOTTER 7586B DRAFTING PLOTTER				
7911/12/14P FIXED DISC $7911 / 12 / 14 \mathrm{R}$ FIXED DISC 7914 ST FIXED DISC AND 1600 bPI MAG TAPE UNIT 7914 TD FIXED DISC AND 1600 bpi MAG TAPE UNIT				

$7914 T D$ FIXED DISC AND 1600 bPI MAG TAPE UNIT 7933H/7935H 404Mb FIXED/REMOVABLE MEDIA DISC
7941A/7945A 28.3/55.5 Mb FIXED DISC
79708/E MAGNETIC TAPE DRIVE
7971 A MAGNETIC TAPE SUBSYSTEM WITH ONE DRIVE ADDITIONAL DRIVE IN $7971 A$ CABINET 7974A MAGNETIC TAPE SUBSYSTEM WITH

82905B IMPACT PRINTER
82906A DOT-MATRIX PRINTER
9111 A GRAPHICS TABLET
$9133 \times V$ WINCHESTER DISC W/ONE MICROFLOPPY
9144 A TAPE CARTRIDGE SUBSYSTEM
9895A FLEXIBLE DISC MEMORY

$39.9 \times 48.2 \times 59.8$	$(15.7 \times 19 \times 23.6)$
$31.7 \times 45.5 \times 58.2$	$(12.5 \times 17.9 \times 22.9)$
$\begin{aligned} & 27.4 * \times 23.6 \times 45 \\ & 110 \times 98.3 \times 63.5 \end{aligned}$	$\binom{10.8 \% \times 23.6 \times 17.8)}{43.3 \times 38.7 \times 25}$
$\begin{aligned} & 25.3 \times 61 \times 48.1 \\ & 44 \times 38 \times 66.5 \end{aligned}$	$\left(\begin{array}{l} 10 \times 24 \times 19) \\ (17.3 \times 15 \times 26) \end{array}\right.$
$\begin{aligned} & 10.5 \times 42.8 \times 42.4 \\ & 10.5 \times 42.8 \times 42.4 \\ & \text { See } 456108 \end{aligned}$	$(4.1 \times 16.9 \times 16.7)$ $(4.1 \times 16.9 \times 16.7)$
$\begin{aligned} & 29.3 \times 47.5 \times 72.3 \\ & 28 \times 51 \times 50 \\ & 28 \times 15 \times 50 \end{aligned}$	$\left(\begin{array}{l}11 \times 4 \times 18.5 \times 28.2) \\ (11 \times 20 \times 19.5 \\ (11 \times 6 \times 19.5)^{\prime}\end{array}\right.$
18.5\#*60×36.5	(7.3**23.9×14.4)
$5 \times 25 \times 11$	($2 \times 9.9 \times 4.4$)
$\begin{aligned} & 17.8 \times 43.8 \times 33 \\ & 7.2 \times 42.5 \times 8.9 \end{aligned}$	$\begin{aligned} & (7 \times 17.3 \times 13) \\ & (2.9 \times 16.8 \times 3.5) \end{aligned}$
$28.7 \times 45.6 \times 53$	(11.3×18×20.9)
$12.7 \times 43.2 \times 34.3$	$\begin{aligned} & (5 \times 17 \times 13.5) \\ & (5 \times 22 \times 4 \times 145) \end{aligned}$
$21.5 \times 67 \times 89.6$	($8.5 \times 26.4 \times 35.3$)
$118.8 \times 108.7 \times 55.7$ $118.8 \times 139.2 \times 55.7$	$\left(\begin{array}{l}46.8 \times 42.8 \times 21.9 \\ 46.8 \times 54 \\ 8 \times 21\end{array}\right)$
$118.8 \times 139.2 \times 55.7$	(46.8×54.8×21.9)
$\begin{aligned} & 72 \times 35.4 \times 74 \\ & 31.1 \times 48.3 \times 70.5 \\ & 160.0 \times 60.0 \times 80.0 \\ & 161.3 \times 63.5 \times 81.3 \end{aligned}$	$\begin{aligned} & (28.4 \times 14 \times 291) \\ & (12.25 \times 19 \times 27.8) \\ & (63.0 \times 23.6 \times 31.5) \\ & (63.4 \times 25 \times 32) \end{aligned}$
$82.5 \times 55.2 \times 83.4$	$(32.5 \times 21.7 \times 32.8)$
$13 \times 32.5 \times 28.5$	($5.1 \times 12.8 \times 11.2$)
$\begin{aligned} & 66.7 \times 48.3 \times 30.4 \\ & 158.5 \times 62.3 \times 90.5 \end{aligned}$	$\begin{aligned} & (26.3 \times 19 \times 12) \\ & (62.4 \times 24.5 \times 35.6) \end{aligned}$
No change $160 \times 60 \times 77.5$	$(63 \times 23.6 \times 30.5)$
No change	
$10.7 \times 37.4 \times 30.5$ $10 \times 42 \times 34.7$	$\left(\begin{array}{l}4.2 \times 14.7 \times 12) \\ (3.9 \times 16.5 \times 13.7)\end{array}\right.$
$8.5 \times 44 \times 44$ $7.6 \times 32.5 \times 28.5$ $12.5 \times 32.55 \times 28.5$	$\begin{aligned} & (34 \times 17.3 \times 17.3) \\ & (3 \times 12.8 \times 11.2)^{3} \\ & (5 \times 12.8 \times 11.4) \end{aligned}$
$12.5 \times 32.5 \times 28.5$	$(5 \times 12.8 \times 11.2)$
$19.2 \times 48.3 \times 57.5$	$(7.6 \times 19 \times 22.6)$

Table mounting	36.7	(81.0)
Table mounting	13	(28.7)
$\begin{array}{lllllll}1 & \times & 3 \\ 1 & \times & 3\end{array}\left(\begin{array}{llll}3 & \times & 9 \\ 3 & x & 9\end{array}\right)$	204**	(75\%)
Table mounting		(75)
Table mounting	22.3	(49)
Table mounting	12.7	(28)
Table mounting	14.1	(31)
See 45610 B	2.9	(6.4)
Table mounting		(71)
Table mounting	62.7	(138)
Table mounting	5.5	(12)
$1 \times 3(3 \times 9)$	20.4*	(45*)
Table mounting	1	(2.2)
Rack mounting Table mounting	7.5 7.5	$\left(\begin{array}{l}16.5) \\ (16.5)\end{array}\right.$
Table mounting	12.2	(27)
Table mounting	7	(13.5)
Table mounting	17.3	(38.0)
	63.6 70.4	(140) (155)
$2 \times 2(6 \times 6)$	86.4	(190)
$1 \times 2 \times 2 \times 6)$	85.4	(188)
Rack mounting	67.	(148)
3×3 ($9 \times 3 \times 9)$	261	(574)
$1 \times 3(3 \times 9)$	154	(339.5)
Table or rack* mtg	9.9	(21.8)
$\begin{aligned} & \text { Rack mounting } \\ & 3 \times x_{3} \\ & \hline \end{aligned}$	68.2 195	$\left(\begin{array}{l}150) \\ 430)\end{array}\right.$
No change ${ }^{\text {a }}$	59	1301
3×3 (9×9)	181.8	4001
No change	54.6	(120)
Table mounting Table mounting	5.5 7.5	$\left(\begin{array}{l}12.1) \\ 16.5)\end{array}\right.$
Table mounting	5.8	(12.8)
Table mounting	4.5	101
Table mounting	9.9	(22)
Table or rack* mtg	8.6	(19)
Table/rack mounting	26.8	(59)

* Not including optional stand; without stand, printer is table mounting
* For rack mounting, the $794 \times A$ Disc or 9144 A Cartridge Tape Subsystem requires a 19500 A Rack Mounting Kit

	AMBIENT TEMPERATURE (DEGREES C (DEGREES F))		relative HUMIDITY (NON CONDENSING)	MAXIMUM AL	METRES (FEET)
PRODUCT NUMBER AND NAME	OPERATING	NON-OPERATING		OPERATING	NON-OPERATING

SYSTEM PROCESSOR UNITS (SPUs) ENVIRONMENTAL SPECIFICATIONS (Excludes terminal and (hardj non-integrated system disc)

219xC/D MODEL $26 / 27 / 29$ SPU	0-40 (32-104)	-40-75 (-40-167)	5\% - 95\%	4572 (15,000)	15240 (50.000)
248xA MICRO 26/27/29 SPU	0-40 (32-104)	-40-75 (-40-167)	5\% - 95\%	4572 (15.000)	15240 (50,000)

COMPUTERS ENVIRONMENTAL SPECIFICATIONS

2137A/2139A/2156B COMPUTER	0-40 (32-104)	-40-75 (-40-167)	5\% - 95\%	4572 (15.000)	15240 (50,000)
2137A/2139A/2156B COMPUTER	0-55 (32-131)	-40-75 (-40-167)	5\% - 95\%	3048 (10,000)	15240 (50.000)

PERIPHERALS ENVIRONMENTAL SPECIFICATIONS

13279B COLOR MONITOR	0-50 (32-122)	Not specified	10\% - 90\%	3048 (10,000)	Not specified
2392A DISPLAY TERMINAL	0-55 (32-131)	-40-75 (-40-167)	5\% - 95\%	$4572(15,000)$	15240 (50.000)
2563A LINE PRINTER	$10-50$ $10-40$ $(50-122)$ $(50-104)$	$-40-75$ $-40-75$ $(-40-167)$ $(-40-167)$	$30 \%-80 \%$ $30 \%-80 \%$	4572 4572 $(15,000)$	15240 15240 $(50,000)$ $(50,000)$
2601A DAISYWHEEL PRINTER	7-41 (45-105)	-29-57 (-20-135)	10\% - 80\%	2438 (8,000)	7620 (25,000)
262x TERMINALS without printer $262 \times$ TERMINALS with printer	$0-55$ $5-40$ $(32-131)$ $(41-104)$	$-40-60$ $-40-60$$(-40-140)$	$5 \%-95 \%$ $5 \%-80 \%$	4572 4572 $(15,000$ $15,000)$	15240 15240 (50.000)
2671A/G Or 2673 P PRINTER THERMAL PAPER for $26714 / \mathrm{G}$ or 2673 A	$0-55$ $0-40$$\binom{32-131}{50-104}$	$-40-75$ $-40-40$ 0$(-40-167)$	$20 \%-95 \%$ $20 \%-90 \%$	$\left.\begin{array}{l}4572 \\ 4572 \\ \hline\end{array} 15,000\right)$	$\begin{aligned} & 15240(50,000) \\ & 15240(50,000) \end{aligned}$
2686A LASERJET PRINTER	$10-32$ $10-30$$(50-91)$	$\begin{array}{r}0-35 \\ -40-40 \\ \hline\end{array}(-42-95)$	$20 \%-80 \%$ $20 \%-90 \%$	2500 2500 $(8,200)$ 8,200$)$	15000 15000 $(49,200)$ $(49,200)$
$293 \times$ A PRINTERS	0-55 (32-131)	-40-75 (-40-167)	10\% - 70\%	4572 (15,000)	15240 (50,000)
3074A/M DATA LINK ADAPTER	0-55 (32-131)	-40-75 (-40-167)	5\% - 95\%	4572 (15,000)	7620 (25.000)
37214 A SYSTEMS MODEM CARD CAGE	$0-55$ $0-55$ $\binom{32-131)}{(32-131)}$	$-40-75$ $-40-75$ $(-40-167)$ $(-40-167)$	$5 \%-95 \%$ $5 \%-95 \%$	$\begin{aligned} & 4572(15,000) \\ & 4572(15,000) \end{aligned}$	$\begin{aligned} & 15240(50,000) \\ & 15240(50,000) \end{aligned}$
45610B HP TOUCHSCREEN TERMINAL with or without 2674A printer	$0-55$ (32-131)	-40-75 (-40-167)	5\% - 95\%	4572 (15,000)	15240 (50.000)
7470A/7475A GRAPHICS PLOTTER	0-55 (32-131)	-10-75 (-40-167)	5\% - 95\%	4572 (15,000)	15240 (50.000)
7550A GRAPHICS PLOTTER Automatic Sheet Feed with 7550A	$0-55$ $10-40(32-131)$ $0-104)$	$-10-75$ $-10-75$$(-40-167)$	5% 20%	4572 4572 15 15,000$)$	15240 15240 $(50,000)$ $(50,000)$
7580B/7585B/7586B DRAFTING PLOTTER Roll Feed with 7586B	$\begin{array}{rr}0-40 & (32-104 \\ 10-30 & (50-86)\end{array}$	$-40-75$ $-40-75$ $(-40-167)$ $(-40-167)$	5\% - 95\%	4572 4572 $\left(\begin{array}{l}15,000) \\ 15,000)\end{array}\right.$	15240 15240 $(50,000)$ $(50,000)$
	$\begin{aligned} & 10-40 \\ & 10-40(50-104 \\ & 10-40(50-104) \end{aligned}$	$-40-60$ $-40-60$ $-40-60$ $(-40-140)$ $(-40-140)$ $-40-140)$	$20 \%=80 \%$ $20 \%=80 \%$ $20 \%-80 \%$	4572 4572 4572 $(15,000)$	$\left.\begin{array}{l}15240 \\ 15240 \\ 15240 \\ \hline\end{array} 50,000\right)(50,000)$
$7914 S T$ CS/80 FIXED DISC - MAG TAPE SUBSYSTEM (Note A)	15-32 (59-90)	-10-60 (14-140)	20\% - 80\%	3000 (9,843)	$15000(49.213)$
7914 TD CS/80 FIXED DISC - MAG TAPE	10-40 (50-104)	-40-60 (-40-140)	20\% - 80\%	3048 (10,000)	3048 (10,000)
7933H CS/80 FIXED DISC (Note B) 7935H REMOVABLE MEDIA DISC (Note B)	$10-40$ $10-32$$\left(\begin{array}{l}50-104 \\ (50-90)\end{array}\right.$	$-40-65$ $-40-65$ $(-40-149)$ $(-40-149)$	$8 \%-80 \%$ $8 \%-80 \%$	3000 3000 $(9,843)$ 9.843$)$	15000 15000 $(49,213)$ $(49,213)$
7941A/7945A FIXED DISC (Note A)	10-40 (50-104)	-40-60 (-40-149)	8\% - 80\%	3000 (9,843)	12000 (40,000)
7970E/7971A MAG TAPE UNIT (Note B) 7974A MAGNETIC TAPE UNIT (Note B)	$0-55$ $15-32$$\binom{32-131}{$ $9-90}$	$-40-75$ $-40-75$ $(-40-167)$ $(-40-167)$	$20 \%=80 \%$ $20 \%-80 \%$	3000 3000(9.843)	15000 15000
8290xA/B PRINTERS	5-35 (41-95)	-30-65 (-22-149)	10\% - 80\%	3048 (10.000)	15240 (50,000)
9111A GRAPHICS TABLET 9121D DUAL MICROFLOPPY DISC MEMORY 9133XV WINCHESTER DISC W/SINGLE MICROFLOPPY DISC (Note A	$\begin{array}{r} 0-55(32-131) \\ 10-45(50-113) \\ 10-40(40-104) \end{array}$	$-40-65$ $-40-60$ $-40-60$$(-40-149)$	$5 \%-90 \%$ $20 \%=80 \%$ $20 \%-80 \%$	4572 4572 4572 $(15,000)$	15240 15240 15240
9144A TAPE CARTRIDGE SUBSYSTEM TAPE CARTRIDGES FOR 9144 A	$\begin{aligned} & 5-40\left(\begin{array}{ll} 4 & 1-104 \\ 5-40 \\ (41-104 \end{array}\right) \end{aligned}$	$\begin{aligned} & -40-75(-40-167) \\ & -40-45(-40-113) \end{aligned}$	$\begin{aligned} & 20 \%-80 \% \\ & 20 \%-80 \% \end{aligned}$	$\begin{aligned} & 4572(15,000) \\ & 4572(15,000) \end{aligned}$	$\begin{aligned} & 15240 \\ & 15240(50,000) \\ & \hline 50,000) \end{aligned}$
9895A FLEXIBLE DISC MEMORY	10-40 (50-104)	-40-60 (-40-140)	20\% - 80\%	4572 (15,000)	15240 (50,000)

Note A : The rate of change of temperature must not exceed 10 degrees C (18 degrees F) per hour
Note B: The rate of change of temperature must not exceed 20 degrees C (36 degrees F) per hour

[^0]: *A900 only
 ** A600 + and A700 only

[^1]: * 2048 bytes per page

[^2]: $N / A=$ Not Applicable
 $N / S=$ Not Specified

 * $=$ With one parameter

[^3]: *Number of available card cage slots depends upon use of battery backup and power used by installed cards.

[^4]: *Number of available card cage slots depends upon use of battery backup and power used by installed cards.

[^5]: *Number of available card cage slots depends upon use of battery backup and power used by installed cards.

